
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

High-throughput Data Systems for Deep Learning Workloads

Permalink

https://escholarship.org/uc/item/1b38d81p

Author

Zhang, Yuhao

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b38d81p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

High-throughput Data Systems for Deep Learning Workloads

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Yuhao Zhang

Committee in charge:

Professor Arun Kumar, Chair
Professor Alin Deutsch
Professor Yusu Wang
Professor Yiying Zhang

2023

Copyright

Yuhao Zhang, 2023

All rights reserved.

The Dissertation of Yuhao Zhang is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To Xiaowen,
my love.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . ix

List of Tables . xiv

Acknowledgements . xvi

Vita . xix

Abstract of the Dissertation . xx

Chapter 1 Introduction . 1
1.1 Motivation and Goals . 1
1.2 Technical Contributions . 4

1.2.1 CEREBRO: Multi-query Optimization for High-throughput DL Model
Selection . 5

1.2.2 CEREBRO on Data Systems: Bridging the Gap between Data Systems
and DL Workloads . 7

1.2.3 LOTAN: Bridging the Gap between Graph Data Systems and Graph
Neural Network Workloads . 8

1.2.4 PANORAMA: Multimedia DB-style Retrieval with DL Inference 9
1.3 Research Impact . 9

Chapter 2 Background . 11
2.1 Deep Learning . 11
2.2 Model Training: Mini-batch Stochastic Gradient Descent 12
2.3 Model Selection . 13
2.4 Model Inference . 13
2.5 DL on Database-resident Data . 14

Chapter 3 CEREBRO: Multi-query Optimization for High-throughput DL Model Se-
lection at Scale . 16

3.1 Introduction . 16
3.2 Prior Art for Distributed Deep Learning Training . 22
3.3 Model Hopper Parallelism . 24

3.3.1 Basic Idea of MOP . 24
3.3.2 Communication Cost Analysis . 26

3.4 System Overview . 26

v

3.4.1 User-facing API . 27
3.4.2 System Architecture . 27
3.4.3 System Implementation Details . 29

3.5 Cerebro Scheduler . 30
3.5.1 Formal Problem Statement as MILP . 31
3.5.2 Approximate Algorithm-based Scheduler . 32
3.5.3 Randomized Algorithm-based Scheduler . 32
3.5.4 Comparing Different Scheduling Methods . 34
3.5.5 Replica-Aware Scheduling . 35
3.5.6 Fault Tolerance and Elasticity . 36
3.5.7 Extension: Horovod Hybrid . 36

3.6 Experimental Evaluation . 37
3.6.1 End-to-End Results . 39
3.6.2 Drill-down Experiments . 40
3.6.3 Experiments with AutoML Procedures . 44

3.7 Discussion and Limitations . 46
3.8 Conclusion . 47

Chapter 4 CEREBRO on Data Systems: Bridging the Gap Between Data Systems and
DL Workloads . 48

4.1 Introduction . 48
4.1.1 Lessons from In-RDBMS ML . 48
4.1.2 Toward In-Data System DL . 50
4.1.3 Focus of this Chapter . 51

4.2 Constraints and Challenges in Bringing DL to DBMSs . 53
4.3 The Fitness of Prior Art for In-DBMS DL . 54
4.4 Overview of CEREBRO on Data Systems . 56

4.4.1 User-Defined Aggregate Functions (UDAF) . 58
4.4.2 Concurrent Targeted Queries (CTQ) . 60
4.4.3 Direct Access (DA) . 62
4.4.4 Cerebro-Spark . 63

4.5 Comparative Analyses of Approaches . 63
4.5.1 Runtime Efficiency . 64
4.5.2 Ease of Governance . 66
4.5.3 Implementation Difficulty . 67
4.5.4 Portability . 67

4.6 Empirical Comparisons and Analyses . 68
4.6.1 End-to-end Performance Study . 69
4.6.2 Drill-down Experiments . 74

4.7 Conclusions . 78

Chapter 5 LOTAN: Bridging the Gap Between
Graph Data Systems and Graph Neural Network Workloads. 80

5.1 Introduction . 80

vi

5.2 Background . 85
5.2.1 Graph Neural Networks . 85
5.2.2 Distributed Graph Processing . 85
5.2.3 GNN Training Systems . 87

5.3 GNN APIs and Programming Model . 88
5.3.1 GNN Interface . 88
5.3.2 Lotan’s Internal Programming Model . 90
5.3.3 Global Operator Graph and Execution . 91

5.4 System Architecture . 92
5.4.1 External Engines . 93
5.4.2 Planner . 94
5.4.3 Micro-batch Processing and Messenger . 96

5.5 System Optimizations . 96
5.5.1 GNN-centric Graph Partitioning and Reverse Graph Back-propgation . . 96
5.5.2 GNN Model Batching . 98

5.6 Analysis of Cost Models . 100
5.7 Experiments and Evaluation . 102

5.7.1 End-to-end Performance Study . 104
5.7.2 Drill-down Experiments . 106

5.8 Conclusion and Discussion . 110

Chapter 6 PANORAMA: Multimedia DB-style Retrieval with DL Inference 113
6.1 Introduction . 113
6.2 Setup and Background . 119

6.2.1 Visual Querying Tasks . 119
6.2.2 Background: Multi-task Deep CNNs . 121
6.2.3 Background: Embeddings . 122

6.3 System Architecture and API . 122
6.4 Components and Techniques . 125

6.4.1 Deeply Cascaded Multi-task Model . 125
6.4.2 Training with Deep Supervision . 129
6.4.3 Automated Training Data Creation . 130
6.4.4 Configuration of Short-Circuiting . 131
6.4.5 Query Cache . 132
6.4.6 Online Phase Inference Process . 133

6.5 Experiments . 134
6.5.1 Experimental Setup . 135
6.5.2 End-to-end Accuracy and Throughput . 139
6.5.3 Drill-down Analysis . 143
6.5.4 Query Cache and Scalability Test . 143
6.5.5 Conclusion . 145

Chapter 7 Related Work . 147
7.1 Related Work for CEREBRO . 147

vii

7.2 Related Work for CEREBRO on Data Systems . 149
7.3 Related Work for LOTAN . 152
7.4 Related Work for PANORAMA . 154

Chapter 8 Conclusion and Future Work . 157
8.1 Future Work Related to CEREBRO and CEREBRO on Data Systems 157
8.2 Future Work Related to LOTAN . 158
8.3 Future Work Related to PANORAMA . 159

Appendix A CEREBRO . 161
A.1 CEREBRO API Usage Example . 161
A.2 CNN Compute Costs . 164
A.3 Straggler Issue in Celery . 165
A.4 Extension: Horovod Hybrid . 166

Appendix B CEREBRO on Data Systems . 170
B.1 Scenarios that Could Affect Scheduler Performance . 170
B.2 Proofs to Propositions . 171
B.3 Effect of Model Size on UDAF and CTQ . 172
B.4 Simulated Extreme Scenarios of Async. MOP vs Sync. MOP on Heterogeneous

Workloads . 174
B.5 Hyperopt Experiment Resource Utilizations . 175
B.6 End-to-end Tests with PyTorch Lightning . 175

Appendix C Lotan . 178
C.1 Appendix . 178

C.1.1 Cost Models . 178
C.1.2 Messenger . 183
C.1.3 Supplementray Experiment Results . 183

Appendix D Panorama . 187
D.1 Stem1 . 187
D.2 YOLOv2 Loss . 187
D.3 Responsible AI: First Step . 188

Bibliography . 191

viii

LIST OF FIGURES

Figure 1.1. The common life cycle of AI/DL applications and an overview of the work
covered in this thesis. 6

Figure 2.1. A conceptual drawing of a neural network. 12

Figure 3.1. (A) Cerebro combines the advantages of both task- and data-parallelism . . 17

Figure 3.2. Conceptual comparison of MOP/CEREBRO with prior art on two key axes
of resource efficiency: communication cost per epoch and memory/storage
wastage. 20

Figure 3.3. Qualitative comparisons of existing systems on key desiderata for a model
selection system. 22

Figure 3.4. System architecture of CEREBRO. 28

Figure 3.5. Gantt charts of task-parallel and MOP schedules for a sample model selec-
tion workload. 28

Figure 3.6. Scheduler runtimes and makespans of the schedules produced in different
settings. Makespans are normalized with respect to that of Randomized.
(A) Homogeneous cluster and homogeneous training configs. (B) Hetero-
geneous cluster and heterogeneous training configs. 34

Figure 3.7. End-to-end results on ImageNet and Criteo . 38

Figure 3.8. (A) Speedup plot (strong scaling). (B) Fault-tolerance. 41

Figure 3.9. Effect of batch size on communication overheads and convergence effi-
ciency. (A) Runtime against batch size. (B) The lowest validation error
after 10 epochs against batch size. 41

Figure 3.10. Reading data from remote storage. 43

Figure 3.11. Reading data from distributed storage. 43

Figure 3.12. HyperOpt learning curves by time. 45

Figure 3.13. ASHA learning curves by time. 45

Figure 4.1. In-data-system DL. Data system invokes DL tool and helps mitigate data
provenance/governance issues. 50

ix

Figure 4.2. Tradeoffs of ease of data governance vs. efficiency for various approaches.
∗Depending on an implementation detail CTQ may have the same ease of
governance as MA and UDAF; see Section 4.5.2 for details. 53

Figure 4.3. Design alternatives for MOP in DBMS. 57

Figure 4.4. UDAF approach. Fully in-DBMS. 58

Figure 4.5. Conceptual illustration of one sub-epoch of UDAF. 59

Figure 4.6. CTQ approach. Partially in-DBMS. 60

Figure 4.7. DA approach. In-DB but not in-DBMS. 62

Figure 4.8. Cerebro-Spark approach. Fully out of DBMS. 63

Figure 4.9. End-to-end tests results. (A): Convergence behavior on ImageNet. (B):
Per-epoch breakdown of runtimes for each approach on ImageNet. (C):
Per-epoch breakdown of runtimes for each approach on Criteo. 70

Figure 4.10. (A): End-to-end scalability plot, y-axis shows the speedups with respective
to single-node runtime. 72

Figure 4.11. Heterogenous experiment. (A) Real experiments supplemented with sim-
ulation and theoretical results. lm/ls = 8 (B) Extreme scenario simulated.
lm/ls = 20. 75

Figure 4.12. Hyperopt learning curves. Each diagram contains learning curves of all 32
model configs. Best val. errors achieved by each approach are within the
margin: 0.31 (Cerebro-Spark), 0.33 (UDAF), 0.31 (CTQ), 0.33 (DA), 0.31
(Hyperopt-Spark). 77

Figure 5.1. (A) Lotan bridges the gap between graph systems and DL systems. (B)
The architecture of Lotan. 81

Figure 5.2. Two graph partitioning schemes. 86

Figure 5.3. (A) An example input graph to a spatial-based GNN. (B) Dataflow diagram
of a message passing GNN. 89

Figure 5.4. Global operator graph of end-to-end GNN training. 92

Figure 5.5. An example of plan rewrites. Note the Collect operator is rewritten with
ApplyEdge and Aggregation. 94

Figure 5.6. Regular 1D source hash partitioning and dataflow. 97

x

Figure 5.7. GNN-centric Graph Partitioning and dataflow. 99

Figure 5.8. (A) Sequential training (B) Model Batching. 100

Figure 5.9. Learning curves for the chosen model on the test set. (A) ogbn-products-
GCN. (B) ogbn-products-GIN. (C) ogbn-arxiv-GCN. (D) ogbn-arxiv-GIN.
Corresponding learning curves on the validation set are presented in C. . . . 102

Figure 5.10. (A) Runtime breakdowns. (B) Ablation study. 106

Figure 5.11. Depth Scaling. (A) Runtime. (B) Utilization. 107

Figure 5.12. Width Scaling. (A) Runtime. (B) Utilization. 108

Figure 5.13. Scaling with GNN Model Batching. (A) Throughput. (B) Time Costs. (C)
Disk and Network Usage. (D) Utilization. 112

Figure 6.1. High-level qualitative comparison of existing vision stacks to Panorama’s
system design philosophy. 115

Figure 6.2. Example Panorama use-case (1): unbounded vocabulary recognition. Left:
the frame shows two out-of-vocabulary faces (identities unknown) and the
model only labels them as faces. 117

Figure 6.3. Example Panorama use-case (2): unbounded vocabulary embeddings ex-
traction for faces. The embeddings are then clustered, yielding somewhat
coherent clusters. 118

Figure 6.4. The embedding extracted from the query image is nearest to the known
embedding for Bob in the metric space and farther from Charlie’s or Alice’s.
This capability allows the model to distinguish between these entities. 121

Figure 6.5. Overall system architecture of Panorama. Solid arrows represent invoca-
tions/interactions, while dashed arrows represent the flow of data/results.
PanoramaNet is built once offline and then deployed for online video
monitoring. 122

Figure 6.6. Detailed workflow of Panorama’s internals for processing a recognition
query. The deeply cascaded PanoramaNet can be short-circuited and is
combined with nearest neighbor search for enabling unbounded vocabulary
recognition in one pass. 125

Figure 6.7. PanoramaNet deep cascade architecture with n = 3 blocks. An output
has dimensions (grid, grid, number of bounding boxes, bounding box
parameters+embedding dimension). All layers shown have a stride of 1
and are same-padded. 126

xi

Figure 6.8. Architecture of Output Blocks from Figure 6.7. All layers are stride=1 and
same-padded. 127

Figure 6.9. CDFs of pairwise Euclidean distances between the embeddings yielded by
Block2 of PanoramaNet. 128

Figure 6.10. Examples of Panorama’s inference execution. a). The verification query is
short-circuited at block2. The left and right models including PanoramaNet
and the reference model share parameters, respectively. 134

Figure 6.11. Schematic diagram about dataset split. 137

Figure 6.12. End-to-end in-voc verification results. (a) Verification accuracy. (b)
Relative throughput. 138

Figure 6.13. End-to-end in-voc recognition results. (a) Recognition accuracy. (b)
Relative throughput. 141

Figure 6.14. Factor analysis. Accuracy is normalized against the reference model. 142

Figure A.1. An unbalanced work schedule generated by Celery for Criteo tests. 165

Figure A.2. Best possible work schedule with Celery for Criteo tests. 166

Figure A.3. The architecture of Horovod Hybrid. Within different namespaces, we run
PANORAMA and Horovod, respectively. 167

Figure A.4. Performance tests of Horovod Hybrid with varying batch size and |S| on
8-node cluster. Configs: same model as in Section 4 Table 3.5, learning
rates drawn from {10−3,10−4,5×10−5,10−5}, weight decays drawn from
{10−4,10−5}. We test on 2 different batch sizes, respectively. 168

Figure B.1. Gantt chart for possible schedules generated by (A) Synchronous round-
robin scheduler and (B) Asynchronous random scheduler. The two workers
are homogenous, but the workload, containing four models, is heterogenous. 170

Figure B.2. Gantt chart for possible schedules generated by (A) Synchronous round-
robin scheduler and (B) Asynchronous random scheduler. 171

Figure B.3. Per-epoch runtime for model size test. (A): Train+Valid time. (B): Model
Transmission time. 173

Figure B.4. Runtimes of heterogeneous workloads. (A-E) represent different workload
configs. Both theoretical bounds and simulated runtime gaps are shown.
The upper bounds of speedup η are calculated for each workload. NB:
Note the different ranges of the Y axes across plots. 174

xii

Figure B.5. Convergence behavior on ImageNet. 176

Figure C.1. Messenger architecture. 184

Figure C.2. Effect of the number of partitions. 185

Figure C.3. Learning curves for the chosen model on the validation set. (A) ogbn-
products-GCN. (B) ogbn-products-GIN. (C) ogbn-arxiv-GCN. (D) ogbn-
arxiv-GIN. 186

Figure D.1. Detailed architecture of Stem1 block from Figure 6.7. Max pooling layers
have a stride of 2 and are valid-padded; other layers have a stride of 1 and
are same-padded. 188

xiii

LIST OF TABLES

Table 1.1. Common technical themes used in this dissertation. 5

Table 3.1. Notation used in Section 3.3 . 24

Table 3.2. Communication cost analysis of MOP and other approaches. ⋆Full replica-
tion. †Remote reads. ‡Parameters for the example: k = 20, |S| = 20, p = 10,
m = 1GB, ⟨D⟩ = 1TB, and |D|/b = 100K. 26

Table 3.3. Additional notation used in the MOP MILP formulation 30

Table 3.4. Dataset details. All numbers are after preprocessing and sampling of the
datasets. 37

Table 3.5. Workloads.⋆architectures similar to VGG16 and ResNet50. †Serialized sizes. 39

Table 3.6. Parameter grid used to randomly sample configuration for Section 3.6.3. . . 44

Table 4.1. Summary of various parallel paradigms’ fitness for in-data-system DL. 55

Table 4.2. Summary of each approach’s design for the 5 layers. IN: in-DBMS. OUT:
out-of-DBMS. 59

Table 4.3. Conceptual comparison of various architectural approaches of integrating
MOP with DBMS. ∗CTQ can have highest or high ease of governance,
depending on whether models are governed by DBMS. †If node RAM is
insufficient, swap is needed for DA and the blowup could rise up to 2x. . . . 61

Table 4.4. Notation for discussion on scheduling makespans. 65

Table 4.5. Workloads.⋆architectures similar to VGG16 and ResNet50, respectively. . . 66

Table 4.6. Runtimes and resource utilizations of end-to-end tests. Execution time and
all utilizations are measured excluding ETL. 69

Table 5.1. Comparison with prior art on key capabilities. 87

Table 5.2. End-to-end test results. TLE: time limit exceeded (48 hrs per model). 111

Table 6.1. Functions in Panorama API. 123

Table 6.2. Datasets and reference models. 135

Table 6.3. out-voc verification results. ∗P: Panorama. †RG: random guessing. 140

xiv

Table 6.4. out-voc recognition results. ∗P: Panorama. †RG: random guessing. ‡:
Top-1 accuracy. 142

Table 6.5. Impact of λk on block-wise verification acc. 143

Table 6.6. Impact of query cache on recognition acc. 144

Table 6.7. Results of the scalability test. W/O means Panorama without cache, Cache
X means Panorama with cache size X. All values in the right four columns
are throughputs reported in frames/sec. 144

Table A.1. Computation costs of the CNNs used for the simulation experiment compar-
ing different scheduling methods. 169

Table B.1. Resource utilizations from Hyperopt experiments shown in Section 4.6.2. . 175

Table B.2. Runtimes and resource utilizations of end-to-end tests. Execution time and
all utilizations are measured, excluding ETL. 177

Table D.1. Reference model and Panorama’s performance on different gender-shades
groups. ⋆D: darker, L: lighter, F: female, M: male. 189

xv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my PhD advisor, Prof. Arun Kumar, for

his guidance, support, and mentorship throughout the entirety of my study at UCSD, especially

the darker days of the 2019-2022 global pandemic. I owe my career to him after switching tracks

from physics to computer science. Prof. Kumar has been an invaluable source of inspiration,

pushing me to explore new frontiers in my research and providing invaluable insights that have

significantly enriched the quality of my work. His commitment to excellence contributes greatly

to this dissertation, and I am indebted to him for his profound impact on my academic and

personal growth.

I want also to extend my heartfelt gratitude to the members of my PhD committee, Prof.

Alin Deutsch, Prof. Yusu Wang, and Prof. Yiying Zhang. Their expertise and constructive

feedback have been instrumental in shaping the direction of my dissertation. I sincerely appre-

ciate the time and effort they dedicated to reviewing my work, offering insightful advice, and

challenging me to think critically.

Further, I want to express my sincere appreciation to my co-authors, Supun Nakandala,

Frank McQuillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna, Orhan Kislal, Domino Valdano,

Side Li, Advitya Gemawat, and Kabir Nagrecha, for their invaluable collaboration and intellectual

contributions through our collaborative research work, and I am grateful to have a chance to

work with such talented and committed individuals.

I am appreciative of my internship mentors, Qi Zhao, Yan Rui, Rathijit Sen, and Kon-

stantinos Karanasos. Their guidance, expertise, encouragement, and willingness to share their

knowledge have been influential in my professional growth. I am grateful for the opportuni-

ties they provided for hands-on learning to hone my skills and the constructive feedback and

insightful advice that extended beyond the workplace.

I am fortunate to be part of Arun’s lab and the UCSD database group. It was a refreshing

experience to be in such a cohort of talented and motivated researchers and students. I am

thankful for the shared challenges, the exchange of ideas, and the diverse perspectives each

xvi

person brings. Beyond the academic realm, the friendships formed are invaluable, making this

pursuit not only intellectually stimulating but also personally fulfilling. I want to say thank you

to Supun Nakandala, Vraj Shah, Side Li, Kabir Nagrecha, Kyle Luoma, Xiuwen Zheng, Tara

Mirmira, Rana Alotaibi, Liangde Li, Advitya Gemawat, Vignesh Nanda Kumar, and Pradyumna

Sridhara.

Finally, I want to thank my family for their support and unconditional love throughout

the years. This achievement is as much theirs as it is mine.

This dissertation is based on and contains materials from the following publications.

Chapter 3 contains material from “Cerebro: A Data System for Optimized Deep Learning

Model Selection” by Supun Nakandala, Yuhao Zhang, and Arun Kumar, which appears in

Proceedings of VLDB Endowment Volume 13, Issue 12, July 2020. The dissertation author’s

contribution was in the conceptualization of the system, parts of the implementation, and parts

of the experiments.

Chapter 4 contains material from “Distributed Deep Learning on Data Systems: A

Comparative Analysis of Approaches” by Yuhao Zhang, Frank McQuillan, Nandish Jayaram,

Nikhil Kak, Ekta Khanna, Orhan Kislal, Domino Valdano and Arun Kumar, which appears in

Proceedings of VLDB Endowment Volume 14, Issue 10, July 2021. The dissertation author was

the primary investigator and author of this paper.

Chapter 5 contains material from “Lotan: Bridging the Gap between GNNs and Scalable

Graph Analytics Engines” by Yuhao Zhang and Arun Kumar, which appears in Proceedings of

VLDB Endowment Volume 16, Issue 11, August 2023. The dissertation author was the primary

investigator and author of this paper.

Chapter 6 contains material from “Panorama: A Data System for Unbounded Vocabulary

Querying over Video” by Yuhao Zhang and Arun Kumar, which appears in Proceedings of

VLDB Endowment Volume 13, Issue 4, December 2019. The dissertation author was the primary

investigator and author of this paper.

xvii

My co-authors have kindly approved the inclusion of the aforementioned publications in

my dissertation.

xviii

VITA

2016 BS in Theoretical Physics, Nankai University, China

2021 MS in Computer Science, University of California San Diego

2023 PHD in Computer Science, University of California San Diego

xix

ABSTRACT OF THE DISSERTATION

High-throughput Data Systems for Deep Learning Workloads

by

Yuhao Zhang

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Arun Kumar, Chair

Artificial Intelligence (AI) and Deep Learning (DL) have gained enormous popularity and

have seen wide adoption across different domains. They ushered in an era of huge workloads that

are increasingly computation- and data-intensive and put existing data analytics infrastructures

and systems to the test. However, many of these workloads run with severe inefficiency and

face tremendous scalability challenges due to suboptimal scheduling and poor resource/mem-

ory management, resulting in wasted computational and storage resources. Furthermore, DL

workloads have been predominantly run on custom software frameworks far away from where

most enterprise and operational data resides – databases and data systems. We realize that a

significant gap exists between existing data systems and DL workloads. Data is often stored

xx

in the former but needs to be frequently exported. These large data movements between data

and DL systems waste storage, network, and time. It also creates difficulties in data governance,

provenance tracking, and compliance with data privacy regulations. Most importantly, large-scale

data systems used to be at the center of data analytics before the recent takeover by DL, but

many of the lessons and techniques would still apply to DL workloads, and there are missed

opportunities to innovate upon existing infrastructures. This dissertation will focus on modern

DL workloads and these system efficiency, scalability, and practicality challenges. We aim to

raise the throughput of DL systems at a large data scale without sacrificing practicality using

a central methodology of reimagining DL systems as DL data systems. On the one hand, we

apply and innovate techniques inspired by database management systems, such as multi-query

optimizations, query plan rewrites, and approximate processing, for DL workloads. On the other

hand, we explore novel ways to extend existing data systems, without modifications to their

core codebase, to run DL workloads, both bridging the gap and offering tangible data scalability

benefits. All proposed techniques and systems are empirically tested and demonstrated to show

improvements, sometimes over 10x, compared to state-of-the-art solutions.

xxi

Chapter 1

Introduction

1.1 Motivation and Goals

Artificial Intelligence (AI) has ushered in a new era of innovation and revolution in

subjects ranging from machine translation [276], face recognition [254], natural sciences [101],

to even eerily human-like chatbots [54]. Deep Learning (DL), the backbone of modern AI,

has gained tremendous attention and has seen wide adoption from academia to the industry.

Advancements in DL have created workloads that put existing data analytics infrastructures

and systems to the test. The huge DL workloads are growing increasingly computation- and

data-intensive. Among all the systems challenges created by modern DL, this dissertation will

focus on three of the most acute issues: speed, scalability, and practicality. We formulate the

overall goal of this dissertation work as to raise throughput of DL systems at a large data scale

without sacrificing practicality. We will now explain the motivation and goals in detail.

The need for speed. Despite their rapid adoption, many DL workloads run with severe

inefficiency and face huge scalability issues due to suboptimal scheduling, poor resource/memory

management, or the lack of proper software system support. Today, accelerators such as GPUs

are crucial assets, with state-of-the-art chips and machines growing ever more expensive and

power-hungry. Furthermore, with the stagnated Moore’s law, large-scale distributed computations

are becoming almost inevitable, making all the systems issues even more complex and the cost

prohibitively large. Runtime inefficiency and computational resource limitations are among the

1

most significant challenges for both scientific innovations and industrial adoption. Therefore, it is

imperative for systems researchers to investigate bottlenecks, eliminate overheads, and accelerate

these workloads end-to-end. In this dissertation, we choose throughput as the central metric

for speed. Whether it is the number of models per day for model selection workloads, epochs

per hour for training, or queries per second for inference, higher throughput leads to substantial

cost savings, higher productivity, and better models resulting from faster model selection and

training.

The data challenges. Being data-intensive is another defining characteristic of DL.

The scale and the amount of data can be tremendous for DL workloads [78, 73, 54]. Data

management for modern DL applications is complicated by the great variety of data modalities,

ranging from tabular data to videos to even graph data. Each modality comes with its own set

of challenges; for example, videos are called “fast” data [142], as they arrive at high speed and

demand real-time processing, but they possess high redundancy between frames that can be

exploited. On the other hand, graph data has dramatically different characteristics from other data

modalities, and the models used on them are wildly different in data access patterns [150, 113].

Overall, systems designed for DL workloads must be able to handle large volumes, TBs or

even PBs of, data and communications efficiently. Hence, any DL systems need to be, first and

foremost, scalable data systems that can schedule, optimize, and execute large workloads with

huge amounts of dataflows.

The real-world constraints. The data challenges mentioned above require data systems

solutions. However, a major gap exists between the present data systems, represented by

large-scale database management systems (DBMS) and data lakehouses such as Spark, and

the DL workloads. Modern DL workloads are more often executed on custom systems with

little data layer; they focus on fast hardware kernels and compiler-level optimizations but have

little consideration for the logical plans and the practical limitations of data storage, movement,

and management. At the same time, data systems have largely treated DL workloads as an

afterthought, relegating them almost entirely to external DL systems. There has been a general

2

lack of possibility to run DL workloads efficiently closer to databases, where most business and

enterprise data typically resides. This gap is preventing DL from further adoption and creates

avoidable heavy data movement between custom DL systems and existing data systems, creating

overheads and hindering usability, degree of automation, ease of governance, and data privacy

requirements posed by legislations like GDPR [72] and CCPA [221]. Towards this end, the third

goal of this dissertation is to ensure the practicality of DL systems and seek opportunities to ease

some of the issues by adopting existing data systems and their techniques.

This dissertation identifies the three most important DL workloads to optimize. We

briefly introduce them and will review the details in Chapter 2:

1. Model selection. DL models require extensive tuning of hyperparameters and architectures

to achieve maximum accuracy and runtimes. These are critical knobs that affect the

model’s performance substantially. However, their effect is highly non-linear and typically

unpredictable, Thus, model selection has primarily remained an empirical process based

on trial and error of training dozens to hundreds of models. Given the weeks or even

months of development and training time, model selection is among the most significant

bottlenecks of DL.

2. Training. DL training predominantly uses the family of mini-batch Stochastic Gradient

Descent (SGD) algorithms to minimize training losses on large-scale datasets. As the

scale of DL workloads keeps growing, computational costs have skyrocketed, and parallel

and distributed training has become the norm. Any optimizations in the training process

can contribute to overall considerable savings in computation and allow for faster model

development and selection.

3. Inference. When tuned and trained, the model will be deployed and used to answer queries

on data not seen during training. This process is known as model inference. Inference

has much in common with training: they typically share the same data pipelines and the

forward pass portion of mini-batch SGD. However, some model inference workloads like

3

video monitoring can demand high runtime speed and real-time processing. Meanwhile,

inference workloads typically have more leeway regarding approximate processing, open-

ing up speed-up opportunities. Therefore, the trade-offs between accuracy and throughput

are a constant theme in model inference systems.

This dissertation will focus on three representative data modalities and their applications

where DL has seen a lot of success.

1. Unstructured data (e.g., videos and images). DL has achieved tremendous success on

unstructured data and enabled many novel applications [142, 78, 237].

2. Tabular data. The default form of data in most database systems. Most enterprises and

business intelligence (BI) tasks rely primarily on tabular data.

3. Graph data. Tabular data and unstructured data, including tables, time-series, videos,

and images, can also be roughly categorized as Euclidean and IID data, which have

regular shapes (table dimensions, frame/image’s rectangular shape sizes and channels,

etc.) and are drawn independently from a large population. Graph data, however, is both

non-Euclidean [52] and non-IID as the shape (topology) is highly irregular compared to

images, and the data within a graph are explicitly connected via edges, nullifying the

IID assumption. This brings profound consequences as the regular DL models and their

training methods suddenly stop working, and modifications are required. Coupled with the

complexity of large-scale graph data management and their huge memory consumption,

DL on graph data poses severe challenges to existing systems.

1.2 Technical Contributions

To tackle the various challenges raised by these workloads and data modalities, our

central methodology is reimagining DL systems as DL data systems. On the one hand, DL

systems, at the core, are data systems that coordinate large dataflows and, therefore, can benefit

4

Table 1.1. Common technical themes used in this dissertation.

Multi-query
Optimizations

Plan
Rewrites

Bulk Synchronous
Parallelism

Using Existing
Data Systems

Similarity
Search

Cerebro ✓ ✓
Cerebro on DS ✓ ✓ ✓
Lotan ✓ ✓ ✓ ✓
Panorama ✓ ✓

from data systems optimizations. We apply and innovate upon a plethora of DBMS-inspired

techniques such as multi-query optimizations [256], multimedia and similarity-based databases

and approximate processing [36, 22, 141], and query plan rewriting and optimizations to DL

systems, boosting throughput and resource-efficiency. On the other hand, to mitigate the typical

lack of data layer in the popular DL tools and to increase the practicality of DL, we also work

to bridge the gap between existing data systems and DL workloads, bringing model selection,

training, and inference capabilities to existing relational and graph DBMSes.

This dissertation will present in detail our efforts for high-throughput, large-scale, and

practical DL data systems and demonstrate the substantial boosts in runtime performance (over

10x in some cases) and scalability (managing workloads that would otherwise fail due to

systems crashes, insufficient memory, or exceeding runtime limits) resulted from these technical

innovations. Our work spans various DL workloads and data modalities. Figure 1.1 summarizes

the scope and positioning for each project. We summarize the common technical themes in

Table 1.1. We will now briefly introduce each project included in this dissertation.

1.2.1 CEREBRO: Multi-query Optimization for High-throughput DL
Model Selection

CEREBRO is a system to tackle the throughput problems of model selection. We notice

most DL systems focus on training one model at a time, reducing throughput and raising overall

resource costs; some also sacrifice reproducibility. Critical optimization opportunities are missed

as the training workloads share extensively in data and computation, which resembles the

5

Cerebro 

Model Selection Training Inference

Tabular Unstructured Graph

Panorama 

Lotan 

Model Selection Training Inference

Tabular Unstructured Graph

Data
Modalities

DL
Workloads

Data

Data
Warehouse

Data
Scientist

DL
Model

DL Data
Systems

Lotan 

ETL Load

Cerebro-DS 

Data
Lake

. . .

Neuron

Input

Layers
Output

. . .

Iterative

Figure 1.1. The common life cycle of AI/DL applications and an overview of the work covered
in this thesis.

multi-query optimization problem in databases research [256]. Towards higher throughput and

resource utilization and as a part of a grander vision [161] of DL model selection systems, we

built Cerebro [214]. Cerebro is a data system that raises DL model selection throughput at

scale, without raising resource costs or sacrificing reproducibility or accuracy. CEREBRO uses

a novel parallel DL training strategy called model hopper parallelism. It hybridizes task and

data parallelism to mitigate the cons of these prior paradigms and offers the best of both

worlds. Experiments on large benchmark datasets showed that Cerebro provides 3x to 10x

runtime savings relative to data-parallel systems like Horovod and Parameter Server and up to 8x

memory/storage savings or 100x network savings relative to task-parallel systems. Cerebro also

supports heterogeneous resources and fault tolerance.

6

This work will be covered in Chapter 3 and is done jointly with Supun Nakandala and

Arun Kumar. A paper on this work has appeared at VLDB 2020 [212]. The system is open

source and available at https://github.com/ADALabUCSD/cerebro-system.

1.2.2 CEREBRO on Data Systems: Bridging the Gap between Data
Systems and DL Workloads

DL’s popularity is not limited to DL researchers; many enterprises and businesses are also

considering adopting DL for their data analytics applications. Large business-critical datasets in

such settings typically reside in DBMSs or other parallel data systems. In the work of CEREBRO

above, we explored the landscape of standalone DL model selection systems and proposed a

new parallelism strategy. However, it was unclear if the proposed parallelism and task scheduler

could be incorporated into existing infrastructures of data management systems. In this project,

we characterized the particular suitability of CEREBRO on data systems. To bring the novel

model hopper parallelism approach to DB resident data, we showed that there was no single

“best” approach and an interesting tradeoff space exists. We explained four canonical approaches

and built prototypes upon the Greenplum Database. We compared them analytically on multiple

criteria (e.g., runtime efficiency and ease of governance) with real large-scale DL workloads.

The experiments and analyses showed that it was non-trivial to meet all practical desiderata, and

there was a Pareto frontier; for instance, some approaches are 3x-6x faster but fare worse on

governance and portability. These results and insights can help DBMS and cloud vendors design

better DL support for DB users.

Chapter 4 is dedicated to this work. It was done partially during an internship at VMware

and jointly conducted with Frank McQuillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna,

Orhan Kislal, Domino Valdano, and Arun Kumar. A paper on this work has appeared at

VLDB 2021 [319]. The system is open source and available at https://github.com/makemebitter/

cerebro-ds. It has also been incorporated into Apache MADlib open source project https:

//madlib.apache.org/.

7

https://github.com/ADALabUCSD/cerebro-system
https://github.com/makemebitter/cerebro-ds
https://github.com/makemebitter/cerebro-ds
https://madlib.apache.org/
https://madlib.apache.org/

1.2.3 LOTAN: Bridging the Gap between Graph Data Systems and
Graph Neural Network Workloads

Moving on from the common IID data and corresponding DL workloads that CEREBRO

is designed for, we look at the rapidly growing field of Graph Neural Networks (GNN). The

complexity of GNN training and various scalability challenges have sparked interest from

the machine learning systems community, with efforts to build systems that provide higher

efficiency, better memory management, and schemes to reduce costs. However, many of these

systems reinvent the wheel by rediscovering years of research and development on advanced

graph-parallel data systems. Further, they often couple the scalability challenges of graph data

processing with those of GNN training, resulting in entangled complex problems and systems

that often fall short on one side of the scalability challenges.

This work proposes LOTAN, a novel and highly scalable data system for full-batch GNN

training with a clean decoupling of graph and neural network at its core. With this decoupling,

LOTAN can achieve high scalability and bridge the gap between existing graph data systems

and DL workloads. LOTAN offers a series of technical innovations inspired by data systems

techniques, including execution plan rewriting, highly efficient data movement between systems,

a GNN-centric graph partitioning method and the corresponding NN gradient backpropagation

scheme, and GNN model batching. Using real large-scale GNN workloads, we demonstrated the

system’s capability to train large GNN models that prior art, even from industry labs, crashed

on. The system can surpass the training throughput of state-of-art systems by up to 40x and

beat a naively implemented in-data-system GNN training framework by 76x. Lotan can increase

efficiency for existing workloads and open new design freedom for future GNN algorithmic

research.

This work will be covered in Chapter 5, and it is jointly conducted with Arun Kumar. A

paper on this work has appeared at VLDB 2023 [318]. The system is open source and available

at https://github.com/makemebitter/lotan.

8

https://github.com/makemebitter/lotan

1.2.4 PANORAMA: Multimedia DB-style Retrieval with DL Inference

We now take a look at DL inference issues on unstructured data such as videos and images,

which have particularly high requirements for real-time processing and bring unique challenges.

The prior art has studied how to improve system efficiency. Nevertheless, they primarily focus on

small “closed world” prediction vocabularies, even though many surveillance security and traffic

analytics applications have an ever-growing set of target entities. We call this the “unbounded

vocabulary” issue, which is a crucial bottleneck for emerging video monitoring applications.

We presented the first data system for tackling this problem for video querying, PANORAMA.

The design philosophy is to build a unified and domain-agnostic system that lets application

users generalize to unbounded vocabularies in an out-of-the-box manner without tedious manual

re-training. To this end, we synthesized and innovated upon an array of techniques from the

literature of ML, vision, databases, and multimedia systems to devise a new system architecture.

We also presented designs to ensure PANORAMA had high inference throughput. Experiments

with multiple real-world datasets showed that the system could achieve between 2x to 20x higher

throughput than baseline approaches on in-vocabulary queries while still yielding comparable

accuracy and also generalizing well to unbounded vocabulary queries.

This work is the subject of Chapter 6 and is a joint work with Arun Kumar. A paper

on this work appeared at VLDB 2020 [268]. The system is open source and available at

https://github.com/makemebitter/Panorama-UCSD.

1.3 Research Impact

Practicality is one of the major foci of this dissertation, and we have put a lot of effort

into bringing these research ideas to production with real-world applications. We have had

collaborations and conversations with domain scientists, data scientists, ML researchers, and

DBMS vendors, and we have helped them adopt our techniques and ideas. These conversations

often inspired our work in tackling critical bottlenecks, offering solutions, and providing faster

9

https://github.com/makemebitter/Panorama-UCSD

and better DL systems to run these workloads. At the time this document is composed, our

research has achieved the following avenues of practical impact:

• CEREBRO has been used by UCSD Public Health researchers for model building. It led to

4 public health journal papers by our collaborators based on models trained with Cerebro,

which are now state of the art in their field [5].

• CEREBRO has been reviewed by Databricks and pointed to their customers.

• CEREBRO on Data Systems has been adopted by VMware and shipped in their Greenplum

database.

• CEREBRO on Data Systems has been incorporated into Apache MADlib project [196], an

in-DBMS ML library.

• A major graph DBMS vendor has expressed interest in collaboration on LOTAN.

10

Chapter 2

Background

2.1 Deep Learning

The backbone of today’s AI marvel is Deep Learning (DL). DL is a subfield of ML

inspired by the human brain’s structure and function. It involves training artificial neural

networks (NN) to perform various tasks ranging from image recognition to natural language

processing and many other complex pattern recognition problems. At the core of DL, deep neural

networks are composed of layers of interconnected nodes, or “neurons”, which have learnable

weights that are set during training. Figure 2.1 shows a conceptual drawing of neural networks;

in its broadest definition, an NN can take arbitrary inputs, approximate any function on the input,

and output arbitrary format of outputs. The use of multiple (even hundreds of) layers and billions

of trainable model parameters [117, 172, 54] have led to enormous success in modeling complex

and hierarchical relationships within data.

DL models are particularly well-suited for large and high-dimensional datasets but often

require a huge amount of training data. Different types of layers have different neuron con-

nections and suitabilities for various tasks due to the inductive bias they implicitly introduce

in featurization. Consequently, different model architectures tend to have specialties in data

modalities; CNNs are predominantly used in images/videos and vision tasks, LSTMs are partic-

ularly suitable for time-series data, and Transformers have an edge on text. As the frontier of

DL research rapidly advances, the workloads have grown larger and larger, posing challenges to

11

Cerebro 

Model Selection Training Inference

Tabular Unstructured Graph

Panorama 

Lotan 

Model Selection Training Inference

Tabular Unstructured Graph

Data
Modalities

DL
Workloads

Data

Data
Warehouse

Data
Scientist

DL
Model

DL Data
Systems

Lotan 

ETL Load

Cerebro-DS 

Data
Lake

. . .

Neuron

Input

Layers
Output

. . .

Figure 2.1. A conceptual drawing of a neural network.

the underlying data infrastructure and systems. For example, recent Transformer-based large

models [82, 54] have become more computationally intensive than ever, require substantial data,

and have since sparked wide interest from the systems community.

2.2 Model Training: Mini-batch Stochastic Gradient De-
scent

DL training, essentially a non-convex optimization problem [108], is done via algorithms

from the Stochastic Gradient Descent (SGD) family for the most part. SGD is an iterative

process that performs multiple passes over the data, updating the model parameters along the

way. Mini-batch SGD algorithms [149, 39] is a variant of SGD that uses smaller, random subsets

of the training data, known as mini-batches, to make the updates. The formula is as follows:

Θnew = Θold−η×∇L(Θold,mini batch), (2.1)

where Θnew and Θold are the updated and current model parameters, respectively. η is the learning

rate, a hyperparameter that controls the learning step size in the parameter space. ∇L(Θold,mini−

12

batch) is the gradient of the loss function with respect to current model parameters, calculated

based on the mini-batch.

It is worth noting that the above largely only applies to IID data, which is the assumption

of the sampling-based mini-batch method. However, certain data, such as graphs, are explicitly

non-IID. It has profound implications for the training algorithm, the parallelization, and the

execution of graph neural network training. Consequently, training a DL model on graph data

takes distinctive approaches and requires a very different set of techniques. We will discuss them

in more detail in Chapter 5.

2.3 Model Selection

DL is especially complicated because of the vast amount of empirical settings and

hyperparameters that are difficult to learn with SGD and usually need to be set by humans.

Without a known robust theory to precisely predict a model’s accuracy and guide the process,

a lot of the effects of the knobs and settings are difficult to gauge beforehand, and many of

them have highly non-linear effects. The art of choosing the exemplary model architecture and

tuning the hyperparameters is known as model selection. This process is iterative and heavily

based on trial and error. Data scientists typically need to try out the combinations of different

configurations and train one model for each configuration [258, 160]. In practice, hundreds

of models are not unheard of for model selection and are very time-consuming because each

model can take hours, if not days [86]. Therefore, end-to-end DL training is about more than

just getting one model trained as fast as possible; it is about the throughput of model selection.

2.4 Model Inference

Model inference refers to the process of using trained neural networks to make predictions

on new, unseen data. During inference, the model takes input data and produces predictions

without updating its model weights. Consequently, inference has much in common with training:

13

they typically share the same data pipeline and the forward pass portion of mini-batch SGD.

Despite the similarities, several unique challenges and considerations arise in this process. There

is a stringent demand for high runtime speed in real-world applications, especially those requiring

real-time responses, such as online services, video monitoring, and autonomous driving. On

the other hand, in the deployed environment, hardware may become the limiting factor as the

edge or IoT devices usually lack the computational power to run large and complex models.

However, with challenges also come opportunities; inference workloads typically have more

leeway regarding approximate processing. Therefore, the trade-offs between accuracy and

throughput become a constant theme. Last, there may be regulatory requirements for the

deployed models, especially in sensitive domains like healthcare or finance, when customer data

is involved. Adhering to privacy laws and data legislation is crucial for model inference systems.

2.5 DL on Database-resident Data

DL’s popularity leads to a growing demand for products that make it easier to adopt

DL, especially among enterprises [140]. However, large business-critical datasets typically

reside in DBMSs or other data systems and are not stored as loose files in data lakes, as most

custom DL frameworks assume. One may wonder if DL is useful for DBMS users, since DL is

primarily popular on unstructured data, while DBMSs mainly handle tabular data [157]. DBMSs

have long provided storage support for text, multimedia [226, 307], and other objects [33, 273].

Furthermore, due to the benefits of embedding learning and less feature engineering in DL [292,

283], many recent works in both research and enterprise applications show that DL is becoming

increasingly usable and effective even on structured data [181, 111, 284, 286, 192]. Multimodal

analytics combining structured and unstructured data are also popular and relevant for DB

users [26, 208, 189, 289]. Finally, DL’s “interpretability” pain, once a showstopper for some

enterprise users, is being actively mitigated by ML researchers [314, 63]. In the reality of ML

practice, data scientists do not think in an all-or-nothing manner; different model types, including

14

DL, are popular for different use cases. DL is an area that needs more attention from the database

community and will be discussed in detail in Chapter 4 and 5.

15

Chapter 3

CEREBRO: Multi-query Optimization for
High-throughput DL Model Selection at
Scale

3.1 Introduction

In this chapter, we will go over the many pains and challenges embedded in DL model

selection workloads, and propose our system CEREBRO to mitigate them. Our motivation for

this work came from our conversations and collaborations with domain researchers, and they

have utilized our system ever since.

Case Study. We present a real-world model selection scenario. Our public health

collaborators at UC San Diego wanted to try deep nets for identifying different activities (e.g.,

sitting, standing, stepping, etc.) of subjects from body-worn accelerometer data. The data was

collected from a cohort of about 600 people and is labeled. Its size is 864 GB. During model

selection, we tried different deep net architectures such as convolution neural networks (CNNs),

long short-term memory models (LSTMs), and composite models such as CNN-LSTMs, which

now offer state-of-the-art results for multivariate time-series classification [222, 148]. Our

collaborators also wanted to try different prediction window sizes (e.g., predictions generated

every 5 seconds vs. 15 seconds) and alternative target semantics (e.g., sitting–standing–stepping

16

or sitting vs. not sitting). The training process also involves tuning various hyper-parameters

such as learning rate and regularization coefficient.

In the above scenario it is clear that the model selection process generates dozens, if

not hundreds, of different models that need to be evaluated in order to pick the best one for the

prediction task. Due to the scale of the data and the complexity of the task, it is too tedious and

time-consuming to manually steer this process by trying models one by one. Parallel execution

on a cluster is critical for reasonable runtimes. Moreover, since our collaborators often changed

the time windows and output semantics for health-related analyses, we had to rerun the whole

model selection process over and over several times to get the best accuracy for their evolving

task definitions. Finally, reproducible model training is also a key requirement in such scientific

settings. All this underscores the importance of automatically scaling deep net model selection

on a cluster with high throughput.

Model Search/AutoML Procedures

Grid/Random

Search PBT HyperBand … ASHA

Distributed Data

Cerebro/MOP

Deep Learning Systems

Partition 1 Partition 2 Partition p…

Model Hopper Parallelism (Cerebro)
+ high throughput
+ high data scalability
+ low communication cost
+ no memory/storage wastage

Task Parallelism
+ high throughput
 - low data scalability
 - memory/storage wastage

Data Parallelism
+ high data scalability
 - low throughput
 - high communication cost

Task-Parallel Systems

Bulk
(Partitions)

Fine-grained
(Mini-batches)

Async.

Sync.

Data-Parallel Systems

Dask, Celery,
Vizier, Spark-

HyperOpt

Async. Param.
Server

Sync. Param.
Server,
Horovod

Spark or
TF Model
Averaging

MOP/CEREBRO
(This Work)

No Partitioning
(Full replication)

(A) (B) (C)

Figure 3.1. (A) Cerebro combines the advantages of both task- and data-parallelism. (B) System
design philosophy and approach of CEREBRO/MOP (introduced in [212]): “narrow waist”
architecture in which multiple model selection procedures and multiple deep learning tools are
supported–unmodified–for specifying/executing deep net computations. MOP is our novel
resource-efficient distributed SGD execution approach. (C) Model Hopper Parallelism (MOP) as
a hybrid approach of task- and data-parallelism. It is the first known form of bulk asynchronous
parallelism, filling a major gap in the parallel data systems literature.

System Desiderata. We have the following key desiderata for a deep net model selection

system:

1. Scalability. Deep learning often has large training datasets, larger than single-node

memory and sometimes even disk. Deep net model selection is also highly compute-

17

intensive. Thus, we desire out-of-the-box scalability to a cluster with large partitioned

datasets (data scalability) and distributed execution (compute scalability).

2. High Throughput. Regardless of manual grid/random searches or AutoML searches,

a key bottleneck for model selection is throughput: how many training configurations

are evaluated per unit time. Higher throughput enables ML users to iterate through more

configurations in bulk, potentially reaching a better accuracy sooner.

3. Overall Resource Efficiency. Deep net training uses variants of mini-batch stochastic

gradient descent (SGD) [43, 49, 51]. To improve efficiency, the model selection system

has to avoid wasting resources and maximize resource utilization for executing SGD on

a cluster. We have 4 key components of resource efficiency: (1) per-epoch efficiency:

time to complete an epoch of training; (2) convergence efficiency: time to reach a given

accuracy metric; (3) memory/storage efficiency: amount of memory/storage used by the

system; and (4) communication efficiency: amount of network bandwidth used by the

system. In cloud settings, compute, memory/storage, and network all matter for overall

costs because resources are pay-as-you-go; on shared clusters, which are common in

academia, wastefully hogging any resource is unethical.

4. Reproducibility. Ad hoc model selection with distributed training is a key reason for the

“reproducibility crisis” in deep learning [290]. While some Web giants may not care about

unreproducibility for some use cases, this is a showstopper issue for many enterprises due

to auditing, regulations, and/or other legal reasons. Most domain scientists also inherently

value reproducibility.

Limitations of Existing Landscape. We compared existing approaches to see how

well they cover the above desiderata. Unfortunately, each approach falls short on some major

desiderata, as we summarize next. Figure 3.3 and Section 3.2 present our analysis in depth.

18

1. False Dichotomy of Task- and Data-Parallelism. Prior work on model selection sys-

tems, primarily from the ML world, almost exclusively focus on the task-parallel set-

ting [176, 175, 130]. This ignores a pervasive approach to scale to large data on clusters:

data partitioning (sharding). A disjoint line of work on data-parallel ML systems do

consider partitioned data but focus on training one model at a time, not model selection

workloads [257, 177]. Model selection on partitioned datasets is important because parallel

file systems (e.g., HDFS for Spark), parallel RDBMSs, and “data lakes” typically store

large datasets in that manner.

2. Resource Inefficiencies. Due to the false dichotomy, naively combining the above

mentioned approaches could cause overheads and resource wastage (Section 3.2 explains

more). For instance, using task-parallelism on HDFS requires extra data movement

and potential caching, substantially wasting network and memory/storage resources. An

alternative is remote data storage (e.g., S3) and reading repeatedly at every iteration of SGD.

But this leads to orders of magnitude higher network costs by flooding the network with

lots of redundant data reads. On the other hand, data-parallel systems that train one model

at a time (e.g., Horovod [257] and Parameter Servers [177]) incur high communication

costs, leading to high runtimes.

Overall, we see a major gap between task- and data-parallel systems today, which leads to

substantially lower overall resource efficiency, i.e., when compute, memory/storage, and network

are considered holistically.

Our Proposed System We present CEREBRO, a new system for deep learning model

selection that mitigates the above issues with both task- and data-parallel execution. As Figure

3.1(A) shows, CEREBRO combines the advantages of both task- and data-parallelism, while

avoiding the limitations of each. It raises model selection throughput without raising resource

costs. Our target setting is small clusters (say, tens of nodes), which covers a vast majority (over

90%) of parallel ML workloads in practice [228]. We focus on the common setting of partitioned

19

Co
m

m
un

ic
at

io
n

Co
st

 p
er

 E
po

ch

Memory/storage Wastage

Parameter
Server

BSP

Task-Parallel w/ full remote reads**

(Controllable: Replication rate)
Higher

H
ig

he
r Horovod*

O
nc

e
pe

r
m

in
i-

ba
tc

h
O

nc
e

pe
r

pa
rt

it
io

n

No replica. Full replica.

MOP/Cerebro

Task-Parallel w/
full replication

(Controllable: Caching rate)

Figure 3.2. Conceptual comparison of MOP/CEREBRO with prior art on two key axes of
resource efficiency: communication cost per epoch and memory/storage wastage. Dashed line
means that approach has a controllable parameter. *Horovod uses a more efficient
communication mechanism than Parameter Server (PS), leading to a relatively lower
communication cost. **Task-Parallelism with full remote reads has varying communication
costs (higher or lower than PS) based on dataset size.

data on such clusters. Figure 3.1(B) shows the system design philosophy of CEREBRO: a

narrow-waist architecture inspired by [160] to support multiple AutoML procedures and deep

net frameworks.

Summary of Our Techniques. At the heart of CEREBRO is a simple but novel hybrid

of task- and data-parallelism we call model hopper parallelism (MOP) that fulfills all of our

desiderata. MOP is based on our insight about a formal optimization theoretic property of

SGD: robustness to the random ordering of the data. Figure 3.1(C) positions MOP against prior

approaches: it is the first known form of “Bulk Asynchronous” parallelism, a hybridization of the

Bulk Synchronous parallelism common in the database world and task-parallelism common in

the ML world. As Figure 3.2 shows, MOP has the network and memory/storage efficiency of BSP

but offers much better ML convergence behavior. Prior work has shown that the BSP approach

for distributed SGD (also called “model averaging”) has poor convergence behavior [90]. Overall,

considering all resources holistically–compute, memory/storage, and network–MOP can be the

resource-optimal choice in our target setting.

20

With MOP as its basis, CEREBRO devises an optimizing scheduler to efficiently execute

deep net model selection on small clusters. We formalize our scheduling problem as a mixed

integer linear program (MILP). We compare alternate candidate algorithms with simulations

and find that a simple randomized algorithm has surprisingly good performance on all aspects

(Section 3.5). We then extend our scheduler to support replication of partitions, fault tolerance,

and elasticity out of the box (Sections 3.5.5 and 3.5.6). Such systems-level features are crucial

for deep net model selection workloads, which can often run for days. We also weigh a hybrid of

CEREBRO with Horovod for model selection workloads with low degrees of parallelism. Overall,

this paper makes the following contributions:

• We present a new parallel SGD execution approach we call model hopper parallelism

(MOP) that satisfies all the desiderata listed earlier by exploiting a formal property of

SGD. MOP is applicable to any ML models trained with SGD. We focus primarily on

deep nets due to their growing popularity combined with the pressing issue of their

resource-intensiveness.

• We build CEREBRO, a general and extensible deep net model selection system using MOP.

CEREBRO can support arbitrary deep nets and data types, as well as multiple deep learning

tools and AutoML procedures. We integrate it with TensorFlow and PyTorch.

• We formalize the scheduling problem of CEREBRO and compare 3 alternatives (MILP

solver, approximate, and randomized) using simulations. We find that a randomized

scheduler works well in our setting.

• We extend CEREBRO to exploit partial data replication and also support fault tolerance

and elasticity.

• We perform extensive experiments on real model selection workloads with two large

benchmark ML datasets: ImageNet and Criteo. CEREBRO offers 3x to 10x runtime

21

gains over purely data-parallel systems and up to 8x memory/storage gains over purely

task-parallel systems. CEREBRO also exhibits linear speedup behavior.

Desiderata
Embarrassing

Task Parallelism
(e.g., Dask, Celery, Vizier)

Data Parallelism

Bulk Synchronous
(e.g., Spark, Greenplum)

Centralized Fine-grained
(e.g., Async Parameter Server)

Decentralized Fine-grained
(e.g., Horovod)

Reproducibility

Model Hopper
Parallelism
(Our Work)

Data Scalability

SGD Convergence
Efficiency

Per-Epoch
Efficiency

Memory/Storage
Efficiency

Yes

Highest

High

No (Full Replication)
Wasteful (Remote Reads)

Lowest

Yes

High

Lowest

Yes

High

No

Lowest

High

High

Yes

Yes

Yes

High

Low

Medium Highest

Yes

High

Yes

High

Figure 3.3. Qualitative comparisons of existing systems on key desiderata for a model selection
system.

3.2 Prior Art for Distributed Deep Learning Training

Most deep learning tools (e.g., TensorFlow) focus on the latency of training one model

at a time, not on throughput. A popular way to raise throughput is parallelism. Thus, various

multi-node parallel execution approaches have been studied. All of them fall short on some

desiderata, as Figure 3.3 shows. We group these approaches into 4 categories:

Embarrassingly Task Parallel. Tools such as Python Dask, Celery, Vizier [104], and

Ray [206] can run different training configurations on different workers in a task-parallel manner.

Each worker can use logically sequential SGD, which yields the best convergence efficiency.

This is also reproducible. There is no communication across workers during training, but the

whole dataset must be copied to each worker, which does not scale to large partitioned datasets.

Copying datasets to all workers is also highly wasteful of resources, both memory and storage,

which raises costs. Alternatively, one can use remote storage (e.g., S3) and read data remotely

every epoch. But such repeated reads wastefully flood the network with orders of magnitude

extra redundant data, e.g., see a realistic cost calculation in Table 3.2..

22

Bulk Synchronous Parallel (BSP). BSP systems such as Spark and TensorFlow with

model averaging [17] parallelize one model at a time. They partition the dataset across workers,

yielding high memory/storage efficiency. They broadcast a model, train models independently

on each worker’s partition, collect all models on the master, average the weights (or gradients),

and repeat this every epoch. Alas, this approach converges poorly for highly non-convex models;

so, it is almost never used for deep net training [263].

Centralized Fine-grained. These systems also parallelize one model at a time on

partitioned data but at the finer granularity of each mini-batch. The most prominent example is

Parameter Server (PS) [177]. PS is a set of systems for data-parallel ML. A typical PS consists

of servers and workers; servers maintain the globally shared model weights, while workers

compute SGD gradients on a locally stored data partition. Workers communicate with servers

periodically to update and retrieve model weights. Based on the nature of these communications,

PS has two variants: synchronous and asynchronous. Asynchronous PS is highly scalable but

unreproducible; it often has poorer convergence than synchronous PS due to stale updates but

synchronous PS has higher overhead for synchronization.

All PS-style approaches have high communication due to their centralized all-to-one

communications, which is proportional to the number of mini-batches and orders of magnitude

higher than BSP, e.g., 10,000x in Table 3.2.

Decentralized Fine-grained. The best example is Horovod [257]. It adopts HPC-style

techniques to enable synchronous all-reduce SGD. While this approach is bandwidth optimal,

communication latency is still proportional to the number of workers, and the synchronization

barrier can become a bottleneck. The total communication overhead is also proportional to the

number of mini-batches and orders of magnitude higher than BSP, e.g., 9,000x in Table 3.2.

23

Table 3.1. Notation used in Section 3.3

Symbol Description

S Set of training configurations

p Number of data partitions/workers

k Number of epochs for S to be trained

m Model size (uniform for exposition sake)

b Mini-batch size

D Training dataset (⟨D⟩ : dataset size, |D| : number of examples)

3.3 Model Hopper Parallelism

We first explain how MOP works and its properties. Table 3.1 presents some notation.

We also theoretically compare the communication costs of MOP and prior approaches.

3.3.1 Basic Idea of MOP

We are given a set S of training configurations (“configs” for short). For simplicity of

exposition, assume for now each runs for k epochs–we relax this later1. Shuffle the dataset once

and split into p partitions, with each partition located on one of p worker machines. Given these

inputs, MOP works as follows. Pick p configs from S and assign one per worker (Section 3.5

explains how we pick the subset). On each worker, the assigned config is trained on the local

partition for a single sub-epoch, which we also call a training unit. Completing a training unit

puts that worker back to the idle state. An idle worker is then assigned a new config that has not

already been trained and also not being currently trained on another worker. Overall, a model

“hops” from one worker to another after a sub-epoch. Repeat this process until all configs are

trained on all partitions, completing one epoch for each model. Repeat this every epoch until all

configs in S are trained for k epochs. The invariants of MOP can be summarized as follows:

1Section 4.2 (Supporting Multiple AutoML Procedures) explains further how CEREBRO can support different
configs being trained for different numbers of epochs.

24

• Completeness: In a single epoch, each training config is trained on all workers exactly

once.

• Model training isolation: Two training units of the same config are not run simultaneously.

• Worker/partition exclusive access: A worker executes only one training unit at a time.

• Non-preemptive execution: An individual training unit is run without preemption once

started.

Insights Underpinning MOP. MOP exploits a formal property of SGD: any random

ordering of examples suffices for convergence [43, 49]. Each of the p configs visits the data

partitions in a different (pseudorandom) yet in sequential order. Thus, MOP offers high accuracy

for all models, comparable to sequential SGD. While SGD’s robustness has been exploited

before in ML systems, e.g., in Parameter Server [177], MOP exploits it at the partition level

instead of at the mini-batch level to reduce communication costs. This is possible because we

connect this property with model selection workloads instead of training one model at a time.

Positioning MOP. As Figure 3.1(C) shows, MOP is a new hybrid of task- and data-

parallelism that is a form of “bulk asynchronous” parallelism. Like task-parallelism, MOP trains

many configs in parallel but like BSP, it runs on partitions. So, MOP is more fine-grained than

task parallelism but more coarse-grained than BSP. MOP has no global synchronization barrier

within an epoch. Later in Section 3.5, we dive into how CEREBRO uses MOP to schedule S

efficiently and in a general way. Overall, while the core idea of MOP is simple–perhaps even

obvious in hindsight–it has hitherto not been exploited in its full generality in ML systems.

Reproducibility. MOP does not restrict the visit ordering. So, reproducibility is trivial

in MOP: log the worker visit order for each configuration per epoch and replay with this order.

Crucially, this logging incurs very negligible overhead because a model hops only once per

partition, not for every mini-batch, at each epoch.

25

Table 3.2. Communication cost analysis of MOP and other approaches. ⋆Full replication.
†Remote reads. ‡Parameters for the example: k = 20, |S| = 20, p = 10, m = 1GB, ⟨D⟩ = 1TB, and
|D|/b = 100K.

Comm. Cost Example‡

Model Hopper Parallelism kmp|S|+m|S| 4 TB

Task Parallelism (FR⋆) p⟨D⟩+m|S| 10 TB
Task Parallelism (RR†) k|S|⟨D⟩+m|S| 400 TB

Bulk Synchronous Parallelism 2kmp|S| 8 TB

Centralized Fine-grained 2kmp|S|
⌈
|D|
bp

⌉
80 PB

Decentralized Fine-grained 2km(p−1)|S|
⌈
|D|
bp

⌉
72 PB

3.3.2 Communication Cost Analysis

We summarize the communication costs of MOP and other approaches in Table 3.2. It

also illustrates the communication costs in bytes for a realistic example based on our case study

in Section 3.1. MOP reaches the theoretical minimum cost of kmp|S|. Crucially, note that this

cost does not depend on batch size, which underpins MOP’s higher efficiency. BSP also has the

same asymptotic cost but unlike MOP, BSP typically converges poorly for deep nets and lacks

sequential-equivalence. Fine-grained approaches like PS and Horovod have communication

costs proportional to the number of mini-batches, which can be orders of magnitude higher. In

our setting, p is under low 10s, but the number of mini-batches can even be 1000s to millions

based on the batch size.

3.4 System Overview

We present an overview of CEREBRO, an ML system that uses MOP to execute deep net

model selection workloads.

26

3.4.1 User-facing API

CEREBRO API allows users to do 2 things: (1) register workers and data; and (2) issue

a deep net model selection workload. Workers are registered by IP addresses. As for datasets,

CEREBRO expects a list of data partitions and their availability on each worker. We assume

shuffling and partitioning are already handled by other means, since these are well studied. This

common data ETL step is also orthogonal to our focus and is not a major part of the total runtime

for iterative deep net training.

CEREBRO takes the reference to the dataset, set of initial training configs, the AutoML

procedure, and 3 user-defined functions: input f n, model f n, and train f n. It first invokes

input f n to read and pre-process the data. It then invokes model f n to instantiate the neural

architecture and potentially restore the model state from a previous checkpointed state. The

train f n is invoked to perform one sub-epoch of training. We assume validation data is also

partitioned and use the same infrastructure for evaluation. During evaluation, CEREBRO marks

model parameters as non-trainable before invoking train f n. We also support higher-level API

methods for AutoML procedures that resemble the popular APIs of Keras [227]. Note that

model f n is highly general, i.e., CEREBRO supports all neural computational graphs on all data

types supported by the underlying deep learning tool, including CNNs, RNNs, transformers, etc.

on structured data, text, images, video, etc. Due to space constraints, more details of our APIs,

including full method signatures and a fleshed out example of how to use CEREBRO are provided

in the appendix of our technical report [317].

3.4.2 System Architecture

We adopt an extensible architecture, as Figure 3.4 shows. This allows us to easily support

multiple deep learning tools and AutoML procedures. There are 5 main components: (1) API, (2)

Scheduler, (3) Task Executor, (4) Catalog, and (5) Resource Monitor. Scheduler is responsible

for orchestrating the entire workload. It relies on worker and data availability information from

27

Cerebro API

Data
Catalog

Resource
 Catalog

Resource
Monitor

Model
Hopper

Scheduler

Task Executor

Task
Launcher

Hyperband

Grid Search

TensorFlow
Handler

PyTorch Handler

PBT

Cluster

Interactions

Invokes

Flow of data, results,
and information

(1) Register workers and data

(2) Launch model selection workload

 and get results

Catalog

Extensible Components

Figure 3.4. System architecture of CEREBRO.

the Catalog. Task Executor launches training units on the cluster and also handles model hops.

Resource Monitor is responsible for detecting worker failures and updating the Resource Catalog.

Section 3.5 explains how the Scheduler works and how we achieve fault tolerance and elasticity.

Next, we describe how CEREBRO’s architecture enables high system generality.

Model
Config A B C D E

Runtime 6 3 3 3 6

A

B D

C E

1

2

3

1 2 3 4 5 6 7 8 9

W
or

ke
r B E C D A

A C B E D

C D B E A

1 2 3 4 5 6 7 8 9

A B C D E

B D C E A

C E A B D

1 2 3 4 5 6 7 8 9
(A) Per-epoch runtimes (B) An optimal task-parallel schedule (C) A non-optimal MOP schedule (D) An optimal MOP schedule

Figure 3.5. Gantt charts of task-parallel and MOP schedules for a sample model selection
workload.

Supporting Multiple Deep Learning Tools. The functions input f n, model f n, and

train f n are written by users in the deep learning tool’s APIs. We currently support TensorFlow

and PyTorch (it is simple to add support for more). To support multiple such tools, we adopt a

handler-based architecture to delineate tool-specific aspects: model training, checkpointing and

restoring. Note that checkpointing and restoring is how CEREBRO realizes model hops. Task

Executor automatically injects the tool-specific aspects from the corresponding tool’s handler

28

and runs these functions on the workers. Overall, CEREBRO’s architecture is highly general and

supports virtually all forms of data types, deep net architectures, loss functions, and SGD-based

optimizers.

Supporting Multiple AutoML Procedures. Metaheuristics called AutoML procedures

are common for exploring training configs. We now make a key observation about such proce-

dures that underpins our Scheduler. Most AutoML procedures fit a common template: create an

initial set of configs (S) and evaluate them after each epoch (or every few epochs). Based on the

evaluations, terminate some configurations (e.g., as in Hyperband [176] and PBT [130]) or add

new configurations (e.g., as in PBT). Grid/random search is a one-shot instance of this template.

Thus, we adopt this template for our Scheduler. Given S, CEREBRO trains all models in S for

one epoch and passes control back to the corresponding AutoML procedure for convergence/ter-

mination/addition evaluations. CEREBRO then gets a potentially modified set S′ for the next

epoch. This approach also lets CEREBRO support data re-shuffling after each epoch. But the

default (and common practice) is to shuffle only once upfront. Grid/random search (perhaps the

most popular in practice), Hyperband, and PBT (and more procedures) conform to this common

template and are currently supported.

ASHA [175] and Hyperopt [41] are two notable exceptions to the above template, since

they do not have a global synchronized evaluation of training configs after an epoch and are

somewhat tied to task-parallel execution. While MOP/CEREBRO cannot ensure logically same

execution as ASHA or HyperOpt on task-parallelism, it is still possible to emulate them on

MOP/CEREBRO without any modifications to our system. In fact, our experiments with ASHA

show that ASHA on CEREBRO has comparable–even slightly better!–convergence behavior than

ASHA on pure task-parallelism (Section 3.6.3).

3.4.3 System Implementation Details

We prototype CEREBRO in Python using XML-RPC client-server package. Scheduler

runs on the client. Each worker runs a single service. Scheduling follows a push-based model–

29

Table 3.3. Additional notation used in the MOP MILP formulation

Symbol Description

T ∈ IR|S|×p Ti, j is the runtime of unit si, j (ith configuration on jth worker)

C Makespan of the workload

X ∈ IR|S|×p Xi, j is the start time of the execution of ith configuration on jth partition/-
worker

Y ∈ {0,1}|S|×p×p Yi, j, j′ = 1⇐⇒ Xi, j < Xi, j′

Z ∈ {0,1}|S|×|S|×p Zi,i′, j = 1⇐⇒ Xi, j < Xi′, j

V Very large value (Default: sum of training unit runtimes)

Scheduler assigns tasks and periodically checks the responses from the workers. We use a

shared network file system (NFS) as the central repository for models. Model hopping is

realized implicitly by workers writing models to and reading models from this shared file system.

Technically, this doubles the communication cost of MOP to 2kmp|S|, still a negligible overhead.

Using NFS greatly reduces engineering complexity to implement model hops.

3.5 Cerebro Scheduler

Scheduling training units on workers properly is critical because pathological order-

ings can under-utilize resources substantially, especially when deep net architectures and/or

workers are heterogeneous. Consider the model selection workload shown in Figure 3.5(A).

Assume workers are homogeneous and there is no data replication. For one epoch of training,

Figure 3.5(B) shows an optimal task-parallel schedule for this workload with a 9-unit makespan.

Figure 3.5(C) shows a non-optimal MOP schedulewith also 9 units makespan. But as Fig-

ure 3.5(D) shows, an optimal MOP schedule has a makespan of only 7 units. Overall, we see

that MOP’s training unit-based scheduling offers more flexibility to raise resource utilization.

Next, we formally define the MOP-based scheduling problem and explain how we design our

Scheduler.

30

3.5.1 Formal Problem Statement as MILP

Suppose the runtimes of each training unit, aka unit times, are given. These can be

obtained with, say, a pilot run for a few mini-batches and then extrapolating (this overhead will

be marginal). For starters, assume each of the p data partitions is assigned to only one worker.

The objective and constraints of the MOP-based scheduling problem is as follows. Table 3.3 lists

the additional notation used here.

Objective: min
C,X ,Y,Z

C (3.1)

Constraints:

∀i, i′ ∈ [1, . . . , |S|] ∀ j, j′ ∈ [1, . . . , p]

(a) Xi, j ≥ Xi, j′+Ti, j′−V ·Yi, j, j′

(b) Xi, j′ ≥ Xi, j +Ti, j−V · (1−Yi, j, j′)

(c) Xi, j ≥ Xi′, j +Ti′, j−V ·Zi,i′, j

(d) Xi′, j ≥ Xi, j +Ti, j−V · (1−Zi,i′, j)

(e) Xi, j ≥ 0

(f) C ≥ Xi, j +Ti, j

(3.2)

We need to minimize makespan C, subject to the constraints on C, unit start times X ,

model training isolation matrix Y , and worker/partition exclusive access matrix Z. The constraints

enforce some of the invariants of MOP listed in Section 3.3. Equations 2.a and 2.b ensure model

training isolation. Equations 2.c and 2.d ensure worker exclusive access. Equation 2.e ensures

that training unit start times are non-negative and Equation 2.f ensures that C captures the time

taken to complete all training units.

31

Given the above, a straightforward approach to scheduling is to use an MILP solver like

Gurobi [112]. The start times X then yield the actual schedule. But our problem is essentially an

instance of the classical open-shop scheduling problem, which is known to be NP-Hard [107].

Since |S| can even be 100s, MILP solvers may be too slow (more in Section 3.5.4); thus, we

explore alternative approaches.

3.5.2 Approximate Algorithm-based Scheduler

For many special cases, there are algorithms with good approximation guarantees that can

even be optimal under some conditions. One such algorithm is “vector rearrangement” [293, 94].

It produces an optimal solution when |S| ≫ p, which is possible in our setting.

The vector rearrangement based method depends on two values: Lmax (see Equation 3.3),

the maximum load on any worker; and Tmax (see Equation 3.4), the maximum unit time of any

training configuration in S.

Lmax = max
j∈[1,...,p]

|S|

∑
i=1

Ti, j (3.3)

Tmax = max
i∈[1,...,|S|], j∈[1,...,p]

Ti, j (3.4)

If Lmax ≥ (p2 + p−1) ·Tmax, this algorithm’s output is optimal. When there are lots of

configs, the chance of the above constraint being satisfied is high, yielding us an optimal schedule.

But if the condition is not met, the schedule produced yields a makespan C ≤C∗+(p−1) ·Tmax,

where C∗ is the optimal makespan value. This algorithm scales to large |S| and p because it runs

in polynomial time in contrast to the MILP solver. For more details on this algorithm, we refer

the interested reader to [293, 94].

3.5.3 Randomized Algorithm-based Scheduler

The approximate algorithm is complex to implement in some cases, and its optimality

condition may be violated often. Thus, we now consider a much simpler scheduler based on

32

Algorithm 1. Randomized Scheduling
1: Input: S
2: Q = {si, j : ∀i ∈ [1, . . . , |S|],∀ j ∈ [1, . . . , p]}
3: worker idle← [true, . . . ,true]
4: model idle← [true, . . . ,true]
5: while not empty(Q) do
6: for j ∈ [1, . . . , p] do
7: if worker idle[j] then
8: Q← shuffle(Q)
9: for si, j′ ∈ Q do

10: if model idle[i] and j′ = j then
11: Execute si, j′ on worker j
12: model idle[i]← false

13: worker idle[j]← false

14: remove(Q,si, j′)
15: break

16: wait WAIT TIME

Algorithm 2. When si, j finishes on worker j

1: model idle[i]← true

2: worker idle[j]← true

randomization. This approach is simple to implement and offer much more flexibility (explained

more later). Algorithm 1 presents our randomized scheduler.

Given S, create Q = {si, j : ∀i ∈ [1, ..., |S|], j ∈ [1, .., p]}, the set of all training units. Note

that si, j is the training unit of configuration i on worker j. Initialize the state of all models and

workers to idle state. Then find an idle worker and schedule a random training unit from Q on

it. This training unit must be such that its configuration is not scheduled on another worker and

it corresponds to the data partition placed on that worker (Line 10). Then remove the chosen

training unit from Q. Continue this process until no worker is idle and eventually, until Q is

empty. After a worker completes training unit si, j mark its model i and worker j as idle again as

per Algorithm 2.

33

M
ak

es
pa

n
Sc

he
d.

 T
im

e
(s

)

Cluster Size

A
16 Configs
Homo. cluster and configs

256 Configs
B
16 Configs

Hetero. cluster and configs
256 Configs

Cluster Size

MILP
Approximate
Randomized

Figure 3.6. Scheduler runtimes and makespans of the schedules produced in different settings.
Makespans are normalized with respect to that of Randomized. (A) Homogeneous cluster and
homogeneous training configs. (B) Heterogeneous cluster and heterogeneous training configs.

3.5.4 Comparing Different Scheduling Methods

We use simulations to compare the efficiency and makespans yielded by the three

alternative schedulers. The MILP and approximate algorithm are implemented using Gurobi.

We set a maximum optimization time of 5min for tractability sake. We compare the scheduling

methods on 3 dimensions: 1) number of training configs (two values: 16 and 256), 2) number of

workers (two values: 8 and 16), 3) homogeneity/heterogeneity of configs and workers.

Sub-epoch training time (unit time) of a training config is directly proportional to the

compute cost of the config and inversely proportional to compute capacity of the worker. For

the homogeneous setting, we initialize all training config compute costs to be the same and also

all worker compute capacities to be the same. For the heterogeneous setting, training config

compute costs are randomly sampled (with replacement) from a set of popular deep CNNs

(n=35) obtained from [27]. The costs vary from 360 MFLOPS to 21000 MFLOPS with a mean

of 5939 MFLOPS and standard deviation of 5671 MFLOPS. Due to space constraints we provide

34

these computational costs in the Appendix of our technical report [317]. For worker compute

capacities, we randomly sample (with replacement) compute capacities from 4 popular Nvidia

GPUs: Titan Xp (12.1 TFLOPS/s), K80 (5.6 TFLOPS/s), GTX 1080 (11.3 TFLOPS/s), and P100

(18.7 TFLOPS/s). For each setting, we report the average of 5 runs with different random seeds

set to the scheduling algorithms and also the min and max of all 5 runs. All makespans reported

are normalized by the randomized scheduler’s makespan.

The MILP scheduler sometimes performs poorer than the other two because it has not

converged to the optimal in the given time budget. The approximate scheduler performs poorly

when both the configs and workers are heterogeneous. It is also slower than the randomized

scheduler.

Overall, the randomized approach works surprisingly well on all aspects: near-optimal

makespans with minimal variance across runs and very fast scheduling. We believe this inter-

esting superiority of the randomized algorithm against the approximation algorithm is due to

some fundamental characteristics of deep net model selection workloads, e.g., large number

of configurations and relatively low differences in compute capacities. We leave a thorough

theoretical analysis of the randomized algorithm to future work. Based on these results, we use

the randomized approach as the default Scheduler in CEREBRO.

3.5.5 Replica-Aware Scheduling

So far we assumed that a partition is available on only one worker. But some file systems

(e.g., HDFS) often replicate data files, say, for reliability sake. We now exploit such replicas for

more scheduling flexibility and faster plans.

The replica-aware scheduler requires an additional input: availability information of

partitions on workers (an availability map). In replica-aware MOP, a training configuration need

not visit all workers. This extension goes beyond open shop scheduling, but it is still NP-Hard

because the open shop problem is a special case of this problem with a replication factor of one.

We extended the MILP scheduler but it only got slower. So, we do not use it and skip its details.

35

Modifying the approximate algorithm is also non-trivial because it is tightly coupled to the open

shop problem; so, we skip that too. In contrast, the randomized scheduler can be easily extended

for replica-aware scheduling. The only change needed to Algorithm 1 is in Line 10: instead of

checking j′ = j, consult the availability map to check if the relevant partition is available on that

worker.

3.5.6 Fault Tolerance and Elasticity

We now explain how we make our randomized scheduler fault tolerant. Instead of just Q,

we maintain two data structures Q and Q′. Q′ is initialized to be empty. The process in Algorithm

1 continues until both Q and Q′ are empty. When a training unit is scheduled, it will be removed

from Q as before but now also added to Q′. It will be removed from Q′ when it successfully

completes its training on the assigned worker. But if the worker fails before the training unit

finishes, it will be moved back from Q′ to Q. If the data partitions present on the failed worker

are also available elsewhere, the scheduler will successfully execute the corresponding training

units on those workers at a future iteration of the loop in Algorithm 1.

CEREBRO detects failures via the periodic heart-beat check between the scheduler and

workers. Because the trained model states are always checkpointed between training units, they

can be recovered and the failed training units can be restarted. Only the very last checkpointed

model is needed for the failure recovery and others can be safely deleted for reclaiming storage.

The same mechanism can be used to detect availability of new compute resources and support

seamless scale-out elasticity in CEREBRO.

3.5.7 Extension: Horovod Hybrid

Some AutoML procedures (e.g., Hyperband) start with large |S| but then kill some non-

promising configs after some epochs. So, only a few configs may train till convergence. This

means at the later stages, we may encounter a situation where |S| goes below p. In such cases,

CEREBRO can under-utilize the cluster. To overcome this limitation, we explored the possibility

36

Table 3.4. Dataset details. All numbers are after preprocessing and sampling of the datasets.

Dataset On-disk size Count Format Class

ImageNet 250 GB 1.2M HDF5 1000
Criteo 400 GB 100M TFRecords Binary

of doubly hybridizing MOP with data-parallelism by implementing a hybrid of CEREBRO and

Horovod. Just like CEREBRO, Horovod is also equivalent to sequential SGD; so, the hybrid

is reproducible. The basic idea is simple: divide the cluster into virtual sub-clusters and run

Horovod within each sub-cluster and MOP across sub-clusters. Due to space constraints, we

explain this hybrid architecture further in Appendix A.

3.6 Experimental Evaluation

We empirically validate if CEREBRO can improve overall throughput and efficiency

of deep net model selection. We then evaluate CEREBRO in depth. Finally, we demonstrate

CEREBRO’s ability to support multiple AutoML procedures.

Datasets. We use two large benchmark datasets: ImageNet [78] and Criteo [73]. Im-

ageNet is a popular image classification dataset. We choose the 2012 version and reshape

the images to 112×112 pixels2. Criteo is an ad click classification dataset with numeric and

categorical features. It is shipped under sparse representation. We one-hot encode the categorical

features and densify the data. Only a 2.5% random sample of the dataset is used2. Table 3.4.

summarizes the dataset statistics.
2We made this decision only so that all of our experiments can complete in reasonable amount of time. This

decision does not alter the takeaways from our experiments.

37

System

ImageNet Criteo

Runtime
(hrs)

GPU
Utili.

(%)

Storage
Footprint

(GB)
Runtime

(hrs)
CPU
Utili.

(%)

Storage
Footprint

(GB)

TF PS -
Async 19.00 8.6 250 28.80 6.9 400

Horovod 5.42 92.1 250 14.06 16.0 400

TF Model
Averaging 1.97 72.1 250 3.84 52.2 400

Celery 1.72 82.4 2000 3.95 53.6 3200

Cerebro 1.77 79.8 250 3.40 51.9 400

(A) Per-epoch makespans and CPU/GPU utilization.

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

40

55

70

85

100

Epoch
1 2 3 4 5 6 7 8 9 10

TF Model Averaging Cerebro Horovod
TF Parameter Server - Async. Celery

(B) Learning curves of the resp. best configs on ImageNet.

Figure 3.7. End-to-end results on ImageNet and Criteo. For Celery, we report the runtime
corresponding to the lowest makespan schedule. Celery’s per-epoch runtime varies between
1.72-2.02 hours on ImageNet; on Criteo, 3.95-5.49 hours. Horovod uses GPU kernels for
communication; hence its high GPU utilization.

Workloads. For our first end-to-end test, we use two different neural architectures and

grid search for hyper-parameters, yielding 16 training configs for each dataset. Table 3.5 offers

38

Table 3.5. Workloads.⋆architectures similar to VGG16 and ResNet50. †Serialized sizes.

Dataset Model arch. Model size/MB† Batch size Learning rate Regularization Epochs

ImageNet
{VGG16⋆,

ResNet50⋆}
VGG16: 792,

ResNet50: 293 {32, 256} {10−4, 10−6} {10−4, 10−6} 10

Criteo 3-layer NN 179
{32, 64,

256, 512} {10−3, 10−4} {10−4, 10−5} 5

the details. We use Adam [149] as our SGD method. To demonstrate generality, we also present

results for HyperOpt and ASHA on CEREBRO in Section 3.6.3.

Experimental Setup. We use two clusters: CPU-only for Criteo and GPU-enabled for

ImageNet, both on CloudLab [246]. Each cluster has 8 worker nodes and 1 master node. Each

node in both clusters has two Intel Xeon 10-core 2.20 GHz CPUs, 192GB memory, 1TB HDD

and 10 Gbps network. Each GPU cluster worker node has an extra Nvidia P100 GPU. All nodes

run Ubuntu 16.04. We use TensorFlow v1.12.0 as CEREBRO’s underlying deep learning tool. For

GPU nodes, we use CUDA version 9.0 and cuDNN version 7.4.2. Both datasets are randomly

shuffled and split into 8 equi-sized partitions.

3.6.1 End-to-End Results

We compare CEREBRO with 5 systems: 4 data-parallel–synchronous and asynchronous

TensorFlow Parameter Server, Horovod, BSP-style TensorFlow model averaging–and 1 task-

parallel (Celery). For Celery, we replicate datasets to each worker beforehand and stream them

from disk, since they do not fit in memory. I/O time is trivial for deep nets, where computation

dominates; thus, they can be interleaved. We use TensorFlow features to achieve this. For all other

systems, each worker node has one in-memory data partition. We do not include data copying

in the end-to-end runtimes. For scheduling, Celery uses a FIFO queue and CEREBRO uses the

randomized scheduler. All other systems train models sequentially.

Figure 3.7 presents the results. CEREBRO significantly improves the efficiency and

throughput of model selection. On ImageNet, CEREBRO is over 10x faster than asynchronous PS,

which has a GPU utilization as low as 9%! Synchronous PS was even slower. CEREBRO is 3x

39

faster than Horovod. Horovod has high GPU utilization because it uses GPU for communication.

CEREBRO’s runtime is comparable to model averaging, which is as expected. But note model

averaging converges poorly. Celery’s runtime is dependent on the execution order and thus we

report the runtime on the optimal schedule. On ImageNet, Celery’s runtime is comparable to

CEREBRO. But note that Celery has a highly bloated 8x memory/storage footprint. Overall,

Celery and CEREBRO have the best learning curves–this is also as expected because MOP

ensures sequential equivalence for SGD, just like task-parallelism. Horovod converges slower

due to its larger effective mini-batch size.

On Criteo, CEREBRO is 14x faster than synchronous PS and 8x faster than asynchronous

PS. Both variants of PS report severe CPU under-utilization (< 7%). CEREBRO is also 4x

faster than Horovod. CEREBRO’s runtime is comparable to model averaging, with about 52%

CPU utilization. Celery is somewhat slower than CEREBRO due to a straggler issue caused by

the highly heterogeneous model configs for Criteo. CEREBRO’s MOP approach offers higher

flexibility to avoid such straggler issues. A more detailed explanation is given in the appendix of

our technical report [317]. All methods have almost indistinguishable convergence behavior on

this dataset: all reached 99% accuracy quickly, since the class label is quite skewed.

Overall, CEREBRO is the most resource-efficient approach when compute, memory/stor-

age, and network are considered holistically. It also has the best accuracy behavior, on par with

task-parallelism.

3.6.2 Drill-down Experiments

Unless specified otherwise, we now show experiments on the GPU cluster, ImageNet, and

a model selection workload of 8 configs (4 learning rates, 2 regularization values, and ResNet

architectures) trained for 5 epochs. Each data partition is placed on only one worker.

Scalability. We study the speedups (strong scaling) of CEREBRO and Horovod as we

vary the cluster sizes. Figure 3.8(A) shows the speedups, defined as the workload completion

time on multiple workers vs a single worker. CEREBRO exhibits linear speedups due to MOP’s

40

Cluster Size

(A) Speedup (Strong Scaling)

Epoch

(B) Fault Tolerance
Sp

ee
du

p
Ag

ai
ns

t 1
 W

or
ke

r

Pe
r-E

po
ch

 T
im

e
(m

in
ut

es
)

W2 Fails

W1 Fails W1 Recovers

W2 Recovers

1 2 4 8
1
2
3
4
5
6
7
8
9

1 2 4 53
26
28
30
32
34
36
38
40

Figure 3.8. (A) Speedup plot (strong scaling). (B) Fault-tolerance.

marginal communication costs; in fact, it seems slightly super-linear here because the dataset fits

entirely in cluster memory compared to the minor overhead of reading from disk on the single

worker. In contrast, Horovod exhibits substantially sub-linear speedups due to its much higher

communication costs with multiple workers.

Fault Tolerance. We repeat our drill-down workload with a replication factor of 3. We

first inject two node failures and bring the nodes back online later. Figure 3.8(B) shows the

time taken for each epoch and the points where the workers failed and returned online. Overall,

we see CEREBRO’s replica-aware randomized scheduler can seamlessly execute the workload

despite worker failures.

Batch Size Batch Size

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Validation Error

Va
lid

at
io

n
er

ro
r a

t 1
0

ep
oc

hs
 (%

)

Figure 3.9. Effect of batch size on communication overheads and convergence efficiency. (A)
Runtime against batch size. (B) The lowest validation error after 10 epochs against batch size.

Effect of Batch Size. We now evaluate the effect of training mini-batch size for CERE-

BRO and Horovod. We evaluate 5 batch sizes and report makespans and the validation error of the

41

best model for each batch size after 10 epochs. Figure 3.9 presents the results. With batch size

32, Horovod is 2x slower than CEREBRO. However, as the batch size increases, the difference

narrows since the relative communication overhead per epoch decreases. CEREBRO also runs

faster with larger batch size due to better hardware utilization. The models converge slower as

batch size increases. The best validation error is achieved by CEREBRO with a batch size of 32.

With the same setting, Horovod’s best validation error is higher than CEREBRO; this is because

its effective batch size is 256 (32×8). Horovod’s best validation error is closer to CEREBRO’s at

a batch size of 256. Overall, CEREBRO’s efficiency is more stable to the batch size, since models

hop per sub-epoch, not per mini-batch.

Network and Storage Efficiency. We study the tradeoff between redundant remote

reads (wastes network) vs redundant data copies across workers (wastes memory/storage).

Task parallelism forces users to either duplicate the dataset to all workers or store it in a

common repository/distributed filesystem and read remotely. CEREBRO can avoid both forms of

resource wastage. We assume the whole dataset cannot fit on single-node memory. We compare

CEREBRO and Celery in the following 2 settings:

Reading from remote storage (e.g., S3). In this setting, Celery reads data from a remote

storage repeatedly each epoch. For CEREBRO each worker remotely reads one data partition

and caches it. We change the data scale to evaluate effects on the makespan and the amount of

remote reads. Figure 3.10 shows the results. Celery is slightly slower than CEREBRO due to

remote read overheads. The most significant advantage of CEREBRO is its network bandwidth

cost, which is over 10x lower than Celery’s. After the initial read, CEREBRO only communicates

models weights during training. In situations where reads and networks are not free (e.g., cloud

providers), Celery will incur higher monetary costs than CEREBRO. These results show it is

perhaps better to partition the dataset on S3, cache partitions on workers on the first read, and

then run CEREBRO instead of Celery with full dataset reads from S3 per epoch to avoid copying.

Reading from distributed storage (e.g., HDFS). In this setting, the dataset is partitioned,

replicated, and stored on 8 workers. We then load all local data partitions into each worker’s

42

Data Scale Data ScaleDa
ta

 re
ad

 b
y

a
w

or
ke

r (
G

B)

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Network Cost

Figure 3.10. Reading data from remote storage.

Replication Factor Replication FactorDa
ta

 re
ad

 b
y

a
w

or
ke

r (
G

B)

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Network Cost

Figure 3.11. Reading data from distributed storage.

memory. Celery performs remote reads for non-local partitions. We vary the replication factor to

study its effect on the makespan and the number of remote reads. Figure 3.10 presents the results.

For replication factors 1 (no replication), 2, and 4, CEREBRO incurs 100x less network usage and

is slightly faster than Celery. But at a replication factor of 8 (i.e., full replication), CEREBRO is

slightly slower due to the overhead of model hops. For the same reason, CEREBRO incurs

marginal network usage, while Celery has almost no network usage other than control actions.

Note that the higher the replication factor for Celery, the more memory/storage is wasted.

CEREBRO offers the best overall resource efficiency–compute, memory/storage, and network put

together–for deep net model selection.

Experiments with Horovod Hybrid. Our experiment with the Horovod Hybrid gave

an anti-climactic result: the intrinsic network overheads of Horovod meant the hybrid is often

slower than regular CEREBRO with some workers being idle! We realized that mitigating this

43

Table 3.6. Parameter grid used to randomly sample configuration for Section 3.6.3.

Values sampled from

Model [ResNet18, ResNet34]
Learning rate [10−5, . . . , 10−1]
Weight decay coefficient [10−5, . . . , 10−1]
Batch size [16, . . . , 256]

issue requires more careful data repartitioning. We deemed this complexity as perhaps not worth

it. Instead, we propose a simpler resolution: if |S| falls below p but above p/2, use CEREBRO; if

|S| falls below p/2, just switch to Horovod. This switch incurs no extra overhead. Due to space

constraints, we skip the details here and explain this experiment further in Appendix A.

3.6.3 Experiments with AutoML Procedures

We experiment with two popular AutoML procedures: HyperOpt [41] and ASHA [175].

For HyperOpt, we compare CEREBRO and Spark as the execution backends. Spark is a backend

supported natively by HyperOpt; it distributes only the models, i.e., it is task-parallel on fully

replicated data. For ASHA, we compare CEREBRO and Celery as the execution backends. We

use ImageNet, GPU cluster, and PyTorch. Training configs are sampled from the grid shown in

Table 3.6. For CEREBRO data is partitioned without replication; for Spark and Celery the dataset

is fully replicated.

Both HyperOpt and ASHA keep exploring different configs until a resource limit is

reached. For HyperOpt, this limit is the maximum number of configs; for ASHA, it is the

maximum wall-clock time. During the exploration HyperOpt uses Bayesian sampling to generate

new configs; ASHA uses random sampling. For both methods, the generated configs are

dependent on the completion order of configs across task-parallel workers. Thus, it is impossible

for CEREBRO to exactly replicate HyperOpt or ASHA ran with task-parallelism. However, we

can closely emulate HyperOpt and ASHA on CEREBRO by making the number of simultaneously

44

trained configs (|S|) equal to the number of workers (p) and without making any changes to

CEREBRO.

Time (Hours) Time (Hours)

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (A) HyperOpt on Spark (B) HyperOpt on Cerebro

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)
Figure 3.12. HyperOpt learning curves by time.

HyperOpt. We run an experiment using HyperOpt with a max config budget of 32. We

train each config for 10 epochs. With this configuration, HyperOpt on CEREBRO (resp. Spark)

took 31.8 (resp. 25.9) hours. Figure 3.12 shows all learning curves. We found that the slightly

higher (23%) runtime of CEREBRO is mainly due to the lower degree of parallelism (|S|= 8).

However, this issue can be mitigated by increasing the number of simultaneously trained configs.

Although individual configs are not comparable across the two systems, the best errors achieved

are close (34.1% on CEREBRO; 33.2% on Celery).

Hours

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (B) ASHA on Cerebro

Hours

(A) ASHA on Celery

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

Figure 3.13. ASHA learning curves by time.

45

ASHA. We use ASHA with a max epoch budget (R) of 9, a selection fraction (η) of

3, and a time limit of 24hr. With these settings, ASHA trains for a maximum of 13 epochs

over 3 stages: 1, 3, and 9 epochs. Only the more promising configurations are trained for more

epochs. In the given time limit, ASHA on CEREBRO (resp. Celery) explored 83 (resp. 67) configs.

Figure 3.13 shows all learning curves. Like HyperOpt, even though the configs are not directly

comparable, the best errors achieved are close (31.9% on CEREBRO; 33.2% on Celery). More

details about this experiment and experiments with another AutoML procedure (HyperBand) are

presented in Appendix A.

3.7 Discussion and Limitations

Applications. CEREBRO is in active use for time series analytics for our public health

collaborators. In the case study from Section 3.1, CEREBRO helped us pick 16 deep net configs

to compare. To predict sitting vs. not-sitting, these configs had accuracies between 62% and

93%, underscoring the importance of rigorous model selection. The best configs gave a large lift

of 10% over their prior RandomForest model based on hand-engineered time series features. We

plan to use CEREBRO for more domain science applications in the future on time series, video,

graph, and text data.

Open Source Systems. CEREBRO is open sourced and available for download [1].

MOP’s generality also enabled us to emulate it on existing data-parallel systems. Pivotal/VMware

collaborated with us to integrate MOP into Greenplum by extending the MADlib library [119]

for running TensorFlow on Greenplum-resident data [197, 278]. Greenplum’s customers are

interested in this for enterprise ML use cases, including language processing, image recognition,

and fraud detection. We have also integrated CEREBRO into Apache Spark [77]. CEREBRO-

Spark can run MOP on existing resource managers such as YARN and Mesos. Alternatively, one

can also deploy CEREBRO as a standalone application by wrapping it as tasks accepted by the

resource manager. We leave such an extension to future work.

46

Other ML Model Families. We focused primarily on deep nets due to their growing

popularity, high sensitivity to model configurations, and resource intensiveness. However, note

that MOP and CEREBRO’s ideas are directly usable for model selection of any ML models

trainable with SGD. Examples include linear/logistic regression, some support vector machines,

low-rank matrix factorization, and conditional random fields. In fact, since linear/logistic

regression can be trivially expressed in the deep learning tools’s APIs, CEREBRO will work out

of the box for them. CEREBRO’s high memory efficiency makes it easier for users to store the

entire large datasets in distributed memory, which can significantly reduce runtimes of such

I/O-bound ML models.

3.8 Conclusion

The high costs associated with model selection are one of the major obstacles to the

broader adoption of modern DL/AI. To mitigate this issue, we present a simple but novel and

highly general form of parallel SGD execution for model selection workloads, MOP, that raises

the resource efficiency of deep net model selection without sacrificing accuracy or reproducibility.

MOP is also simple to implement, which we demonstrate by building CEREBRO, a fault-tolerant

deep net model selection system that supports multiple popular deep learning tools and model

selection procedures. Experiments with large ML benchmark datasets confirm the benefits of

CEREBRO.

Chapter 3 contains material from “Cerebro: A Data System for Optimized Deep Learning

Model Selection” by Supun Nakandala, Yuhao Zhang, and Arun Kumar, which appears in

Proceedings of VLDB Endowment Volume 13, Issue 12, July 2020. The dissertation author’s

contribution was in the conceptualization of the system, parts of the implementation, and

parts of the experiments. The code for our system is open source and is available on GitHub:

https://github.com/ADALabUCSD/cerebro-system.

47

Chapter 4

CEREBRO on Data Systems: Bridging
the Gap Between Data Systems and DL
Workloads

4.1 Introduction

We now move our eye to the practicality concerns of DL, and in this chapter, we will

discuss the challenges and solutions of bringing DL to existing data systems and bridging the

gap between in-database enterprise data and DL workloads. The DBMS community has long

worked on bringing ML closer to the home of business-critical datasets in enterprises: DBMSs

and other data systems. This paradigm of “In-DBMS ML” (or “In-data system ML”) has waxed

and waned over the last 20 years, with 3 general waves of work. It now merits a revisit in the era

of DL.

4.1.1 Lessons from In-RDBMS ML

In the first wave of in-RDBMS ML, DB vendors built “data mining tools” that scaled a

few ML algorithms to DB-resident data [64, 15, 224]. They enabled access to ML from the SQL

console. But as ML algorithms grew in complexity, a second wave of unified implementation

abstractions were devised for in-data system ML [91, 70]; MADlib [120] and Spark MLlib [200]

are key examples. The third wave is seeing cloud DBMS vendors adding more in-RDBMS ML

support, e.g., Google’s BigQuery ML [9, 14, 8], as well as invoking DL from DBMSs [10, 19].

48

In this context, DBMS and cloud vendors are increasingly asking: “How to enable

seamless support for DL over DB-resident data?”. The past waves of in-RDBMS ML offer at

least four lessons.

1. The main user base of in-RDBMS ML tools are not Python-oriented data scientists but

SQL-oriented business analysts. Such users increasingly want access to DL training and

inference from within the SQL console. As per estimates by the MADlib team [2], about

20-25% of Greenplum customers today use its in-RDBMS ML analytics capabilities

alongside SQL analytics.

2. Although governance and provenance were always important for enterprises in sensitive

domains such as financial and health care, they now have renewed urgency for all com-

panies including the tech giants, due to new laws such as GDPR [72] and CCPA [221].

Companies will likely start frowning upon DL users manually exporting, copying, and

moving business-critical data around in an ad hoc manner. Although one could program

to automate such processes, and use services like MLFlow and Kubeflow [204, 156]

for governance and provenance tools, it is still an extra burden for the enterprise users

to learn, especially when they are already familiar with established DBMS support for

governance/provenance.

3. It is far too tedious for DBMS developers to reimplement DL algorithms. So, one must

preserve the usability of DL tools such as TensorFlow for specifying complex DL work-

loads. This also allows analysts to just reuse DL training specification programs written by

data scientists or others.

4. Parallel RDBMSs already offer a mature execution engine on sharded large-scale data. But

state-of-the-art distributed DL execution tools such as Horovod [257] are still notoriously

painful to set up, operate, and debug [24]. This presents parallel RDBMSs/data systems

an opportunity to bridge the gap on scalable execution.

49

In-data-system Deep Learning

Data system

Data
Processed

data DL
framework

Model configs
table

Data system APIUser

Models
table

Specify ETL
and workload

Data managed and lineage tracked

Figure 4.1. In-data-system DL. Data system invokes DL tool and helps mitigate data
provenance/governance issues.

Overall, we see two contrasting paradigms for how DL is brought to DB-resident data.

The DL user can export the data to a file system, invoke a DL tool manually, and manage all

derived data/metadata/artifacts on their own. Alternatively, in the “in-data-system DL” approach,

ETL and the DL workload are orchestrated by a data system, as Figure 4.1 illustrates. Crucially,

this approach leaves room for implementation flexibility on how exactly the DL tool consumes

data; this flexibility opens up possibilities that we will explore later.

4.1.2 Toward In-Data System DL

Apache MADlib has recently pioneered in-DBMS DL support [12]. DL workload is

specified using Keras APIs, enabling business analysts to reuse DL configurations written by, say,

data scientists. MADlib ships mini-batch data from the DB to a TensorFlow function invoked

in a DBMS User Defined Function (UDF)/User Defined Aggregate Function (UDAF). For

distributed execution, MADlib used the “model averaging” (MA)1 heuristic for SGD [327, 91].

Alas, MA has poor convergence behavior for highly non-convex DL [214]. Thus, this approach

is sub-optimal for bringing DL to DBs.

We observe that MA misses a major opportunity for parallelism in DL: model selection.

ML theory teaches us that tuning hyperparameters is crucial, and this requires training many

1In addition to MA, MADlib has adopted one of the approaches we will evaluate [13].

50

models [258, 160]. Often, DL users also compare alternate neural architectures, alter the base

features, etc. Thus, model selection in practice often leads to dozens, if not hundreds, of models

to train in one go [86, 214].

Exploiting the above observation, recent work proposed a new approach to distributed

DL model selection called Model Hopper Parallelism (MOP) [214, 213, 161]. MOP is a hybrid

of sharded data parallelism and task parallelism. MOP works as follows: train different models

on different workers in parallel for one sub-epoch on their local shards, checkpoint and “hop”

the models across workers, and restart training the same epoch on the next worker’s shard. MOP

is a form of bulk asynchronous parallelism since it imposes no barrier synchronization across

workers, unlike Bulk Synchronous Parallel (BSP) data systems. Overall, MOP was shown to be

the most resource-efficient approach to distributed DL model selection [214].

4.1.3 Focus of this Chapter

Given the benefits of MOP we ask: “How to bring MOP-based DL to DB-resident data?”

We find that there is no single “best” approach, and there is an interesting tradeoff space of

alternative approaches. This paper explains these approaches, contrasts them analytically, and

compares them empirically with large-scale DL workloads. We use Greenplum as the archetype

but emphasize that the approaches compared are generic and applicable to any parallel RDBMS.

Thus, our results could be of wide interest to all DBMS and cloud vendors.

We seek approaches that do not change the code of the data system. This eases practical

adoption but restricts how MOP can be applied. For instance, Spark now supports flexible

scheduling of workers [76]; this made it easy to integrate MOP with Spark in the Cerebro

system [1]. But parallel RDBMSs such as Greenplum, AWS Redshift, etc., use BSP across

workers, conflicting with MOP’s asynchrony. We have multiple axes of comparative evaluation,

including runtime efficiency, ease of governance, implementation difficulty, and portability.

Section 4.4 explains all approaches and Section 4.5 compares them in detail, but as a preview,

Figure 4.2 shows the approaches on the first two axes.

51

We compare 4 new approaches: (1) Fully in-DBMS MOP using UDAF, which has

been adopted by MADlib [13] (2) Partially in-DBMS MOP using Concurrent Targeted Queries

(CTQ) (to be introduced in Section 4.4.2); (3) In-DB but not in-DBMS (data is in DB but all

operations are not) MOP with Direct Access (DA); and (4) Regular out-of-DBMS approach using

Cerebro-Spark. MA is largely dominated by the UDAF approach but all the other approaches

fall on the Pareto frontier. For instance, the out-of-DBMS Cerebro-Spark approach and in-DB

DA approaches are much more efficient than UDAF but may be harder to govern in a production

environment. The CTQ approach offers a middle ground on these two axes.

Our comparative analyses of these approaches expose more interesting gaps. For instance,

with theoretical and simulation analyses, we show that the efficiency gap between CTQ and

UDAF grows wider when the models and hardware are more heterogeneous, even up to 6x in a

realistic scenario. Finally, an extensive empirical comparison using the ML benchmark datasets

ImageNet and Criteo shows that the real runtime gaps between UDAF and DA be as high as

3x. Overall, our experiments and analyses show that it is beneficial to bring MOP-based DL to

DB-resident data, but it is non-trivial to meet all practical desiderata. We hope our results spur

more conversations in the DB and cloud industries on how best to support DL on DB-resident

data.

In summary, we make the following contributions:

• To the best of our knowledge, this is the first paper to analyze the tradeoffs and design

alternatives of supporting large-scale DL model selection on DB-resident data.

• We show a spectrum of possible approaches on the Pareto frontier of efficiency, ease of

governance, and other practical desiderata. In particular, we show a new approach that is

in-DB but not in-DBMS, posing new accessibility questions for DB vendors.

• We perform a formal analysis of the limits of the efficiency gaps between the new ap-

proaches.

52

Low Mid High
Efficiency

Low

Mid

High
Ea

se
 o

f D
at

a
 G

ov
er

na
nc

e

Cerebro-Spark

MA UDAF

CTQ*
DA

None

Figure 4.2. Tradeoffs of ease of data governance vs. efficiency for various approaches.
∗Depending on an implementation detail CTQ may have the same ease of governance as MA
and UDAF; see Section 4.5.2 for details.

• We perform an extensive empirical comparison of the approaches using large ML bench-

mark datasets to evaluate their runtimes, scalability, and internal design tradeoffs.

4.2 Constraints and Challenges in Bringing DL to DBMSs

We first consider in-DBMS DL that relies only on UDAFs/UDFs without modifying

the internal code of the DBMS. We also use the data handling functionalities of the DBMS.

It is challenging to implement because of constraints that many parallel DBMSs share. We

summarize these constraints as follows:

Bulk synchronous parallelism (BSP). Each query executes in an all-or-nothing manner

on a dataset that is sharded across workers. A synchronization barrier is injected at the end of

every query. There is no trivial way at the SQL/UDF level to poll partial results.

textbfNo message-passing among workers. Some of the existing DL systems rely on

protocols such as MPI or RPC for communication, but to enable these functionalities at the UDF

level would require modifications to the DBMS and/or substantial efforts. Hence the preferable

communication method among workers is the pipes provided by the DBMS. This constraint

would make some distributed DL paradigms especially hard to implement.

53

One query at a time. For each database connection session, only one query is permitted

at any time. Using multiple clients and DB sessions for the same query is a way to achieve

parallelism by manually dissecting the query into subqueries and unifying the results on the

client-side, it may be considered as an anti-pattern as now the query planning takes place

out-of-DBMS.

Data access through DBMS. In a DBMS, data is usually compressed and stored on disk

as pagefiles (physical files on disk that contain database pages.). To access data, one must go

through the DBMS query stack. If the data is frequently and iteratively accessed as we see in DL

training, such repeated accessing and decompression could bring serious overheads.

4.3 The Fitness of Prior Art for In-DBMS DL

There has been a lot of work on distributed DL training. For a detailed background,

see Section 3.2. However, most of the techniques do not have or assume a trivial data layer.

Adjustments must be made to integrate them into an existing data system. The DBMS has

constraints that render many of the approaches unsuitable or difficult to implement. We translate

the constraints of Section 4.2 into the following requirements for distributed DL paradigms for

amenability to the in-DBMS setting.:

• Centralized communication. As mentioned in Section 4.2, we want the communication

pattern to be as simple as possible. P2P communication is typically not allowed.

• Coarse-grained parallelization. The training would better be parallelized at epoch instead

of mini-batch level. Since we will embed the training jobs as data system tasks/queries,

fine-grained parallelization will lead to massive number of queries that can cause heavy

overheads.

• Data-parallelism. The data is already partitioned in the data system. Fully replicating the

entire data across workers is not desirable and may not even be feasible at large scales.

54

Table 4.1. Summary of various parallel paradigms’ fitness for in-data-system DL.

Centralized
communication

Coarse
grained

Data-
parallel

Fast
convergence

Task Parallel ✓ ✓ ✗ ✓

Model Avg. ✓ ✓ ✓ ✗

Param. Server ✓ ✗ ✓ ✓

Horovod ✗ ✗ ✓ ✓

MOP ✓ ✓ ✓ ✓

• Fast convergence. In order to save computational and resource costs of model selection,

we want the models to converge fast in terms of number of epochs, ideally resembling the

learning curves obtained by the gold-standard sequential SGD.

Next we explain the major distributed DL model selection approaches in the literature and explain

how well they fit (or not) the above constraints. Table 4.1 summarizes our comparative analysis.

Task Parallel. In this paradigm, different model configs of the model selection workload

run on different workers in a task-parallel manner. Example tools include Python Dask, Celery,

Vizier [104], and Ray [206]. Workers locally run sequential SGD on the whole dataset. Thus, this

approach provides the best convergence efficiency. There is no communication across workers

during training. Still, it requires full data replication on each worker, which is inefficient, and

may not even be feasible for large sharded datasets in DBMSs.

Model Averaging (MA). In BSP systems such as TensorFlow with model averaging [17],

data is sharded. The model configs are trained in parallel one-by-one. Every model is broadcasted

and trained on each worker’s data shard independently. Then a merge step takes place on the

master; it averages the weights (or gradients). This approach is a potential candidate and has

been adopted by MADlib [12]. Alas, it converges poorly for DL models, which are highly

non-convex [263]. Nevertheless, since it satisfies most of the constraints, we include it as a key

baseline in our experiments.

Fine-grained Parallel. These paradigms are similar to BSP, but they work at a finer gran-

ularity at the mini-batch level. The communication pattern can be centralized or decentralized.

55

The most prominent example of centralized paradigms is Parameter Server (PS) [177]. The best

example for decentralized paradigms is Horovod [257]; it adopts HPC-style techniques to enable

synchronous all-reduce SGD. These methods all have good convergence behavior but very high

communication costs. They too are not good candidates because of the granularity. Horovod

further requires P2P communication patterns that are not allowed in most data systems.

Model Hopper Parallelism (MOP). MOP used in system Cerebro [214] is recent

progress towards resource-efficient DL. This is a hybrid of task- and data-parallelism. Each

worker is assigned one model config from the model selection workload and trains the model

with its local data shard; this process is called one sub-epoch. When one sub-epoch finishes,

the model is passed to other data shards for further training. After several sub-epochs, every

model finally has seen the entire dataset, and that is one epoch of training. Overall, a model hops

from one worker to another in-between sub-epochs. The scheduling is done via an asynchronous

random scheduler that works well on heterogeneous workloads and supports fault tolerance.

MOP fits all our requirements because communication-wise, it has a centralized pattern and low

cost, for it works at sub-epoch granularity. Data-wise, it works nicely with sharded data. Finally,

it offers equivalency to sequential SGD, which has the highest convergence efficiency. Hence,

we decided MOP would be a better choice for in-DBMS DL.

4.4 Overview of CEREBRO on Data Systems

Given the benefits of MOP, the question becomes how to bring MOP-based DL to DBMS-

resident data. There are multiple possible approaches due to the implementation flexibility. To

better explain these alternatives, we first divide the components of MOP execution into five

layers of design decisions: Interface, Scheduling, Execution, Data Access, and Storage. Each

layer can be implemented in flexible ways. Figure 4.3 summarizes the architectural alternatives.

56

figures/

In-DBMS

Interface Layer SQL API Python API

Scheduling Layer Standalone MOP
Scheduler

In-DBMS MOP
Scheduler

Data Access Layer

Execution Layer

Storage Layer DB Pagefiles Data Lake
Files

DB Data
Access

Plain FS
Read

Direct
Accessor

Data System
Workers Standalone

Workers + Model
Hopping
Components

Data System Workers +
Model Hopping
Components

Out-of-DBMS

Figure 4.3. Design alternatives for MOP in DBMS.

1. Interface layer: the high-level APIs that take in the user’s DL model selection workload;

it could be implemented in SQL, familiar to business analysts, or in Python, familiar to

data scientists.

2. Scheduling layer: the scheduler orchestrates and manages placements of training units.

We could implement the scheduler as an in-DBMS procedure or use a standalone MOP

scheduler.

3. Execution layer: execution engine invokes DL tools and conducts model training via

mini-batch SGD. We could use the data systems’ execution engine or resort to standalone

Cerebro for this layer. Model hopping can be cast as SQL queries or be implemented as

separate components with other communication methods.

4. Data Access and Storage layer: we could leave the data in DBMS or export them.

There are also multiple ways to access the data; if data is in a data lake, access is trivial.

57

SQL interface
UDAF

UDAF

In-DBMS MOP
Scheduler

Model
tables

Join

Data shards

User

Data System

Sync.

Figure 4.4. UDAF approach. Fully in-DBMS.

Otherwise, if the data is in DBMS, we can rely on DBMS’s native data accessor or use a

technique we call Direct Access to bypass the whole query stack and access the data from

its physical storage directly.

Because of these flexibilities, there are various approaches for the end-to-end implemen-

tation of MOP. We find four interesting canonical approaches: (1) Fully in-DBMS MOP using

User-Defined Aggregate Functions (UDAF); (2) Partially in-DBMS MOP using Concurrent

Targeted Queries (CTQ); (3) In-DB but not in-DBMS MOP using Direct Access (DA); and (4)

Regular out-of-data-system approach using Cerebro-Spark. We use Greenplum as the archetype

but emphasize that the approaches compared are generic and applicable to any parallel DBMS.

We do not claim these are the only possible approaches; rather, we find these are prototypical

examples of feasible approaches based on the combinations of design decisions in Figure 4.3.

We now introduce each approach and dive into the analysis and comparisons later in Section 4.5.

We summarize the design choices for each approach in Table 4.2.

4.4.1 User-Defined Aggregate Functions (UDAF)

This approach implements MOP as DBMS extensions with UDFs and UDAFs. On the 5

design decisions of this approach and other approaches to be introduced, please refer to Table 4.2.

UDAF approach is called fully in-DBMS because all functions are in-DBMS procedures, and

both data and models are stored in DBMS.

58

Data table shards: D0, D1

Model table shards: M0, M1

Data buffers: x0, x1

Models: ma, mb

SELECT udaf(x, m) FROM data
JOIN model GROUP BY key

Model
hopping

...

...
x0

x1

D0

ma

M0Scan

Initialize
model
once

Update
model

x2

x3

D1

mb

M1Scan

Initialize
model
once

Update
model

ma

M0
x0

x1

D0
Node0

mb

M1
x2

x3

D1

Node1

mb'
M0

x0

x1

D0

ma'
M1

x2

x3

D1

Figure 4.5. Conceptual illustration of one sub-epoch of UDAF.

Table 4.2. Summary of each approach’s design for the 5 layers. IN: in-DBMS. OUT:
out-of-DBMS.

Approach Interface Scheduling Execution Data Access Storage

UDAF SQL IN IN IN IN
CTQ Python OUT IN IN IN
DA Python OUT OUT OUT IN/OUT

Cerebro-Spark Python OUT OUT OUT OUT

Figure 4.4 illustrates the approach. It maintains a data table and a model table storing

the DL model selection workload, with each row containing a model. Both tables are sharded

based on distribution keys. These keys are used by the DBMS to determine where the rows are

stored. The rows are distributed across worker nodes by the master node matching the values of

a designated distribution key column. So all the rows with the same distribution key end up in

the same worker node. By manipulating these keys, we can control the affinity of data/model.

The user first defines the model architectures and workloads through a SQL interface. DBMS

then invokes the MOP scheduler implemented in UDF.

This approach’s scheduler is synchronous due to the BSP nature of in-DBMS execution,

in contrast to the asynchronous random scheduler that standalone MOP adopts. It uses a simple

round-robin heuristic for placing models on data shards. The scheduler translates the workload

into UDAF queries dispatched and executed on the joined table of data and model. These UDAFs

59

CTQ

Standalone MOP
scheduler Child UDAF

Models

User
Python interface

Data shardsAsync.
SQL
APIs

Data System

CTQ

Figure 4.6. CTQ approach. Partially in-DBMS.

subsequently invoke DL tool (we use TensorFlow/Keras) for training. It schedules a batch of

sub-epochs on the workers at a time and waits for completion. After several batches, one epoch

is completed; it then repeats the process to train for multiple epochs.

Conceptually, each UDAF is a query of SELECT udaf(...) FROM data JOIN model

GROUP BY key. Figure 4.5 illustrates the execution of one sub-epoch batch. Data is pre-packed

into buffers and stored in a sharded table. Models are stored similarly in another sharded table.

On each physical node of the DBMS, there are multiple rows of data buffers and only one row of

model. During the execution, the model row is fed to DL tools to initialize the model, which

will be stored as the aggregation state. The worker then scans the data shard and feeds each data

buffer to the DL tool, which unpacks the buffers and generates mini-batches for training and

updating the stored model. After scanning is done, the scheduler redistributes updated models

to different physical nodes by manipulating their distribution keys. The data table, on the other

hand, never redistributes.

4.4.2 Concurrent Targeted Queries (CTQ)

This approach is built upon CTQs, a DBMS feature we will explain shortly. In contrast

to UDAF, it has a Python interface, uses a standalone MOP scheduler and out-of-DBMS model

hopping components. We chose to store and hop models out of the DBMS for implementation

simplicity; it is technically possible to keep models governed by DBMS, which can raise this

60

Table 4.3. Conceptual comparison of various architectural approaches of integrating MOP with
DBMS. ∗CTQ can have highest or high ease of governance, depending on whether models are
governed by DBMS. †If node RAM is insufficient, swap is needed for DA and the blowup could
rise up to 2x.

Efficiency Governance
Storage
Blowup

Implementation
Difficulty Portability

Design
Anti-patterns

UDAF Medium Highest None Medium Medium No

CTQ High
High-

Highest∗ None Medium Medium Yes

DA Highest High
None -

2x† Hard Low Yes

Cerebro-Spark Highest Low 2x Easy High N/A

approach’s ease of governance (see Section 4.5.2). Since some core computations run outside

the DBMS, we call this approach partially in-DBMS.

We now explain what a CTQ is. In a parallel DBMS, tables are sharded according to

distribution keys. When a query only affects one shard, e.g., with a predicate that filters on the

distribution key, the query processor will dispatch a query plan to that specific shard only. Such

feature is sometimes called targeted query and commonly available [6, 202, 28]. Meanwhile,

most DBMSs also allow concurrent queries. Therefore, we can assume more fine-grained control

over the execution by issuing targeted queries concurrently. We name this trick Concurrent

Targeted Queries (CTQ).

Figure 4.6 shows the CTQ approach. The user interacts with a Python interface to define

models and workloads. It then invokes a standalone MOP scheduler, as described in [214]. This

scheduler works differently from the one used in the UDAF approach; it orchestrates DL training

by spawning children processes that contain DBMS connections and using them to issue CTQs.

Meanwhile, models are hopped outside the DBMS; we use a shared filesystem for this task.

Conceptually, each CTQ is a query of SELECT udf(model) FROM data WHERE key=x. Each

DBMS node loads the assigned model from the shared filesystem and uses its local data shard to

train the model, then checkpoints the updated model back to the filesystem. This concludes one

sub-epoch; after every model has visited every data shard once, it is called one epoch.

61

DA

Standalone MOP
scheduler

Models

User
Python interface

Async.
Data

shards

Data
System

Physical
Storage

Page files

SQL APIs
Query sys.
catalogs

Direct Accessor

Figure 4.7. DA approach. In-DB but not in-DBMS.

4.4.3 Direct Access (DA)

This approach further deviates from UDAF and CTQ by employing a method we call

Direct Access, bypassing the entire query processor of DBMS and accessing the on-disk pagefiles

directly. This way, there is enough freedom to plug in and run standalone Cerebro [214] system

but without exporting the data. This approach is called in-DB but not in-DBMS because although

the DBMS still governs data, all executions are out of DBMS.

Figure 4.7 illustrates DA. The user talks to a Python interface to define workloads and

query necessary system catalogs. DA then uses the standalone Cerebro for scheduling and

execution. Workers perform training on the data table’s sharded pagefiles directly through DAs.

DAs first retrieve the pagefiles’ location, mapping, layout, and compression information from

system catalogs. Then they emulate DBMS’s access methods to fetch the pages’ contents and

feed the data to Cerebro. The latter then consumes the data and runs MOP to train the workload.

Notably, this approach is very generalizable and not limited to MOP execution; one can essentially

plug in any data-parallel training frameworks like Pytorch or Horovod. To demonstrate the

generality, in addition to MOP, we will also implement a fine-grained data-parallel approach

with DA using Pytorch DDP. We will show the evaluations in Section 4.6.1.

62

Cerebro-Spark

Spark driver

MOP
scheduler

Spark worker

MOP worker

Exported data

User

Spark worker

MOP worker
Python

interface

Figure 4.8. Cerebro-Spark approach. Fully out of DBMS.

4.4.4 Cerebro-Spark

Cerebro-Spark is a regular out-of-DBMS approach that exports data to filesystem, runs

ETL processes, and feeds data to the DL tools. It uses the data system (Spark) workers and stores

data as plain files. The DBMS does not participate in the training and loses the governance of

data.

Figure 4.8 illustrates the architecture. The user defines workloads through Python APIs.

The standalone MOP scheduler initializes MOP workers by embedding them as long-running

Spark tasks. It then communicates with these workers and orchestrates the training just like

in the standalone Cerebro system. In addition to Cerebro-Spark, we will also evaluate other

frameworks such as Pytorch DDP and Hyperopt-Spark in Section 4.6.

4.5 Comparative Analyses of Approaches

With all the approaches introduced, we now compare and analyze them on 6 major axes:

runtime efficiency, ease of governance, storage blowup (defined as the actual storage usage

divided by the original data size), implementation difficulty, portability, and design anti-patterns.

Table 4.3 shows a conceptual comparison. These axes represent the desiderata and we find that

no single approach can fulfill all of them. The more the approach is in-DBMS, the lower the

runtime efficiency but the higher the ease of governance and vice versa. We will discuss the

63

reasons in Section 4.5.1 and 4.5.2. In terms of storage, Cerebro-Spark has 2x blowup because of

exporting. The situation is more complicated on the implementation difficulty and portability

axes, and we will give a more rigorous analysis in Section 4.5.3 and 4.5.4. As for the last

axis, CTQ and DA both introduce design anti-patterns since they are not fully in-DBMS: CTQ

introduces a user-level anti-pattern by issuing multiple queries concurrently from outside of the

SQL console, while MADlib and many other tools makes a single query inside a SQL console.

This violates One query at a time mentioned in Section 4.2. DA has anti-patterns that violate No

message-passing among workers and data access through DBMS from Section 4.2. In the rest of

this section, we pick 4 most interesting axes and analyze them in more detail.

4.5.1 Runtime Efficiency

This is one of the most important desiderata. Several factors affect runtime: DL tool

invocation, data access, model hopping, and schedule makespans (end-to-end runtime of the

generated schedule).

• DL tool invocation. Both UDAF and CTQ invoke the DL tools through wrappers, whereas

DA and Cerebro-Spark do not. Such wrappers may be a source of inefficiency.

• Data access. Both UDAF and CTQ access data through DBMS. They could be bottle-

necked by data transmission2, especially when the data is compressed and tweaked by

the DBMS, e.g., TOAST-ed [20]. DA can mitigate this issue; by accessing the physical

pagefiles directly and caching data, it provides similar efficiency to Cerebro-Spark, which

also reads from filesystem and caches data in memory.

• Model hopping. Model hopping might be another source of inefficiency. CTQ, DA,

and Cerebro-Spark all do model hopping outside of the DBMS and have similarly low

overheads on this end, as [214] pointed out. On the other hand, the UDAF approach

relies on the DBMS to hop models through JOIN between the data and model tables. This

2Active development by the MADlib team is going on to mitigate this issue.

64

Table 4.4. Notation for discussion on scheduling makespans.

Notation Description

M,M Set of models and the cardinality of it
W,W Set of workers and the cardinality of it
L Set of each model’s per sub-epoch runtime
Li For UDAF only. Batch of models scheduled for the i-th sub-epoch
mx The x-th model
lx The per sub-epoch runtime of the x-th model
ls A scale representing the runtimes of fast models
lm A scale representing the runtimes of slow models
p Probability of a model being a fast model
Tu,Tc End-to-end runtimes for sync. and async. MOP, respectively
η Theoretical upper bound of the speedup Tu/Tc

JOIN may bring some overheads, especially if the models are large. In later experiments

(Section 4.6.2), we will indeed see UDAF is much slower than CTQ on model hopping.

However, even for UDAF, model hopping still incurs negligible runtime compared to other

components.

• Scheduling makespans. CTQ, DA, and Cerebro-Spark all employ the same asynchronous

random scheduler. This scheduler’s robustness on heterogeneous workloads/workers

has been tested in [214]. However, UDAF uses a synchronous round-robin scheduler,

which may not work very well with heterogeneity. We show visualizations of potential

scenarios in B. How large is the gap between these two schedulers, and could it be a major

performance bottleneck? We now analyze the differences theoretically between sync. and

async. MOP and later verify it empirically in Section 4.6.2. Table 4.4 presents all notations

used in this section.

Let there be a set of model configs M and a set of workers W. |M|= M, and |W|=W .

Assume the workers to be identical and each worker contains the same amount of data. Let lx

denote the per sub-epoch runtime of model config mx and L= {lx}. For analysis simplicity, let

L be a two-mode right-tailed distribution, i.e., most models are fast and have per sub-epoch

runtime of ls, while only some are slow and take lm, lm≫ ls. Let p be the probability of lx being

fast: p = Pr(lx ∼ ls). We now analytically compute the per-epoch makespan Tu and Tc for sync.

65

Table 4.5. Workloads.⋆architectures similar to VGG16 and ResNet50, respectively.

Dataset Model arch. Batch size Learning rate Regularization Epochs

ImageNet {VGG16⋆, ResNet50⋆} {32, 256} {10−4, 10−6} {10−4, 10−6} 10
Criteo 3-layer NN, 1000+500 hidden units {32, 64, 256, 512} {10−3, 10−4} {10−4, 10−5} 5

and async. MOP, respectively. We have the following two propositions, the proofs to them can

be found in B.

Proposition 1. Speedup of async. over sync. MOP is:

Tu

Tc
= pW ls

l̄
+(1− pW)

lm
l̄
. (4.1)

Proposition 2. Theoretical upper bound of the speedup is:

η =
lm

pls +(1− p)lm
. (4.2)

Section 4.6.2 shows an experiment that verifies the analysis.

4.5.2 Ease of Governance

As we mentioned earlier, data governance/provenance now has renewed urgency for

all enterprises and even the Web companies, because of the new regulations and laws like

GDPR [72] and CCPA [221]. Among the four approaches, UDAF provides the best support for

governance/provenance, as it keeps both the dataset and the models in DBMS, which already

has built-in governance support. CTQ and DA both use DBMS to govern data. For CTQ, we

chose to store models out of DBMS for simplicity, but it is technically possible to keep models

in DBMS; this way, it can provide similar ease of governance as UDAF. DA, which relies on

external Cerebro, does not manage models with DBMS and thus, loses some ease of governance.

Cerebro-Spark does not come with existing governance support and may impose other security

issues due to the ad hoc data export and copying. To regain governance, one has to maintain

66

exporting scripts and seek help from external services like MLflow or Kubeflow [204, 156], and

such external services are not under the DBMS vendor’s control.

4.5.3 Implementation Difficulty

The out-of-DBMS approach (Cerebro-Spark) is generally the easy one to implement.

One naive implementation would be a SELECT * FROM ... query followed by some pipelines

that feed the exported data to DL tools. The UDAF approach requires more effort to implement

the MOP scheduler, wrappers for invoking DL tools, and pipelines that feed data to DL tools and

return results to the DBMS. CTQ requires similar efforts as UDAF does, except its scheduler is

asynchronous and slightly harder to implement due to concurrency in queries. DA requires the

most effort because it needs to implement/port the whole DBMS table scan method, including

locating, unpacking, and reading the pagefiles. If the table is compressed and TOAST-ed [20],

then one must also implement/port the decompression and de-TOAST methods. Such work is

ad-hoc, DBMS-specific, and may not even be viable for proprietary DB and pagefile formats.

Simultaneously, because its execution is outside the DBMS, unified memory management is

difficult, and it could interfere with other queries. As a result, more careful tuning and setting of

configurations are required to implement DA.

4.5.4 Portability

Portability indicates how much code can be reused if one wants to change the underlying

DBMS. The out-of-DBMS approach again excels in this area because it is almost agnostic to

the DBMS and can usually be ported easily. UDAF approach is also portable as it requires only

UDFs and UDAFs, which are supported in most DBMSs. Medium efforts are needed to export

these functions to other DBMSs. CTQ is largely similar to UDAF, except it, in addition, requires

the DBMS to support concurrent targeted queries. DA is the less portable option, as it is deeply

coupled with the DBMS. Unless the target DBMS employs a similar physical storage layer, to

port one existing DA implementation would be difficult.

67

4.6 Empirical Comparisons and Analyses

We will first thoroughly compare the end-to-end performance of all the described ap-

proaches and study the tradeoff space. Then we will study the effects of factors such as

heterogeneous and AutoML (Hyperopt) workloads and model sizes. We will also evaluate the

scalability of each approach. All of our source code, data, and other artifacts are available at [7].

We will test on both GPU-enabled and CPU-only environments. One might wonder how GPUs

will be available in practice for users that operate traditional DBMS clusters. As per Greenplum

team estimates [2], at least 80% of its customers continue using on-premise clusters, largely due

to privacy and security concerns, especially in the government, financial and health care sectors.

Such users are increasingly purchasing GPUs and connecting them to their Greenplum clusters

for in-house deployment of DL workloads. In cloud-native DBMSs such as AWS Redshift, one

can easily spin up GPU instances and connect them with the DBMS instances. Use of hybrid

cloud and public cloud is also increasing. It is not uncommon to run POCs and tests in public

cloud with rented GPUs, before purchasing GPUs for in-house production deployment.

Compared approaches. We compare Cerebro-Spark, UDAF, CTQ, DA (renamed to

DA-Cerebro), and MADlib MA, which is included as a key baseline. Only for the end-to-end test,

we also include PytochDDP, a fine-grained out-of-DBMS data parallel DL training framework;

it relies on NCCL and MPI for communications. We have also combined DA with PytorchDDP

(named as DA-PytorchDDP) so that it can work with DB data directly. For the Hyperopt tests in

Section 4.6.2, we also include a system called Hyperopt-Spark, which is an out-of-DBMS task

parallel model selection system.

Datasets. We use two large benchmark datasets: ImageNet [78] and Criteo [73]. We use

the processing scripts and versions released as part of Cerebro [214, 1]. ImageNet contains 1.2M

images with 1000 classes; it has an on-disk size of 250GB. Criteo has 100M data points, binary

classes, and an on-disk size of 400GB.

68

Table 4.6. Runtimes and resource utilizations of end-to-end tests. Execution time and all
utilizations are measured excluding ETL. Per-epoch time equals Execution time divided by
number of epochs. Total network means the total amount of data transmitted during execution.
We report disk read/write as per worker average. ∗These methods showed little to no disk reads
because data has been cached in memory during the ETL process.

Approach
ETL
time

Exec.
time

Epoch
time

GPU
util.

GPU
RAM util.

CPU
util.

DRAM
util.

Tol.
network Per w. disk R/W

ImageNet

MA 2.8 h 42.6 h 4.3 h 56.8% 32.5% 2.3 % 3.1% 0.9 TB 12 GB/ 2 GB
UDAF 2.8 h 48.5 h 4.9 h 49.9% 28.6% 2.2% 5.6% 0.8 TB 12 GB / 279 GB
CTQ 2.8 h 45.1 h 4.5 h 56.2% 32.2% 2.5% 1.9% 0.6 TB 12 GB / 152 GB

DA-Cerebro 5.4 h 23.0 h 2.3 h 70.5% 42.5% 2.8% 20.2% 0.6 TB 0.6 GB∗ / 0.3 GB
Cerebro-Spark 4.4 h 23.9 h 2.4 h 65.1% 36.5% 11.2% 17.4% 1.1 TB 0.2 GB∗ / 2 GB

PyTDDP 4.4 h 77.3 h 7.7 h 97.1% 13.1% 8.1% 14.7% 1900 TB None∗ / 11 GB
DA-PyTDDP 5.4 h 77.5 h 7.8 h 96.8% 13.2% 8.2 % 21.1% 1900 TB None∗ / 1 GB

Criteo

MA 8.6 h 38.5 h 7.7 h N/A N/A 44.1% 2.3% 0.1 TB 1 GB / 2 GB
UDAF 8.6 h 62.0 h 12.4 h N/A N/A 27.1% 2.3% 0.1 TB 1 GB / 38 GB
CTQ 8.6 h 40.0 h 8.0 h N/A N/A 41.0% 1.9% 0.08 TB 1 GB / 22 GB

DA-Cerebro 10.5 h 21.5 h 4.3 h N/A N/A 37.4% 28.5% 0.07 TB 0.2 GB∗ / 0.3 GB
Cerebro-Spark 8.3 h 22.5 h 4.5 h N/A N/A 35.2% 28.5% 0.2 TB 0.2 GB∗ / 1 GB

Workloads. We use various DL model selection workloads with different degrees of

heterogeneity for different tests. Please refer to each corresponding section for details. We use

Adam [149] as the mini-batch SGD method for all tests.

Experimental Setup. We use one cluster on CloudLab [246] with 8 worker nodes and

1 master node. Each node has two Intel Xeon 10-core 2.20 GHz CPUs, 192GB memory, 1TB

HDD, and 10 Gbps network. Each worker node also has an Nvidia P100 GPU. For tests with

MLP on the Criteo dataset, we disable the GPUs to demonstrate the system’s performance under

CPU-only setting. All nodes run Ubuntu 16.04. We use GPDB 5.27, Spark 2.4.5, Cerebro

figures/1.0.0, TensorFlow 1.14.0, Pytorch 1.4.0, CUDA 10.0, and cuDNN 7.4. Both datasets are

randomly shuffled and split into 8 equal-sized partitions.

4.6.1 End-to-end Performance Study

We first present the end-to-end results for both ImageNet and Criteo. For ImageNet, we

use two different neural architectures and a hyperparameters grid, yielding 16 training configs.

For Criteo, we conduct a hyperparameter-tuning-only workload with also 16 training configs.

69

1 2 3 4 5 6 7 8 9 10
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

5
Va

lid
at

io
n

Er
ro

r

(A) Learning Curve on Validation (ImageNet)
Cerebro-Spark
MA
UDAF
CTQ
DA-Cerebro
PyTDDP
DA-PyTDDP

Cerebro-Spark
MA

UDAF
CTQ

DA-Cerebro
PyTDDP

DA-PyTDDP

Approaches

0

1

2

3

4

5

6

7

8

Ru
nt

im
es

 fo
r E

ac
h

Co
m

po
ne

nt
 (h

r)

(B) Per-epoch Runtimes Breakdown (ImageNet)
Train+Valid
Data Transmission
Model Transmission
Approach-specific

Cerebro-Spark MA UDAF CTQ DA-Cerebro
Approaches

0

2

4

6

8

10

12

Ru
nt

im
es

 fo
r E

ac
h

Co
m

po
ne

nt
 (h

r)

(C) Per-epoch Runtimes Breakdown (Criteo)

Train+Valid
Data Transmission
Model Transmission
Approach-specific

Figure 4.9. End-to-end tests results. (A): Convergence behavior on ImageNet. (B): Per-epoch
breakdown of runtimes for each approach on ImageNet. (C): Per-epoch breakdown of runtimes
for each approach on Criteo.

Table 4.5 offers the details. Such grid search-based model selection is standard in DL practice

and still widely used by practitioners [50]. We compare our various architectural approaches

with each other. MA is the baseline for this comparison.

For each different approach, separate ETL processes must be done beforehand. For

UDAF, CTQ, and MA, ETL is in-DBMS preprocessing that packs the original data into byte

arrays and buffers for the UDAFs to consume. For DA, ETL includes the above processing,

plus accessing tables and TOAST pagefiles, de-TOAST, and loading into the main memory.

For Cerebro-Spark, ETL consists of data exporting from DBMS and preprocessing to cast the

70

data formats; we use a distributed Greenplum ETL tool gpfdist [279] for exporting and a

customized program for preprocessing.

We examine the performance on multiple fronts: convergence, runtime, and resource

utilization/cost including GPU/CPU, DRAM, network, and disk. Figure 4.9(A) demonstrates

the convergence behaviors for ImageNet. All but MA converge to the same optima, as they are

equivalent to sequential SGD. MA, on the other hand, has a convergence problem and learns

much slower than the rest. We skip the convergence curves on Criteo for brevity’s sake because

all methods, including MA, have almost indistinguishable convergence behavior (reaching 99%

accuracy quickly).

Table 4.6 summarizes the runtime performance and resource utilizations/costs.3 MA,

UDAF, and CTQ show close speed. They have identical reads, equal to the local on-disk pagefile

size (12 GB for ImageNet and 1 GB for Criteo). After the first table scan the pagefile remains in

the OS cache. MA is marginally the fastest among them, but note that it has poor convergence,

as Figure 4.9(A) shows. CTQ is slightly faster than UDAF due to the removal of sub-epoch

level synchronization barriers. The benefit is not obvious here, but we will drill deeper in Section

4.6.2. DA-Cerebro and Cerebro-Spark show the best performance and are close in runtime. This

shows that one can achieve the same high performance as a SOTA out-of-DBMS DL approach

while still operating on DB-resident data. The two data parallel methods PytorchDDP and

DA-PytorchDDP are heavily bottlenecked by networking (over 1700x higher cost compared to

other approaches). They both showed high GPU utilization only because they employ GPU for

communication. They have less GPU memory consumption because how Pytorch differs from

TensorFlow on memory management. They performed even slower on Criteo and were estimated

to take over 16 days of runtime each, so we skipped these tests. DA-Cerebro, Cerebro-Spark,

PytorchDDP, and DA-PytorchDDP showed higher DRAM usage because of caching. They also

showed few disk reads due to preloading and caching during ETL; the writes are due to metadata

3Runtimes may not be directly comparable to figures in [214], as in this paper, we adopted newer model
implementations and different on-disk file formats.

71

management. Note disk R/W for all approaches are not significant, and none of them is bound

by the disk IO speed.

1 2 4 8
Cluster Size

1

2

3

4

5

6

7

8
Ru

nt
im

e
Sp

ee
du

p
(A) End-to-end

Cerebro-Spark
MA
UDAF
CTQ
DA-Cerebro
Linear

1 2 4 8
Cluster Size

0

1

2

No
rm

al
ize

d
Av

er
ag

e
M

ac
hi

ne
 T

im
e (B) Training+Validation

Cerebro-Spark
MA
UDAF
CTQ
DA-Cerebro

1 2 4 8
Cluster Size

0

1

2

No
rm

al
ize

d
Av

er
ag

e
M

ac
hi

ne
 T

im
e (C) Data Transmission

Cerebro-Spark
MA
UDAF
CTQ
DA-Cerebro

1 2 4 8
Cluster Size

100

101

102

103
No

rm
al

ize
d

Av
er

ag
e

M
ac

hi
ne

 T
im

e (D) Other Components*
Cerebro-Spark
MA
UDAF
CTQ
DA-Cerebro

Figure 4.10. (A): End-to-end scalability plot, y-axis shows the speedups with respective to
single-node runtime. (B - D): Per-epoch machine time for each component normalized against
single-node. The machine time is averaged among all nodes. ∗Other Components: includes
Model Transmission and Approach-specific as described in Section 4.6.1.

Profiling and breakdowns. To further investigate the root cause of performance differ-

ences, we take both datasets and profile every approach by running several more breakdown tests

and calculating each execution component’s runtime. Excluding the ETL time, Figure 4.9(B)

presents results for ImageNet, and Figure 4.9(C) presents results from Criteo tests. We record

per-epoch machine time compositions for each worker and take the average among them. Hence,

the summations of the runtime numbers are close to but may not be identical to the end-to-end

72

runtimes in Table 4.6, which are determined by the slowest worker runtime instead of the mean

runtime. We break down per-epoch runtimes into four different components:

1. Train+Valid: time spent in the DL tools, including initialization and destruction of

models, allocation and freeing of GPU memory, training and validation with GPU, etc.

MA, UDAF, and CTQ are less efficient because these in-DBMS approaches invoke the DL

tools through wrappers that cause extra overheads. For PytorchDDP and DA-PytorchDDP,

since they overlap communication with computation, Train+Valid also includes time spent

on model updating communications (we name these Model Transmission, introduced

below). For this reason they showed very high Train+Valid time because they are bounded

by networking.

2. Data Transmission: time spent on transmitting data to the DL tool from storage. For

in-DBMS approaches, it also includes the data decompression time. This component is

non-negligible for the 3 in-DBMS approaches due to data access overheads, while in the

rest approaches, training data is cached in memory during ETL; this part costs little. Recall

from Table 4.3 that Cerebro-Spark and PytorchDDP suffers a 2x storage blowup, while

DA-based approaches do not.

3. Model Transmission: time spent on transmitting serialized models/gradients between

workers. For MA, Model Transmission means model collecting and broadcasting; it

means model hopping for the rest MOP-based approaches. UDAF and MA are not so

efficient on this end because they require database joins for re-distributing models. We will

further investigate this performance gap in Section 4.6.2. The two PytorchDDP approaches

showed none on this front only because it is absorbed into Train+Valid.

4. Approach-specific: for MA, it is the time spent on averaging model weights. For the rest,

it means sub-optimal scheduling and/or idling of some workers. Cerebro-Spark, CTQ, and

DA-Cerebro use an asynchronous random scheduler and work better for heterogeneous

73

workloads. As for UDAF, the performance is affected by its synchronous round-robin

scheduler. We further discuss on these two schedulers in Section 4.6.2.

Comparing the Criteo tests to ImageNet tests, we notice two significant differences: (1).

Model Transmission time drops for MA and UDAF. The MLP model used in Criteo tests is

smaller than the CNNs used for ImageNet. (2). The UDAF approach suffers more from idling in

Criteo because the workload is more heterogeneous due to highly disparate batch sizes.

Overall, the MA approach shows unfavorable convergence behavior and the fine-grained

data parallel approaches (DA-PytorchDDP and PytorchDDP) are heavily bottlenecked. MOP-

based approaches largely dominate these two parallelization models. As for MOP, the in-DBMS

approaches suffer from various overheads and are, in general, less efficient than the DA-Cerebro

approach and the Cerebro-Spark approach. However, recall that runtime efficiency is not the

only criterion for such a system, as we showed earlier in Table 4.3. There exists a tradeoff space

and perhaps no universal optima to the question.

4.6.2 Drill-down Experiments

Scalability (strong scaling)

In this test, we evaluate the strong scalability. We used clusters with 1, 2, 4, 8 workers with

ImageNet. We use a workload of 8 homogenous configs (4 learning rates, 2 regularization values,

and ResNet50 architecture) trained for one epoch. All runtimes exclude ETL. Figure 4.10(A)

presents the results.

All approaches show close-to-linear scaling. To better understand these behaviors, we

further drill down each runtime component and evaluate their scalability separately. For this

purpose, we collect the average machine time spent on each component from all workers varying

cluster size; we then report them against the single node time. Figures 4.10(B-D) summarize the

results. Flat lines indicate that the component’s machine time is constant regardless of cluster

size, therefore perfectly scalable. An increasing curve means sub-linearity, and vice versa.

74

Figure 4.10(B) and Figure 4.10(C) show that the Training+Validation and Data Trans-

mission component scale almost linearly for all approaches. The Model Transmission part is

minuscule in the end-to-end time, thus we report it collectively with the Approach-specific

components in Figure 4.10(D). For DA-Cerebro, CTQ, and Cerebro-Spark, workers may idle

relatively more when the number of models approaches the number of workers. The random

scheduler they use can yield sub-optimal scheduling under such circumstances. [214] Hence they

all show sub-linear scalability, especially when cluster size grows from 4 to 8. On the other hand,

UDAF adopts a round-robin scheduler to emulate MOP, which happens to be optimal for this

specific homogenous workload; thus, it shows better scalability. MA utilizes all workers and

shows no idle time, but the model averaging cost still rises a little when the cluster size grows.

2 4 6 8
W (Number of Workers)

1.0

1.5

2.0

2.5

3.0

Sp
ee

d
up

 o
f C

TQ
 o

ve
r U

DA
F

= 3.2

(A), M=48, p=0.8

Simulation Theory Actual

0 10 20 30
W (Number of Workers)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

d
up

 o
f C

TQ
 o

ve
r U

DA
F

= 4.1

(B), M=512, p=0.8

Simulation Theory

Figure 4.11. Heterogenous experiment. (A) Real experiments supplemented with simulation
and theoretical results. lm/ls = 8 (B) Extreme scenario simulated. lm/ls = 20.

Async. MOP vs sync. MOP on Heterogeneous Workloads

To verify Equation 4.1 and Equation 4.2 proposed in Section 4.5.1 and prove the benefit

of async. MOP over sync. MOP for heterogeneous workloads, we conduct the following experi-

ments. We have one sync. MOP approach: UDAF; and among the 3 async. MOP approaches we

pick CTQ, as the main difference between UDAF and CTQ is only the synchronization model of

75

scheduler. Following the analysis in Section 4.5.1, let M be drawn from a Bernoulli distribution:

Pr(lx = ls) = p,Pr(lx = lm) = 1− p.

We then test with real experiments. The fast model is MobileNetV2 with batch size 128,

while the slow model is NASNetMobile with batch size 4. We down-sampled 6% of ImageNet,

so that the experiments can finish in reasonable amount of time (same experiments on the full

datasets are estimated to cost over two months). Sampling might alter the ratios between constant

overheads and components that scale with dataset size. However, since the constant overheads

are minuscule, the sampling proves not to affect our conclusion. In Figure 4.11(A) we see the

actual runs fit nicely with our simulation and theory. Furthermore, Figure 4.11(B) shows one

simulated extreme scenario with a large workload and 32 workers to demonstrate the theoretical

upper bound of the speedup. We refer interested readers to B for more simulations. Overall, these

experiments verify that our theoretical bounds match with the actual runtime gaps. Meanwhile,

we also show that the upper bound of speedup is determined by η . This indicates that CTQ

can be a more efficient choice than UDAF when working with highly heterogeneous workloads

and/or hardware.

Effect of model size on UDAF and CTQ

The size of models is typically orders of magnitude smaller than the size of training

dataset. Thus, although model hopping time is proportional to model size, it is usually negligible

in large-scale DL. However, this assumption may not hold for the UDAF approach because

of the JOIN as explained in Section 4.5.1 Model hopping. We run a test to investigate model

transmission cost with varying model sizes empirically. Our test shows that the CTQ approach

imposes little to no bottleneck and is far less sensitive to the model size. However, the UDAF

approach suffers more overheads on larger models. This confirms that the JOIN and storing

models inside the DB can indeed cause some overheads, although this overhead is not too major

(less than 10% in this case). The details of this test can be found in B.

76

Experiments with Hyperopt Workloads

8 16 24 30
Time (hr)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

5
Va

lid
at

io
n

Er
ro

r

Hyperopt-Cerebro-Spark

15 31 51 64
Time (hr)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

5
Va

lid
at

io
n

Er
ro

r

Hyperopt-UDAF

22 59 77 91
Time (hr)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

5
Va

lid
at

io
n

Er
ro

r

Hyperopt-CTQ

9 18 28 34
Time (hr)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

5
Va

lid
at

io
n

Er
ro

r

Hyperopt-DA

0 10 20 30 34
Time (hr)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

5
Va

lid
at

io
n

Er
ro

r

Hyperopt-Spark

Figure 4.12. Hyperopt learning curves. Each diagram contains learning curves of all 32 model
configs. Best val. errors achieved by each approach are within the margin: 0.31 (Cerebro-Spark),
0.33 (UDAF), 0.31 (CTQ), 0.33 (DA), 0.31 (Hyperopt-Spark).

In the end-to-end experiments we used a simple grid search workload. Now we evaluate

the generality of workloads for the approaches. We use a model selection workload guided

by Hyperopt (TPE algorithm) [41]. The parameter grid we use to sample model configs is as

follows. Model: [ResNet18, ResNet34]; Learning rate: [10−5, . . . , 10−1]; Weight decay: [10−4,

10−6]; Batch size: [16, . . . , 256]. We also include a comparison to Hyperopt-Spark [129], a

standalone task parallel model selection system. We set the number of model configs to 32 and

degree of parallelism to 8. Figure 4.12 plots the learning curves. CTQ has ∼50% higher runtime

than UDAF; This is because MOP’s random scheduler has a decreased runtime performance

when the degree of parallelism is close to the number of workers [214] and showed in B. This

issue can be largely mitigated by increasing the degree of parallelism. DA/Cerebro-Spark run

77

similarly to Hyperopt-Spark, but the latter requires both data export and full data replication to

each worker. Therefore it has a storage blowup of 9x, while Cerebro-Spark has 2x and DA has

none in this case.

On GPU utilizations, the conclusion is consistent with those showed in Section 4.6.1. We

have 32% (UDAF), 33% (CTQ), 44% (Cerebro-Spark), 44% (DA), and 45% (Hyperopt-Spark).

The rest of the measurements are available in B.

Implementation Difficulty

Implementation difficulty is harder to measure quantitively. Following the discussion

in Section 4.5.3, we now try to provide a more quantitive measurement in the form of lines of

source code (LOC). The APPROACH (LOC) is as follows: UDAF (5866), CTQ (5939), DA-

Cerebro (4230: 2764 for standalone Cerebro and 1466 for DA), and Cerebro-Spark (4338). Note

these are counted for end-to-end implementation. UDAF and CTQ can largely share codebase:

given UDAF, it requires only a few hundred lines to implement CTQ as well. Overall, DA and

Cerebro-Spark take less code to implement than their counterparts UDAF and CTQ. However,

this does not necessarily mean they are subjectively easier; as discussed in Section 4.5.3, the DA

approach was much more time-consuming than the LOC number would otherwise suggest.

4.7 Conclusions

Through the paper, we comparatively and quantitively evaluated the fitness of various

distributed deep net training schemes in existing data systems. We characterize the particular

suitability of MOP for DL on data systems, but to bring MOP-based DL to DB-resident data,

we show that there is no single “best” approach, and an interesting tradeoff space of approaches

exists. We explain four canonical approaches and build prototypes upon Greenplum Database,

compare them analytically on multiple criteria (e.g., runtime efficiency and ease of governance)

and compare them empirically with large-scale DL workloads. Our experiments and analyses

78

show that it is non-trivial to meet all practical desiderata well and there is a Pareto frontierOur

results and insights can help DBMS and cloud vendors design better DL support for DB users.

Chapter 4 contains material from “Distributed Deep Learning on Data Systems: A

Comparative Analysis of Approaches” by Yuhao Zhang, Frank McQuillan, Nandish Jayaram,

Nikhil Kak, Ekta Khanna, Orhan Kislal, Domino Valdano and Arun Kumar, which appears in

Proceedings of VLDB Endowment Volume 14, Issue 10, July 2021. The dissertation author was

the primary investigator and author of this paper. All of our source code, data, and other artifacts

are available at https://github.com/makemebitter/cerebro-ds.

79

https://github.com/makemebitter/cerebro-ds

Chapter 5

LOTAN: Bridging the Gap Between
Graph Data Systems and Graph Neural
Network Workloads.

5.1 Introduction

In this chapter, we turn to the DL model selection and training problems on graph data.

Graph data is non-Euclidean and has vastly different representations from the regular tabular

or image data. To tackle the many graph data-driven applications and the irregular nature of

graphs, DL methods, called Graph Neural Networks (GNNs), have been proposed. GNNs have

drastically shifted the landscape of advanced graph analytics. They can provide powerful learned

representations for graphs. In about a decade, GNNs have dominated many graph analytics

leaderboards [124] for tasks ranging from lower-level ones, such as node classification and edge

prediction, to graph-level tasks like graph classification or even graph generation. Applications

span from video analytics [131], recommender systems [295, 306], drug discovery [179] and

pandemic data analysis [299], to even crime prediction [264] with spatial-temporal graphs.

Interest in GNNs is rising rapidly in many domains where data are naturally represented as

graphs, such as social networks and molecular structures.

However, GNN models are tricky to scale [297, 113, 294], because of the sheer amount of

computation and the immense memory pressure they exert on GPUs. A plethora of GNN systems

80

Lotan Worker

Lotan
Graph
Partitioner

PlannerData Loading

Distributed Workers running Existing Engines

...

Message Passing API

Messenger

User

...

Micro-batching Non-blocking Shared-mem.

...

Graph Engine API

GNN-centric
Graph
Partitioning

ETL

Graph Engine Deep Learning Engine

Distributed Computing Resources

Messenger

Micro-batching
Shared-mem.

GNN Model Batching

Data

Execution Plan

Load data Define GNN

Plan
Generation

Cost
Estimation

Plan
Rewrites

Lotan

Planner

 Message Passing API

User

Graph Engine API

ETL

Graph
Engine

DL EngineMessenger

Micro-batch.
Shared-mem.

GNN Model Batcher

Executor

Data Define workload: GNN arch,
hyperpara., training procedure

Plan
Generator

Plan
Rewriter

Lotan Driver

Lotan
Worker

Lotan
Worker

Lotan
Worker

…

Graph Engine DL Engine

+ Scalability
+ Usability
+ Graph analytics

+ Expressive NN APIs
+ Many optimization

procedures
+ Efficient DL

compilers and GPU
support

Lotan

+ Scalable and efficient GNN training
+ Without changing existing frameworks
+ Decoupled scaling of graph and neural network (A)

(B)

Lotan Worker

Lotan
Graph
Partitioner

PlannerData Loading

Distributed Workers running Existing Engines

...

Message Passing API

Messenger

User

...

Micro-batching Non-blocking Shared-mem.

...

Graph Engine API

GNN-centric
Graph
Partitioning

ETL

Graph Engine Deep Learning Engine

Distributed Computing Resources

Messenger

Micro-batching
Shared-mem.

GNN Model Batching

Data

Execution Plan

Load data Define GNN

Plan
Generation

Cost
Estimation

Plan
Rewrites

Lotan

Planner

 Message Passing API

User

Graph Engine API

ETL

Graph
Engine

DL EngineMessenger

Micro-batch.
Shared-mem.

GNN Model Batcher

Executor

Data Define workload: GNN arch.,
hyperparam., training procedure

Plan
Generator

Plan
Rewriter

Lotan Driver

Lotan
Worker

Lotan
Worker

Lotan
Worker

…

Graph Engine DL Engine

+ Scalability
+ Usability
+ Graph analytics

+ Expressive NN
APIs

+ Many optimization
procedures

+ Efficient DL
compilers and
GPU supportLotan

+ Scalable and efficient GNN training
+ Without changing existing frameworks
+ Decoupled scaling of graph and neural network (A)

(B)

Figure 5.1. (A) Lotan bridges the gap between graph systems and DL systems. (B) The
architecture of Lotan.

was proposed to tackle these challenges [285, 323, 93, 195, 186, 280, 135, 230]. They express

GNN workloads primarily as advanced matrix multiplications and rely on GPUs for execution.

When GPU memory is insufficient to host the entire matrices and the intermediate results, one

either resorts to distributed processing [323, 135] and/or spilling techniques [135, 280] that

load/offload data from GPU accordingly.

What makes GNN training so hard to scale, and why do we need these dedicated systems

for GNNs? First, graph data are irregularly shaped and non-IID, differentiating them from regular

IID data modalities such as text and images, for which the state-of-art DL frameworks were

designed. To tackle the data scalability issues, most DL frameworks employ distributed data-

81

parallel schemes [21, 257]. However, data parallelism does not directly apply to graph data: graph

partitions are not independent, and the training process involves cross-partition communications,

depending on the input graph structure. Second, neural network backpropagation requires

caching intermediate data during forward propagation. Depending on the graph data, these

intermediates could be huge in size. Unlike models such as CNNs or Transformers designed for

IID data, where input shape is often normalized and uniform, GNNs are highly input-dependent.

They are tough to accommodate, as workloads are highly versatile and vary significantly in scale.

Third, the “neighborhood explosion” and the over-smoothing problems [66, 201, 68] are also

tricky to bypass; data dependency grows exponentially as the number of GNN layers grows,

posing challenges to both scalability and efficiency.

In this chapter, we make a critical observation that many of the GNN’s challenges are, in

fact, challenges of managing, moving, and handling the underlying graph data. Nonetheless,

existing custom GNN systems mix and couple the graph data and DL challenges. We observe

several shortcomings of this worldview: first, many of these systems “reinvent the wheel” of

much work done in the database world on scalable graph analytics engines. Second, they often

tightly couple the scalability treatments of graph data processing with that of GNN training,

resulting in entangled, complex problems and systems that often do not scale well on one of those

axes. GNN workloads, though drastically different from regular DNN workloads in data access

patterns, are not too far away from non-NN graph analytics such as PageRank. As pointed out by

prior work [195], most of the popular GNNs can be expressed under extended versions of graph

programming models such as Gather-Apply-Scatter (GAS). Scaling “shallow” graph analytics is

not a new topic: many graph data systems were designed for that purpose [198, 106, 103, 105].

However, to our knowledge, none of these systems provide general GNN support, nor do they

handle DL operations, which, nowadays, are better reserved for frameworks such as TensorFlow

and PyTorch. It would be prohibitively labor-intensive to build systems of their generality and

performance from scratch. Furthermore, implementing native NN support within graph systems

would lead to a similar problem of reinventing the wheel of DL systems research. Therefore,

82

both stacks of software are needed: graph systems for graph challenges and DL systems for DL

challenges. As Figure 5.1(A) explains, our work aims to bridge this gap.

System Desiderata. We envision a scalable GNN system with the following desiderata:

(1) Decoupled Scaling: Scale graph and neural network parts by reusing existing industrial-

strength tools. (2) Usability: Retain the ease of specification APIs of both graph and DL tools.

(3) Non-disruptive Integration: No changes to the internal code of those tools. (4) Speed and

Accuracy: Fast runtimes without sacrificing DL accuracy.

In this chapter, we seek to answer a fundamental systems question: How far can we go by

pushing existing systems’ limits without modifications? We propose a novel information system

architecture for scalable GNN training with the decoupling of graph and neural network.

Much like the famous decoupling of compute and storage in cloud computing, this decoupling

enables us to tackle each side individually and allows them to scale independently. We carefully

pick apart the graph and neural network dataflows in GNN training and re-imagine them as a

“query plan” in our new intermediate-level global operator graph. We dispatch the execution

plan to an existing graph analytics engine and a DL framework without modifying their internal

code. We built a distributed prototype system we call Lotan.

Overview of Lotan. Figure 5.1(B) illustrates our system architecture. The user interacts

with Lotan through the APIs to specify their GNN workload. Our Planner then compiles

it into graph and neural network operations and dispatches them to their separate execution

Engines, which are existing graph and DL systems. Our Messenger handles the coordination

and communications between the Engines. This way, Lotan can preserve all functionalities

of the execution Engines, especially the graph data management functionalities such as graph

manipulation, partitioning, and other non-NN graph analysis methods.

Additionally, Lotan provides a series of system optimizations to increase the runtime

performance. The most important two are GNN-centric graph partitioning and GNN model

batching.

83

GNN-centric graph partitioning. Distributed graph processing naturally comes with

the problem of graph partitioning, which can dramatically affect the efficiency as sub-optimal

partitioning leads to a huge amount of network communications. To this end, we propose a GNN-

centric graph partitioning scheme and the corresponding Reverse Graph Propagation execution

scheme for GNN training. Our method works by taking account of the asymmetry in data size

between forward- and backward propagation. We will describe it in detail in Section 5.5.1.

GNN model batching. GNNs, like other DL methods, require extensive hyperparameter

tuning, which involves training multiple models on the same dataset. These models overlap

extensively in their data access patterns, and opportunities exist because data access is quite costly

for GNNs. We propose the first GNN Model Batching technique to improve GPU utilization

and reduce runtime for GNN model selection workloads. As far as we know, Lotan is the first

system to optimize for the GNN model selection/hyperparameter tuning workloads and the first

to explore model batching for GNNs. We will introduce it in Section 5.5.2.

Overall, we make the following technical contributions:

• To the best of our knowledge, this is the first work to bridge the gap between existing

graph data systems and DL systems and the first to formally decouple the scaling of graph

and neural networks in GNN training. Lotan expands design freedom for GNN researchers

and practitioners.

• We re-imagine large-scale GNN training from a data management standpoint and unpack

the dataflows into a “query plan” representation. We then devise novel query rewriting and

optimization techniques to improve scalability and efficiency.

• We propose one of the first GNN-centric graph partitioning schemes to reduce graph node

replication and communications during GNN training.

• Furthermore, Lotan is the first GNN system to treat model selection workloads holistically

and explore model batching techniques to improve training throughput.

84

• We perform an extensive evaluation to compare Lotan with prior industrial-strength systems

and study the impact of our optimizations. The empirical results validate our system’s

higher scalability and competitive time-to-accuracy performance on multiple workloads.

5.2 Background

5.2.1 Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks on graph data. In a nutshell, a

GNN always tries to summarize the graph structure and/or the graph properties into a compact

numerical representation called embeddings. GNNs can be categorized into spectral-based and

spatial-based methods [297]. Spectral-based methods have roots in graph signal processing and

rely on the graph Laplacian and Fourier transform for generating embeddings. Spatial-based

methods are typically the applications of neural networks such as RNN, CNN, and GAN on

graph data, with modifications to account for graph structure. The spatial-based methods are the

more popular of the two categories [297] and will be the main focus of our system.

It is important to note that a GNN model can be ultimately expressed as a combination of

graph processing (in the form of a modified Gather-Apply-Scatter programming model [195])

and DL operations. This is the basis of how our system attacks the problem; we compile

a GNN training task into a global operator graph composed of graph operators and neural

network operators and use existing systems for execution. More details on these concepts are in

Section 5.3.2 and Section 5.4.

5.2.2 Distributed Graph Processing

GNN workloads are still a form of graph processing/analytics because they resemble

many classical problems and share very similar data access patterns. To tackle the many similar

challenges, non-GNN graph data systems [272, 249, 44, 191, 106, 103, 80] rely on distributed

processing, and a critical problem is graph data partitioning.

85

Forward-
propagation

Partition 0

C

A

B

D Partition 1

C

A

D

A

B

D

C

A

B

D Partition 0 Partition 1

C

A

B

D

(A) Edge-cut
(B) Vertex-cut

Partition 0

C

A

B

D

Partition 1

C

A

D

A

B

D

Node Property:
Embedding

Message:
Embedding
(single vector)

Comm.:
Vec. x 2

Back-
propagationPartition 0 Partition 1

C

A

D

A

B

D

Node Property:
Map of grad.

Message:
Gradient (single
vector)

Comm.:
Map of vec. x 2

Forward-
propagation

Partition 0

C

A

B

D
Partition 1

C

A

D

A

B

D

Node Property:
Embedding

Message:
Embedding
(single vector)

Comm.:
Vec. x 2

Back-
propagationPartition 0 Partition 1

Node Property:
Map of grad.

Message:
Gradient (single
vector)

Communication:
Vec. x 2

Map of
grad.

C

A

B

D

Reverse Graph

Node
replication

Cross-part.
messages

A

B

D

C

A

B

Map of
grad.

*Use node placements from the reverse graph

Grad.

Grad.

Emb.

Emb.

Map of
grad.

Figure 5.2. Two graph partitioning schemes.

There are two major graph partitioning schemes: edge-cut and vertex-cut. It is beyond

the scope of this paper to fully cover the entire landscape of graph partitioning, so we only

introduce the bare minimum background before we propose our own GNN-centric graph par-

titioning scheme in Section 5.5.1. Interested readers are directed to other literature on graph

partitioning [56].

Edge-cut. Edge-cut partitioning affixes the location of vertices, and the edges at parti-

tioning boundaries are replicated (or need to be remotely fetched when needed). Figure 5.2(A)

illustrates this scheme. In Gather-Apply-Scatter workloads, the messages generated at vertices

are sent across the partitioning boundary, resulting in cross-partition communications.

86

Table 5.1. Comparison with prior art on key capabilities.

License GPU Distributed Sampling Memory Hierarchy
Lotan Open ✓ ✓ Full Disk-aware

DGL/DistDGL [285] Open ✓ ✓ Both GPU-only
AliGraph/graph-learn [326] Open ✓ ✓ Mini-batch GPU-only

PSGraph [138] N/A ✓ ✓ Mini-batch GPU-only
GraphScope [301] Open ✓ ✓ Mini-batch GPU-only

Sancus [230] Open ✓ ✓ Full GPU-only
PipeGCN [281] Open ✓ ✓ Full GPU-only
Dorylus [270] Open ✗ ✓(Serverless) Full N/A

ROC [135] Open ✓ ✓ Full DRAM-aware
P3 [98] N/A ✓ ✓ Mini-batch GPU-only

DeepGalois [122] N/A ✗ ✓ Full DRAM-only
Pytorch Geometric [93] Open ✓ ✗ Both GPU-only

NeuGraph [195] N/A ✓ ✗ Full DRAM-aware
PaGraph [186, 34] Open ✓ ✗ Mini-batch DRAM-aware
MariusGNN [280] Open ✓ ✗ Mini-batch Disk-aware

Vertex-cut. Vertex-cut partitioning is the alternative to edge-cut; it focuses on the edges

and fixes their locations. As a trade-off, the vertices at the boundaries need to be replicated or at

least remotely fetched when needed.

Note that a certain amount of cross-partition communication or data replication is in-

evitable, depending on the quality of the graph partitioning algorithm and the characteristics of

the underlying graph. Graphs typically have much more edges than vertices in the real world.

Therefore vertex-cut partitioning, which avoids edge replications, sometimes are more favorable

in practice [106, 191, 247] for non-GNN workloads. Although a plethora of graph partitioning

algorithms exists [56], they are seldom designed for GNN workloads. As a result, there is room

for improvement. We will dive deep into the characteristics of GNN workloads in Section 5.5.1

and subsequently propose our graph partitioning scheme on top of the vertex-cut scheme.

5.2.3 GNN Training Systems

Plenty of systems have been proposed to tackle the efficiency and scalability challenges

brought by GNNs. Generally speaking, there are two main camps within GNN system research:

first is the scalability camp, which aims to tackle the scalability issues of full-batch GNNs [135,

87

326, 270]; they are usually distributed systems and focus on providing the capability to run GNN

workloads that fail on other systems. Second is the efficiency camp, which mainly focuses on

runtime speed and usually does not address scalability issues; they often assume that the entire

workload can comfortably fit in GPU memory/main memory [195, 186, 205, 230].

We summarize the comparisons between these systems in Table 5.1, and we will discuss

them in more detail in Section 7.3. We evaluate these systems by several axes: (1) License,

whether the system is open-source and usable for tests. (2) GPU, whether the system has GPU

support. (3) Distributed, whether the system support distributed processing. (4) Sampling,

whether the system targets full-batch or mini-batch GNN training. (5) Memory Hierarchy,

whether the system is secondary storage aware. We leave the performance tests and numbers to

Section 5.7. In this work, we argue that many of these systems are reinventing the wheel with

custom-built graph data systems and are still facing scalability issues with larger datasets or

models. Lotan is more closely related to the scalability camp, but it differs from the prior art

in technical contributions and our architecture design, which can utilize existing, established

systems.

5.3 GNN APIs and Programming Model

5.3.1 GNN Interface

The first system issue we need to address is how do we express a GNN model in a

standardized way? One of the most common and general abstractions is known as the Message

Passing interface [102]. It is also widely adopted in GNN system literature and the de-facto

standard. The Message Passing interface defines a GNN using update rule, an equation that tells

us how to update a graph node’s embedding:

hk
v = ψ(xk

v, Γ
u∈N (v)

φ(hk−1
v ,hk−1

u ,xevu)), (5.1)

88

Distributed Workers running Existing Engines

...

Lotan

Planner

Messenger

A

B

D

C

Example input graph

Node feature
and embedding

Edge
feature

...

Dataflow

Agg. func

A B C D

Update
func

A` B` C` D`

𝚪 𝚪𝚪 𝚪

Message
func

Graph Engine Deep Learning Engine

Lotan

1. Plan generation
2. Operator

placement
3. Coordination
4. Communication
5. …

Message Passing API

Planner

Micro-batching

Non-blocking

Plan
Generator

Plan
Optimizer

Reverse Graph
Back-propagation

Model
Batching

Graph Workers NN Workers

Distributed Computing Resources

Shared-mem.
IPC

𝜙 𝜙 𝜙 𝜙

𝜓 𝜓 𝜓 𝜓

Message Passing API

Messenger

GNN-centric
Graph

Partitioning

GNN Model
Batching

User

...

Cost
Estimation

Plan
Generation

Plan
Rewrites

Micro-batching Non-blocking Shared-mem.

...

𝜙

𝜓

Distributed Workers running Existing Engines

...

Lotan

Planner

Messenger

A

B

D

C

Example input graph

Node feature
and embedding

Edge
feature

...

Dataflow

Agg. func

A B C D

Update
func

A` B` C` D`

𝚪 𝚪𝚪 𝚪

Message
func

Graph Engine Deep Learning Engine

Lotan

1. Plan generation
2. Operator

placement
3. Coordination
4. Communication
5. …

Message Passing API

Planner

Micro-batching

Non-blocking

Plan
Generator

Plan
Optimizer

Reverse Graph
Back-propagation

Model
Batching

Graph Workers NN Workers

Distributed Computing Resources

Shared-mem.
IPC

𝜙 𝜙 𝜙

𝜓 𝜓 𝜓

Message Passing API

Messenger

GNN-centric
Graph

Partitioning

GNN Model
Batching

User

...

Cost
Estimation

Plan
Generation

Plan
Rewrites

Micro-batching Non-blocking Shared-mem.

...

Figure 5.3. (A) An example input graph to a spatial-based GNN. (B) Dataflow diagram of a
message passing GNN.

where ψ , φ , Γ are potentially learnable and differentiable functions, Γ is further required to be

commutative and associative. ψ is called the update function, φ the message function and Γ the

aggregate function. Note Equation 5.1 covers primarily spatial convolutional GNNs, on which

we focus. Some other forms of GNNs, such as spectral-based methods [297], cannot be easily

and efficiently expressed in the same framework. We leave the question of how to support those

GNNs in future work.

Equation 5.1 is the interface we expose to the user. They will need to define the three

functions ψ , φ , Γ using APIs and operators provided by the system to be introduced next.

Depending on the nature of these functions, our system can do plan rewriting and optimizations

to boost performance. More details are in Section 5.4.2. Figure 5.3(A) shows an example input

graph and Figure 5.3(B) shows the conceptual dataflow of a GNN being learned on it.

Batched Message Passing. In practice, we find it much more beneficial to rewrite

Equation 5.1 in a batched and vectorized format, especially for better utilization of GPU:

89

Hk
v = Ψ(Xk

v,
∗

ΓΦ(Hk−1
v ,Hk−1

u ,Xevu)), (5.2)

where Hk
v,Xk

v,Hk−1
v ,Hk−1

u , and Xevu are all matrices which are batched forms of their corre-

sponding vectors, they have shape B× , where B is the batch size and is the dimension of the

respective vectors. Ψ,Φ,Γ
∗ are the batched (vectorized) form of functions ψ , φ , Γ.

5.3.2 Lotan’s Internal Programming Model

It is not obvious how to parallelize Equation 5.1, mainly due to the neighborhood

aggregation steps that are only native to graph processing systems. Some prior work re-cast

the equation into bulk linear algebra [285, 323, 93, 326]. However, they often encounter huge

scalability issues due to the potentially colossal graph size and the resulting sizes of matrix

multiplications. On the other hand, it is not unfamiliar to see existing GNN systems using

Gather-Apply-Scatter (GAS) abstraction or its extension [195] to translate Equation 5.1 into an

executable plan. However, none of these abstractions capture the potentially costly data transfer

operations between the graph and DL execution Engines that Lotan relies on. We need to account

for these operations correctly so that we can better understand the problem. Toward this goal, we

propose a new programming model that roots in the decoupling of compute and storage and the

decoupling of graph and NN. Our abstraction involves three main stages: (1) Graph propagation

with Scatter-Gather-Collect, (2) DL propagation with ApplyEdge-Aggregation-ApplyVertex, and

(3) Pipe and Join. To implement these operators, we build them upon existing operators in the

Graph and DL Engines.

Scatter-Gather-Collect. During this stage, the Graph Engine does a regular Scatter and

Gather as in GAS for the graph propagation portion of a GNN. Instead of Apply in GAS, here it

is followed by a Collect operation, where the Graph Engine, depending on the specifications of

the GNN, collects and packs relevant data to hand over to the DL Engine. This arises because

90

GNN operations are placed on two different Engines in our system. The DL Engine operations

(such as aggregation) have data dependencies up to the Graph Engine to resolve. The Graph

Engine then needs to collect all the data from each graph node and their neighboring nodes

and sends them to the DL Engine. Conceptually, this stage is primarily for implementing the

neighborhood scope u ∈N (v) in Equation 5.1.

ApplyEdge-Aggregation-ApplyVertex. In this stage, the DL Engine receives data from

the Graph Engine and applies the GNN functions on the data. ApplyEdge implements the

per-edge function φ ; similarly, ApplyVertex implements the per-vertex function ψ . Aggregation

implements the neighborhood aggregation function Γ.

Pipe and Join. We need operations for data transfer at the Graph and DL Engine’s

boundary. From the Graph Engine to DL Engine, we need a Pipe operation that, as the name

suggests, pipes data to the DL Engine and the results back to the Graph Engine. Then within the

Graph Engine, a Join operation is needed to incorporate the data, as the order of data may not be

preserved during the Pipe. We will cover these in detail in Section 5.4.3.

One important note is that this separation of stages is not fixed; some operations can be

eliminated, some can be re-ordered, and some can be pushed down. We will explore all these

opportunities for optimizations in Section 5.4.2.

5.3.3 Global Operator Graph and Execution

With all the introduced abstractions, we can now compile an entire GNN training work-

load into a global operator graph with the operators mentioned above. A Planner, to be discussed

in Section 5.4.2, will generate this graph from the user input expressed in the GNN message-

passing interface.

Figure 5.4 shows the full operator graph for end-to-end GNN training, using the operators

defined in Section 5.3.2. Data (embeddings during the forward-propagation, and gradients during

the back-propagation) is sent back and forth between the Graph Engine and DL Engine. The

Graph Engine is in charge of the graph aggregation by running Gather-Scatter-Apply under

91

GNN Model

Batched Layer-0 NN Ops

Update function Aggregation function Message function

DL system OPs

NN Layer AutoGrad

Backprop DL-Pipe

Graph
Engine

…

Available operators

Planner

Graph system OPs

Gather Scatter

Apply Join

Update G-Pipe

Scatter-Gather-Collect

Embeddings

Gradients

Pipe

DL
Engine

ApplyE-Agg.-ApplyV
Pipe

Graph
Engine

Scatter-Gather-Collect
Pipe

Join

DL
Engine

AutoGrad
Pipe

…

Batched Layer-0
Graph Ops

Config 0 Config 1 Config 2 Config k

Batched Layer-1
Graph Ops

Batched Layer-1 NN Ops
Config 0 Config 1 Config 2 Config k

GNN Model Batching

Graph Data
Graph Data

Config k

Layer-0 Graph Ops

Layer-0 NN Ops

Layer-1 Graph Ops

Layer-1 NN Ops

…

Sequential GNN Training

…(A) (B)

Scatter

Gather

Collect

ApplyEdge

Aggregation

ApplyVertex

Pipe

Pipe

…

ApplyEdge

Scatter

Gather

ApplyVertex

Aggregation

Pipe

…

Pipe
Op reordering
and pushdown

One-by-one

D
L Engine

G
raph Engine

G
raph Engine

D
L Engine

G
lobal O

perator G
raph

Forw
ard

B
ackprop

Figure 5.4. Global operator graph of end-to-end GNN training.

the hood for both forward- and back-propagation and collects all the necessary data for the DL

Engine to consume, represented by the Collect operator. During the forward-propagation, the

DL Engine handles the ApplyEdge, Aggregation, and ApplyVertex functions and subsequently

does back-propogation with their AutoGrad capabilities. Both Engines run independently and

are unaware of each other. They can run on the same set of machines, and the operators are

parallelized independently. To coordinate the Engines and to provide a bridge for data transfer,

we build a Messenger component for our system, to be introduced in Section 5.4.3.

5.4 System Architecture

Lotan has 3 main components: (1) External Engines, which are existing graph processing

systems and DL frameworks without modifications. (2) Planner, where Lotan creates and

optimizes the execution plan of a GNN training workload. (3) Messenger, where Lotan reconciles

the Graph Engine and the DL Engine and facilitates efficient data transmission between them.

92

5.4.1 External Engines

These engines are what Lotan relies on and improves on for tackling many scalability

challenges of GNN training. We only use these engines’ public interfaces and treat them as black

boxes. This way, we use them without modifications and drastically increase the portability and

generality of Lotan while preserving all the features provided by both Engines.

Graph Engine. The Graph Engine is an external graph data system that Lotan relies

on for graph-related operations and scalability challenges. It can be a graph processing system

or a graph DBMS, as long as it provides public interfaces for (1) Gather-Apply-Scatter (GAS)

operators. (2) Operations that export data to external systems. Additionally, it should provide

scalable solutions for large-scale graph analytics. Often, such Engines conveniently provide

various data system features such as data partitioning and distribution, fault tolerance, memory

management, and disk spilling. Most of today’s graph analytics systems/graph DBMS meet

these criteria. Examples include Spark’s GraphX [106], Giraph [103], TigerGraph [80], and

Neo4j [219]. We choose GraphX for our prototype because, first, it is open-source software

and has an active user community. Second, it is easy to use and piggybacks on the popular and

familiar Spark ecosystem. Our approach is general and easily applicable to other graph analytics

engines.

Deep Learning Engine. To handle the challenge from the neural network part of a

GNN, we adopt an external DL system/framework. We use this system for forward propagation

activation computing and back-propagation gradient computing with their autograd capabilities.

By using an existing DL framework, we automatically make available the rich DL libraries and

GPU support such a framework comes with. Furthermore, these systems can offer an out-of-box

solution for distributed model training via their data-parallel capabilities [257, 177]. TensorFlow

and PyTorch are both prominent examples of such systems and both are applicable. We pick

PyTorch due to its dominant popularity in the GNN community.

93

GNN Model

Batched Layer-0 NN Ops

Update function Aggregation function Message function

DL system OPs

NN Layer AutoGrad

Backprop DL-Pipe

Graph
Engine

…

Available operators

Planner

Graph system OPs

Gather Scatter

Apply Join

Update G-Pipe

Scatter-Gather-Collect

Embeddings

Gradients

Pipe

DL
Engine

ApplyE-Agg.-ApplyV
Pipe

Graph
Engine

Scatter-Gather-Collect
Pipe

Join

DL
Engine

AutoGrad
Pipe

…

Batched Layer-0
Graph Ops

Config 0 Config 1 Config 2 Config k

Batched Layer-1
Graph Ops

Batched Layer-1 NN Ops
Config 0 Config 1 Config 2 Config k

GNN Model Batching

Graph Data
Graph Data

Config k

Layer-0 Graph Ops

Layer-0 NN Ops

Layer-1 Graph Ops

Layer-1 NN Ops

…

Sequential GNN Training

…(A) (B)

Scatter

Gather

Collect

ApplyEdge

Aggregation

ApplyVertex

Pipe

Pipe

…

ApplyEdge

Scatter

Gather

ApplyVertex

Aggregation

Pipe

…

Pipe
Op reordering
and pushdown

One-by-one

D
L Engine

G
raph Engine

G
raph Engine

D
L Engine

G
lobal O

perator G
raph

Forw
ard

B
ackprop

Figure 5.5. An example of plan rewrites. Note the Collect operator is rewritten with ApplyEdge
and Aggregation.

5.4.2 Planner

At the heart of Lotan is the Planner, inspired by query planners in database research.

Close to the concept of a DBMS query optimizer/planner, we need to weigh the potential query

plans and choose the optimal one. The general idea is to assign relative costs for each stage of

the execution and then determine the final cost estimate. However, in this case, the plan search

space is much more limited, and it is favorable to do operator pushdowns whenever possible.

Therefore, we find simple heuristics sufficient and no sophisticated cost estimation is needed.

To complete the study, we still try to model the costs, but primarily for curiosity and a deeper

understanding of the problem. We will also verify some of the observations from our cost models

with experiments in C.

Plan Generation and Rewrites. Plan generation is usually trivial, as GNN training

comprises mostly sequential stages, as Figure 5.4 shows. Opportunities for optimization exist;

94

depending on the nature of the GNN model, the execution plan can be rewritten. We only

consider the two most obvious cases of plan rewriting: operator reordering and pushdown.

Equation 5.1 gives the most general definition of a GNN, and Figure 5.3(B) is the most

stringent ordering of the three functions from the Message function to the Aggregation function

to the Update function. However, because all these functions can be neural networks, they

can only be handled by the DL Engine. Both the Message and Aggregation functions require

neighbor information; we will also have to collect all the edges, features, and embeddings in

the Graph Engine and ship them to the DL Engine. For this general case, our operator graph

writes as Figure 5.4. This is an expensive plan due to the Collect operator and the size of data

movement between the two Engines. However, if the Message and Aggregation functions are

both unparameterized and therefore do not require training, we can push down these functions to

the Graph Engine and drastically save costs. Figure 5.5 illustrates this scheme. We will test plan

rewrites with experiments in Section 5.7.2 and see that it contributes to substantial performance

gains.

Cost Estimation. To calculate the costs of a plan, we first evaluate the costs of individual

stages respectively, then aggregate them together. A stage is defined as the sub-operator graph

between two boundaries of data movement. The costs are estimated using: (1) the data graph’s

information, such as the number of nodes and vertices and the average degree. (2) specifications

of the GNN, such as the number of layers and the number of parameters involved in the neural

network. (3) The DRAM and GPU RAM limit, network/disk bandwidth, and the number of

concurrent CPU threads available (degree of parallelism). Due to space constraints, we will

highlight the main observations in Section 5.6, but leave the details to C. Within the cost models,

a few factors are situation-dependent and, therefore, cannot be very well estimated. One can

resort to logs of past runs of the same model and graph for more accurate costs.

95

5.4.3 Micro-batch Processing and Messenger

One critical question of utilizing existing systems is how to reconcile them; each comes

with its input/output interfaces, data formats, memory layouts, and other specifications. Further,

the DL Engine heavily favors batched data input for higher utilization and throughput, while

the data comes off the Graph Engine as streams to reduce memory footprint. This means we

must convert the data stream to and from data batches. We also need to keep the order of data

consistent during both the forward pass and backward pass stages.

To our best knowledge, this is the first time the data movement issues between graph data

systems and DL systems are being studied. We adopt and synthesize existing techniques and

optimizations to solve the novel problems mentioned above. We build a component called Mes-

senger. We apply a series of system optimizations to the Messenger: It uses non-blocking, async

sockets and shared memory to communicate with the DL Engine for overlapping computation

with communication and to reduce throttling. The details of this component can be found in C.

5.5 System Optimizations

5.5.1 GNN-centric Graph Partitioning and Reverse Graph Back-
propgation

Graph partitioning is a vital part of distributed graph processing, as it dramatically

impacts the volume of data replication and communications. Most existing graph partitioning

schemes are not designed with GNNs in mind, resulting in suboptimal performance. We propose

a novel graph partitioning and training execution scheme for GNNs, named Reverse Graph

Backpropagation (RGB). This technique applies to vertex-cut-based Graph Engines [106, 105]

such as GraphX, which we use for prototying. Our method is based on two key observations:

first, neural network training consists of a forward- and a back-propagation phase; the two phases

have inverted dataflow. Second, during GNN training, graph node data are updated, and the data

size changes between phases, which leads to an asymmetry in replication costs.

96

Forward-
propagation

Partition 0

C

A

B

D Partition 1

C

A

D

A

B

D

C

A

B

D Partition 0 Partition 1

C

A

B

D

(A) Edge-cut
(B) Vertex-cut

Partition 0

C

A

B

D

Partition 1

C

A

D

A

B

D

Node Property:
Embedding

Message:
Embedding
(single vector)

Comm.:
Vec. x 2

Back-
propagationPartition 0 Partition 1

C

A

D

A

B

D

Node Property:
Map of grad.

Message:
Gradient (single
vector)

Comm.:
Map of vec. x 2

Forward-
propagation

Partition 0

C

A

B

D
Partition 1

C

A

D

A

B

D

Node Property:
Embedding

Message:
Embedding
(single vector)

Comm.:
Vec. x 2

Back-
propagationPartition 0 Partition 1

Node Property:
Map of grad.

Message:
Gradient (single
vector)

Communication:
Vec. x 2

Map of
grad.

C

A

B

D

Reverse Graph

Node
replication

Cross-part.
messages

A

B

D

C

A

B

Map of
grad.

*Use node placements from the reverse graph

Grad.

Grad.

Emb.

Emb.

Map of
grad.

Figure 5.6. Regular 1D source hash partitioning and dataflow.

We start from the well-accepted hash-based 1D edge partitioning [247], where we hash

partition all the nodes and then colocate all edges based on their sources. Figure 5.6 illustrates

the strategy. During forward propagation, each node’s property and messages it sends are its

node embeddings, which are 1-dimensional vectors. No node replication happens, but two

cross-partition messages take place. During the back-propagation, the data flow is inverted.

However, each node updates its properties to gradients returned from the DL Engine (such

updates happen in-partition and do not incur cross-partition communications). These gradients

are hash maps of vectors and, compared to the embeddings, are d (node degree) times larger. For

a realistic graph, the average degree can easily be around 100. Because dataflow is inverted and

the partitioning is not, heavy cross-partition communications would occur.

97

To address this performance issue caused by the asymmetry, we propose our novel

GNN-centric Graph Partitioning scheme and the way to backpropagate through it, described as

follows:

1. Create a reverse graph (each edge reversed) from the original graph.

2. Do a regular hash partitioning on the reverse graph: first, hash partition all the nodes and

place them; second, partition the edges based on their sources so that all edges originating

from the same source colocate in the same partition.

3. Finally, we partition the original graph’s edges in the same manner but keep the node

partitions generated from the reverse graph.

4. We run the forward propagation as usual on the original graph. However, we run the

back-propagation on the reverse graph.

This way, there is drastically reduced communication during back-propagation, where the

most significant bottleneck could arise. Depending on the circumstances, communication costs

might increase for forward propagation but are offset by back-propagation savings. We keep the

node placements consistent between phases, otherwise extra cross-partition communication will

occur. Figure 5.7 illustrates our approach. Regarding cross-partition communications, we only

have single vectors instead of hashmaps of vectors. The example shows a directed graph, but the

same logic still applies to undirected graphs.

5.5.2 GNN Model Batching

GNNs, like any other neural network, rely on careful and extensive hyperparameter

tuning for the best accuracy performance. Consequently, the workloads are often multiple-

model explorations. Each model has its different set of neural network hyperparameters. When

running hyperparameter tuning workloads, existing systems take a sequential approach: training

them one-by-one. Figure 5.8(A) shows it. There is wasted potential for improvements: First,

98

Forward-
propagation

Partition 0

C

A

B

D Partition 1

C

A

D

A

B

D

C

A

B

D Partition 0 Partition 1

C

A

B

D

(A) Edge-cut
(B) Vertex-cut

Partition 0

C

A

B

D

Partition 1

C

A

D

A

B

D

Node Property:
Embedding

Message:
Embedding
(single vector)

Comm.:
Vec. x 2

Back-
propagationPartition 0 Partition 1

C

A

D

A

B

D

Node Property:
Map of grad.

Message:
Gradient (single
vector)

Comm.:
Map of vec. x 2

Forward-
propagation

Partition 0

C

A

B

D
Partition 1

C

A

D

A

B

D

Node Property:
Embedding

Message:
Embedding
(single vector)

Comm.:
Vec. x 2

Back-
propagationPartition 0 Partition 1

Node Property:
Map of grad.

Message:
Gradient (single
vector)

Communication:
Vec. x 2

Map of
grad.

C

A

B

D

Reverse Graph

Node
replication

Cross-part.
messages

A

B

D

C

A

B

Map of
grad.

*Use node placements from the reverse graph

Grad.

Grad.

Emb.

Emb.

Map of
grad.

Figure 5.7. GNN-centric Graph Partitioning and dataflow.

models in a hyperparameter search workload share identical data access patterns, and re-using

these routines can amortize the overheads. Second, many GNN workloads have relatively low

neural network components, often leaving the GPU underutilized. For DL methods on IID and

Euclidean data, many systems [214, 319] have been developed to optimize for model selection

workloads. However, these techniques do not apply as they assume IID data.

To address these issues, we propose GNN Model Batching. Model batching [217] is a

technique to increase GPU utilization for IID models. To our best knowledge, we are the first

to explore the same possibility for GNNs. We devise a model batching scheme to combine the

models within a hyperparameter search workload. Figure 5.8(B) depicts it. We run multiple

models simultaneously on the model-batched version of the regular graph and NN operators.

99

GNN Model

Batched Layer-0 NN Ops

Update function Aggregation function Message function

DL system OPs

NN Layer AutoGrad

Backprop DL-Pipe

Graph
Engine

…

Available operators

Planner

Graph system OPs

Gather Scatter

Apply Join

Update G-Pipe

Scatter-Gather-Collect

Embeddings

Gradients

Pipe

DL
Engine

ApplyE-Agg.-ApplyV
Pipe

Graph
Engine

Scatter-Gather-Collect
Pipe

Join

DL
Engine

AutoGrad
Pipe

…

Batched Layer-0
Graph Ops

Config 0 Config 1 Config 2 Config k

Batched Layer-1
Graph Ops

Batched Layer-1 NN Ops
Config 0 Config 1 Config 2 Config k

GNN Model Batching

Graph Data
Graph Data

Config k

Layer-0 Graph Ops

Layer-0 NN Ops

Layer-1 Graph Ops

Layer-1 NN Ops

…

Sequential GNN Training

…(A) (B)

Scatter

Gather

Collect

ApplyEdge

Aggregation

ApplyVertex

Pipe

Pipe

…

ApplyEdge

Scatter

Gather

ApplyVertex

Aggregation

Pipe

…

Pipe
Op reordering
and pushdown

One-by-one

D
L Engine

G
raph Engine

G
raph Engine

D
L Engine

G
lobal O

perator G
raph

Forw
ard

B
ackprop

Figure 5.8. (A) Sequential training (B) Model Batching.

All data transmitted between the Graph Engine and DL Engine are also batched together. The

models can then share all the data access operations to amortize costs.

5.6 Analysis of Cost Models

To better understand the problem, we model the various costs of GNN training: repli-

cation, computational, memory, and overheads. As mentioned earlier in Section 5.4.2, these

models are not used in the Planner and only for deeper understanding and further experiment

evaluation. Due to space constraints, we leave the tedious details and equations to C. We present

a summary of two key observations about our cost model that we will validate empirically later.

Effect of Number of Partitions. The number of data partitions interplays with system

performance in two ways: First, for large-scale dataset, more partitions are required to reduce

memory pressure. Second, increasing the number of partitions will also increase the degree of

parallelism and utilization because our Graph Engine uses one thread per partition.

100

To put it into an equation. We have the total computational cost for an execution plan

with partitions:

WP =
W
P

max(
P

ML
,1)+ foverhead(

P
ML

), (5.3)

where W is the total amount of work (unit: time), W
P is each partition’s amount of work, P

M is the

total amount of tasks each machine gets, max(P
ML ,1) is the total amount of rounds each machine

executes. Without losing generality, assume foverhead follows a monotonic increase along with P.

We can then reason that as the number of partitions P increases; the overall runtime would first

decrease and then increase.

We see precisely this behavior in our tests. Due to space constraints, the experiment

details are moved to C. Due to the intertwined effects of this one parameter, the runtime behavior

becomes non-linear and difficult to capture with simple cost models. Instead, we use rule-based

heuristics to tune the number of partitions: we set it to be the same as the total number of CPU

cores of the entire cluster unless more partitions are required to alleviate the memory pressure.

Fortunately, GNN workloads are highly predictable in runtime and resource consumption. If

necessary, one can always do test runs (for 1 or 2 epochs of training is more than sufficient) to

figure out the optimal config setting.

Effect of Model Batching. The intermediate embedding/gradient size of a GNN model

greatly impacts runtime performance. Because of GNN Model Batching, Lotan can have inflated

intermediates sizes. To be precise, the intermediate sizes will be multiplied by the model batching

size. Consequently, for model batching, we expect to see a scaling up when increasing model

batching size due to higher utilization until the returns diminish due to overheads. We run

experiments and show the results in Section 5.7.2 and will see the expected behavior.

101

0 10 20 30 40 50
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(A) Learning Curve
 (ogbn-products-GCN Test)

Lotan
DistDGL
AliGraph (Fail)
Sancus

0 2 4 6 8 10
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(B) Learning Curve
 (ogbn-products-GIN Test)

Lotan
DistDGL (Fail)
AliGraph (Fail)

0 5 10 15 20
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(C) Learning Curve
 (ogbn-arxiv-GCN Test)

Lotan
DistDGL
AliGraph
Sancus

0.0 0.5 1.0 1.5
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(D) Learning Curve
 (ogbn-arxiv-GIN Test)

Lotan
DistDGL
AliGraph (Fail)

Figure 5.9. Learning curves for the chosen model on the test set. (A) ogbn-products-GCN. (B)
ogbn-products-GIN. (C) ogbn-arxiv-GCN. (D) ogbn-arxiv-GIN. Corresponding learning curves
on the validation set are presented in C.

5.7 Experiments and Evaluation

Prior Art. Out of the distributed GNN training systems discussed in Section 5.2.3, we

show comparisons to the SOTA: DistDGL [323], AliGraph [326], and Sancus [230]. We excluded

all systems that do not support distributed training and those without public release. Despite the

best effort, we could not set up and use ROC [135], with a similar situation reported in [270].

Sancus [230] and PipeGCN [281] should be comparable systems, both with approximated

processing, while others (including ours) are with exact processing, and we pick the former for

benchmarking. Note that both DistDGL and AliGraph are primarily mini-batch GNN systems.

102

Although DistDGL can run full-batch training, it fails almost all our workloads. Therefore, we

use it with the mini-batch setting. Mini-batch training is mathematically different from full-batch

training. But we put in our best effort for a fair comparison by tuning the mini-batch size to their

advantage and using standard benchmark metrics agnostic of the training scheme.

Datasets. We use three of the standard benchmarking datasets from OGB [124], which

has become the go-to place for graph datasets for benchmarking. We use ogbn-products,

ogbn-arxiv, and ogbn-papers100M. Additionally, we also include datasets reddit [113] and

amazon [118], the original amazon dataset is not shipped in graph form, and we converted it to

graph after acquiring a recipe from the authors of [135, 270]. The prior art also commonly use

these datasets in their published papers. Table 5.2 first column shows brief statistics about the

datasets.

Workloads. We define a GNN training workload with hyperparameter tuning factored in,

which is an inevitable part of the end-to-end development of a GNN model. We primarily focus on

two model architectures: GCN [150] and GIN [302] with various hyperparameter configurations.

DistDGL and AliGraph have the batch size to tune additionally. In the corresponding literature,

we found a batch size from 128 to 8192 is common. We tried as much as possible to make the

comparison apples-to-apples and tune the batch size beforehand for them. To not understate their

performance, we set the batch size to be as large as they could handle before failing to enable the

maximum possible throughput. This means mini-batch size 8 for DistDGL on Amazon, 128 for

DistDGL on ogbn-products+GCN and 8192 on ogbn-arxiv+GIN. And mini-batch size 128 for

AliGraph on ogbn-arxiv+GCN. For Sancus, we can only test it on the GCN workloads as it does

not have an existing implementation for GIN.

Experiment Setup. We use one cluster on CloudLab [246] with 8 worker nodes. Each

node has two Intel Xeon 10-core 2.20 GHz CPUs, 192GB memory, and 10 Gbps network. Each

worker node also has an Nvidia P100 GPU, which has 12 GB memory. We tried to get GPUs with

larger memory but such resources are scarce and costly to obtain, especially for the long-running

tests we do. Nevertheless, it is not a showstopper as Lotan’s scalability gain is agnostic to the

103

underlying hardware. Furthermore, even with larger GPUs, workloads can still scale beyond

GPU memory capacity and would not change our observations about Lotan’s scalability. All

nodes run Ubuntu 20.04. We use Spark 3.2.0, Pytorch 1.10, and CUDA 11.0.

5.7.1 End-to-end Performance Study

We use a 3-layer GCN with a hidden layer size of 256, as described in [124], dubbed

GCN. We also include a variant of it with hidden size 512, which we call GCN-Large, to further

distinguish between Lotan and Sancus. We skipped DistDGL and AliGraph with GCN-Large

due to their crashes or much longer runtimes, and these tests would not provide extra insights.

For GIN, we use one from [302] that is 4-layer. For the MLPs in GIN, we use a 2-layer MLP

with dimensions {128,256} for the end-to-end study. For the GCNs, their ApplyVertex functions

are single-layer perceptions, while the GIN model uses the MLP described above. All of these

models do not employ an ApplyEdge function and use a summation as the Aggregation.

Following the standard practices [150, 124, 302], we use an early termination of 10

epochs based on the validation set; we terminate if the validation accuracy does not increase

for 10 consecutive epochs (with a tolerance of 0.01%). Further, we put a hard time limit of 48

hrs for each model config. We also combine the hyper-parameters used in the papers above to

form a grid search: learning rate in {0.05,0.01}, optimizer in {Adam,Adagrad}, and dropout in

{0,0.5}.

Table 5.2 summarizes the results of our end-to-end tests. On the ogbn-products + GCN

workload, Lotan achieves 47x higher throughput than DistDGL while providing the same level

of accuracy. There is no consensus from the GNN model research community on whether full-

batch or mini-batch training is superior. Further, note some of the models and systems adopted

mini-batch training partly due to the scalability issues of full-batch training [113, 67]. Lotan is

designed to mitigate the said issues. Our finding of full-batch training achieving the same or

slightly higher accuracy than mini-batch training is in line with prior work [135, 281]. Sancus,

though it runs fast, has severe issues in accuracy during our test, likely due to its approximate

104

nature. Furthermore, it starts to fail on the GCN-Large workload, but Lotan can still scale. Lotan

is also the only system to be able to handle GIN training, and all other systems fail due to GPU

memory issues. Increasing GPU memory might fix their problems on these specific workloads.

Still, it would not resolve the fundamental issues these systems have and would not change the

argument that Lotan has better scalability to handle large workloads.

On the tiny ogbn-arxiv dataset, while Lotan can still provide the highest accuracy on both

GNNs, it no longer offers higher throughput than DistDGL. On the reddit dataset, which, despite

having a similar number of nodes to ogbn-arxiv, has more edges, both DistDGL and AliGraph

fail, likely due to the density of the graph. Sancus is still capable of operating and appears not

affected much, but as other experiments showed, it offers lower accuracy due to its approximate

nature. On the amazon dataset, Lotan and DistDGL are the only systems able to run the GCN

workloads, and only Lotan for the GIN workloads. Lotan can provide a higher throughput than

DistDGL. On the ogbn-papers100M dataset, one of the largest benchmark datasets available,

Lotan is the only system able to run the workload. As far as we know, this is the first time

for a GNN system to demonstrate full-graph GCN with a hidden size as large as 256 on this

dataset. However, the execution is heavily bottlenecked, and a huge amount of disk spills happen.

Consequently, we could not run the workload to converge in any reasonable amount of time. We

only report the throughput numbers.

Figure 5.9 shows the learning curves for the best model out of some of the hyperparameter

tuning workloads. On all workloads, Lotan converges fast and reaches the same level of accuracy

as the SOTA. Regarding resource utilization, Lotan has high CPU utilization but generally lower

GPU utilization across the workloads. This is because Lotan puts neural network operations on

GPU and graph operations on CPU, while other systems put both on GPU. Except for Lotan,

all other systems showed little to no disk R/W because they are not secondary-storage-aware,

whereas Lotan can utilize the disk for spilling. Sancus and DistDGL further utilize GPU for

communications, resulting in seemingly higher GPU utilization.

105

arx
iv-

GCN

arx
iv-

GIN

red
dit

-GCN

red
dit

-GIN

pro
du

cts
-GCN

pro
du

cts
-GIN

am
azo

n-G
CN

am
azo

n-G
IN

0

500

1000

1500
Av

g.
 R

un
tim

es
 (s

ec
)

(A) Runtime Breakdowns
Graph Engine
DL Engine
Pipe and Join

Naive

+Rev. G
raph Prop.

+Plan Rewrites

+Opt. M
essenger

+Model Batching0

250

500

750

1000

Ep
oc

hs
 /

hr

1x 2x
10x 14x

76x
(A) Ablation Study

Figure 5.10. (A) Runtime breakdowns. (B) Ablation study.

5.7.2 Drill-down Experiments

To dig into the runtime figures, we also break down Lotan’s runtime and investigate each

portion’s time costs in Figure 5.10(A). The Graph Engine costs dominate, especially on the larger

dataset. DL Engine and Pipe-Join costs are not as significant. This composition will change

when we try scaling the model in Section 5.7.2.

Ablation Study

To inspect each component’s performance, we conduct an ablation study where we add

our innovations to a naively implemented version of Lotan. We pick the ogbn-arxiv+GCN

workload for this test. Figure 5.10(B) shows the results. We separate our technical innovations

into four modules: (1) Reverse Graph Backprop (RGB) and the coupled GNN-centric partitioning

scheme, as described in Section 5.5.1. (2) The execution plan rewrites by our Planner outlined

in Section 5.4.2. (3) The various efforts we put into optimizing our Messenger architecture

as described in Section 5.4.3. (4) Finally, our GNN Model Batching scheme proposed in

Section 5.5.2.

106

All of the components have substantial contributions to performance gains; Reverse Graph

Backprop can boost the performance by 2x without any plan rewrites or other optimizations.

With Planner rewrites introduced, we get another 5x speed-up due to the sheer amount of

communication and computation saved. Furthermore, our Messenger optimizations boost the

performance by another 40% by reducing overheads in I/O, IPC, and synchronization. Last but

not least, GNN Model Batching contributes a more than 5x speed-up due to amortized graph data

access overheads. Overall, our technical innovations can boost the throughput of GNN model

training by 76x, compared to a naively implemented system.

4 6 8 10 12 14 16
Number of GNN Layers

0

2

4

6

Ru
nt

im
e

(h
r)

(A) Runtime Scaling
Lotan
Lotan-Fitted Linear
DistDGL (Fail)
AliGraph (Fail)

4 6 8 10 12 14 16
Number of GNN Layers

0

10

20

30

40
Ut

iliz
at

io
n

(%
)

(B) Processor Util. Scaling

CPU
GPU

Figure 5.11. Depth Scaling. (A) Runtime. (B) Utilization.

Model Scalability

We now test Lotan’s capability of scaling to larger neural network models. In practice,

there are two primary ways to scale up a model: make it deeper by adding more (GNN) layers,

or increase the number of neurons in each layer. We call the first type depth scaling and the

latter type width scaling. Since Lotan disaggregates the graph operations from neural network

operations, it has very different behavior for the two types of scaling. To thoroughly test it,

we use two different workloads based on the GIN model used earlier and train them on the

ogbn-products dataset. For the depth scaling test, we test with different numbers of GNN layers

107

0 50 100
#Parameters (Millions)

0.0

0.5

1.0

1.5

2.0
Ru

nt
im

e
(h

r)
(A) Runtime Scaling

Lotan
DistDGL (Fail)
AliGraph (Fail)

0 50 100
#Parameters (Millions)

0

10

20

30

40

Ut
iliz

at
io

n
(%

)

(B) Processor Util. Scaling

CPU
GPU

Figure 5.12. Width Scaling. (A) Runtime. (B) Utilization.

ranging from 4 to 16. For the width scaling test, we fixed the model to be a 4-layer, and we

varied the size of the MLP in GIN from 128 to 217 (131072); we kept the embedding size also

fixed as 256. This results in various models with hugely different sizes.

Depth Scaling. Figure 5.11 shows the results: Lotan can easily achieve almost linear

scaling to 16 layers and even beyond, and there is minimal fluctuation in the processor utilizations.

Note that the scaling is linear but not proportional; when the number of layers doubles, the

runtime does not; this is because the scaling follows y = kx+b with a non-zero intercept. It is to

be expected as the amount of work grows linearly in this case, and Lotan shows resilience at

scale. To the best of our knowledge, Lotan is the first system to demonstrate scale to 10+ layer

GNNs with full batch training. It is important to note that the systems we compared all failed at

4 or more layers, as already discussed in Section 5.7.1.

Width Scaling. We show the width scaling results in Figure 5.12. Increasing the MLP

size will not increase the amount of work on the Graph Engine, and since the GPU was under-

utilized when the NN is small, we see an almost constant scaling of Lotan. In this case, we

see a dramatic increase in GPU utilization and almost constant CPU utilization. Thanks to the

decoupling of graph and neural networks, scaling one side does not necessarily affect the other.

108

Lotan can provide independent scaling and frees the user from scalability issues. It enables

the user to design the GNN components separately and more freely. Furthermore, Lotan can

gracefully handle a GNN model with 140M+ parameters with full batch training. To put it into

perspective, this is the number of parameters of some early Transformer DL models have: BERT

(110M) [81], and GPT-1 (117M) [236]. To our knowledge, Lotan is the first system to be able to

handle this scale among the GNN systems. As shown in Section 5.7.1, other systems all failed at

the very beginning.

Model Batching

We now inspect the effect of model batching on the workloads. For this test, we take the

same ogbn-arxiv+GCN models used in Section 5.7.1 and create workloads with various degrees

of model batching. Figure 5.13 shows the results. We first notice that the time costs scaling is

all linear with constant overheads (manifested as the intercept), per our cost model described

in Section 5.6. There is also a substantial gain in throughput, especially at the low degree of

the model batching regime. The SGC and AAA costs scale far less steeply than the SGC costs;

therefore, as the model batching size increases, the SGC costs become more and more dominant.

This indicates that the biggest challenge is on graph data processing.

At a low degree of model batching (< 10), the time costs are dominated by their respective

constant parts and not scaling as much with the model batch size. Therefore, the time costs only

increase around 3x while the model batching size rises from 1 to 10, resulting in throughput gains.

However, as the degree of model batching increases, the scaling parts of time costs dominate,

and we see 2x increase in time costs when batch size increases from 10 to 20 (2x increase).

Consequently, the throughput scaling plateaus out as 2x model batched would mean 2x more

runtime in this realm.

109

5.8 Conclusion and Discussion

Conclusions and limitations. By carefully abstracting, optimizing, and testing, we

have demonstrated that it is possible to bridge the gap between graph analytics systems and DL

systems with high scalability and without modifying their internal code. Currently, Lotan has

two major limitations: (1) Lotan currently is only optimized for full-batch training. Mini-batch

training would require efficient graph sampling and filtering, posing another scalability challenge

and potential query optimization questions. (2) Lotan is meant for large workloads with large

graphs and/or models. There is still some room for improvement on smaller workloads that do

fit in memory, where more leeway for caching and batching techniques exists.

Discussion. Our results showed that the graph data system bottlenecked many of our

tests (see Figure 5.10(A)). There are many sync barriers, costly data replications, and frequent

garbage collections. Graph data systems need to evolve to better support GNN workloads and

property-rich graphs with high dimensional dense vectors. Furthermore, GNN systems such as

Lotan can be extended to adopt recent advances in ML systems research for optimizing model

selection workloads [214, 319, 161, 213, 178], fine-tuning and transfer learning workloads [209],

and large model scaling [216, 207]. It is non-trivial to extend their techniques designed for IID

data to graph data. However, with suitable adaptation, they could further amortize some runtime

overheads to make GNNs more efficient at scale.

Chapter 5 contains material from “Lotan: Bridging the Gap between GNNs and Scalable

Graph Analytics Engines” by Yuhao Zhang and Arun Kumar, which appears in Proceedings of

VLDB Endowment Volume 16, Issue 11, August 2023. The dissertation author was the primary

investigator and author of this paper. All of our source code, data, and other artifacts are available

at https://github.com/makemebitter/lotan.

110

https://github.com/makemebitter/lotan

Ta
bl

e
5.

2.
E

nd
-t

o-
en

d
te

st
re

su
lts

.T
L

E
:t

im
e

lim
it

ex
ce

ed
ed

(4
8

hr
s

pe
rm

od
el

).
∗ F

or
th

es
e

te
st

s,
al

lm
od

el
s

w
ith

in
th

e
w

or
kl

oa
d

le
ar

ne
d

to
o

sl
ow

ly
an

d
go

tt
er

m
in

at
ed

to
o

so
on

.T
o

no
tu

nd
er

st
at

e
th

e
sy

st
em

’s
ca

pa
bi

lit
y,

w
e

m
ak

e
an

ex
ce

pt
io

n
an

d
in

cl
ud

e
a

se
pa

ra
te

ru
n

fo
ra

fix
ed

50
0

ep
oc

hs
an

d
th

en
pi

ck
th

e
be

st
va

lid
ac

cu
ra

cy
ch

ec
kp

oi
nt

.† T
he

se
te

st
s

w
ou

ld
ta

ke
an

un
re

as
on

ab
le

am
ou

nt
of

tim
e

to
fin

is
h.

T
he

re
fo

re
,w

e
di

d
no

tt
ra

in
th

em
to

co
nv

er
ge

an
d

on
ly

re
po

rt
ed

th
e

th
ro

ug
hp

ut
nu

m
be

rs
.

D
at

as
et

Su
m

m
ar

y
D

at
as

et
M

od
el

Sy
st

em
Te

st
A

cc
.

(%
)

R
un

tim
e

(h
r)

T
hr

ou
gh

pu
t

(e
po

ch
/h

r)
C

PU
U

til
.(

%
)

G
PU

U
til

.(
%

)
D

is
k

R
/W

(G
B

/h
r)

N
et

w
or

k
(G

B
/h

r)

ar
xi

v

G
C

N

L
ot

an
69

.2
8

1.
90

92
4.

85
18

.4
7

5.
79

42
94

.6
6

42
03

.4
4

D
is

tD
G

L
68

.4
9

0.
33

19
12

.5
0

21
.3

9
15

.8
0

3.
45

59
59

.2
8

A
liG

ra
ph

68
.6

0
17

1.
44

1.
59

5.
35

6.
73

3.
48

44
.4

6
#N

od
es

:1
69

.3
K

*S
an

cu
s

*5
5.

23
*0

.7
9

18
55

.6
7

5.
98

89
.9

7
3.

00
19

70
6.

78
#E

dg
es

:1
.1

M

G
IN

L
ot

an
71

.2
2

3.
71

55
7.

38
18

.1
1

5.
93

31
23

.7
4

49
59

.3
6

A
vg

.D
eg

re
e:

13
.7

D
is

tD
G

L
43

.6
4

0.
15

10
35

.9
7

20
.1

3
16

.6
5

4.
13

61
09

.5
4

*D
is

tD
G

L
*6

9.
26

*2
.7

6
-

-
-

-
-

A
liG

ra
ph

Fa
il

-
-

-
-

-
-

re
dd

it

G
C

N

L
ot

an
94

.5
0

16
.8

1
77

.8
2

30
.8

0
0.

85
61

73
.4

5
41

54
.6

7
D

is
tD

G
L

Fa
il

-
-

-
-

-
-

A
liG

ra
ph

Fa
il

-
-

-
-

-
-

#N
od

es
:2

32
.9

K
Sa

nc
us

92
.6

7
0.

04
14

08
.6

9
5.

89
75

.3
8

11
3.

57
14

16
0.

26
#E

dg
es

:1
14

.6
M

G
IN

L
ot

an
94

.9
1

23
.1

5
50

.1
6

30
.4

7
0.

83
63

66
.8

6
40

83
.7

7
A

vg
.D

eg
re

e:
49

2.
9

D
is

tD
G

L
Fa

il
-

-
-

-
-

-
A

liG
ra

ph
Fa

il
-

-
-

-
-

-

pr
od

uc
ts

G
C

N

L
ot

an
75

.5
9

63
.8

2
16

.2
2

49
.5

8
1.

75
67

79
.4

4
49

89
.5

2
D

is
tD

G
L

75
.3

2
36

5.
53

0.
34

8.
01

27
.9

4
3.

6
45

48
.7

2
A

liG
ra

ph
T

L
E

-
-

-
-

-
-

#N
od

es
:2

.4
M

Sa
nc

us
54

.7
6

1.
84

35
0.

83
6.

33
89

.5
0

3.
31

23
08

6.
58

#E
dg

es
:6

1.
8M

G
C

N
-L

ar
ge

L
ot

an
75

.8
9

17
8.

11
6.

41
48

.7
7

1.
54

59
17

.7
9

38
76

.7
9

A
vg

.D
eg

re
e:

50
.5

Sa
nc

us
Fa

il
-

-
-

-
-

-

G
IN

L
ot

an
75

.7
5

10
4.

68
9.

43
47

.3
0

1.
89

67
35

.5
2

48
32

.4
7

D
is

tD
G

L
Fa

il
-

-
-

-
-

-
A

liG
ra

ph
Fa

il
-

-
-

-
-

-

am
az

on

G
C

N

L
ot

an
82

.2
2

50
.9

9
4.

56
44

.1
6

1.
18

54
51

.3
3

34
28

.3
0

D
is

tD
G

L
86

.1
4

26
1.

58
0.

02
10

.6
6

51
.1

9
4.

48
48

63
.4

9
A

liG
ra

ph
Fa

il
-

-
-

-
-

-
#N

od
es

:8
.6

M
Sa

nc
us

Fa
il

-
-

-
-

-
-

#E
dg

es
:2

43
.9

M

G
IN

L
ot

an
91

.7
9

25
2.

84
2.

26
39

.3
7

1.
08

49
34

.6
3

22
30

.8
7

A
vg

.D
eg

re
e:

28
.2

D
is

tD
G

L
Fa

il
-

-
-

-
-

-
A

liG
ra

ph
Fa

il
-

-
-

-
-

-

pa
pe

rs
10

0M

G
C

N

† L
ot

an
† -

† -
0.

08
25

.0
3

0.
22

24
99

.2
0

80
1.

93
D

is
tD

G
L

Fa
il

-
-

-
-

-
-

#N
od

es
:1

11
.1

M
A

liG
ra

ph
Fa

il
-

-
-

-
-

-
#E

dg
es

:1
.6

B
Sa

nc
us

Fa
il

-
-

-
-

-
-

A
vg

.D
eg

re
e:

29
.1

G
IN

† L
ot

an
† -

† -
0.

04
24

.1
6

0.
11

25
30

.6
1

81
1.

36
D

is
tD

G
L

Fa
il

-
-

-
-

-
-

A
liG

ra
ph

Fa
il

-
-

-
-

-
-

111

1 5 10 15 20
Model Batching Size

400

600

800

1000

Th
ro

ug
hp

ut
 (m

od
el

 e
po

ch
s/

hr
) (A) Throughput Scaling

1 5 10 15 20
Model Batching Size

0

20

40

60

Av
er

ag
e

Ti
m

e
Co

st
s (

se
c)

(B) Time Costs Scaling
Graph Engine
Pipe and Join
DL Engine
Total

1 5 10 15 20
Model Batching Size

1000

2000

3000

4000

5000

Us
ag

e
(G

B/
hr

)

(C) Disk/Network Usage

disk
network

1 5 10 15 20
Model Batching Size

5

10

15

Ut
iliz

at
io

n
(%

)

(D) Processor Util. Scaling

CPU
GPU

Figure 5.13. Scaling with GNN Model Batching. (A) Throughput. (B) Time Costs. (C) Disk
and Network Usage. (D) Utilization.

112

Chapter 6

PANORAMA: Multimedia DB-style Re-
trieval with DL Inference

6.1 Introduction

In this chapter, we move on to model inference issues on large volumes of unstructured

data, particularly videos. Videos are a ubiquitous and growing fraction of real-world data. For

instance, YouTube alone gets hundreds of Petabytes of videos each year [53]. Thus, real-time

video monitoring applications involving automatic recognition of objects in videos are gaining

importance in many domains, including surveillance security [3], crowd control [4], traffic

analytics, species monitoring, and more. The state-of-the-art approach for visual recognition

is to use deep convolutional neural networks (CNNs) [108, 168]. However, deep CNNs are

compute-intensive and have high inference latency, e.g., the popular Mask-RCNN [116] takes 1s

for just five frames. Thus, enabling efficient visual recognition queries over video streams is a

pressing data systems challenge.

Several recent lines of work in the multimedia, database, and systems communities

aim to build more efficient systems for real-time video querying [311, 142, 282, 123, 143]. A

common theme is to reduce CNN inference latency with cheaper models with smaller prediction

vocabularies and using “cascades” of classifiers. But from conversations with video monitoring

application users across domains such as surveillance and species monitoring, we find a pressing

gap in the existing landscape of systems: unbounded vocabulary.

113

Problem: Unbounded Vocabulary. Almost all popular object recognition CNNs today

handle only a finite “closed world” vocabulary of known targets. This is a natural consequence

of their training dataset, typically a benchmark dataset like ImageNet [248], Pascal VOC [85],

or MS COCO [185]. For instance, Pascal VOC has a tiny vocabulary of only 20 classes, e.g.,

“person,” “bird,” and “car.” So, models trained on it only tell apart these 20 classes. This may

suffice for some applications that only need to tell apart these classes (e.g., for self-driving

cars), but for many emerging video monitoring applications, the query requirements are more

granular: “Who is this person?,” “What car model is this?,” “What bird species is this?,” and

so on. In these applications, the target class set is not universally fixed and finite but rather

growing over time, sometimes rapidly. For instance, the set of all people or all car models evolves.

We call such a prediction target with a fast-evolving set of objects an unbounded vocabulary.

Note the vocabulary needs to be the sub-classes of a common class, sometimes also known as

“subclassing”.

Example. Consider a CNN trained to tell apart dog breeds. Suppose its training dataset

had a vocabulary of only three popular breeds: Corgi, Labrador, and Poodle. What will it

output on an image of a rare dog breed, say, Azawakh? It will output junk probabilities for Corgi,

Labrador, and Poodle. Of course, this not an issue with the model but rather its prediction

vocabulary–a limited multi-class vocabulary is too restrictive. One might ask: Why not get

labeled data for all possible classes? Apart from being impractical, such an approach also

assumes new dog breeds will not arise. This is a fundamental issue for such applications: the

prediction vocabulary is effectively unbounded. This issue is even starker for identifying faces

in videos, e.g., for surveillance security, because it is impossible to get labels for all possible

faces beforehand; furthermore, the set of faces is not bounded because new people will keep

appearing.

Limitations of Existing Landscape. We see two main limitations. First, existing

querying systems do not support unbounded vocabularies. Thus, their architectural assumptions

and modeling choices need to be revisited. While the ML community has studied learning

114

Cascaded central
multitask CNN
(PanoramaNet)

Great
albatross

Car, Model T,
(x,y,w,h)

CNN

Part detectors

MLP

Classifier

CNN
Clustering
&nearest
neighbor

Human expert

For each category Category-specific methods

A)

B)

For each task&
bounded voc.

Deeply
supervised
training

&
Short-

circuiting
configuration

Car, Model T,
(x,y,w,h)

Fine-grained
object detection

Flamingo
Unbounded voc.
recognition

True
Verification/
re-identification

Deploy and specialize
on any category

For any
supported task&
unbounded voc.

Figure 6.1. High-level qualitative comparison of existing vision stacks to Panorama’s system
design philosophy. (A) Each domain has a bespoke pipeline and a finite vocabulary. (B)
Panorama enables unbounded vocabulary querying with a unified domain-agnostic data system
that is automatically specialized for a given domain.

schemes to support new class labels, e.g., one-shot and zero-shot learning [167, 165], using them

requires tedious manual intervention to re-train the model and provide metadata and/or more

labels. This needs ML expertise, but video monitoring applications typically have only non-

technical domain users in the loop of a deployed system (e.g., mall security). Second, making

existing CNN-based stacks support unbounded vocabularies is not practical because they are often

too application-specific and may involve bespoke pipelines, as illustrated by Figure 6.1(A). Such

an ad hoc per-domain approach will duplicate the efforts of building, testing, and maintaining

this capability across domains. Overall, the lack of support for unbounded vocabularies in a

unified domain-agnostic data system is a bottleneck for emerging video applications.

115

System Desiderata. We have three related desiderata for a practical data system to

support unbounded vocabulary queries over video. (1) Generalizing to new classes in the

domain’s vocabulary in an automatic manner without manual ML re-training. (2) Being unified

and domain-agnostic to enable existing applications to adopt it without expensive manual

customization. (3) Being resource-efficient and ideally real-time.

Our Proposed System. We present Panorama, the first information system architecture

for unbounded vocabulary queries over video. It supports two kinds of queries popular in video

monitoring. First is recognition: identify which known object (or set of objects) appear in a

video feed (or an image database), e.g., a mall security officer checks a video feed against an

image roster of wanted criminals to spot them in the crowd. Second is verification: tell if two

frames (or images) have the same object in them regardless of whether the object is known, e.g.,

the officer compares an old frame with the current video feed to see if anyone reappeared. Our

system design philosophy, illustrated by Figure 6.1(B), is to devise a unified and domain-agnostic

system that can be automatically specialized for a given application.

Summary of Our Techniques. Panorama has three main components as Figure 6.1(B)

shows: a new unified CNN architecture we call PanoramaNet, an automated offline training

pipeline, and an online inference subsystem. PanoramaNet is a careful synthesis of three

techniques (Section 4.1): multi-task learning from ML, embedding extraction from vision, and

short-circuiting of inference from data systems. It helps meet desiderata (1) and (2). Our

automated offline training pipeline is a synthesis of deep supervision (Section 4.2) and weak

supervision (Section 4.3) ideas from ML. It helps meet desideratum (2). Finally, our online

inference subsystem features a novel short-circuiting configuration technique (Section 4.4) that

enables a tunable accuracy-efficiency tradeoff and a synthesis of nearest neighbor search from

multimedia systems and query caching from databases to improve efficiency (Section 4.5). It

helps meet desideratum (3).

Example Use-Cases. We present two example use-cases to highlight Panorama’s func-

tionalities. Section 3 presents the full query API of Panorama and a usage example. Note the user

116

Figure 6.2. Example Panorama use-case (1): unbounded vocabulary recognition. Left: the
frame shows two out-of-vocabulary faces (identities unknown) and the model only labels them
as faces. Right: After the user freezes the video, clicks on the bounding boxes and labels them
with names, Panorama can recognize these two objects in future frames. The scores shown on
the left frame are the probabilities of being faces; on the right frame are the distances from the
faces to their nearest neighbor in the Known Objects set.

interface is application-specific and orthogonal to our work, here we only show some possibilities

of custom-built interfaces.

1. Unbounded vocabulary recognition. Figure 6.2 shows, say, a journalist spotting people in

a news video feed. The vocabulary did not have Donald Trump or Kim Jong-Un to start

with. Our system constantly detects faces and extracts embeddings from them. In this case,

the journalist can select the bounding boxes and type in names for these two faces and

their corresponding embeddings, respectively. Once it is done, these named embeddings

are added into the known objects which serves as the vocabulary. From then on Panorama

can recognize Donald Trump or Kim Jong-Un. This entire process happens on-the-fly and

without any re-training of the CNN.

2. Unbounded vocabulary embeddings. Panorama can also output object embeddings (vec-

tors) for further analyses. Figure 6.3 shows, say, a data scientist analyzing the representa-

tion of racial and gender groups in an Oscars video feed. The user runs an off-the-shelf

clustering algorithm on the embeddings to get somewhat coherent clusters. Note that

Panorama did not have any of these faces in its vocabulary.

117

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Figure 6.3. Example Panorama use-case (2): unbounded vocabulary embeddings extraction for
faces. The embeddings are then clustered, yielding somewhat coherent clusters.

Our focus is on a new crucial system functionality for video monitoring applications: the

deployed model need not be retrained when new classes (objects) arise. That is, users can just

name the new objects from the video feed and add them to the known objects set–Panorama will

automatically start recognizing them in the future. So, the users do not need any ML-related

expertise or worry about retraining too often. The main technical novelty of this work is a new

data system architecture that solves our real-world problem in a domain-agnostic, automated,

and efficient manner. To achieve our goal, we draw techniques from diverse fields–vision, ML,

databases, and multimedia systems–and synthesize and adapt them for our setting. We developed

a new general CNN architecture, weak supervision scheme and auto-training scheme to enable

such applications. We also studied trade-off spaces between accuracy and throughput. Overall,

this paper makes the following contributions:

118

• To the best of our knowledge, this is the first work to propose a unified information system

architecture for unbounded vocabulary queries over video using CNNs.

• We create a new multi-task CNN architecture, PanoramaNet, that supports unbounded

vocabularies in a unified and unsupervised manner based on embedding extraction and

content-based image retrieval (CBIR). We present an automated and domain-agnostic

training pipeline combining deep and weak supervision.

• We devise a novel self short-circuiting configuration scheme for PanoramaNet to enable

practical accuracy-efficiency tradeoffs. We also create a query cache to improve efficiency

further at scale.

• We present an extensive empirical evaluation of the accuracy, efficiency (throughput), and

scalability of Panorama on multiple real-world videos. Overall, it offers between 2x and

20x higher throughput with competitive accuracy for in-vocabulary queries, while also

generalizing well to out-of-vocabulary queries.

6.2 Setup and Background

We start by explaining our problem setup and defining some standard terminology from

computer vision relevant for video monitoring applications. We then provide some technical

background on multi-task deep learning and embedding extraction needed to understand our

system.

6.2.1 Visual Querying Tasks

A video X is logically a sequence of image frames Fi, i.e., X ≡ F1F2F3 This sequence

can be unending for streaming video. The application specifies a vocabulary V of objects of

interest it wants to identify in the images/video. The objects can be at any granularity, ranging

from high-level generic categories (e.g., “person,” “car,” or “bird”) to more fine-grained entity-

level categories (e.g., “the person Donald Trump,” “the car model Ford Mustang,” or “the bird

119

species California Quail”). Most prediction tasks in computer vision, as well as a suite of recent

video querying systems, assume V is finite, perhaps even small. For example, NoScope [142]

uses |V |= 2, viz., yes or no for a given object type like buses. In our setting, |V | can potentially

be infinite–we call this an unbounded vocabulary.

We are now ready to define the types of visual querying tasks of interest to us. We will

then explain the implications of an unbounded vocabulary.

Definition 6.2.1 Recognition: Given an image frame F, identify an object v ∈V present in F (if

at all). The recognition is called coarse-grained if V only has generic object categories. It is

called fine-grained if V contains entity-level categories too. A frame can have any number of

objects. This task is also called multi-object classification in image-based applications.

Definition 6.2.2 Localization: Given an image frame F, identify the “regions” of F (e.g.,

bounding boxes) where all instances of objects from V are present (if at all).

Definition 6.2.3 Verification: Given two image frames F1 and F2, identify if the same “object”

arises in both images; the object is assumed to be from V .

The above tasks are not entirely orthogonal to each other. Real-world video frames

often do not have only one object. Thus, localization is needed before or during recognition.

The distinction between coarse- and fine-grained recognition is also not universal but rather

application-defined; a fine-grained V typically distinguishes entities of the same type, e.g.,

identify the person instead of just is it a person. Fine-grained recognition often leads to unbounded

V in real-world video monitoring applications, the focus of this work. For example, a recognition

system may be trained on a finite set of people, but it should be able to recognize other people

too during usage.

Recall that our goal is to enable unbounded vocabulary querying, both verification and

recognition, for video monitoring applications. We now make a key observation that we exploit

later in Section 3. If V is finite, verification can be mapped to two recognition queries and

120

Model

Parameters
shared

Known objects set

Model

Bob

Alice

Charlie

Label: Bob

Query

Embeddings within latent space

Figure 6.4. The embedding extracted from the query image is nearest to the known embedding
for Bob in the metric space and farther from Charlie’s or Alice’s. This capability allows the
model to distinguish between these entities.

comparing the labels. However, this is impossible for unbounded V . Instead, we reverse the

mapping, since verification does not need to identify the label: cast recognition as multiple

verification queries against known V .

6.2.2 Background: Multi-task Deep CNNs

Deep convolutional neural networks (CNNs) offer state-of-the-art accuracy for many

computer vision tasks [168, 145] and have won many benchmark competitions [78, 248, 185,

85]. CNNs offer two critical ML engineering benefits [145]. First, they automatically learn

salient features from the image during training instead of requiring extensive manual feature

engineering [109]. This is done in the form of multiple layers of feature transformations involving

operations such as convolutions, pooling, and non-linearity. Second, deep learning is highly

flexible in terms of the structures of the inputs and outputs. In particular, multi-task deep learning

can predict multiple related targets simultaneously while sharing most of the internal features

for each task [239]. This capability is especially attractive for our problem since most of the

processing for verification and recognition queries can be shared inside a single deep CNN. Later

in Section 4.1, we explain how we leverage this capability in Panorama for unified processing.

121

6.2.3 Background: Embeddings

In both vision and language understanding, an embedding is an abstract representation of

an entity in a metric space. Essentially, given a set of entities S, one learns a mapping f : S→Rd

that maps each entity to a d-dimensional vector. Embeddings are especially popular in deep

learning since they enable almost all predictive processing computations to use only linear algebra

operations. Embeddings have interesting semantic properties that allow us to tell apart entities.

For example, FaceNet [254] can classify faces in a known set by extracting embeddings for each,

while DeepFace [229] can extract such embeddings even without specific labels. In particular,

one can often use distance measures in the high-dimensional space to distinguish between entities,

as illustrated by Figure 6.4. This remarkable capability of embeddings has recently enabled more

accurate CBIR applications [303, 316, 139]. Later in Section 4.1, we explain how we leverage

this capability in Panorama to tackle the unbounded vocabulary problem.

 Panorama

PanoramaNet

Panorama API

Training data
creation

Deeply
supervised
training

Specify one frame/image

Training data

Video/image
 Input UserRef. model (Optional) model configs

Verification query
Recognition

query

a) Offline phase b) Online phase

Specify a pair of frames/images

Known objects

Short-
circuiting

configuration

Figure 6.5. Overall system architecture of Panorama. Solid arrows represent
invocations/interactions, while dashed arrows represent the flow of data/results. PanoramaNet is
built once offline and then deployed for online video monitoring.

6.3 System Architecture and API

Overview. Recall that we have three main desiderata: support for unbounded vocabulary,

automated domain-agnostic pipeline, and efficiency. To achieve all these, we design Panorama

in a top-down manner with three main components, as shown in Figure 6.5. (1) A centralized

122

multi-task deep CNN we call PanoramaNet whose parameters are automatically specialized for a

given application, video feed, and a reference model; (2) An online phase to answer verification

and recognition queries efficiently by short-circuiting PanoramaNet, also called self-cascading,

possibly combined with nearest neighbor search; (3) A one-time offline process of automatic

training data creation, training, and configuration of short-circuiting.

Queries and API. Panorama supports verification and recognition queries (Section

2.1). It also supports variable numbers of objects per frame, since it also performs localization

implicitly. Table 6.1 lists the functions in our API, and Listing 1 gives an end-to-end usage

example. The main querying routines are verify and recognize. The album is a set of known

object images to recognize the video stream, e.g., known people or car models. Panorama

allows this set to grow without retraining–this supports an unbounded vocabulary, as was shown

by the application in Figure 6.2. The detect routine is a fall back for bounded vocabulary

recognition. The embedding routine extracts object embeddings from a frame; this was used

for the application in Figure 6.3. The other routines are used for the offline phase, which we

introduce next.

Table 6.1. Functions in Panorama API.

Methods Action

verify(frame a, frame b, target acc) Verification
recognize(frame, album, target acc, cache) Unbounded-voc recognition
detect(frame) Bounded-voc object detection
embedding(frame) Embedding extraction
data gen(video) Data creation on the video feed
fit(data) DSN training on the data
qualify(data, delta, task) Configure short-circuiting

Parameters

ref_model: the reference model required for model specialization and cascaded query processing

min_cluster_size: <optional > the minimum cluster size , as required by HBSCAN algorithm , only needed if the ref_model is

embedding extractor

data_path: the directory to the dataset for model specialization

delta_i: <optional > the slack variable for the cascade intervals

task: the name of the task to qualify and

a_g: the target accuracy for query processing on verification tasks

123

album_path: the directory to the known objects set for recognition

cache: use the query cache or not for recognition

Examples

>>> model=Panorama(ref_model , min_cluster_size)

invoke data creation , model training and short -circuiting config

>>> model.data_gen(video_feed)

>>> model.fit(data_path)

>>> model.qualify(data_path , delta , task =[" verification", "recognition "])

run a verification query

>>> ver_result=model.verify(file :// frame_1324 , file :// frame_3325 , a_g =0.9)

run a recognition query

>>> rec_result=model.recognize(file :// frame_1324 ,album ,a_g=0.9, cache=False)

Listing 6.1. Panorama API and example usage.

Offline Phase. The user provides a video/image feed, a relevant reference model, and

optional configuration parameters for Panorama. The reference model solves the bounded

vocabulary recognition task, e.g., identify a known set of faces. Panorama’s goal is to mimic

this model’s accuracy on the known object set while generalizing beyond that set with higher

efficiency. Using the reference model, Panorama automatically generates training data on the

video feed (Section 4.3) and trains PanoramaNet (Section 4.2). If the reference model yields

embeddings instead of labels, then a configuration parameter can ask Panorama to generate

labels instead. The training of PanoramaNet implicitly configures its short-circuiting using a

novel mechanism (Section 4.4).

Online Phase. The user specifies the verify and/or recognize query as explained

above for monitoring the video. The user interface is application-specific and orthogonal to this

work. The interface shown in Figure 6.2 is only an example. They also specify an accuracy goal

(relative to the reference model) to customize Panorama’s accuracy-efficiency tradeoff. Panorama

extracts embeddings from the given frames and compares them for verification or recognition as

appropriate. For recognition, a nearest neighbor search is performed during inference.

124

Model2

Fine-grained
recognizer

Model1

Localizer Coarse-grained recognizer

Current solution

Label:
Face

Label:
Face

Label:
Face

Label:
Face

Label:
Face

Label:
Face

Cropping & Resizing

Known
objects

Parameters shared

Panorama

Input
Short-circuit processing

PanoramaNet
Block1 Block2 Blockn...

Extracted
embeddings

Bounding boxes
&Embeddings

K-NN search

PanoramaNet
Block1 Block2 Blockn...

Label: Bob

Label: Alice

Label: Bob

Label: Alice

Label: Bob

Label: Alice

Outputs

Cascade interval
check

Figure 6.6. Detailed workflow of Panorama’s internals for processing a recognition query. The
deeply cascaded PanoramaNet can be short-circuited and is combined with nearest neighbor
search for enabling unbounded vocabulary recognition in one pass. Also shown is a typical prior
art solution; it takes a two-pass approach, with separate modules for coarse-grained and
fine-grained recognition. The prior art solution also does not support unbounded vocabulary.

6.4 Components and Techniques

Most existing video querying models perform localization and recognition separately,

and they do not support unbounded vocabulary. Adapting them to recognize new entities could

require tedious manual retraining. In contrast, Panorama builds a single multi-task deep CNN

that is automatically customized to each application. It “short-circuits” itself at query time to

improve efficiency. Figure 6.6 illustrates Panorama’s working in more detail. Next, we dive

into each component: model architecture, training process, short-circuiting configuration, and

inference process.

6.4.1 Deeply Cascaded Multi-task Model

Goals. At the heart of Panorama is a centralized multi-task deep CNN we call Panora-

maNet. We have three goals for the design of this model. (1) Supporting both verification and

recognition, as well as localization to identify multiple objects in a frame. (2) Being Domain-

agnostic and not too tied to one application, e.g., faces or car models. (3) Being able to gracefully

tradeoff inference cost for accuracy.

125

St
em

3
St

em
2

Output: (13,13,5,5+128)

(13,13,5,5+128)

Output Block1

Output1

Output: (13,13,512)

Output: (13,13,5,5+128)

(13,13,5,5+128)

Output: (13,13,1024)

Output: (13,13,512)

Output: (13,13,1024)

Output: (13,13,1024)

Output: (13,13,2048)

Output: (13,13,2048)

Output: (13,13,5,5+128)

(13,13,5,5+128)

Output Block3

Output3

Output Block2

Output2

Input

Stem1

(416,416,3)

3x3 Conv2D(1024)

2x2 MaxPool

BatchNorm+LeakyReLU

2x2 MaxPool

3x3 Conv2D(2048)

BatchNorm+LeakyReLU

Figure 6.7. PanoramaNet deep cascade architecture with n = 3 blocks. An output has
dimensions (grid, grid, number of bounding boxes, bounding box parameters+embedding
dimension). All layers shown have a stride of 1 and are same-padded.

Basic Idea and Observations. To meet all three goals, we design PanoramaNet as a

multi-task deep CNN with a cascaded modular structure. It has multiple trainable “blocks” of

CNN layers, each with its own output block. The lowest layers of the CNNs act as a shared

feature extractor for all blocks. All output layers have the same semantics, but they offer different

accuracy-runtime tradeoffs. By short-circuiting at an earlier block, the inference cost goes

down. Each output block has multiple intermediate targets for supervision during training,

including bounding box regression, embedding extraction, and in-vocabulary recognition loss.

This multi-task setup is what allows Panorama to simultaneously recognize in-vocabulary objects

and generalize to out-of-vocabulary objects after deployment. During the training process,

short-circuiting is configured based on a user-given accuracy goal and the model’s accuracy on a

validation set.

PanoramaNet Neural Architecture. Our model performs localization and embedding

extraction jointly in one pass. Its base architecture is adapted from Yolov2-tiny [241] with two

major modifications for our problem. First, while Yolov2 is a one-pass model for localization

and recognition, it does not support unbounded vocabulary. Thus, we augment it by “wiring

in” an embedding extraction module. Second, inside each grid cell that segregates the feature

126

Offline phase

Recognizer

Em
be

dd
in

g
ex

tr
ac

to
r

B
ou

nd
in

g
bo

x

re
gr

es
so

r

Output

Loss

Concatenate Output:
(13,13,5,5+C)

1x1x1 Conv3D(C) Output: (13,13,5,C)

L2 Norm Output: (13,13,5,128)

Reshape Output: (13,13,5,128)

1x1 Conv2D(640) Output: (13,13,5x128)

Reshape Output: (13,13,5,5)

1x1 Conv2D(25) Output: (13,13,5x5)

Input

Concatenate Output: (13,13,5,5+128)

Output

Online phase

Online phase

Figure 6.8. Architecture of Output Blocks from Figure 6.7. All layers are stride=1 and
same-padded.

maps of the CNN layers in Yolo, the bounding box regressors (for localization) and recognizers

work independently. So, even if the bounding box is poor, the recognizer may still yield correct

labels. However, in our setting, this property is antithetical for embedding extraction, since the

box-segmented image must align well with the object for embedding extractors to work properly.

To tackle this issue, we confine each recognizer to its corresponding bounding box regressor via

3D convolutional layers.

Figure 6.7 shows the high-level architecture of PanoramaNet. Due to space constrains,

Stem1 architecture is presented in D. Figure 6.8 expands Output Blocki; layer are annotated with

their size, name, and the number of filters, e.g., 3x3 Conv2D(1024) means a 3x3 2D convolutional

layer with 1024 filters. PanoramaNet stacks many such Stem and Output Blocks. We collectively

denote each Stemi along with its Output Blocki as Blocki. We use an embedding dimension of

128. We use Euclidean distance (L2 norm) to compare embeddings.

Output Blocks. As Figure 6.8 shows, Output Blocks have modules that are used only

during the offline phase. In particular, the embedding extractor is also trained during the offline

phase using in-vocabulary labels. During the online phase, the recognizer module is applicable

127

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
d in Face dataset

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ir-

wi
se

 d
ist

an
ce

 C
DF Same-class

Different-class

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
d in Car dataset

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ir-

wi
se

 d
ist

an
ce

 C
DF Same-class

Different-class

Figure 6.9. CDFs of pairwise Euclidean distances between the embeddings yielded by Block2
of PanoramaNet.

only for in-vocabulary recognition, but the embedding extractor applies to both in- and out-of-

vocabulary recognition. Due to our multi-task setup, all outputs have both bounding boxes and

embeddings (or labels). Outputs are then thresholded based on the “objectness” of the bounding

boxes (explained more in Section 4.2) and then thresholded with non-maximal suppression.

Throughout the paper, we set the former to be 0.1 for verification and 0.03 for recognition, and

the latter to be 0.5.

Answering Verification Queries

We now explain how PanoramaNet answers verification queries. The model outputs

embeddings from each of the two input frames/images. We then simply threshold on the L2

distances of the embeddings as follows. Given two frames fi and f j and their corresponding

embedding sets {ei} and {e j}, the verification answer is yes if the following holds (otherwise, it

is no):

min
i, j
||ei− e j|| ≤ γ,

In the above, γ is a Panorama configuration threshold to distinguish embeddings of

different entities in the metric space. This approach works because as explained in Section 2.3,

well-trained embeddings offer us this geometric capability to roughly tell apart different entity

classes. But how to set γ? We set γ based on a held-out validation set during the offline training

process. This requires a balancing act between precision and recall. To achieve this balance,

consider the CDFs of the pairwise distances for same-class (e.g., same person) embeddings and

128

different-class embeddings in Figure 6.9. On the Faces dataset (explained more in Section 5), a

threshold of γ = 0.8 reasonably separates same-class pairs from different-class pairs with high

precision. Similarly, on the Cars dataset, γ = 1.1 is suitable. We prefer such high-precision

thresholds, since overall recall can be enhanced through other means, e.g., have multiple different

images for known objects.

Answering Recognition Queries

As mentioned earlier, we map a recognition query to multiple verification queries. Given

a query image’s embeddings (e.g., from a video frame), we perform a nearest neighbor search

against the embeddings in the album. This is done as bulk matrix arithmetic on the GPU, which

turned out to be much faster than indexing. Thresholding can be used on top to ensure the

retrieved neighbors are similar enough. Since recognition involves multiple queries, it is more

prone to errors and harder to optimize. Thus, Panorama offers a configuration option of using the

recognizer component in PanoramaNet for output labels directly for in-vocabulary recognition;

note this is not possible for out-of-vocabulary recognition and only nearest neighbor search can

be used.

6.4.2 Training with Deep Supervision

Since PanoramaNet has multiple output layers, we need to consider all of their loss func-

tions during backpropagation. To this end, we use the “deep supervision” approach introduced

in [169]. It was originally devised to tackle the vanishing gradients issue for accuracy and for

better discriminative power of each layer. We repurpose it to enable our accuracy-throughput

tradeoff; to the best of our knowledge, this is the first time deep supervision is exploited this way.

The overall loss is as follows:

L = ∑λklk, (6.1)

129

In the above, λk is the weight for output layer k and lk is that layer’s loss. Each lk

is backpropagated only through its parent layers. λk controls the trade-off between more

opportunities of early-exit vs better over-all performance. We set each λk inversely proportional to

the number of FLOPS to compute that layer’s output. In particular, we set (λ1,λ2,λ3) = (8,2,1).

We conduct experiments in Section 6.5 to study the effect of these weights. Note that our deeply

cascaded architecture is generic; lk can be any form of loss determined by the multi-task target

goals. In particular, lk in PanoramaNet is the same loss as in Yolov2; due to space constraints,

we present the whole loss function in D.

Given Blockk, B is the number of anchor boxes, S is the number of grids, (xi,yi,wi,hi)

are the location of the centroid, and the width and height of anchor boxes. Ci is the “objectness”

of the output, referred to earlier in Section 4.1. λcoord and λnoobj are weights to balance the parts

of the loss; we use the default weights from [242]. Finally, pi(c) is the classification “confidence”

for class c. We adapt the code from [29] to implement our loss function.

6.4.3 Automated Training Data Creation

PanoramaNet is domain-agnostic and meets our systems-oriented goals. But it still needs

to be trained on a specific application’s data. To this end, we create an automated training process

to customize PanoramaNet to a given data-set in the offline phase. We first run the user-given

reference model on a portion of the video (or subset of images) to create “weakly supervised”

training data [325]. The reference model must provide both bounding boxes and labels for the

corresponding bounded vocabulary task. We also support models that produce embeddings

instead of labels; in this case, Panorama clusters the embeddings and assigns a label per cluster.

We use HDBSCAN [60] for clustering; the user can set its hyper-parameters during configuration

or use defaults. We also denoise the clustered data by removing outliers. Overall, the reference

model “teaches” Panorama, which means the reference model caps its in-vocabulary accuracy. If

one desires higher accuracy, or if a reference model is not available for an application, the user

130

has to give PanoramaNet a whole labeled dataset; we used this approach for the Cars dataset in

Section 5.

6.4.4 Configuration of Short-Circuiting

Goals and Basic Idea. A critical design decision in PanoramaNet is its multi-block

architecture, which enables a graceful accuracy-throughput tradeoff by short-circuiting. But

when to short-circuit? Recall that the user sets an accuracy goal. We need to satisfy this goal

reliably at query time. Our basic idea is to compute a “score” for a given query at each block and

compare it against a pre-computed “cascade interval” for that block. If the query’s score at a

block falls in its cascade interval, it means the model is not confident about this intermediate

output and so, subsequent blocks need to be invoked. Otherwise, we short-circuit at the current

output and return immediately. We first explain how we use cascade intervals and then explain

how we set them, including how our approach ensures correctness.

Using Cascade Intervals. We pre-compute a cascade interval [Li,Hi] for Blocki in the

offline phase. In the online phase, we are given a verification query with two frames/images f

and g. Let di denote the distance between the pair of embeddings output by Blocki for these

frames; this is our score for short-circuiting. We start processing both frames from the first block

until we hit a Blocki such that di ∈ [Li,Hi]. If no block satisfies this, we invoke the reference

model, which acts as the “pseudo ground truth” in our weakly supervised setup.

Let ag denote the user’s accuracy goal. Let the actual accuracy of Blocki be ai on a given

labeled set of examples Dv = {((f ,g),y)}, wherein y is the ground truth (yes or no); denote |Dv|

by N. So, Blocki has correctly answered Nai queries. If ag > ai, it means Blocki has a deficit

of N(ag−ai) queries to meet the accuracy goal. Thus, for short circuiting to succeed at Blocki,

the percentage of queries that should have been answered correctly within the set of wrongly

answered queries is N(ag−ai)
N(1−ai)

=
ag−ai
1−ai

≡ qi (say).

Setting Cascade Intervals. In the offline phase, we plot the CDF of di for queries that

did not get correctly answered at Blocki using the labeled validation set Dv. We set [Li,Hi] to

131

match the above percentage qi of these queries. A natural choice is to select an interval around

the median:

Li = P(0.5−
ag−ai

2(1−ai)
−δi,Se) (6.2)

Hi = P(0.5+
ag−ai

2(1−ai)
+δi,Se) (6.3)

In the above, P(x,S) denotes the x percentile of the set S. Se is the set of di for all

examples in Dv such that short-circuiting at Blocki gives the wrong prediction (i.e., the output

is the opposite of y). Under the assumption that the validation set and deployment data come

from the same or similar distribution, the above values guarantee that the accuracy goal will be

met, while short-circuiting as much as possible. To account for statistical differences between

the deployment data and validation set, we also include a small slack variable δi.

Correctness Analysis. We now explain why our above approach guarantees that the

accuracy goal ag will be met. Let the accuracy of Blocki be ai < ag. Queries that fall into the

interval [Li,Hi] at Blocki all get sent to the next block. Note that since we do not have ground

truth in the online phase, we do not know if Blocki answered any queries correctly; we can only

rely on ci for short-circuiting. But note that exactly qi fraction of all wrongly answered queries

(and unknown numbers of correctly answered queries) are sent by Blocki to a later block to be

eventually answered correctly, perhaps ultimately by the reference model itself. Thus, the overall

accuracy goes up from ai to at least ag by performing more inference computations (invoking

more blocks) for queries that did not get short-circuited.

6.4.5 Query Cache

Intuition. Video with high frame rates lead to lots of queries, e.g., 40Hz means 40

queries for 1s. However, videos also have high temporal redundancy: most successive frames are

similar. Thus, downsampling can raise efficiency without hurting accuracy much (e.g., 1 frame

132

from 1s). But we can go further to exploit a key property of our target applications: objects

typically do not appear and disappear too fast. Some objects may even last minutes, e.g., faces

in news videos. This gives us to another systems insight: cache recent query results to reduce

computations for the same object. Such a query cache skips the costly nearest neighbor search

for successive recognition queries.

Mechanism. We create an approximate query cache with the embeddings since they

exist in a metric space with Euclidean distance as an indicator of similarity. Denote d(x,y) as

the distance between embeddings x and y. Let ea be the embedding from a recent frame. Let e′

be the embedding of its nearest neighbor result from known. For a new frame with embedding

eb, we have one observation based on the triangle inequality; Suppose d(ea,e′)≤ γ , where γ is

the threshold for same-class embeddings (Section 4.1.1). If d(eb,ea)≤ d(ea,e′), return the label

of e′ as the result and skip the search. This approach is an approximation because a different

embedding in the album may be nearer to eb than ea (although with low probability). Thus, our

cache creates a runtime-accuracy tradeoff.

Corresponding to the observation, we cache the most recent several frames and evict in

FIFO manner, the number of which is the cache size. Given a frame, we check the cache for hits

and return the labels. We then take the misses and do a normal k-nn search to get labels for them.

Finally we update the cache with all labels acquired in the above steps for this frame. Overall,

this query cache can reduce runtimes significantly when the known objects set is massive.

6.4.6 Online Phase Inference Process

Figure 6.10 depicts how queries are processed in the online phase. For verification, both

frames are passed to PanoramaNet for embedding extraction one block at a time. Pairwise

distances between the embeddings are checked for short-circuiting. If short-circuiting succeeds,

we threshold the distance against γ for the final answer (yes or no). For recognition queries,

Panorama extracts embeddings from given frames and compares against the embeddings (for the

corresponding block) in the known object set via a nearest neighbor search. This search might

133

Figure 6.10. Examples of Panorama’s inference execution. a). The verification query is
short-circuited at block2. The left and right models including PanoramaNet and the reference
model share parameters, respectively. b). The recognition query is short-circuited at block3.
Embeddings from the known objects were pre-extracted and stored.

potentially be skipped by the query cache (Section 4.5). Once again, if short-circuiting succeeds

at some block, we stop and return the nearest result’s label. As mentioned in section 4.4, the

reference model is the fallback option in case none of the blocks of PanoramaNet can answer the

query with high confidence.

6.5 Experiments

We now evaluate Panorama with several real-world workloads and datasets for both

verification and recognition queries. In summary, our results show the following:

1. For in-vocabulary verification, Panorama offers between 2x and 8x higher throughput

(lower latency) than a strong baseline, while offering competitive accuracy. For in-voc.

recognition; the speedups are up to 20x.

2. Panorama generalizes well for out-of-vocabulary queries, offering much higher accuracy

than random guessing baselines, while still offering high throughput.

3. Panorama configuration parameters enable a graceful tradeoff between accuracy and

throughput.

134

4. As the known objects set size scales up for recognition, Panorama’s query cache helps

raise throughput up to 6x.

We first describe the datasets and workloads used. We then present the end-to-end

performance results followed by a drill-down study of the contributions of Panorama’s techniques.

Finally, we present the scalability test.

6.5.1 Experimental Setup

Datasets. Table 6.2 lists our datasets. Faces[62] and Birds[163] are videos recorded

from online surveillance cameras at 30Hz frame rate. Faces is for recognizing people; Birds,

for recognizing bird species. All videos are decoded and unpacked into frames. We sample 1

frame per second. Our baseline models also operates on the downsampled frames instead of the

original video, which makes them already strong baselines for the throughput-accuracy tradeoff

we study. Cars is an image dataset for car model recognition [304].

Table 6.2. Datasets and reference models.

Dataset Source |Voc.| #Frames Ref. model

Faces CBSN[62] 60 5.4m MTCNN[313]+FaceNet[254]
Birds Bird Cam[163] 6 5.4m Yolo[241]+Inceptionv3[74]
Cars CompCars[304] 431 45k Yolo[241]+GoogLeNetCars[305]

Reference Models. Each reference model has two sub-models, as Table 6.2 shows.

The reference model for Faces produces embeddings; thus, we create pseudo-labels after un-

supervised clustering. Overall, the reference models operate on a bounded vocabulary. For Faces

and Birds, Panorama is weakly supervised by the respective reference model (Section 4.3), but

for Cars, we used the CompCars [304] dataset to show that Panorama can work on strongly

supervised image data as well, not just week-supervised videos.

Data Split Methodology. Figure 6.11 shows how we split the datasets. We first split all

examples into train, val and test. At the same time, we split the vocabulary into in-voc and

135

out-voc. Then, test is further split into in-voc test, with test examples that have in-voc

labels, and out-voc test, the rest of test. Only the in-voc train of train is used in the

CNN training. val serves for the validation during training and short-circuiting configuration.

Then at deploying time, we poll 5 best frames per class, based on Panorama’s confidence score of

object detection, from train and val to form known for subsequent recognition queries. Then

known becomes the new vocabulary. For videos, we chunk the videos, instead of random order,

into 60:20:20 ratio for the train-val-test split. The vocabulary is also chunked into 80:20 for

in-out-voc split, sorted in descending order by the cardinality of each class. But for Cars, we

reuse the pre-existing 70:30 train-test split in its original labeled dataset; however, its vocabulary

is also split 80:20. The val split is 10% of train. Overall, PanoramaNet is trained only with

in-voc train, which allows us to simulate the unbounded vocabulary scenario. At deployment

time, we use known as the album for recognition queries.

Training PanoramaNet. We train PanoramaNet with Adam optimizer. Adam is con-

figured with an initial learning rate of 0.5× 10−4, β1 = 0.9, β2 = 0.999, and ε = 10−8. We

use a batch size of 64 for Faces and Birds and 8 for Cars. The training is terminated if for 10

consecutive epochs the validation loss does not improve. Training for face terminates after 48

epochs taking 2 day 15 hours. Training for bird terminates after 109 epochs taking 1 day 3

hours. Training for car terminates after 208 epochs taking 8 days 6 hours.

Accuracy Methodology. As explained in Section 6.4.3, we use the denoised outputs of

the reference model as labeled data for Panorama. Thus, all in-voc test accuracy is reported

relative to the reference model. This methodology is fair because our focus is not on improving

absolute accuracy but rather systems issues of functionality and efficiency.

Evaluation Metrics. We have three main metrics: throughput, verification accuracy,

and recognition accuracy. Throughput is the number of queries answered per second; it is based

on the wall-clock time taken for all queries put together. Since we have no batch processing

or task parallelism, the higher the throughput, the lower the query latency. We omit all frame

136

Train

in-voc	
train

out-voc
test

in-voc	
test

Deploying phase

known

valtrain test

entire
dataset

Model

Determine [Li, Hi] Test Test

Figure 6.11. Schematic diagram about dataset split.

preprocessing time (e.g., decoding or resizing) for all compared approaches because they were

minor.

Verification accuracy is defined based on standard practice [126] as the ratio of the number

of queries that were correctly answered to the total number of queries. Given a verification query

with a pair of frames/images (f ,g), denote the sets of classes appearing in f and g by O f and

Og, respectively. The query with (f ,g) returns yes if and only if |O f ∩Og| ≥ 1; otherwise, the

query returns no.

For recognition accuracy, we only evaluate it on frames on which the reference model

gave output labels. On a frame containing l classes {Y0,Y1, ...,Yi, ...,Yl}, we ask the model to give

at most m labels {z0,z1, ...,z j...,zm}. This gives us a standard metric called “top-m” accuracy;

we set m = 5 for our experiments. Recognition accuracy at the frame level is now defined as

follows.

kr = 1− 1
l ∑

j
min

i
1zi=Y j , (6.4)

The overall recognition accuracy is then defined as follows, wherein Q is the set of all

recognition queries:

137

Faces Birds Cars0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al
ize

d
Ac

c.

(a)

Panorama ag=0.9
Panorama ag=0.99
Baseline

Faces Birds Cars0

2

4

6

8

Sp
ee

d-
up

s

(b)

Panorama ag=0.9
Panorama ag=0.99
Baseline

Faces Birds Cars
0.9 0.99 0.9 0.99 0.9 0.99

ag

0.0
0.2
0.4
0.6
0.8
1.0

Sh
or
t-c

irc
ui
tin

g
ra
te

(c)

Block 1
Block 2
Block 3
Sent to RM

Figure 6.12. End-to-end in-voc verification results. (a) Verification accuracy. (b) Relative
throughput. Baseline represents the corresponding reference model, the absolute values for three
baselines are 7.3, 18.0 and 2.7, respectively; Panorama’s results are normalized with respect to
them. (c) Fractions of queries short-circuited at each block. “Sent to RM” means those queries
were handled by the reference model.

Kr =
1
|Q|∑

kr, (6.5)

Software and Hardware. Panorama is implemented entirely in Python. All CNNs and

the nearest neighbor search are implemented using TensorFlow 1.4 and Keras 2.1.4 and use GPU

acceleration with CUDA 7.0. We used OpenCV 2.0 with FFmpeg backend and PIL 1.1.7 for

image preprocessing. All experiments were run on a machine with an NVIDIA GeForce GTX

1080Ti GPU, 8 Intel Xeon E5-2630 v4 cores, and 32 GB RAM.

138

6.5.2 End-to-end Accuracy and Throughput

We start with the end-to-end performance results, both accuracy, and throughput. Since

Panorama is a first-of-its-kind system, prior video querying systems are not quantitatively

comparable (more details in Section 6). Thus, we compare Panorama against the reference

model, which works only for in-vocabulary queries. On in-voc test, we report Panorama’s

test results relative to the reference model. We then report Panorama’s absolute test results on

out-voc test to show how well it generalizes beyond its supervision vocabulary. We disable

the query cache in Panorama for all the experiments in this subsection to let us focus on its main

accuracy-throughput tradeoffs. Last we include a strongly supervised video clips dataset Youtube

on faces to measure Panorama’s capability of generalization. The dataset has a vocabulary size

of 1595 and over 620k frames in total. We use this dataset to see if Panorama can even generalize

beyond its supervision to distinct videos. We test PanoramaNet trained with Faces on this dataset.

We do not split Youtube as it is only used for tests. We poll known and simply treat the rest as

out-voc test.

Verification Queries

Query Set. We randomly sample pairs of frames from in-voc test (resp. out-voc

test) for the in-vocabulary (resp. out-of-vocabulary) verification tests. For all tests, we produce

104 pairs each with a 50:50 split for yes and no. Since out-voc test in Birds is relatively

small, we produce only 500 pairs on this but still with a 50:50 yes-no split. We compare two

settings for Panorama’s accuracy goal configuration parameter: ag = 0.9 and ag = 0.99. All

slack parameters (δi) are set to 0. Recall that a reference model answers in-voc verification

via recognition of the objects in both images and comparing their labels, but it does not support

out-voc verification.

In-Vocabulary Results. Figure 6.12 shows the accuracy and throughput results. We

see that Panorama achieves substantially higher throughput while yielding competitive accuracy

on Faces and Cars. For instance, on Faces, Panorama with ag = 0.99 has 96% accuracy but is

139

Table 6.3. out-voc verification results. ∗P: Panorama. †RG: random guessing.

Faces Youtube Birds Cars

Thrpt. (frames/s) 130 120 96 101
P∗ accuracy 81.6% 79.6% 50.0% 69.7%
RG† accuracy 50.0% 50.0% 50.0% 50.0%

2x faster; with a 14% drop in accuracy, the other setting is 8x faster. Interestingly, on Cars, we

found that Panorama’s accuracy was slightly higher than the reference model (skipped in the

figure, which is capped at 1); recall that we had trained both approaches from scratch on the

original labeled dataset in this case. Panorama is also up to 8x faster on Cars. On Birds, ag = 0.9

is 5x faster while giving 92% of accuracy.

Figure 6.12(c) explains the above results. Panorama’s short-circuit processing worked

well, with many queries stopping at earlier blocks. In fact, with ag = 0.99, on Faces, over half

of queries were short-circuited at block 1 and 2. But on Birds, more queries were sent to the

reference model, yielding a lower average speedup. Cars is in between these two extremes. These

results validate two of our key design decisions: make PanoramaNet a multi-block architecture

that can short-circuit itself and automatically customize it for a dataset to pick an appropriate

point in the accuracy-throughput tradeoff.

Out-of-Vocabulary Results. In reality the reference models do not work on out-voc

queries. So, we compare Panorama against a random guessing baseline, which is 50% for

this binary task. We use ag = 0.9 and no δi for all tests. Table 6.3 presents the absolute

results. Panorama successfully generalizes beyond its supervision vocabulary to support out-

of-vocabulary verification. On Faces, the lift is a substantial 33%. Birds turns out to be more

challenging, while Cars falls in between. Panorama’s throughput is also well above real-time in

all cases. It generalizes well to Youtube, which contains distinct videos (e.g. different resolutions,

illumination, angles and distances to camera) from Faces.

140

Faces Birds Cars0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al
ize

d
Ac

c.

(a)

Panorama-Cas 1
Panorama-Cas 2
Baseline

Faces Birds Cars0
2
4
6
8

10
12

Sp
ee

d-
up

s

 ...
20x

 ...
17x

(b)

Panorama-Cas 1
Panorama-Cas 2
Baseline

Faces Birds Cars
set.1 set.2 set.1 set.2 set.1 set.2

Panorama settings

0.0
0.2
0.4
0.6
0.8
1.0

Sh
or
t-c

irc
ui
tin

g
ra
te

(c)

Block 1
Block 2
Block 3
Sent to RM

Figure 6.13. End-to-end in-voc recognition results. (a) Recognition accuracy. (b) Relative
throughput. Baseline represents the corresponding reference model, the absolute values are
identical to Figure 6.12; Panorama’s results are normalized with respect to them. (c) Fractions of
queries short-circuited at each block. “Sent to RM” means being handled by the reference
model.

Recognition Queries

Query Set. We compare two settings for Panorama: Cas 1 and Cas 2; Cas 2 represents a

stricter accuracy goal than Cas 1, but we vary the configuration parameters across each dataset

because they exhibited different properties on the verification tests. For Faces, Cas 1 uses

(ag,δi) = (0.95,0); Cas 2 uses (ag,δi) = (0.99,0.1). For Birds, Cas 1 uses (ag,δi) = (0.9,0);

Cas 2 uses (ag,δi) = (0.99,0). Finally, for Cars, Cas 1 uses (ag,δ1,δ2,δ3) = (0.9,∞,0,0); Cas

2 uses (ag,δ1,δ2,δ3) = (0.99,∞,0,0). Note that setting δ j = ∞ means short-circuiting is not

allowed at Block j.

In-Vocabulary Results. Figure 6.13 shows the results. On Faces, Cas 1 is 17x faster,

while offering almost 80% relative accuracy, Cas 2 is 2x faster while yielding 92% accuracy. On

141

Table 6.4. out-voc recognition results. ∗P: Panorama. †RG: random guessing. ‡: Top-1
accuracy.

Faces Youtube Birds Cars

Thrpt. (frames/s) 107 105 97 63
P∗ Accuracy 74.5% 46.4% 73.9%‡ 49.6%
RG† accuracy 38.5% 0.3% 50%‡ 5.7%

One
 blo

ck o
nly

+ C
asca

de

+ R
efer

enc
e M

ode
l
+ S

lack
s
Bas

elin
e

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
Ac

c.

One
 blo

ck o
nly

+ C
asca

de

+ R
efer

enc
e M

ode
l
+ S

lack
s
Bas

elin
e

0
20
40
60
80

Th
ro
ug

hp
ut

Figure 6.14. Factor analysis. Accuracy is normalized against the reference model.

Cars, both settings match (or slightly surpass) the reference model’s accuracy, while being up to

20x faster. Compared to Faces, Birds offers a slightly more modest speedups but with higher

accuracy. Figure 6.13(c) explains these results in terms of the short-circuiting results. We see

similar behaviors as in the in-voc verification tests.

Out-of-Vocabulary Results. Once again, since the reference models are not applicable

here, we compare Panorama to a random guessing baseline. We use ag = 0.9 and no slacks for

all tests. Recognition is effectively multi-class, not binary. So, the accuracy of random guessing

depends on the sizes of the vocabularies in known; these sizes are 14, 2, 87, 1595 for Faces,

Birds, Cars, Youtube, respectively. We report top-1 accuracy for Birds (since the vocabulary size

is only 2) and top-5 accuracy for the rest. Table 6.4 presents the absolute results. Once again,

we see that Panorama successfully generalizes beyond its supervision vocabulary to support

out-of-vocabulary recognition queries too. On Cars, the lift is a substantial 44%. It generalizes

well to Youtube, offering 46% lift on accuracy with high throughput.

142

Table 6.5. Impact of λk on block-wise verification acc.

λk Acc. Block1 Acc. Block2 Acc. Block3

1:1:1 79.9% 87.8% 89.1%
8:2:1 83.2% 84.3 87.2%
100:10:1 61.4% 58.4% 65.5%

6.5.3 Drill-down Analysis

Factor Analysis. We now drill into Panorama’s behavior to show the effects of its various

components on the throughput-accuracy tradeoff. We expand in-voc recognition tests on Faces

for this purpose. We use Cas 2 described above for the cascade related configs. Figure 6.14

presents the results of each component’s effect. We start by disabling short-circuiting and taking

only the output of last block of PanoramaNet. This provides over 60 FPS but limits the accuracy

to 72%. If we enable the rest blocks and cascaded processing, throughput boosts to over 80 FPS.

This demonstrates the effeteness of our cascade. Next if we concatenate the reference model into

the cascade, the accuracy further improves to 84% with the speedups drop to 30 FPS. The last

element needed are the slacks to yield 92% accuracy, with a 2x speed-up compared to baseline

still.

Impact of λk. We now investigate the impact brought by different settings of λk. We vary

these weights and train three different models and report the raw verification performance of

each block of the models on our Faces val split. Table 6.5 summarizes the results. Compared to

no weights (1:1:1), setting a higher weights on the first block (8:2:1) does improve the individual

performance of block1, however, the subsequent blocks loses some accuracy. These weights

provide a trade-off between early and later block discrimination power. On the other hand, too

large weights (100:10:1) interferes with the training process and fails to converge.

6.5.4 Query Cache and Scalability Test

We now stress test Panorama’s throughput by raising the size of the known objects for

recognition queries. Some real-world video monitoring applications could indeed have to deal

143

Table 6.6. Impact of query cache on recognition acc.

Cache size Relative accuracy Cache hit rate

0(No cache) 80% 0%
1 80% 43%
10 80% 80%
100 80% 89%

Table 6.7. Results of the scalability test. W/O means Panorama without cache, Cache X means
Panorama with cache size X. All values in the right four columns are throughputs reported in
frames/sec.

|known| Baseline W/O cache Cache 1 Cache 100

105 7.2 24.0 33.0 45.9
5×105 6.1 9.0 11.4 20.7
106 4.6 5.1 6.7 14.7

with millions of objects, e.g., identifying faces in mall security surveillance, and the database for

faces can be excessively large. We pick the same setting on the in-voc recognition test of Faces

and use cascade setting 1.

Impact of query cache on accuracy. We now enable the cache and investigate the

impact brought by the query cache with varying cache size. Table 6.6 summarizes the results.

As the size of the cache goes up, the cache hit rate rises, while the accuracy remains relatively

constant, meaning this cache does not influence accuracy much. Although the video is after

downsampling, the cache hit rate can still be as high as 89%. This demonstrates the temporal

redundancy characteristics of video.

Scalability test. To simulate the case where the known set is at scale, we enlarge the

existing known set with duplicates. For this experiment, we run Panorama in three modes:

without the query cache, with size-1 cache and size-100 cache. We compare the results to the

Faces reference model, which also yields embeddings and uses k-nn for recognition. Table 6.7

shows the results for throughput when known is at scale. In this scenario the k-nn search becomes

a bigger bottleneck compared to CNN inference. Without the cache, the throughput of Panorama

144

will eventually join baseline as the known object set expands. However, Panorama with size-100

cache still offers 3x∼6x speedups depending on |known|. Cache-100 also outperforms Cache-1,

as the former has much higher cache hit rate and skips more searches. This validates the benefits

of the query cache for large-scale recognition queries.

6.5.5 Conclusion

The success of deep CNNs presents new opportunities for querying video data. However,

most off-the-shelf models and video querying systems assume the prediction vocabulary is

bounded, impeding many emerging video monitoring applications. In response, we present a new

data system architecture, Panorama, for unbounded vocabulary querying of video. Panorama

saves users the hassle of retraining models post deployment as the vocabulary grows. It is

based on a multi-task and unified architecture, and its deployment is end-to-end automated and

domain-agnostic. Relative to bespoke domain-specific models, Panorama’s unified system offers

competitive accuracy but with higher throughput.

Panorama generalizes beyond a given finite vocabulary to unseen objects of the same

type in a given domain. This is a form of subclassing, i.e., Panorama does not generalize to

new types of objects or new domains. We now offer some insights on when Panorama may or

may not be applicable. It applies to fine-grained visual tasks, and the granularity is determined

by the supervision provided. The viability of a task depends on the availability of large-scale

datasets and/or high-quality reference models and the degree of difficulty of the task itself. Faces

are most viable because of their relatively well-understood properties: mostly 2-D and simple

geometric layout. There are also many large datasets for faces. For cars, the datasets are decent;

so, the accuracy is good. As for other domains, as long as there exists large-enough fine-grained

datasets and/or good reference models, we believe Panorama is applicable.

Chapter 6 contains material from “Panorama: A Data System for Unbounded Vocabulary

Querying over Video” by Yuhao Zhang and Arun Kumar, which appears in Proceedings of

145

VLDB Endowment Volume 13, Issue 4, Decemember 2019. The dissertation author was the

primary investigator and author of this paper.

146

Chapter 7

Related Work

7.1 Related Work for CEREBRO

Systems for Model Selection. Google Vizier [104], Ray Tune [183], Dask Hyper-

band [260], SparkDL [75], and Spark-Hyperopt [129] are systems for model selection. Vizier,

Ray, and Dask-Hyperband are pure task-parallel systems that implement some AutoML pro-

cedures. SparkDL and Spark-Hyperopt use Spark for execution but distribute configs in a

task-parallel manner with full data replication PANORAMA offers higher overall resource effi-

ciency compared to pure task- or pure data-parallel approaches.

AutoML Procedures. AutoML procedures such as Hyperband [176] and PBT [130] are

orthogonal to our work and exist at a higher abstraction level. They fit a common template of per-

epoch scheduling in PANORAMA. While ASHA [175] does not fit this template, PANORAMA can

still emulate it well and offer similar accuracy. Bayesian optimization is a class of AutoML

procedures, some of which have a high degree of parallelism for searching configs (e.g., Hyper-

opt [41]); PANORAMA supports such procedures. Some others run a sequential search, leading

to a low degree of parallelism (e.g., [151, 40]); these may not be a fit for PANORAMA.

Distributed SGD Systems. There is much prior work on data-parallel distributed SGD,

including centralized fine-grained (e.g., [287, 328, 137, 127]) and decentralized fine-grained

(e.g., [291, 182, 287]). These are all complementary to our work because they train one model

at a time, while we focus on parallel model selection. As we showed, such approaches have

147

higher communication complexity and thus, higher runtimes than MOP in our setting. Also,

since PANORAMA performs logically sequential SGD, it ensures theoretically best convergence

efficiency. CROSSBOW [153] proposes a new variant of model averaging for single-server

multi-GPU setting. But it is also complementary to our work, since it also trains one model at a

time. Overall, our work breaks the dichotomy between data- and task-parallel approaches, thus

offering better overall resource efficiency.

Hybrid Parallelism in ML Systems. MOP is inspired by the classical idea of process

migration in OS multiprocessing [32]. We bring that notion to the data-partitioned cluster setting.

This generic idea has been used before in limited contexts in ML systems [158, 46]. The closest

to our work is [65], which proposes a scheme for training many homogeneous CNNs on a

homogeneous GPU cluster. They propose a ring topology to migrate models, resembling a

restricted form of MOP. But their strong homogeneity assumptions can cause stalls in general

model selection workloads, e.g., due to heterogeneous neural architectures and/or machines. In

contrast, we approach this problem from first principles and formalize it as an instance of open

shop scheduling. This powerful abstraction lets PANORAMA support arbitrary deep nets and data

types, as well as heterogeneous neural architectures and machines. It also enables PANORAMA to

support replication, fault tolerance, elasticity, and arbitrary AutoML procedures, unlike prior

work. SystemML also supports a hybrid of task- and data-parallelism for better plan generation

for linear algebra-based classical ML on top of MapReduce [48]. PANORAMA is complementary

due to its focus on deep nets and SGD’s data access pattern, not linear algebra-based classical

ML. Finally, a recent benchmark study suggested that communication bottlenecks inherent in

pure data-parallelism imply hybrid parallelism is crucial for scalable ML systems [269]. Our

work validates that suggestion for deep learning workloads.

Multi-Query and Other System Optimizations. MOP is also inspired by multi-query

optimization (MQO) [256]. A recent line of work in the database literature studies MQO for

deep learning, including staging and sharing work in CNN transfer learning [208] and batched

incremental view maintenance for CNN inference [210, 225, 211]. PANORAMA furthers this

148

research direction. All these MQO techniques are complementary and can be used together.

Several works optimize the internals of deep net or SGD systems, including communication-

computation pipelining [216], new compilation techniques [136], model batching [218], and

execution on compressed data [171]. They are complementary to PANORAMA, since they

optimize lower-level issues. MOP’s generality enables PANORAMA to be hybridized with such

ideas.

Scheduling. Gandiva [298], Tiresias [110], and SLAQ [312] are cluster scheduling

frameworks for deep learning. They focus on lower-level primitives such as resource allocation

and intra-server locality for reducing mean job completion times. PANORAMA is complementary

as it exists at a higher abstraction level and focuses on model selection throughput. How compute

hardware is allocated is outside our scope. There is a long line of work on job scheduling in

the operations research and systems literatures [121, 55, 100]. Our goal is not to create new

scheduling algorithms but to apply known techniques to a new ML systems setting.

7.2 Related Work for CEREBRO on Data Systems

ML in Data Systems. There is a long line of work on ML in data systems. The general

approach is to implement ML algorithms via UDFs or other APIs exposed by the data system.

Apache MADlib [120, 91] is one of the most mature such tools. The UDAF approach we

studied for integrating MOP is already a part of MADlib. Vertica-ML [87], Oracle Machine

Learning [16], Microsoft SQL Server ML Services [14], and Google BigQuery [9] are other

prominent examples of in-RDBMS ML tools. [235] brings ML to column stores. MLlib [200]

and MLlib∗ [321] use Spark’s APIs to implement various ML algorithms. Mahout [30] is a

distributed ML system on top of dataflow systems. Increasingly, more data system builders

want to integrate with DL via wrappers that invoke popular DL tools: Horovod on Spark [11],

TensorFrames [18], and PS2 [320] are examples. More generally, the DBMS and cloud industry

believe DBMSs will continue to play a key role in enterprise ML [23].

149

Some works also expand DBMS support for ML. Raven [144] deeply integrates ML run-

times into a DBMS. UDA-GIST [174] expands support for algorithms that are both data-parallel

and state-parallel. [194] adds linear algebra support to RDBMS. [308] proposes a “tensor-

relational” algebra towards declarative ML. TensorDB [147] is a system for in-DBMS tensor

decomposition. [146] focuses on in-DBMS sparse tensors for ML. DB4ML [133] expedites

iterative ML algorithms via asynchrony. [99] discusses declarative model weights distribu-

tion/aggregation for data-parallel ML. [132] adds better support for recursion to RDBMS for

distributed ML. MLearn [255] is a declarative language for in-DBMS ML. AIDA [83] provides

an abstraction for in-DBMS data analytics; it uses DBMS for relational operations and embeds

Python for linear algebra.

All of the above works are complementary to ours. To the best of our knowledge, our

paper is the first to study system design alternatives and tradeoffs for enabling DL workloads

on DBMSs. Specifically, we focus on bringing a recently published hybrid parallel execution

approach for DL model selection, MOP, to the traditionally bulk-synchronous parallel world of

DBMSs.

Custom ML Systems. There is also a long line of work on custom systems for ML

training/model selection. FlexPS [127] and Lapse [245] are both optimizations to Parameter

Server [177]. Horovod [257] brings in decentralized communication to boost runtime efficiency.

Vizier [104] and Rafiki [288] are systems for task-parallel model selection; Ray [206, 184]

was initially designed for reinforcement learning but recently also supports task-parallel model

selection. Singa [287, 223] and SystemML [45, 48, 47] are end-to-end platforms for ML that

supports various distributed training. Visus [250] and Ease.ml [244, 243] are examples of

AutoML systems that manage the whole ML lifecycle, including both data management and

model selection. Crossbow [153] and Ako [291] are systems for better resource scheduling

and utilization for ML. [79] handles collaborative working environments for ML development.

Litz [234] focuses on the elasticity of distributed ML.

150

All these works are also complementary to ours because they study standalone ML/DL

execution, not integration with data systems. While some of them may be faster than in-DBMS

ML tools, as we explained in depth in this paper, ML practitioners, especially in enterprises,

grapple with a more complex Pareto frontier beyond just runtimes. Our paper lays out these

tradeoffs in bringing DL workloads closer to DB-resident data. That said, the CTQ approach we

studied was in part inspired by the pervasive use of task parallelism in such custom ML systems,

including in Cerebro as we explained earlier. More generally, we believe these historically

distinct work lines–custom ML systems and ML on data systems–can learn a lot from each other.

Data Access and Pipeline Optimizations for ML. There is much prior work on optimiz-

ing ML+data processing pipelines. Lara [162], Alpine-Meadow [259], and KeystoneML [262]

all allow the user to define pipelines with their APIs and perform pipeline-level optimizations.

Helix [300] injects intelligent caching and reuse between training iterations to reduce redundant

work. [84] proposes linear algebra that could work upon compressed data, thus saving decom-

pression time. [171] introduces a tuple-oriented compression scheme for matrix and mini-batch

SGD computations directly on compressed data.

The above works are largely orthogonal to our paper, since our goal is not to devise novel

optimization schemes or systems but rather to analytically and empirically study the tradeoffs of

alternative approaches to bring DL workloads to DB-resident data. That said, the DA approach

we studied was in part inspired by such prior work on ML operating more directly on the raw

stored data. It is interesting future work to integrate more such optimizations into systems that

bring DL closer to DB-resident data.

Data Management for ML. More generally, data management for ML is a hot and

pressing research topic [42, 253, 159, 233]. Such works aim to optimize or automate data

management tasks in ML workflows to reduce user burden. Data Programming [240] and

Snorkel [238] focus on ML training data creation through weak supervision and generative

models. DeepDive [310] is a system for knowledge base construction. ModelDB [275, 274],

TFX [37], Mlog [180], and MLFlow [204] all add data management and model management

151

support for ML. ARDA [71] uses DBMS for data augmentation and feature selection tasks.

Activeclean [155], boostclean [154] and [190] focus on data cleaning and debugging for ML.

Vamsa [215] supports data lineage tracking for Python ML scripts. [115] proposes the concept

of model materialization and reuse to speed up ML training.

All these works are also largely orthogonal to ours, since our focus is specifically on

tradeoffs of in-DBMS execution of DL model selection, not auxiliary data/model management

capabilities. Lessons from our work can be easily integrated with these other tools to enhance

end-to-end support for ML applications for DB users.

7.3 Related Work for LOTAN

GNN Systems. Many systems have been proposed to tackle the efficiency and scalability

challenges of GNN training. Our work differs from them in our fundamental architecture

design of separation of graph and neural network and our technical innovations. We have

also conceptually compared them in Section 5.2.3 and tested against some of the most related

and state-of-art systems in Section 5.7. Most of their techniques are complementary to our

work. DGL [285, 323], and PyG [93] are prominent examples of all-purpose GNN frameworks

designed for generality and usability. AliGraph [326], GraphScope [301], and PSGraph [138]

are GNN systems designed for industry-scale usage with an emphasis on sampling-based GNN

training, which differs from Lotan’s focus on full-batch training. NeuGraph [195] is one of the

first systems to incorporate GNNs into an extended Gather-Apply-Scatter framework. It provides

a scheduling scheme for shipping models/data in and out of multiple GPUs; its techniques are

largely complementary to our work.

Other GNN systems proposed techniques ranging from memory management, communi-

cation reduction, approximated processing, and disk spilling. PaGraph [186] utilizes spare GPU

memory for data caching to boost speed when the workload is relatively small. P3 [98] separates

the graph metadata and graph properties and places them in a way to reduce communications.

152

Sancus [230] proposes a communication reduction scheme via historical gradient caching and

update skipping. Similarly, PipeGCN [281] uses pipeline parallelism with stale updates to

speed up GNN training. They largely focus on the efficiency of GNN training via approximated

processing and assumes the model and data can comfortably fit in GPU memory. PaGraph, P3,

and Sancus are largely orthogonal to our work as Lotan is designed for large workloads, we

do not assume an abundance of GPU memory. Dorylus [270] employs serverless functions to

explore monetary cost-efficiency; our system is still for provisioned clusters, and we rely on

existing data systems instead of custom-built ones used in Dorylus. Roc [135] uses main memory

as swapping space to offload over-the-size data from GPU. MariusGNN [280] further proposes

disk-spilling to increase the effective memory size. These techniques complement Lotan, and

by employing a secondary-storage-aware graph data system, Lotan can naturally piggyback on

its disk spilling capability. ALG [315] is designed for active learning setup which is largely

orthogonal to our work. G3 [187] proposes to substitute DL frameworks with GPU-based graph

operations; it can potentially be a candidate for the DL Engine in Lotan and is complementary to

our work.

Graph Analytics Systems. Prior to the GNN era, large-scale systems were built for

non-GNN graph analytical workloads and data management. Ranging from graph DBMS [80,

219, 92, 164], to classical graph analytics systems [198, 106, 105, 103, 152, 31, 267], and Graph

Embedding learning (not to be confused with GNN) systems [170, 205, 296]. They are generally

orthogonal to our work, as they target very different sets of workloads, and they seldom work

with GNNs. Most techniques are workload-specific and not directly applicable to GNN training,

but some may be complementary.

Faster and More Scalable GNNs. Ever since the first wave of GNN models arrived,

algorithmic research has been active in tackling some of the scalability issues of GNNs by

approximated processing and simplified architectures. This line of research is orthogonal to

our work, as our goal is not to propose any new GNN model architecture but instead focus

on the fundamental system challenges that will not be fixed by GNN model research alone.

153

GraphSage [113] proposes mini-batch training and neighborhood sampling to reduce the data

dependencies. FastGCN [67] runs even more aggressively IID sampling on the graph by directly

controlling the number of nodes involved. SGC [294] challenges GNNs by proposing trivial

two-layer architectures that reportedly could offer a similar accuracy performance. EIGNN [188]

further extends SGC to an infinite depth model and uses eigendecomposition to boost efficiency.

Graph coarsening techniques [128] have also been explored to preprocess and down-sample the

input data.

7.4 Related Work for PANORAMA

Vision and Label-efficient ML. We already explained how Panorama relates to prior

works in vision, including task definitions (Section 2.1), CNN-based vision (Section 2.2), how

PanoramaNet is based on lessons of recent CNNs (Section 4.1), deep supervision (Section

4.2), and which CNNs act as reference models (Section 5). Thus, we now only discuss a key

aspect of Panorama’s goal that is related to several lines of work in ML. Deep CNNs typically

need large labeled datasets, but many applications may not have so much labeled data. To

meet this challenge, the ML community has long worked on label-efficient learning schemes,

including zero-shot [167, 166, 25, 96, 220], one-shot [165, 88, 89, 35, 95, 167], and open-

set [251, 252, 97, 38] learning. Zero-shot learning asks models to recognize new unseen classes

by transferring semantic knowledge learned from training classes, often via auxiliary metadata

for retraining. One-shot learning relaxes this assumption by asking for one or a few labeled

examples per new class. Open-set learning also aims to remove the closed-world vocabulary

assumption, but it does so by retraining models to recognize both old and new classes. Such

alternative learning schemes are sometimes collectively called life-long learning [69, 231, 271].

All these previous efforts in ML inspire our formulation of the unbounded vocabulary

problem, but our goal is not proposing new learning schemes, vision tasks, or more accurate

154

CNNs. Our focus in Panorama has a crucial system functionality difference aimed at benefiting

users of video monitoring applications.

Cascaded Classification. Cascaded models have long been used in multimedia sys-

tems to improve accuracy and efficiency. Introduced in the Viola-Jones object detection frame-

work [277], recent works have extended this idea to deep CNNs [58, 114, 173, 265, 282, 59, 125].

These works inspired our design decision of making PanoramaNet cascaded, but our approach

extends this idea along two lines: we fuse it with multi-task learning for unified processing

instead of disparate bespoke models and we use deeply supervised training (originally designed

to improve accuracy [169]) to make this fusion possible. Our short-circuiting configuration also

supports a more tunable accuracy-throughput tradeoff.

Multimedia Databases. The multimedia database community has long studied content-

based image retrieval (CBIR), whose goal is to retrieve images or videos from a database that

have the same “content” as a query image [22, 141, 303, 316, 139, 232, 134, 261]. The notion of

content is application-specific. Early CBIR works used hand-crafted vision features (e.g., SIFT)

but recent ones showed that CNN features improve accuracy. Panorama’s focus is not on CBIR

but rather video monitoring applications. That said, our design decision of using embedding

extraction to tackle unbounded vocabularies is inspired by work on CBIR. To the best of our

knowledge, ours is the first work to exploit this connection between multimedia DB techniques

and video monitoring.

Video Querying Systems. Video monitoring systems have seen a resurgence of interest

in the DB and systems literature. NoScope [142] creates a model cascade with simple filters and

a specialized cheaper CNN to improve querying efficiency compared to a larger reference CNN.

Focus [123] splits video monitoring into ingesting and query stages to enable more accuracy-

efficiency tradeoffs, including indexing objects offline and using them to speed up queries.

BlazeIt [143] proposes an SQL-like language for selection and aggregation queries over frames

and uses approximation techniques to improve efficiency. All these systems support only binary

or finite multi-class vocabularies, which make them complementary to Panorama. Nevertheless,

155

our work on Panorama was inspired by these systems, and we fundamentally expand video

monitoring functionality to unbounded vocabularies while ensuring system efficiency.

Among video analytics systems, CaTDet [199] reduces inference costs by computing

regions of interests based on historic detections. FilterForward [61] uses constrained edge nodes

better. VideoStorm [311] and Optasia [193] are large-scale video analytics systems that aim

to reduce latency. RAM33S[36], KDEDisStrOut[324], and other research[266] aim at real-

time video analytics from massive multimedia streams. All these systems are orthogonal to

Panorama, since they focus on better resource management and parallelism for analytics queries,

not enabling unbounded vocabularies for monitoring queries. We believe Panorama can be

integrated with such systems in the future.

156

Chapter 8

Conclusion and Future Work

In this dissertation, we reimagine DL systems as DL data systems; we innovate upon

many database-inspired techniques, such as multi-query optimizations, query plan rewrites,

approximate processing, and multimedia databases, and apply them to improve DL systems

for three representative workloads: model selection, training, and inference on various data

modalities. Our work offers runtime efficiency gains and improvements in system scalability over

state-of-the-art solutions. We also make the first comprehensive attempts to bring DL to database-

resident data. We have demonstrated that bridging the gap between existing data systems and DL

workloads, without modifying any existing codebase and infrastructure or introducing overheads,

is possible. Our work is an important step towards the goal of practical, scalable, and high-

throughput DL data systems. It opens up design freedom, saves DL practitioners’ costs, and

provides viable guides and insights for data systems researchers.

8.1 Future Work Related to CEREBRO and CEREBRO on
Data Systems

Model Parallelism. CEREBRO is a hybridization of task parallelism and data parallelism.

In addition, model parallelism exists to partition and execute a large model across multiple GPUs

or computational nodes, primarily because the model does not fit in a single processing unit.

Today’s large models rely on this technique to train on dozens to hundreds of GPUs. However,

157

these models are not free from the model selection problems, and the costs associated become

astronomical as these models are extremely demanding in computational power. It remains an

open question on how to build a scalable distributed system that can optimize the workloads

holistically with both model hopper parallelism and model parallelism.

Data Transfer Between ML and Data Systems. We realized that the current data

warehouse architecture lacks optimizations for distributed DL. One of the major problems is

the data format: data warehouses store data in proprietary pagefile formats. Accessing data

via the DBMS can bring severe bottlenecks for DL workloads, which require frequent and

rapid table scans. It is largely an open research question, but some proposals are promising,

such as Lakehouse [309]. In this work, we devised Direct Access with caching, and we hope

it can serve as a candidate solution to the above problems. However, DA is coupled with the

proprietary DBMS data formats. Standard pagefile formats such as Parquet would simplify

the implementation and increase the portability drastically. Similarly, in-memory formats like

Apache Arrow would vastly simplify the data transmission process between different runtimes

and may also bring performance boosts.

8.2 Future Work Related to LOTAN

Large Models and Model Parallelism. GNNs, are still DL models, albeit with a

distinctive data access pattern. With the tremendous success of Large Models (Foundation

Models) in computer vision, natural language processing, and chatbots, it is only natural to

imagine the same set of techniques can be applied to graph data as well. A huge gap exists

between the model size of popular GNNs and the SOTA CNNs or Transformers, and it hints

at vast opportunities for performance gains. Efforts already exist to hybridize Transformers

with GNNs [322]. However, the research frontier has been primarily limited by the costly and

inefficient execution of GNNs, and no truly Large GNN models exist. Therefore, to facilitate

Large GNNs research and open up new design freedom for the practitioners, the systems

158

community needs to investigate the abstractions, optimizations, and efficient executions of Large

GNNs requiring a novel fusion of both graph processing and model parallelism, which adds an

extra complexity on top of the GNNs’ data parallelism.

High-throughput GNN Inference. So far, there has been very little work in accelerating

GNN inference, albeit inference takes up the majority of costs once the model is trained and

deployed. For an in-data-system GNN system such as LOTAN, the inference is equally, if not

more important than training. Both opportunities and challenges exist: inference tasks have

relaxed requirements on accuracy, enabling approximate processing techniques for acceleration.

At inference time, the model and many intermediate states also become static, and caching them

would lead to performance boosts unavailable for training. However, unlike training, which

typically uses a static graph, the graph may become dynamic at inference time. The system must

be able to cope with the added complexity of dynamic graphs and provide intelligent caching

and re-computing mechanisms to maximize the runtime performance.

8.3 Future Work Related to PANORAMA

More Types of Queries. Beyond the identity recognition and verification queries that

PANORAMA targets, various tasks such as motion recognition and cross-camera object tracking

exist. The same unbounded vocabulary problem remains, and the same set of proxy model

methods still applies. In future work, the definition of unbounded vocabulary problem needs to

be expanded to include these tasks, and new proxy model architectures need to be developed to

answer these queries.

Improving Reference Models and PanoramaNet. The landscape of computer vision

has been shifting constantly. Recent advances such as Vision Transformers (ViT) [82] have

emerged to supersede regular CNNs. These models have a clear advantage over CNNs in

terms of accuracy but are more demanding in terms of computational power, making them

premium candidates to serve as Reference Models. It remains an open question of how to

159

bring Transformers into PanoramaNet and retain the cascaded nature and the associated deep

supervision of the latter. Further, it is left for future work to re-design PanoramaNet so that the

sequential nature of the cascade processing can be relaxed and increase the degree of parallelism.

160

Appendix A

CEREBRO

A.1 CEREBRO API Usage Example

In this Section, we present a detailed example on how the PANORAMA API can be used

to perform the ImageNet model selection workload explained in Section 3.6.1.

Before invoking the model selection workload users have to first register workers and

data. This can be done as per the API methods shown in Listing 1 and Listing 2.

Listing A.1. Registering Workers
API method to register workers

worker_id : Id of the worker

ip : worker IP

#

Example usage:

register_worker (0, 10.0.0.1)

register_worker (1, 10.0.0.2)

....

register_worker (7, 10.0.0.8)

######################################

register_worker(worker_id , ip)

Listing A.2. Registering Data
API method to register a dataset

name : Name of the dataset

num_partitions : # of partitions

#

Example usage:

register_dataset (ImageNet , 8)

######################################

register_dataset(ImageNet , 8)

161

API method to register partition

availability

dataset_name : Name of the dataset

data_type : train or eval

partition_id : Id of the partition

worker : Id of the worker

file_path : file_path on the

worker

#

register_partition (ImageNet , train ,

0,

0, /data/imagenet/train_0)

######################################

register_partition(dataset_name ,

data_type ,

partition_id , worker ,

file_path)

Next, users need to define the initial set of training configurations as shown in Listing 3.

Listing A.3. Initial Training Configurations
S = []

for batch_size in [64, 128]:

for lr in [1e-4, 1e-5]:

for reg in [1e-4, 1e-5]:

for model in [ResNet , VGG]:

config = {

batch_size: batch_size ,

learn_rate: lr ,

reg: reg ,

model: model

}

S.append(config)

Users also need to define three functions: input f n, model f n, and train f n. input f n

as shown in Listing 4, takes in the file path of a partition, performs pre-processing, and returns

in-memory data objects. Inside the input f n users are free to use their preferred libraries and

tools provided they are already installed on the worker machines. These in-memory data objects

are then cached in the worker’s memory for later usage.

Listing A.4. input f n
User defined input function

file_path : File path of a local

data partition

#

Example usage:

processed_data = input_fn(file_path)

162

######################################

def input_fn(file_path):

data = read_file(file_path)

processed_data = preprocess(data)

return processed_data

After the data is read into the worker’s memory, PANORAMA then launches the model

selection workload. This is done by launching training units on worker machines. For this

PANORAMA first invokes the user defined model f n. As shown in Listing 5, it takes in the

training configuration as input and initializes the model architecture and training optimizer based

on the configuration parameters. Users are free to use their preferred tool for defining the model

architecture and the optimizer. After invoking the model f n, PANORAMA injects a checkpoint

restore operation to restore the model and optimizer state from the previous checkpointed state.

Listing A.5. input f n
User defined model function

config : Training config.

#

Example usage:

model , opt = model_fn(config)

######################################

def model_fn(config):

if config[model] == VGG:

model = VGG()

else:

model = ResNet ()

opt = Adam(lr=config[learn_rate])

return model , opt

After restoring the state of the model and the optimizer, CEREBRO then invokes the user

provided train f n to perform one sub-epoch of training. As shown in Listing 5, it takes in the

data, model, optimizer, and training configuration as input and returns convergence metrics.

Training abstractions used by different deep learning tools are different and this function abstracts

it out from the CEREBRO system. After the train f n is complete the state of the model and the

optimizer is checkpointed again.

Listing A.6. input f n
User defined train function

163

data : Preprocessed data

model : Deep learning model

optimizer : Training optimizer

config : Train config.

#

Example usage:

loss = train_fn(data , model ,

optimizer , config)

######################################

def train_fn(data , model , optimizer , config):

X, Y = create_batches(data ,

config[batch_size])

losses = []

for batch_x , batch_y in (X,Y):

loss = train(model , opt ,

[batch_x , batch_y])

losses.append(loss)

return reduce_sum(losses)

For evaluating the models, we assume the evaluation dataset is also partitioned and

perform the same process. We mark the model parameters as non-trainable before passing it to

the train f n. After a single epoch of training and evaluation is done, CEREBRO aggregates the

convergence metrics from all training units from the same configuration to derive the epoch-level

convergence metrics. Convergence metrics are stored in a configuration state object which keeps

track of the training process of each training configuration. At the end of an epoch, configuration

state objects are passed to the automl mthd implementation for evaluation. It returns a set of

configurations that needs to be stopped and/or the set of new configurations to start. For example

in the case of performing Grid Search for 10 epochs, the automl mthd will simply check whether

an initial configuration has been trained for 10 epochs, and if so it will mark it for stopping.

A.2 CNN Compute Costs

Table A.1 lists the computational costs of the CNNs used for the simulation experiment

which compares different scheduling methods. These costs were obtained from a publicly

available benchmark1.
1https://github.com/albanie/convnet-burden

164

https://github.com/albanie/convnet-burden

A.3 Straggler Issue in Celery

One potential issue that could impact task-parallel systems’ performance is load balancing.

Given the large variance of runtimes for deep-nets training, the scheduling generated by Celery

could lead to severe straggler issues that impairs the end-to-end runtime of the whole workload.

On the other hand, PANORAMA suffers far less from this problem because it operates on a finer

granularity; our tasks are chunked into sup-epochs and hence it is less likely for long-running

stragglers to appear.

We take the Criteo tests showed in Section 3.6.1 as example. Without any prior or domain

knowledge, it is impossible to know the runtime of each task before-hand and therefore Celery

could schedule a plan like Figure A.1. The execution suffers from the straggler config#0 and

needs 27.4 hrs to run.

0 5 10 15 20 25

worker#7

worker#6

worker#5

worker#4

worker#3

worker#2

worker#1

worker#0

time/hrs

config#0

config#1

config#2

config#3

config#4

config#5

config#6

config#7

config#8

config#9

config#10config#11

config#12

config#13

config#14

config#15

Figure A.1. An unbalanced work schedule generated by Celery for Criteo tests.

165

However, if with a proper estimation/profiling of the runtimes/workloads, it is possible to

fix this straggler issue with a carefully curated schedule as showed in Figure A.2. This schedule

drastically reduces the runtime to 19.7 hrs.

0 5 10 15 20

worker#7

worker#6

worker#5

worker#4

worker#3

worker#2

worker#1

worker#0

time/hrs

config#0

config#1

config#2

config#3

config#4

config#5

config#6

config#7 config#8

config#9

config#10

config#11

config#12

config#13

config#14

config#15

Figure A.2. Best possible work schedule with Celery for Criteo tests.

In Section 3.6.1, we decided to show the runtime with the best-possible scheduling for

Celery, as we do not wish to unfairly punish the adversarial systems, and load balancing/runtime

estimation of deep learning workloads are out of the scope of this paper. We believe these

decisions can ultimately help the reader focus on the benefits and advantages of our system.

A.4 Extension: Horovod Hybrid

A typical model selection workflow begins with a large number of model configs, and

narrows down the scope gradually over epochs, ending up with a handful of model configs to

train till convergence. It means that at the later stages, we may encounter scenarios where the

166

number of model configs, |S|, can be smaller than the number of workers, p. In these scenarios

PANORAMA can lead to under-utilization of the cluster.

We mitigate this issue by doubly hybridizing MOP with data parallelism. To this end,

we implement a hybrid version of PANORAMA with Horovod we call Horovod hybrid. Just like

PANORAMA, Horovod is also equivalent to sequential SGD concerning convergence behavior.

Therefore the hybrid of them will remain reproducible.

CEREBRO

HOROVOD HOROVOD HOROVOD

Chief worker

Regular Worker

Namespace of
Cerebro
Namespace of
Horovod

Figure A.3. The architecture of Horovod Hybrid. Within different namespaces, we run
PANORAMA and Horovod, respectively. The chief workers, acting as PANORAMA workers, are
responsible for driving Horovod tasks and handling the communication between the two systems.
In the figure, we show a 9-node cluster with 3 model configs to train.

Figure A.3 summarizes the architecture of Horovod Hybrid, where instead of workers,

we have worker groups. Inside each worker group, we run a data-parallel Horovod task. Then

after each worker group finishes their assigned task, we hop the trained models just as the regular

PANORAMA. We assume there are more workers than model configs. We create an equal number

of groups for the number of configs. Workers are placed into these groups evenly.

We now explore the possibility of hybridizing MOP with Horovod to better utilizer

resources in |S| < p regime. For this we run an experiment using Criteo on the CPU cluster

with varying number of configs (|S|) and batch sizes. We compare three different methods: (1)

Horovod, (2) MOP, and (3) Horovod Hybrid. Figure A.4 shows the results.

Horovod’s runtime grows linearly with more configs, but PANORAMA is constant. For

instance at batch size 128 and |S| = 2, PANORAMA matches Horovod’s performance. This is

167

1 2 4 6 8
Number of configs

2

4

6

8
El

ap
se

d
tim

e/
hr

s
Batch size: 128

Cerebro
Horovod Hybrid
Horovod

1 2 4 6 8
Number of configs

0.5

1.0

1.5

El
ap

se
d

tim
e/

hr
s

Batch size: 1024
Cerebro
Horovod Hybrid
Horovod

Figure A.4. Performance tests of Horovod Hybrid with varying batch size and |S| on 8-node
cluster. Configs: same model as in Section 4 Table 3.5, learning rates drawn from
{10−3,10−4,5×10−5,10−5}, weight decays drawn from {10−4,10−5}. We test on 2 different
batch sizes, respectively.

because PANORAMA’s communication costs are negligible. For the Horovod Hybrid the runtimes

are comparable to Horovod, except when |S| = p it reduces to PANORAMA. This is because

Horovod Hybrid is bottlenecked by Horovod’s network overheads; mitigating this issue will

require careful data re-partitioning, which we leave to future work. It is interesting that even

with underutilization PANORAMA can still outperform Horovod in most scenarios. Depending

on |S| and batch size, there is a cross-over point when the three methods meet. Typically when

|S| ≪ p, Horovod and Horovod Hybrid are faster as PANORAMA is heavily underutilizing the

workers. We heuristically choose p/2 as the dividing point: still run PANORAMA if p/2 < |S|,

otherwise just run Horovod. Overall, the current Horovod Hybrid does not provide much benefit

over Horovod as it mainly optimizes Horovod for its latency part of the communication cost,

which turns out to be marginal.

168

Table A.1. Computation costs of the CNNs used for the simulation experiment comparing
different scheduling methods.

Model FLOPs

AlexNet 727 MFLOPs
CaffeNet 724 MFLOPs
SqueezeNet1-0 837 MFLOPs
SqueezeNet1-1 360 MFLOPs
VGG-f 727 MFLOPs
VGG-m 2 GFLOPs
VGG-s 3 GFLOPs
VGG-m-2048 2 GFLOPs
VGG-m-1024 2 GFLOPs
VGG-m-128 2 GFLOPs
VGG-vd-16-atrous 16 GFLOPs
VGG-vd-16 16 GFLOPs
VGG-vd-19 20 GFLOPs
GoogleNet 2 GFLOPs
ResNet18 2 GFLOPs
ResNet34 4 GFLOPs
ResNet50 4 GFLOPs
ResNet101 8 GFLOPs
ResNet152 11 GFLOPs
ResNext-50-32x4d 4 GFLOPs
ResNext-101-32x4d 8 GFLOPs
ResNext-101-64x4d 16 GFLOPs
Inception-V3 6 GFLOPs
SE-ResNet-50 4 GFLOPs
SE-ResNet-101 8 GFLOPs
SE-ResNet-152 11 GFLOPs
SE-ResNeXt-50-32x4d 4 GFLOPs
SE-ResNeXt-101-32x4d 8 GFLOPs
SENet 21 GFLOPs
SE-BN-Inception 2 GFLOPs
DenseNet121 3 GFLOPs
DenseNet161 8 GFLOPs
DenseNet169 3 GFLOPs
DenseNet201 4 GFLOPs
MobileNet 579 MFLOPs

169

Appendix B

CEREBRO on Data Systems

B.1 Scenarios that Could Affect Scheduler Performance

Various scenarios could affect MOP schedulers’ performance. One such case is hetero-

geneous workload, where the sync. and async. schedulers may yield schedules that deviate in

makespan. One such scenario is shown in Figure B.1.

A

B A

CB

D

D

A

B C

D

D

BC

A

C

Workload: A BC

(A) Synchronous round-robin scheduler

(B) Asynchronous random scheduler
Sync. barriers

Time

D

Figure B.1. Gantt chart for possible schedules generated by (A) Synchronous round-robin
scheduler and (B) Asynchronous random scheduler. The two workers are homogenous, but the
workload, containing four models, is heterogenous.

The other notable example is when the number of model configs approximates the

available degree of parallelism as shown in Figure B.2; in this scenario, the async. random

scheduler could suffer from straggler issues while the sync. scheduler is free of such problems.

170

A

A

A C

A

Workload: A

(A) Synchronous round-robin scheduler

(B) Asynchronous random scheduler

Time

B

B

B

C

C

C

C

A

B

C B

B

B

C

A

Figure B.2. Gantt chart for possible schedules generated by (A) Synchronous round-robin
scheduler and (B) Asynchronous random scheduler.

B.2 Proofs to Propositions

Proof to Proposition 1. For sync. MOP, there will be in total M sub-epoch batches, and

each batch’s runtime will be dominated by the longest running model within this batch, therefore

we have in expectation:

Tu =
M

∑
i

max(Li), (B.1)

where Li = rand(L,W). rand(X,N) means randomly sampling N elements from set X. Assuming

that max(Li)∼ ls, meaning every sub-epoch of UDAF run is dominated by ls, we obtain:

Tu = pW lsM+(1− pW)lmM. (B.2)

On the other hand with async. MOP, assuming M is large enough (M≫W) and the scheduler

was capable of load-balancing, we have:

Tc =
|L|
W

W =W
Ml̄
W

= Ml̄. (B.3)

171

Immediately we have the speedup of async. MOP over sync. MOP:

Tu

Tc
=

pW lsM+(1− pW)lmM
Ml̄

= pW ls
l̄
+(1− pW)

lm
l̄
. (B.4)

This indicates the speedup (weak scaling) of async. MOP over sync. MOP is related to the

number of workers W and the skewness (represented by
ls
l̄

and
lm
l̄

). Interestingly, note that this

speedup is independent of the number of model configs.

Proof to Proposition 2. Asymptotically, when W goes up, we can see
Tu

Tc
→ lm

l̄
. Define

η =:
lm
l̄

. η > 1 as long as the underlying distribution of L is right-tailed. This means async.

MOP will always be faster than sync. MOP under such circumstance, given sufficient number of

workers.

Furthermore, since l̄ =
plsM+(1− p)lmM

M
= pls +(1− p)lm, if we expand η , there is:

η =
lm
l̄
=

lm
pls +(1− p)lm

. (B.5)

When p→ 1 we obtain

η → lm
ls
, (B.6)

which is unbounded and can potentially go to a very high number under extreme circumstances.

This indicates when there are only a few outlier models that are time-consuming, the speed-up

of async. MOP over sync. MOP is determined by the relative runtime difference of the outlier

models and common models.

B.3 Effect of Model Size on UDAF and CTQ

The size of models is typically orders of magnitude smaller than the size of the training

dataset. Thus, although model hopping time is proportional to model size, it is usually negligible

172

in large-scale DL. However, this assumption may not hold for the UDAF approach because of

the JOIN as explained in Section 4.5.1 Model hopping. We run the following test to investigate

model transmission cost with varying model sizes empirically.

We choose 3 hyperparameter tuning workloads on ImageNet. Each workload features 8

model configs with one single model architecture and a fixed batch size of 32. Model architectures

are: MobileNet (52 MB), ResNet50 (294 MB), and ResNet152 (693 MB). Model size is reported

as the on-disk serialized size. We run each workload for 3 epochs and take the average to get per

epoch and per worker machine time breakdown.

52 294 693
Model size (MB)

0

1

2

3

4

Pe
r-e

po
ch

 a
ve

ra
ge

 m
ac

hi
ne

 ti
m

e
(h

r) (A) Train + Valid
CTQ UDAF

52 294 693
Model size (MB)

0.00

0.05

0.10

0.15

0.20
Pe

r-e
po

ch
 a

ve
ra

ge
 m

ac
hi

ne
 ti

m
e

(h
r) (B) Model Transmission

CTQ UDAF

Figure B.3. Per-epoch runtime for model size test. (A): Train+Valid time. (B): Model
Transmission time.

Figure B.3 presents the results. We profile and focus on two components: Train+Valid

and Model Transmission. Figure B.3(A) shows no difference in terms of Train+Valid, which is

to be expected. Figure B.3(B) shows that the CTQ approach imposes little to no bottleneck and

is far less sensitive to the model size. However, the UDAF approach suffers more overheads on

larger models. This confirms that the JOIN and storing models inside the DB can indeed cause

some overheads, although this overhead is not too major (less than 10% in this case).

173

0 10 20 30
W (Number of Workers)

0.98

1.00

1.02

1.04

1.06

1.08
Sp

ee
d

up
 o

f C
TQ

 o
ve

r U
DA

F

= 1.1

(A), M=64, p=0.1

Simulation Theory

0 10 20 30
W (Number of Workers)

1.00

1.02

1.04

1.06

1.08

1.10

Sp
ee

d
up

 o
f C

TQ
 o

ve
r U

DA
F

= 1.1

(B), M=512, p=0.1

Simulation Theory

0 10 20 30
W (Number of Workers)

1.0

1.2

1.4

1.6

1.8

Sp
ee

d
up

 o
f C

TQ
 o

ve
r U

DA
F

= 1.9

(C), M=512, p=0.5

Simulation Theory

0 10 20 30
W (Number of Workers)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

d
up

 o
f C

TQ
 o

ve
r U

DA
F

= 4.1

(D), M=512, p=0.8

Simulation Theory

0 10 20 30
W (Number of Workers)

1

2

3

4

5

6

Sp
ee

d
up

 o
f C

TQ
 o

ve
r U

DA
F

= 6.9

(E), M=4096, p=0.9

Simulation Theory

Figure B.4. Runtimes of heterogeneous workloads. (A-E) represent different workload configs.
Both theoretical bounds and simulated runtime gaps are shown. The upper bounds of speedup η

are calculated for each workload. NB: Note the different ranges of the Y axes across plots.

B.4 Simulated Extreme Scenarios of Async. MOP vs Sync.
MOP on Heterogeneous Workloads

To supplement the experiments shown in Section 4.6.2, we now add more simulated tests

to show both theoretical and simulated performance gain of Async. MOP over Sync. MOP on

heterogeneous workloads. We assume lm/ls = 20. We evaluate the speedups of CTQ over UDAF

for different numbers of workers W (up to 32). Figure B.4 presents the results. Comparing

Figure B.4(A) with (B), we see that when M is not large enough, the theoretical upper bound is

too loose as it assumes a sufficient number of models for the MOP scheduler to load-balance.

Comparing Figure B.4(B) with (C), we see when p goes up, which means higher heterogeneity

and higher right-skewness, CTQ offers drastically higher speedups over UDAF. Furthermore,

174

Table B.1. Resource utilizations from Hyperopt experiments shown in Section 4.6.2.

Approach GPU util. GPU RAM util. CPU util. DRAM util. Total Network Per Worker Disk R/W

UDAF 32.5% 16.2% 2.4% 7.2% 600 GB 12 GB / 173 GB
CTQ 33.2% 16.5% 2.5% 1.5% 600 GB 12 GB / 92 GB

DA-Cerebro 45.3% 24.1% 2.0% 20.2% 500 GB 0.7 GB / 6.7 GB
Cerebro-Spark 43.6% 24.2% 13.4% 15.8% 1000 GB 0.3 GB / 2 GB

Hyperopt-Spark 44.6% 24.0% 4.2% 3.6% 20 GB 3000 GB / 4 GB

as Figure B.4(E) shows, CTQ’s performance gain can continue to increase with even higher

skewness η .

B.5 Hyperopt Experiment Resource Utilizations

Table B.1 summarizes the detailed resource utilization figures for experiments shown in

Section 4.6.2. Hyperopt-Spark is task parallel. Therefore it has little network usage compared

to other approaches. It requires full data replication; data is not partitioned, and each worker

keeps an entire copy of the whole dataset. Because the full dataset does not fit in the DRAM of

a single node, it does not cache the data and resorts to frequent disk reads, resulting in orders

of magnitude higher disk reads. Despite the MOP-based methods have higher network usage

and Hyperopt-Spark has higher disk reads, these are still minor overheads, and none of the

approaches is bounded by network nor disk R/W.

B.6 End-to-end Tests with PyTorch Lightning

As the DL training scheme continues shifting after the publishment of this paper, we

further include this experiment against PyTorch Lightning DDP, an emerging and popular choice

for data parallel model training. We use PyTorch 2.0.1 and PyTorch Lightning version 2.0.6

(both are the latest stable release when this section is written) on CUDA 11.7. We take the

same ImageNet end-to-end test from Section 4.6.1 and run it on the same set of hardware so

that the results can be directly comparable. Figure B.5 shows the convergence behavior, and

Table B.2 lists the runtime and resource utilization measurements. Overall, there is no noticeable

175

1 2 3 4 5 6 7 8 9 10
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

5
Va

lid
at

io
n

Er
ro

r

Learning Curve on Validation (ImageNet)
PyTorch Lightning

Figure B.5. Convergence behavior on ImageNet.

difference between PyTorch Lightning (which uses DDP under the hood) and plain PyTorch DDP

shown in Section 4.6.1, even after the software and CUDA version updates. All the numbers,

including the convergence behavior, are almost identical. The fundamental challenge of data

parallel training, network communication, has not been mitigated by the recent iteration of these

frameworks. We still see network traffic of over 2000 TB. During this test, we did not cache the

training data in memory due to technical difficulties with Lightning, which resulted in a higher

disk Read than PyTorch DDP. Lightning also employs automatic checkpointing, which is likely

the cause of the higher disk Write. This test also shows higher GPU RAM usage than before,

which might be due to changed behavior for data pre-fetching/GC policy in the newer versions

of PyTorch/Lightning. That being said, these are all minute details as the disk R/W and GPU

RAM are not the bottleneck and have little effect on the end-to-end results. Overall, this test

does not change any of our conclusions reported in Section 4.6.1.

176

Table B.2. Runtimes and resource utilizations of end-to-end tests. Execution time and all
utilizations are measured, excluding ETL. Per-epoch time equals Execution time divided by the
number of epochs. Total network means the total amount of data transmitted during execution.
We report disk read/write as per worker average.

Approach
ETL
time

Exec.
time

Epoch
time

GPU
util.

GPU
RAM util.

CPU
util.

DRAM
util. Tol. network Per w. disk R/W

Lightning 4.4 hr 77.7 hr 7.7 hr 97.3% 41.8% 7.0% 18.0% 2016 TB 392 GB / 47 GB

177

Appendix C

Lotan

C.1 Appendix

C.1.1 Cost Models

Replication Factor

The vertex replication factor is a common measure of the quality of graph partitioning

algorithms. It is defined as the average amount of logical presence each vertex has across

partitions. However, replication factor defined this way does not consider the asymmetry during

GNN forward- and backward-propagation highlighted in Section 5.5.1.

During forward-prop, the vertices merely have their embeddings, and replicating these

vertices is relatively less expensive. However, during back-prop, the vertices are associated with

maps of gradients that could be orders of magnitude larger than the embeddings. Replicating them

would induce high costs. Hence vertex replication has different importance during forward-prop

and back-prop. To account for this asymmetry, we define, as follows, a new metric composed of

a weighted sum of the forward and backward replication costs.

Define the set of vertex partitions Vp = {(vi, p)}, each vertex vi is accompanied by the

partition number p. If a vertex is replicated, multiple tuples will be in the set with the same

vertex but different partitions. Similarly we define the set of edge partitions as Ep = {(vi,v j, p)},

where vi is the source and v j the destination.

178

Forward replication factor. During forward-prop, data flows from source vertices to

destination vertices. Replication, if needed, happens during the scatter phase when the source

and destination are not colocated. The same source vertex needs to be shipped over the network

to each physical location where it is needed. Hence higher replication factor directly contributes

to more networking needed. Define the forward replication cost R f to be:

R f :=
1
n ∑

i
|A f (vi)|, (C.1)

where A f (vi) ⊆ {p} is the subset of partitions that vi is mirrored to, and vi has at least one

outgoing edge that is co-located in that partition.

Backward replication cost. Similarly, the backward replication cost Rb can be defined

as:

Rb :=
1
n ∑

i
|Ab(vi)|, (C.2)

where Ab is defined the same way as A f , except that instead of summing all vi that have an

out-going edge, we now sum those that have an in-coming one.

Total replication cost. Together, we take a weighted sum of R f and Rb to obtain the

total replication cost R:

R :=
1

1+d
R f +

d
1+d

Rb, (C.3)

where d is the average degree of the graph. R f and Rb now acknowledge the asymmetry between

forward- and back-propagation. In practice, R f and Rb can be measured using their definitions

rather easily.

179

Memory Consumption

The most intensive memory consumption of the Graph Engine comes from the gather-

scatter operations. We can model the relationship between memory consumption and the number

of partitions.

M =
frepP+N

max(P
ML ,1)

, (C.4)

where M is the number of machines, L is the number of processing units per machine (degree

of parallelism), P is the number of partitions for the data, and N is the total amount of data (in

terms of the number of vertices). For simplicity, assume frep follows a linear relationship with P.

Observations:

1. At the very low amount of partitions (P ≤ ML), increase P would increase memory

footprint.

2. When P > ML, the memory consumption would eventually begin to drop.

This means the memory consumption would rise and then fall as P increases.

Overheads

It is a non-trivial task to manage and operate on billions of objects in a distributed

environment. Overheads such as object headers and one extra ephemeral copy of data are

negligible in many systems. However, we cannot safely ignore them due to the “amplifying”

effect of large graphs – any inefficiency would get repeated millions, if not billions of times, due

to the number of vertices and edges in such a graph. Consequently, we realized our cost model

has to have a better understanding and estimation of the overheads for a more accurate total cost

estimation. We separate the overheads into two categories: constant and scaling. As the name

suggests, the constant overheads are fixed costs associated with each specific type of operation;

180

these could include process setup/destruction time. They usually do not scale with the amount of

data and, therefore of little importance to our estimation.

On the other hand, the scaling overheads rise when the number of data increases. Note

that the trend may not always be linear, as when the data scale approaches certain thresholds

(disk/network throughput, RAM constrain), new overheads are induced due to network throttling,

disk spilling, and garbage collections. All in all, these overheads further complicate the picture

and are even harder to estimate. Our system relies on logs of past runs and specific heuristics to

determine their costs.

Induced Overheads. Given the total memory consumption I, network and disk band-

width usage J and K. And their respective resource limit Imax,Jmax,Kmax. The total induced

overhead Oinduced can be summarized as:

Oinduced := Omemory +Onetwork +Odisk, (C.5)

and

Omemory = 1I>Imax ·omemory(I), (C.6)

Onetwork = 1J>Jmax ·onetwork(J), (C.7)

Odisk = 1K>Kmax ·odisk(K), (C.8)

where omemory,onetwork,odisk are the respective functions for the overheads, and 1A is the indicator

function defined as:

1A(x) =

1 if x ∈ A

0 if x /∈ A
(C.9)

This means the induced overheads only exist when the required resource is above the resource

limit and also scales along with the amount of resource requirement. There is no good way to

estimate these functions and the resource limits beforehand, and we usually rely on runtime

181

statistics. Even so, the estimation may still be tricky due to its non-linear nature. Hence a quick

workaround is to give preference to execution plans with resource requirements below thresholds,

which is implemented in Lotan.

Computational Cost Models

Scatter-Gather-Collect Cost.

WSGC(k, f orward) = l(k)N · (c0dout + c1R f + c2din) (C.10)

The first term is the scatter computation time, the second is the scatter data movement time

(involving network and disk I/O), and the third is the gather and collect computation time.

c0,c1,c2 represent the throughput of scatter, data movement and gather, respectively. Similarly,

for back-propagation:

WSGC(k,backward) = l(k)N · (c0din + c1Rb fe + c2dout). (C.11)

Note the asymmetry between forward and backward propagation, as highlighted previously

in Section 5.6. Furthermore, we define an explosion factor fe ∈ {din,dout ,1} to represent the

potential explosion of data for specific plans. The actual value of fe depends on the specification

of the GNN, the execution plan, and the current prorogation direction.

Pipe-and-Join Cost.

WPJ(k) = c3l(k)N(f out
e + f in

e)+ c4N + c5l(k)N, (C.12)

The first and second terms (collected together) represent the pipe-to and pipe-from cost between

the Graph Engine and Deep Learning Engine. Hence, to indicate the potential asymmetry, we

have two explosion factors f out
e and f in

e . The third term represents the join cost of adding data

182

back to the Graph Engine, and we always use a hash-join. The last term is the serialization/dese-

rialization costs between different runtimes. c3,c4,c5 are the pipe throughput, join operator, and

serialization coefficients, respectively.

ApplyEdge-Aggregation-ApplyVertex Cost.

WAAA = l(k)N fe(w0(k)+w1(k))+w2(k)l(k)N, (C.13)

where w0,w1,w2 are the speed of the ApplyEdge, Aggregation, and ApplyVertex functions; they

all depend on the GNN model specification.

Total Cost. To put everything together, we have the total cost of an execution plan written

as:

W = ∑
k

∑
direction

(WSGC +WPJ +WAAA +O(N,d, l)), (C.14)

where O(N,d, l) is the non-negligible overheads associated with each stage. To compute the

total cost, we need to gather statistics or estimate all the coefficients, compute the costs for each

stage, and then sum them together.

C.1.2 Messenger

The architecture of the Messenger is shown in Figure C.1. We create one Dealer per

Graph Engine worker to handle the datacasting and batching, dubbed micro-batch processing.

Each data batch is hash-indexed to verify the data orders. The Dealers then connect to a Router,

which forwards data to and from the message queues, which the DL Engine workers consume.

C.1.3 Supplementray Experiment Results

Learning Curves

Figure C.3 shows the learning curves for the best model out of some of the hyperparameter

tuning workloads on the validation set.

183

 M

es
se

ng
er

Graph Engine Workers

Messenger -
DEALER

Messenger -
DEALER ...

Bind

Connect

Bind
Async

ServerROUTER

Receiver

Message(addr, data)

Sender

Message(addr, data)

Deep Learning Engine Workers

Incoming
queue

Outgoing
queue

Async

SH
M

 B
uf

fe
r

Connect

Bind

Connect

Figure C.1. Messenger architecture.

Effect of number of partitions

In our system, the number of partitions is a critical config parameter to tune. This

parameter interplays with various components and subtly impacts the overall performance. We

take the same ogbn-arxiv+GCN workload used in our end-to-end experiments and run it with

various partitions. Figure 5.10 (C) shows the experiment results. As predicted in Section 5.6, the

throughput first increases and then decreases. It increases likely due to increased parallelism at

the beginning but then drops because of the overheads caused by the higher number of partitions.

The network usage follows a similar trend, but the disk usage remains more stable. It is important

to note that there exists a sweet spot of the parameter setting for maximum throughput. However,

as discussed earlier, it is tough to model such non-linear behavior. So instead, we adopt the

heuristics described in Section 5.6.

184

40 80 160 320 640
Number of Partitions

700

800

900

1000

Th
ro

ug
hp

ut
 (m

od
el

 e
po

ch
s/

hr
)

Throughput Scaling

(a) Throughput.

40 80 160 320 640
Number of Partitions

4000

4500

5000

5500

6000

6500
Us

ag
e

(G
B/

hr
)

Disk/Network Usage
disk
network

(b) Disk/Network Usage.

Figure C.2. Effect of the number of partitions.

185

0 10 20 30 40 50
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(A) Learning Curve
 (ogbn-products-GCN Valid)

Lotan
DistDGL
AliGraph (Fail)
Sancus

0 2 4 6 8 10
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(B) Learning Curve
 (ogbn-products-GIN Valid)

Lotan
DistDGL (Fail)
AliGraph (Fail)

0 5 10 15 20
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(C) Learning Curve
 (ogbn-arxiv-GCN Valid)

Lotan
DistDGL
AliGraph
Sancus

0.0 0.5 1.0 1.5
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(D) Learning Curve
 (ogbn-arxiv-GIN Valid)

Lotan
DistDGL
AliGraph (Fail)

Figure C.3. Learning curves for the chosen model on the validation set. (A)
ogbn-products-GCN. (B) ogbn-products-GIN. (C) ogbn-arxiv-GCN. (D) ogbn-arxiv-GIN.

186

Appendix D

Panorama

D.1 Stem1

Figure D.1 shows Stem1.

D.2 YOLOv2 Loss

The Yolov2 loss is:

lk = λcoord

S2

∑
i=0

B

∑
j=0

1
obj
i j

[
(xi− x̂i)

2 +(yi− ŷi)
2
]

+λcoord

S2

∑
i=0

B

∑
j=0

1
obj
i j

[(√
wi−

√
ŵi

)2
+

(√
hi−

√
ĥi

)2
]

+
S2

∑
i=0

B

∑
j=0

1
obj
i j

(
Ci−Ĉi

)2

+λnoobj

S2

∑
i=0

B

∑
j=0

1
noobj
i j

(
Ci−Ĉi

)2

+
S2

∑
i=0

1
obj
i ∑

c∈classes
(pi(c)− p̂i(c))

2 . (D.1)

187

BatchNorm+LeakyReLU Output: (416,416,16)

3x3 Conv2D(256) Output: (26,26,256)

BatchNorm+LeakyReLU Output: (52,52,128)

2x2 MaxPool Output: (26,26,128)

BatchNorm+LeakyReLU Output: (26,26,256)

2x2 MaxPool

3x3 Conv2D(512) Output: (13,13,512)

BatchNorm+LeakyReLU Output: (13,13,512)

3x3 Conv2D(128) Output: (52,52,128)

2x2 MaxPool Output: (52,52,64)

2x2 MaxPool

3x3 Conv2D(32) Output: (208,208,32)

BatchNorm+LeakyReLU Output: (208,208,32)

2x2 MaxPool Output: (104,104,32)

3x3 Conv2D(64) Output: (104,104,64)

BatchNorm+LeakyReLU Output: (104,104,64)

Input (416,416,3)

3x3 Conv2D(16) Output: (416,416,16)

Output: (208,208,16)

Output (13,13,512)

Output: (13,13,256)

Figure D.1. Detailed architecture of Stem1 block from Figure 6.7. Max pooling layers have a
stride of 2 and are valid-padded; other layers have a stride of 1 and are same-padded.

D.3 Responsible AI: First Step

Responsible AI has become one of the most critical topics in today’s AI research com-

munity. We believe fairness, accountability, transparency, and ethics are prerequisites for any

AI system that make predictions about people. It is the community’s responsibility in building

and testing systems with these prerequisites in mind. Recent proposals like Model Card [203]

provides a good template for researchers about how to approach responsible use of AI.

Although Panorama is a domain-agnostic and not a face/person recognition system, it

can be used for such uses. Therefore we believe it is necessary to test its behavior regarding

fairness and show what the limitations are. Following the practice of Gender Shades [57], we

decide to test Panorama’s performance on different gender-shades groups of people. We then try

to report as many details as we could. However, please note these tests are only the first step, and

188

⋆LM DF DM LF

Ref. model 90.0% 88.2% 79.8% 78.4%
PanoramaNet 59.0% 48.4% 44.2% 43.8%

Random guessing 0.3% 0.3% 0.3% 0.3%

Table D.1. Reference model and Panorama’s performance on different gender-shades groups.
⋆D: darker, L: lighter, F: female, M: male.

our report may not comply with the high standard of Model Card, because most datasets we used

lack the needed information about gender-shades.

Definitions of Gender and Shades. We are aware that the definition of gender and

shades are extremely nuanced, and there cannot be a unified standard. We mostly follow prior

research [57] by defining shades to be binary darker and lighter based on the Fitzpatrick Skin

Type. Gender is the oversimplified perceived sex label of male and female.

Task. We take the out-vocabulary recognition task as an example and reuse the reference

model and PanoramaNet in Section 6.5.2.

Datasets. The reference model was trained on VGGFaces, WIDER FACE, CelebA

datasets; PanoramaNet was trained on the reference-model-labeled CBSN dataset. The gender-

shades information of these datasets is unknown. Based on the four gender-shades groups

of {lighter, darker}-{female, male}, we manually labeled 25 identities from Youtube-

Faces for each group. In total, we have 100 identities. We test both the reference model and

PanoramaNet on this sub-sampled dataset.

Metrics. We use the same metric as in Section 6.5.2.

Queries and results. We sample 20 queries for each identity, resulting in 2000 queries. We then

report the results on a per-group basis. Table D.1 summarizes the quantitive results.

Both models show performance differences in different groups and may be biased. We

observe that Panorama mostly copied the reference model; the accuracy ranks as LM > DF >

DM > LF for both models. However, we also notice that some gap is amplified; LM−DF

189

differences rise from 1.8% to 9.6%. Meanwhile, some gap is damped; DF−DM decreases from

8.4% to 4.2%. This indicates that the reference model may not be the only source of bias; the

video stream could be one of the other major factors.

In conclusion, Panorama’s fairness behavior will be determined by the reference model

and the video stream’s fairness behavior. To enforce fairness, it would require at least: either

the user to make sure the inputs are not biased; Or the system has to have a built-in notion of

gender-shades, so that it can make sure the training dataset generated from user’s reference

model and video stream is balanced, by sampling based on these notions. However, it is still

unknown to us how to build and integrate such functionalities into the system. There are also

open questions regarding why there are relative performance differences in different groups from

an unbound vocabulary point of view; Why it is harder to generalize to certain groups. We leave

all of these topics for future discussions.

190

Bibliography

[1] Cerebro Documentation. https://adalabucsd.github.io/cerebro-system/.

[2] First hand knowledge from the authors.

[3] NPR: Facial Recognition In China Is Big Business As Local Governments
Boost Surveillance. https://www.npr.org/sections/parallels/2018/04/03/598012923/
facial-recognition-in-china-is-big-business-as-local-governments-boost-surveilla, 2018.
[Online; accessed 30-September-2023].

[4] The Economic Times: Computer Vision for Crowd Control at India’s
Kumbh Mela. https://economictimes.indiatimes.com/news/politics-and-nation/
higher-budget-and-bigger-ground-this-years-kumbh-mela-is-set-to-begin-with-a-bang/
articleshow/67397579.cms, 2019. [Online; accessed 30-September-2023].

[5] DeepPostures. https://adalabucsd.github.io/DeepPostures/, 2023. [Online; accessed 30-
September-2023].

[6] About Greenplum Query Processing, Accessed 30-September-2023. https://gpdb.docs.
pivotal.io/560/admin guide/query/topics/parallel-proc.html.

[7] Code Release of This Work, Accessed 30-September-2023. https://github.com/
makemebitter/cerebro-ds.

[8] Create, Train, and Deploy Machine Learning Models in Amazon Redshift Using SQL
with Amazon Redshift ML, Accessed 30-September-2023. https://shorturl.at/bvBE8.

[9] Google BigQuery ML, Accessed 30-September-2023. https://cloud.google.com/
bigquery-ml/docs.

[10] Google BigQuery ML TensorFlow integration, Accessed 30-
September-2023. https://cloud.google.com/bigquery-ml/docs/
making-predictions-with-imported-tensorflow-models.

[11] Horovod on Spark, Accessed 30-September-2023. https://github.com/horovod/horovod/
blob/master/docs/spark.rst.

[12] MADlib Deep Learning, Accessed 30-September-2023. https://madlib.apache.org/docs/
latest/group grp dl.html.

191

https://adalabucsd.github.io/cerebro-system/
https://www.npr.org/sections/parallels/2018/04/03/598012923/facial-recognition-in-china-is-big-business-as-local-governments-boost-surveilla
https://www.npr.org/sections/parallels/2018/04/03/598012923/facial-recognition-in-china-is-big-business-as-local-governments-boost-surveilla
https://economictimes.indiatimes.com/news/politics-and-nation/higher-budget-and-bigger-ground-this-years-kumbh-mela-is-set-to-begin-with-a-bang/articleshow/67397579.cms
https://economictimes.indiatimes.com/news/politics-and-nation/higher-budget-and-bigger-ground-this-years-kumbh-mela-is-set-to-begin-with-a-bang/articleshow/67397579.cms
https://economictimes.indiatimes.com/news/politics-and-nation/higher-budget-and-bigger-ground-this-years-kumbh-mela-is-set-to-begin-with-a-bang/articleshow/67397579.cms
https://adalabucsd.github.io/DeepPostures/
https://gpdb.docs.pivotal.io/560/admin_guide/query/topics/parallel-proc.html
https://gpdb.docs.pivotal.io/560/admin_guide/query/topics/parallel-proc.html
https://github.com/makemebitter/cerebro-ds
https://github.com/makemebitter/cerebro-ds
https://shorturl.at/bvBE8
https://cloud.google.com/bigquery-ml/docs
https://cloud.google.com/bigquery-ml/docs
https://cloud.google.com/bigquery-ml/docs/making-predictions-with-imported-tensorflow-models
https://cloud.google.com/bigquery-ml/docs/making-predictions-with-imported-tensorflow-models
https://github.com/horovod/horovod/blob/master/docs/spark.rst
https://github.com/horovod/horovod/blob/master/docs/spark.rst
https://madlib.apache.org/docs/latest/group__grp__dl.html
https://madlib.apache.org/docs/latest/group__grp__dl.html

[13] MADlib Model Selection, Accessed 30-September-2023. https://madlib.apache.org/docs/
latest/group grp mdl.html.

[14] Microsoft SQL Server Machine Learning Services, Accessed 30-September-2023. https://
docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?
view=sql-server-2017.

[15] Oracle Data Mining, Accessed 30-September-2023. https://www.oracle.com/database/
technologies/advanced-analytics/odm.html.

[16] Oracle Machine Learning, Accessed 30-September-2023. https://www.oracle.com/
data-science/machine-learning.html.

[17] Script for Tensorflow Model Averaging, Accessed 30-September-2023. https://github.
com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/avg checkpoints.py.

[18] TensorFrames, Accessed 30-September-2023. https://github.com/databricks/tensorframes.

[19] The CREATE MODEL Statement for Deep Neural Network (DNN) Models, Accessed
30-September-2023. https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/
bigqueryml-syntax-create-dnn-models.

[20] TOAST Tables in Postgres, Accessed 30-September-2023. https://wiki.postgresql.org/
wiki/TOAST.

[21] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In OSDI, pages 265–283.
USENIX Association, 2016.

[22] D. A. Adjeroh and K. C. Nwosu. Multimedia database management requirements and
issues. In IEEE MultiMedia, volume 4, pages 24–33, 1997.

[23] Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia Floratou, Neha Godwal, Matteo
Interlandi, Alekh Jindal, Konstantinos Karanasos, Subru Krishnan, Brian Kroth, Jyoti
Leeka, Kwanghyun Park, Hiren Patel, Olga Poppe, Fotis Psallidas, Raghu Ramakrishnan,
Abhishek Roy, Karla Saur, Rathijit Sen, Markus Weimer, Travis Wright, and Yiwen Zhu.
Cloudy with high chance of DBMS: a 10-year prediction for Enterprise-Grade ML. In
CIDR. www.cidrdb.org, 2020.

[24] Determined AI. AI Infrastructure for Everyone, Now Open Source, Accessed 30-
September-2023. https://determined.ai/blog/ai-infrastructure-for-everyone/.

[25] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label embedding for attribute-based
classification. In CVPR, 2013.

192

https://madlib.apache.org/docs/latest/group__grp__mdl.html
https://madlib.apache.org/docs/latest/group__grp__mdl.html
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?view=sql-server-2017
https://www.oracle.com/database/technologies/advanced-analytics/odm.html
https://www.oracle.com/database/technologies/advanced-analytics/odm.html
https://www.oracle.com/data-science/machine-learning.html
https://www.oracle.com/data-science/machine-learning.html
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/avg_checkpoints.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/avg_checkpoints.py
https://github.com/databricks/tensorframes
https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-create-dnn-models
https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-create-dnn-models
https://wiki.postgresql.org/wiki/TOAST
https://wiki.postgresql.org/wiki/TOAST
https://determined.ai/blog/ai-infrastructure-for-everyone/

[26] Ryo Akita, Akira Yoshihara, Takashi Matsubara, and Kuniaki Uehara. Deep learning
for stock prediction using numerical and textual information. In ICIS, pages 1–6. IEEE
Computer Society, 2016.

[27] Samuel Albanie. Memory Consumption and FLOP Count Estimates for Convnets, Ac-
cessed 30-September-2023. https://github.com/albanie/convnet-burden.

[28] Amazon. RedShift Query Planning and Execution Workflow, Accessed 30-September-
2023. https://docs.aws.amazon.com/redshift/latest/dg/c-query-planning.html.

[29] Huynh Ngoc Anh. keras-yolo2. https://github.com/experiencor/keras-yolo2, 2018. [On-
line; accessed 30-September-2023].

[30] Robin Anil, Gökhan Çapan, Isabel Drost-Fromm, Ted Dunning, Ellen Friedman, Trevor
Grant, Shannon Quinn, Paritosh Ranjan, Sebastian Schelter, and Özgür Yilmazel. Apache
Mahout: Machine Learning on Distributed Dataflow Systems. J. Mach. Learn. Res.,
21:127:1–127:6, 2020.

[31] Sabeur Aridhi, Alberto Montresor, and Yannis Velegrakis. BLADYG: A graph processing
framework for large dynamic graphs. Big Data Res., 9:9–17, 2017.

[32] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. Operating systems: Three easy
pieces. Arpaci-Dusseau Books LLC, 2018.

[33] Malcolm P. Atkinson, François Bancilhon, David J. DeWitt, Klaus R. Dittrich, David
Maier, and Stanley B. Zdonik. The Object-Oriented Database System Manifesto. In
DOOD, pages 223–240. North-Holland/Elsevier Science Publishers, 1989.

[34] Youhui Bai, Cheng Li, Zhiqi Lin, Yufei Wu, Youshan Miao, Yunxin Liu, and Yinlong
Xu. Efficient data loader for fast sampling-based gnn training on large graphs. IEEE
Transactions on Parallel & Distributed Systems, (01):1–1, 2021.

[35] E. Bart and S. Ullman. Cross-generalization: learning novel classes from a single example
by feature replacement. In CVPR, 2005.

[36] Ilaria Bartolini and Marco Patella. A general framework for real-time analysis of massive
multimedia streams. Multimedia Systems, 24(4):391–406, Jul 2018.

[37] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque,
Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew,
Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy,
Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin Zhang, and Martin Zinke-
vich. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. In KDD,
pages 1387–1395. ACM, 2017.

[38] A. Bendale and T. Boult. Towards open world recognition. In CVPR, 2015.

193

https://github.com/albanie/convnet-burden
https://docs.aws.amazon.com/redshift/latest/dg/c-query-planning.html
https://github.com/experiencor/keras-yolo2

[39] Yoshua Bengio. Rmsprop and equilibrated adaptive learning rates for nonconvex opti-
mization. corr abs/1502.04390, 2015.

[40] James Bergstra, R. Bardenet, Balázs Kégl, and Y. Bengio. Algorithms for hyper-parameter
optimization. 12 2011.

[41] James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. 2013.

[42] Laure Berti-Équille, Angela Bonifati, and Tova Milo. Machine Learning to Data Manage-
ment: A Round Trip. In ICDE, pages 1735–1738. IEEE Computer Society, 2018.

[43] Dimitri P. Bertsekas. A new class of incremental gradient methods for least squares
problems. SIAM J. on Optimization, 7(4):913–926, April 1997.

[44] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michal Podstawski,
Claude Barthels, Gustavo Alonso, and Torsten Hoefler. Demystifying graph databases:
Analysis and taxonomy of data organization, system designs, and graph queries. CoRR,
abs/1910.09017, 2019.

[45] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Evfimievski,
Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick Reiss, Prithviraj
Sen, Arvind Surve, and Shirish Tatikonda. SystemML: Declarative Machine Learning on
Spark. Proc. VLDB Endow., 9(13):1425–1436, 2016.

[46] Matthias Boehm, Arun Kumar, and Jun Yang. Data Management in Machine Learning
Systems. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2019.

[47] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V.
Evfimievski, and Niketan Pansare. On Optimizing Operator Fusion Plans for Large-Scale
Machine Learning in SystemML. Proc. VLDB Endow., 11(12):1755–1768, August 2018.

[48] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan Tian,
Douglas R. Burdick, and Shivakumar Vaithyanathan. Hybrid Parallelization Strategies for
Large-Scale Machine Learning in SystemML. Proc. VLDB Endow., 7(7):553–564, 2014.

[49] Leon Bottou. Curiously Fast Convergence of some Stochastic Gradient Descent Algo-
rithms. In Proceedings of the Symposium on Learning and Data Science, 2009.

[50] Xavier Bouthillier and Gaël Varoquaux. Survey of Machine-Learning Experimental
Methods at NeurIPS2019 and ICLR2020. Research report, Inria Saclay Ile de France,
January 2020.

[51] S. Boyd and L. Vandenberghe. Convex Optimization. 2004.

[52] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond euclidean data. IEEE Signal Process. Mag.,
34(4):18–42, 2017.

194

[53] B. Brouwer. YouTube Now Gets Over 400 Hours Of Content Uploaded Every Minute.
https://www.tubefilter.com/2015/07/26/youtube-400-hours-content-every-minute/, 2015.
[Online; accessed 30-September-2023].

[54] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[55] Peter Brucker. Scheduling Algorithms. Springer-Verlag, 3rd edition, 2001.

[56] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent advances in graph partitioning. In Algorithm Engineering, volume 9220 of Lecture
Notes in Computer Science, pages 117–158. 2016.

[57] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In FAT, volume 81 of Proceedings of Machine Learning
Research, pages 77–91. PMLR, 2018.

[58] Z. Cai, M. J. Saberian, and N. Vasconcelos. Learning complexity-aware cascades for deep
pedestrian detection. In ICCV, pages 3361–3369, 2015.

[59] Z. Cai and N. Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
CVPR, 2018.

[60] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering
based on hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing Cao,
Hiroshi Motoda, and Guandong Xu, editors, Advances in Knowledge Discovery and Data
Mining, pages 160–172, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[61] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky, and S. R.
Dulloor. Scaling video analytics on constrained edge nodes. In SysML, 2019.

[62] CBS. CBS News Live. https://www.cbsnews.com/live/, 2019. [Online; accessed 30-
September-2023].

[63] Supriyo Chakraborty, Richard Tomsett, Ramya Raghavendra, Daniel Harborne, Moustafa
Alzantot, Federico Cerutti, Mani B. Srivastava, Alun D. Preece, Simon Julier, Raghu-
veer M. Rao, Troy D. Kelley, Dave Braines, Murat Sensoy, Christopher J. Willis, and
Prudhvi Gurram. Interpretability of Deep Learning Models: A Survey of Results. In
SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, pages 1–6. IEEE, 2017.

195

https://www.tubefilter.com/2015/07/26/youtube-400-hours-content-every-minute/
https://www.cbsnews.com/live/

[64] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing and OLAP
Technology. SIGMOD Rec., 26(1):65–74, 1997.

[65] Chun-Fu Richard Chen, Gwo Giun Chris Lee, Yinglong Xia, W Sabrina Lin, Toyotaro
Suzumura, and Ching-Yung Lin. Efficient multi-training framework of image deep
learning on gpu cluster. In 2015 IEEE International Symposium on Multimedia (ISM),
pages 489–494. IEEE, 2015.

[66] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks
with variance reduction. In ICML, volume 80 of Proceedings of Machine Learning
Research, pages 941–949. PMLR, 2018.

[67] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional
networks via importance sampling. In ICLR (Poster). OpenReview.net, 2018.

[68] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In ICML, volume 119 of Proceedings of Machine Learning
Research, pages 1725–1735. PMLR, 2020.

[69] X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data.
In ICCV, pages 1409–1416, 2013.

[70] Yu Cheng, Chengjie Qin, and Florin Rusu. GLADE: big data analytics made easy. In
SIGMOD Conference, pages 697–700. ACM, 2012.

[71] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim Kraska,
and David Karger. ARDA: Automatic Relational Data Augmentation for Machine Learn-
ing. Proc. VLDB Endow., 13(9):1373–1387, 2020.

[72] European Commission. GDPR, Accessed 30-September-2023. https://ec.europa.eu/info/
law/law-topic/data-protection/eu-data-protection-rules en.

[73] CriteoLabs. Kaggle Contest Dataset Is Now Available for Academic Use!, Accessed
30-September-2023. https://ailab.criteo.com/category/dataset.

[74] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge J. Belongie. Large scale fine-
grained categorization and domain-specific transfer learning. CVPR, pages 4109–4118,
2018.

[75] databricks. Deep Learning Pipelines for Apache Spark, Accessed 30-September-2023.
https://github.com/databricks/spark-deep-learning.

[76] Databricks. Introducing Apache Spark 2.4, Accessed 30-September-2023. https:
//databricks.com/blog/2018/11/08/introducing-apache-spark-2-4.html.

[77] Databricks. Resource-efficient Deep Learning Model Selection on Apache Spark, Ac-
cessed 30-September-2023. https://bit.ly/3esN3JT.

196

https://ec.europa.eu/info/law/law-topic/data-protection/eu-data-protection-rules_en
https://ec.europa.eu/info/law/law-topic/data-protection/eu-data-protection-rules_en
https://ailab.criteo.com/category/dataset
https://github.com/databricks/spark-deep-learning
https://databricks.com/blog/2018/11/08/introducing-apache-spark-2-4.html
https://databricks.com/blog/2018/11/08/introducing-apache-spark-2-4.html
https://bit.ly/3esN3JT

[78] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
Large-scale Hierarchical Image Database. In CVPR, pages 248–255. IEEE, 2009.

[79] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan, Tilmann Rabl, and
Volker Markl. Optimizing Machine Learning Workloads in Collaborative Environments.
In SIGMOD Conference, pages 1701–1716. ACM, 2020.

[80] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. Tigergraph: A native MPP graph
database. CoRR, abs/1901.08248, 2019.

[81] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In NAACL-HLT (1), pages
4171–4186. Association for Computational Linguistics, 2019.

[82] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

[83] Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. AIDA - Abstraction for
Advanced In-Database Analytics. Proc. VLDB Endow., 11(11):1400–1413, 2018.

[84] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold
Reinwald. Compressed Linear Algebra for Large-Scale Machine Learning. Proc. VLDB
Endow., 9(12):960–971, 2016.

[85] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer Vision,
88(2):303–338, June 2010.

[86] Facebook. Introducing FBLearner Flow: Facebook’s AI backbone,
Accessed 30-September-2023. https://engineering.fb.com/core-data/
introducing-fblearner-flow-facebook-s-ai-backbone/.

[87] Arash Fard, Anh Le, George Larionov, Waqas Dhillon, and Chuck Bear. Vertica-ML:
Distributed Machine Learning in Vertica Database. In SIGMOD Conference, pages
755–768. ACM, 2020.

[88] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian approach to unsupervised one-shot
learning of object categories. In ICCV, 2003.

[89] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. In IEEE
TPAMI, 2006.

197

https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/

[90] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. Towards a Unified
Architecture for In-RDBMS Analytics. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages 325—-336.
Association for Computing Machinery, 2012.

[91] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. Towards a Unified
Architecture for in-RDBMS Analytics. In SIGMOD Conference, pages 325–336. ACM,
2012.

[92] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu. Kùzu graph
database management system. In CIDR, 2023.

[93] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. CoRR, abs/1903.02428, 2019.

[94] Tibor Fiala. An Algorithm for the Open-shop Problem. Mathematics of Operations
Research, 8(1):100–109, 1983.

[95] F. Fleuret and G. Blanchard. Pattern recognition from one example by chopping. In NIPS,
2005.

[96] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov.
Devise: A deep visual-semantic embedding model. In NIPS, 2013.

[97] Y. Fu and L. Sigal. Semi-supervised vocabulary-informed learning. In CVPR, 2016.

[98] Swapnil Gandhi and Anand Padmanabha Iyer. P3: distributed deep graph learning at scale.
In OSDI, pages 551–568. USENIX Association, 2021.

[99] Zekai J. Gao, Niketan Pansare, and Christopher M. Jermaine. Declarative Parameteri-
zations of User-Defined Functions for Large-Scale Machine Learning and Optimization.
IEEE Trans. Knowl. Data Eng., 31(11):2079–2092, 2019.

[100] J. V. Gautam, H. B. Prajapati, V. K. Dabhi, and S. Chaudhary. A survey on job scheduling
algorithms in big data processing. In 2015 IEEE International Conference on Electrical,
Computer and Communication Technologies (ICECCT), pages 1–11, March 2015.

[101] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, page 1263–1272. JMLR.org,
2017.

[102] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, volume 70 of Proceedings of
Machine Learning Research, pages 1263–1272. PMLR, 2017.

[103] Giraph. Apache Giraph, Accessed 30-September-2023. https://giraph.apache.org/.

198

https://giraph.apache.org/

[104] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D Sculley. Google vizier: A Service for Black-box Optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1487–1495. ACM, 2017.

[105] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In OSDI, pages
17–30. USENIX Association, 2012.

[106] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin,
and Ion Stoica. Graphx: Graph processing in a distributed dataflow framework. In OSDI,
pages 599–613. USENIX Association, 2014.

[107] Teofilo Gonzalez and Sartaj Sahni. Open Shop Scheduling to Minimize Finish Time.
JACM, 1976.

[108] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. In MIT press,
2016.

[109] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. In MIT press
[108].

[110] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon, Junjie
Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias: A GPU Cluster Manager for
Distributed Deep Learning. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 485–500, 2019.

[111] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. DeepFM:
A Factorization-Machine based Neural Network for CTR Prediction. In IJCAI, pages
1725–1731. ijcai.org, 2017.

[112] Gurobi. Gurobi Optimization, Accessed 30-September-2023. https://www.gurobi.com.

[113] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In NIPS, pages 1024–1034, 2017.

[114] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy. Mcdnn:
An approximation-based execution framework for deep stream processing under resource
constraints. In MobiSys, pages 123–136, 2016.

[115] Sona Hasani, Saravanan Thirumuruganathan, Abolfazl Asudeh, Nick Koudas, and Gautam
Das. Efficient Construction of Approximate Ad-Hoc ML models Through Materialization
and Reuse. Proc. VLDB Endow., 11(11):1468–1481, 2018.

[116] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2980–2988, Oct 2017.

199

https://www.gurobi.com

[117] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CVPR, pages 770–778, 2016.

[118] Ruining He and Julian J. McAuley. Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering. In Jacqueline Bourdeau, Jim
Hendler, Roger Nkambou, Ian Horrocks, and Ben Y. Zhao, editors, Proceedings of the
25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April
11 - 15, 2016, pages 507–517. ACM, 2016.

[119] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and
Arun Kumar. The MADlib Analytics Library: Or MAD Skills, the SQL. PVLDB,
5(12):1700–1711, 2012.

[120] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and
Arun Kumar. The MADlib Analytics Library or MAD Skills, the SQL. Proc. VLDB
Endow., 5(12):1700–1711, 2012.

[121] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-constrained project
scheduling: A survey of recent developments. Computers & Operations Research, 25(4),
1998.

[122] Loc Hoang, Xuhao Chen, Hochan Lee, Roshan Dathathri, Gurbinder Gill, and Keshav
Pingali. Efficient distribution for deep learning on large graphs. In MLSys GNNSys
Workshop. mlsys.org, 2021.

[123] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodı́k, Shivaram Venkataraman, Paramvir
Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. Focus: Querying large
video datasets with low latency and low cost. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018., pages 269–286, 2018.

[124] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. In NeurIPS, 2020.

[125] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian
Weinberger. Multi-scale dense networks for resource efficient image classification. In
International Conference on Learning Representations, 2018.

[126] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces
in the wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[127] Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng Li,
Yuying Guo, and James Cheng. FlexPS: Flexible Parallelism Control in Parameter Server
Architecture. Proc. VLDB Endow., 11(5):566–579, 2018.

200

[128] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up
graph neural networks via graph coarsening. In KDD, pages 675–684. ACM, 2021.

[129] hyperopt. Scaling out search with Apache Spark, Accessed 30-September-2023. http:
//hyperopt.github.io/hyperopt/scaleout/spark/.

[130] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Don-
ahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha
Fernando, and Koray Kavukcuoglu. Population Based Training of Neural Networks. arXiv
preprint arXiv:1711.09846, 2017.

[131] Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn: Deep
learning on spatio-temporal graphs. In CVPR, pages 5308–5317. IEEE Computer Society,
2016.

[132] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jermaine, and
Zekai J. Gao. Declarative recursive computation on an RDBMS: or, why you should use a
database for distributed machine learning. SIGMOD Rec., 49(1):43–50, 2020.

[133] Matthias Jasny, Tobias Ziegler, Tim Kraska, Uwe Röhm, and Carsten Binnig. DB4ML -
An In-Memory Database Kernel with Machine Learning Support. In SIGMOD Conference,
pages 159–173. ACM, 2020.

[134] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak
geometric consistency for large scale image search. In Proceedings of the 10th European
Conference on Computer Vision: Part I, ECCV ’08, pages 304–317, Berlin, Heidelberg,
2008. Springer-Verlag.

[135] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the
accuracy, scalability, and performance of graph neural networks with roc. In Inderjit S.
Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze, editors, Proceedings of Machine
Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org,
2020.

[136] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data and Model Parallelism for Deep
Neural Networks. In SYSML 2019, 2019.

[137] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. Heterogeneity-aware distributed parameter
servers. In Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD ’17, page 463–478, 2017.

[138] Jiawei Jiang, Pin Xiao, Lele Yu, Xiaosen Li, Jiefeng Cheng, Xupeng Miao, Zhipeng
Zhang, and Bin Cui. Psgraph: How tencent trains extremely large-scale graphs with
spark? In ICDE, pages 1549–1557. IEEE, 2020.

[139] Yushi Jing, David Liu, Dmitry Kislyuk, Andrew Zhai, Jiajing Xu, Jeff Donahue, and Sarah
Tavel. Visual search at pinterest. In Proceedings of the 21th ACM SIGKDD International

201

http://hyperopt.github.io/hyperopt/scaleout/spark/
http://hyperopt.github.io/hyperopt/scaleout/spark/

Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1889–1898, New
York, NY, USA, 2015. ACM.

[140] Kaggle. State of Data Science and Machine Learning 2019, Accessed 30-September-2023.
https://www.kaggle.com/kaggle-survey-2019.

[141] O. Kalipsiz. Multimedia databases. In IEEE Conference on Information Visualization. An
International Conference on Computer Visualization and Graphics, 2000.

[142] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. Noscope: optimizing neural
network queries over video at scale. In VLDB, volume 10, pages 1586–1597, 2017.

[143] Daniel Kang, Peter Bailis, and Matei A. Zaharia. Blazeit: Fast exploratory video queries
using neural networks. CoRR, abs/1805.01046, 2018.

[144] Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, Rathijit Sen, Kwanghyun Park,
Ivan Popivanov, Doris Xin, Supun Nakandala, Subru Krishnan, Markus Weimer, Yuan Yu,
Raghu Ramakrishnan, and Carlo Curino. Extending Relational Query Processing with
ML Inference. In CIDR. www.cidrdb.org, 2020.

[145] Andrej Karpathy. Software 2.0. https://medium.com/@karpathy/
software-2-0-a64152b37c35/, 2017. [Online; accessed 30-September-2023].

[146] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian
Schleich. In-Database Learning with Sparse Tensors. In PODS, pages 325–340. ACM,
2018.

[147] Mijung Kim and K. Selçuk Candan. Efficient Static and Dynamic In-Database Tensor
Decompositions on Chunk-Based Array Stores. In CIKM, pages 969–978. ACM, 2014.

[148] Tae-Young Kim and Sung-Bae Cho. Predicting residential energy consumption using
cnn-lstm neural networks. Energy, 182:72 – 81, 2019.

[149] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 2014.

[150] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. In ICLR (Poster). OpenReview.net, 2017.

[151] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast
bayesian optimization of machine learning hyperparameters on large datasets. In Proceed-
ings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS
2017), volume 54 of Proceedings of Machine Learning Research, pages 528–536. PMLR,
April 2017.

[152] Seongyun Ko and Wook-Shin Han. Turbograph++: A scalable and fast graph analytics
system. In SIGMOD Conference, pages 395–410. ACM, 2018.

202

https://www.kaggle.com/kaggle-survey-2019
https://medium.com/@karpathy/software-2-0-a64152b37c35/
https://medium.com/@karpathy/software-2-0-a64152b37c35/

[153] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo Mai, Paolo Costa,
and Peter Pietzuch. Crossbow: Scaling Deep Learning with Small Batch Sizes on Multi-
GPU Servers. Proc. VLDB Endow., 12(11):1399–1412, 2019.

[154] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. BoostClean:
Automated Error Detection and Repair for Machine Learning. CoRR, abs/1711.01299,
2017.

[155] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken Goldberg.
ActiveClean: Interactive Data Cleaning For Statistical Modeling. Proc. VLDB Endow.,
9(12):948–959, 2016.

[156] Kubeflow. Kubeflow, Accessed 30-September-2023. https://www.kubeflow.org/.

[157] Arun Kumar. ML/AI Systems and Applications: Is the SIGMOD/VLDB community
losing relevance?, Accessed 30-September-2023. https://wp.sigmod.org/?p=2454.

[158] Arun Kumar, Matthias Boehm, and Jun Yang. Data Management in Machine Learning:
Challenges, Techniques, and Systems. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 1717–1722. Association for
Computing Machinery, 2017.

[159] Arun Kumar, Matthias Boehm, and Jun Yang. Data Management in Machine Learning:
Challenges, Techniques, and Systems. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova,
Jun Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 1717–1722. ACM, 2017.

[160] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel. Model Selection
Management Systems: the Next Frontier of Advanced Analytics. SIGMOD Record, 2016.

[161] Arun Kumar, Supun Nakandala, Yuhao Zhang, Side Li, Advitya Gemawat, and Kabir
Nagrecha. Cerebro: A Layered Data Platform for Scalable Deep Learning. In CIDR.
www.cidrdb.org, 2021.

[162] Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Sebastian Breß, Tilmann Rabl,
and Volker Markl. An Intermediate Representation for Optimizing Machine Learning
Pipelines. Proc. VLDB Endow., 12(11):1553–1567, 2019.

[163] Cornell Lab. Cornell Lab FeederWatch Cam at Sapsucker Woods. http://cams.
allaboutbirds.org/channel/40/Cornell Lab FeederWatch Cam/, 2019. [Online; accessed
30-September-2023].

[164] Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen, Sean R. Spillane, Jayadevan
Vijayan, Jeong-Hyon Hwang, and Wook-Shin Han. The g* graph database: efficiently
managing large distributed dynamic graphs. Distributed Parallel Databases, 33(4):479–
514, 2015.

203

https://www.kubeflow.org/
https://wp.sigmod.org/?p=2454
http://cams.allaboutbirds.org/channel/40/Cornell_Lab_FeederWatch_Cam/
http://cams.allaboutbirds.org/channel/40/Cornell_Lab_FeederWatch_Cam/

[165] B. M. Lake and R. Salakhutdinov. One-shot learning by inverting a compositional causal
process. In NIPS, 2013.

[166] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes
by between-class attribute transfer. In CVPR, 2009.

[167] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot
visual object categorization. In IEEE TPAMI, pages 453–465, 2013.

[168] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning, volume 521. Nature
Publishing Group, 2015.

[169] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply supervised nets. In AISTATS,
2015.

[170] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit Bose,
and Alex Peysakhovich. Pytorch-biggraph: A large scale graph embedding system. In
MLSys. mlsys.org, 2019.

[171] Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, and
Jignesh M. Patel. Tuple-oriented Compression for Large-scale Mini-batch Stochastic
Gradient Descent. In SIGMOD Conference, pages 1517–1534. ACM, 2019.

[172] Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural
networks with 1000 layers. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 6437–6449.
PMLR, 2021.

[173] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional neural network cascade for
face detection. In CVPR, pages 5325–5334, 2015.

[174] Kun Li, Daisy Zhe Wang, Alin Dobra, and Christopher Dudley. UDA-GIST: An In-
database Framework to Unify Data-Parallel and State-Parallel Analytics. Proc. VLDB
Endow., 8(5):557–568, 2015.

[175] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Ben-
jamin Recht, and Ameet Talwalkar. Massively parallel hyperparameter tuning. arXiv
preprint arXiv:1810.05934, 2018.

[176] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. J. Mach.
Learn. Res., 18:185:1–185:52, 2017.

[177] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In OSDI, 2014.

204

[178] Side Li and Arun Kumar. Towards an optimized GROUP BY abstraction for large-scale
machine learning. Proc. VLDB Endow., 14(11):2327–2340, 2021.

[179] Xiao-Shuang Li, Xiang Liu, Le Lu, Xian-Sheng Hua, Ying Chi, and Kelin Xia. Multiphys-
ical graph neural network (MP-GNN) for COVID-19 drug design. Briefings Bioinform.,
23(4), 2022.

[180] Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. MLog: Towards Declarative
In-Database Machine Learning. Proc. VLDB Endow., 10(12):1933–1936, 2017.

[181] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. xDeepFM: Combining Explicit and Implicit Feature Interactions
for Recommender Systems. In KDD, pages 1754–1763. ACM, 2018.

[182] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel
stochastic gradient descent. arXiv preprint arXiv:1710.06952, 2017.

[183] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion
Stoica. Tune: A Research Platform for Distributed Model Selection and Training. CoRR,
abs/1807.05118, 2018.

[184] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion
Stoica. Tune: A research platform for distributed model selection and training. arXiv
preprint arXiv:1807.05118, 2018.

[185] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, ECCV 2014,
pages 740–755, 2014.

[186] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Pagraph: Scaling
GNN training on large graphs via computation-aware caching. In Rodrigo Fonseca,
Christina Delimitrou, and Beng Chin Ooi, editors, SoCC ’20: ACM Symposium on Cloud
Computing, Virtual Event, USA, October 19-21, 2020, pages 401–415. ACM, 2020.

[187] Husong Liu, Shengliang Lu, Xinyu Chen, and Bingsheng He. G3: when graph neu-
ral networks meet parallel graph processing systems on gpus. Proc. VLDB Endow.,
13(12):2813–2816, 2020.

[188] Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, and Xiaokui Xiao. EIGNN:
efficient infinite-depth graph neural networks. In NeurIPS, pages 18762–18773, 2021.

[189] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. DeepFashion: Powering
Robust Clothes Recognition and Retrieval with Rich Annotations. In CVPR, pages 1096–
1104. IEEE Computer Society, 2016.

[190] Raoni Lourenço, Juliana Freire, and Dennis E. Shasha. Debugging Machine Learning
Pipelines. CoRR, abs/2002.04640, 2020.

205

[191] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Graphlab: A new framework for parallel machine learning. In UAI,
pages 340–349. AUAI Press, 2010.

[192] Jiaheng Lu, Chunbin Lin, Jin Wang, and Chen Li. Synergy of Database Techniques
and Machine Learning Models for String Similarity Search and Join. In CIKM, pages
2975–2976. ACM, 2019.

[193] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. Optasia: A relational platform for
efficient large-scale video analytics. In SoCC, 2016.

[194] Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, and Christo-
pher M. Jermaine. Scalable Linear Algebra on a Relational Database System. In ICDE,
pages 523–534. IEEE Computer Society, 2017.

[195] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei
Dai. Neugraph: Parallel deep neural network computation on large graphs. In USENIX
Annual Technical Conference, pages 443–458. USENIX Association, 2019.

[196] MADlib. Apache MADlib: Big Data Machine Learning in SQL, Accessed 30-September-
2023. https://madlib.apache.org/.

[197] MADLib. User Documentation for Apache MADlib, Accessed 30-September-2023.
https://bit.ly/3epbEyS.

[198] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In SIGMOD Conference, pages 135–146. ACM, 2010.

[199] Huizi Mao, Taeyoung Kong, and William J. Dally. Catdet: Cascaded tracked detector for
efficient object detection from video. CoRR, abs/1810.00434, 2018.

[200] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean Owen, Doris Xin,
Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar.
MLlib: Machine Learning in Apache Spark. J. Mach. Learn. Res., 17:34:1–34:7, 2016.

[201] Xupeng Miao, Wentao Zhang, Yingxia Shao, Bin Cui, Lei Chen, Ce Zhang, and Jiawei
Jiang. Lasagne: A multi-layer graph convolutional network framework via node-aware
deep architecture (extended abstract). In ICDE, pages 1561–1562. IEEE, 2022.

[202] Microsoft. Azure SQL Query Processing Architecture Guide, Ac-
cessed 30-September-2023. https://docs.microsoft.com/en-us/sql/
relational-databases/query-processing-architecture-guide?view=sql-server-ver15#
distributed-query-architecture.

206

https://madlib.apache.org/
https://bit.ly/3epbEyS
https://docs.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver15#distributed-query-architecture
https://docs.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver15#distributed-query-architecture
https://docs.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver15#distributed-query-architecture

[203] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for
model reporting. In FAT, pages 220–229. ACM, 2019.

[204] MLflow. MLflow, Accessed 30-September-2023. https://mlflow.org/.

[205] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. Marius: Learning massive graph embeddings on a single machine. In
OSDI, pages 533–549. USENIX Association, 2021.

[206] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica.
Ray: A Distributed Framework for Emerging AI Applications. In OSDI, 2018.

[207] Kabir Nagrecha and Arun Kumar. Saturn: An Optimized Data System for Multi-Large-
Model Deep Learning Workloads. https://adalabucsd.github.io/papers/TR 2023 Saturn.
pdf, 2023. [Tech report].

[208] Supun Nakandala and Arun Kumar. Vista: Optimized System for Declarative Feature
Transfer from Deep CNNs at Scale. In SIGMOD Conference, pages 1685–1700. ACM,
2020.

[209] Supun Nakandala and Arun Kumar. Nautilus: An optimized system for deep transfer
learning over evolving training datasets. In Zachary G. Ives, Angela Bonifati, and
Amr El Abbadi, editors, SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, pages 506–520. ACM, 2022.

[210] Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou. Incremental and Approx-
imate Inference for Faster Occlusion-Based Deep CNN Explanations. In Proceedings
of the 2019 International Conference on Management of Data, SIGMOD ’19, pages
1589–1606. Association for Computing Machinery, 2019.

[211] Supun Nakandala, Kabir Nagrecha, Arun Kumar, and Yannis Papakonstantinou. Incre-
mental and Approximate Computations for Accelerating Deep CNN Inference. ACM
Trans. Database Syst., 0(ja), 2020.

[212] Supun Nakandala, Yuhao Zhang, and Arun Kumar. Cerebro: Efficient and Reproducible
Model Selection on Deep Learning Systems. In Proceedings of the 3rd International
Workshop on Data Management for End-to-End Machine Learning, pages 1–4, 2019.

[213] Supun Nakandala, Yuhao Zhang, and Arun Kumar. Cerebro: Efficient and Reproducible
Model Selection on Deep Learning Systems. In Proceedings of the 3rd International
Workshop on Data Management for End-to-End Machine Learning, pages 1–4, 2019.

[214] Supun Nakandala, Yuhao Zhang, and Arun Kumar. Cerebro: A Data System for Optimized
Deep Learning Model Selection. Proc. VLDB Endow., 13(11):2159–2173, 2020.

207

https://mlflow.org/
https://adalabucsd.github.io/papers/TR_2023_Saturn.pdf
https://adalabucsd.github.io/papers/TR_2023_Saturn.pdf

[215] Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas, Subru Krishnan, Ashvin
Agrawal, Yinghui Wu, Yiwen Zhu, and Markus Weimer. Vamsa: Automated Provenance
Tracking in Data Science Scripts. In KDD, pages 1542–1551. ACM, 2020.

[216] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur,
Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: generalized
pipeline parallelism for DNN training. In SOSP, pages 1–15. ACM, 2019.

[217] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee, and Matei Zaharia. Accel-
erating deep learning workloads through efficient multi-model execution. In NeurIPS
Workshop on Systems for Machine Learning, December 2018.

[218] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee, and Matei Zaharia. Accel-
erating Deep Learning Workloads through Efficient Multi-Model Execution. In NIPS
Workshop on Systems for Machine Learning, 2018.

[219] Neo4j. Neo4j, Accessed 30-September-2023. https://neo4j.com/.

[220] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. S. Corrado, and
J. Dean. Zero-shot learning by convex combination of semantic embeddings. In ICLR,
2014.

[221] State of California Department of Justice. CCPA, Accessed 30-September-2023. https:
//oag.ca.gov/privacy/ccpa.

[222] Shu Lih Oh, Eddie Y.K. Ng, Ru San Tan, and U. Rajendra Acharya. Automated diagnosis
of arrhythmia using combination of cnn and lstm techniques with variable length heart
beats. Computers in Biology and Medicine, 102:278 – 287, 2018.

[223] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang Chen,
Jinyang Gao, Zhaojing Luo, Anthony K. H. Tung, Yuan Wang, Zhongle Xie, Meihui
Zhang, and Kaiping Zheng. SINGA: A Distributed Deep Learning Platform. In ACM
Multimedia, pages 685–688. ACM, 2015.

[224] Carlos Ordonez. Integrating K-Means Clustering with a Relational DBMS Using SQL.
IEEE Trans. Knowl. Data Eng., 18(2):188–201, 2006.

[225] Allen Ordookhanians, Xin Li, Supun Nakandala, and Arun Kumar. Demonstration
of Krypton: Optimized CNN Inference for Occlusion-Based Deep CNN Explanations.
PVLDB, 12(12):1894–1897, 2019.

[226] Vincent Oria, M. Tamer Özsu, Paul Iglinski, Shu Lin, and Benjamin Bin Yao. DISIMA:
A Distributed and Interoperable Image Database System. In SIGMOD Conference, page
600. ACM, 2000.

[227] Tom O’Malley. Hyperparameter tuning with Keras Tuner, Accessed 30-September-
2023. https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html?
linkId=81371017.

208

https://neo4j.com/
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html?linkId=81371017
https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html?linkId=81371017

[228] Szilard Pafka. Big RAM is Eating Big Data
- Size of Datasets Used for Analytics, Accessed 30-September-2023. https://www.
kdnuggets.com/2015/11/big-ram-big-data-size-datasets.html.

[229] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In Proceedings of
the British Machine Vision, volume 1, pages 41.1–41.12, 2015.

[230] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao.
SANCUS: staleness-aware communication-avoiding full-graph decentralized training in
large-scale graph neural networks. Proc. VLDB Endow., 15(9):1937–1950, 2022.

[231] A. Pentina and C. H. Lampert. A pac-bayesian bound for life-long learning. In ICML,
pages II–991–II–999, 2014.

[232] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large
vocabularies and fast spatial matching. In IEEE Conference on Computer Vision and
Pattern Recognition, 2007.

[233] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. Data
Management Challenges in Production Machine Learning. In SIGMOD Conference,
pages 1723–1726. ACM, 2017.

[234] Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang Chen, Qirong Ho, Garth A. Gibson,
and Eric P. Xing. Litz: Elastic Framework for High-Performance Distributed Machine
Learning. In USENIX Annual Technical Conference, pages 631–644. USENIX Associa-
tion, 2018.

[235] Mark Raasveldt, Pedro Holanda, Hannes Mühleisen, and Stefan Manegold. Deep Integra-
tion of Machine Learning Into Column Stores. In EDBT, pages 473–476. OpenProceed-
ings.org, 2018.

[236] Alec Radford and Karthik Narasimhan. Improving language understanding by generative
pre-training. 2018.

[237] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 8821–8831.
PMLR, 18–24 Jul 2021.

[238] Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen Wu, and
Christopher Ré. Snorkel: Rapid Training Data Creation with Weak Supervision. Proc.
VLDB Endow., 11(3):269–282, 2017.

[239] Alexander J. Ratner, Braden Hancock, and Christopher Ré. The role of massively multi-
task and weak supervision in software 2.0. In CIDR, 2019.

209

https://www.kdnuggets.com/2015/11/big-ram-big-data-size-datasets.html
https://www.kdnuggets.com/2015/11/big-ram-big-data-size-datasets.html

[240] Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré.
Data Programming: Creating Large Training Sets, Quickly. In NIPS, pages 3567–3575,
2016.

[241] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In CVPR, pages 6517–6525,
2017.

[242] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. pages 779–788, 06 2016.

[243] Cédric Renggli, Frances Ann Hubis, Bojan Karlas, Kevin Schawinski, Wentao Wu, and
Ce Zhang. Ease.ml/ci and Ease.ml/meter in Action: Towards Data Management for
Statistical Generalization. Proc. VLDB Endow., 12(12):1962–1965, 2019.

[244] Cédric Renggli, Bojan Karlas, Bolin Ding, Feng Liu, Kevin Schawinski, Wentao Wu, and
Ce Zhang. Continuous Integration of Machine Learning Models with ease.ml/ci: Towards
a Rigorous Yet Practical Treatment. In MLSys. mlsys.org, 2019.

[245] Alexander Renz-Wieland, Rainer Gemulla, Steffen Zeuch, and Volker Markl. Dynamic
Parameter Allocation in Parameter Servers. Proc. VLDB Endow., 13(11):1877–1890,
2020.

[246] Robert Ricci, Eric Eide, and CloudLabTeam. Introducing Cloudlab: Scientific Infras-
tructure for Advancing Cloud Architectures and Applications. ; login:: the magazine of
USENIX & SAGE, 39(6):36–38, 2014.

[247] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: edge-centric graph
processing using streaming partitions. In SOSP, pages 472–488. ACM, 2013.

[248] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IJCV, pages 211–252, 2015.

[249] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar, Renzo
Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuzaima Daud-
jee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard Haslhofer, Tim
Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki Kalavri, Hugo Kapp,
Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plantikow, Mohamed Ragab, Matei
Ripeanu, Semih Salihoglu, Christian Schulz, Petra Selmer, Juan F. Sequeda, Joshua Shi-
navier, Gábor Szárnyas, Riccardo Tommasini, Antonino Tumeo, Alexandru Uta, Ana Lu-
cia Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. The
future is big graphs: a community view on graph processing systems. Commun. ACM,
64(9):62–71, 2021.

[250] Aécio S. R. Santos, Sonia Castelo, Cristian Felix, Jorge Piazentin Ono, Bowen Yu,
Sungsoo Ray Hong, Cláudio T. Silva, Enrico Bertini, and Juliana Freire. Visus: An
Interactive System for Automatic Machine Learning Model Building and Curation. In
HILDA@SIGMOD, pages 6:1–6:7. ACM, 2019.

210

[251] W. J. Scheirer, L. P. Jain, and T. E. Boult. Probability models for open set recognition. In
IEEE TPAMI, 2014.

[252] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult. Towards open set recognition. In
IEEE TPAMI, 2013.

[253] Sebastian Schelter, Felix Bießmann, Tim Januschowski, David Salinas, Stephan Seufert,
and Gyuri Szarvas. On Challenges in Machine Learning Model Management. IEEE Data
Eng. Bull., 41(4):5–15, 2018.

[254] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, pages 815–823, 2015.

[255] Maximilian E. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan Günnemann, and
Thomas Neumann. MLearn: A Declarative Machine Learning Language for Database
Systems. In DEEM@SIGMOD, pages 7:1–7:4. ACM, 2019.

[256] Timos K Sellis. Multiple-query Optimization. TODS, 1988.

[257] Alexander Sergeev and Mike Del Balso. Horovod: Fast and Easy Distributed Deep
Learning in TF. arXiv preprint arXiv:1802.05799, 2018.

[258] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: from
Theory to Algorithms. Cambridge university press, 2014.

[259] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann, Philipp
Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska. Democratizing
Data Science through Interactive Curation of ML Pipelines. In SIGMOD Conference,
pages 1171–1188. ACM, 2019.

[260] Scott Sievert, Tom Augspurger, and Matthew Rocklin. Better and faster hyperparameter
optimization with Dask. 2019.

[261] Sivic and Zisserman. Video google: a text retrieval approach to object matching in
videos. In Proceedings Ninth IEEE International Conference on Computer Vision, pages
1470–1477 vol.2, Oct 2003.

[262] Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin, and Ben-
jamin Recht. KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics. In
ICDE, pages 535–546. IEEE Computer Society, 2017.

[263] Hang Su and Haoyu Chen. Experiments on Parallel Training of Deep Neural Network
using Model Averaging. CoRR, abs/1507.01239, 2015.

[264] Jiao Sun, Mingxuan Yue, Zongyu Lin, Xiaochen Yang, Luciano Nocera, Gabriel Kahn,
and Cyrus Shahabi. Crimeforecaster: Crime prediction by exploiting the geographical
neighborhoods’ spatiotemporal dependencies. In ECML/PKDD (5), volume 12461 of
Lecture Notes in Computer Science, pages 52–67. Springer, 2020.

211

[265] Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade for facial point
detection. In CVPR, pages 3476–3483, 2013.

[266] Mengfan Tang, Siripen Pongpaichet, and Ramesh Jain. Research challenges in developing
multimedia systems for managing emergency situations. In ACM Multimedia, 2016.

[267] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mo-
hammed J. Zaki, and Ashraf Aboulnaga. Arabesque: a system for distributed graph
mining. In SOSP, pages 425–440. ACM, 2015.

[268] Yuhao Zhang and Arun Kumar. Panorama: A data system for unbounded vocabulary
querying over video. Proc. VLDB Endow., 13(4):477–491, 2019.

[269] Anthony Thomas and Arun Kumar. A Comparative Evaluation of Systems for Scalable
Linear Algebra-Based Analytics. PVLDB, 11(13):2168–2182, 2018.

[270] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia,
Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Dory-
lus: Affordable, scalable, and accurate GNN training with distributed CPU servers and
serverless threads. In OSDI, pages 495–514. USENIX Association, 2021.

[271] S. Thrun and T. M. Mitchell. Lifelong robot learning. In Robotics and Autonomous
Systems, volume 15, pages 25 – 46, 1995.

[272] Yuanyuan Tian. The world of graph databases from an industry perspective. CoRR,
abs/2211.13170, 2022.

[273] Kazuyuki Tsuda, Kensaku Yamamoto, Masahito Hirakawa, Minoru Tanaka, and Tadao
Ichikawa. MORE: An Object-Oriented Data Model with a Facility for Changing Object
Structures. IEEE Trans. Knowl. Data Eng., 3(4):444–460, 1991.

[274] Manasi Vartak and Samuel Madden. MODELDB: Opportunities and Challenges in
Managing Machine Learning Models. IEEE Data Eng. Bull., 41(4):16–25, 2018.

[275] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan, Saadiyah
Husnoo, Samuel Madden, and Matei Zaharia. ModelDB: A System for Machine Learning
Model Management. In HILDA@SIGMOD, page 14. ACM, 2016.

[276] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages
5998–6008, 2017.

[277] P. A. Viola and M. J. Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR, volume 1, pages I–I, 2001.

[278] VMware. Model Selection for Deep Neural Networks on Greenplum Database, Accessed
30-September-2023. https://bit.ly/2AaQLc2.

212

https://bit.ly/2AaQLc2

[279] VMware Tanzu/Pivotal. gpfdist, Accessed 30-September-2023. https://gpdb.docs.pivotal.
io/510/utility guide/admin utilities/gpfdist.html.

[280] Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman.
Mariusgnn: Resource-efficient out-of-core training of graph neural networks, 2022.

[281] Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and
Yingyan Lin. Pipegcn: Efficient full-graph training of graph convolutional networks with
pipelined feature communication. In ICLR. OpenReview.net, 2022.

[282] X. Wan, Y. Luo, D. Crankshaw, A. Tumanov, and J. E Gonzalez. Idk cascades: Fast deep
learning by learning not to overthink. In UAI, 2018.

[283] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural Deep Network Embedding. In KDD,
pages 1225–1234. ACM, 2016.

[284] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative Deep Learning for Recom-
mender Systems. In KDD, pages 1235–1244. ACM, 2015.

[285] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing
Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo
Zhao, Jinyang Li, Alexander J. Smola, and Zheng Zhang. Deep graph library: Towards
efficient and scalable deep learning on graphs. CoRR, abs/1909.01315, 2019.

[286] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & Cross Network for Ad
Click Predictions. In ADKDD@KDD, pages 12:1–12:7. ACM, 2017.

[287] Wei Wang, Gang Chen, Tien Tuan Anh Dinh, Jinyang Gao, Beng Chin Ooi, Kian-Lee
Tan, and Sheng Wang. SINGA: Putting Deep Learning in the Hands of Multimedia Users.
In ACM Multimedia, pages 25–34. ACM, 2015.

[288] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck Khim Ng,
Beng Chin Ooi, Jie Shao, and Moaz Reyad. Rafiki: Machine Learning as an Analytics
Service System. Proc. VLDB Endow., 12(2):128–140, 2018.

[289] Wei Wang, Xiaoyan Yang, Beng Chin Ooi, Dongxiang Zhang, and Yueting Zhuang.
Effective deep learning-based multi-modal retrieval. VLDB J., 25(1):79–101, 2016.

[290] Pete Warden. The Machine Learning Reproducibility Crisis, Accessed 30-September-2023.
https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis.

[291] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez, and Peter Pietzuch.
Ako: Decentralised deep learning with partial gradient exchange. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, SoCC ’16, page 84–97, 2016.

[292] Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised
embedding. In ICML, volume 307 of ACM International Conference Proceeding Series,
pages 1168–1175. ACM, 2008.

213

https://gpdb.docs.pivotal.io/510/utility_guide/admin_utilities/gpfdist.html
https://gpdb.docs.pivotal.io/510/utility_guide/admin_utilities/gpfdist.html
https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis

[293] Gerhard J Woeginger. The Open Shop Scheduling Problem. In STACS, 2018.

[294] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying graph convolutional networks. In ICML, volume 97 of Proceed-
ings of Machine Learning Research, pages 6861–6871. PMLR, 2019.

[295] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in
recommender systems: A survey. ACM Comput. Surv., 55(5):97:1–97:37, 2023.

[296] Tianxing Wu, Arijit Khan, Melvin Yong, Guilin Qi, and Meng Wang. Efficiently embed-
ding dynamic knowledge graphs. Knowl. Based Syst., 250:109124, 2022.

[297] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S.
Yu. A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks
Learn. Syst., 32(1):4–24, 2021.

[298] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun
Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, Fan Yang,
and Lidong Zhou. Gandiva: Introspective Cluster Scheduling for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pages
595–610, 2018.

[299] Huaze Xie, Da Li, Yuanyuan Wang, and Yukiko Kawai. Visualization method for the
spreading curve of COVID-19 in universities using GNN. In BigComp, pages 121–128.
IEEE, 2022.

[300] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya G.
Parameswaran. Helix: Holistic Optimization for Accelerating Iterative Machine Learning.
Proc. VLDB Endow., 12(4):446–460, 2018.

[301] Jingbo Xu, Zhanning Bai, Wenfei Fan, Longbin Lai, Xue Li, Zhao Li, Zhengping Qian,
Lei Wang, Yanyan Wang, Wenyuan Yu, and Jingren Zhou. Graphscope: A one-stop large
graph processing system. Proc. VLDB Endow., 14(12):2703–2706, 2021.

[302] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In ICLR. OpenReview.net, 2019.

[303] Fan Yang, Ajinkya Kale, Yury Bubnov, Leon Stein, Qiaosong Wang, Hadi Kiapour, and
Robinson Piramuthu. Visual search at ebay. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17, pages
2101–2110, New York, NY, USA, 2017. ACM.

[304] L. Yang, P. Luo, C. C. Loy, and X. Tang. A large-scale car dataset for fine-grained
categorization and verification. In CVPR, pages 3973–3981, 2015.

[305] L. Yang, P. Luo, C. C. Loy, and X. Tang. A large-scale car dataset for fine-grained
categorization and verification(tech report). Technical Report CNS-TR-2011-001, The
Chinese University of Hong Kong, 2015.

214

[306] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and
Jure Leskovec. Graph convolutional neural networks for web-scale recommender systems.
In KDD, pages 974–983. ACM, 2018.

[307] Atsuo Yoshitaka and Tadao Ichikawa. A Survey on Content-Based Retrieval for Multime-
dia Databases. IEEE Trans. Knowl. Data Eng., 11(1):81–93, 1999.

[308] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and Chris
Jermaine. Tensor Relational Algebra for Machine Learning System Design. CoRR,
abs/2009.00524, 2020.

[309] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. Lakehouse: A New
Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics. In
CIDR. www.cidrdb.org, 2021.

[310] Ce Zhang, Jaeho Shin, Christopher Ré, Michael J. Cafarella, and Feng Niu. Extracting
Databases from Dark Data with DeepDive. In SIGMOD Conference, pages 847–859.
ACM, 2016.

[311] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose, Paramvir Bahl,
and Michael J. Freedman. Live video analytics at scale with approximation and delay-
tolerance. In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 377–392, Boston, MA, 2017. USENIX Association.

[312] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. Slaq: Quality-
driven scheduling for distributed machine learning. In Proceedings of the 2017 Symposium
on Cloud Computing, SoCC ’17, page 390–404, 2017.

[313] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint Face Detection and Alignment Using
Multitask Cascaded Convolutional Networks. IEEE Signal Processing Letters, 23:1499–
1503, October 2016.

[314] Quanshi Zhang and Song-Chun Zhu. Visual Interpretability for Deep Learning: A Survey.
Frontiers Inf. Technol. Electron. Eng., 19(1):27–39, 2018.

[315] Wentao Zhang, Yu Shen, Yang Li, Lei Chen, Zhi Yang, and Bin Cui. ALG: fast and
accurate active learning framework for graph convolutional networks. In SIGMOD
Conference, pages 2366–2374. ACM, 2021.

[316] Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren, and Rong
Jin. Visual search at alibaba. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, pages 993–1001,
New York, NY, USA, 2018. ACM.

[317] Yuhao Zhang and Arun Kumar. Lotan: Bridging the Gap between GNNs
and Scalable Graph Analytics Engines. https://adalabucsd.github.io/papers/TR 2023
Lotan.pdf, 2023. [Tech report].

215

https://adalabucsd.github.io/papers/TR_2023_Lotan.pdf
https://adalabucsd.github.io/papers/TR_2023_Lotan.pdf

[318] Yuhao Zhang and Arun Kumar. Lotan: Bridging the gap between gnns and scalable graph
analytics engines. Proc. VLDB Endow., 16(11):2728–2741, aug 2023.

[319] Yuhao Zhang, Frank Mcquillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna, Orhan
Kislal, Domino Valdano, and Arun Kumar. Distributed deep learning on data systems: A
comparative analysis of approaches. Proc. VLDB Endow., 14(10):1769–1782, 2021.

[320] Zhipeng Zhang, Bin Cui, Yingxia Shao, Lele Yu, Jiawei Jiang, and Xupeng Miao. PS2:
Parameter Server on Spark. In SIGMOD Conference, pages 376–388. ACM, 2019.

[321] Zhipeng Zhang, Jiawei Jiang, Wentao Wu, Ce Zhang, Lele Yu, and Bin Cui. MLlib*: Fast
Training of GLMs Using Spark MLlib. In ICDE, pages 1778–1789. IEEE, 2019.

[322] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian
Tang. Learning on large-scale text-attributed graphs via variational inference. In The
Eleventh International Conference on Learning Representations, 2023.

[323] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan,
Zheng Zhang, and George Karypis. Distdgl: Distributed graph neural network training
for billion-scale graphs. In 10th IEEE/ACM Workshop on Irregular Applications: Archi-
tectures and Algorithms, IA3 2020, Atlanta, GA, USA, November 11, 2020, pages 36–44.
IEEE, 2020.

[324] Zhigao Zheng, Hwa-Young Jeong, Tao Huang, and Jiangbo Shu. Kde based outlier
detection on distributed data streams in multimedia network. Multimedia Tools and
Applications, 76:18027–18045, 2016.

[325] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National Science
Review, 5(1):44–53, 08 2017.

[326] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. Aligraph: A comprehensive graph neural network platform. Proc. VLDB
Endow., 12(12):2094–2105, 2019.

[327] Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li. Parallelized
Stochastic Gradient Descent. In NIPS, pages 2595–2603. Curran Associates, Inc., 2010.

[328] Y. Zou, X. Jin, Y. Li, Z. Guo, E. Wang, and Bin Xiao. Mariana: Tencent deep learning
platform and its applications. 7:1772–1777, 01 2014.

216

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation and Goals
	Technical Contributions
	Cerebro: Multi-query Optimization for High-throughput DL Model Selection
	Cerebro on Data Systems: Bridging the Gap between Data Systems and DL Workloads
	Lotan: Bridging the Gap between Graph Data Systems and Graph Neural Network Workloads
	Panorama: Multimedia DB-style Retrieval with DL Inference

	Research Impact

	Background
	Deep Learning
	Model Training: Mini-batch Stochastic Gradient Descent
	Model Selection
	Model Inference
	DL on Database-resident Data

	Cerebro: Multi-query Optimization for High-throughput DL Model Selection at Scale
	Introduction
	Prior Art for Distributed Deep Learning Training
	Model Hopper Parallelism
	Basic Idea of MOP
	Communication Cost Analysis

	System Overview
	User-facing API
	System Architecture
	System Implementation Details

	Cerebro Scheduler
	Formal Problem Statement as MILP
	Approximate Algorithm-based Scheduler
	Randomized Algorithm-based Scheduler
	Comparing Different Scheduling Methods
	Replica-Aware Scheduling
	Fault Tolerance and Elasticity
	Extension: Horovod Hybrid

	Experimental Evaluation
	End-to-End Results
	Drill-down Experiments
	Experiments with AutoML Procedures

	Discussion and Limitations
	Conclusion

	Cerebro on Data Systems: Bridging the Gap Between Data Systems and DL Workloads
	Introduction
	Lessons from In-RDBMS ML
	Toward In-Data System DL
	Focus of this Chapter

	Constraints and Challenges in Bringing DL to DBMSs
	The Fitness of Prior Art for In-DBMS DL
	Overview of Cerebro on Data Systems
	User-Defined Aggregate Functions (UDAF)
	Concurrent Targeted Queries (CTQ)
	Direct Access (DA)
	Cerebro-Spark

	Comparative Analyses of Approaches
	Runtime Efficiency
	Ease of Governance
	Implementation Difficulty
	Portability

	Empirical Comparisons and Analyses
	End-to-end Performance Study
	Drill-down Experiments

	Conclusions

	Lotan: Bridging the Gap Between Graph Data Systems and Graph Neural Network Workloads.
	Introduction
	Background
	Graph Neural Networks
	Distributed Graph Processing
	GNN Training Systems

	GNN APIs and Programming Model
	GNN Interface
	Lotan's Internal Programming Model
	Global Operator Graph and Execution

	System Architecture
	External Engines
	Planner
	Micro-batch Processing and Messenger

	System Optimizations
	GNN-centric Graph Partitioning and Reverse Graph Back-propgation
	GNN Model Batching

	Analysis of Cost Models
	Experiments and Evaluation
	End-to-end Performance Study
	Drill-down Experiments

	Conclusion and Discussion

	Panorama: Multimedia DB-style Retrieval with DL Inference
	Introduction
	Setup and Background
	Visual Querying Tasks
	Background: Multi-task Deep CNNs
	Background: Embeddings

	System Architecture and API
	Components and Techniques
	Deeply Cascaded Multi-task Model
	Training with Deep Supervision
	Automated Training Data Creation
	Configuration of Short-Circuiting
	Query Cache
	Online Phase Inference Process

	Experiments
	Experimental Setup
	End-to-end Accuracy and Throughput
	Drill-down Analysis
	Query Cache and Scalability Test
	Conclusion

	Related Work
	Related Work for Cerebro
	Related Work for Cerebro on Data Systems
	Related Work for Lotan
	Related Work for Panorama

	Conclusion and Future Work
	Future Work Related to Cerebro and Cerebro on Data Systems
	Future Work Related to Lotan
	Future Work Related to Panorama

	Cerebro
	Cerebro API Usage Example
	CNN Compute Costs
	Straggler Issue in Celery
	Extension: Horovod Hybrid

	Cerebro on Data Systems
	Scenarios that Could Affect Scheduler Performance
	Proofs to Propositions
	Effect of Model Size on UDAF and CTQ
	Simulated Extreme Scenarios of Async. MOP vs Sync. MOP on Heterogeneous Workloads
	Hyperopt Experiment Resource Utilizations
	End-to-end Tests with PyTorch Lightning

	Lotan
	Appendix
	Cost Models
	Messenger
	Supplementray Experiment Results

	Panorama
	Stem1
	YOLOv2 Loss
	Responsible AI: First Step

	Bibliography

