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Summary

Animals have evolved homeostatic responses to changes in oxygen availability that act on 

different time scales. Although the hypoxia-inducible factor (HIF) transcriptional pathway that 

controls long term responses to low oxygen (hypoxia) has been established1, the pathway that 

mediates acute responses to hypoxia in mammals is not well understood. Here we show that the 

olfactory receptor Olfr78 is highly and selectively expressed in oxygen-sensitive glomus cells of 

the carotid body, a chemosensory organ at the carotid artery bifurcation that monitors blood 

oxygen and stimulates breathing within seconds when oxygen declines2. Olfr78 mutants fail to 

increase ventilation in hypoxia but respond normally to hypercapnia. Glomus cells are present in 

normal numbers and appear structurally intact, but hypoxia-induced carotid body activity is 

diminished. Lactate, a metabolite that rapidly accumulates in hypoxia and induces 

hyperventilation3–6, activates Olfr78 in heterologous expression experiments, induces calcium 

transients in glomus cells, and stimulates carotid sinus nerve activity through Olfr78. We propose 

that in addition to its role in olfaction, Olfr78 acts as a hypoxia sensor in the breathing circuit by 

sensing lactate produced when oxygen levels decline.
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The carotid body is the major sensor of blood oxygen in mammals. It is stimulated by a 

reduction in arterial blood oxygen from 100 mmHg to <80 mmHg. A current model is that 

hypoxia causes closure of K+ channels of glomus cells, stimulating Ca+2-dependent release 

of neurotransmitters onto afferent nerves that signal to brainstem respiratory centers. 

However, the oxygen sensor and sensing mechanism that trigger these events in glomus 

cells remain controversial2 (Extended Data Fig. 1a–d). To identify new candidate molecules 

involved in carotid body oxygen sensing, we used RNA sequencing and whole genome 

microarrays to compare gene expression of the carotid body from wild-type adult C57BL/6J 

mice to that of the adrenal medulla, which shares developmental and functional similarities 

with the carotid body but does not respond acutely to hypoxia7. We reasoned that an oxygen 

sensor would be expressed at high levels in carotid body relative to adrenal medulla, and 

focused on signaling molecules that can act on the acute time scale of carotid body sensing. 

Transcripts for the olfactory receptor Olfr78 were highly expressed in carotid body (top 4% 

of all genes by RNA sequencing) and highly enriched relative to adrenal medulla by both 

RNA sequencing (92-fold) and microarrays (3 probe sets, 17 to 80-fold) (Fig. 1a, b, 

Extended Data Fig. 2a–d, and Extended Data Table 1).

Olfactory receptors (ORs) comprise a subfamily of G protein-coupled receptors that is the 

largest gene family in vertebrates, encoded by ~1,200 genes in mouse8. ORs are expressed 

in olfactory sensory neurons and detect volatile odorants in smell. However, some ORs are 

expressed in other tissues8–10. The RNA sequencing results showed that three other OR 

genes (Olfr1033, Olfr613, and Olfr856ps1) were expressed (RPKM>2) in the carotid body, 

but at similar levels in adrenal medulla and thus not pursued further (Fig. 1b and Extended 

Data Fig. 2b). Olfr558 was highly and selectively expressed in the carotid body, but at lower 

levels than Olfr78 (Fig. 1a, b). Olfr78 and Olfr558 encode closely related proteins of the 

same OR subfamily and lie in close proximity in the genome (Extended Data Fig. 2e). 

Because of the high and selective expression of Olfr78 and Olfr558 in the carotid body, we 

investigated their expression and potential function.

The carotid body is composed of Type I glomus cells that sense changes in oxygen, Type II 

sustentacular cells that resemble neuroglia, nerve fibers, and endothelial and smooth muscle 

cells that comprise fine tortuous vessels off the carotid artery (Extended Data Fig. 1b). To 

determine which cells express Olfr78, we used an Olfr78 reporter strain carrying GFP and 

taulacZ genes in the 3’-untranslated region (3’-UTR) of the Olfr78 locus11. X-gal staining 

for lacZ activity in adults confirmed strong and selective Olfr78 expression in carotid body 

and no detectable adrenal gland expression (Fig. 1c–f). The cluster-like pattern of X-gal 

staining in carotid body suggested Olfr78 is expressed in glomus cells (Fig. 1d–f). This was 

verified by antibody staining showing co-localization of Olfr78 reporter GFP with tyrosine 

hydroxylase (TH), a glomus cell marker (Fig. 1g, h); 98% of all GFP and TH-positive cells 

expressed both markers (n=3 sections from 3 animals, 222 cells). Unlike the monoallelic 

expression of olfactory receptors observed in olfactory neurons12, we found that in animals 

carrying only one allele of the Olfr78 reporter gene, 98% of all GFP and TH-positive cells 

still expressed both markers (n=3 sections from 3 animals, 271 cells, P=0.461 Tg/+ vs. 

Tg/Tg by unpaired t test) (Extended Data Fig. 3a). Using an Olfr558 lacZ knock-in reporter 

allele, we detected reporter activity in some vascular smooth muscle cells of carotid body 
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blood vessels, but not in glomus cells (Extended Data Fig. 3e–h). Thus we focused on 

Olfr78.

Although Olfr78 and its human ortholog OR51E2 are expressed in other tissues outside the 

olfactory system9,10,13,14, no expression of Olfr78 reporter was detected in other parts of the 

oxygen-sensing circuit for breathing besides carotid body (Extended Data Fig. 1c): carotid 

sinus and glossopharyngeal nerves (Fig. 1i–k), petrosal, nodose/jugular, and superior 

cervical ganglia (Fig. 1i–k and Extended Data Fig. 3b, c), and brainstem (Extended Data 

Fig. 3d). In some carotid bifurcations, there were patches of Olfr78-expressing cells on 

arteries that were innervated by branches of the glossopharyngeal nerve distinct from the 

carotid sinus nerve (Fig. 1j); these may be ectopic “miniglomera” with chemosensory 

functions similar to carotid body15. We conclude that Olfr78 is specifically expressed in 

acute oxygen-sensing cells of the carotid body and not in afferent pathways or the 

respiratory centers themselves.

Because ORs mediate acute sensory signaling in olfaction, we tested whether Olfr78 was 

involved in acute oxygen sensing in the carotid body by examining breathing of Olfr78 

knockout mice16. Homozygous Olfr78−/− mutants were viable and present in Mendelian 

ratios at birth (postnatal day 1 (P1); 15 +/+:35 +/−:19 −/−, χ2=0.4783, P>0.7) and weaning 

(P21; 50 +/+:115 +/−:64 −/−, χ2=1.7162, P>0.3), and they appeared to breathe and behave 

normally under ambient conditions. However, when challenged by hypoxia (10% O2), 

Olfr78+/+ control animals increased respiratory rate and minute ventilation, whereas 

Olfr78 −/− mutants did not exhibit significant ventilatory changes (Fig. 2a, b and Extended 

Data Fig 4a, b). Most strikingly, the respiratory rate of Olfr78 −/− mutants did not change in 

hypoxia, while increasing ~30% in controls (Fig. 2a, b). In hypoxia, arterial blood from 

Olfr78 −/− mutants had higher PaCO2 and lower pH than wild-type animals (Extended Data 

Fig. 5a–f), consistent with their inability to increase ventilation. By contrast, ventilatory 

responses to hypercapnia (5% CO2) remained intact in Olfr78 −/− mutants (Fig. 2c, d and 

Extended Data Fig. 4c, d), as did two other rapid behavioral responses to hypoxia: reduced 

locomotion and more regular breathing (Supplementary Video 1). We also did not detect 

differences between controls and Olfr78−/− mutants in body temperature or metabolism in 

response to hypoxia (Extended Data Fig. 5g–j), parameters that can affect hypoxic 

ventilation in small mammals17. Thus, Olfr78 −/− mutants have a specific defect in hypoxic 

regulation of respiratory rate, a physiological function controlled by the carotid body2.

Previous studies showed that mice with fewer carotid body glomus cells have attenuated 

responses to hypoxia18. We examined developmental expression of Olfr78 in carotid body 

and found it was not expressed embryonically, when transcription factors that regulate 

carotid body development are detected and glomus cells form18. Olfr78 expression was first 

observed after birth before maturation of carotid body oxygen sensing, and persisted 

throughout adult life (Fig. 1l). The number of TH-positive glomus cells and their 

organization into clusters were not affected in Olfr78 −/− mutants (Fig. 3a–c). We also did 

not detect ultrastructural defects: mutant glomus cells still contained the normal large dense 

core vesicles all along the plasma membrane and small clear core vesicles at synapses2 (Fig. 

3d–g). Thus, glomus cells are present in normal numbers and appear structurally intact in 

Olfr78−/− mutants.
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To assess carotid body oxygen sensing, we carried out extracellular recordings of the carotid 

sinus nerve (Extended Data Fig. 1b, c), a standard assay of carotid body neurosensory 

activity. We found that carotid sinus nerves from Olfr78−/− mutants had similar baseline 

discharge frequencies as Olfr78+/+ and Olfr78+/− controls, demonstrating that nerve activity 

is intact in Olfr78−/− mutants. However, in hypoxia (PO2=60–80 mmHg), control nerve 

activity increased substantially whereas Olfr78−/− mutant nerve activity showed little 

response (Fig. 3h and Extended Data Fig. 6a–h). By contrast, carotid sinus nerve activation 

by low pH was intact in Olfr78−/− mutants (Fig. 3i and Extended Data Fig. 6i, j). We 

conclude that Olfr78 mutants have a specific defect in carotid body oxygen sensing.

Previous studies demonstrating the robust response of carotid body and breathing to cyanide 

and other electron transport inhibitors suggest that carotid body oxygen sensing may be 

mediated by a sensor that detects changes in metabolism2 (Extended Data Fig. 1d, e). 

Interestingly, two short-chain fatty acids, acetate and propionate, activate Olfr78 and its 

human ortholog OR51E2 expressed in HEK293T cells, with EC50 values of 1–3 mM14,19. 

However, blood concentrations of acetate and propionate in rodents and humans are only 

0.1–0.3 mM and 4–25 µM, respectively20,21, and change little in hypoxia relative to the 

Olfr78 activation curve22. Thus, we sought a ligand for Olfr78 that is present in blood and 

tissue and effective at physiologically relevant levels.

One appealing candidate that is chemically similar to acetate and propionate but more 

abundant in vivo is lactate, which is found in blood and tissue at low mM concentrations and 

rapidly increases in hypoxia (Extended Data Fig. 1e). Using a heterologous expression 

assay, we found that lactate activated Olfr78 in a dose-dependent manner with an EC50 of 

4.0 mM (Fig. 4a and Extended Data Fig. 7a–g). Chloride ion over the same range of 

concentrations and osmolarity had no effect, whereas propionate and acetate stimulated 

Olfr78 with EC50 values similar to previous findings14 (Extended Data Fig. 7d–g). Because 

lactate concentrations in blood, tissue, and tissue interstitium are 1–5 mM (Extended Data 

Fig. 1e), the observed EC50 value of 4.0 mM for Olfr78 renders it highly sensitive to small 

changes in lactate in the physiological range. Indeed, hypoxia and mitochondrial poisons 

such as cyanide elevate plasma and tissue lactate concentrations rapidly in this range 

(Extended Data Fig. 1e). We observed that arterial blood lactate increased from 3 mM to 6 

mM within 3–5 minutes of hypoxia in both control and Olfr78−/− mutant animals (Fig. 4b 

and Extended Data Fig. 7h). Thus, lactate activates Olfr78 in a physiologically relevant 

range.

Mitochondrial poisons trigger carotid body glomus cell activity23, and acute lactate 

application depolarizes glomus cells, stimulates carotid sinus nerve activity, and induces 

hyperventilation3,4,24,25. To determine if lactate can directly activate glomus cells, we 

carried out functional imaging experiments by expressing the calcium indicator GCaMP3 in 

glomus cells (Extended Data Fig. 8a–e). In both whole carotid bodies and slice preparations, 

we found that lactate induced calcium transients in glomus cells, as did hypoxia or addition 

of cyanide to inhibit mitochondrial electron transport chain and block oxygen consumption 

(Fig. 4c, d and Extended Data Fig. 8f–i). The response to lactate was stronger in slices than 

in intact carotid bodies, perhaps because glomus cells in slices have more direct exposure to 

lactate in the superperfusate (Fig. 4f). We conclude that lactate can acutely activate glomus 
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cells, much like hypoxia and cyanide. Interestingly, in both these experiments and carotid 

sinus nerve recordings (ref25 and see below), carotid body activation by lactate was 

observed in hyperoxia, suggesting that lactate can stimulate carotid body sensory activity in 

the absence of other hypoxic signals.

To determine if carotid body activation by lactate requires Olfr78, we examined the effect of 

lactate on carotid sinus nerve activity in Olfr78−/− mutants. While lactate increased carotid 

sinus nerve activity in preparations from wild-type Olfr78+/+ animals as expected25, there 

was little response to lactate in Olfr78−/− mutant nerves (Fig. 4e and Extended Data Fig. 6i, 

j). Similarly, acetate and propionate, two other Olfr78 ligands that can also stimulate carotid 

sinus nerve activity14,26, had little effect in Olfr78−/− mutants (Extended Data Fig. 6i, j). We 

conclude that carotid body activation by lactate and two other Olfr78 ligands is mediated by 

Olfr78.

Our results support a model in which decreased blood oxygen is sensed by the carotid body 

through an increase in production and secretion of lactate, which binds to Olfr78 on glomus 

cells and induces calcium transients that increase signaling to afferent nerves to stimulate 

breathing (Fig. 4f). In the model, changes in blood oxygen are not detected directly by 

glomus cells, but indirectly through a metabolite (lactate) whose production is regulated by 

oxygen availability. This explains why drugs and mutations that inhibit the mitochondrial 

electron transport chain, preventing oxygen utilization and causing lactate buildup, mimic 

the effect of hypoxia on carotid body activity and breathing, and supports the mitochondrial 

hypothesis of carotid body oxygen sensing (Extended Data Fig. 1d, e). Thus, the Olfr78 

pathway measures a metabolic state that integrates oxygen availability and demand and 

serves as a sentinel that signals, and attempts to stave off, an impending oxygen crisis, 

whereas the HIF-1 pathway senses oxygen directly (through prolyl hydroxylases that use 

oxygen to modify HIF-1 stability) and operates later and more broadly to deal with the 

crisis1.

What is the source of the lactate that activates Olfr78? Lactate is produced by all cells in the 

body when oxygen declines: the blockage of mitochondrial electron transport leads to 

accumulation of upstream metabolites such as pyruvate, which is rapidly converted to lactate 

and then effluxed from cells (Extended Data Fig. 1e). Upon hypoxia exposure, lactate can 

almost double in blood within minutes (Fig. 4b and Extended Data Fig. 7h), and it 

accumulates in blood when inspired oxygen drops to levels that can activate carotid body 

signaling and hyperventilation27. Besides blood, another potential source of lactate is the 

carotid body itself, as tissue lactate levels also increase rapidly in hypoxia, doubling within 

30 seconds in some tissues5,6. Mitochondria of carotid body cells are highly sensitive to 

hypoxia compared to other tissues (Extended Data Fig. 1d), so when blood oxygen levels 

decline, carotid body cells should be among the first to produce lactate, ideal for Olfr78 

sentinel function. Because lactate is transported out of cells with H+, glomus cells would be 

exposed to increases in both extracellular lactate and H+, which could activate acid-sensitive 

channels (ASICs, TASKs) synergistically with Olfr78 to stimulate glomus cells2,28,29. 

Lactate/Olfr78 signaling may act with H+ and perhaps other signals and pathways to 

promote the full carotid body response to hypoxia, explaining the small residual response to 

hypoxia detected in Olfr78−/− mutants (Fig. 3h and Extended Data Fig. 6a–h).
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In addition to the carotid body, Olfr78 is expressed in a number of other oxygen-responsive 

tissues such as heart and lung9,13,14, and it is required for maintaining normal blood 

pressure14. We speculate that lactate and Olfr78 serve as a general signal and sensor of 

hypoxic and altered metabolic states to control physiological responses. Nevertheless, some 

acute responses to hypoxia, such as reduced locomotion, regular breathing, and metabolic 

depression, are independent of Olfr78. It may be valuable to develop synthetic agonists and 

antagonists for Olfr78 for therapeutic control of breathing30 and other responses it controls.

Genomic studies detect ectopic expression of other ORs in addition to Olfr78 and Olfr558, 

and some of these appear to be functional9,10,14. Downstream signaling in the carotid body 

may differ from that in olfaction (Extended Data Table 2), and it will be important to 

elucidate the full Olfr78 signal transduction cascade in the carotid body and its integration 

with other pathways activated by hypoxia and other sensory stimuli. Although olfactory 

receptors were first identified for their role in smell, they may be involved in myriad 

chemosensory pathways detecting endogenous and exogenous ligands throughout the body.

Methods

Animals

All experiments with animals were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Stanford University School of Medicine.

C57/BL6, Stock #027 (Charles River) was used as wild type for microarrays and RNA 

sequencing. Other mouse strains used were:

Olfr78 knock-in reporter: MOL2.3-IGITL, kindly shared by Ron Yu (Stowers 

Institute)11

Olfr78 knock-in mutant/reporter: B6; 129P2-Olfr78tm1Mom/MomJ, Stock #006722 

(JAX)16

Olfr558 mutant/reporter: B6129S5-Olfr558tm1Lex, Stock #TF0586 (Taconic)

Th-Cre driver: B6.FVB(Cg)-Tg(Th-cre)FI172Gsat/Mmucd, Stock #031029-UCD 

(MMRRC)31

Th-Cre driver: Thtm1(cre)Te, kindly shared by Karl Deisseroth (Stanford)32

ROSA-GCaMP3: B6;129S-Gt(ROSA)26Sortm38(CAG-GCaMP3)Hze/J, Stock #014538 

(JAX)33

ROSA-tdTomato: B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, Stock #007905 

(JAX)34

Adult animals were used in all experiments, unless indicated otherwise. To control for sex 

differences, only female animals were used in physiology and behavioral experiments. 

Randomization and blinding were not used, in part because the Olfr78 mutant allele is 

genetically linked to a coat color variant. All data include animals from multiple litters.
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Carotid body and adrenal medulla RNA purification

Adult C57/BL6 animals were anesthetized with isoflurane and decapitated, and carotid 

bifurcations and adrenal glands were dissected immediately and transferred to RNAlater 

solution (Life Technologies) on ice. Carotid bodies and adrenal medullas were finely 

dissected from these tissues. From each animal, 1–2 carotid bodies and 1 adrenal medulla 

were obtained and stored in RNAlater at 4°C for up to 2 days. For each RNA purification, 

18 carotid bodies and 10 adrenal medullas from 10 animals were pooled and processed using 

the RNeasy Micro Kit (Qiagen). Tissue pieces were disrupted in a guanidine-isothiocyanate 

lysis buffer (Buffer RLT, Qiagen) using a glass tissue grinder (Corning), homogenized using 

a 20G needle and syringe, and purified by silica-membrane columns. RNA quality was 

assessed by electrophoresis on a Bioanalyzer using the RNA 6000 Pico Kit (Agilent). The 

average RNA Integrity Numbers (RIN) for carotid body and adrenal medulla samples were 

7.2 and 9.0, respectively.

Microarrays

Total RNA (>30 ng/sample) was processed using the 3’ IVT Express Kit (Affymetrix) to 

make biotinylated amplified RNA (aRNA) by cDNA synthesis and in vitro transcription. 

aRNA was fragmented and hybridized to the GeneChip Mouse Genome 430 2.0 Array 

(Affymetrix) containing 45,000 probe sets targeting >34,000 mouse genes. aRNA synthesis, 

hybridization, and scanning were performed by the Stanford PAN Facility. Analysis of 

microarray data was performed using Expression Console and Transcriptome Analysis 

Console software (Affymetrix).

RNA sequencing

Using the Amino Allyl MessageAmp II aRNA Amplification Kit (Ambion), unlabeled 

aRNA was generated from total RNA (30–50 ng/sample) by an engineered M-MLV reverse 

transcriptase to make cDNA followed by in vitro transcription. aRNA was fragmented by 

RNA Fragmentation Reagents (Ambion), a buffered zinc solution, for 1.5 minutes at 70°C. 

First and second strand cDNA synthesis, end repair, 3’-dA tail addition, and adaptor ligation 

were performed using the standard protocol from Illumina with adaptor oligonucleotides 

from Illumina, First Strand Buffer, SuperScript III reverse transcriptase, and Second Strand 

Buffer from Invitrogen, and RNaseH, DNA polymerase I, T4 DNA polymerase, Klenow 

DNA polymerase, T4 polynucleotide kinase, Klenow fragment (3’-5’ exo-), and T4 DNA 

ligase from New England Biolabs. Modified cDNA libraries were resolved by 

electrophoresis in 2% low-melting agarose (Lonza) gels. For each sample, a region of the 

lane corresponding to ~200 base pairs was excised and purified by the QIAquick Gel 

Extraction Kit (Qiagen) using silica-membrane columns. Modified cDNA libraries were 

further amplified by PCR for 20 cycles using Phusion DNA polymerase (New England 

Biolabs). cDNA concentration and size were determined by electrophoresis using the High 

Sensitivity DNA Kit on the Bioanalyzer (Agilent), and samples were diluted to 4 pM for 

sequencing.

DNA clusters were generated using the Cluster Generation Kit according to manufacturer 

instructions (Illumina). Samples were then sequenced on the Illumina Genome Analyzer II 
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using the 36-Cycle SBS Reagent Kit v2 (Illumina) run for 38 cycles. Each cDNA library 

was run in one lane, and data presented in this study are from two separate runs.

Sequences were aligned to the RefSeq database using Bowtie 0.9.8, allowing up to 4 

mismatches in the first 32 bases for a sequence to be assigned to a specific gene ID. Reads 

that mapped to multiple isoforms of a gene were randomly assigned to one isoform, and 

counts for multiple mRNA isoforms for the same gene were combined for analysis. The 

number of aligned reads per 107 aligned reads was calculated after adding 1 read to every 

gene and sample in order to avoid dividing by 0 when calculating ratios between AM and 

CB frequencies (Fig. 1a and Extended Data Fig. 2a). Reads per kilobase per million 

(RPKM) values were calculated by using the length of the mRNA, or the longest mRNA 

isoform for genes that have multiple isoforms, in RefSeq (Fig. 1b and Extended Data Fig. 

2b).

X-gal staining

Whole mount carotid bifurcations and adrenal glands were harvested, cleaned, and fixed in 

4% paraformaldehyde (PFA)/PBS (pH 7.4) for 10 minutes at room temperature. After 

washing with PBS, tissue was transferred to a solution of X-gal (1 mg/ml), potassium 

ferricyanide (5 mM), potassium ferrocyanide (5 mM), magnesium chloride (2 mM), and 

NP-40 (0.02%) in PBS and incubated overnight at 37°C. Samples were visualized on a Leica 

MZ12 stereomicroscope. Representative data reflect tissue samples from ten Olfr78-GFP-

taulacZTg/Tg (Fig. 1c–f, i-k) and three Olfr558lacZ/lacZ (Extended Data Fig. 3e) animals.

For carotid bifurcation samples shown in section (n=3 animals), tissue was fixed in 4% 

PFA/PBS for 10 minutes at room temperature and equilibrated in 30% sucrose overnight at 

4°C. Tissue was then embedded in optimum cutting temperature compound (O.C.T., 

TissueTek) and stored at −80°C. Sections were cut at 10 µm using a Leica CM3050S 

cryostat. X-gal solution was added onto sections on slides and incubated overnight at 37°C. 

Slides were mounted in Mowiol 4–88 (Polysciences) with 1,4-diazabicyclo[2.2.2]octane 

(DABCO, 25 mg/ml, Sigma-Aldrich) or Permount (45% polymer of α-pinene, β-pinene, 

dipentene, β-phellandrene/55% toluene, Fisher) and visualized on a Zeiss Axiophot 

fluorescence microscope.

For adult brain tissue, two animals were perfused through the heart with PBS followed by 

4% PFA/PBS using a syringe. Whole brains were dissected from the head, and fixed again 

for 30 minutes in 4% PFA/PBS at 4°C. After equilibration in 30% sucrose overnight at 4°C, 

samples were embedded in O.C.T. (TissueTek) and sectioned at 80 µm using a Leica 

CM3050S cryostat. Slides were then incubated with X-gal overnight at room temperature 

and visualized on a Leica MZ12 stereomicroscope.

Immunostaining

Tissue was fixed in 4% PFA/PBS at room temperature for 10 minutes and equilibrated in 

30% sucrose overnight at 4°C. Tissue was embedded in O.C.T. (TissueTek) and stored at 

−80°C. Sections were cut at 10 µm using a Leica CM3050S cryostat and incubated with 

primary antibodies overnight at 4°C. Primary antibodies were rabbit anti-TH (Abcam, 
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ab112), chicken anti-GFP (Abcam, ab13970), rat anti-CD31 (BD Pharmingen, 553370), 

chicken anti-β-galactosidase (Abcam, ab9361), and mouse anti-smooth muscle actin (Sigma, 

A5228) used at 1:500. Mouse anti-smooth muscle actin antibody was directly conjugated to 

Cy5 NHS ester (GE Healthcare), and unbound dye was removed on a P-30 gel exclusion 

column (BioRad)35. Incubation with secondary antibodies was 45 minutes at room 

temperature. Secondary antibodies were conjugated to either Alexa Fluor 488, Alexa Fluor 

555 (Life Technologies), or DyLight 488 (Jackson ImmunoResearch). Staining with 4’,6-

diamidino-2-phenylindole (DAPI; 1 ng/ml, Life Technologies) was performed after 

incubation with secondary antibodies for 5 minutes at room temperature. Sections were 

mounted in Mowiol 4–88 (Polysciences) with DABCO (25 mg/ml, Sigma-Aldrich) and 

visualized on a Zeiss Axiophot fluorescence microscope. Tissue samples from three or more 

animals were stained for representative data shown (Fig. 1g, h, Fig. 3a, b, and Extended 

Data Fig. 3a–c, f–h).

Electron microscopy

Carotid bifurcations were harvested from adult animals and transferred to fixation solution 

(4% PFA and 2% glutaraldehyde in PBS) for 1 hour at room temperature. During fixation, 

excess tissue was trimmed away to retain the carotid body and carotid arteries. Samples 

were post-fixed with osmium tetroxide for 1.75 hours at 4°C, washed three times with cold 

double distilled H2O, and incubated with 1% uranyl acetate overnight at 4°C. On the next 

day, samples were serially dehydrated in ethanol (50%, 70%, 100%, 100%) for 10 minutes 

per step and washed with propylene oxide for 15 minutes, all at room temperature. Samples 

were then transferred to 1:1 propylene oxide: Epon (Electron Microscopy Services) for 1 

hour, 1:2 propylene oxide: Epon for 45 minutes, and 100% Epon, all at room temperature. 

Once samples were embedded in 100% Epon, blocks were baked overnight at 65°C.

To locate the carotid body in the embedded tissue, sections were cut at 2 µm using glass 

knives on a Leica Ultracut S microtome and stained with Toluidine Blue (Sigma-Aldrich) 

for visualization of tissue histology. Once the carotid body was reached, 17 nm sections 

were cut using a diamond blade for transmission electron microscopy. Sections were 

visualized on a JEOL TEM1230 transmission electron microscope equipped with a Gatan 

967 slow-scan, cooled CCD camera. Two sections at different levels in the carotid body 

were examined for each sample. All sectioning and imaging procedures were performed at 

the Stanford Cell Sciences Imaging Facility-Electron Microscopy Core.

Whole body plethysmography

Unrestrained, unanesthetized adult animals were transferred to a whole body 

plethysmograph (450 ml, Model PY4211, Buxco) connected to a MAXII preamplifier unit 

and computer running BioSystem XA software (Buxco). To reach stable baseline 

ventilation, animals were acclimatized to the chamber for more than 30 minutes in control 

gas conditions before exposure to hypoxia or hypercapnia. Three pulses of hypoxia or 

hypercapnia lasting 5 minutes each were performed with 10-minute recovery periods in 

control conditions. Gas mixtures for control, hypoxia, and hypercapnia were 21% O2/79% 

N2, 10% O2/90% N2, and 5% CO2/21% O2/74% N2, respectively (Praxair). Flow rates were 
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1.5 L/min during measurement periods and 11–12 L/min during 1-minute ramp periods 

between gas mixtures.

Ventilatory parameters were collected and calculated by BioSystem XA software (Buxco). 

Tidal volumes were calculated according to Drorbaugh and Fenn36 with manual input of 

environmental conditions, such as room and chamber temperature, humidity, and barometric 

pressure. To enrich for measurements of regular breaths, criteria were set in the software to 

accept a breath if (1) inspiratory time was greater than 0.07 seconds, (2) expiratory time was 

less than 10 seconds, (3) calculated tidal volume was greater than 0.05 ml, and (4) volume 

balance between inspiration and expiration was less than 50%. Under these conditions, 

virtually all breaths were accepted during very regular breathing in hypoxia and 

hypercapnia. Fifteen breaths were averaged for each line of data, and lines of data for each 

period of control or stimulus were averaged, excluding lines that had more than two 

observed events of sniffing, grooming, or movement among the accepted breaths. 

Ventilatory parameters over all periods of control or stimulus were averaged for each animal 

and presented in the figures. Most animals were tested two times within one week with good 

reproducibility, and measurements were averaged. Numbers of animals tested were 

comparable to other published work37–40. While there was no formal randomization, 

different numbers, genotypes, and litters were tested in different orders on multiple days 

over several months. For the animals used in our study, body weight did not correlate with 

respiratory rate, tidal volume, or minute ventilation in wild-type animals, mutant animals, or 

all animals together (correlation coefficients 0.001≤R2≤0.289, 0.996≥P≥0.293).

Blood gas and lactate measurements

For blood testing under anesthesized conditions, animals were transferred to individual 

cages the morning of testing and allowed to acclimate for at least 4 hours. This was designed 

to avoid repeated cage handling and removal of other animals from the same cage, 

procedures that have been shown to increase stress hormones and blood lactate levels in 

rodents41. Animals were quickly anesthesized with 3% isoflurane in 100% O2 in an acrylic 

container and maintained in 1.5–2% isoflurane in 21% O2/79% N2 or 10% O2/90% N2 

(Praxair) at 2 L/min through a nose cone. Body temperature was maintained at 37°C using a 

heating pad with feedback temperature controller (Physitemp Instruments). The right carotid 

artery was surgically isolated and cut, and 200–250 µl of blood was collected using a 

heparinized syringe. An aliquot (~100 µl) of arterial blood was immediately transferred to a 

CG4+ cartridge for measurement of blood gases and lactate using an i-Stat Portable Clinical 

Analyzer (Abbott). Time from beginning of surgery to blood collection was ~3 min, during 

which the hypoxic ventilatory response was still robust under our conditions (data not 

shown). For some animals, arterial blood was also transferred to a test strip for lactate 

analysis using a Lactate Scout analyzer (EKF Diagnostics). We found good correlation 

between lactate measurements of the same blood sample from anesthesized animals using i-

Stat and Lactate Scout analyzers (n=11, R2=0.92, P<0.0001).

For blood lactate measurements in unanesthetized conditions, animals were transferred to 

individual cages at least one day before the first day of testing. Animals in their housing 

cage were moved into a hypoxia control glove box set to 21% O2 or 10% O2 balanced by N2 
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(Coy Laboratory Products). After 1 min in the airlock, the cage was moved into the glove 

box, and the lid was opened for another 3 min. Then the animal was transferred to a tail vein 

restrainer (Braintree Scientific), and the tail artery was punctured with a 27G½ needle. 

Blood was then directly transferred to a test strip for measurement of lactate using a Lactate 

Scout analyzer. The total time of animals in the glove box before blood testing was 4–5 min. 

Due to handling stress increasing blood lactate concentrations41 and causing more variable 

blood lactate measurements in awake conditions, animals were kept in the same room and 

tested on 4 separate days for 2 days each of 21% O2 or 10% O2 exposure. Results for each 

animal and oxygen condition were then averaged. One Olfr78+/+ animal was excluded 

because of excessive handling stress due to long blood collection on 2 days.

Body temperature measurements

Unanesthetized animals were transferred to a tail vein restrainer (Braintree Scientific), and 

body temperature was measured using a rectal temperature probe and animal temperature 

controller (Physitemp Instruments) in room air (21% O2) or in 10% O2 in a hypoxia control 

glove box (Coy Laboratory Products). Data were collected in 21% O2 at 1 hour before 

transfer to the hypoxia control glove box and at 2 and 5 minutes in 10% O2 inside the glove 

box. An airlock was used to transfer the animal into the glove box for a ramp time of 1 

minute from 21% O2 to 10% O2.

Metabolic measurements

Unrestrained, unanesthetized animals were transferred to the same chamber used for 

plethysmography that was sealed to only allow airflow in from the side port and out from a 

bottom port on the opposite side. Metabolic measurements were collected using an Oxymax 

open circuit indirect calorimeter (Columbus Instruments) with an electrochemical oxygen 

sensor modified to measure two ranges around 21% O2 and 10% O2. Flow was set to 0.6 

L/min from gas mixtures of 21% O2/79% N2 and 10% O2/90% N2 (Praxair). Measurements 

were taken every 30 seconds. For 21% O2, animals were allowed to acclimate to the 

chamber for 10 minutes, and data is shown for 10–15 minutes after the start of 

measurements. For 10% O2, animals became calm more quickly, and data is shown for 5–10 

minutes after the start of measurements, a duration we found necessary for the system to 

stabilize to 10% O2 after opening the chamber.

Measurements of oxygen in perfusion

Measurements of oxygen concentrations of the perfusion solution in the recording chamber 

were performed using a Clark style oxygen electrode (Unisense). Because voltage readings 

for the sensor were observed to be highly temperature-dependent, the sensor was calibrated 

at the temperature of the relevant protocol, which was 33–34°C for electrophysiology and 

room temperature for calcium imaging.

Carotid sinus nerve recordings

Animals were terminally anesthetized with isoflurane, perfused through the heart with ice-

cold artificial cerebrospinal fluid (ACSF, pH 7.4) composed of 119 mM NaCl, 5 mM KCl, 

2.5 mM CaCl2, 1.3 mM MgSO4, 1 mM NaH2PO4, 26.2 mM NaHCO3, and 11 mM glucose 
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previously bubbled with 95% O2/5% CO2 (Praxair), and decapitated. Both carotid 

bifurcations were then dissected in ice-cold ACSF and transferred to a recording chamber (3 

ml), where they were superperfused with ACSF continuously bubbled with 95% O2/5% CO2 

(Praxair) at a flow rate of 13.3 ml/min by gravity and maintained at 33–34°C. The carotid 

sinus nerve was carefully exposed and cut near the point where it branches from the 

glossopharyngeal nerve. The cut end was pulled into a tightly fitting glass suction 

micropipette38,40, and voltage was recorded relative to a reference in the bath using an 

Axoclamp 2A electrometer (Molecular Devices) in Bridge mode. The voltage signal was 

amplified 1000X (10X on the Axoclamp and 100X on a Brownlee Precision Model 440 

instrumentation amplifier), filtered (0.2–3 kHz), and digitized at 10 kHz on a National 

Instruments MIO15E-2 analog-to-digital converter. Data were stored and displayed using in 

house software written in LabView (National Instruments).

If spikes were not observed at baseline for the first carotid sinus nerve, the second carotid 

bifurcation was dissected and recorded. One-second sweeps were acquired continuously 

through the entire time course, and only one carotid sinus nerve recording per animal was 

included in the data presented. Hypoxia stimulus was delivered by changing the gas 

bubbling the ACSF to 95% N2/5% CO2 (Praxair) for 8 min. Under these conditions, PO2 

levels in the recording chamber started at 625 mmHg and decreased to a low of 60 mmHg 

by 9 min after the start of bubbling with 95% N2/5% CO2 (Fig. 3h). Solutions of lactate, 

acetate, and propionate (30 mM, pH 7.4) were made by equimolar substitution of NaCl in 

ACSF with sodium salts of L-lactate, acetate, and propionate, respectively. Low pH solution 

(pH 7.0) was made by lowering the NaHCO3 in ACSF from 26.2 mM to 11.9 mM with an 

equimolar increase in NaCl38. These solutions were continuously bubbled with 95% O2/5% 

CO2 (Praxair) at the reservoir, maintaining the oxygen concentration of the solution in the 

chamber at PO2=625 mmHg. All preparations were stimulated with bolus injections of 25–

50 µl sodium cyanide (20 mM) at the end of the experiment to confirm that the nerve was 

active.

Recordings were analyzed offline using Spike2 software (Cambridge Electronic Design). To 

measure action potential frequency, we analyzed a one-second period of data every minute. 

A single threshold was used for spike determination and set empirically for each time course 

by moving the threshold through a range of values until the spike count stabilized through 

several intervals of 0.001 mV and then dropped off for data at time=0 and 9 min (hypoxia) 

or all time points scored (acetate, propionate, lactate, and low pH). The lowest threshold 

value in the stable range was applied to all sweeps of a stimulus analyzed for each recording. 

Because we noticed that spikes close together or with low amplitudes were often missed by 

the software, we also manually counted spikes for the same sweeps analyzed by software. 

Two recordings were excluded due to low signal to noise precluding accurate analysis. In 

two experiments, we also applied 7.5 µM tetrodotoxin (TTX) to block voltage-gated sodium 

ion channels during hypoxia exposure as an additional confirmation that events being scored 

were action potentials (Extended Data ig. 6c, d).
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pCI-Rho-Olfr78 plasmid construction and expression

The pCI-Rho-Olfr78 plasmid was made by PCR amplifying the Olfr78 coding region from a 

pCMV6-Olfr78 plasmid (OriGene) using forward primer 5’-

ATTGCCGAATTCATGAGTTCCTGCAACTTCACC-3’ and reverse primer 5’-

ATTGCCGCGGCCGCTCACGTGTTTCCCCCAGCTTCAA-3’, adding EcoRI and NotI 

restriction sites. The Olfr78 PCR fragment was then digested with EcoRI and NotI and 

cloned into a pCI-Rho backbone cut from a pCI-Rho-Olfr62 plasmid (gift of Hiroaki 

Matsunami, Duke University). Cell-surface expression of Rho-epitope-tagged Olfr78 protein 

in HEK293T cells was confirmed by immunostaining as described42. Cytoplasmic GFP (co-

transfection marker) was expressed from a TBC1D25::eGFP plasmid (gift of Suzanne 

Pfeffer, Stanford University).

Luciferase assay

HEK293T cells were grown and seeded into 96 well plates as described42. On the next day, 

cells were transfected with RTP1S, Gα15-olf (gifts of Hiroaki Matsunami, Duke University), 

pCMV6-Ric8b (Origene), pCRE-Luc (Agilent), and pSV40-RL (Promega) plasmids and 

either pCI-Rho-Olfr78 or pCI (Promega). The Rho tag on Olfr78 and RTP1S were used to 

enhance localization of Olfr78 to the plasma membrane. Gα15-olf and Ric8b were included 

as downstream effectors that couple to ORs to increase cAMP production upon OR 

activation. Two transcriptional luciferase reporters, one constitutive (Renilla, pSV40-RL) 

and one inducible by cAMP (firefly, pCRE-Luc) were transfected to report increased cAMP 

levels upon OR activation42.

Five hours after transfection, media was decanted and replaced with 50 µL/well MEM 

without phenol red (Life Technologies). After thirty minutes, 25 µL of chemicals were 

added to each well to achieve the indicated final concentrations, and cells were incubated for 

2 hours. Sodium salts of chloride, L-lactate, propionate, and acetate (Sigma) were used. The 

duration of transfection and stimulation was shortened because we observed that transfection 

of cells with pCI-Rho-Olfr78 overnight caused a large increase in firefly luciferase activity 

in the absence of added chemicals (data not shown), suggesting that lactate or some other 

molecule released from cells and/or a component of the transfection mixture could stimulate 

Olfr78 activity.

Reagents to detect firefly and Renilla luciferase activity (Dual-Glo Luciferase Assay 

System, Promega) were added at 20 µl/well42. Luminescence was measured using an Infinite 

M1000 (Tecan) microplate reader and data acquired by Magellan Data Analysis Software 

(Tecan). Two readings were collected for each plate and luciferase reagent, and firefly to 

Renilla ratios were averaged. Data was from experiments conducted over three days. For 

dose response curves in Fig. 4a and Extended Data Fig. 7d–f, ratios were normalized to the 

highest and lowest average values for a given condition across all plates on each day.

The HEK293T cell line (gift of Suzanne Pfeffer, Stanford University) was not authenticated 

or tested for mycoplasma contamination.
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Calcium imaging

Th-Cre; ROSA-GCaMP3 animals expressing GCaMP3 in glomus cells were generated using 

two Th-Cre drivers31–33. Both Th-Cre lines drove expression in glomus cells, as confirmed 

by Th-Cre; ROSA-tdTomato animals34, but the BAC-transgenic Th-Cre driver (MMRRC) 

required two copies of ROSA-GCaMP3 reporter for robust expression31. For whole mount 

preparations, carotid bifurcations were dissected from transgenic animals and transferred to 

0.5% glucose/PBS bubbling 100% O2 on ice. Surrounding tissue was removed to expose the 

carotid body attached to the carotid artery. The carotid body was incubated in a 

physiological buffer (115 mM NaCl, 5 mM KCl, 24 mM NaHCO3, 1 mM MgCl2, 2 mM 

CaCl2, 11 mM glucose43) at 37°C in a tissue culture incubator with 5% CO2 before transfer 

to the recording chamber for imaging.

For tissue slices, carotid bifurcations were dissected and transferred to a modified Tyrode’s 

solution (148 mM NaCl, 2 mM KCl, 3 mM MgCl2, 10 mM HEPES, 10 mM glucose), pH 

7.4 on ice44. Carotid bodies were then isolated and embedded in 3% low melt agarose 

(Lonza) in a sample holder (Precisionary Instruments). Tissue slices were cut at 100 µm 

using a Compresstome VF-200 (Precisionary Instruments). Samples were then transferred to 

culture medium composed of DMEM with 10% FBS, 1% penicillin/streptomycin, and 

insulin-transferrin-selenium (Life Technologies) and incubated in a tissue culture incubator 

at 37°C with 5% CO2 for at least 24 hours before calcium imaging according to established 

protocols44.

At baseline, the carotid body was superperfused with physiological buffer bubbling 95% 

O2/5% CO2 at 3.75 ml/min using a Reglo analog tubing pump (Ismatec), maintaining the 

oxygen concentration of the solution in the chamber at PO2=600 mmHg. Hypoxia was 

generated by bubbling physiological buffer with 95% N2/5% CO2. Lactate solution (30 mM) 

was made by equimolar substitution of NaCl with sodium L-lactate. Lactate and cyanide 

solutions were bubbled with 95% O2/5% CO2. To switch between stimuli, the flow rate was 

increased to 7.5 ml/min for 2 minutes.

The carotid body was imaged on a Prairie Ultima XY two-photon rig built around an 

Olympus BX-61W upright microscope at the Stanford Neuroscience Microscopy Service. 

Using a water immersion 60X objective, Z-stacks at 2 µm steps were collected at 1024 × 

1024 pixels resolution for 70–100 µm of tissue. Two stacks were collected for hypoxia and 

lactate stimuli and intervening buffer recovery periods for whole mount samples. Images 

were analyzed using ImageJ. Regions of interest corresponding to individual glomus cells 

were defined by the images with the strongest fluorescence. Average fluorescence intensities 

were calculated for each region of interest, and values were averaged for stimulus and buffer 

periods with more than one stack. Cells that had very high levels of fluorescence at the start 

of the experiment were excluded from our analysis of data from whole mount samples43 

because these cells showed dramatic declines in baseline fluorescence after hypoxia and 

lactate stimulation (data not shown). Data presented are from 2 samples from 2 different 

animals performed on separate days.
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Data analysis and statistics

Data analysis and statistical tests were performed using Microsoft Excel and GraphPad 

software. GraphPad Prism 6 was used to fit dose-response curves using a variable slope 

model and to calculate EC50 values. All data are biological replicates, and quantitative data 

with error bars are presented as mean ± standard error of the mean (s.e.m.) with the 

exception of Extended Data Fig. 7c, which is presented as percent ± standard error of 

percentage. Groups compared by parametric tests fit the assumption for normal distribution 

as determined by the Shapiro-Wilk test with the critical W value set at 5% significance 

level. All t tests shown are two-sided, and variances of sample groups compared were 

similar. No statistical method was used to predetermine sample size.
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Extended Data

Extended Data Figure 1. Model of oxygen sensing by the carotid body and the mitochondrion
a, Anatomy and blood supply of the carotid body (CB). CB is located bilaterally at 

bifurcation of carotid artery (CA) in the neck. Its location can be variable as well as the 

source of its blood supply, which can come from branches of nearby internal and external 

carotid, occipital, pharyngeal arteries. Blood flows through fenestrated capillaries close to 

clusters of Type I glomus cells and drains from CB into jugular vein (JV) on ventral side2. 
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Panel adapted from ref45. b, Cellular organization of CB. CB is composed of several cell 

types, including Type I glomus cells (red) that sense changes in blood oxygen and are 

organized in clusters, Type II sustentacular cells (blue) that resemble neuroglia and surround 

glomus cell clusters, carotid sinus nerve (CSN) fibers that innervate glomus cells, and 

endothelial (E) and smooth muscle cells (not shown) that form the tortuous vasculature2. 

Panel adapted from ref45. c, Oxygen-sensing respiratory circuit. The primary chemoreceptor 

for blood oxygen is the carotid body. A decrease in PaO2 of arterial blood from normoxia 

(100 mmHg) to hypoxia (<80 mmHg) stimulates glomus cells to signal the carotid sinus 

nerve, a branch of glossopharyngeal nerve (GN) with cell bodies in petrosal ganglion (PG). 

Axons of the GN terminate in nucleus tractus solitarius (NTS) in brainstem, a site of many 

converging afferent inputs2. The signal from NTS is transmitted to ventral respiratory group 

(VRG) that includes preBötzinger complex, a region essential for respiratory rhythm 

generation. From VRG, neurons project to premotor and motor neurons that innervate 

respiratory muscles, such as diaphragm and intercostal muscles46. In addition to carotid 

body, vagus nerve afferents can also contribute to respiratory behaviors under specialized 

conditions39. The vagus nerve innervates heart and lung and oxygen-sensitive cells of aortic 

body70. Panel adapted from ref46. d, A current model of acute oxygen sensing by carotid 

body. A decrease in PaO2 in blood causes a decrease in O2 concentration inside carotid body 

glomus cells. This causes a decrease in activity of mitochondrial electron transport chain 

(ETC)47 and changes in other putative oxygen-sensing pathways, such as oxygen-sensitive 

K+ channels48,49, heme oxygenase50, AMP kinase51, and hydrogen sulfide signaling37. 

These changes are hypothesized to converge on oxygen-sensitive K+ channels, which close 

in hypoxia and depolarize the plasma membrane. Depolarization then opens voltage-gated 

Ca+2 channels, leading to an increase in intracellular calcium that stimulates transmitter 

release to carotid sinus nerve to increase breathing2. Mitochondria of carotid body cells are 

highly sensitive to hypoxia compared to other tissues, as assayed by imaging of 

mitochondrial membrane potential, NADH levels, and spectral properties23,52–54. Drugs and 

mutations that inhibit the ETC mimic the effect of hypoxia on carotid body activity and 

breathing23,55–59. e, Regulation of lactate production by oxygen. In normoxia, pyruvate 

produced by glycolysis is transported into mitochondria and efficiently used in Krebs cycle 

to supply electrons to ETC to produce ATP. In hypoxia, lack of oxygen to act as the final 

electron acceptor limits electron transport, causing pyruvate to build up and become 

converted to lactate5,6,27. The ETC poison cyanide inhibits the heme a3 subunit of 

cytochrome c oxidase to prevent transfer of electrons to oxygen, leading to lactate 

accumulation even in presence of adequate oxygen60. Cytosolic lactate accumulation results 

in transport of lactic acid (lactate and H+) out of the cell by monocarboxylate 

transporters6,61. In normoxia, lactate concentrations in blood, tissue, and tissue interstitium 

are 1–5 mM62,63.
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Extended Data Figure 2. RNA sequencing and whole genome microarrays detect Olfr78 
transcripts enriched in the carotid body
a, Histogram of frequency of genes for different levels of expression enrichment in carotid 

body (CB) relative to adrenal medulla (AM) by RNA sequencing. Log2(CB/AM) values are 

shown, with data binned for every log2 interval of 1.0 centered at integers. b, Plot of log2 

values of reads per kilobase per million (RPKM) in CB and AM of all 1,126 olfactory 

receptor (OR) genes annotated in RefSeq shown in alphanumerical order. The five OR genes 

expressed at RPKM > 2 (dashed line) are indicated. Samples that had no transcripts are 

plotted at a value of −7.1, just below the smallest RPKM value for ORs. Data presented in 

Supplementary Table 1. c, Comparison of expression levels of >34,000 genes in adult mouse 
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CB and AM by whole genome microarrays. Plot shows log2 of the ratio for CB relative to 

AM of the fluorescence intensity values for the 45,000 probe sets. The three probe sets for 

Olfr78 transcripts are indicated (circles). Expression of Olfr78 was significantly different 

between CB and AM for all three probe sets (P<0.05 by ANOVA with false discovery rate 

control). d, Histogram of the frequency of genes for different levels of expression 

enrichment in CB relative to AM in microarray data. Log2(CB/AM) values are shown, with 

data binned for every log2 interval of 1.0 centered at integers. The three probe sets detecting 

Olfr78 mRNA (arrows) confirmed the RNA-seq data (a, Fig. 1a, b, and Extended Data 

Table 1) showing Olfr78 among the mRNAs most highly enriched in carotid body. Mouse 

CB Olfr78 expression is consistent with previous microarray data7,64. a-d, n=3 cohorts of 10 

animals each. Data as mean. e, Genomic locus showing the large cluster of ~160 Class I OR 

genes on chromosome 7, with region encoding MOR18 subfamily (Olfr78, Olfr558, and 

Olfr557) expanded below. We did not detect transcripts in either tissue for Olfr557, which 

lies adjacent to Olfr558 in the cluster, or for the intervening (Olfr33, Olfr559) and intronic 

(Olfr560) ORs. Clusters of genes encoding globins, Trims, and USP proteins are also found 

with this OR cluster. Large box, coding sequence; arrowhead, coding orientation; small box, 

non-coding exons.
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Extended Data Figure 3. Olfr78 and Olfr558 expression in tissues in the oxygen-sensing circuit
Expression of Olfr78 reporter in heterozygous (a) and homozygous (b-d) Olfr78-GFP-

taulacZ reporter animals11. a-c, Sections of carotid bifurcations stained for GFP (Olfr78 

reporter; green), tyrosine hydroxylase (TH; red), and DAPI (nuclei; blue). a, Section of CB 

showing co-expression of reporter GFP and TH in glomus cells. Monoallelic expression 

would predict that only half of TH-positive cells express the reporter12. Arrowheads, 

clusters of glomus cells expressing both GFP and TH. b, c, Sections of the same carotid 

bifurcation. Panels on right show close-ups of boxed region (petrosal ganglion, PG). No 

GFP-positive cells were found in petrosal ganglion. TH-positive nerve fibers (arrowheads) 

and cell bodies were found in glossopharyngeal nerve (GN) and petrosal ganglion. Dashed 

circle indicates vagus nerve (VN). NG/JG, nodose/jugular ganglia. d, X-gal staining of a 

brain sagittal section. Reporter expression (blue) was restricted to olfactory bulb 

(arrowhead) in this section and complete brain serial sagittal sections. Anterior, right; dorsal, 

up. e-h, Olfr558 expression in a knockout/reporter mouse in which the Olfr558 coding 

region is replaced with lacZ encoding β-galactosidase. e, Olfr558 reporter expression in 

blood vessels of CB and SCG by X-gal staining. Heterozygous Olfr558+/lacZ samples 

showed the same pattern of staining (data not shown). f-h, CB sections immunostained for 

Chang et al. Page 20

Nature. Author manuscript; available in PMC 2016 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



β-galactosidase (Olfr558 reporter; green), TH (red), with DAPI counterstain (blue) in f, and 

for β-galactosidase (green) and CD31 (red) in g or smooth muscle actin (red) in h. Scale 

bars, 100 µm (a, b-right, c-right, f-h), 200 µm (b-left, c-left), 500 µm (e), and 2 mm (d).

Extended Data Figure 4. Tidal volume and minute ventilation of Olfr78−/− mutants exposed to 
hypoxia and hypercapnia
Whole body plethysmography of unrestrained, unanesthetized Olfr78+/+ control and 

Olfr78−/− mutant littermates (as in Fig. 2). a, b, Tidal volume (TV) and minute ventilation 

(MV) of animals exposed to hypoxia. n=9 (+/+), 8 (−/−) animals. c, d, TV and MV of 
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animals exposed to hypercapnia. n=4 (+/+), 5 (−/−) animals. Data as mean ± s.e.m. 

*P<0.05, ***P<0.001 by paired t test.

Extended Data Figure 5. Physiological responses of Olfr78−/− mutants to hypoxia in vivo
a-f, Arterial blood gas measurements of Olfr78−/− control and Olfr78−/− mutant animals 

exposed to hypoxia. PaO2 (a), PaCO2 (b), and pH (c) values of blood collected from the 

right carotid artery of anesthetized Olfr78+/+ control and Olfr78−/− mutant animals exposed 

to normoxia (21% O2) and hypoxia (10% O2) for 3 min. Oxygen saturation (sO2,d), 
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[HCO3
−] (e), and base excess of extracellular fluid (BEecf,f) calculated from PaO2 (a), 

PaCO2 (b), and pH (c) values. n=4 (+/+, 21% O2), 5 (−/−, 21% O2), 4 (+/+, 10% O2), 6 (−/

−, 10% O2) animals. g, Body temperature of unanesthetized Olfr78+/+ control and Olfr78−/− 

mutant littermates in room air (21% O2) and exposed to hypoxia (10% O2) for indicated 

times. n=4 (+/+), 6 (−/−) animals. h-j, Metabolic values measured by indirect calorimetry of 

unanesthetized Olfr78+/+ control and Olfr78−/− mutant littermates exposed to normoxia 

(21% O2) and hypoxia (10% O2) for 10 min. n=4 (+/+), 6 (−/−) animals. Data as mean ± 

s.e.m. *P<0.05 by unpaired t test.
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Extended Data Figure 6. Carotid body chemosensory responses assayed by carotid sinus nerve 
activity
a, b, Raw discharge frequency (extracellular recording) of carotid sinus nerves from 

Olfr78+/+ control and Olfr78−/− mutant animals at time 0 (a) and 9 minutes (b) after the 

change in gas bubbling the perfusion buffer from 95% O2/5% CO2 to 95% N2/5% CO2. c, d, 

Carotid sinus nerve activity of an Olfr78+/− nerve 9 minutes after the change in gas to 95% 

N2/5% CO2 (c) and 2 minutes later after addition of 7.5 µM tetrodotoxin (TTX) while still 

bubbling 95% N2/5% CO2 (d). Scored action potentials are marked by filled circles. e-h, 
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Time course of carotid sinus nerve activity in the Olfr78 genotypes indicated scored using 

Spike2 software (e, g) or by hand (f, h) and showing mean ± s.e.m (e, f) or individual (g, h) 

values. The residual responses of Olfr78−/− nerves to hypoxia were more apparent when 

scored by hand. n=6 (3 +/+, 3 +/−), 5 (−/−) animals. *P<0.05, **P<0.01, ***P<0.001 by 

unpaired t test. Olfr78+/+ and Olfr78+/− recordings were not significantly different from 

each other at any time point, except for time=11 min, by unpaired t test (P>0.05). i, j, Time 

course of raw discharge of carotid sinus nerves from Olfr78+/+ control and Olfr78−/− 

mutant animals in response to acetate (30 mM, 5 min), propionate (30 mM, 5 min), and 

lactate (30 mM, 5 and 10 min), and pH 7.0 (5 min) scored using Spike2 software (i) or by 

hand (j). Recovery times were 15 min between acetate, propionate, and lactate, and at least 

30 min between lactate and pH 7.0. To minimize the contribution of endogenous hypoxic 

signals, the superperfusion buffer in the chamber was maintained at hyperoxic conditions 

(PO2=625 mmHg). n=5 (+/+), 5 (−/−) animals. Data as mean ± s.e.m. *P<0.05, **P<0.01 

by unpaired t test.

Extended Data Figure 7. Lactate activates Olfr78 expressed in HEK293T cells and increases 
acutely in blood in hypoxia in vivo
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a, b, HEK293T cells transfected with empty vector pCI (a) or pCI-Rho-Olfr78 (b) and 

RTP1S (OR transport protein) and cytoplasmic GFP (co-transfection marker) plasmids. 

Transfected cells were stained before fixation to detect Rho-tagged Olfr78 (anti-Rho; red) 

on the cell surface. GFP (transfection marker, green); DAPI (nuclei, blue). Bar, 100 µm. c, 

Quantitation of cells expressing GFP and Rho as percentage of DAPI-positive cells in fields 

shown in a and b. n=164 (pCI), 108 (pCI-Rho-Olfr78) cells. Data as percent ± standard error 

of percentage. d, Dose-response curves for propionate, acetate, and chloride compared to 

lactate in activation of Olfr78 in transfected HEK293T cells as in Fig. 4a. n=8 (propionate), 

12 (acetate), 4 (chloride), and 12 (lactate) wells. Data as mean ± s.e.m. By analysis of 

variance (ANOVA), all chemicals except chloride (P=0.309) showed significant difference 

(P<0.001). e, Dose-response curves as in c except cells were transfected with empty vector 

(pCI). ANOVA showed no significant difference (P>0.05) for any chemical. f, EC50, 95% 

confidence interval of EC50, and relative maximal activation values from fitted curves in c. 

ND, not determined due to lack of curve fitting to data. g, Structures of the short-chain fatty 

acids. h, Lactate concentrations in blood collected from tail artery of restrained, 

unanesthetized Olfr78+/+ control and Olfr78−/− mutant littermates exposed to hypoxia (10% 

O2) for 4–5 min. Values for animals in normoxia (21% O2) are likely to be an overestimate 

of baseline concentrations due to greater restraint required to immobilize animals in 

normoxia41. n=5 (+/+), 6 (−/−) animals. Data as mean ± s.e.m. *P<0.05 by paired t test.
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Extended Data Figure 8. Calcium imaging of responses of carotid body glomus cells to 
chemosensory stimuli
a, Carotid body (CB) of a Th-Cre; ROSA-tdTomato adult immunostained for the Cre-

dependent reporter tdTomato (red) and TH (green) to show glomus cells31,32,34 and 

counterstained with DAPI (nuclei, blue). tdTomato labeled glomus cells. b-e, Tissue 

preparations for calcium imaging of CBs from TH-Cre; ROSA-GCaMP3 animals that 

express the calcium indicator GCaMP3 selectively in glomus cells31–33. b, DIC image of 

whole mount carotid bifurcation with GCaMP3 fluorescence pseudocolored green. c, High 
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magnification, two-photon image of boxed region in b. d, DIC image of CB tissue slice with 

GCaMP3 fluorescence pseudocolored green. e, Two-photon image of CB slice in d. Inset 

shows glomus cell marked by asterisk at higher magnification. GCaMP3 fluorescence was 

seen in cytoplasm and excluded from nucleus of glomus cells. Bars, 100 µm (a), 200 µm (b), 

50 µm (c-e). f-i Time course of calcium responses of individual glomus cells to hypoxia, 

lactate, and cyanide. Whole mount CBs were exposed sequentially to hypoxia (40–50 

mmHg), lactate (30 mM), and cyanide (2 mM). Interval between data points is ~2 minutes, 

the time required to acquire a stack of images through the CB, excluding the 2 minute ramp 

times between stimuli. All glomus cells analyzed (n=42 cells) responded strongly to 

cyanide. Fluorescence traces shown are the 29 individual glomus cells that responded to 

both hypoxia and lactate, arranged in order of decreasing initial fluorescence intensity. The 

other 13 glomus cells responded to either hypoxia (9 cells) or lactate (4 cells). Multiple data 

points for buffer or stimuli were averaged to generate the data presented in Fig. 4c. 

Background colors match bar colors in Fig. 4d.
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Extended Data Table 2

Expression of genes associated with olfactory neurons.

Gene Name Function RPKM

CB* AM* CB/AM

Olfr78 olfactory receptor 101 1.1 92 †

Olfr558 olfactory receptor 13 0.13 102 ‡

Gnal G protein, alpha subunit 11 3.9 2.8 †

Adcy3 adenylate cyclase 3.2 5.2 0.61 †

Cnga2 cyclic nucleotide-gated channel 0.060 0.10 0.61

Cnga4 cyclic nucleotide-gated channel 0.075 0.053 1.4

Cngb1 cyclic nucleotide-gated channel 0.23 0.23 1.0

Ano2 calcium-activated chloride channel 0.75 0.11 6.8 †

Ric8b guanine nucleotide exchange factor 8.6 8.8 1.0

Rtp1 olfactory receptor trafficking 0.082 0.11 0.77

Rtp2 olfactory receptor trafficking 0.048 0.047 1.0

Reep1 olfactory receptor trafficking 6.2 4.3 1.4

Omp mature olfactory neuron marker 4.0 3.5 1.1

*
Carotid body (CB) and adrenal medulla (AM) values are reads per kilobase per million (RPKM) normalized to longest 

mRNA isoform for each gene.
†
P<0.05 and

‡
P<0.01 between CB and AM by paired t test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Olfr78 is expressed in carotid body glomus cells
a, Expression of 26,728 genes in adult mouse carotid body (CB) and adrenal medulla (AM) 

by RNA sequencing. Log2 values of number of aligned reads per 107 aligned reads 

generated. b, OR genes highly expressed in CB and/or AM. X, fold enrichment (CB/AM). a, 
b, n=3 cohorts of 10 animals each. Data as mean (a) or mean ± standard error of the mean 

(s.e.m., b). *P<0.05, **P<0.01 by paired t test by cohort. c-l, Expression of Olfr78 knock-in 

reporter mouse11. c-f, X-gal staining (blue) detects taulacZ (β-galactosidase) reporter 

activity. c, Adrenal gland showing adrenal medulla (AM). Reporter not expressed. d, 

Carotid bifurcation (dorsal view, superior cervical ganglion (SCG) removed). Reporter 

expressed in CB (dashed circle) and sporadic blood vessels (arrowhead). e, f, Transverse 

section of carotid bifurcation (e) and close-up (f). g, h, Immunostaining of CB sections. 

Olfr78 reporter expression (GFP; green) co-localized with CB glomus cell marker (tyrosine 

hydroxylase, TH; red; g) but not endothelial cell marker (CD31; red; h). TH is also 

expressed in nerve fibers and SCG. DAPI (blue), nuclei. i-k, X-gal stained carotid 

bifurcations (ventral view). i, CB (dashed circle) innervated by carotid sinus nerve (filled 

arrowhead), a branch of glossopharyngeal nerve (open arrowhead). j, “Miniglomerulus” 

(MG; dashed circle) innervated by glossopharyngeal nerve (arrowhead). k, Petrosal ganglion 

(arrow), nodose/jugular ganglia (arrowhead). Reporter not expressed. l, Olfr78 reporter 

expression (X-gal staining) during CB development. Filled circles, robust expression; open 

circles, not detected. Bars, 500 µm (c-e, i-k) and 100 µm (f-h).

Chang et al. Page 36

Nature. Author manuscript; available in PMC 2016 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Ventilatory responses of Olfr78 null mutants to hypoxia and hypercapnia
Respiratory rate (RR), tidal volume (TV), and minute ventilation (MV=RR*TV) by whole 

body plethysmography of unrestrained, unanesthetized Olfr78+/+ and Olfr78−/− littermates 

exposed to hypoxia (a, b) or hypercapnia (c, d). a, b, Respiratory rate in hypoxia (a) and 

hypoxic response (b) as percent change in hypoxia (10% O2) versus control (21% O2). n=9 

(+/+), 8 (−/−) animals. c, d, Respiratory rate in hypercapnia (c) and hypercapnic response 

(d) as percent change in hypercapnia (5% CO2) versus control (0% CO2). n=4 (+/+), 5 (−/−) 

animals. Data as mean ± s.e.m. *P<0.05, **P<0.01, ***P<0.001 by paired t test (a, c) or 

unpaired t test (b, d).
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Figure 3. Olfr78 mediates carotid body oxygen sensing
a, b, CB sections from Olfr78+/+ control (a) and Olfr78−/− knockout allele (b) in which 

GFP-IRES-taulacZ replaces Olfr78 coding region16. GFP (green), tyrosine hydroxylase 

(TH; red), and DAPI (blue). Mutant CB shows normal organization. c, Quantification of CB 

TH-positive cells. n=8 (+/+), 14 (−/−) CBs. Data as mean ± s.e.m. P=0.454 by unpaired t 

test. d-g, Transmission electron micrographs of Olfr78+/+ (d, e) and Olfr78−/− (f, g) CBs. 

e,g, close-ups of boxed regions. Both wild type and mutant glomus cells have large nuclei 

(asterisks), large dense core vesicles (open arrowheads), and small clear core vesicles (filled 

arrowheads). Bars, 100 µm (a, b), 600 nm (d, f), and 200 nm (e, g). h, i, CB responses to 

hypoxia (h) and low pH (i) assayed by carotid sinus nerve discharge frequency (impulses/
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sec) of Olfr78+/+ and Olfr78+/− controls (blue) and Olfr78−/− mutants (red). h, Hypoxia 

response as superperfusate changed from bubbling 95% O2/5% CO2 to 95% N2/5% CO2 

(t=0 min) and back to 95% O2/5% CO2 (t=8 min, arrow). Gray line, representative time 

course of PO2 in recording chamber. Discharge frequency of control nerves began 

increasing at PO2=80 mmHg (t=6 min) and peaked at PO2=60 mmHg (t=9 min). n=6 (3 

+/+, 3 +/−), 5 (−/−) animals. i, Shift from pH 7.4 to pH 7.0. n=5 (+/+), 5 (−/−) animals. 

Data as mean ± s.e.m. *P<0.05, **P<0.01, ***P<0.001 by unpaired t test.
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Figure 4. Lactate activates Olfr78 and carotid body sensory activity
a, Lactate activation of Olfr78 expressed in HEK293T cells detected by dual reporter assay 

(see Methods). Cells transfected with pCI (empty vector, gray) or pCI-Rho-Olfr78 (epitope-

tagged Olfr78, black). n=12 (4 transfected wells per plate on 3 plates performed on separate 

days). ANOVA for pCI data, P=0.478. b, Arterial blood lactate of anesthetized Olfr78+/+ 

and Olfr78−/− littermates exposed to hypoxia for 3 min. n=4 (+/+, 21% O2), 4 (+/+, 10% 

O2), 4 (−/−, 21% O2), 6 (−/−, 10% O2) animals. c, d, Calcium response of GCaMP3-

expressing glomus cells exposed to hypoxia (PO2=40–50 mmHg), lactate (30 mM), and 
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cyanide (2 mM), in whole mount and slice. c, Time course of stimuli. Every data point 

differs from previous point (P<0.001 by paired t test). d, GCaMP3 fluorescence change (F1-

F0)/F0 in percent. n=42 (whole mount, all stimuli), 29 (slice, hypoxia and cyanide), 22 (slice, 

lactate) cells. All changes differ from pre-stimulus (P<0.001 by paired t test). e, Olfr78+/+ 

and Olfr78−/− CB response to 30 mM lactate for 10 min, assayed by carotid sinus nerve 

activity. n=5 (+/+), 5 (−/−) animals. a-e, Data as mean ± s.e.m. *P<0.05, **P<0.01 by 

unpaired t test. f, Model of oxygen sensing by Olfr78. In normoxia, pyruvate is efficiently 

used in Krebs cycle, supplying electrons to mitochondrial electron transport chain (ETC) to 

produce ATP. In hypoxia, lack of oxygen as final electron acceptor slows ETC, causing 

pyruvate to accumulate. Pyruvate is converted to lactate, which is secreted and binds Olfr78 

on CB glomus cells, increasing intracellular calcium and transmitter release to afferent 

nerves to stimulate breathing.
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