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Field validation of isotropic analytical models for simulating fabric shades 

Taoning Wang a,*, Eleanor S. Lee a, Gregory J. Ward b, Tammie Yu a 

a Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory (LBNL), Mailstop 90-3147, 1 Cyclotron Road, 
Berkeley, CA, 94720, USA 
b Anyhere Software, 950 Creston Road, Berkeley, CA, 94708, USA   
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A B S T R A C T   

Fabric roller shades are common shading materials used in commercial and residential buildings. Accurately 
characterizing and modeling shades helps practitioners select the appropriate product and its control strategy 
based on climate and occupants’ priorities, such as visual comfort and view to outdoors. Previous studies 
established a generalized method for modeling complex fenestration systems using data-driven tabulated bidi
rectional scattering distribution functions. However, deploying such a method at scale to all fabric shading 
products on the market is too costly and time-consuming. Analytical models that are based on a limited set of 
measurements (e.g., normal-normal and normal-hemispherical visible transmittance and reflectance, and 
directional cut-off angles) can be used to model the wide variety of shading products on the market. This study 
evaluates the performance of two isotropic analytical models, Roos-Wienold and Modified-Kotey, for modeling 
fabric roller shades, with a focus on the model’s ability to predict occupant visual comfort. The performance 
evaluation was conducted through laboratory and field measurements and simulations. The results showed that 
both models are sufficient for predicting vertical illuminance at seated eye-level. Roos-Wienold model was able 
to predict binary visual comfort classification (glare/no-glare) under a wide range of luminance conditions, while 
Modified-Kotey model did not perform as well under high-contrast low-adaptation conditions. Both models are 
insufficient in predicting visual comfort at a four-point scale (e.g., imperceptible, perceptible, disturbing, 
intolerable). The two isotropic models become less accurate when the fabric exhibits high anisotropy.   

1. Introduction 

Fabric roller shades are in common use in commercial and residential 
buildings today due to architectural preferences such as ease of use and 
maintenance and aesthetic appearance. Simulating shades helps de
signers understand which fabrics to select to achieve an acceptable 
balance between solar control and daylight admission. With adequate 
control, shades can reduce lighting and heating, ventilation, and air 
conditioning (HVAC) energy use, helping to reduce the 4.33 × 1018 J 
(4.2 × 1015 Btus) or 3668 kWh per capita of primary energy attributable 
to windows in the United States [1]. Fabric shades must be modeled and 
controlled appropriately to increase user acceptance, comfort, and 
health, and to realize projected energy-savings potential. It is chal
lenging to admit daylight and solar radiation in appropriate amounts 
and intensity at the right place and time to both lower electric lighting 
use and deliver daylight’s health benefits while maintaining occupant 
comfort and minimizing window-induced HVAC loads. The performance 

of each fabric shade product thus needs to be characterized accurately, 
so stakeholders can decide on the appropriate shading product and its 
control strategy for the specific climate, site, and building. 

Fabric shades are particularly challenging to model due to their 
complex three-dimensional (3D) structure. Most fabric shades are made 
of coated threads woven together in various patterns. There can be 
multiple types of yarns of different colors and compositions in a single 
fabric. The coated yarn is often made of polyvinyl chloride or polyester, 
or a combination of both. Depending on its material and coating, each 
thread can be opaque or translucent in the visual and solar spectrum. 
Light of different incident directions interacts with the 3D structure of 
fabric thread differently, resulting in an optical transmission behavior 
that is highly angle dependent. Usually, maximum visible transmittance 
is at near normal incidence then decreases to zero as the incident di
rection approaches a grazing angle. Often, specular transmittance can 
reach zero before the angle of incidence reaches the grazing angle 
because the fabric’s 3D structure blocks direct light. 

Accurate characterization of specular transmission is a crucial 
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element in predicting occupants’ visual comfort [2,3].1 Previous studies 
have identified efficient simulation methods for computing luminance 
with complex fenestration systems, most recently [4,5]. Prior studies 
have also evaluated the accuracy of modeling specular transmission 
using data-driven, tabulated, Bidirectional Scattering Distribution 
Functions (BSDF) generated using an interpolation and peak extraction 
method defined by Refs. [3,6–8]. However, generating data-driven 
BSDFs is time-consuming and costly. It requires scanning a 
four-dimensional domain at sufficient resolution. Using a scanning 
goniophotometer to measure anisotropic optical properties of a fabric 

shade can take many hours [9–11]. Given the variety of fabric shading 
products on the market, there is a need for a scalable solution that 
provides sufficiently accurate product data at moderate cost. 

To this end, analytical models have been derived from detailed 
measurements of representative samples with the intent of extending 
their use to the entire class of fabric shading systems. Given the degree of 
simplification applied, measured inputs to the analytical model are 
significantly less and, for some models, can be conducted with standard 
bench-scale instrumentation used by the glazing industry to characterize 
solar transmission [7,16]. Prior studies evaluated the accuracy and 
shortcomings of such models for daylighting and glare analysis and 
identified the need for better and standardized procedures for charac
terizing fabric shades at scale [17–19]. 

This study evaluated two empirically-derived models: Roos-Wienold 

Nomenclature 

θ, φ incident angle (◦) in spherical coordinate with the sample 
in the xy plane (Figure A1) 

χdir directional cut-off angle (◦) 
τv, n-h normal-hemispherical visible transmittance 
τv, n-n normal-normal visible transmittance 
τv, n-dif normal-diffuse visible transmittance 
τv, dir-h angle dependent direct-hemispherical visible 

transmittance 
τv, dir-dir angle dependent direct-direct visible transmittance 
τv, dir-dif angle dependent direct-diffuse visible transmittance 
τv, dir-cone(5◦) direct-direct visible transmittance integrated over a 5◦

apex angle 
ρv, f, n-h front normal-hemispherical visible reflectance 
ρv, b, n-h back normal-hemispherical visible reflectance 
ρv, dir-h angle dependent direct-hemispherical visible reflectance 
Ev vertical illuminance (lx) 
Ls,2.5◦ average solar luminance evaluated at 2.5◦ apex angle (cd/ 

m2) 
Ls,5.0◦ average solar luminance evaluated at 5.0◦ apex angle (cd/ 

m2) 
Ls, e peak glare source (solar) luminance (cd/m2), determined 

by evalglare (e) 
ωs, e peak glare source solid angle (sr), determined by evalglare 

(e) 
DGP daylight glare probability 
(n)RMSE (normalized) root mean square error (%) 
(n)MAE (normalized) mean absolute error (%) 
(n)MBE (normalized) mean biased error (%) 
RMSE root mean square error 
MAE mean absolute error 
MBE mean biased error 
σn normalized standard deviation 
c+a+ high-contrast and high-adaptation condition 
c+a high-contrast and low-adaptation condition 
c-a+ low-contrast and high-adaptation condition 
c-a- low-contrast and low-adaptation condition 
c combination of c-a+ and c-a- dataset 
RW Roos-Wienold analytical model (See Section 2.4) 
MK modified Kotey analytical model (See Section 2.5)  

Table 1 
Normal-normal (n–n) and normal-hemispherical (n–h) visible transmittance and reflectance and cut-off angle (◦) for fabrics with quadrilateral or 180◦- 
rotational symmetry.  

Fabric τv, n-h τv, n-n ρv, f, n-h ρv, b, n-h χdir (0.005)a (◦) χdir(0.0)b (◦) Assumed symmetry and pgII measured angles of incidence (AOI) 

BL1 0.173 0.015 0.791 0.781 135 120 Quadrilateral  
BL3 0.194 0.029 0.776 0.774 130 110 
BL5 0.227 0.057 0.750 0.742 115 110 
BD1 0.010 0.007 0.082 0.089 150 120 
BD3 0.028 0.025 0.071 0.079 130 110 
BD5 0.052 0.048 0.073 0.081 120 110 
TL1 0.066 0.015 0.743 0.586 110 97.5 
TL3 0.110 0.048 0.72 0.607 110 97.5 

TD1 0.032 0.022 0.244 0.434 110 97.5 180◦ rotational  
T′L1 0.154 0.004 0.437 0.322 90c 97.5 
T′D1 0.031 0.003 0.105 0.263 90c 97.5 

χdir derived from τv, dir-cone(5◦)(θ, ɸ) threshold of 0 and 0.005 (EN14500). 
a χdir(◦), where τv, dir-cone(5◦)(θ, ɸ)<0.005. The directional cut-off angle χdir is the maximum χdir(ɸ) for the measured ɸ. χdir(ɸ) is the maximum incident θ whose τv, dir- 

cone(5◦)(θ, ɸ) is less than 0.005. 
b χdir(◦), where τv, dir-cone(5◦)(θ, ɸ) = 0.0. These data were not used in the RW model simulation. They are shown here to demonstrate how the threshold value affects 

the determination of the directional cut-off angle χdir. 
c τv, dir-cone(5◦)(θ, ɸ)<0.005 for all θ 

1 Modeling view out the window is also of interest to industry [12–15], but is 
outside the scope of this study. 
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(RW) [20] and modified-Kotey (MK) [16]. The RW model was used to 
derive design guidelines for the European daylighting standard 
[EN17037], and the MK model was adopted as part of the measurement 
and modeling protocol for the Attachment Energy Rating Council 
(AERC) [16]. The LBNL WINDOW library of AERC-designated shade 
fabrics has over 600 entries and has been publicly available at no cost to 
practitioners world-wide since 2016. The two models are both isotropic, 
meaning the optical properties were assumed to be rotationally 
invariant within the plane of the fabric; i.e., the grid structure and 
woven nature of the threads are assumed to have a negligible effect on 
overall optical properties. This study aims to evaluate the accuracy of 
these two analytical models against laboratory and field measurements, 
focusing on predicting visual comfort during the critical period when the 
solar disk is in the field of view. 

2. Method 

We evaluated absolute error by comparing: a) analytic versus 
laboratory-measured BSDF data for a hemispherical range of incident 
angles, and b) simulated data generated using the MK and RW models 
versus field-measured data for a limited range of incident angles. Fabric 
samples were measured and characterized using a scanning goniopho
tometer and evaluated in a full-scale testbed where vertical illuminance 
(Ev) and luminance of the solar disk region (Ls,2.5◦ , Ls,5.0◦ , Ls,e) and 
surroundings were measured using an illuminance meter and calibrated 
high dynamic range (HDR) imaging system. Simulated illuminance and 
luminance data were generated using the Radiance rtrace program and 
MK and RW input data. Discomfort glare (i.e., via daylight probability 
glare (DGP)2) was computed from measured and simulated HDR images. 

2.1. Description of fabrics 

This study included eleven woven fabric shades with a range of op
tical properties (Table 1). The fabrics were made of opaque polyester 
yarn or a combination of polyester and PVC coating and varied by color 
(light and dark shades of grey), weave (“basket” and “twill”), and 
openness factor (OF) (1%, 3%, and 5%). Fabric names were abbreviated 
with “WeaveColorOF.” For example, “BL1” represents the fabric with 
basket weave, light color, and 1% OF. The two types of twill weave 
fabrics were distinguished by an apostrophe (′). T′ denotes twill weave 
fabrics made of 100% polyester threads, whereas T denotes twill weave 
fabrics made of 70% PVC and 30% polyester. The same set of fabrics is 
described in Ref. [6]. 

2.2. Characterization with scanning-goniophotometer 

As summarized above, laboratory measurements of fabric samples 
were made to generate both the input data for the analytical models 
(Sections 2.4–2.5) and to evaluate model error (Section 3.1). Fabrics 
were measured using a scanning goniophotometer (Model “pgII,” Pab 
Advanced Technologies Ltd [9–11]) with a dynamic range of 70 dB and 
beam focused on the detector, as detailed in Refs. [3,6]. The symmetry 
property for each fabric was determined by visual inspection and 
determined to be quadrilaterally- or 180◦-rotationally symmetric. 
Measurements were made at angles of incidence corresponding to each 
symmetry type (Table 1 diagrams). Transmittance and reflectance data 

were derived from measured data using Mountain software [11]. For the 
analytic models, normal-hemispherical and normal-normal visible 
transmittance, τv, n-h and τv, n-n, data are given in Table 1 for cones with 
subtended angles of 180◦ and 5◦, respectively. Cut-off angle data (χdir) 
used in the RW analytic model were derived using methods described in 
Section 2.4 below. To evaluate model error, direct-hemispherical and 
direct-direct visible transmittance, τv, dir-h(θ, φ) and τv, dir-cone(5◦)(θ, φ) 
were derived from the original pgII data (i.e., no interpolated angles of 
incidence). In this study, we used the Radiance convention for θ and φ 
(Figure A1), where φ = 0◦ points horizontally to the right, φ = 90◦ points 
upwards when viewing the front of the sample, and θ = 0–90◦ denotes 
incident angles and θ = 180◦ denotes outward scattering angles 
measured from the inward z-axis with the front of the sample facing 
towards the indoors. 

2.3. Field measurements with HDR imaging system 

Field measurements were conducted in a full-scale, outdoor testbed 
at LBNL in Berkeley, California, USA (37.87◦N, 122.27◦W). The exper
iment was conducted November 2–30, 2020 with incident solar angles 
within the range of: θ = 130–150◦ and φ = 30–160◦. Direct normal and 
diffuse horizontal irradiance (DNI and DHI) were measured using a 
pyrheliometer (EKO MS-80, <0.2% non-linearity at 1000 W/m2, spec
tral error ± 2%) and pyranometer (EKO MS-57, <0.2% non-linearity at 
1000 W/m2, spectral error ± 2%) mounted on a solar tracker. Mea
surements were performed under clear sky conditions with the sun in the 
camera’s field of view. Daily conditions were deemed to be sunny if DHI 
exhibited the typical smooth arc of a sunny day. Mean DNI and DHI 
varied by ±4.6% and ±15.3%, respectively, between the 11 fabric test 
periods, indicating good comparability between the testing days’ solar 
condition. Summary solar conditions per fabric type are given in 
Figure A2. 

The eleven fabrics were individually tested and mounted to fully 
cover a south-facing window (2.75 m × 2.75 m) in a private office test 
chamber (3.05 m wide × 4.57 m deep × 3.05 m high). An HDR imaging 
system consisting of a full-frame, digital, single-lens reflex camera 
(Canon 5D) and a 180◦ fisheye lens (Sigma 8 mm) was mounted 1.0–1.5 
m from the window, facing the window. Sequences of RAW format low 
dynamic range (LDR) images (3840 px × 5760 px) were taken. They 
were later combined into HDR images (2000 px × 2000 px) and cali
brated using a separate spot luminance meter reading (Minolta LS110, 
0.5◦ spot) taken simultaneous to HDR capture. To prevent pixel over
flow, a neutral density filter was applied at the back of the fisheye lens. 
Vertical illuminance (Ev) was measured within 7 cm from the center of 
the fisheye camera lens using a cosine corrected, v(λ) weighted, 
photometric sensor (Minolta T10, within 6% of V(λ) and 3% of cosine 
response over 0.01–299,900 lx range). More details about the luminance 
and vertical illuminance measurements are provided in the previous 
study [6]. 

Data points where the window mullion obstructed the solar disk and 
circumsolar area (within an approximate apex angle of 5◦) and shaded 
the sensors were removed. Data points where the HDR-derived Ev 
deviated more than 20% from the illuminance sensor measurement were 
also removed. 

2.4. Modeling with the Roos-Wienold model 

The original Roos model [23] was developed for specular glass, 
where the formula for angle-dependent, direct-direct transmittance, τv, 

dir-dir(θ), is: 

τv,dir− dir(θ)= τv,n− n ∗

(

1 − 8 ζα −
0.25

q
ζ2 −

(

1 − 8 −
0.25

q

)

ζγ
)

, (1)  

where, 

2 The DGP metric was used in the analysis because it has been cross validated 
by independent field studies and found to deliver the highest performance and 
robustness amongst state-of-the-art metrics [21]. The metric includes a term 
that accounts for discrete sources of glare. A recent study [22] has validated the 
metric under conditions with direct sun in the field of view (authors 
acknowledged the need for further research, particularly the effect of strong 
spectral (color) shifts of glazing and CFS materials on glare). DGP has been 
adopted in the European daylighting standard EN17037. 
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ζ =
θ

90◦

α(q)= 5.2 + 0.7q  

γ(p, q)= 5.26+ 0.06p+ 0.73q + 0.04pq,

and where p is the number of panes in the window configuration and q is 
the material category of the coating defined in Ref. [23]. 

Wienold adapted this model to fabric shades by incorporating a 
directional cut-off angle [20]. As a result, the parameters ζ, p, and q 
were modified in Equation (1), where p = 4, q = 2.9, and 

ζ =
θ

90◦
+ 1 −

χdir

90◦
(2)  

where χdir is the cut-off angle (i.e., incident grazing angle within θ =
0–90◦ range). The determination of the directional cut-off angle fol
lowed EN14500. The directional cut-off angle for each φ angle, χdir (φ), 
was determined when τv, dir-cone(5◦)(θ, φ) < 0.005. The directional cut-off 
angle for the fabric, χdir, was max [χdir (φ)] among the measured φ an
gles. Modeling using the RW model required measuring the fabric at 
many rotational φ angles, even though the model assumed isotropic 
behavior. Measurement requirements are discussed further in Section 
4.4 and implications of (an)isotropy are discussed in Section 4.1. 

To model fabrics using the RW model, we derived τv, n-h and τv, n-n 
from the pgII normal incidence, front-to-back transmission data inte
grated at a cone of 180◦ and 5◦, respectively. τv, n-dif is the difference 
between τv, n-h and τv, n-n. Similarly, front and back hemispherical 
reflectance values (ρv, f, n-h and ρv, b, n-h) were also derived from the pgII 
data. 

In Radiance, the RW model was implemented as a BRTDfunc material 
type, as it was originally modeled in Ref. [20]. This material type models 
the specular component without forward scattering. So to counteract the 
limitation of this material type, the RW model defines τv,n-n as integrated 
over a 5◦ apex angle, which includes the shoulder (forward scattering) 
region of the direct-direct transmission. The diffuse component is 
Lambertian. Both specular and diffuse components are attenuated by the 
glazing layer according to Fresnel equation with a transmissivity of 1.0 
and refraction index of 1.05, which means that transmittance was 
reduced by 1% up to 65◦, 5% at 72◦, 20% at 80◦, and 50% at 85◦ AOI. 
Solar disk in each rendering was subsequently blurred using the same 
blurring function defined in Refs. [3,6], based on the human retinal 
blurring function, which also approximated the scattering of the camera 
lens. 

2.5. Modeling with Modified-Kotey model 

The MK model was developed based on the original Kotey model 
[24] and later adapted for AERC [16]. The coefficients to the original 
Kotey model were modified based on measured data for 60 fabric 
samples using an integrating sphere and angle tube [16]. The inputs to 
the MK model were normal incidence measurements: τv, n-n, τv, n-dif, and 
ρv, n-n. Like the RW model, the MK model also assumed isotropic 
behavior. The model defined the angle-dependent transmittance as: 

τv,dir− dir(θ) = τv,n− n cosb(θ) (3)  

τv,dir− dif (θ) = τv,n− dif cosbd(θ) (4) 

Where the exponent variables b and bd are given by 

b=max
[
− 0.35 ln

(
max

[
τv,n− n, 0.01

])
, 0.35

]

bd =max
[
− 0.35 ln

(
max

[
τv,n− dif , 0.01

])
, 0.35

]
,

respectively. Reflectance was modeled as 

ρv,dir− h(θ)= ρv,n− h +
(
ρKotey(90◦) – ρv,n− h

) (
1 – cos0.6(θ)

)
(5)  

where ρkotey(90◦) is defined as: 

ρKotey(90◦)= ρv,n− h +
(
1 – ρv,n− h

) (
0.7ρy

0.7)

and ρy is defined as 

ρy = ρv,b,n− h

/ (
1 – τv,n− n

)

The τv, n-h, τv, n-dif, τv, n-n, and ρv, b, n-h were derived from the 
measured pgII data in the same manner as described in Section 2.4. 

The Radiance tool bsdf2ttree was used to produce the tabulated 
tensor tree BSDF [25] based on Equations (3)–(5), where options -t 4 and 
-g 6 were used to invoke anisotropic sampling and set a tensor tree 
resolution of 26 × 26. Anisotropic sampling avoided a minor issue we 
had with -t 3 in-plane tensor tree peaks, which was a potential source of 
systematic errors. Since the modified-Kotey model was isotropic, the 
resulting tabulated BSDF was still isotropic.3 A Radiance .cal file was 
used to define the optical behavior according to the modified-Kotey 
model (Equations (3)–(5)). Rays were sent and sampled during the 
generation of the tensor tree BSDF, where specular rays were deter
mined by whether the scattered rays were within the 0.533◦ apex angle 
centered around the “through” ray. Peak extraction was turned on for 
MK datasets to model the specular view component except for BL1 [26]. 
BL1, despite having a 1% openness factor, could not be seen through, 
and objects on the other side could not be distinguished. The same blur 
function mentioned above was applied to the MK model. 

2.6. Simulation and glare evaluation 

The RW model was implemented with Radiance BRTDfunc material 
[20], while the MK model used a BSDF tabulated data [16]. This 
introduced an inherent bias due to the former model yielding continuous 
data versus discrete (tabulated) data of the latter. Notwithstanding, both 
simulation methods adhered to that of the original studies. Ev values for 
each fabric were generated using the Radiance rtrace program at a 2-min 
interval. Renderings with a resolution of 2000 px by 2000 px were also 
generated with the rtrace program at a 10-min interval. Rtrace simula
tions were run with -ab 6 -ad 512 -aa 0. The simulation sky model was 
generated using Radiance gendaylit program, which is based on the Perez 
All-Weather model [27]. 

For both measured and simulated images, the Radiance evalglare 
program (v2.10) [28] was used to compute each rendering’s glare 
source luminance and DGP. Glare sources were identified with a 
threshold of 2000 cd/m2, and a separate peak glare source was identi
fied with a threshold of 5.0 × 104 cd/m2. No task area was identified, 
given the view of facing normal to the window. The dataset was clas
sified into contrast-based and saturation-based discomfort glare, where 
contrast-based glare was caused by an excessive bright glare source in a 
relatively dimly lit environment and saturation-based glare was caused 
by an overall bright luminance at the eye. The DGP equation is 

DGP = 5.87 ∗ 10− 5 Ev⏟⏞⏞⏟
saturation term

+ 9.18 ∗ 10 − 2log10

(

1 +

∑n
i=0L2

s,i ∗ ωs,i

E1.87
v ∗ P2

s,i

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
contrast term (log gc)

+ 0.16
(6)  

where the first part of the equation (Ev) accounted for the saturation 
(adaptation) effect and second term (log_gc) for the contrast effect. A 0.5 

3 Selection of this tensor tree resolution provides error estimates that are 
comparable to prior validation studies. For simulations with lower resolution 
BSDFs, errors may increase. 
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log_gc threshold and 3000 lx Ev threshold were used to divide the 
datasets into high/low contrast and high/low adaptation levels, 
respectively [29]. The measured dataset for the eleven fabric shades was 
categorized into four conditions: high-contrast-high-adaptation (c+a+), 
high-contrast-low-adaptation (c+a-), and low-contrast-high-adaptation 
(c-a+) and low-contrast-low-adaptation (c-a-). Because there were 
only two data points under c-a- conditions, a single low-contrast (c-) 
category was used to represent both c-a- and c-a+. Most of the c-data 
points were from BL1 fabric. In addition to DGP, Ls,e and ωs,e was also 
computed with the evalglare program. Ls, e and ωs, e values were 
extracted from the peak glare source where the average peak luminance 
was greater than 5.0 × 104 cd/m2. These peak glare sources were 
manually examined to ensure they all represented solar disks in the HDR 
images. Ls,2.5◦ and Ls,5.0◦ were extracted at the solar disk location at 2.5◦

and 5.0◦ apex angle in each image. 

3. Results 

3.1. Comparison to pgII measurements 

Comparisons were made between the analytical model and reference 
pgII-derived data for a total of 613 measured incident angle locations 
(Table 1 diagram) collected across the eleven fabrics. Errors were 
determined for the entire dataset and for subsets of data at 30◦ θ inter
vals. The results are presented in the following sections for direct- 
hemispherical and direct-direct visible transmittance. In addition, the 
anisotropy and its relation to the error of each fabric were also analyzed. 

3.1.1. τv, dir-h(θ, φ) error 
The analytical models were found to be most aligned with the pgII 

dataset near the normal angle of incidence and deviated as the incident 
angle increased (Table 2 and Fig. 1, top for example fabric BD1). For 
incident θ from 180 to 150◦, 150–120◦, and 120–90◦; the MAE for the 
RW dataset were 3.3%, 10.3%, and 20.2%, respectively; and 3.6%, 
15.5%, and 36.3% for the MK dataset, respectively (Table 2). The overall 
τv, dir-h(θ, φ) correlation for incident θ = 180–90◦ was good, with r2 =

0.98 and 0.96 for the RW and MK datasets, respectively. For this section 
of analysis, the comparisons were useful for identifying general trends in 
error associated with the analytical models. Sub-analysis based on ma
terial properties (dark/light fabric, openness factor) was performed in 
Section 3.2 and related to data in Section 3.1. 

3.1.2. τv, dir-cone(5◦)(θ, φ) error 
We observed similar trends with τv, dir-cone(5◦)(θ, ɸ) where agreement 

between model- and pgII- derived datasets was best near normal and 
decreased as the angle of incidence increased (Table 3; Fig. 1, bottom). 
The difference between the RW model and pgII-derived transmittance 
was explained above. For θ = 180–150◦, both models performed well, 
with a MAE of 8.6% and 10.1% for the RW and MK models, respectively. 
MK model MAE drastically increased to 86.5% and 1450.0% with θ =
150–120◦ and θ = 120–90◦. The RW model, on the other hand, per
formed relatively better with a corresponding MAE of 31.5% and 

Table 2 
τv, dir-h(θ, φ) error of RW and MK models compared to pgII-derived data for measured incident angles shown in Table 1.  

Θ range Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

RW 
180–90◦ 613 0.98 0.0100 13.7% 0.0066 9.06% 0.0052 7.14% 
180–150◦ 194 1.00 0.0044 4.85% 0.0030 3.31% 0.0014 1.54% 
150–120◦ 296 0.98 0.0110 15.5% 0.0073 10.3% 0.0058 8.18% 
120–90◦ 123 0.97 0.0150 30.3% 0.0100 20.2% 0.0095 19.2% 

MK 
180–90◦ 613 0.96 0.0150 20.6% 0.0098 13.4% − 0.0061 − 8.37% 
180–150◦ 194 1.00 0.0040 4.41% 0.0033 3.64% − 0.0011 − 1.21% 
150–120◦ 296 0.98 0.0130 18.3% 0.0110 15.5% − 0.0055 − 7.76% 
120–90◦ 123 0.93 0.0260 52.5% 0.0180 36.3% − 0.0150 − 30.3%  

Fig. 1. Comparison between BD1’s analytical model and pgII-derived data at 
incident φ = 0◦, 45◦, and 90◦ for direct-hemispherical (top) and direct-direct 
(bottom) visible transmittance. Per EN14500, BD1’s χdir = 150◦, which is the 
maximum θ from normal incidence angle and where the pgII τv, dir-cone(5◦)(θ, φ) 
(grayscale) and cut-off (dashed line) lines intersect. The RW: 0.005 (blue line) 
function was modeled with τv, dir-cone(5◦)(θ, φ) threshold 0.005 and χdir = 150◦. 
The RW: 0 (orange line) function was modeled with τv, dir-cone(5◦)(θ, φ) threshold 
0 and χdir = 120◦. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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166.0%. RW had a better overall correlation with pgII-derived data, 
with r2 = 0.96 in comparison to MK’s r2 = 0.79 (Table 4). MK’s relatively 
worse correlation occurred mainly at oblique angles of incidence be
tween θ = 150–120◦ and θ = 120–90◦, r2 = 0.55 and 0.02, respectively. 
The RW model also had a smaller MBE of +2.3% (θ = 180–90◦), as 
opposed to the +35.1% overestimation of the MK model. The better 
performance from the RW model can be attributed to the additional χdir 
parameter, modeling the reduction in transmission due to the fabric cut- 
off angle. 

3.1.3. Anisotropy 
Both RW and MK models assumed isotropic optical behavior, 

modeling τv, dir-h(θ, φ) and τv, dir-cone(5◦)(θ, φ) as a function of θ and not ɸ. 
In the real world, the 3-D woven nature of fabrics indicated that they 
were indeed anisotropic, and different fabrics exhibited different levels 
of anisotropy. We characterized the anisotropy of each fabric by calcu
lating the normalized standard deviation (σn) of pgII-derived τv, dir-h(θ, 
φ) (θ = 140◦) and τv, dir-cone(5◦)(θ, φ) (θ = 140◦) across all φ angles. The θ 
= 140◦ angle was chosen because we had sufficient non-zero (before cut- 
off) data at this angle for all fabrics. This σn informed us of the spread in 
τv, dir-h(θ, φ) and τv, dir-cone(5◦)(θ, φ) at θ = 140◦; the higher the σn, the 
more anisotropic the fabric was. Overall, we observed that dark colored 
fabrics were more anisotropic than their light-colored counterparts. 
Fabrics that had smaller openness factors were also more anisotropic. 
We also observed that the errors in τv, dir-h(θ, φ) and τv, dir-cone(5◦)(θ, φ) 
were positively correlated the degree of anisotropic behavior (proxied 
by σn) (Fig. 2). Table 4 lists the σn of each fabric and their associated τv, 

dir-h(θ, φ) and τv, dir-cone(5◦)(θ, φ) MAE comparing the values measured 
using pgII. As shown in Fig. 2, for both RW and MK models, MAE 
increased with σn. Note RW MAE was significantly lower than that of MK 
with increased anisotropic behavior. 

3.2. Comparison to field measurements 

We evaluated the error of the two analytical models against field 
measurement with the lighting conditions broken down into three cat
egories: high contrast, high adaption (c+a+), high contrast, low adap
tation (c+a-), and low contrast (c-). Most of the fabrics exhibited the 
specular view component (with a visible solar disk), and thus were in 
high contrast scenarios. BL1 was the only fabric that exhibited low- 

Table 3 
τv, dir-cone(5◦)(θ, φ) error of RW and MK models compared to pgII-derived data for measured incident angles shown in Table 1.  

Θ range Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

RW 
180–90◦ 613 0.96 0.0029 29.0% 0.00180 18.0% 0.00023 2.30% 
180–150◦ 194 0.98 0.0026 13.2% 0.00170 8.62% − 0.00014 − 0.71% 
150–120◦ 296 0.88 0.0036 47.2% 0.00240 31.5% 0.00054 7.08% 
120–90◦ 123 0.00 0.0013 44.0% 0.00049 16.6% 0.00004 12.20% 

MK 
180–90◦ 613 0.79 0.0073 73.1% 0.0047 47.1% 0.00350 35.10% 
180–150◦ 194 0.98 0.0027 13.7% 0.0020 10.1% 0.00059 2.99% 
150–120◦ 296 0.55 0.0093 122.0% 0.0066 86.5% 0.00520 68.20% 
120–90◦ 123 0.02 0.0066 2230% 0.0043 1450% 0.00410 1390%  

Table 4 
Normalized standard deviation (σn) of pgII-derived τv, dir-h(θ, φ) and τv, dir-cone 

(5◦)(θ, φ) at θ = 140◦, and corresponding nMAE (%) from the analytical models. 
Fabrics that had higher σn, also were more anisotropic and had higher nMAE(%) 
in τv, dir-h(θ, φ) and τv, dir-cone(5◦)(θ, φ) at θ = 140◦, compared to pgII 
measurements.   

condition σn, dir-h τv, dir-h(θ, ɸ) σn, dir-cone(5◦) τv, dir-cone(5◦)(θ, ɸ) 

nMAE (%) nMAE (%) 

RW MK RW MK 

BL1 c− a+ 0.0101 4.2 13.9 0.7480 18.8 101.0 
BL3 c+a+ 0.0062 2.8 11.6 0.1620 14.2 65.6 
BL5 c+a+ 0.0094 1.6 7.8 0.1120 12.2 48.8 
BD1 c+a− 0.3720 53.1 89.5 1.1700 62.4 123.0 
BD3 c+a− 0.1700 11.6 58.7 0.2290 8.7 80.9 
BD5 c+a− 0.1510 17.9 46.3 0.1950 16.9 54.3 
T’L1 c+a+ 0.0272 15.0 12.1 0.0581 29.6 30.6 
TL1 c+a− 0.0425 18.0 13.3 0.2410 24.0 31.2 
TL3 c+a+ 0.0214 12.9 5.6 0.0498 16.8 26.2 
T’D1 c+a− 0.0800 19.1 27.1 0.1460 34.7 45.7 
TD1 c+a− 0.0875 15.4 18.3 0.2300 19.8 32.5  

Fig. 2. Positive correlation between MAE and normalized standard deviation 
(σn) of pgII-derived τv, dir-h(θ, φ) and τv, dir-cone(5◦)(θ, φ) at θ = 140◦. Each 
datapoint represents one of the eleven measured fabrics. 
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contrast levels and had no direct view component. The light-colored 
fabrics produced mostly high adaptation conditions, whereas the dark- 
colored fabrics produced low-adaptation conditions, except T’L1 
(Fig. 3). In the following sections, we evaluated the energy conservation 
in illuminance and solar luminance, followed by a performance evalu
ation in predicting visual comfort for the two models. 

Note that the field validation captured a limited subset of all possible 
solar conditions due to time and location of measurements, geometry of 
room and window, south-facing orientation, and site location. 

3.2.1. Energy conservation: vertical illuminance 
A total of 2066 Ev data points were collected in the outdoor testbed 

across the eleven fabrics, with the measured Ev ranging from 58 lx to 
12830 lx and a median of 4052 lx. For the RW model, RMSE, MAE, and 
MBE errors for Ev were 681 lx, 468 lx, and − 345 lx, normalizing to 
18.2%, 12.5%, and − 9.2%, respectively. For the MK model, RMSE, MAE, 
and MBE errors were 837 lx, 548 lx, and − 475 lx, normalizing to 22.4%, 
14.6%, and − 12.7%, respectively (Table A1). Under all contrast- 
adaptation conditions, RW simulated results showed better agreement 
with the field measurements than MK results. Overall, light-colored 
fabrics (c+a+) had a smaller distribution in Ev difference than dark- 
colored fabrics (c+a-) (Fig. 5). The light-colored fabrics had diffuse 

Fig. 3. Classification of the measured HDR images for each fabric.  

Fig. 4. Ev RMSE, MAE, and MBE breakdown by adaptation and contrast con
ditions: c+a+, c+a-, and c-. 

Fig. 5. Data distribution for Ev difference between the measurement and 
analytical model simulation, breakdown by contrast-adaptation condition: 
c+a+, c+a− , and c− . The bars denote the 25% and 75% quartiles, and the dot 
denotes the mean. The outliers in c+a− and c− were from BD1. 

Fig. 6. Solar luminance evaluated at 2.5◦ and 5.0◦ apex angles (Ls,2.5◦ and 
Ls,5.0◦ ) RMSE, MAE, and MBE breakdown by adaptation and contrast condi
tions: c+a+, c+a-, and c-. 
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transmittance largely influencing Ev and were less sensitive to changes 
in angles of incidence. The opposite was true for darker fabrics, where 
most of the Ev was from direct transmittance. The negative mean bias 
error indicated an overall underestimation of Ev. The Ev error break
down by adaptation and contrast conditions is shown in Fig. 4. Ev error 
summary tables are included in the Appendix. Overall Ev agreement for 
each model is shown in Fig. 11 (a, g). 

3.2.2. Energy conservation: solar luminance 
RW and MK models were rendered at a 10-min interval for lumi

nance calculations, resulting in a total of 497 images for the eleven 
fabrics. In the RW dataset, RMSE, MAE, and MBE errors for solar 
luminance evaluated at 2.5◦ apex angles (Ls,2.5◦ ) were 2.79 × 105 cd/m2, 
2.05 × 105 cd/m2, and -1.52 × 105 cd/m2, normalizing to 36.4%, 26.7%, 
and − 19.8%, respectively. The negative MBE indicated an overall un
derestimation. For the MK dataset, RMSE, MAE, and MBE errors were 
2.93 × 105 cd/m2, 2.18 × 105 cd/m2, -1.27 × 105 cd/m2, normalizing to 
38.2%, 28.3%, − 16.5%, respectively (Table A2). Similar correlation 
trends were found with Ls,5.0◦ (Table A3). Overall Ls,2.5◦ and Ls,5.0◦

agreements for each model are shown in Fig. 11 (b, c, h, i). 
Breaking down the datasets by contrast levels, we observed over

estimation with low-contrast cases and slight underestimation with 
high-contrast cases, for both models. With high-contrast scenarios, both 
models performed better with c+a+ and had trouble with c+a-cases 
(Fig. 6). 

RW model performed well in c+a+ cases, with a MAE of 17.8% and 
18.6% for the Ls,2.5◦ and Ls,5.0◦ , respectively; but performed worse under 
c+a-cases, with a MAE of 35.1% and 36.7% for Ls,2.5◦ and Ls,5.0◦

respectively. One fabric that RW had difficulty in modeling was BD1, as 
shown in Fig. 11 (b, c), the cluster of green data points on the lower left 
corner. The underestimation and “flat” profile could be explained by the 
early cut-off of the specular component, as shown in Fig. 1 (bottom). RW 
model (in blue) decreased to zero in the field measurement range (θ =
135–149◦ and ɸ = 30–150◦); as a result, there was no visible solar disk in 
the rendering. The inaccuracy of the RW model could be partly 
explained by the determination of the cut-off angle, which is discussed 
later. 

Similarly, MK performed better in c+a+ than in c+a-cases. For c+a+
cases, MAE were 17.2% and 17.9% for Ls,2.5◦ and Ls,5.0◦ respectively. MK 
MAE for c+a-were slightly worse than RW’s, at 39.9% and 40.3% for 

Ls,2.5◦ and Ls,5.0◦ , respectively. Like RW, MK also did not perform well 
with BD1, as shown in Fig. 11 (h, i), where there was a large deviation 
with measured Ls,2.5◦ ranging from 3 × 103 to 1 × 105 cd/m2. As shown 
in Fig. 1 (bottom), MK (in green) overestimated τv, dir-cone(5◦)(θ, φ) in the 
pgII measurement range (θ = 140–150◦ and φ = 45–90◦). 

Both RW and MK greatly overestimated Ls,2.5◦ and Ls,5.0◦ for the c- 
case, which was primarily composed of the BL1 dataset. We observed no 
direct component in the field HDR measurements, i.e., the solar disk was 
not visible through the fabric. However, BL1 was measured by pgII to 
have a specular transmission (1.5%); thus, both analytical models had 
specular transmission. This discrepancy between field and pgII mea
surements was likely caused by fabric sample differences. We discuss 
this in the Section 4. 

3.2.3. Glare prediction 
Given that this study focuses on scenarios with the solar disk in the 

field of view, the dominating factors contributing to glare were Ev, ωs, e, 
and Ls, e, the solid angle and mean glare source luminance in the solar 
disk region where pixel values exceeded 50,000 cd/m2. Overall agree
ments in Ls, e, ωs, e, and DGP for each model are shown in Fig. 11 (d, e, f, 
j, k, l). 

Ls, e had RMSE and MAE of 5.59 × 105 cd/m2 (45.4%) and 4.81 ×
105 cd/m2 (39.0%) for the RW dataset, and 4.43 × 105 cd/m2 (36.0%) 
and 3.58 × 105 cd/m2 (29.1%) for the MK dataset. BD1 was excluded in 
the Ls, e and ωs, e analysis because the solar disk was not in the field of 
view in the RW’s simulated HDR, i.e., no pixels in the solar disk region 
with luminance >50,000 cd/m2. Both models overestimated Ls, e, with 
an MBE of 4.34 × 105 cd/m2 (35.3%) and 2.52 × 105 cd/m2 (20.5%) for 
the RW and MK dataset, respectively. The low-contrast fabrics, which 
were mainly composed of BL1, had the largest MAE: 8.53 × 105 cd/m2 

(387.0%) and 9.85 × 104 cd/m2 (44.7%) for the RW and MK dataset, 
respectively (Table A4). The relatively large errors with c-cases were 
also related to sample differences as mentioned in Section 3.2.2. Ls,e 
error for each contrast-adaptation condition is shown in Fig. 8 (top). 

In contrast to the overestimated Ls, e term, the solid angle of all pixels 
>50,000 cd/m2 in the solar disk region, ωs, e, was under-predicted. For 
both models, the solar disk was first rendered to be a pure specular 
component, with a size of 0.533◦ apex angle (the apex angle of the solar 
disk). The solar disk was then blurred as described in Sections 2.3 and 
2.4 (Fig. 7). For the RW dataset, the overall, c+a+, c+a-, and c- MBE 

Fig. 7. Radiance rtrace (through rtpict) program generated HDR renderings for the RW and MK model, with the solar disk at a 0.533◦ apex angle. Then, the blur 
function was applied to the rendered HDR to account for the HDR camera scattering. The Radiance evalglare program evaluated solar glare source whose luminance is 
greater than 50,000 cd/m2. 
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were − 42.7%, − 41.7%, − 46.9%, and 4.3%, respectively. For the MK 
dataset, the overall, c+a+, c+a-, and c- MBE were − 9.3%, − 29.2%, 
− 42.2%, and 854.0%, respectively. The c-condition (BL1) had a positive 
bias for the same reason explained above. The c + condition 

underestimated ωs, e due to fewer pixels over 5 × 104 cd/m2 detected in 
the simulated images compared to the measured images. ωs,e error for 
each contrast-adaptation condition is shown in Fig. 8 (middle). 

Despite the large errors in Ls, e and ωs, e, simulated DGP agreed 
relatively well with measurements, with a MAE of 0.042 (7.9%) and 
0.050 (9.4%) for RW and MK datasets, respectively. Both models 
underestimated DGP, with an MBE of − 0.032 and − 0.024, respectively. 
In c+a+ cases, RW model had a MAE of 0.058 (8.70%) and a MBE of 
− 0.049 (− 7.30%); MK model had a MAE of 0.064 (9.60%) and MBE of 
− 0.063 (− 9.50%). In c+a-cases, RW model had a MAE of 0.032 (7.80%) 
and MBE of − 0.025 (− 6.20%); MK model had a MAE of 0.043 (10.6%) 
and MBE of 0.0059 (1.40%). In c-cases, RW model had a MAE of 0.024 
(3.70%) and MBE of 0.015 (2.30%); MK model had a MAE of 0.022 
(3.40%) and MBE of − 0.011 (− 1.70%). DGP error and distribution for 
each contrast-adaptation condition is shown in Fig. 8 (bottom) and 
Fig. 9. 

When predicting binary glare classification, where DGP = 0.38 is the 
threshold between no-glare and glare, both analytical models performed 
relatively well. All high-adaptation condition data points (c+a+ and c- 
a+) were in the glare category, while low-adaptation condition data 
points (c+a- and c-a-) were in the glare/no-glare span. The high- 
adaptation condition had a minimum Ev of 3000 lx and minimum DGP 
of 0.3361 (Equation (6)). For the high-adaptation condition, both 
models had a true positive rate and true negative rate of 1.0. For the c+a- 
condition, the true positive rates were 0.97 and 1.0 for the RW and MK 
models, respectively; however, RW performed significantly better than 
MK in the true negative rate: 0.96 and 0.48, respectively. Ls,e error for 
each contrast-adaptation condition is shown in Fig. 8 (top). 

Both analytical models showed relative high uncertainty in deter
mining the imperceptible (DGP ≤0.34), perceptible (0.34 < DGP 
≤0.38), disturbing (0.38 < DGP ≤0.45), and intolerable (DGP >0.45) 
glare categories [21]. The DGP ≤0.45 range had 143 data points, of 
which 139 data points were under the c+a-condition, with a MAE of 
0.037 (10.2%) and 0.052 (14.3%), and MBE of − 0.029 (− 7.9%) and 
0.026 (7.2%), for the RW and MK models, respectively (Fig. 10, Fig. 11 f, 
l). Because a MAE of 0.037 and 0.052 is more than half the size of the 
intervals in the four-point discomfort glare scale, the two models were 
not sufficient to differentiate between these glare categories. 

4. Discussion 

Based on the field evaluation with a limited range in AOIs and 

Fig. 8. Peak glare source (solar) luminance, solid angle, and DGP RMSE, MAE, 
and MBE breakdown by adaptation and contrast conditions: c+a+, c+a-, and c-. 

Fig. 9. Data distribution for DGP difference between the field measurement 
and analytical model simulation, breakdown by contrast-adaptation condition: 
c+a+, c+a− , and c− . The bars denote the 25% and 75% quartiles, and the dot 
denotes the mean. The outliers in c+a− and c− were from BD1. 
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comparisons with pgII-derived transmission data (all AOIs), we 
concluded that for fabrics that created: 

c+a+ scenarios 

RW performed slightly better than MK in Ev, with a MAE (13.1% vs 
14.6%). Both models had an acceptable Ev error (RMSE <32%, MBE 
<20%) [30,31]. Both models showed similar performance in predicting 
solar luminance, with a MAE of 18% for both Ls,2.5◦ and Ls,5.0◦ . Both 
models also performed similarly in predicting DGP, with a MAE of 0.058 
(8.7%) and 0.064 (9.6%) for RW and MK, respectively. Both models also 
had a true positive and true negative rate of 1.0. All measured DGP 
values for c+a+ conditions were greater than 0.4, where errors are of 
less significance due to high discomfort glare despite high adaptation 
levels. 

c+a-scenarios 

RW performed better than MK in Ev with a MAE of 13.7%, as opposed 
to MK’s MAE of 19.2%. Ev errors from both models were still within 
acceptable range. Both models had a Ls MAE of 35%–40% with RW 
performing slightly better than MK. RW performed better than MK in 
predicting DGP with a MAE of 0.032 (7.8%), as opposed to MK’s 0.043 
(10.6%). RW underestimated DGP with an MBE of − 0.025 (− 6.20%), 
whereas MK slightly overestimated DGP with an MBE of 0.0059 
(1.40%). RW also performed significantly better than MK in the binary 
glare classification: true positive rates for both were 100%, but the true 
negative rate for RW was 96% while MK was 48%. DGP errors under the 
c+a-condition had more significant implications because this condition 
covered glare ratings from imperceptible to disturbing. 

c-scenarios 

Both models performed well in predicting Ev with a similar MAE of 
5%. Ls errors were large with a MAE of 139%–236% for Ls,2.5◦ , but the 
errors were likely caused by fabric differences. DGP agreement was 
similar for the two models with a MAE of 3.5%. Both models had the 
same true positive and true negative rate of 100%. Because of low 
contrast conditions, the large Ls error had a relatively smaller implica
tion on predicting visual comfort, whereas Ev played a more significant 
role (Equation (6)). 

Overall, both models could be used to compute Ev and other per
formance metrics that rely on Ev accuracy more than other factors, such 
as simplified DGP for low-contrast (c-) conditions. Also, results showed 
that both models could be used to compute DGP and predict binary glare 
for the high-adaptation condition (c+a+) because under this condition 
the occupants are very likely to experience intolerable glare (DGP>0.45) 
and the true positive rate was 1.0. For the low-adaptation condition, 
both models were inadequate for category DGP prediction; however, RW 
was sufficient for the binary glare classification. 

4.1. Implication of isotropy 

Both MK and RW models were isotropic, i.e., transmittance varied 
independent of changes in ɸ. For fabrics that exhibited little anisotropic 
properties, e.g., BL3 (Table 4), an isotropic model could provide suffi
cient accuracy. However, for fabrics that exhibited pronounced aniso
tropic properties, such as BD1 shown in Fig. 1, an isotropic model is 
likely insufficient for all angles of incidence. This was exemplified with 
sigma metric’s poor correlation to MAE in Section 3.1.3 (although RW 
well outperformed MK) but was difficult to distinguish in field evalua
tion due to the limited AOI test range. 

4.2. Fabric sample differences 

The manufacturer provided a large and small sample of each fabric. 
The large sample was used for the field study and the small sample was 
used for pgII-derived reference data and as input to the MK and RW 
analytical models. To assess possible discrepancies between the two 
samples, both were re-measured using a spectrophotometer with an 
integrating sphere attachment (PerkinElmer Lambda 950) according to 
the EN14500 protocol. Even though the two samples were from the same 
batch in the production line, there were differences in τv, n-h and τv, n-n 
between the two samples (Fig. 12). Some fabrics showed little difference 
between the two samples, while others showed relatively large 

Fig. 10. All measured and simulated RW and MK DGP data points sorted by 
measured DGP in ascending order along the x-axis (top) with zoom-in at the 
critical range of DGP ≤0.45 (bottom). The DGP threshold for the binary glare 
classification was 0.38 and for intolerable glare was 0.45. 
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Fig. 11. Overall Ev, solar luminance evaluated at 0.53◦ and 2.5◦ apex angles, peak glare source (solar) luminance, solid angle, and DGP agreements between 
measured (x-axis) and simulated (y-axis) data for the RW (a–f) and MK (g–l) datasets. BD1 was not included in the peak source (solar) luminance and solid angle plots 
because the solar disk was not in the field of view in the rendered RW model HDR. The shaded area denotes an error range of ±20%. 
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deviations. Some fabrics’ large and small samples were in different 
shading classes (EN17037), e.g., TD1, T’D1 and BL1. For example, the 
large sample of BL1 had a much smaller τv, n-n than the smaller sample. 
This difference could partially explain why BL1 had no visible through 
component from the field HDR measurement, whereas the small sample 
was determined with pgII data to have a specular component, leading to 
overestimation of Ls shown in Sections 3.2.2 and 3.2.3. 

4.3. Cut-off angle determination 

The RW model results depended heavily on the maximum directional 
cut-off angle (χdir). When compared to pgII-derived values, the RMSE of 
τv, dir-h(θ, φ) using χdir derived from τv, dir-cone(5◦)(θ, φ) threshold of 0 and 
0.005 were 6.8% and 4.4%, respectively (Fig. 1). The RMSE of τv, dir-cone 

(5◦)(θ, φ) simulated with τv, dir-cone(5◦)(θ, φ) = 0 or 0.005 threshold was 
79.4% and 18.7%, respectively. τv, dir-h(θ, φ) was positively correlated to 
Ev, while τv, dir-cone(5◦)(θ, φ) was positively correlated to Ls. Note that 
despite the lower RMSE, the determination of cut-off angle based on the 
EN14500-designated 0.005 threshold still resulted in a large underesti
mation of Ls and DGP for the RW model under the challenging c+a- 
condition. 

4.4. Measurement requirements 

While RW performed better than MK, it also required significantly 
more measurements than MK. As described in EN14500, a fabric’s 
maximum cut-off angle needs to be derived from measurement cut-off 
angles at multiple ɸ angles, depending on the symmetry properties of 
the fabric. Determining the cut-off angle for each φ angle requires 
measuring τv, dir-dir(θ) continuously over θ until the transmission value is 
smaller than 0.005. A fabric defaults to a 90◦ cut-off angle if the cut-off 
angle is not measured. On the other hand, MK only requires a single 
normal incidence measurement of τv, n-h, τv, n-dif, ρv, f, n-h, and ρv, b, n-h. 
The measurement requirements of the RW model can hinder its adoption 
for characterizing fabrics at scale. 

4.5. Potential improvements 

The RW model can be improved by utilizing the cut-off angle data 

derived for each requisite φ angle. Instead of using a maximum cut-off 
angle to derive an isotropic model, the cut-off angle derived at each φ 
angle can be used to establish an anisotropic model, addressing the issue 
raised in Section 4.1. The MK model was derived originally for solar and 
thermal and not for visible and daylight calculation. Re-deriving the 
model for visible spectra and daylighting calculation, including cut-off 
angle as a parameter, could also potentially improve its accuracy. 

5. Conclusions 

Based on the results from this validation study, we concluded that 
the RW and MK models are sufficient for illuminance-based studies but 
insufficient for luminance-based studies. BSDF data for about 500 roller 
shade fabrics of similar weave have been generated using the MK model 
and are available in the LBNL CGDB library (i.e., entries are certified by 
AERC 1.0). These entries are sufficient for evaluation of daylight illu
minance metrics (Ev, Eh, sDA, ASE). For discomfort glare under high- 
adaptation and low- or high-contrast (c+a+ and c-a+), as defined by 
DGP, the RW model was significantly more accurate than the MK model. 
For discomfort glare under high-contrast and low-adaptation (c+a-), the 
RW model was again more accurate; it was able to predict binary clas
sification (glare versus no-glare) with a true positive rate of 1.0 and true 
negative rate of 0.97 whereas the MK model had a true positive rate of 
1.0 but only a true negative rate of 0.47. The RW model is sufficient for 
binary glare classification, while the MK model is not. Both models were 
insufficient in predicting glare on a four-point scale. The better perfor
mance of the RW model could be attributed to the additional χdir 
parameter, modeling the fabric cut-off angle. Although RW model 
required significantly more measurements, it was more accurate than 
the MK model. Both analytic models were less accurate if the fabric 
exhibited significant anisotropic behavior. Variations in weave of fabric 
samples contributed to model error. 
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Fig. 12. The eleven fabrics’ τv, n-n and τv, n-dif measured with an integrating 
sphere instrument. The “+” symbol represents the large fabric sample corre
sponding field-measured results, while the “–” symbol represents the small 
fabric sample corresponding to MK and RW simulated results. The colored 
legend indicates the glare control classification given in Table E.3 of the EN 
17037 Standard and Table 7 of EN 14501, where Class 0 has very little effect 
and Class 4 has a very good effect on control of discomfort glare. 
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Appendix

Fig. A.1. Radiance convention for BSDF coordinates: θ, φ, where the “front” (F symbol) of the sample in the x-y plane faces towards the indoors (inward surface 
normal z-axis); i.e., θi = 0–90◦ for incident angles and θs = 90–180◦ for outward scattering angles are measured from the inward z-axis; φi and φs are measured from 
the x-axis in the x-y plane, where φ = 0◦ points horizontally to the right and φ = 90◦ points upwards when viewing the front of the sample. Source: [HSLU, 24]  

T. Wang et al.                                                                                                                                                                                                                                   



Building and Environment 236 (2023) 110223

14

Fig. A.2. The direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) of all the measured datapoints, which were collected under clear sky conditions. 
DNI ranged from 690 W/m2 to 957 W/m2; DHI ranged from 44 W/m2 to 133 W/m2. The range of incident θ = 130–150◦ and incident φ = 30–160◦.  

Table A.1 
Ev (lx) error   

Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

RW 
All 2066 0.98 681.2 18.2% 468.8 12.5% − 345.5 − 9.23% 
cþaþ 871 0.98 1010. 15.4% 860.6 13.1% − 652.5 − 9.92% 
cþa¡ 1111 0.96 205.3 16.8% 167.5 13.7% − 132.5 − 10.8% 

(continued on next page) 
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Table A.1 (continued )  

Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

c¡ 84 0.93 526.5 6.88% 391.2 5.11% 20.40 0.266% 

MK 
All 2066 0.99 837.9 22.4% 548.2 14.6% − 475.1 − 12.7% 
cþaþ 871 0.98 1231. 18.7% 963.6 14.7% − 936.4 − 14.2% 
cþa¡ 1111 0.92 295.9 24.2% 235.4 19.2% − 121.5 − 9.92% 
c¡ 84 0.93 634.1 8.28% 378.8 4.95% − 367.9 − 4.81%   

Table A2 
Ls,2.5◦ (cd/m2) error   

Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

RW 
All 497 0.84 279,085 36.4% 204,857 26.7% − 151,803 − 19.8% 
cþaþ 203 0.87 268,929 25.2% 189,787 17.8% − 136,843 − 12.8% 
cþa¡ 256 0.79 295,362 47.3% 219,289 35.1% − 210,036 − 33.6% 
c¡ 38 0.84 211,243 181.% 188,139 161.% 160,593 137.% 

MK 
All 497 0.80 293,369 38.2% 217,522 28.3% − 126,682 − 16.5% 
cþaþ 203 0.87 268,098 25.1% 183,328 17.2% − 131,521 − 12.3% 
cþa¡ 256 0.61 322,243 51.6% 248,981 39.9% − 166,280 − 26.6% 
c¡ 38 0.88 205,214 176.% 188,258 161.% 165,938 142.%   

Table A3 
Ls,5.0◦ (cd/m2) error:   

Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

RW 
All 497 0.85 7,3692 37.1% 55,104 27.7% − 43,490 − 21.9% 
cþaþ 203 0.87 71,465 25.8% 51,483 18.6% − 41,417 − 15.0% 
cþa¡ 256 0.80 78,127 48.4% 59,280 36.7% − 57,288 − 35.5% 
c¡ 38 0.84 51,194 154.% 46,320 139.% 38,391 115.% 

MK 
All 497 0.78 78,484 39.5% 59,703 30.1% − 33,382 − 16.8% 
cþaþ 203 0.87 70,559 25.5% 49,371 17.9% − 38,064 − 13.8% 
cþa¡ 256 0.61 83,688 51.8% 65,104 40.3% − 45,307 − 28.1% 
c¡ 38 0.74 82,368 247.% 78,517 236.% 71,970 216.%   

Table A4 
Ls,e (cd/m2) error:   

Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

RW 
All 457 0.78 559,088 45.4% 480,690 39.0% 434,493 35.3% 
cþaþ 203 0.88 646,073 45.1% 593,738 41.5% 567,167 39.6% 
cþa¡ 217 0.73 361,784 29.8% 311,441 25.6% 239,007 19.7% 
c¡ 37 0.64 896,119 407.% 853,080 387.% 853,080 387.% 

MK 
All 457 0.73 442,942 36.0% 357,739 29.1% 251,937 20.5% 
cþaþ 203 0.74 489,669 34.2% 430,505 30.1% 329,140 23.0% 
cþa¡ 217 0.49 428,854 35.3% 333,865 27.5% 206,173 17.0% 
c¡ 37 0.95 170,687 77.4% 98,527.0 44.7% 96,760.1 43.9%   
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Table A5 
ωs,e (sr) error:   

Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

RW 
All 457 0.67 0.000410 47.5% 0.000390 45.2% − 0.000370 − 42.9% 
cþaþ 203 0.79 0.000440 43.9% 0.000420 41.9% − 0.000420 − 41.9% 
cþa¡ 217 0.69 0.000400 48.5% 0.000390 47.2% − 0.000390 − 47.2% 
c¡ 37 0.61 0.000260 82.4% 0.000200 63.4% 0.000014 4.44% 

MK 
All 457 0.11 0.000960 111.% 0.000560 64.9% − 0.000080 − 9.27% 
cþaþ 203 0.32 0.000450 44.8% 0.000360 35.9% − 0.000290 − 28.9% 
cþa¡ 217 0.44 0.000380 46.0% 0.000360 43.6% − 0.000350 − 42.4% 
c¡ 37 0.43 0.003100 983.% 0.002800 888.% 0.002700 856.%   

Table A6 
DGP error:   

Data count r2 RMSE nRMSE MAE nMAE MBE nMBE 

RW 
All 497 0.93 0.059 11.1% 0.042 7.88% − 0.032 − 6.01% 
cþaþ 203 0.95 0.067 10.0% 0.058 8.70% − 0.049 − 7.35% 
cþa¡ 256 0.74 0.056 13.7% 0.032 7.83% − 0.025 − 6.11% 
c¡ 38 0.97 0.026 4.01% 0.024 3.70% 0.015 2.31% 

MK 
All 497 0.91 0.067 12.6% 0.050 9.39% − 0.024 − 4.51% 
cþaþ 203 0.96 0.076 11.4% 0.064 9.59% − 0.063 − 9.44% 
cþa¡ 256 0.29 0.063 15.4% 0.043 10.5% 0.0059 1.44% 
c¡ 38 0.88 0.041 6.32% 0.022 3.39% − 0.011 − 1.69%  
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