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ABSTRACT

Observations of exoplanets over the last two decades have revealed a new class of Jupiter-size planets with orbital
periods of a few days, the so-called “hot Jupiters.” Recent measurements using the Rossiter–McLaughlin effect
have shown that many (∼50%) of these planets are misaligned; furthermore, some (∼15%) are even retrograde with
respect to the stellar spin axis. Motivated by these observations, we explore the possibility of forming retrograde
orbits in hierarchical triple configurations consisting of a star–planet inner pair with another giant planet, or brown
dwarf, in a much wider orbit. Recently, it was shown that in such a system, the inner planet’s orbit can flip back
and forth from prograde to retrograde and can also reach extremely high eccentricities. Here we map a significant
part of the parameter space of dynamical outcomes for these systems. We derive strong constraints on the orbital
configurations for the outer perturber (the tertiary) that could lead to the formation of hot Jupiters with misaligned
or retrograde orbits. We focus only on the secular evolution, neglecting other dynamical effects such as mean-
motion resonances, as well as all dissipative forces. For example, with an inner Jupiter-like planet initially on a
nearly circular orbit at 5 AU, we show that a misaligned hot Jupiter is likely to be formed in the presence of a
more massive planetary companion (>2 MJ ) within ∼140 AU of the inner system, with mutual inclination >50◦

and eccentricity above ∼0.25. This is in striking contrast to the test particle approximation, where an almost
perpendicular configuration can still cause large-eccentricity excitations, but flips of an inner Jupiter-like planet are
much less likely to occur. The constraints we derive can be used to guide future observations and, in particular,
searches for more distant companions in systems containing a hot Jupiter.
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1. INTRODUCTION

To date, about 800 exoplanets have been detected. This
number is growing sharply, with more and more planet can-
didates from the Kepler catalog being confirmed (there are
currently about 3400 unconfirmed candidates, with an over-
all false-positive rate expected to be 9.4% ± 0.9% according
to Fressin et al. 2013). Some of the earliest detections led to
the surprising discovery of a new class of Jupiter-like planets in
very close proximity to their host star (Mayor & Queloz 1995),
the so-called “hot Jupiters” (hereafter HJ). In situ formation at
such short distances (just a few stellar radii) from the parent star
seems very unlikely. A popular explanation for the presence of
a giant gas planet so close to the star is planetary migration, as-
sociated with viscous evolution of a protoplanetary disk (Lin &
Papaloizou 1986; Masset & Papaloizou 2003). This migration
should result in orbits with low eccentricities and inclinations
(but see Lai et al. 2011; Thies et al. 2011). However, it was
shown that other dynamical mechanisms such as planet–planet
scattering (Rasio & Ford 1996; Terquem & Papaloizou 2002;
Nagasawa et al. 2008; Nagasawa & Ida 2011; Chatterjee et al.
2008; Wu & Lithwick 2011; Beaugé & Nesvorný 2012; Boley
et al. 2012) and secular evolution (Holman et al. 1997; Wu &
Murray 2003; Takeda & Rasio 2005; Wu et al. 2007; Fabrycky
& Tremaine 2007; Takeda et al. 2008; Naoz et al. 2011, 2012,
2013a; Correia et al. 2011; Kratter & Perets 2012) also play an
important role in the formation of HJs.

The Rossiter–McLaughlin effect (Rossiter 1924; McLaughlin
1924; Gaudi & Winn 2007) has enabled measurement of the sky-

projected angle between the orbits of several HJs and the spins
of their host stars. Surprisingly, about half of these planets are
observed to be misaligned, and some (about 25%) are even in
retrograde orbits with respect to the spin axis of the host star
(e.g., Triaud et al. 2010; Albrecht et al. 2012; Brown et al. 2012).
These observations suggest that the classical disk migration
model is not the only channel to form HJs.

The Kepler mission has so far revealed the existence of
about 2300 planet candidates, and the number of false positives
among this sample is expected to be small (Batalha et al.
2013; Morton 2012). A recent analysis by Steffen et al. (2012)
showed that most HJs from the Kepler data appear to have
no nearby, coplanar companions (within a period ratio of a
few); however, planetary companions at larger separations and
large inclinations cannot be excluded (especially since an outer
companion with an orbital period ratio of ∼10 and a 60◦ mutual
inclination would have a detection likelihood of less than 5%
by transit methods).

Recent developments in direct imaging provide a powerful
tool to detect a class of planets that cannot be observed via radial
velocity or transit methods: massive planets with large angular
separation (i.e., within orbits of tens of astronomical units). For
example, Lafrenière et al. (2008, see also Lafrenière et al. 2010)
found evidence of the first directly imaged planet (of 8 MJ

6

and a separation of ∼330 AU) around a young Sun-like star.
Shortly after this observation, Marois et al. (2008) announced
the discovery of a system of three planets orbiting at several

6 Hereafter we use MJ to denote the mass of Jupiter.
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tens of astronomical units of the HR 8799 star, with masses
ranging from 5 to 13 MJ (see also Marois et al. 2010; Skemer
et al. 2012, for the discovery of a fourth inner planet). More
recently, two additional planets (with masses of about 4 MJ )
were discovered through direct imaging at projected distances
of few tens of astronomical units from their host stars (Rameau
et al. 2013; Kuzuhara et al. 2013). Planets at such distances
could have formed in situ through gravitational instabilities in a
massive protoplanetary disk (Durisen et al. 2007) or could have
been brought there through outward disk-driven migration of
planets formed at distances of about 10 AU (Crida et al. 2009).
Alternatively, it is possible that these planets have migrated there
as the result of strong gravitational interactions with (at least)
another planet in the system, suggesting a multiple-planet sys-
tem. Therefore, populations of planets on both close and wide
orbits might coexist in planetary systems. These populations, in
principle, could have a large range of eccentricities and incli-
nations because of their dynamical history. The direct imaging
method is more effective in young systems, for which the planet
at large separation still has an important thermal emission, mak-
ing it easier to observe. Unfortunately, this limitation affects the
possibility of detecting any close-in planets (since the star is
still very active). Astrometry is another promising method for
detecting planets on wide orbits. The efficiency of this method
increases with both the orbital separation and the mass of the
planet. Therefore, a mission such as Gaia could give new in-
sights in the detection of massive planets with orbital periods
of several years (see, e.g., Sozzetti et al. 2013 and references
therein), with access to a wide range of orbital parameters. In
addition, a distant planetary perturber causes a long-term linear
trend in the radial velocity curve of its host star, which could
appear in long-term radial velocity surveys (see, e.g., Crepp
et al. 2012). However, this trend does not have a significant
effect on the systems we study; we quantify this effect in our
results.

Different theoretical models have been proposed to explain
the presence of HJs and the observed misalignments in particu-
lar. Some studies proposed that dynamical gravitational scatter-
ing in multiplanet systems can lead to large eccentricities and
misaligned HJs (Rasio & Ford 1996; Terquem & Papaloizou
2002; Nagasawa et al. 2008; Nagasawa & Ida 2011; Chatterjee
et al. 2008; Wu & Lithwick 2011; Beaugé & Nesvorný 2012;
Boley et al. 2012). Other studies invoke secular effects (i.e.,
interactions on timescales that are long compared to the orbital
period) by stellar or planet companions in the dynamical evo-
lution of planetary systems in the framework of triple systems
(Holman et al. 1997; Wu & Murray 2003; Takeda & Rasio 2005;
Wu et al. 2007; Fabrycky & Tremaine 2007; Takeda et al. 2008;
Naoz et al. 2011, 2012, 2013a; Correia et al. 2011; Kratter &
Perets 2012). Furthermore, different models suggest that mis-
alignment can be caused by magnetic interactions between the
protoplanetary disk and the parent star (Lai et al. 2011) or dy-
namical interactions with another star that would tilt the disk’s
axis (Thies et al. 2011). Therefore, the planets formed in such
disks would be naturally misaligned. Chen et al. (2013) also
showed that a combination of disk–planet secular interactions
with subsequent Kozai oscillations between the two planets can
produce misaligned HJs. In addition, simulations by Teyssandier
et al. (2013), Xiang-Gruess & Papaloizou (2013), and Bitsch
et al. (2013) also showed that if planets on inclined orbits co-
habited with a disk, massive planets were likely to align with
the disk, as inclination damping occurs on a timescale shorter
than the lifetime of the disk, whereas less massive planets would

remain on inclined and eccentric orbits because of Kozai-like
excitations emerging from interactions with the disk.

Here we study the parameter space of a planetary perturber
in the framework of triple-body dynamics. For arbitrary inclina-
tions and eccentricities, long-term stability requires the system
to be hierarchical. Therefore, the system must consist of an “in-
ner” binary (stellar mass m0 and Jupiter mass m1) in a nearly
Keplerian orbit with semimajor axis (SMA) a1 and an “outer”
binary in which m2 orbits the center of mass of the inner binary,
with SMA a2 ≫ a1. Another condition for stability is that the
eccentricity of the outer orbit e2 cannot be too large, so that
m2 does not make close approaches to the inner binary orbit.
In such systems, a high mutual inclination between m2 and the
(m0,m1) system can produce large-amplitude oscillations of the
eccentricity and inclination; this is the so-called Kozai–Lidov
mechanism (Kozai 1962; Lidov 1962).

Kozai (1962) studied the effects of Jupiter’s gravitational
perturbation on an inclined asteroid in our own solar system
using Hamiltonian perturbation theory. In this influential work,
Jupiter was assumed to be on a circular orbit; thus, the massless
asteroid moved in an axisymmetric gravitational potential. The
immediate consequence is that the projection of the inner
orbit’s angular momentum along the total angular momentum
is conserved during the evolution. In fact, at the lowest order
of approximation in the ratio of SMAs, α = a1/a2 (called the
“quadrupole” approximation), in the test particle case (i.e., one
of the objects in the inner binary is massless), the component
of the inner orbit’s angular momentum along the total is
conserved even if the outer orbit is not circular (e.g., Lidov &
Ziglin 1974). Recently, Naoz et al. (2011, 2013a) showed that
these approximations are not appropriate for many systems,
particularly in the presence of a (minimally) eccentric outer
orbit when the next-order perturbations (octupole) are taken into
account or if the test particle approximation for the inner body
is relaxed (at quadrupole or octupole order). As a consequence,
the relevant component of the angular momentum is no longer
conserved. The lack of conservation of the inner orbit’s angular
momentum component allows the orbit to reach extremely high
eccentricities and can even “flip” the orbit from prograde to
retrograde with respect to the total angular momentum.

Naoz et al. (2011) considered the secular evolution of a
triple system consisting of an inner binary containing a star
and a Jupiter-like planet separated by several astronomical
units, orbited by a distant Jupiter-like planet or brown dwarf
companion. Perturbations from the outer body can drive Kozai-
like cycles in the inner binary, which, when planet–star tidal
effects are incorporated, can lead to the capture of the inner
planet. This leads to a close, highly inclined or even retrograde
orbit, similar to the orbits of the observed misaligned HJs.

Here we explore the orbital parameter space of a triple-body
hierarchical system in the point mass limit (i.e., neglecting
tidal dissipation). We focus on planetary systems, where the
perturbing object is either a planet or a brown dwarf, but as
we will show, the system can be scaled to different masses. We
show that going beyond the test particle approximation yields
qualitatively different results. We map the parameter space of
the outer orbit in terms of mass, separation, eccentricity, and
inclination and seek the best configurations that would produce
retrograde orbits. Thus, we predict the properties of the planet
perturber that causes the eccentric Kozai–Lidov evolution. The
eccentricity of the inner planet grows large enough to trigger
tidal circularization around the host star and could eventually
form misaligned HJs. We do not study this process in this
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Figure 1. Time evolution of the nominal example. Left: evolution of the mutual inclination (top) and eccentricity of the inner planet (bottom, as 1 − e1 in log scale)
for a two-planet system. The horizontal dashed line shows the separation between prograde and retrograde orbits at 90◦. Right: relative distribution of the mutual
inclination during the integration time. The system is the following: a 1 M⊙ star with an inner planet of 1 MJ on an initially circular orbit at 5 AU and an outer planet of
6 MJ at 61 AU with an eccentricity of 0.5. The two orbits are initially separated by 65◦. The vertical dashed line shows the separation between prograde and retrograde
orbits at 90◦.

paper but give constraints on the perturber that can trigger and
cause this behavior. This can help guide future observational
programs.

This paper is organized as follows. In Section 2, we review
the main features of the eccentric Kozai–Lidov mechanism. In
Section 3, we present the results of our numerical study: in
Section 3.1, we map the complete space of parameters, finding
the best configurations that could allow the orbit to flip in a
retrograde motion, and in Section 3.2 we look in closer detail at
the inner eccentricity distribution. In Section 4, we run a set of
Monte Carlo simulations in order to study precisely the outcome
of two representative cases. Finally, we discuss these results in
Section 5.

2. SECULAR PERTURBATIONS WITH AN
ECCENTRIC PERTURBER

2.1. The Eccentric Kozai–Lidov Mechanism

Throughout the paper, we consider the evolution of two
planets of mass m1 and m2 orbiting a central star of mass m0.
The subscript 1 refers to the inner orbit (consisting of the central
mass m0 and the inner planet m1), and the subscript 2 refers to the
outer orbit (consisting of the inner orbit’s center of mass and the
m2 planet). For k = 1, 2, we denote by ak, ek, and ik the SMA,
eccentricity, and inclination of the inner (1) and outer (2) orbits,
respectively. Throughout the paper, we refer to the inclination
angle of the inner (outer) orbit with respect to the total angular
momentum, i.e., i1 (i2), and to the mutual inclination between
the two orbits, which is simply itot = i1 + i2.

Relaxing the test particle approximation, Naoz et al. (2011,
2013a) showed that even in the quadrupole level of approxi-
mation, one finds deviations from the “classical” quadrupole-
level Kozai evolution. Specifically, the inclination can oscillate

around 90◦ (e.g., Naoz et al. 2013a), where in the “classical”
Kozai mechanism the quantity

√
1 − e2

1 cos i1 is constant, thus
forbidding flips from prograde to retrograde orbits.

The “classical” Kozai mechanism is valid for the lowest
(quadrupole) order of approximation (if applicable) and if one
of the inner orbit members is a test particle. We refer to this
limit as the test particle quadrupole (TPQ) approximation. Here
we relax the TPQ approximation. In addition, we focus on ec-
centric perturbers, which emphasize the need for the octupole
level of approximation (e.g., Naoz et al. 2011, 2013a). In all of
our runs, we use the Bulirsch–Stoer method in order to numeri-
cally solve the octupole-level secular equations following Naoz
et al. (2013a), including first-order post-Newtonian relativistic
precession of the inner and outer orbits (e.g., Naoz et al. 2013b
note that the interaction term presented there does not affect
our results here). We compare our results to the octupole-level
test particle approximation (Lithwick & Naoz 2011; Katz et al.
2011).

In the octupole level of approximation, the inner orbit’s
eccentricity can reach very high values, which we map below
(see Section 3.2). In addition, the inner orbit’s inclination can
flip its orientation from prograde (itot < 90◦), with respect to
the total angular momentum, to retrograde (itot > 90◦). We
refer to this process as the eccentric Kozai–Lidov mechanism
(hereafter EKL, following the notation of Naoz et al. 2012).
In Figure 1, we show an example for the time evolution of a
system that is influenced by the EKL mechanism. The system
is set initially with the following parameters: m0 = 1 M⊙,
m1 = 1 MJ , m2 = 6 MJ , a1 = 5 AU, a2 = 61 AU, e1 = 0.01,
e2 = 0.5, and itot = 65◦, with the arguments of pericenters set to
be g1 = g2 = 0◦. The longitudes of ascending nodes are set by
the relation h2 − h1 = 180◦ (see Naoz et al. 2013a). We choose
these parameters as our nominal example, and we will often
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Figure 2. Close-up of the time evolution of the inclination of Figure 1. Two periods appear: the Kozai oscillations due to the quadrupole term and the oscillation of
the octupole envelope.

compare our result to it. As can be seen in Figure 1, the mutual
inclination keeps flipping from a prograde orbit (itot < 90◦)
to a retrograde one (itot > 90◦). However, those flips are not
regularly spaced in time; at every flip, the time spent on a
prograde or retrograde orbit is not the same. Nevertheless,
we can see that, on average, over the total integration time,
the inclination is roughly equally distributed between prograde
and retrograde orbits. In addition, we note that the eccentricity
is mainly distributed between 0 and 0.9 (precisely, 89% of
the integration time is spent between these two values in this
simulation) but also reaches very high values (up to 0.9999),
which, of course, would not make any sense in a system where
tidal friction would take place (we quantify the eccentricity
distribution in Section 4). In the right panel of Figure 1, we show
the distribution of the mutual inclination over the integration
time. We also quantify the inclination distribution in Section 4.
For this specific example the distribution shows two peaks
located at the initial angle and its symmetric with regard to
90◦. Here the inclination tends to be equally distributed between
prograde and retrograde orbits. Also, because the system started
initially with zero eccentricity, the nominal Kozai critical angles
(40◦ and 140◦) are limiting the system.

2.2. Timescales

In Figure 2, we show a close-up of Figure 1, where two distinct
timescales appear. Both of them can be associated with a term of
the Hamiltonian expansion of the hierarchical three-body prob-
lem. The shorter period arises from the quadrupole term, and
the longer one arises from the octupole term. These timescales
can be estimated by Equations (1) and (2), respectively, where
k2 is the gravitational constant (see, e.g., Naoz et al. 2013b, with
a modification for the octupole timescale, taking into account
the inclination):

tquad ∼
2πa3

2

(
1 − e2

2

)3/2√
m0 + m1

a
3/2
1 m2k

, (1)

toct ∼ 2π
4

15

a4
2

(
1 − e2

2

)5/2
√

1 − e2
1(m0 + m1)3/2

a
5/2
1 e2k|m0 − m1|m2

1
G1
G2

+ cos itot
,

(2)

where G1 and G2 are the magnitudes of the angular momenta of
each orbits and are given by

G1 = m0m1

m0 + m1

√
k2(m0 + m1)a1

(
1 − e2

1

)
, (3)

G2 = m2(m0 + m1)
m0 + m1 + m2

√
k2(m0 + m1 + m2)a2

(
1 − e2

2

)
. (4)

From Equation (2), we see that the octupole timescale in-
creases sharply toward high inclinations. Therefore, systems
with very high mutual inclinations (close to polar configura-
tions) are less likely to flip from prograde to retrograde because
the octupole effects take place on a longer timescale than for
moderately inclined systems (we refer the reader to Li et al.
2013 for further discussions on the octupole timescale). From
Figure 2, we see that in a system that regularly flips from pro-
grade to retrograde configurations, the octupole timescale is of
the order of 107 yr. Hence, we can expect that for similar initial
configurations, this will be the typical timescale for a flip.

We also consider the timescale arising from the relativistic
precession of the pericenter of the inner orbit (see, e.g, Naoz
et al. 2013b),

t1PN,1 ∼ 2π
a

5/2
1 c2

(
1 − e2

1

)

3k3(m0 + m1)3/2
, (5)

where c is the speed of light. The same precession timescale can
be derived for the outer planet, replacing the subscript 1 by 2,
but is negligible because of the large SMA of the outer orbit.
If the first-order post-Newtonian (hereafter 1PN) timescale is
smaller than the timescale associated with the octupole term,
then the latter can be suppressed, leading to no orbital flips of
the planet. This will be studied in greater detail in Section 3.1.
In addition, the EKL mechanism will be completely suppressed
if the 1PN timescale is smaller than the timescale associated
with the quadrupole term.

3. SYSTEMATIC SURVEY OF THE PARAMETER SPACE

In the following section, we present numerical results de-
scribing the effects of mass, SMA ratio, mutual inclination, and

4
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Table 1
Initial Conditions of Figures 3–10

Figure m1 m2 a1 a2 e1 e2 itot
(MJ) (MJ) (AU) (AU) (deg)

3 1–9 1–30 5 61 0.01 0.5 65
4 1 6 2–20 10–250 0.01 0.5 65
5 1 1–10 5 51–201 0.01 0.5 65
6 1 1–10 5 61 0.01 0.1–0.7 65
7 1 6 5 51–201 0.01 0.1–0.8 65
8 1 1–10 5 61 0.01 0.5 35–90
9 1 6 5 51–201 0.01 0.5 35–90
10 1 6 5 61 0.01 0.1–0.7 35–90

Notes. For all these runs, we took the arguments of pericenters to be initially
g1 = g2 = 0◦.

the outer orbit’s eccentricity. For some specific values of these
parameters, the system might be in an unstable configuration.
We use the Mardling & Aarseth (2001) stability criterion, which
defines a stable three-body system as one that obeys

a2

a1
> 2.8(1 + qm)2/5 (1 + e2)2/5

(1 − e2)6/5

(
1–0.3

itot

180

)
, (6)

where qm = m2/(m0 + m1) and itot is in degrees. When
necessary, we will clearly indicate which region of the parameter
space is likely to be unstable. We can already note that the
systems are almost always stable for the parameters we have
chosen, especially because qm is very small in the case of two
planets.

The integration time in all our simulations was 8 Gyr. It
is important to emphasize that a lower integration time af-
fects the results considerably. In Appendix A.2, we describe
our convergence test, which clearly shows that only integra-
tion times greater than 5000tquad converge, where tquad is the
typical timescale for quadrupole oscillations and is given by
Equation (1).

3.1. Likelihood of Flipping the Orbit

In order to estimate the likelihood of this orbital flip, we
compute the time spent in a retrograde motion (itot ! 90◦) over
the total integration time (ttot). We define a new dimensionless
parameter f by

f = t(itot ! 90◦)
ttot

, (7)

and we map this variable over the parameter space. For example,
a system that never flips from prograde to retrograde has f = 0,
and a system that spends exactly half of its time on a retrograde
orbit has f = 0.5. We consider our nominal example and
systematically vary two parameters in each set of runs (see
Table 1 for a summary of all the parameters). We plot f as a
function of two of these parameters. Results are displayed in
Figures 3–10. For each plot, the initial settings are given in
the caption of the figure. In Appendix A.1, we map the same
numerical experiments as a function of the maximum inclination
reached during the integration.

1. Varying m1 and m2. In Figure 3, we find that as long as
m2 is at least twice as large as m1, systems always have
f > 0. Furthermore, for m2 " 3m1, almost all the systems
converge to f ≃ 0.5. A system with m2 # 2m1 will produce
retrograde planets for a very limited zone in the phase space.
On the contrary, a system with a more massive perturber,
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itot = 65◦. The black dashed line represent the m2 = 2m1 function. When
q = m1/m2 < 0.5, inner orbits start going retrograde, but only for q ! 0.3 do
they start to converge to f ≃ 0.5.
(A color version of this figure is available in the online journal.)
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Figure 4. Constant parameters are m1 = 1 MJ , m2 = 6 MJ , e2 = 0.5, and
itot = 65◦. The lower right black dashed region denotes the region where orbits
are likely to be unstable (see Section 2). Large orbital separations (roughly
a1/a2 < 1/25 for this set of initial conditions) lead to no formation of retrograde
orbits (f = 0).
(A color version of this figure is available in the online journal.)

even if the latter is on a distant orbit, makes the inner body
go into a retrograde motion over the course of 8 billion
years.

2. Varying a1 and a2. In Figure 4, we show that for a large
range of the SMA, the value of f only depends on the ratio
between a1 and a2 (rather than the actual value of a1 and
a2). This is, of course, not surprising because of the nature
of the expansion. As mentioned above, we shade in black
the possible instability region according to Equation (6).
With the parameters used for the runs of Figure 4, we find
that there are no more flips when a2 " 25 × a1. Note that
this value could be different for other parameters.

3. Varying a2 and m2. Results in Figure 5 show that the
probability of reaching highly inclined orbits strongly
depends on these two quantities. Strong outer perturbative
potentials produce more flips of the inner orbit. We attribute
the sharp transition between flips and no flips to the fact that
the post-Newtonian timescale becomes dominant over the
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Figure 5. Constant parameters are m1 = 1 MJ , a1 = 5 AU, e2 = 0.6, and
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and the bottom one for e1 = 0.99. Systems on the left-hand side of these lines
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perturber (i.e., a strong perturbative potential) induces a longer time in retrograde
orbits.
(A color version of this figure is available in the online journal.)
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Figure 6. Constant parameters are m1 = 1 MJ , a1 = 5 AU, a2 = 61 AU, and
itot = 65◦. Here m2 varies from 1 to 10 MJ , and e2 varies from 0.1 to 0.8. The
black solid line marks the stability condition according to Equation (6). Above
this line, the system is unstable according to Mardling & Aarseth (2001). High
eccentricities and massive perturbers cause the inner planet to spend more time
in retrograde orbits.
(A color version of this figure is available in the online journal.)

octupole timescale. In Figure 5, the green dashed line gives
the approximate location for which the octupole timescale
is equal to the 1PN timescale. Systems on the left-hand
side of this line should not flip, as the post-Newtonian
timescale becomes shorter than the octupole timescale.
Note that this is just an approximate location since the
octupole timescale gives a rough evaluation for the behavior
of the system. Furthermore, the octupole timescale is highly
sensitive to the inner orbit eccentricity, which varies during
the system evolution. Thus, we show two possibilities, one
with e1 = 0.9 and one for e1 = 0.99.

4. Varying e2. The eccentricity of the perturber plays a
significant part in the evolution of the inner orbit (see
Figures 6–9). We find that the eccentricity of the perturber
should be higher than 0.2 at least in order to form retrograde
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Figure 7. Constant parameters are m1 = 1 MJ , m2 = 6 MJ , and itot = 65◦.
Here a2 varies from 51 to 201 AU, and e2 varies from 0.1 to 0.8. The black solid
line marks the stability condition according to Equation (6). Above this line, the
system is unstable according to Mardling & Aarseth (2001). The purple dotted
line marks the flip criterion in the test particle limit. Systems above this line are
expected to flip in the test particle limit. High outer eccentricities and a small
SMA ratio cause the inner planet to spend more time in retrograde orbits.
(A color version of this figure is available in the online journal.)
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Figure 8. Constant parameters are m1 = 1 MJ , a1 = 5 AU, a2 = 61 AU, and
e2 = 0.5. The green dashed line gives the location where the octupole timescale
is equal to 5 × 107 yr for e1 = 0.9. Mutual inclinations between 55◦ and 85◦

and perturber’s masses between 4 and 10 MJ give the highest rate of retrograde
configurations.
(A color version of this figure is available in the online journal.)

inner planets. This is an important constraint on the nature
of these systems, and it is interesting to emphasize that a
flip can be achieved already for nominally low eccentric
perturbers such as e2 = 0.25. We note that for our choice of
fiducial parameters, perturbers with eccentricity higher than
about 0.68 are unstable according to Equation (6). As shown
in Figure 10, relaxing the test particle approximation yields
a qualitatively different result. Specifically, in contrast to
the test particle case, the flip is, in fact, suppressed at large
inclinations and seems focused (for the nominal example)
around initial inclinations itot ∼ 70◦. For comparison, the
test particle flip criterion is depicted in these figures (see
Lithwick & Naoz 2011; Katz et al. 2011). This criterion is
symmetric around 90◦ since the outer orbit remains fixed
and is valid only in the regime of very high inclinations
(itot > 61.◦7; see Katz et al. 2011). Note that in Figure 10, the
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Figure 9. Constant parameters are m1 = 1 MJ and m2 = 6 MJ with e2 = 0.5.
The initial mutual inclination varies from 35◦ to 90◦, while a2 varies from 51
to 201 AU. Systems beneath the purple dotted line are expected to flip in the
test particle approximation. The green dashed line gives the location where the
octupole timescale is equal to 5 × 107 yr for e1 = 0.9. To produce a retrograde
orbit, the initial inclination must be in [55◦ : 85◦] for most values of a2.
(A color version of this figure is available in the online journal.)

corresponding eccentricity for inclinations larger than 80◦

falls below 0.1. If this criterion were valid, all planets above
the line labeled “TP” in Figures 7 and 10 and below this
line in Figure 9 should flip from prograde to retrograde and,
because of the long integration time, converge to f = 0.5.

5. Varying itot. The ratio of time spent on a retrograde orbit
also depends on the initial mutual inclination of the system,
as seen in Figures 8, 9, and 10. For initial inclinations
lower than ∼40◦, since we set initially e1 → 0, there are
no strong excitations of the inclination and eccentricity and
therefore no possibility of flipping the orbit above 90◦. On
the other hand, we find that starting with a very highly
inclined orbit (itot > 85◦) does not necessarily imply the
formation of retrograde orbits. For most inclinations within
the range [55◦, 85◦], the evolution does not show a strong
dependence on the initial inclination. This is one of the main
differences with the test particle, where both the maximum
inclination and eccentricity were well-defined functions
of the initial inclination (see Section 2). In the TPQ, f
should remain equal to zero since the initial inclination
is lower than 90◦. Thus, it appears that an initial inclination
between 55◦ and 85◦ is more likely to form retrograde
planets. Concerning the issue of why very high initial
mutual inclinations (itot > 85◦) do not favor the production
of retrograde orbits, we show in Figures 8, 9, and 10 the
line at which toct = 5 × 107 yr (taking e1 = 0.9). This line
strongly suggests that the suppression of the flip at high
inclinations is because the octupole timescale becomes too
large. Systems set initially with large inclinations typically
have toct > 5 × 107 yr, which renders the triggering of
the EKL mechanism less likely. In such systems, the inner
planet does not enter high-eccentricity excitation phases
and is therefore less likely to end up as a HJ. Note that,
of course, the inclination also changes as a function of
time; however, the system will oscillate between large
inclination (minimum eccentricity) and low inclination
(large eccentricity). Considering toct for a large eccentricity
means that the corresponding inclination should be small,
so we approximate it by the initial inclination.
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Figure 10. Constant parameters are m1 = 1 MJ , m2 = 6 MJ , a1 = 5 AU,
and a2 = 61 AU. The top solid black line gives the stability limit: systems
above this limit are likely to be unstable. Systems above the purple dotted line
are expected to flip in the test particle approximation. The green dashed line
gives the location where the octupole timescale is equal to 5 × 107 yr for
e1 = 0.9. Highly eccentric and moderately high inclined companions cause the
inner planet to spend more time in retrograde orbits.
(A color version of this figure is available in the online journal.)

We also show in Figures 7, 9, and 10 the analytical prediction
for a flip (depicted by purple dashed lines) using the derivation
from Katz et al. (2011), which is valid only for inclinations
larger than 61.◦7. This presents the qualitatively different results
between the test particle approximation and our case. First, we
find that in our case, unlike the test particle approximation, there
is no symmetry of the flip condition around 90◦, and in fact,
smaller inclinations (around 70◦) are preferable. Furthermore,
we can find occasions where a flip can happen in regions
unreachable in the test particle approximation, for example, the
low outer orbit eccentricity case with a2 < 100 AU, as seen in
Figure 7. It is important to note that the maximum quadrupole
inner orbit’s eccentricity did not shift from 90◦ to 70◦; however,
the contribution of the octupole level of approximation yields a
smaller probability for a flip at high inclinations. Furthermore,
in the case of small mass of the perturbers, the inner orbit
torques the outer orbit. This is more apparent in Figure 8, which
shows that for larger masses we recover the test particle results.
There are three ways to overcome torquing the outer orbit:
first, by having a more massive perturber (as in the test particle
approximation), second, by taking orbits with low initial mutual
inclination (since the torque is proportional to sin itot, the torque
is larger at high inclination), and, finally, by having a larger
separation between the inner and outer orbits. The latter not only
reduces the torque by reducing the length of the “arm” but also
suppresses the octupole contribution. This behavior is apparent,
for example, in Figure 9, where an “island” of large probability
of flips appears at high inclination and large separations. Of
course, large separations also reduce the octupole contribution,
resulting in an isolated island.

As in the test particle case, the system oscillates back and forth
from prograde to retrograde. However, unlike the test particle
case, the system does not converge to f = 0.5 since the outer
orbit reacts to the gravitational perturbations of the inner orbit. In
fact, one would expect that the system will prefer the retrograde
motion since it is more stable (Innanen et al. 1997), which
perhaps can explain the “islands” for which f > 0.5. Note that
we have tested in detail the convergence of our systems, and for
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(A color version of this figure is available in the online journal.)

our integration time (8 Gyr) most of the runs already converged
(see Appendix A.2). Another interesting regime that arises from
the parameter maps is a “transition zone” where the inner planet
spends only about 10%–20% of its time on a retrograde orbit
(colored pale blue in the figures).

Also important are the behaviors of the inner and outer
orbits’ eccentricities. In Figure 11, we show the maximum e1
reached in the corresponding run of Figure 10, and in Figure 12
we show the (relative) maximum e2 for the same run. Not
surprisingly, the behavior closely resembles that of the test
particle approximation. The probability of flipping the orbits
matches the maximum value of e1: flips are associated with
excursions to very high eccentricities, which, in fact, happen just
before the flip. We find excursions of at least 1 − e1,max $ 10−4

when f ≃ 0.5. Furthermore, in our case, the outer orbit’s
angular momentum is changing too, as can be seen in Figure 12,
where we show the maximal relative value reached by the outer
eccentricity. This plot shows that the suppression of flips at high
initial mutual inclinations is highly related to the outer orbit’s
evolution. When the outer orbit’s eccentricity almost does not
change (marked in pale blue), the inner orbit is more likely to
flip.

These numerical results suggest that HJs that formed
through planet–planet secular interactions should have a massive
(!3 MJ ), eccentric (!0.25) companion with a SMA between 50
and 100 AU and a mutual inclination between 55◦ and 85◦. A
planetary companion like this can drive a Jupiter-like planet in
5 AU to a large eccentricity, which in the presence of dissipation
can result in shrinking the orbit to form a HJ (see Naoz et al.
2011).

In Appendix A.1, we study the distribution of another variable
of interest, the maximum mutual inclination reached by the same
systems as the ones studied in this section. We show that systems
for which f > 0 all reach the same maximum inclination of
about 140◦, which is one of the critical Kozai angles.

3.2. Inner Orbit Eccentricity Distribution

As noted before, we focus on the dynamical evolution
and neglect dissipation throughout the paper. However, tidal
dissipation will become important when the inner planet reaches
very high eccentricities. Therefore, in this section, we focus
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Figure 12. Variation of the outer eccentricity e2 for the run in Figure 10. The
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This map indicates that the back reaction from the inner planet on the outer
planet is more important at high mutual inclination and low eccentricities.
(A color version of this figure is available in the online journal.)

specifically on the inner orbit’s eccentricity distribution for these
systems. In Figure 13, we show the cumulative distribution of the
inner orbit’s eccentricity for different outer orbit configurations.
Although a flip (itot > 90◦) happens when the inner orbit’s
eccentricity reaches a minimum, it also happens right after a
large-eccentricity peak (see Lithwick & Naoz 2011; Naoz et al.
2013a for discussion); thus, the large-eccentricity peaks are a
good proxy for a flip and vice versa (it is certainly the case for
the test particle scenario, as shown in Naoz et al. 2012, and we
show here that it remains true when this approximation breaks
down.)

As shown in Figure 13, a systematically low inner orbit
eccentricity excitation is achieved for a combination of one
or more of the following conditions for the outer orbit: low
mass, low eccentricity, large orbital separation, and low mutual
inclinations. However, for high mutual inclinations ("50◦),
high outer orbit eccentricities ("0.25), and a massive perturber
("5 MJ ), the cumulative distribution is insensitive to the initial
conditions. For these cases, as soon as the octupole effects
are triggered, the inner eccentricity reaches extreme values
(e1 " 0.99). As a consequence, a counterplay may take place
between the nearly radial orbit, which drives the planet to the
star, and tidal dissipation, which can shrink and circularize the
planet’s orbit. As shown in Naoz et al. (2011), a fairly high
percentage of planets formed by this mechanism end up as HJs.

4. STATISTICAL ESTIMATION THROUGH A MONTE
CARLO EXPERIMENT

We explore the statistical properties of two representative
scenarios of systems that are not only significantly different
from the test particle approximation but also distinct from one
another. In the first scenario, we consider a perturber with a
mass of 2 MJ (comparable to that of the inner planet, 1 MJ) at
a2 = 61 AU. Such a system was shown in the previous section to
suppress the EKL behavior. In the second scenario, we consider
a system with a perturber with a mass of 6 MJ at a2 = 61 AU.
We showed that such a system can undergo large inclination
and eccentricity oscillations but still significantly differs from
the test particle approximation since the EKL mechanism is
suppressed near initial perpendicular configurations. As shown
in Figure 24 in Appendix A.2, most of these systems have
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Figure 13. Cumulative distribution of the inner eccentricity (represented as 1 − e1 in logarithmic scale) for the following system: a 1 M⊙ star with an inner planet of
1 MJ on an initially circular orbit at 5 AU. When not noted otherwise, the perturber has a mass of 6 MJ at 61 AU with an eccentricity of 0.5, and the two orbits are
initially separated by 65◦. For each panel, we vary one of these parameters. Top left: we vary the mass of the perturber from 2 to 20 MJ . Top right: we vary the SMA
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to 85◦. The inner orbit reaches high eccentricities (making orbital flips more likely to happen) for a large set of parameters, almost independently of the exact value of
these parameters.
(A color version of this figure is available in the online journal.)

converged after 2–6 Gyr. We run our integration up to 8 Gyr
and study the distributions of the inclination as well as the
inner and outer eccentricities for these systems at this arbitrary
time of 8 Gyr, after they have reached a dynamical steady
state.

For these runs we assume an isotropic distribution of the
mutual inclinations (i.e., uniform in cos itot) between 0◦ and
180◦. We make a series of runs with initial conditions m1 =
1 MJ , a1 = 5 AU, a2 = 61 AU, e1 = 0.01, and e2 =
0.3, 0.5, 0.7. We perform 500 runs for each set of parameters
(3000 runs total). We show the results of these experiments in
Figure 14 for the case where m2 = 2 MJ and in Figure 15 for the
case where m2 = 6 MJ . Note that the choice of SMA allows the
systems to achieve reasonable convergence (see Appendix A.2).
As long as this convergence condition is fulfilled, the results
should not be affected by our choice of SMA.

For all the cases with initial mutual inclination lower than 40◦

or above 140◦, no large eccentricity and inclination oscillations
occur, and there are no secular changes in the inclination and
eccentricity. This is because we set the inner orbit initially
with nearly zero eccentricity (we refer the reader to Li et al.
2013 for a discussion on the EKL behavior beyond the Kozai
angles). Interesting features appear when the system is initially
in the Kozai regime. For the m2 = 2 MJ case (Figure 14)
with a small outer orbit eccentricity, the EKL is not very
efficient, and the final distribution is similar to the initial one.
The systems, however, still undergo “classical” quadrupole
oscillations, during which they will always reach 40◦ (provided
they started on prograde orbits) or 140◦ (provided they started
in retrograde orbits) even if they do not flip. This results in the
double peak (at 40◦ and 140◦) in the final inclination distribution

(as found in Fabrycky & Tremaine 2007), which is also the case
for the m2 = 6 MJ case (see Figure 15). As we enter the regime
in the parameter space where the EKL mechanism begins to
play a significant role (e.g., if the outer orbit’s eccentricity is
larger or for a larger perturber mass, as shown in Figure 15),
we deviate from this classical behavior: an additional peak in
the final mutual inclination appears around 90◦ because the
orbit now flips back and forth. The fraction of time that the
orbits spend inclined at 90◦, which is associated with minimum
e1, is larger than the fraction of time that the orbits spend at
maximum eccentricity (minimum inclination). This, of course,
also accounts for the large peak in the inner orbit’s eccentricity
near zero for the weak EKL case in Figures 14 and 15. As
the EKL becomes more significant, the minimum eccentricity
shifts from zero and becomes wider. As expected, the outer
orbit’s eccentricity is sensitive to the outer planet’s mass: for
a massive outer planet, e2 almost does not change, but for the
m2 = 2 MJ case, e2 oscillates, which results in a suppression of
the EKL mechanism.

5. SUMMARY AND DISCUSSION

We have investigated numerically the dynamics of hierarchi-
cal triple systems consisting of a central star, an inner giant
planet, and an outer, much more distant perturber that could be
another giant planet or a substellar companion. We have varied
systematically all important parameters, including the separa-
tions and masses of the inner and outer planets, the mutual
inclination, and the outer orbit’s eccentricity (Figures 4–10).
We showed that relaxing the test particle approximation for this
problem results in a much richer variety of dynamical outcomes.
In contrast to the test particle case where extreme eccentricity
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Figure 14. Final distribution of mutual inclination (top row), inner eccentricity (middle row), and outer eccentricity (bottom row) for a system with two planets. The
inner one has m1 = 1 MJ , a1 = 5 AU, and e1 = 0.01, and the outer one has m2 = 2 MJ , a1 = 61 AU, and three different initial eccentricities: 0.3 (left column),
0.5 (middle column), and 0.7 (right column). The initial mutual inclination is drawn from a distribution uniform in cos itot between 0◦ and 180◦ via a Monte Carlo
simulation. When the outer eccentricity is small, the final distribution of the orbital elements remains very close to its initial value. The back reaction from the inner
orbit on the outer one is important, and only a few systems flip. This is because the masses of the two planets are similar.

peaks and flips of the inner orbit always happen around a mu-
tual inclination of 90◦, in our systems the behavior is quite
different (e.g., Figures 8 and 10; see Section 3.1), and the usual
EKL behavior is confined to a smaller region of the parameter
space.

This study emphasizes the two interesting aspects of the EKL
mechanism. One is the importance of the octupole level of
approximation, which was explored in detail in the context of
HJs and other astrophysical systems in Naoz et al. (2011, 2012,
2013a). The second important aspect is related to relaxing the
test particle approximation, which is shown to suppress the
EKL mechanism for systems set initially close to perpendicular
configurations. In this case, the outer orbit transfers some of
its angular momentum to the inner orbit. We showed that the
conditions for a flip to occur are sensitive to small changes in
the outer orbit’s angular momentum.

We have also shown that for a large set of parameters (most no-
tably at large orbital separations and large mutual inclinations),
the possibility of flipping the orbit from prograde to retrograde
is suppressed when the octupole timescale becomes too long
(Figures 8–10). Thus, for these systems the inner orbit eccentric-
ity reaches smaller values (see Figure 11). If additional preces-
sion effects are present in the system, such as the post-Newtonian

precession of pericenters, they can also become more important
than the octupole timescale and overcome the octupole vari-
ations, suppressing the flips.7 The exact location of the limit
between flip and no flip is approximated in Figure 5.

The Monte Carlo simulations we have conducted
(Figures 14–15) suggest that, statistically, a hierarchical triple
system that is far from the test particle approximation is most
likely to reside in three mutual inclinations regimes, near ∼40◦,
∼90◦, or ∼140◦, almost independently of initial conditions.
Furthermore, initial conditions giving low eccentricities of the
inner orbit are still more likely configurations to find such a
system (although the more interesting behavior will happen in
the large-eccentricity peaks).

The parameter survey we have conducted gives strong and
clear predictions for the orbital parameters of planetary compan-
ions that can result in the formation of a HJ. Figures 4–10 suggest
that the formation of HJs through the planet–planet EKL mech-
anism predicts a massive (>2 MJ ), eccentric (0.2–0.7) planetary
companion at separations of ∼50–140 AU (for an inner Jupiter-
like orbit set initially at 5 AU). Furthermore, as expected for the

7 If the 1PN timescale is shorter than the quadrupole timescale, further
eccentricity excitations are suppressed; when the two timescales are equal, a
resonant-like behavior appears, as shown in Naoz et al. (2013b).

10



The Astrophysical Journal, 779:166 (14pp), 2013 December 20 Teyssandier et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  30  60  90  120 150 180

re
la

tiv
e 

di
st

rib
ut

io
n

final mutal inclination

e2=0.3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  30  60  90  120  150  180
final mutal inclination

e2=0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  30  60  90  120  150  180
final mutal inclination

e2=0.7

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.2  0.4  0.6  0.8  1

re
la

tiv
e 

di
st

rib
ut

io
n

final inner eccentricity (e1)

e2=0.3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.2  0.4  0.6  0.8  1
final inner eccentricity (e1)

e2=0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.2  0.4  0.6  0.8  1
final inner eccentricity (e1)

e2=0.7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1

re
la

tiv
e 

di
st

rib
ut

io
n

final outer eccentricity (e2)

e2=0.3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1
final outer eccentricity (e2)

e2=0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1
final outer eccentricity (e2)

e2=0.7

Figure 15. Final distribution of mutual inclination (top panels), inner eccentricity (middle panels), and outer eccentricity (bottom panel) for a system with two planets.
The inner one has m1 = 1 MJ , a1 = 5 AU, and e1 = 0.01, and the outer one has m2 = 6 MJ , a1 = 61 AU, and three different initial eccentricities: 0.3 (left column),
0.5 (middle column), and 0.7 (right column). The initial mutual inclination is drawn from a distribution uniform in cos itot between 0◦ and 180◦ via a Monte Carlo
simulation. The distribution of inclination is not uniform anymore, and three peaks have appeared around 40◦, 90◦, and 140◦. The inner eccentricity is well distributed
between 0 and 1, and the outer one remains close to its original value. This is because of the larger mass of the outer planet, which limits the back reaction and favors
orbital flips.

Kozai mechanism, a large (>50◦) mutual inclination is needed
for an inner planet, set initially on a circular orbit. However, or-
bits close to perpendicular configurations are less likely to flip
the orbit (unlike the test particle approximation). This means
that a planetary companion for misaligned HJs most likely will
not be perpendicular to the HJ orbit, but rather will have a mutual
inclination in the range 55◦–85◦.

A planetary perturber such as described here should, in
principle, cause very small variations of the radial velocity
curve of the host star, in the form of a small linear trend. A
planet of 6 MJ orbiting at 60 AU around a 1 M⊙ star with an
eccentricity of 0.5 would cause a semiamplitude variation of
29 m s−1 over its orbital period (465 yr), which would appear
as a linear acceleration of 0.12 m s−1 yr−1. Such perturbations
could only appear in long-term, high-precision radial velocity
surveys. If we scale down the system slightly and instead take
an 8 MJ planet at 45 AU of a 0.5 M⊙ star with an eccentricity
of 0.5, it would cause a semiamplitude variation of 63 m s−1

over its orbital period (427 yr), which would appear as a linear
acceleration of 0.3 m s−1 yr−1. Note that for these calculations,
we have assumed the orbital plane of the perturber to be aligned
with the line of sight of the observer. If the angle between the

two is 45◦, the two trends previously calculated reduce to 0.08
and 0.21 m s−1 yr−1, respectively.

These predictions can also be used as a guide for future
direct imaging observations such as the one presented in
Macintosh et al. (2006) and can help differentiate between
different perturbers (i.e., binary star or faraway planetary or
brown dwarf companion). An important caveat is that here we
have studied two planet systems. Other routes to the formation of
HJs in misaligned orbits exist, including interactions with stellar
binary systems (e.g., Naoz et al. 2012) and even primordial
misalignment of the disk with respect to the plane of the
stellar binary (e.g., Batygin 2012). Achieving high-eccentricity
peaks (which may result in HJ formation) requires large initial
mutual inclination (e.g., Figure 13), which can be a result of
planet–planet scattering (e.g., Chatterjee et al. 2008), dynamical
relaxation (Papaloizou & Terquem 2001), or early disk accretion
from the surrounding gas envelope (Thies et al. 2011).
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Figure 16. Constant parameters are e2 = 0.5, itot = 65◦, a1 = 5 AU, and
a2 = 61 AU. The black dashed line represents the m2 = 2m1 function.
(A color version of this figure is available in the online journal.)
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Figure 17. Constant parameters are m1 = 1 MJ , m2 = 6 MJ , e2 = 0.5, and
itot = 65◦. The lower right white dashed region is where orbits are likely to be
unstable (see Section 2).
(A color version of this figure is available in the online journal.)
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APPENDIX

A.1. Maximum Inclination

Another variable well suited to map the dynamics of the
system is the maximum mutual inclination imax reached by this
system over one integration. Mapping the maximum inclination
gives information about the dynamics: systems in which the
EKL takes place should reach a maximum inclination of
about 140◦, whereas in systems where it does not happen, the
maximum inclination should remain close to the initial one. In
order to proceed to the complete mapping of the parameter space
through imax, we successively vary the initial mutual inclination
itot, eccentricity e2, SMA a2, and mass m2 in an iterative way,
like in Section 3.1. We plot the maximum mutual inclination
between the two orbits as a function of two of these variables.
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Figure 18. Constant parameters are m1 = 1 MJ , a1 = 5 AU, e2 = 0.6, and
itot = 65◦.
(A color version of this figure is available in the online journal.)

 1  2  3  4  5  6  7  8  9  10
m2 (MJ)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

e 2

 40

 60

 80

 100

 120

 140

 160

m
ax

im
al

 in
cl

in
at

io
n

Figure 19. Constant parameters are m1 = 1 MJ , a1 = 5 AU, a2 = 61 AU, and
itot = 65◦.
(A color version of this figure is available in the online journal.)

The results displayed in Figures 16–23 give additional infor-
mation to that presented in Section 3.1. Mainly, when an orbit
flips, it will always reach the critical Kozai angle of 140◦. On
the other hand, systems for which the EKL is negligible will
have a maximum inclination close to its initial one. There is an
intermediate zone where the EKL is triggered but the exchange
of angular momentum is not enough to flip the orbit. In this case,
the maximum inclination reached by the system is located at 90◦

(see, for instance, the light blue transition zone in Figure 22).

A.2. Convergence

We discuss the validity of choosing an integration time of 8
billion years. First, the age of the planetary systems provides an
obvious physical limit. The oldest known star is 13.2 billion
years old (Frebel et al. 2007). Conducting a large set of
simulations is computationally expensive, which gives another
limitation. We define a system as convergent for a given time of
integration if f has reached a constant value over this time. In
Figure 24, we show that an integration time of 8 billion years is
sufficient for most systems to reach a steady state in f. Depending
on the initial conditions (given in Table 2), f takes a different
time to reach a steady-state value. In the better case, this value
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Figure 20. Constant parameters are a1 = 5 AU, m1 = 1 MJ , and m2 = 6 MJ ,
with itot = 65◦.
(A color version of this figure is available in the online journal.)
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Figure 21. Constant parameters are m1 = 1 MJ , a1 = 5 AU, a2 = 61 AU, and
e2 = 0.5.
(A color version of this figure is available in the online journal.)
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Figure 22. Constant parameters are a1 = 5 AU, m1 = 1 MJ , and m2 = 6 MJ ,
with e2 = 0.5.
(A color version of this figure is available in the online journal.)
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Figure 23. Constant parameters are m1 = 1 MJ , m2 = 6 MJ , a1 = 5 AU, and
a2 = 61 AU.
(A color version of this figure is available in the online journal.)
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Figure 24. Value of f as a function of the time of integration. The initial
parameters of each run are given in Table 2, with the label of each run given in
the top right corner of each panel. The horizontal dashed line indicates f = 0.5,
and the vertical dashed line indicated t = 1000 × tquad.

Table 2
Initial Conditions of Figure 24

Run m2 a2 e2 itot ffinal tquad
(MJ) (AU) (deg) (×106 yr)

1 6 61 0.5 65 0.576 0.466
2 6 61 0.3 65 0.440 0.623
3 6 61 0.7 65 0.551 0.261
4 6 121 0.5 65 0.436 3.639
5 6 61 0.5 80 0.339 0.466
6 6 61 0.5 55 0.574 0.466
7 2 61 0.5 75 0.368 1.399
8 12 61 0.5 65 0.507 0.233

Notes. For all these runs, we took m0 = 1 M⊙, m1 = 1 MJ ; a1 = 5 AU, and
e1 = 0.01; ffinal is the fraction of time spent on a retrograde orbit after 8 billion
years, and tquad is the period of Kozai oscillations calculated from Equation (1).

is achieved within less than a billion years, whereas when the
perturbation is weak, it takes several billion years to converge.
In order to use a timescale more relevant to each system, we use
the period of Kozai oscillations, as given by Equation (1), where
P1 is the period of the inner planet. In Table 2, we give the period
of the Kozai oscillations for each system that we study. In all the
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runs, we indicate by a vertical line the time t = 1000 × tquad. In
some runs, this timescale seems relevant to achieve convergence,
whereas it fails in some others (see, e.g., runs 1, 6, or 7). More
precisely, the convergence is slower in the case of extreme initial
conditions, such as low initial inclinations or large mass or
SMA ratios. An integration time between 5000 × tquad and
10000 × tquad appears safer in order to achieve convergence
in all cases. It would, however, be numerically demanding (see,
e.g., run 4, where 5000 × tquad ≃ 20 billion years), so we choose
to restrain ourselves to 8 billion years.
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