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Abstract 

MULTILINGUAL STUDENTS’ ARGUMENTS IN EARLY ALGEBRA: 

WRITING, REFINING, AND REVISING THROUGH CONFERENCING 

Salvador Huitzilopochtli 

 
 This qualitative study sought to understand middle school students’ 

developing mathematical arguments in a linguistically and culturally supportive 

classroom that featured mathematical writing and oral conferencing. Writing tasks 

and conferencing focused on developing the core algebraic practice of justifying by 

emphasizing audience and revision.  

 Inequitable learning opportunities in mathematics education continue to 

precipitate academic failure and under-achievement among underrepresented and 

minoritized (URM) students. Classrooms that make use of mathematical writing and 

discussions and focus on student reasoning can enhance learning opportunities for 

URM students (Moschkovich, 2013). This study examined how the arguments of 

middle school students changed in a classroom where mathematical writing and 

conferences, conducted during remote instruction caused by the global COVID-19 

pandemic, provided opportunities for reflection and potential revision. The study was 

guided by the following questions: 

1.  When asked to do mathematical writing and supported with conferencing 

in a remote context, what kinds of arguments did students make? 
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2.  How did the mathematical arguments of individuals change over the course 

of a unit of instruction on generating, selecting, and justifying claims? 

3.  In what ways did students revise their mathematical arguments during 

conferencing? 

 Examination of student work revealed the ways that their efforts to justify 

changed. Upon examination of the Convince Forms, I found that students expanded 

arguments from describing procedures to making arguments and using examples in 

mathematically sound ways, and from making no claims to selecting claims and even 

generating claims of their own. After examination of the mathematical conferences, I 

found that students expanded their efforts to justify, employing additional proof 

schemes (Healy & Hoyles, 1998), and revised conjecture-testing procedures (i.e., 

exemplifying) and meanings for formal words. 

 The findings highlight how students who are multilingual, low-achieving, or 

designated as special education engage in mathematical argument with support. 

Moreover, this study illustrates how mathematical argument can be conceptualized as 

a constellation of approaches that include refining how different parts of an argument 

can be used in dialectic with the others, i.e., how the use of examples, the further 

generalization of claims, and further exploration of how to justify can support each 

other. 
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 1 
 

Chapter 1: Statement of Problem 

 
 Despite decades of reforms, inequitable learning opportunities in mathematics 

education continue to precipitate academic failure and under-achievement among 

underrepresented and minoritized (URM) students. This is largely due to the limited 

access URM students have to the study of rigorous or advanced mathematics and 

deficit views of URM students that undergird and presumably warrant the need for 

limiting such access. Exclusion from mathematics has a long history in professional 

mathematics and the research community (Inniss, Lewis, Mitrea, Okoudjou, Salerno, 

Su, & Thurston, 2021), as well as in education (González, 2017; NCSM & TODOS, 

2019). Limiting access to mathematics can have negative impacts on the lives of 

individuals as they subsequently have limited access to more lucrative work in the 

STEM fields, but it also has negative impacts on the communities they represent as 

community needs go unaddressed in favor of projects that serve United States 

economic and military domination. Moreover, individuals are denied the possibility 

of studying mathematics as a way to live fuller lives (Su, 2020) and communities are 

denied the innovation that URM students of mathematics might offer (McGee, 2020a 

& 2020b). 

 The issue of access manifests at different scales and along different criteria. 

‘Access’ refers to the availability of resources to students, for example, quality 

mathematics teachers, rigorous curriculum, and a classroom environment that honors 

and invites participation (Gutiérrez, 2009). Due to issues such as disinvestment, 
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tracking, and re-segregation, URM students have less access to high quality 

mathematics instruction (Haas Institute, 2017; NCSM & TODOS, 2019). Re-

segregation and the persistence of tracking undermine educational opportunity and 

achievement (Haas Institute, 2017) and despite long-standing calls to de-track 

mathematics education (National Council of Teachers of Mathematics, 2018), 

tracking remains a persistent practice of structural racism and impedes access to 

robust teaching and curricula for URM students (Haas Institute, 2017; Oakes, Rogers 

& Lipton, 2006). Multilingual students also suffer the effects of tracking, but often for 

different reasons than one might expect. Current systems for identifying and 

classifying multilingual students do not take the heterogeneity of this group of 

students into account (NASEM, 2018). In most cases, students’ prior mathematics 

knowledge is not assessed and placement into mathematics courses is based on 

English proficiency (NASEM, 2018). Since many of the English support courses are 

tracked together with support for mathematics, multilingual students are often 

relegated to lower tracks of mathematics without regard to their actual mathematics 

proficiency.  

 Algebra courses, above all, continue to function as gatekeepers that regulate 

access to higher mathematical and educational opportunities (Stein, Kaufman, 

Sherman, & Hillen, 2011). Along racial lines, this exclusion has been documented 

among Black students (Morton & Riegle-Crumb, 2019) and Mexican American 

students (Donato & Hanson, 2012; González, 2017). Even when URM students can 

get into an algebra course, they are less likely to have access to a rigorous course that 
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examines advanced topics or has a highly qualified teacher (Morton & Riegle-Crumb, 

2020).  

 Deficit views of students undergird rationales for the separation of those 

students whose educability is perceived as suspect. Deficit views of students focus 

narrowly on what students cannot do, rather than what they can do (Valencia, 2010). 

In doing so, these views of students can obscure the social, structural, and 

institutional ways that both access and resources have been attenuated or withheld 

from URM students. Moreover, the study of mathematics is fraught with stereotypes 

about intelligence and has become a unique battle ground for asserting and contesting 

deficit frames of students (McGee & Martin, 2011).  

 Deficit views of students encompass perceived failings that reside in 

individuals (vis-à-vis race and gender) or the communities and cultures they represent 

(including culturally specific values or linguistic practices). Some of the forms that 

deficit framings of students have taken include genetic arguments about girls’ 

mathematics abilities (Boaler & Sengupta-Irving, 2006; Fennema, 1974; Leder, 

2019), intelligence arguments about Latinx and Black students (González, 2017; 

Martin, 2009; McGee & Martin, 2011), and arguments that the language of a student 

(or their community) lacks the required sophistication to engage in the study of 

mathematics (Hudicourt-Barnes, 2003). Addressing deficit views that are encoded 

into policy or present in the beliefs of educators is crucial to increase access to 

mathematics education for URM students.  
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  This qualitative study sought to understand students’ developing 

mathematical arguments in a linguistically and culturally supportive classroom that 

featured mathematical writing and conferencing to learn the foundations to 

mathematical proof and proving by developing the practice of justifying. The study 

adhered to recommendations from research in mathematics educational equity and 

mathematical writing to support students’ efforts to develop claims and justify them 

as they learn about mathematical argument. Moreover, the study responded to deficit 

framings of students by incorporating a research design for a strengths-based 

approach to teaching and learning that assumes students bring a wealth of cognitive, 

cultural, and linguistic resources from home and community (Wang, Lang, Bunch, 

Basch, McHugh, Huitzilopochtli & Callanan, 2021; Yosso, 2005). 

 I assumed that students bring cognitive, linguistic, and cultural strengths to the 

classroom. The mathematical brilliance of students was taken as “axiomatic” 

(Gholson, Bullock, & Alexander, 2012). Rather than engage in debates about the 

educability of URM students, I assumed that students’ mathematical brilliance could 

be taken as fact. I further assumed that, given the appropriate conditions, multilingual 

students could achieve on par with their monolingual peers (Barwell, Moschkovich, 

& Setati Phakeng, 2018; Goodrich, Thayer, & Leiva, 2021; NASEM, 2018). I also 

assumed that language proficiency was not prerequisite to but an outcome of effective 

content instruction (NASEM, 2018; Walqui & Bunch, 2019).  
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Dissertation overview 

 The study sought to understand students’ developing mathematical arguments 

in a middle school, early algebra classroom that featured mathematical writing and 

oral conferencing. This study connected three areas of research. First, a body of 

research that shows how an early algebra approach that emphasizes reasoning, 

justifying, representing, and generalizing can help prepare students for success in 

algebra and the study of more advanced mathematics. Justifying is a core algebraic 

practice and prepares students for the larger mathematical process standard of proof 

and proving, (Leinwand, Brahier, & Huinker, 2014). Second, research in 

mathematical writing has shown that writing supports struggling students’ 

mathematical understanding (Baxter, Woodward, & Olson, 2005), metacognition 

(Pugalee, 2004), and conceptual understanding (Countryman, 1992; Pugalee, 2005). 

Third, research in mathematics educational equity has shown that focusing on 

students’ reasoning as they engage mathematical practices and leveraging students’ 

cultural and linguistic strengths can cultivate the kind of learning environment where 

all students can thrive. This study connected these areas of research by choosing a 

setting where the cultivation of such a learning environment is possible and writing 

practices that emphasize audience and revision could be used to support students as 

they engage the core algebraic practice of justifying. 

 This study used a sociocultural view of mathematics learning and writing. I 

assumed that mathematics learning and writing activities are discursive and framed 

by knowledge, practices, and discourse, and that meaning is both situated and 
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negotiated (Moschkovich, 2015). In this framework, language functions as a tool that 

mediates learning, organizing thinking and giving structure to meaning (Vygotsky, 

1978).  

 I conducted the study at “Esperanza Elementary School” for a variety of 

reasons. First, Esperanza features a bilingual (Spanish-English) curriculum and 

purports to have strengths-based, positive views of multilingual students. Second, 

Esperanza primarily serves multilingual students (96% designated as Latinx), many 

of whom qualified for free or reduced lunch. These students are typically viewed as 

“not ready” to engage rigorous mathematics classes that emphasize discussion and 

writing, so the setting was ideal for this study. 

 The study focused on enacting lessons on mathematical writing and 

mathematical argument, and then conducting mathematical conferences with a sample 

of participants to examine how they revised their work. The lessons were adapted 

from existing curricular sources: Core Connections 3 (Dietiker, Baldinger, Kassarjian, 

& Shreve, 2013), published by CPM Educational Program and the Mathematics 

Assessment Project’s Evaluating Statements: Consecutive Sums lesson, published by 

the Mathematics Assessment Resource Service (MARS, 2015). In addition, I 

supplemented the lessons with tasks from Knuth, Choppin, & Bieda’s (2009) article 

Middle school students’ production of mathematical justifications. These tasks 

focused on number property and took the form of “number tricks”.  

The study was guided by the following questions: 
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1.  When asked to do mathematical writing and supported with conferencing 

in a remote context, what kinds of arguments do students make? 

2.  How did the mathematical arguments of individuals change over the course 

of a unit of instruction on generating, selecting, and justifying claims? 

3.  In what ways did students revise their mathematical arguments during 

conferencing? 

 In the chapters that follow, I elaborate a conceptual framework (Chapter 2) 

and design for the study (Chapter 3), present findings (Chapters 4 and 5), and discuss 

conclusions and implications (Chapter 6). In Chapter 2, I elaborate the conceptual 

framework and review three areas of research that inform the study: early algebra, 

equity in mathematics education, and mathematical writing. In Chapter 3, I describe 

the methodology, data, analysis, and other relevant study materials. In Chapter 4, 

“Burgeoning arguments: Shifts in generality and the use of examples”, I share 

findings relevant to the first research question. In that chapter, I summarize the kinds 

of responses students generated for different task types. I also describe how students 

expanded from writing descriptions to generating claims, how they expanded on the 

ways they used examples, and how many students went from writing no claims to 

generating claims in Lessons 1 and 2 and selecting and justifying them in Lesson 3. In 

Chapter 5, “Conferencing as a place for oral revision”, I present findings relevant to 

the second research question. I show how students revised arguments, procedures to 

test conjectures, and use of formal terms during the conferences. In Chapter 6, I 
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summarize conclusions and describe some implications for theory and teaching 

practice.   
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Chapter 2: Conceptual Framework and Review of Literature 

 This study engages three bodies of literature: early algebra, equity in 

mathematics education, and mathematical writing. I summarize findings from each of 

these bodies of literature to frame this study and provide backing for some of the 

methodological and analytic choices made during the course of the study.  

 These three fields are related in ways that are mutually supportive. The early 

algebra approach began over concerns related to the “algebra problem” (Kaput, 

2008), which refers to the historical approach of mathematics education that requires 

most students to master “shopkeeper arithmetic” and reserves the study of algebra for 

the “elite” (Kaput, 2008). The algebra problem has two aspects: 1) the entrenchment 

of an arithmetic-then-algebra curricular approach that overly emphasizes computation 

in the early grades and 2) the inequitable distribution of access to advanced 

mathematics, which disproportionately leads to failure and dropout among students 

from underrepresented and minoritized1 (URM) communities.  

 Research on mathematics educational equity is relevant to each of these 

aspects. First, equity in mathematics education addresses access to rigorous curricula 

as a central concern (Gutiérrez, 2009 & 2012). Secondly, overemphasis on procedures 

does not support deep student learning (Hiebert & Grouws, 2007) but for students 

from URM communities, this is often the only kind of instruction and curricula to 

which they have access (Leinwand, Brahier, & Huinker, 2014); especially, 

 
1 Following McGee (2020b), I use the term “underrepresented and minoritized” (URM) to describe 
communities and their members that have historically been minoritized or marginalized through the 
exercise of social, political, or economic power. In mathematics education, this includes Black, 
Indigenous, Latinx, female, gender non-conforming, and cognitively diverse students.  
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multilingual students whose teachers frequently hold deficit-oriented beliefs 

(Moschkovich, 2007; Faltis & Valdés, 2016). While I more fully describe research on 

equity in mathematics education in a later section, I note the importance of creating 

equitable learning environments by enacting pedagogical approaches that include 

teaching for conceptual understanding, using language (both oral and written) to 

support mathematical reasoning, and embracing students’ full linguistic repertoires as 

resources rather than obstacles (Moschkovich, 2013a; NASEM, 2018; TODOS & 

NCSM, 2018). 

 Research on mathematical writing is well positioned to provide pedagogical 

recommendations and practices that support deeper mathematical understandings and 

align with the goals of equity in mathematics classrooms. Mathematical writing is 

assumed to support metacognition as students organize, reflect, and revise 

mathematical understandings (Pugalee, 2004 & 2005). As such, mathematical writing 

can facilitate the construction of meaning through the use of language, which 

supports conceptual understanding and aligns with the goals and practices of 

equitable instruction. The mutually supportive relationship between the early algebra 

approach, research on mathematical equity, and the use of mathematical writing are 

illustrated in Figure 1, below. 

Figure 2.1  
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Three Areas of Research as Mutually Implicative and Supportive. 

 

 In the first section of the chapter, I define ‘language’ and briefly describe its 

role in mathematics education. This description is important as language can be 

conceptualized in a variety of ways, each with a concomitant set of theoretical 

assumptions (Solano-Flores, 2010). I focus on sociocultural views of language and 

describe what is meant by mathematical language (Halliday, 1978; O’Halloran, 2015; 

Pimm, 1987; Schleppegrell, 2007).  

 In the second section, I describe a framework for equity (Gutiérrez, 2009 & 

2012). Then, I summarize current research and describe some major issues, such as 

deficit views of students and how they can be used to pathologize URM students of 

mathematics. I focus on reasoning and justifying as practices that promote equity and 

understanding of mathematical concepts. I also focus on the use of language and 

writing to support the attainment of educational equity in mathematics classrooms, 

especially with regard to the mathematical practice of justifying. 

Equity in 
Mathematics 

Education

Mathematical 
WritingEarly Algebra
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 In the third section, I define and describe early algebra and early algebraic 

thinking as engaging four core practices: generalizing, representing, justifying, and 

reasoning (Blanton et al., 2011; Kaput, 2008). In particular, I focus on reasoning and 

justifying. I also discuss research in justification and proof (Ferrini-Mundy & Martin, 

2000, Leinwand, Brahier, & Huinker, 2014). This section describes the terrain for the 

content of the study and the instructional approaches enacted. 

 In the fourth section, I summarize research on mathematical writing. I 

describe major perspectives on research on mathematical writing and then focus on 

four purposes (Casa et al., 2016) for mathematical writing. I conclude this section by 

describing a variety of ways to support students’ mathematical writing, including the 

use and consideration of students’ linguistic resources, the rhetorical situation, 

conferencing, and revision. 

A Note on the Role of Language 

 Language is a concept central to this study. In general, a researcher’s view of 

language influences the research that they conduct explicitly and implicitly (Solano-

Flores, 2010). As such, it is important to define ‘language’ and describe the ways that 

it has been conceptualized, particularly within mathematics education research. 

Below, I review some ideas from mathematics education literature and then describe 

how I conceptualize language in this study. 

 In their review article on language and communication in mathematics 

education, Morgan and colleagues (2014) discuss a definition of language that 

includes several aspects: first, language as words, verbal and non-verbal modes, or 
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mathematical symbol systems; second, national languages (e.g., English, Spanish, 

Vietnamese, etc.); and third, phraseology, vocabulary, and syntax of particular 

groups—i.e., registers (Halliday, 1978). Register refers to language correlated with 

“occasions of use” (Ferguson, 1994). In mathematics, the unique registers are 

comprised of vocabulary, syntax, intonation, etc. that might vary from other uses of 

language (Schleppegrell, 2007; Sfard, 2007), as well as multi-modal forms of 

expression such as symbols and visuals (O’Halloran, 2015), and even their unique 

positioning when recorded on paper (Pimm, 1987). Each modality has the potential to 

enhance mathematical communication in unique ways (O’Halloran, 2015). Barwell 

and colleagues (2018) define mathematical language as distinct from language writ 

large. The term ‘language’ is described as including everyday language, generally, 

while the term mathematical language is described as including technical words and 

vocabulary, discursive practices necessary for participation in mathematical activities 

(including mathematical symbols systems and ways of using them), and lexico-

grammatical features of mathematical texts (Barwell, Moschkovich, & Setati 

Phakeng, 2018).  

 Radford & Barwell (2016) critically reviewed research articles on language in 

mathematics education paying special attention to the role of power and the political 

nature of language. They considered everyday language in contrast to mathematical 

language, as they examined the major themes and theoretical approaches of the 

research reviewed. Two major pedagogical approaches, “transmissive” and “child-

centered” models, focus Radford & Barwell’s (2016) discussion of research on 
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language. An important aspect of this review is the treatment and discussion of 

power. The discussion of power describes the different research articles in the review 

as “react[ing]” to the transmissive teaching model (Radford & Barwell, 2016, p.292). 

Child-centered models are also critiqued as foreclosing on student freedom because 

these pedagogies fail to question some of the more clandestine forces that shape 

schooling and learning, for example, curricula and their “political and economic 

orientation” (Radford & Barwell, 2016, p.305). This discussion is largely beyond the 

scope of my study; however, it is relevant to the use and role of curricula, as well as 

the learning environment. Curricula can position students in ways that affects their 

learning (Herbel-Eisenmann & Wagner, 2007). As such, Radford & Barwell (2016) 

argue for a new critical language in mathematics education research to better 

apprehend the tensions between (forms of) language as political “through and 

through” (p.305). The political nature of these tensions can be traced, in part, back to 

legacies of colonialism, which still exist and affect interactions among teachers, 

students, and curricula (Hsu, 2015 & 2017; Wang, Lang, Bunch, Basch, McHugh, 

Huitzilopochtli & Callanan, 2021). Consequently, mathematics education researchers 

bear responsibility to know their students (Moschkovich, 2013a) and be sensitive to 

linguistic histories and hierarchies (Faltis & Valdés, 2016) so that they can 

contextualize their work as political acts (Aguirre et al, 2017; Gutiérrez, 2013) and 

make informed choices that support the liberatory potential of a good mathematics 

education.  
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 Following previous research, I define language to include everyday language 

(including national languages) and mathematical language (Barwell, Moschkovich, & 

Setati Phakeng, 2018). Aligned with Moschkovich (2015), this study assumes a 

sociocultural view of language where language is viewed as a tool that mediates 

learning (Vygotsky, 1978). Moreover, students’ use of language to make meaning and 

shape knowledge is regarded as essential to reveal students’ reasoning and 

communication. Language is taken to be “socioculturally situated in mathematical 

practices and the classroom setting” such that students can draw on multiple modes 

(e.g., oral, written, or others), multiple representations (such as objects, drawings, 

tables, or symbols), or multiple registers (including everyday language) to make 

meaning and communicate mathematically (Moschkovich, 2015). From this view of 

language, this study seeks to use multiple modes of language (focusing on writing) to 

support students as they develop capacities for mathematical communication (Aguirre 

& Bunch, 2012).  

 I further clarify that the inclusion of everyday language is not conceptualized 

in a binary with mathematical language. Aligned with the theories of Vygotsky, I 

consider everyday language as a valuable tool for sense-making (Vygotsky, 1986). 

Everyday language facilitates student movement into and through academic tasks and 

can serve as a vehicle to clarify and negotiate meaning of concepts (Bunch, 2014; 

Moschkovich, 2002; Nemirovsky, Barros, Noble, Schnepp, & Solomon, 2005). Thus, 

everyday language is an important intellectual resource for all students, but critical 

for multilingual students. It is critical for multilingual students because multilingual 
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students are often viewed in deficit ways (NASEM, 2018) and those views might 

attenuate how freely students can use their everyday language (Wang et al., 2021), 

especially if their everyday language might be viewed as requiring “remedy”. I view 

the use of everyday language as a critical sense-making resource for students and an 

essential part of affirming student identities, rather than a problem to be fixed (Civil, 

2006; Goffney, Gutiérrez, & Boston, 2018). 

Equity and Mathematics Education 

 For many students taking algebra for the first time, typically in the eighth or 

ninth grades, the results are an “unmitigated disaster” (NRC, 1998). Algebra courses 

continue to serve as a “gatekeeper,” fraught with inequity (Martin, 2009; Stein, 

Kaufman, Sherman, & Hillen, 2011; Stephens et al., 2017). Moreover, it has been 

argued that mathematics functions similarly to Whiteness2 (Gutierrez, 2017b) and 

mathematics education represents a “white institutional space” (Battey & Leyva, 

2016; Martin, 2013) such that students from URM communities are positioned as 

outsiders within an “inhospitable culture” (McGee, 2020a, p.634). Indeed, the 

historical and ongoing exclusion of URM students and scholars of mathematics is a 

documented and persistent problem (Inniss, Lewis, Mitrea, Okoudjou, Salerno, Su, & 

Thurston, 2021). Supporting URM students of mathematics involves taking a 

research-based approach and addressing persistent deficit views of students and 

communities that educators might hold. In this section I review an equity framework 

 
2 Mathematics is hypothesized to operate as Whiteness when 1) contributions to mathematics made by 
all cultures are not acknowledged and 2) it is used as a standard by which others are judged (Gutiérrez, 
2017b) 
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for mathematics education (Gutierrez, 2009 & 2012), describe recommendations for 

equitable classroom instruction, describe some of the resources that students bring to 

bear in the classroom (including multilingual students), and describe some of the 

ways deficit-based views of students do harm. 

An Equity Framework 

 Gutierrez (2009) elaborates a framework to study and enact equitable 

practices along two axes: a dominant axis, which considers access and achievement; 

and a critical axis, which considers identity and power. The approach of the dominant 

axis seeks to effectively prepare students for participation in the economy and 

privileges the status quo. In common parlance, the approach helps students “play the 

game” without changing structures or curricula (Gutierrez, 2009 & 2012). It proposes 

to examine why we see the different outcomes vis-à-vis access and achievement. 

Access relates to tangible resources that facilitate participation in mathematics, for 

example “quality teachers, adequate technology and supplies, rigorous curriculum, 

classroom environment that invites participation, reasonable class sizes, tutoring, 

etc.” (Gutierrez, 2009, p.5, emphasis added). Achievement refers to the tangible 

results, including patterns of course taking, standardized test scores, and participation 

in math courses at different educational levels. The approach of the critical axis seeks 

to “change the game” (Gutierrez, 2009) by acknowledging how access and 

achievement are mediated by one’s position vis-à-vis race, class, gender, and 

language (Gutierrez, 2009). Identity relates to how students view the utility of 

mathematics in their lives and the extent to which they have opportunities to draw 
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upon the cultural and linguistic resources they bring to the classroom. Finally, power 

involves how interactional practices and positioning are mediated by the structures 

that are either created within the classroom or imported from without, for example, 

how larger social hierarchies might be enacted in the microcosm of the classroom.  

 TODOS & NCSM (2019) expand from an equity framework to a social justice 

orientation. TODOS & NCSM (2019) distinguish the social justice stance as 

interrogating and challenging the roles power, privilege, and oppression play both in 

and out of the classroom. The social justice stance is expansive because it considers 

actions beyond those of individuals in the teaching/learning environment, but also 

community engagement practices and institutional structures. While the expanded 

considerations are beyond the scope of the study, they certainly influence the 

experiences of teachers and students as school structures and policies mediate access 

to algebra (Stein et al., 2011).  

Equity Recommendations for the Classroom 

 Research in equity in mathematics education emphasizes instruction focused 

on mathematical reasoning and engagement with mathematical practices where 

students’ cultural and linguistic repertoires of practice (Gutiérrez & Rogoff, 2003; 

Moschkovich, 2013a, 2013b) are taken as resources for learning.  

 The National Council of Teachers of Mathematics (NCTM) assert that with 

access to high-quality curricula and instruction (where teachers appreciate students’ 

social and cultural contexts), “Persistent and unacceptable gaps” can disappear 

(Leinwand, Brahier, & Huinker, 2014, p.65). Some of the recommendations regarding 
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curriculum and instruction include a call for teachers to draw on community resources 

to support student identities and promote engagement. Additionally, teachers should 

foster a sense of community and promote mathematical communication in multiple 

modes (such as talk and writing). The third recommendation is to focus on 

mathematical practices, including the use of tasks that allow multiple entry points 

and promote students to reason mathematically, at multiple levels, and devise their 

own strategies. For example, the practice of justifying is a mathematical practice, but 

can also be viewed as an equity practice (Bieda & Staples, 2020). Creating 

opportunities for students to justify their mathematical claims provides access to 

mathematical reasoning and deeper learning while fostering their mathematical 

agency (Bieda & Staples, 2020).  

 In other work, Moschkovich (2013b) used a framework for cultural relevance 

(Brenner, 1998) to describe equitable teaching strategies. Moschkovich defined 

equitable teaching practices as supporting mathematical reasoning, mathematical 

discourse, as well as broadening participation to increase opportunities to learn (i.e., 

improving access). To these ends, Moschkovich recommends honoring and 

leveraging students’ repertoires of practice (Gutiérrez & Rogoff, 2003) by getting to 

know the students and their communities and using that knowledge to support 

instruction. This community knowledge can animate the framework through each of 

its three components: cultural content, social organization, and cognitive resources 

(Moschkovich, 2013b). Knowledge about the cultural and linguistic backgrounds of 

the students (and the communities they represent) can support instruction by, for 
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example, providing familiar contexts for problems, familiar interactional or 

communicational practices, or using everyday language to support understanding of 

mathematical ideas and concepts. 

 Goffney, Gutiérrez, & Boston (2018) also describe teaching practices to 

rehumanize mathematics education for Black, Indigenous, and Latinx students. The 

term ‘rehumanize’ is used for two reasons: first, these practices are meant to counter 

de-humanizing teaching practices that students often encounter in mathematics 

classrooms, and secondly, throughout history, humanizing mathematics practices 

have existed within Black, Latinx, and Indigenous communities. The recommended 

practices would support experiences where students don’t have to “leave their 

cultures and identities at the door” when learning mathematics. Goffney and 

colleagues (2018) suggest the following practices (p.167-168, emphasis added): 

1. Teachers need to have a working knowledge of the cultures and identities of 

the students in their classes.  

2. Teachers need to have a working knowledge of the impact of structural 

barriers and systemic racism for creating common dehumanizing learning 

experiences for Black, Indigenous, and Latinx students.  

3. Rehumanizing teaching practices requires a departure from common teaching 

practices that privilege lecture and direct instruction, focus on diagnostic or 

evaluative approaches for remediation, and employ a color-blind or neutral 

approach where Black, Latinx, and Indigenous students “leave their culture at 

the door,” students are grouped based on their perceived ability, and group 
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membership provides expanded or constrained opportunities to learn and do 

mathematics.  

4. Rehumanizing mathematics includes making connections between the 

mathematics content and students’ experiences and interests.  

5. Rehumanizing mathematics uses a variety of teaching practices, many of 

which focus on co-constructing mathematics knowledge through 

collaborations where authority is shared between the teacher and students, 

broadening types of participation, using multiple strategies for supporting 

students to demonstrate their mathematical competence and smarts in the 

public space of the classroom, and facilitating productive work on tasks and 

projects with multiple entry points and multiple layers that promote deep 

thinking.  

Each of the above recommendations, from NCTM, Moschkovich (2013b), and 

Goffney et al. (2018), emphasizes that teachers and instruction should have 

knowledge of the cognitive, cultural, and linguistic resources that students bring from 

their communities so that they can connect it to mathematical content. Moreover, 

instructional practices should broaden possibilities for participation by moving away 

from traditional teaching methods in favor of placing mathematical authority and 

agency in the hands of students as they engage mathematical practices (for example, 

see Bieda & Staples, 2020). In addition, teachers and instruction should emphasize 

mathematical discourse through culturally sensitive social arrangements and focus on 

mathematical reasoning.  



 22 

 Reasoning supports conceptual understanding and is considered part of 

effective mathematics teaching (Leinwand, Brahier, & Huinker, 2014). In the context 

of equity, teachers should consider students’ linguistic and cultural repertoires of 

practice as resources not obstacles (Gutiérrez, Morales, & Martinez, 2009; 

Moschkovich, 2013b). This includes their everyday, or colloquial, language practices, 

which can communicate mathematical meaning (Moschkovich, 2002; Nemirovsky, 

Barros, Noble, Schnepp, & Solomon, 2005) and serve as raw material with which 

students construct meaning. Engaging students’ repertoires of practice contributes to 

the creation of a Third Space (Gutiérrez, Baquedano-Lopez, & Tejada, 1999) wherein 

students can use their diverse cultural and linguistic resources to support learning; 

therefore, contributing to an equitable learning environment (Ramirez & Celedón-

Pattichis, 2012).  

Strengths and Resources  

 All students arrive in the classroom with a variety of resources available to 

them, however they are not all valued the same (Civil, 2006). Even teacher noticing 

of student strengths can be mediated by culture (Louie, 2018). Equitable teaching 

practices rest on (a) the support of students’ reasoning, conceptual understanding, and 

discourse and (b) the broadening of possibilities for participation (Moschkovich, 

2013a). The problem is that discourse and participation therein are not possible if the 

resources available to students are not valued by the teacher or peers, or do not match 

narrow conceptions of mathematical proficiency (for example, correct use of 

vocabulary). Some of the resources that are available to students exist in the 
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classroom, for example objects, drawings, graphs, or gestures, or are imported from 

outside of the classroom, for example everyday language practices and experiences 

(Moschkovich, 2013a). Students can effectively use everyday language to discuss and 

clarify technical terms (Moschkovich, 2002; Nemirovsky et al., 2005). Nemirovsky 

and colleagues emphasize that in the “tensions and ambiguities” that arise when using 

everyday and technical language, the mathematical register is brought to life for the 

students (Nemirovsky et al., 2005, p.199).  

 It is important to note that the strengths that students bring to the classroom 

can, and should, be assumed (Gholson, Bullock, & Alexander, 2012; Martin, 2019). 

Teachers and researchers, therefore, have a responsibility to notice these strengths 

and support students in making use of them to learn mathematics. In order to do this, 

three recommendations include: notice student strengths, recognize relevant 

mathematical practices, and expand on what counts as mathematics (Huitzilopochtli, 

Foxworthy Gonzalez, Moschkovich, McHugh, & Callanan, 2021). When teachers can 

not recognize the strengths that students bring to the classroom as such, then it 

becomes easy to render those strengths invisible and describe students only in terms 

of what they “don’t know” or “can’t do”.  

Rendering Resources Invisible 

Given the historical and ongoing exclusion of URM students and scholars 

from the field of mathematics (Inniss et al., 2021) the gatekeeping function that 

algebra courses in middle and high school have served come as no surprise and can 

be viewed as an extension of that exclusivity. The gatekeeping function of algebra is 
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fundamentally an issue of access to “rigorous curriculum” and “a classroom 

environment that invites participation” (Gutierrez, 2009; Gutierrez, Morales, & 

Martinez, 2009; Morton & Riegle-Crumb, 2019; Tate & Rousseau, 2002). Equity 

research that is relevant to both gender (Boaler & Sengupta-Irving, 2006 & 2016; 

Fennema, 1974; Leder, 2019) and race (Martin, 2009) locates achievement issues 

among students from URM communities in the learning environment rather than the 

students. That is, students from URM communities are less likely to have access to 

the kind of environments that could support effective teaching and learning 

(Gutierrez, Morales, & Martinez, 2009). Past reform efforts made use of “colorblind” 

approaches; however, mathematics education is itself a racialized experience (Martin, 

2006). For example, Martin (2006) documents how race is “central” when African 

Americans construct meaning from their experiences with mathematics. According to 

one of the interviewees in his study (2006), “Raheem” recalled being placed in 

“regular math class” instead of algebra in the eighth grade despite scoring in the 90th 

percentile in seventh grade. Raheem connected his placement as an “example of the 

fact that Black children, even when you do well, your educational future is not 

planned out properly for you…” (Martin, 2006, p.211). Raheem recalled eighth grade 

as the first year he “hated” math. “Colorblind” approaches to policy obscure the 

historical and structural ways that racism is enacted, thus exacerbating the problem 

(Martin, 2006; Choi, 2008).  

 Deficit and “readiness” arguments have also been used to explain or justify 

why students from URM communities should not have access to algebra early on 
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(Tate & Rousseau, 2002). Deficit views focus narrowly on what students do not have 

or cannot do (Valencia, 2010). The perceived failures of individuals are attributed to 

presumed deficiencies of the individual students or of their families and communities. 

By focusing narrowly on individuals, deficit thinking obscures structural factors. 

Such deficit views negatively impact students’ classroom experiences, course 

placements, and opportunities to learn STEM, and this intellectual, symbolic, and 

epistemological violence can have material consequences on student outcomes 

(Martin, 2019; NASEM, 2018). Martin’s (2009) discussion of race in mathematics 

education discusses the normalization of Whiteness and the deeming of Black, 

Indigenous, and Latinx students as “changeworthy” (Martin, 2009). Martin argues 

that the codification of deficit frames, in both research and policy initiatives 

“necessarily positions researchers, policy makers, and practitioners to assume and 

accept beliefs about inferiority” of particular groups of students (Martin, 2009, 

p.316). Similarly, Boaler & Sengupta-Irving reviewed research on mathematics and 

gender and found that researchers either pathologized aspects of women’s 

engagement with mathematics, i.e., either the women’s attitudes or affect were 

assumed to precipitate inferior achievement or hypothesized that genetic differences 

accounted for perceived deficits in women’s performance in mathematics. Boaler & 

Sengupta-Irving noted that “boys’ achievements, participation and behaviors were 

implicitly positioned as ‘normative’ and the benchmark against which girls were 

understood” (p.11). Unproductive beliefs related to readiness extend to language 

considerations as well. For example, many policies and practices are based on the 
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erroneous belief that language must be mastered before students can engage with 

rigorous content or that language is learned separately from content (Faltis & Valdés, 

2016). The normalization of monolingual speech, maleness, and Whiteness is 

indicative of the ways that mathematics can operate as Whiteness (Gutierrez, 2017a) 

and why mathematics teachers, in particular, are called on to develop political 

knowledge (Gutierrez, 2013, 2017b). Political knowledge and explicit attention to 

equity is important because “equity may not be a natural by-product of reform 

teaching” (Tate & Rousseau, 2002, p. 290).  

Early Algebra and Early Algebraic Thinking 

 In this section, I review definitions for early algebra and early algebraic 

thinking. I describe early algebra in terms of core practices (Stephens, Ellis, Blanton, 

& Brizuela, 2017), and pedagogical approaches (Carraher & Schliemann, 2007). I 

also describe justification in terms of proof and proving, a related topic. 

 Recall that the “algebra problem” refers in part to the high dropout and failure 

rates of students taking algebra for the first time, especially students from URM 

communities (Kaput, 2008). The early algebra approach to algebra education refers 

to efforts that seek to remedy the algebra problem by infusing early mathematics 

education (typically from early elementary through middle school years) with algebra 

related instruction to support success in high school algebra (Carraher, Schliemann, & 

Schwartz, 2008). In the broadest sense, early algebra represents a significant 

departure from traditional algebra instruction. Whereas traditional algebra instruction 

typically involves a year-long course with a strong symbolic orientation (Kieran, 



 27 

2007), early algebra builds on the background contexts of problems, introduces 

formal notation gradually, and interweaves existing topics of early mathematics 

(Carraher, Schliemann, & Schwartz, 2008) in instructional environments that focus 

on the development of early algebraic thinking in elementary and middle grades 

(Stephens et al., 2017). The development of early algebraic thinking is accomplished 

by engaging students in four core practices of algebra: generalizing, representing, 

justifying, and reasoning (Blanton, Levi, Crites, & Dougherty, 2011; Kaput, 2008; 

Stephens et al., 2017).  

 I use Kaput’s (2008) framework for algebraic knowledge and activity, which 

describes algebra in terms of two core aspects and three strands that embody them. 

The first aspect views algebra as stating generalizations with symbols. The second 

aspect of algebra involves reasoning with the generalizations (Kaput, Carraher, & 

Blanton, 2008). These aspects are embodied in three strands that focus on abstracting 

of computations, functions and relations, and the application of algebraic modeling 

languages (Kaput, Carraher, & Blanton, 2008). Aligned with other early algebra 

research, this study shifts the emphasis from “algebra” as list of topics to “algebraic 

thinking” as a set of thinking practices to engage indeterminate quantities in analytic 

ways (Radford, 2011).  

 Blanton and colleagues (2011) describe algebraic thinking as centering on 

four core practices: generalizing, representing, justifying, and reasoning. In this study, 

justifying features centrally. The practice of justifying involves students using 

informal mathematical arguments to “construct mathematical certainty” about 
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generalizations (Stephens et al., 2017). Justifying is shaped by the mathematical 

content. For example, students’ efforts to justify in a geometry class are very different 

when compared to an algebra class.  

 Generalizing refers to the act of creating a symbolic object that represents a 

multiplicity (Kaput, Blanton, & Moreno, 2008) and includes a focus on individual 

students as well as generalization achieved as a “collective act” (Stephens, et al., 

2017). Generalizing is widely recognized as part of algebraic thinking (Stephens, et 

al., 2017). The use of symbols plays a role with representing, the second practice, as 

well. For example, consider the problem below: 

Chair and Leg Problem 

Suppose that you have some chairs, and each chair has 4 legs. How would 

you describe the relationship between the number of chairs and the 

corresponding number of chair legs? (Blanton et al., 2011, p.9) 

The task requires students to consider a general relationship between an “unknown 

but varying number of chairs and the corresponding number of chair legs” (Blanton et 

al., 2011, p.9). The resulting generalization can be represented in several ways, 

including symbolically. In early algebra, symbols and symbolizing are “arguably as 

important” as generalizing (Stephens, et al., 2017). Early algebraic instruction defines 

symbol systems broadly and includes a variety of semiotic systems, for example, 

everyday language, graphs, tables etc. (Carraher & Schliemann, 2007; Kaput, 2008). 

The relationship in the Chair and Leg Problem could be represented as: 

• “The number of chair legs is four times the number of chairs”  
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• l = 4 × c 

• l = 4c 

• or using a table, graph, etc. (Blanton et al., 2011, p.9) 

Representing, justifying, and reasoning are considered practices of algebraic thinking 

“in the service of actions with or on generalizations” (Stephens, et al., 2017, p. 388, 

original italics). That is, absent the generalizations or actions upon them, the other 

core practices are not necessarily algebraic. Consider the analogy that the movements 

of swimmers only qualify as “swimming” if they are propelling themselves through 

water. Tasks presented in this study support student engagement with these core 

practices.  

 Early algebraic instructional practices utilize a multiplicity of symbolic 

systems that are not, necessarily, conventional algebraic notation systems for 

representing and justifying (Brizuela & Ernest, 2008; Cooper & Warren, 2011; 

Russel, Schifter, & Bastable, 2011; Ellis, 2011; and Blanton & Kaput, 2011). Some 

researchers have capitalized on students’ use of representation-based proofs in 2nd – 

6th grade classrooms so that students can demonstrate algebraic thinking (Russel, 

Schifter, & Bastable, 2011; Schifter, 2009). It is important for younger students to 

develop use of drawings, models, or story contexts to prove mathematical assertions 

(Russel, Schifter, & Bastable, 2011). Representation-based proofs should demonstrate 

generalizing and how the claim follows the premise “in the structure of the 

representation” (Russel, Schifter, & Bastable, 2011, p.57). For example, when finding 

the product of 18 x 45, a student provided figures (see Figure 2.3) when asked to 
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prove why the strategy of halving and doubling works. ‘Halving and doubling’ refers 

to a procedure that can simplify multiplication where one factor is halved and the 

other doubled to compute the product more easily. For example, 18 X 45 could take 

more time to compute than 9 X 90 (which has been halved/ doubled).  

Figure 2.2  

Student’s Representation-based Proof of Halving and Doubling (Schifter, 2009). 

 

In the discussion of students’ use of notation with meaning, the authors stated that 

“Once students have considerable experience stating generalizations in words and 

justifying these general claims by using representations of the operations, they have 

images and explanations to which they can connect algebraic symbols” (Russel, 

Schifter, & Bastable, 2011, p.64). What is important here is that the representations 

(concrete and visual) and the words (spoken and written) help students bridge to the 

symbolic world of algebra. The authors go on to state that teachers should introduce 

notation at a point when “students have already articulated their ideas in words and 
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images” (Russel, Schifter, & Bastable, 2011, p.66, emphasis added). This allows them 

to maintain meaning for the symbols and use resources they bring to the classroom.  

 Reasoning also plays a key role in early algebra. The National Council of 

Teachers of Mathematics (NCTM) described reasoning and proof as a process 

standard, i.e., a way of “acquiring and using content knowledge” (Ferrini-Mundy & 

Martin, 2000, p.29), that involves three activities: 1) making and investigating 

conjectures, 2) constructing and evaluating mathematical arguments and proofs for 

oneself and others, and 3) selecting and using various types of reasoning and methods 

of proof (p.57-58). ‘Proof’ refers to a “formal way of expressing particular kinds of 

reasoning and justification” (Ferrini-Mundy & Martin, 2000, p.56, emphasis added). 

In other work, adaptive reasoning has been defined as the “capacity for logical 

thought, reflection, explanation, and justification” (Leinwand, Brahier, & Huinker, 

2014; NRC, 2001, p.116). NRC (2001) adds that adaptive reasoning involves thinking 

logically about relationships among concepts in a given situation (p.129). This broad 

definition can include informal explanation and justification, formal proof and 

deductive reasoning, even intuitive and inductive reasoning (NRC, 2001, p.129). 

Using informal reasoning to “connect new learning with prior knowledge” is part of 

the foundation for effective mathematics teaching (Leinwand, Brahier, & Huinker, 

2014, p.9) and NCTM recognizes that class discussions support such reasoning, 

especially in the case of younger children (p.58). Reasoning has also been embedded 
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in the Common Core State Standards (CCSS) in two of the Math Practice (MP) 

Standards3:  

• MP2. Reason abstractly and quantitatively. 

• MP3. Construct viable arguments and critique the reasoning of others.  

In early algebra, reasoning has been identified as integral to the study of early 

mathematics (Carraher, Schliemann, & Schwartz, 2008). In typical early algebra 

instructional practice, students are positioned by teachers such that they do not “draw 

conclusions solely through logic and syntactical rules. Instead, they use a mix of 

intuition, beliefs, and presumed facts coupled with principled reasoning and 

argument” (Carraher, Schliemann, & Schwartz, 2008, p.236, emphasis added). This 

study centers the practice of reasoning to support students as they lay foundations to 

do formal proof and proving in algebra and beyond by engaging in mathematical 

argument. 

 Mathematical arguments and proof are difficult for students of mathematics to 

learn (Blanton, Stylianou, & David, 2009; Healy & Hoyles, 2000). Part of the 

difficulty is found in the need for students to learn a new basis of belief (ECEMS, 

2011): 

Mathematical thought concerning proof is different from thought in all other 

domains of knowledge, including the sciences as well as everyday experience; 

the concept of formal proof is completely outside mainstream thinking. 

Teachers of mathematics at all levels (mathematicians, mathematics 

 
3 Available at: http://www.corestandards.org/Math/Practice/ 
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educators, schoolteachers, etc.) thus require students to acquire a new, non-

natural basis of belief when they ask them to prove (Fischbein, 1982). We all 

need to be acutely aware of this situation. (p.51, original emphasis) 

In the construction of a new basis for believing, the use of students’ full linguistic 

repertoires, when reasoning and justifying, is essential to the development of 

necessary understandings.  

 In this study, I use Harel & Sowder’s (1998) notion of proof schemes to frame 

analysis of the arguments. Typically, students make use of three classes of proof 

schemes: external conviction, empirical, and analytical (Harel & Sowder, 1998). 

Absent formal instruction, empirical proof schemes are likely to be the only ones that 

students possess (Harel & Sowder, 1998). External conviction proof schemes include 

ritual, authoritarian, and symbolic arguments. In the ritual external proof scheme, 

students’ doubts are removed by the appearance of a valid proof or doubts are not 

removed because the proof did not appear “proof-y” enough, for example if a proof 

does not make use of symbols. The authoritarian external proof scheme typically 

relies on a teacher or textbook as a source for mathematical assertions. In this proof 

scheme, what is true is considered important, i.e., not why it is true. The symbolic 

external proof scheme involves the manipulation of symbols without considering the 

meaning of such manipulation.  

 An empirical proof scheme is one where conjectures are “validated, 

impugned, or subverted by appeals to physical facts or sensory experiences” (Harel & 

Sowder, 1998, p.252). There are two classes of empirical proof scheme: perceptual 
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and inductive empirical proof schemes. Perceptual empirical arguments rely on 

“rudimentary mental images”. Inductive empirical proof schemes can use calculated 

examples, without any warrants or backing, and are taken as demonstrations of a 

conjecture’s validity or counterexamples to demonstrate invalidity.  

 Analytical proof schemes seek to settle a conjecture in general. Analytic proof 

schemes can be transformational or axiomatic. Transformational proof schemes are 

ones where “justifications are concerned with general aspects of a situation and 

involve reasoning oriented toward settling the conjecture in general” while axiomatic 

proof schemes are reflected in students who are comfortable working with 

mathematics as an organized body of knowledge “so that subsequent results are 

logical consequences of preceding ones” (Harel & Sowder, 1998). 

 While some researchers consider proof schemes in a hierarchical trajectory 

where empirical proof schemes are considered inferior to analytic ones (e.g., see 

Knuth, Choppin, & Bieda, 2009, or Küchemann & Hoyles, 2011), I consider proof 

schemes as a constellation where competencies in each proof scheme can be 

developed independently, as well as in relation to one another. This perspective aligns 

with Harel & Sowder’s (1998) position on proof schemes and the importance of 

setting, context, and content: 

It is important not to regard the taxonomy in a hierarchical, single-niche sense. 

A given person may exhibit various proof schemes during one short time 

span, perhaps reflecting her or his familiarity for, and relative expertise in, the 



 35 

contexts, along with her or his sense of what sort of justification is appropriate 

in the setting of the work. (p.277, emphasis added) 

The proof scheme framework supports a strengths-based approach because I examine 

what students did and said and then I describe the mathematical merit in the context 

of a particular mathematical task. I do not compare this knowledge to what “experts” 

do or in a hierarchical learning trajectory that places student knowledge as inferior. 

As Harel & Sowder (1998) noted: “…it is the individual’s scheme of doubts, truths, 

and convictions, in a given social context, that underlies our characterization of proof 

schemes” (p.244). This is important because social context is acknowledged as 

playing a role in how a student’s “doubts, truths, and convictions” are expressed.  

Mathematical Writing  

 Mathematical writing is central to this study and is defined as “any 

representation (Ferrini-Mundy & Martin, 2000) that students record on paper 

(including prose, symbols, and other visuals) resulting from prompts that press to 

include one’s mathematical reasoning” (Cohen, Miller, Casa, & Firmender, 2015). 

Due to the COVID-19 pandemic, study participants were not able to attend in-person 

schooling. Consequently, I expanded the definition of mathematical writing to include 

other inscriptions, such as visuals and text that students record and generate in digital 

formats (e.g., type-written, or other responses recorded in online forms, “chat,” or 

“whiteboard” features of online meeting platforms). Each of these modalities (prose, 

symbols, and visuals) has potential to contribute unique meaning or nuance to 

mathematical communication (O’Halloran, 2015). Consequently, mathematical 
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writing also includes algebraic symbolic writing, such as “2x + 3 = 15”. This kind of 

symbolic writing is important to include as it uniquely communicates the kind of 

generality that reveals mathematical structure (Grabiner, 2012; Sfard, 1995). For 

example, consider how “A + B = B + C” captures a multiplicity of examples while “4 

+ 7 = 7 + 4” describes a single example of the commutative property of addition.  

 This study integrates different approaches to mathematical writing and seeks 

to support both conceptual understanding of mathematical content, as well as the act 

of writing as a social practice (Cope & Kalantzis, 2009; Lea & Street, 2006). Lampert 

& Cobb (2003) noted that mathematical writing activities and instruction have 

historically been approached from two perspectives: writing to learn and learning to 

write. Writing to learn is hypothesized to support metacognition (Clarke, Waywood, 

& Stephens, 1993; Pugalee, 2004) and serve as a tool to organize, clarify, and revise 

thinking (Gillespie, Graham, Kiuhara, & Hebert, 2014). For example, teachers might 

assign transactive writing, which informs, explains, describes, or persuades a reader 

(Pugalee, 2005) and provides opportunities for students to reflect on understandings 

and processes related to mathematics. Process writing in support of “writing to learn” 

can include writing assignments such as “freewrites”, learning logs, auto-biographies, 

journals, stories, poems, etc. (Countryman, 1992). On the other hand, learning to 

write perspectives consider how vocabulary, syntax, genres, and multi-modal symbol 

systems unique to mathematics require instruction for students to use them to make 

meaning mathematically (Morgan, 1998; O’Halloran, 2015; Schleppegrell, 2007).  
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 Casa and colleagues (2016) elaborated a framework for mathematical writing 

that appears to integrate different approaches and focused on four purposes for 

writing in mathematics: Exploratory, Informative/ Explanatory, Argumentative, and 

Mathematically Creative. This framework reflected aspects from both writing to learn 

and learning to write approaches. For example, exploratory writing was characterized 

as sense-making and includes brainstorming as well as efforts to resolve confusion. 

Informative/ explanatory writing included descriptions, representations (and 

connections between them), and definitions. Argumentative writing involved 

construction and critique of arguments, as well as conjectures and justifications. 

Creative writing documented original ideas, problems, and solutions, demonstrating 

flexibility in thinking and making connections within and outside of mathematics. It 

did not involve the kind of creative writing that is generally not typical in 

mathematics contexts, such as poems or stories.  

 In this study, I introduced pedagogical activities that leveraged the different 

purposes for mathematical writing in ways that support the process of generating a 

mathematical argument. Students had opportunities to use exploratory writing, for 

example, as they completed the ‘Convince Yourself’ writing activity. This mirrors 

what Harel & Sowder (1998) might refer to as the “ascertainment phase of a proof 

scheme” (p.279). Likewise, students used explanatory/informative writing in the 

‘Convince a Friend’ writing activity and argumentative writing in the ‘Convince a 

Skeptic’ writing activity. This mirrors what Harel & Sowder (1998) refer to as the 

“persuasion phase” (p.279). Students also had opportunities to use creative 
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mathematical writing (Casa et al., 2016) as they reflected upon their arguments, made 

connections, and documented original ideas in their journal writing. In order to 

explore the promise of writing to support conceptual understanding, I looked for 

changes in the students’ arguments and writing in terms of process and object views 

of algebra, generalization, use of symbols, and other considerations. For example, in a 

pilot study conducted previously, I found that one group of students reasoned with an 

object view of algebra while another group reasoned with a process view of algebra 

(Moschkovich, Schoenfeld, & Arcavi, 1993).  

Richness of Context 

 A central tenet of early algebra education is to support the development of 

meaning and understanding by grounding tasks in a rich context (Carraher & 

Schliemann, 2007). Richer contextualization of problems also supports multilingual 

students to engage in mathematical writing tasks (Banes, 2019); however, the 

richness of the context can be developed in different ways. One way is to ground 

problems with direct experience with quantities, which could facilitate quantitative 

reasoning (Ellis, 2011). Representing problems in everyday experience adds richness 

that can serve as common ground for multilingual students to engage problems 

(Dominguez, 2011). Dominguez found that multilingual students were “more 

predisposed” to use one language over another, given a different purpose. For 

example, bilingual students were more likely to use Spanish during exploratory or 

joint activity and English for tasks requiring more individual approaches and 

“traditional” schoolwork (Dominguez, 2011, p.324-5). Dominguez (2011) also found 
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that students were “more involved” with others’ ideas in Spanish (p.325). This 

finding corroborates what others have found, albeit in different disciplinary 

contexts—like history (Bunch, 2014). When problem contexts are based in students’ 

everyday experiences and they have opportunities to discuss, argue, and negotiate 

(i.e., explore solutions), then they could have increased opportunities for meaningful 

learning to take place.  

 The richness of a problem context can also come from the features of tasks as 

they are presented. In Banes’ (2019) dissertation, several features facilitated the kind 

of mathematical arguments that were conceptually rich and complete. First, tasks that 

ask students to justify a given claim or qualify a claim and justify are easier for 

students to engage. Examples and details of each type of task will be provided in 

Chapter 3 (Methodology) and discussed in detail in the chapters that discuss findings 

(Chapters 4 and 5). Briefly, these tasks invite students to justify a claim that is either: 

• Given to the student.  

• Selected by the student using a non-neutral qualifier, such as: 

o Agree/ Disagree 

o Always/ Sometimes/ Never True 

• Open. To be generated by the student. 

Banes (2019) suggests a progression of tasks to scaffold students to make claims with 

increasing independence: first, given claim tasks, then selected-claim tasks, and then 

open-claim tasks. These categorizations are presumed to scaffold the process to 

generate a claim by modeling precise claims and providing opportunities to discuss 
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the claim statement. This support is important because students’ capacities for 

justifying are not the same as their capacities for generating claims. Data from a pilot 

study to this dissertation suggest that students’ efforts to generate claims and justify 

them should be treated separately.  

 The second feature of a good task is to include substantial details for the 

rhetorical situation. The rhetorical situation should include a clear audience, purpose, 

and the requirements for a "quality" response (Banes, 2019, p.40). Notably, Banes 

suggests that the purpose and audience can be fictional. If the purpose, audience, etc. 

are clear, then the students "might be more likely to produce a strong mathematical 

argument" (Banes, 2019, p.40). I interpret this to mean that 'realia' is not as important 

to students as ‘being real’, i.e., being transparent with the situational demands and the 

expectations for performance. The third feature is to clearly identify the audience. 

The fourth feature is to include richer contextualization and "teaching" situations with 

many avenues to explain problem situations, which is reminiscent of approaches that 

seek to exploit “entry points” for the study of algebra (Carraher & Schliemann, 2007). 

Banes (2019) suggests that the context should be meaningful to students, similar to 

Dominguez’s (2011) findings, and be situationally complex.  

 Per Banes’ (2019) recommendation and to the extent possible, the cooperating 

teacher and I organized a progression of tasks to scaffold students’ increasing 

independence. The first two weeks of the intervention emphasized tasks that ask 

students to justify a given claim, for example, “Prove the following statement: The 

sum of four consecutive numbers is always even” (my example). The next two weeks 
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broadened the emphasis to include tasks that ask students to qualify a claim and then 

justify, and from that point forward I incorporated tasks that ask students to generate 

a claim and then justify. The richness of the tasks focused on a rhetorical richness. 

Elaboration of the rhetorical situation included a context meaningful to the students 

and clearly defined audience (Banes, 2019; Casa et al., 2015), which is hypothesized 

to support students as they engage writing as a social practice (Cope & Kalantzis, 

2009; Lea & Street, 2006). The “Convince” form was used to suggest oneself, a 

friend, and a skeptic as possible audiences, each with a different set of social and 

rhetorical expectations that might stimulate different kinds of mathematical writing 

and communication.  

Supporting Student Writing 

 In this section I describe the ways that the cooperating teacher and I drew on a 

number of pedagogical principles related to research on mathematical writing. For 

example, the cooperating teacher and I provided opportunities for students to use their 

full linguistic repertoires as resources (Moschkovich, 2013a, 2013b) and provided a 

linguistically sensitive social environment (Ramirez & Celedon-Pattichis, 2012), 

which included using the resources form as a source for potentially familiar 

mathematical contexts. The cooperating teacher and I used an instructional 

framework for “amplifying” curriculum (Walqui, 2019). The framework suggests 

organizing units of instruction and individual lessons with coherent instructional 

goals and considering three “moments” in each lesson: Preparing Learners, 

Interacting with Text (or Concept), and Extending Understanding (Walqui, 2019). 
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The cooperating teacher and I made use of resources (such as the Convince Form) to 

scaffold participation (Walqui & Bunch, 2019). The structure of the scaffold is 

presumed to routinize student participation and “create predictability” when students 

consider audience and engage with argument (Walqui & Bunch, 2019).  

 We provided additional support by providing opportunities for conferencing, 

revision, and writing in math journals. Conferencing is a productive practice to 

support students’ writing (Hillocks, 2006; Newkirk, 1989), but it is especially so for 

multilingual students, who might have difficulty with feedback offered in only one 

mode (Aguirre & Bunch, 2012). Conferencing and revision have been shown to 

enhance student understanding (Swain, 2009) and mathematics education research 

has called for additional opportunities for students from URM communities 

(including multilingual students) to review and revise their arguments (Moschkovich, 

2018; Ramirez & Celedon-Pattichis, 2012). Using mathematical journals serves two 

purposes. First, the use of journals supports metacognition and learning (Bangert-

Drowns, Hurley, & Wilkinson, 2004; Pugalee, 2004) by soliciting explanations and 

other writing about the learning process itself from students. The use of journals is 

specifically recommended to support multilingual learners as an exit task (Aguirre & 

Bunch, 2012) or as part of larger writing to learn strategies (Ortmeier-Hooper, 2013). 

Secondly, the journals provided ethnographic data and student feedback regarding the 

utility of the writing activities. This data was used to inform instructional decisions 

from day-to-day and lesson-to-lesson. 
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Conclusion 

 In this chapter, I described three areas of research, mathematics equity, early 

algebra, and mathematical writing, as mutually supportive. Mathematics educational 

equity is central to the study, but an often-overused term. As such, I would like to 

clarify that I chose the site and teacher with a specific notion of equity in mind. 

Equity must also account for a socially just educational opportunity. Mathematics 

education researchers and practitioners, by moving beyond “diversity-equity-

inclusion” rhetoric, can create possibilities for mathematics education that are not 

circumscribed by economic or political projects, such as American economic or 

military dominance. Asking “What mathematics? For whom? And for what 

purpose?” can help mathematics education to engender socially just possibilities 

(Aguirre, Mayfield-Ingram, & Martin, 2013). In short, how can mathematics 

education practitioners and researchers support the kind of educational practices that 

place mathematics as a tool in the hands of students (and the communities they 

represent) for their own purposes? I selected Esperanza Elementary because it 

embodied many of these ideals. 
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Chapter 3: Methodology 

 The purpose of this qualitative study was to understand students’ developing 

mathematical arguments in a middle school, early algebra classroom that featured 

mathematical writing and oral conferencing. Mathematical writing is a practice that 

rarely occurs in situ (Applebee & Langer, 2011; Mastroianni, 2013; Powell et al., 

2017) and the practice remains ill-defined (Casa et al., 2016). Moreover, the focus on 

language and writing is supported by research on language diversity that suggests that 

the conditions for the success of students from non-dominant communities are “a 

matter of equity, intimately bound up with deep-running social divisions in society” 

(Barwell, Moschkovich, & Setati Phakeng, 2017). Under the right conditions, 

bilingual, multilingual, and second language learners can learn at least as well as their 

monolingual counterparts (Barwell, Moschkovich, & Setati Phakeng, 2017; Goodrich, 

Thayer, & Leiva, 2021). This study followed this recommendation and considered not 

only three semiotic systems of mathematical discourse (i.e., everyday language, 

mathematics symbols systems, and visual displays), but multiple modes (such as oral 

and written text), multiple representations, and different types of written text 

(Barwell, Moschkovich, & Setati Phakeng, 2017). This study examined students’ 

explanations and arguments and described the development of their mathematical 

reasoning when supported by mathematical writing activities. The research questions 

that guided the study include: 

1. When asked to do mathematical writing and supported with conferencing in 

a remote context, what kinds of arguments do students make? 
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2. How did the mathematical arguments of individuals change over the course 

of a unit of instruction on generating, selecting, and justifying claims? 

3. In what ways did students revise their mathematical arguments during 

conferencing? 

 This qualitative study focused on supporting students’ construction and 

refinement of mathematical arguments with mathematical writing practices. The 

writing practices were part of the instructional design and iteratively modified as tools 

to support learning. I assumed a socio-constructivist view of learning, which drew on 

the theories of Vygotsky and Piaget. Students are assumed to play an active role in 

the construction of knowledge and language (alongside other tools) is assumed to 

mediate learning and interactions (Vygotsky, 1978). Moreover, the study considered 

students’ full linguistic and mathematical repertoires of practice as resources for 

meaning making and learning, not obstacles to overcome (Gutierrez & Rogoff, 2003; 

Moschkovich, 2013a). This study focused on the classroom-level and the teaching 

unit (Van den Akker, 2013; as cited in Prediger, Gravemeijer, & Confrey, 2015) and 

theory generation. The aim of the study was to focus on the learning processes 

associated with the use of mathematical writing to support mathematical arguments 

with middle schoolers studying early algebra and, specifically, the practice of 

justifying.  

 I assumed an ethnographic stance, framed by a naturalistic paradigm 

(Moschkovich, 2019; Moschkovich & Brenner, 2000). The ethnographic stance can 

be summarized as embodying three principles: 1) consider multiple points of view, 2) 
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study cognitive activity in context, and 3) connect theory verification and theory 

generation (Moschkovich, 2019; Moschkovich & Brenner, 2000). To consider 

multiple points of view means, for example, considering student learning “in their 

own terms”, and not comparing student knowledge to expert knowledge 

(Moschkovich & Brenner, 2000). Studying the cognitive activity in context means 

discussing setting and context. In accordance with the naturalistic paradigm, which 

frames the ethnographic stance, I refer to the setting as “the physical and social 

environment” and the context as the “relationship between the setting and how 

participants interpret the setting” (Moschkovich, 2019, p.64). Because the “algebra 

problem” reflects inequitable educational practices that have historically limited 

access to rigorous curricula for students from underrepresented or minoritized (URM) 

communities, the ethnographic stance is important to illuminate how the context 

might be unique for the study participants. The mathematics classroom can be 

“inhospitable” to URM students (McGee, 2020a).  

In order to understand aspects of the context, I observed the classroom for a 

unit of instruction, conducted open-ended interviews with students (i.e., student 

conferences), and I used data gathered from the students’ journal writing and “quick 

writes” to ascertain students’ views of the writing activities and inform instructional 

decisions as iterations of the intervention proceeded. I also taught the unit on 

mathematical argument as a “guest teacher”. I taught four lessons over a total of eight 

class sessions. Other data that informed instructional decisions came from research 

team meetings (which included the cooperating teacher and researcher) and other data 
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sources, such as the “Mathematical Resources Inventory” (Appendix A) that students 

completed as part of the study and video data of whole-class interactions.  

Setting and Participants 

 The data were collected at “Esperanza Elementary School”4, a rural charter 

school in Northern California’s Central Valley. I selected the site and teacher based 

on some promising features. First, the site heterogeneously grouped students, i.e., 

without regard to “English language fluency” (personal communication with 

cooperating teacher). This is important because it reflects a move away from 

segregation and sorting practices that are known to erode educational equity. 

Secondly, the cooperating teacher stated a firm belief in the utility and benefits of 

using mathematical discussions and writing. Third, the cooperating teacher (and 

school ethos—as a bilingual school) supported a multilingual approach to instruction 

and embraced the linguistic strengths that students bring to the classroom. Students 

were unabashedly themselves and I hope to render their mathematical brilliance 

visible. 

 Esperanza Elementary is a K-8, dual-immersion school whose mission 

includes five core values: academic achievement, parents as partners, student pride 

and citizenship, being bilingual and biliterate, and celebrating culture (from school 

website, emphasis added). The average teacher at Esperanza has 10 years of 

experience, which reflects the district average. Esperanza’s teaching staff has a higher 

proportion of Latinx teachers when compared to the district. Esperanza’s staff is 

 
4 To protect privacy, all names of people and places are pseudonyms. 
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80.8% Hispanic or Latino and 19.2% White while the district rates are 24.1% and 

71.3%, respectively. In comparison, the state rates for California are 21.1% and 

61.2% when last reported5. The major student populations at Esperanza identify as 

Hispanic or Latino (96.2%) and White (2.9%). At the district level, these 

demographic sub-groups represent 83.2% and 14% of the students, respectively. At 

Esperanza, 80.7% of the students qualify for free or reduced lunch. Since 58.8% of 

the students qualify as ‘English Learners’ and 7% of the students are designated as 

‘Redesignated Fluent English Proficient’, roughly two out of three students could be 

considered “ever ELs”6 (NASEM, 2018). Some of these descriptive data are 

summarized in Table 3.1. In Table 3.1, the first two columns show percentages of 

students and teachers (by ethnicity) for the district and the second two columns show 

percentages of students and teachers (by ethnicity) for Esperanza Elementary School. 

Henceforth, I will refer to these students as “multilingual” to reflect a multilingual 

perspective on learning and eschew the normalization of the monolingual English 

speaker7. Labels, such as “ELL”, “EL”, “LEP”, etc., have been critiqued as 

 
5 http://www.ed-data.org/state/CA 
6 “Ever EL” is a term that can be used to enhance statistical analyses and claims by aggregating any 
students that have ever had the designation of “English Learner” (NASEM, 2018). 
7 In California, these designations are made based on the results of a Home Language Survey (HLS) 
(CDE, 2020) and subsequent examination of English fluency that are legally required by the education 
code. For example, upon registration for school, if a parent or guardian answers ‘No’ to all survey 
questions, then the student can be designated as English-Only. If a parent or guardian answers ‘Yes’ to 
any survey question, then the child is tested for English fluency. If they pass, then the student can be 
designated ‘Initial Fluent English Proficient’ (IFEP). If the child does not pass, then they can be 
designated as an ‘English Learner’ (EL), ‘English Language Learner’ (ELL), or ‘Limited English 
Proficient’ (LEP). The child will have annual opportunities for assessment of English fluency. If the 
child passes in a later year, and meets any additional criteria the district might have, then they can be 
designated as ‘Redesignated Fluent English Proficient’ (RFEP). HLS Questions include: 1) “Which 
language did your child learn when they first began to talk?”, 2)” Which language does your child 
most frequently speak at home?”, 3) “Which language do you (the parents and guardians [sic] most 
frequently use when speaking with your child?”, and 4) “Which language is most often spoken by 



 49 

“inherently deficit oriented” (Barwell, Moschkovich, & Setati Phakeng, 2017; de 

Araujo, Roberts, Willey & Zahner, 2018; Faltis & Valdés, 2016).  

Table 3.1  

Summary of District and Site Demographics as Percents 

 

 I chose this site and teacher because I wanted to study mathematics learning in 

a place that was well-positioned to have the kind of exposure and experience with 

multilingual students and communities that could foster positive views of 

multilingualism. In the United States, 20% of the population over five years of age 

lives in a home where a language other than English is spoken (Crouch, 2012; as cited 

in Faltis & Valdés, 2016). In contrast, less than 5% of teacher workforce grew up in 

such homes (Faltis & Valdés, 2016). Moreover, many teachers report feeling 

unprepared to teach multilingual students and hold deficit views of these students 

 
adults in the home? (parents, guardians, grandparents, or any other adults)” (California Department of 
Education, 2020).  
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(Faltis & Valdés, 2016) so I chose a site and teacher that might hold strengths-based 

views of students and have positive views of and experiences with multilingualism. 

“Ms. García” is a bilingual educator with 15 years of teaching experience who is 

empathetic to students’ struggles with language. She believes that students have a 

right to their “home language” and should not be required to “assimilate” in ways that 

strip them of heritage languages (interview, February 2020). Moreover, Ms. García 

used positive behavioral practices (i.e., not punitive) and participated in a three-year 

professional development project for discussion-based, reform curriculum 

implementation. After observing several teachers who expressed interest in 

participating in the study, I chose to work with this teacher because of her strong 

alignment with the precepts engendered in this study. 

 My role in the study was to work closely with the classroom teacher and then 

enact the unit on mathematical argument. I supported daily instruction by providing 

feedback on some of the writing tasks that were already present in the curriculum and 

making recommendations for additional writing tasks that might support student 

learning. During the unit of instruction on mathematical argument, I enacted the 

lessons. Additional information on the lessons is available in a subsequent section 

(“Overview of Lessons”).  

 My language background and positioning are also relevant to the study. I was 

a student who was designated as ‘English Only’ during my K-12 schooling. I attended 

public schools in California for all but three years of my life. I spent third, fourth, and 

fifth grades in a parochial school. Although my parents are both Mexican and arrived 
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at the United States as adolescents, they did not teach their children (my siblings and 

I) Spanish to ensure that we would not be placed in lower academic tracks. They were 

mistrustful of the education system’s potential treatment of their children as Spanish 

speakers. Consequently, they told us tell school officials that none of us spoke 

Spanish; thus, requiring us to lie to school staff. Eventually, I took Spanish courses in 

high school and gained additional fluency (beyond reading and writing) throughout 

my twenties. Learning to speak Spanish was important for me because of my 

involvement in community projects. In particular, my work with immigrant 

communities, in educational settings, and in my personal life as a Danzante Azteca8, 

where Spanish serves as a lingua franca. For me, it has been important to preserve 

this heritage language for political, educational, and personal reasons. Reflecting on 

the process of reclaiming a heritage language, I have gained insights into the role that 

home languages can play in a variety of educational settings and the difficulties 

associated with learning a second language. As a multilingual student, teacher, and 

researcher, I have first-hand experience that informs my work. 

 The study included 44 student participants (17 female and 27 male students) 

and one collaborating teacher. The students represented all the district’s categories for 

mathematics proficiency and “language fluency”: “English Learner” (N=19), 

“Reclassified Fluent English Proficient” or “Initially Fluent English Proficient” 

(N=20), and students designated as “English Only” (N=5). All students participated in 

 
8 Aztec Dance (Danza Azteca) is a folkloric dance tradition from Mexico that serves as cultural 
maintenance and epistemology. 
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writing activities and whole-class discussions, but to the extent possible, I 

strategically sampled focal students to represent a cross-section of the classroom 

population by mathematical achievement (low, middle, or high, based on district 

norming exams).  

 I consulted with the classroom teacher to find students that represented 

various levels of mathematics achievement. Focal students were chosen for two 

reasons: first, previous studies on argumentation have typically involved only high-

achieving students (for example, see Healy & Hoyles, 2000) and, secondly, focal 

students participated in conferences with the researcher. The conferences will be 

described further in the section on analysis. The different student categories are 

summarized in Table 3.2, below.  

Table 3.2  

Distribution of Participants by “Language Fluency” Category. Columns Represent 

Mathematics Achievement Categories Based on District-wide Exam.  

 

Hi (N = 3) Med (N = 16) Lo (N = 25)

IFEP/RFEP 2 10 8

English Only 1 3 1

English Learner 3 16
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The focal students were selected based on several criteria. First, I selected 

students representing high, medium, and low mathematics achievement (as 

determined by the teacher). Much of the research on proof and justifying has involved 

high-achieving students (for example, see Healy & Hoyles, 2000), and I was 

interested in examining how students at all levels constructed arguments. In terms of 

mathematics proficiency, focal students included one designated “high”, three 

designated “medium”, and three designated “low”. This sample is roughly 

representative of the larger group of 44 participants (see Table 3.2). I assume that 

high-needs students are capable learners and doers of mathematics and might have 

unique learning characteristics and strengths that might otherwise go unnoticed.   

Second, I selected students representing a spectrum of language fluency 

designations. Focal students included three designated “English Only” and three 

students “Redesignated” as fluent in English. Only one focal student was designated 

as an English Learner. These numbers did not reflect the larger population of 

participants, where 16 (of 44) were “English Learners”. Likewise, students designated 

as “English Only” were overrepresented in the focal students, in comparison to the 

whole set of participants. In terms of gender, three of the focal students were female 

and four were male, per district demographic data.  

Third, I prioritized students who completed most Convince Forms and 

represented what other students did. So, focal students were selected from those 

students who submitted a Convince Form for most lessons (i.e., at least two out of 

three). Of the 14 students who completed at least two Convince Forms, seven were 
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selected as focal students to represent the greatest diversity in terms of gender, 

mathematics proficiency, and language fluency, per district demographic data. Then, I 

selected students who submitted the best example of similar types of responses when 

compared to their peers. For example, three students had difficulty with the term 

“consecutive” and reasoned empirically (Yolanda, Marta, and Maggie), but I chose 

Yolanda as a focal student because of her clear responses during the conference. 

Characteristics of the focal students are summarized in Table 3.4. 

Table 3.4 

Focal Students with Demographic Information  

Focal 
Student Gender Ethnicity 

Math 
Proficiency9 

Language 
Designation Conference 

Antonio M Hispanic10 Med English Only 1, 2 
Ricardo M Hispanic Med English Only 1 

Nathan M White Med English Only N/A 
Renato M Hispanic Low English Learner N/A 
Yolanda F Hispanic Low Redesignated 2 

Amaya F Hispanic Low Redesignated 2 
Nina F Hispanic High Redesignated 1 

 

A Note on the Impact of COVID-19 

 When the COVID-19 pandemic precipitated a shelter-in-place order in 

California (March 19, 2020), data collection at the school site was already in 

progress. I had completed the observation of a full unit of instruction, administered a 

pre-test for algebraic thinking, had just started the writing activities, and was on track 

 
9 As described by the teacher. 
10 The school district uses “Hispanic”. I will use Latinx. 
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to conclude data collection in May of 2020. During this time, I was able to observe 

Esperanza Elementary’s typical activity (see the vignette on a typical day later in this 

chapter). The shelter-in-place order required I cease data collection and I was no 

longer able to continue as planned. That was the last time I saw the eighth graders 

with whom I had spent the school year. The academic year was completed as public 

schools unceremoniously transitioned to distance-learning models, research projects 

were deprioritized by the local school district, and I used what little data I had 

gathered to further refine my analytic tools during the Spring Quarter of 2020. 

 During the summer of 2020, I resumed communication with the classroom 

teacher and in September we started anew. Rebooting the study meant recruiting 

more study participants. The reboot also required that I coordinate with the UC Santa 

Cruz Human Subjects Committee and the local school district to ensure the study 

could move forward in the online setting with sufficient participant protections. I 

converted relevant paper forms (for example, the “Convince” form, pre and post 

assessments, and consent forms) into electronic forms with the capacity to collect a 

variety of response formats, e.g., type-written, photos (for hand-written work), and 

audio/video files. Due to concerns over privacy, the collection of video data was 

minimized regarding the number of participants and total time. 

 The move to online settings introduced new issues. For example, I used 

Google Forms (GForms) and Google Docs (GDocs) to collect data, rather than 

collecting physical documents. GForms have capacity to survey students with 

multiple-choice items and check boxes, as well as gather text and digital files (such as 
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photos, voice recordings, and video recordings). Unfortunately, there is no equation 

editor available in GForms or in GDocs, which might have affected how students 

responded to open-ended questions involving mathematical reasoning. That is, the use 

of a QWERTY keyboard, unlike a blank sheet of paper, might have constrained how 

students responded to questions involving mathematics. In response, many students 

completed written work as they normally would, on paper, and then submitted photos 

of the work. In this way, they were able to submit any representations that were either 

visual or symbolic (i.e., representations that are not easily made on a QWERTY 

keyboard).  

 On the other hand, submitting photos was not taken for granted and 

introduced a different set of issues. For example, as students were working with a 

wide variety of devices (e.g., Chromebooks, laptops, iPads, smartphones, etc.), they 

struggled to resolve issues related to compatibility or platform-use on their own. Also, 

connectivity was a major issue in the geographic region where the study took place. 

This was brought to national attention by a viral photo of two students using the free 

WiFi available at a local restaurant (see Figure 3.1). Reliable connectivity was a 

formidable obstacle to participation in the study and likely contributed to the low 

participation rates. This might have contributed to low participation rates for Lessons 

1 and 2.  

Figure 3.1 
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Elementary School Students Using Free WiFi at a Local Restaurant (Ebrahimji, 

2020) 

 
  

 Another set of issues arose with the use of online meeting platforms. First, it 

was not possible to record small-group discussions. As such, I was not able to gather 

data related to classroom discussions as I had originally planned. Whole-class 

discussions could be recorded but all recordings were made by the cooperating 

teacher and then the files were shared with me later. The classroom discussions were 

shaped by the Zoom and GMeets platforms in ways that differ from typical classroom 

settings. For example, only one person could speak at a time, students could turn 

cameras off (and most often did), and “break-out” groups could not be recorded or 

accessed by anyone other than the host (i.e., the teacher). Secondly, students were 

reluctant or unable to participate in class discussions. Student disengagement was an 

obstacle that required constant attention.  
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 Finally, I would like to acknowledge the emotional burden that students bore 

during that time. It was a time of great uncertainty, and the COVID-19 virus ran 

rampant through many such agricultural communities. One study found that from 

mid-July to November of 2020, when the study took place, 13% of the participants, 

who were all farmworkers, tested positive for SARS-CoV-2 (the virus that causes 

COVID-19), compared to 5% of California as a whole (Manke, 2020). Most of the 

farmworkers (58%) continued to go to work while infected or symptomatic due to 

fear of job loss. Consequently, student attendance suffered (from COVID-19 illness) 

and morale was extremely low, likely due to the stress being felt in the larger 

community.  

Preparation 

  As part of the preparation for the study, the cooperating teacher and I crafted 

and reviewed writing prompts, I observed a unit of instruction, and I familiarized 

students with the different purposes for mathematical writing. During the summer, we 

met three times to discuss writing prompts, finalize the timeline for the study, and 

finalize lessons for the unit of instruction. I observed a unit of instruction to document 

the typical instructional practices and use of writing. Documentation of the 

“instructional starting point” (Cobb, Jackson, & Dunlap, 2017) was important to 

familiarize myself with the kinds of writing practices available in the curriculum and 

typical instruction, as well as to ensure the ecological validity of introduced tasks 

(Moschkovich, 2019). The curriculum is a common, reform-based textbook (Dietiker, 
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Baldinger, Shreve, Kassarjian, & Nikula, 2013) that regularly uses discussion and 

writing as a feature of daily activities.  

A typical morning at Esperanza Elementary School (Pre-COVID-19) 

“I arrive at the school 15 minutes before the start of the first period. I park on 

the side of the school because the front parking lot is crowded with a line of vehicles 

dropping off students. I pass a small school garden and enter the front of the school. 

The main hallway is covered with examples of students’ academic and other work. 

There are people walking through the hallway and I am greeted with the sounds of 

talk in Spanish and English. I enter the office and exchange greetings with the office 

staff. We recognize each other at this point and signing-in is a brief routine.  

 I walk across the playground toward the classroom, which is a ‘temporary’ 

classroom trailer that has been there for years. Children are playing on the jungle gym 

while others are on the blacktop or basketball courts. Some children are playing what 

seems to be a low-stakes basketball game while others are playing what looks like 

‘tag’. I greet a few teachers along the way. They also recognize me, and we greet 

each other with, “Buenos dias, maestra11” or “maestro”. I arrive at the entrance of the 

classroom early for class to find a locked door and empty classroom. More students 

are playing on the field. A group of girls is playing what looks like ‘tag’ with a ball. 

They laugh and chase, even dragging each other to the ground on occasion. I rarely 

see such physical play in a school setting. Another group of students is playing 

softball.  

 
11 Translation: “Good morning, teacher.” 
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 A teacher opens the adjacent classroom and I ask, ‘Are these students in PE?’ 

She says that they are not, and that school has not started. I follow up asking where 

they got the equipment. The teacher says that some students bring their own 

equipment and teachers let them use the rest. A bell rings, to mark a passing period to 

get to class, and the students either pack up or return equipment and line up at the 

doors of their classes. ‘Ms. Garcia’12 arrives, greets the crowd, and enters the class 

alone. After a few moments, she opens the door and greets each student with either a 

unique or default handshake, quickly checks in on personal matters with some 

students, and collects homework as they enter the classroom and take their assigned 

seats.” (fieldnotes, March 12, 2021) 

Data collection 

 This study proceeded through three phases: preparing, enacting, and 

reflecting (Gravemeijer & Prediger, 2019). As a reminder, all data was collected 

virtually. I made use of online forms, online meeting platforms, and shared 

documents to organize activities and collect data. I included a variety of data sources 

to allow analysis of student learning in the classroom that is summarized in Table 2, 

below. During the preparation phase, I collected relevant de-identified ethnographic 

data about the site and its students, including historical performance data 

disaggregated by grade and demographic sub-groups to establish a historical context 

 
12 Pseudonym. 
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for the site and students. I began by observing the classroom practices13 for one unit 

of instruction14 (approximately four weeks) to document the “instructional starting 

point” (Cobb, Jackson, & Dunlap, 2017, p.212). Observations focused on identifying 

and describing different kinds of mathematical writing and discussions that occurred 

in the classroom using the Purposes framework (Casa et al., 2015) when writing was 

involved (see Appendix B). The Purposes framework describes mathematical writing 

as exploratory, explanatory, argumentative, or creative (Casa et al., 2015). During this 

phase I interviewed the cooperating teacher to probe her beliefs about education and 

the role of language and gain additional details about her professional preparation.  

 I administered and collected a “Mathematical Resources Inventory” (see 

Appendix A—adapted from Ortmeier-Hooper’s, 2013, “Mapping our literacies and 

resources” activity for multilingual students) from the students. The inventory asked 

students to elaborate upon people, places, and events that influence their schoolwork, 

as well as hobbies that, although not necessarily related to mathematics, could be 

used to provide a familiar context (for example, see Dominguez’s, 2008, work) and 

supply potential raw material to enhance the ‘semiotic budget’ available to students 

(Walqui, 2019). I administered and collected a questionnaire about other linguistic 

and mathematical background information (Appendix C). The questionnaire sought 

 
13 Due to the ongoing COVID-19 pandemic, the term “classroom” includes virtual spaces that the 
teacher and students occupied as part of the regular school day. For example, class sessions held in 
online meeting platforms are considered classroom activity.  
14 I observed a complete unit of instruction because of its potential to include both a variety of lesson 
types (e.g., introducing a new topic, reviewing for assessment, etc.) and typical instructional practices 
(e.g., whole group and small group discussions, writing tasks, etc.) as a coherent whole. In the online 
environment, small groups were typically managed as “break-out” groups. 
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basic information about students’ previous mathematics instruction to complement 

historical mathematics data (from the district and site), demographic information, and 

explore mathematics attitudes.  

During the enactment phase of the study, I gathered data from pre- and post-

assessments and enacted lessons: one lesson on mathematical writing and three 

lessons on mathematical argument. The pre/ post early algebraic thinking assessment 

was administered to determine how students’ thinking changed over time using an 

adapted version of an algebraic thinking test used in previous research in early 

algebra15 (Appendix D; Adapted from Chimoni, Pitta-Pantazi, & Christou, 2018). 

Items in each of the administrations were slightly different to minimize the possibility 

of item recall. I enacted lessons on mathematical writing and mathematical argument. 

I collected samples of student work, took observational notes, and video recorded 

class sessions that took place on virtual meeting platforms.   

 
15 The pre and post tests were not part of the analysis for the dissertation. 
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Table 3.3 

Summary of Study Activities 

 Activity Description Data/Artifacts Collected 

P
re

pa
re

 (
6)

 

Coordinate 
with teacher  

Coordinate with teacher to 
clarify learning goals.  

• Observational data 
• Teacher Interview 
• Gather Consent/Assent 

Observation  

Observe writing practices 
to establish an 
“instructional starting 
point”.  

• Observational data 
• Examine student 

writing  
• Observe typical writing 

practices  
Research 
Team 
Meetings  

Meet to review and plan 
the argument lessons.  

• Observation data 

E
na

ct
 (

12
 w

ee
ks

)  

Pre-
Assessment 

Gather background data • Algebraic Thinking 
Pre-Test 

• ‘Resources’ and 
student questionnaire 

Math 
Writing 
lesson 

Introduce purposes for 
mathematical writing to 
students.  
 

• Observational data 
• Journal and Quick 

Writes 
 

Argument 
Lessons & 
Conferences 

Enact three lessons on 
mathematical 
argumentation. Meet with 
teacher to review and plan 
next lesson. Conference 
with focal students.  

• Observational data 
• Video recording and 

samples of student 
writing: 

o From 
conferences 

Post-
Assessment 

Post-test for Algebraic 
Thinking.  

Algebraic Thinking 
Assessment (post-test) 

18 Weeks total 

R
ef

le
ct

 

Winter, Spring, Summer 
2021 

Review all data and conduct 
retrospective analysis. 
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 The duration, frequency, and length of writing tasks reflect recommendations 

from a meta-study of mathematical writing studies (Bangert-Drowns, Hurley, & 

Wilkinson, 2004) to the extent possible. As such, mathematical writing tasks were 

implemented two times per week for a minimum of one semester (approximately 18 

instructional weeks), for 5-10 minutes per class period in a lesson (2-3 class periods 

in a lesson). The lessons integrated writing activities, whole-class discussions, small 

group work, and a 10-minute (maximum) individual writing session for students to 

complete and submit an argument.  

 Throughout the study, student writing was used to formatively assess 

mathematical understanding, inform instructional decisions, and as the shared focus 

for mathematical conferences. As a formative assessment, the cooperating teacher 

used student writing to make day-to-day adjustments when lesson planning. As the 

lessons on mathematical argument were completed, I used students’ mathematical 

writing (i.e., responses to the Convince Form) for assessment and to inform my 

feedback during conferencing. In this manner, the mathematical conferences provided 

opportunity to discuss, reflect upon, and revise the students’ own mathematical 

writing. I discuss the Convince Form and the use of ‘audience’ at the end of the next 

section, ‘Overview of Lessons’. 

Overview of Lessons 

 In total, there were four lessons enacted with the students: one preliminary 

lesson on mathematical writing and then three lessons on mathematical argument. 

The mathematical writing lesson focused on the Four Purposes for mathematical 
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writing (Casa et al., 2016). The purpose of the lesson is to provide instruction on the 

purposes and characteristics of mathematical writing. In addition, students continued 

to engage in mathematical writing throughout the observation period and subsequent 

lessons on mathematical argument. Since longer exposures to writing practices could 

be related to increased beneficial effects (Bangert-Drowns, Hurley, & Wilkinson, 

2004), mathematical writing prompts were used throughout the semester. To be clear, 

the purpose of the mathematical writing lesson was not to “introduce” students to 

mathematical writing. Both the teacher and curriculum made use of mathematical 

writing even prior to the researcher’s involvement. The lesson was intended to clarify 

characteristics and criteria for good mathematical writing in each of the purposes and 

then provide opportunities to write. 

 The three argument lessons were designed to support students as they 

developed understandings for the need and demands of mathematical argument. 

Moreover, the lessons included a focus on learning processes, which is an aspect of 

topic-specific research (Prediger, Gravemeijer, & Confrey, 2015). The materials and 

activities were hypothesized to stimulate and leverage various forms of learning by 

eliciting student thinking. In addition, I assumed that students are “epistemic agents 

of their own" who bring to bear their own experience and resources. Students are not 

“incomplete adults (Kaput,1999)” (Prediger et al., 2015, p.881). 

 The lessons centered on the topic of ‘number property’ and were organized 

around a progression of tasks that supported students’ increasing capacities for 

composing claims and justifications (summarized in Appendix E). The progression 
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was shaped by a variety of tasks that invited students to make claims and justify them 

with varying levels of support for generating a claim. Justifying-a-given-claim tasks 

provided students with a claim and asked them to justify it. For example, in Lesson 1, 

students were asked to “Show that when you add any two even numbers, your answer 

is always even”. The claim that the sum of two even numbers was “always even” was 

given to the students and they were invited to justify it. Tasks that asked students to 

qualify a claim provided students with a claim but asked them to choose a non-neutral 

qualifier for the claim (e.g., ‘always, sometimes, or never’) and then justify their 

choice. For example, in Lesson 3, students were asked to decide whether the sum of 

five consecutive whole numbers is divisible by 5 is always, sometimes, or never true, 

and then justify their choice. Tasks that invited students to generate a claim invited 

students to generate and justify a general claim, given a mathematical situation. For 

example, in Lesson 3, students considered all possible sums generated by adding 

three consecutive whole numbers, and then conjectured about which kinds of numbers 

can be made (see Figure 3.3).  

 Each lesson was completed over two sessions (55 minutes each), made use of 

discussion boards and online forms, and concluded with a task inviting the students to 

write a mathematical argument (for a summary, see Appendix J). The first lesson 

introduced mathematical argumentation and focused on given-claim tasks to 

familiarize students with basic concepts, vocabulary, and the concept of mathematical 

argumentation (as different from everyday arguments). The final task for lesson 1 is 

called “Fibonacci Rectangles” (see Figure 3.1). Note that Parts D and E of the task 
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support students to look for patterns in a data table, predict a distant value, and then 

make a general prediction. 

Figure 3.1 

“Fibonacci Rectangles” Task (Dietiker et al., 2013 Problem PI-4, p.527). 

Students were asked: 

A. How is the sequence growing? [1, 1, 2, 3, 5, 8, 13, …] 

B. If the measures of the sides of a rectangle are consecutive Fibonacci numbers, 

it is called a “Fibonacci Rectangle.” Here are the first four [illustration]. What 

is the area of each rectangle? What is the sum of the first two? The first three? 

C. Copy/Complete the table (up to 8).  

Number of 
Rectangles 

Sum of 
Areas 

2 3 

3 9 

4  

5  

6  

7  

8  

D. Use your table. Look for any special numbers. Can you find any patterns? 

E. How can you predict the sum of the areas of Fibonacci Rectangles? Use your 

patterns to predict the sum of the areas of the first 15 Fibonacci Rectangles.  
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When uploading the work, students were asked to upload a photo of their written 

work and type an explanation of the prediction and how it works.  

 The second mathematical argument lesson continued to explore the topic of 

‘number property’ through “Number tricks” (Knuth, Choppin, & Bieda, 2009) and the 

“Happy Numbers16” task (see Figure 3.2). The Happy Numbers task prompted 

students to find two- or three-digit happy numbers (without calculating) and to justify 

why their method works. Happy numbers are found by separating the digits of a 

number, squaring each digit, and then adding the resulting products. If the resulting 

sum is ‘1’, then the number is ‘happy’. If not, then the process repeats until it results 

in a ‘1’ or a sum repeats (in which case the number is not ‘happy’). This process is 

illustrated in Figure 3.2.  

Figure 3.2 

“Happy Numbers” Task (above) and Determination Procedure (below) (Dietiker et 

al., 2013, p.534) 

Students were asked: 

A. There are 17 Happy Numbers (from 1 – 99). Find as many as you can. 

B. Find five 3-digit happy numbers. 

C. Eva found out that 478 is a happy number.  

i. What other numbers must be happy numbers? 

 
16 “Happy Numbers” are numbers whose individual digits are squared and then added. This process is 
repeated until the sum is either “1” (in which case the number is “happy”) or a sum is repeated (in 
which case the number is not “happy”).  
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ii. How do you know? 

iii. Find at least 10 new happy numbers. 

Determination of Happy Numbers in Lesson 2: 

 

During the second lesson, I invited students to comment to each other in the 

discussion board. For example, I asked students about the “pros” and “cons” of each 

justification, why they did or did not find it convincing, and how examples and 

calculations were used. Like the first lesson, the students were asked to upload photos 

and text to an online form to justify any conjectures made about Happy Numbers. 

 At this point, some focal students had an opportunity to conference with the 

researcher and revise one of their arguments. Additionally, students completed a math 

journal (see Appendix G for prompts). These additional activities were intended to 

support student learning by providing an opportunity to integrate the feedback with an 

additional opportunity to compose and justify the claim, and then reflect on the 

overall learning process.  

 The third lesson involved enacting the “Evaluating Statements: Consecutive 

Sums” lesson (Appendix A; MARS, 2015). The mathematical learning goals of this 

Example 1: 23 
 
22 + 32 = 4 + 9 = 13 
 
  12 + 32 = 1 + 9 = 10 
 
   12 + 02 = 1  
   Happy 

Example 2: 34 
32 + 42 = 9 + 16 = 25 
 22 + 52 = 4 + 25 = 29 
 22 + 92 = 4 + 81 = 85 
 82 + 52 = 64 + 25 = 89 
 … 
 52 + 82 = 25 + 64 = 89 (repeat) 
 Not Happy 
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lesson were for students to 1) state and test mathematical conjectures, and 2) 

understand and use alternative methods of proof (MARS, 2015; emphasis added). 

Note that the lesson does not seek rigorous proof as a learning goal. Typical of early 

algebraic instructional practice, the goal is to introduce students to the conceptual and 

procedural rigors of proof and proving so that they are positioned for success in future 

mathematics coursework. The lesson features tasks that asked students to justify a 

given claim, qualify a claim and justify, and then generate a claim and justify.  

Figure 3.3  

Task 1 Consecutive Sums (MARS, 2015, p. T-5).  

 
The final task for lesson 3 was to determine whether some mathematical claims about 

different sums of consecutive numbers were always, sometimes, or never true. Here 

are some sample claims students classified: 

A. The sum of four consecutive whole numbers is divisible by 4. 

B. The sum of five consecutive whole numbers is divisible by 5. 
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C. To find the sum of consecutive whole numbers, find the middle number and 

then multiply it by how many numbers there are. (MARS, 2015, p.S-6) 

All tasks reflected grade-level standards and required students to justify mathematical 

conjectures (i.e., create mathematical arguments that reasoned and generalized) that 

were given to them as well as those that they made themselves.  

 An important difference between Lesson 3 and the previous lessons is in the 

presentation of the Convince Form. Due to low rates of participation in the first two 

lessons, I revised the Convince Form into editable slides that each student could 

access and submit through their classroom’s online platform (Google Classroom; see 

Appendix I). My hope was to place the form in a familiar platform, alongside their 

classwork, so that students could access it more readily. The mathematical writing 

that students submitted was used as formative assessment to inform future 

instructional decisions.  

 In each of the mathematical argument lessons, students were asked to respond 

to the final tasks by filling out a Convince Form (see Appendices H and I). The 

Convince Form focused on supporting students by describing and scaffolding the 

process of argumentation as convincing oneself, a friend, and a skeptic (adapted from 

Mason, Burton, & Stacey, 1982 and Schoenfeld, 2009). The Convince Form enriched 

the rhetorical situation for students by suggesting different kinds of audiences. The 

form also invited students to engage in a variety of writing purposes (Casa et al., 

2015), such as explanatory and argumentative writing. Presenting the argument 

process in terms of audience has been lauded as “one of the best descriptions of the 
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proof process” (Schoenfeld, 2009). It described the varying aspects of argumentation 

by prompting students to consider audiences with differing needs and affordances, 

which is a recommended instructional practice to support students when teaching 

language and mathematics (Wilkinson, 2018). Secondly, the form invited students to 

go beyond what is typically required for everyday arguments. One implication noted 

in Banes’ (2019) work is that mathematical argumentative writing should be 

presented as "over explaining", for example to a ‘skeptic’, so that evidence, counter-

examples, and rebuttals are viewed as appropriate. Such rigor can be an obstacle for 

students because it violates other social norms around conversation and arguing 

(Grice, Cole, & Morgan, 1975; as cited in Banes, 2019). A second implication of 

Banes’ (2019) work is that instruction should include tasks with greater rhetorical 

specification. This would also include the use of rubrics and even the strategic use of 

a "less mathematical" audience to create a need for so much explanation, for example 

“Use words and pictures to explain why the conjecture is false to a 3rd grader” (my 

own example). The Convince Form was designed to support students’ argumentation 

by framing phases of students’ work with particular kinds of writing purposes (Casa 

et al., 2015), i.e., by promoting exploratory writing during the “convince yourself” 

phase, informative/ explanatory writing during the “convince a friend” phase, and 

argumentative writing (including consideration of counterarguments and sufficiency 

of evidence) during the “convince a skeptic” phase. In the first two lessons, the 

Convince Form was a fillable form students accessed by clicking on a link (see 

Appendix H). Due to low participation rates in the first two mathematical argument 
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lessons, the Convince Form was revised into editable slides that each student could 

access and submit through their classroom website (see Appendix I). 

 In addition to typical writing activities, I conducted student writing 

conferences to provide an opportunity for revision of their mathematical reasoning. 

Conferencing is a productive practice to support students’ writing (Hillocks, 2006) 

and enhance understanding (Swain, 2009), but it is especially productive for 

multilingual students, who might have difficulty with feedback offered in only one 

mode (Aguirre & Bunch, 2012). I conducted one round of conferences with the focal 

students that took place between the second and third lessons and a second round with 

the remaining students after the third lesson (see Summary of Unit of Instruction, 

Appendix B). In the first round of conferencing, students were opportunistically 

sampled (Patton, 2002) because they were among the few students that responded to 

the prompt. In the second round, students were sampled to ensure maximum variation 

(Patton, 2002).  

Conferences were video recorded via Zoom and followed the description 

provided by Newkirk (1989). In addition to video recording, I took notes and worked 

to avoid ‘common mistakes’, such as opening with Yes/No questions, asking multiple 

questions at once, or praising particular responses (Brenner, 2006). The conferences 

focused on one or two important items and lasted approximately 10-15 minutes each. 

My role as the interviewer was to balance evaluations and responses with 

encouragement for students to take initiative and evaluate their own writing and 

argumentation. The student's job was to answer the question, "What did you think” of 
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your written argument (Newkirk, 1989, p.318). Ideally, the student and I mutually 

constructed an agenda as I allowed time and space for students to vocalize their own 

reflections and revisions. I engaged the conferences like an interview so that the 

student had time and “space to express meaning in his or her own words and give 

direction to the interview process” (Brenner, 2006, p.357).  

Summary of Data Collection and Protocols 

 After each daily session, the collaborating teacher and I met to analyze the 

activity and consider instruction for subsequent sessions. We reviewed data as part of 

the iterative cycle (to inform change) and in the retrospective analysis. Data from the 

MRI was used to inform problem contexts. For example, if students indicated that 

they play dominoes at home, then dominoes could serve as a familiar context for a 

mathematics problem (example from Nasir, 2005). 

Analysis 

 Video data was collected in two different settings. The first was the online 

meeting platforms where classes were held. Regular classroom sessions included the 

collaborating teacher, student participants, and the researcher (as participant observer) 

in the GoogleMeets platform. The second setting I videorecorded was the 

conferences. Conferences were conducted on Zoom and included the researcher and 

an individual student, with the collaborating teacher present as an observer. Both 

settings were designed to produce written work (including in the chat features of each 

online platform), oral mathematical discussion for transcription, and video data.  
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 The first round of conferences involved five students and focused on their 

Convince Form responses for Lesson 2 (Happy Numbers task). These five students 

were selected from the seven students who filled out the Convince Form in Lesson 2. 

The second round of conferences involved seven students and focused on their 

Convince Form responses for Lesson 3 (Consecutive Sums task). These seven 

students reflected the students who agreed to participate and appeared for the 

conference. I invited 24 students for a conference (20 conferences with four on stand-

by). 

 A round of conferences followed Lessons 2 and 3 with mostly different 

students in each (one student volunteered for both rounds). The purpose of the 

conference was to support students to revise or extend the Convince Form responses 

they provided to the final tasks of Lessons 2 and 3 through questioning. The approach 

of the conference was to present students with the work they submitted and then ask a 

series of eliciting and probing questions to further their mathematical reasoning 

(Franke et al., 2009). The structure of the conference resembled an interview 

(Brenner, 2006). I reviewed each student’s work, prepared one to four questions, and 

limited each conference to 10 – 12 minutes. The questions focused on one or two 

questions to review and assess the students’ initial work, and then one or two 

questions to elicit or press for further student reasoning and encourage attention 

toward mathematical structure. The starting point was what work each student 

submitted in the most recent Convince Form. In the first round of conferences, we 

discussed the Happy Numbers task (5 students) and in the second round of 
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conferences we discussed the Consecutive Sums task (7 students—including one who 

volunteered for a second conference) for a total of 12 conferences and 11 unique 

students (see Appendix J for complete tasks).  

 I conducted and recorded conferences with online meeting platforms (i.e., 

Zoom). Data sources included the video recording (and transcripts), chat files, related 

work that is referenced throughout the conference, contemporaneous notes, and any 

writing generated during the conference (including, for example, students’ hand-

written work shown on camera and visual representations). I examined these data to 

determine how the students revised their arguments or other aspects of their work.  

 I used the proof schemes (external, empirical, or analytical) framework (Harel 

& Sowder, 1998) to categorize the kinds of arguments students used in the previously 

submitted work and then examined whether the students used a new scheme during 

the conference. I used the proof scheme framework because it reflected a non-

hierarchical way to categorize how students were arguing in each context. Moreover, 

students might use a different scheme depending on familiarity with mathematical 

content or their sense of what was “appropriate in the setting of the work” (Harel & 

Sowder, 1998, p.277), which is what happened with four participants in this study. I 

used the parts of an argument elaborated by Toulmin (2003) to describe details of 

student work. The criteria for each classification are described in the Conceptual 

Framework chapter (p.41). 
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 I considered multiple data sources, at times in coordination, to review student 

arguments and trace whether and how the students revised their initial argument. See 

Figure 3.5 for a screenshot of what the conferences looked like in the online setting.  

Figure 3.5 

Screenshots of Video Recording. Data Sources Included Talk, Images Shared On-

screen (top) and Comments in the ‘Chat’ Box (bottom). 

 

 

 Participants in each round of conferencing met differing criteria. In the first 

round of conferencing, every student who submitted the original Convince Form was 

invited (N = 6; see Appendix H). Five of these students assented and participated in a 

conference. In the second round of conferencing, I invited 16 students (40 possible 

students). Seven of them assented and participated. To varying degrees, these students 
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completed the modified Convince Form available for the Consecutive Sums task (see 

Appendix I). For each of the focal students, I am including students’ mathematical 

proficiency because most empirical studies of mathematical argument have focused 

on high-achieving students (for example, see Healy & Hoyles, 2000). I sampled from 

a broader population of student participants so that findings can be relevant to all 

students and to demonstrate how students of all proficiency levels can and do make 

arguments.  

 Video data from the whole-class discussions and conferences were analyzed 

in two ways. First, global and local arguments in the whole-class discussions were 

modeled using the method outlined by Knipping & Reid (2019). Knipping & Reid 

(2019) suggest a method to describe classroom arguments (in whole class and small 

group settings) that builds on Toulmin’s (2003) theory and has three stages: 

reconstructing the sequence and meaning of classroom talk, analyzing local (first) and 

global (second) argument structures, and then comparing the structures to reveal 

rationales. This method used data, claims (or ‘conclusions’), warrants, and backing 

(Knipping & Reid, 2019; Toulmin, 2003) as parts of the argument. The result was a 

schematized map of arguments elaborated in classroom discussion.  

The second analysis involved transcripts of mathematical discussions. 

Transcription is a process laden with theory (Moschkovich, 2008; Ochs, 1979). As 

such, the emphasis was on illuminating students’ reasoning and transcripts follow a 

particular set of conventions to account for all modalities available (see Appendix F). 

For example, transcripts included the use of parentheses ( “( )” ) when there was 
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doubt about an utterance and double parentheses ( “(( ))” ) to indicate additional 

annotations. Since the use of gesture has been documented as a resource for ELs 

(Barwell, Moschkovich, & Setati Phakeng, 2017), I described gestures in the 

transcripts without bracketing or parentheses. Gestures were presented as integrated 

with speech, i.e., not interpreted as subordinate to oral speech.  

 I analyzed student writing using a rubric that considers the form of the 

argument, the rationale (Banes, 2019), and the generalizing of the argument. The 

form of the argument was described in terms of the presentation and was related to 

representations. For example, do the students make use of examples, tables, symbols, 

words, or visual representations? I used the term ‘rationale’ to analyze students’ 

writing because it emphasized conceptual understanding, reasoning, and justifying 

(following Banes, 2019; and Kosko & Zimmerman, 2015). The rationale included 

claims, the accompanying efforts to justify, and included any reasoning in which the 

students engaged. Generalizing can be thought of as the process by which students 

“identify structure and relationships in mathematical situations” (Blanton et al., 2011, 

p.9). As students generalized, they might find structure in a variety of representations. 

My analysis emphasized how they engaged generalizing, even if they were not using 

symbols. For example, students might have engaged generalizing using different 

kinds of and purposes for examples (Ellis et al., 2012). To detail exactly how the 

students were reasoning and the extent to which they were generalizing, I used the 

proof schemes (Healy & Hoyles, 2000) framework to analyze arguments. For a full 

description, see the “Conceptual Framework” chapter (p.29).  
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 To the extent possible, descriptions of student work included photos of the 

original work and schematic representations of the arguments using the Toulmin 

model (Knipping & Reid, 2019; Toulmin, 2003). This model described the 

constitutive parts of an argument and included claims, data, warrants, and backing. 

While mathematical assertions can be referred to in a variety of ways (e.g., claims, 

conclusions, or conjectures), I primarily used the word ‘claims’ to refer to 

mathematical assertions made by the students. Data referred to the facts and 

calculations that served as a foundation for the claim. Warrants were the “rules, 

principles, [and] inference licenses” that generally ratified the step from data to claim 

(Toulmin, 2003, p.91). Backing included the “assurances” that lend credence to the 

warrants (Toulmin, 2003, p.96). A diagram of a generic argument is shown in Figure 

3.5. Whenever necessary, I used this schematic to clarify how students structured 

arguments.  

Figure 3.5 

Toulmin Model of an Argument (Knipping & Reid, 2019). 
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Chapter 4: Burgeoning arguments: Shifts in generality and the use of examples 

 In this chapter I present my analysis of student written arguments submitted in 

each of the three lessons in the unit. I use a strengths-based approach that utilizes 

multiple analytic tools to address Research Questions 1 and 2: 

1. When asked to do mathematical writing and supported with conferencing in 

a remote context, what kinds of arguments do students make? 

2. How did the mathematical arguments of individuals change over the course 

of a unit of instruction on generating, selecting, and justifying claims? 

 Here I describe the organization of the chapter and review overall findings 

before proceeding. The first section will catalog the types of responses that students 

provided for tasks that asked them to generate a claim (Lessons 1 and 2) and tasks 

that ask them to qualify a claim (Lesson 3). Due to the distinct nature of these tasks, 

first I describe student responses for tasks that asked them to generate a claim in 

broad terms. And then, I characterize the ways students justified how they qualified 

claims. The second section elaborates evidence to show how students changed from 

writing descriptions of procedures to making arguments. I examine the work of focal 

students Nathan and Nina to illustrate the change. The third section presents evidence 

to show how students’ use of examples changed in ways that are logically sound 

(rather than succumbing to common logical fallacies). I present evidence from the 

written work of focal students Renato and Amaya. The fourth section examines how 

students began to generate claims (Lessons 1 and 2) and qualify claims (Lesson 3), 



 82 

depending on the task. I examine data from each of the lessons and a variety of 

students to illustrate the ways that the students’ written responses changed.  

 The above questions seek to understand how students’ argumentations showed 

improvement and how they changed over time. I present three major findings related 

to the first two research questions. First, students’ responses changed from writing 

descriptions of procedures to making arguments. My analysis shows that students’ 

written responses changed such that they used examples in-lieu-of-arguments less and 

began to include increasingly general arguments. Secondly, students used examples in 

more logically sound ways. Students changed from, for example, using only specific 

examples that might support a claim toward using examples as evidence. Third, 

students went from writing no claims at all (either when prompted to generate a claim 

or to qualify a claim) to qualifying claims when offered a choice of non-neutral 

qualifier or generating claims when invited.  

 The findings listed above show that, by the end of the study, some students 

made mathematical arguments (general, partial, or empirical) when justifying their 

claims while most continued to wrestle with developing and generating claims. The 

first two lessons featured tasks that ask students to generate a claim (“Fibonacci 

Rectangles” and “Happy Numbers”; see Appendix J). Lessons 1 and 2 were enacted 

over two class sessions, each, and separated by one week. The third lesson also took 

two class sessions but took place two weeks after the end of Lesson 2. Types of 

responses for Lessons 1 and 2 are summarized in Table 4.1. It is important to note 

that even in Lesson 1, some students generated claims and attempted to justify them 
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(three out of 14). More importantly, while all three attempts to justify arguments in 

Lesson 1 included a logical fallacy, no such fallacies presented themselves in student 

work from Lesson 2. Alas, the majority of the 44 participants did not submit any 

response for Lessons 1 and 2. 

Table 4.1 

Types of Student Responses from Convince Forms Collected in Lessons 1 and 2. 

Open Claim Task Lesson 1 Lesson 2 
No response 30 35 
Generated no claim 2 2 
Description 9 5 
Generated a claim 3* 2 
Total participants 44 44 

*Claims were made but arguments included logical fallacies. 

 Lesson 3 culminated with a task asking students to qualify a claim and saw 

marked improvement in participation, as well as in the types and elaboration of 

mathematical arguments. Forty of the 44 participants (90%) qualified claims. These 

40 students qualified an average of 5.3 claims (out of six possible) at a rate of 77.5% 

correct (i.e., nearly four out of the five qualifications were correct). Students were 

then asked to justify two of the claims they qualified. Eleven of the 40 participants 

that qualified claims made at least one argument (either empirical, partial, or general) 

to justify their qualifications. These 11 students qualified an average of 5.9 claims 

(out of six possible) at a rate of 73.9% correct. Note that the rate of correct responses 

for those who attempted to justify was slightly lower than the group that simply 

qualified claims. See Table 4.2 for a summary of these data. 

Table 4.2 
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Types of Responses from Convince Forms Collected in Lesson 3. 

Qualifying a claim Item 1 Item 2 Percent Correct 
No response 4 7  
Qualified claim, only 29 28 78.4% 

Qualified 
and Justified 
Claims 

Empirical 6 6 

73.9% 
Partial 2 0 

General 3 3 
Total 44 44 77.5% 

 

 The 29 students that did not justify chose always, sometimes, or never with 

78.4% accuracy. Twenty-seven of these 29 students were multilingual (see Table 

4.3).  

Table 4.3  

Summary of Responses for Items 1 and 2 of Lesson 3 (Qualifying a Claim) by 

Language Classification. 

Item 1 Responses English Only Multilingual Row Total 
Claim only 2 27 29 
No response 

 
4 4 

Empirical 1 5 6 
Partial 

 
2 2 

General 2 1 3 
Total 5 39 44 
Item 2 Responses English Only Multilingual Row Total 
Claim only 2 26 28 
No response 

 
7 7 

Empirical 1 5 6 
General 2 1 3 
Total 5 39 44 
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Methodology   

 The analyses presented in this chapter have two foci: in the first I examined 

students’ mathematical writing (i.e., their Convince Form submissions) to 

characterize the ways that they responded to the tasks, and then I examined how those 

responses might have changed over the course of the study. The mathematical writing 

that students generated served as a written record of the kinds of responses they made 

(analysis #1) and how those responses changed over duration of the study (analysis 

#2). Ultimately, the students’ mathematical writing was used to describe the ways that 

they might have argued mathematically vis-à-vis the proof schemes frame (Harel & 

Sowder, 1998). 

 Analysis of the written documents began by considering what the task asked 

students to do (e.g., justifying claims they are either asked to generate or qualify). 

Depending on what the task asked them to do, responses were categorized 

accordingly. In alignment with the naturalistic paradigm, I consider student learning 

“in their own terms” (Moschkovich, 2019; Moschkovich & Brenner, 2000). This 

paradigm also supports a strengths-based approach to analysis of student work. I 

present students as active agents in their own learning by emphasizing what they do 

(rather than what they “cannot do”) and characterizing their actions with verbs (rather 

than nominalizations or passive voice). This approach seeks to document how 

students are learning to use a variety of proof schemes (Harel & Sowder, 1998). 

While some researchers consider proof schemes in a hierarchical trajectory where, for 

example, empirical proof schemes are considered inferior to analytic ones (e.g., see 
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Knuth, Choppin, & Bieda, 2009, or Küchemann & Hoyles, 2011). I align with Harel 

& Sowder’s (1998) position on proof schemes and the importance of setting, context, 

and content: 

It is important not to regard the taxonomy in a hierarchical, single-niche sense. 
A given person may exhibit various proof schemes during one short time 
span, perhaps reflecting her or his familiarity for, and relative expertise in, the 
contexts, along with her or his sense of what sort of justification is appropriate 
in the setting of the work. (p.277, emphasis added) 

 The second part of the analysis examined the written arguments of students 

from lesson to lesson. I examined how the work of individual students changed over 

time. The concept of “cherry-picking” emerged as relevant to this analysis. Cherry 

picking is “to select the most desirable”17 data from what is available to support 

preconceived ideas. It is a common form of logical fallacy that can be done 

intentionally or unintentionally (Klass, 2008). When it arose in the students’ written 

work and discussions, we brought attention back to examples (i.e., data) that did not 

support the claims to occasion further reflection. As a reminder, a description of the 

Toulmin method, including parts and use, is provided in the Methodology chapter 

(Chapter 3).  

 Because the analyses examined the quality of students’ written work over the 

duration of the study, I selected focal students by prioritizing consistent participation 

alongside demographic diversity, distribution across achievement levels, and 

distribution across “English proficiency” levels. Fourteen of the 44 participants 

completed at least two of the Convince Forms for Lessons 1, 2, and 3. I selected Nina, 

 
17 https://www.merriam-webster.com/dictionary/cherry-pick 
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Nathan, Renato because they completed Convince Forms for all lessons. Amaya 

completed Convince Forms for the Lessons 1 and 3, only.   

 In the next sections, I describe the types of responses that students submitted, 

show how students’ responses became more general (using written work from focal 

students Nina and Nathan), show how some students’ use of examples became more 

sophisticated (using written work from focal students, Renato and Amaya), and show 

how students’ written responses went from including no claims at all (either when 

prompted to generate a claim or to qualify a claim) to qualifying claims when offered 

a choice of non-neutral qualifier or generating claims when prompted. As a reminder, 

I provide a description of the process for focal student selection in the Methodology 

chapter (Chapter 3). 

Response Types 

 In this section, I describe the different types of written responses that students 

made throughout the unit. Since the final task for each lesson involved students either 

generating a claim (Lessons 1 and 2) or a qualifying a claim (Lesson 3), I consider the 

first two lessons together and then the third. Also, I consider types of claims 

separately from types of justifying. Early data18 suggested that the kinds of claims that 

students made were not necessarily congruous with how they justified them. For 

example, some students could make a general claim and justified it with a general 

argument, but others might use an empirical argument or no argument at all. As 

 
18 These data were gathered before the shelter-in-place order was given (March 2020). Subsequent to 
the order, I analyzed the data and saw that the generality and validity of a claim was not necessarily 
related to the generality and validity of how they justified it. 
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students moved between generating a claim (or qualifying a claim) and justifying it, 

this allowed them to make choices about how to justify their claims. Moreover, since 

the processes involved in generating a claim (which could include abductive 

reasoning—see Minnameier, 2004, or Rivera & Becker, 2007a) are likely different 

from those involved in justifying the claim (which could include inductive and 

deductive reasoning), I separate them.  

Responses for Generating-a-claim Tasks 

 Next, I review the types of responses for the first two lessons, which 

culminated with generating-a-claim tasks. Complete descriptions of each type of 

response will include a brief characterization and an example of student work (see 

Table 4.1 for a list). 

 Overview. Table 4.1 is organized so that differences in response type over the 

two lessons can be highlighted. Lessons 1 and 2 are separated in Table 4.1 to 

highlight how the types changed over time. Some key observations include that the 

number of descriptions decreased from 9 in Lesson 1 to 5 in Lesson 2, while the 

number of students that generated no claim remained the same. It is also important to 

note that three students generated a claim in Lesson 1 but did not successfully justify 

them. In Lesson 2, different students generated a claim, but these students 

successfully justified them. Regarding language designations, I note that most 

students who did not respond to the Convince Form were designated as either EL, 

IFEP or RFEP. I discuss this in a later section (See Conclusions and implications for 

curriculum and instruction, this chapter).  
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 No Response. This category includes all students who did not submit any 

photos or type-written responses in the online forms for Lessons 1 or 2.  

 Generated No Claim. This category included responses that contained 

calculations, tables, or other visuals but no claim or warrant to constitute an 

argument. For example, Nina provided a picture of her work from Lesson 2 (see 

Figure 4.2). It features calculation and a statement that leaves the reader to interpret 

meaning from the photo. 

Figure 4.2  
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Nina’s Response from Lesson 2, Including Written Work (top), a List of Happy 

Numbers (bottom), and a Type-written Statement (middle).  

 

In the picture above, I showed 
my work and how I explored 
the problem. You can see that 
some of the numbers I 
worked on were happy 
numbers and some were not. 
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 Description. Descriptions were typically explanations of the arithmetic 

procedures that a student used to complete a given part of the task. For example, if 

Part B of Task 1 asked students to calculate the areas of the first four Fibonacci 

Rectangles19, then a student might put a description of how they did so (see Figure 

4.3). Descriptions such as these generally foregrounded how students generated the 

examples on their pages. In the first lesson, nine of the fourteen submissions included 

descriptions of procedures. In the second lesson, before any conferencing took place, 

 
19 See Appendix A for complete tasks. 



 92 

descriptions of procedures were also the predominant response. Individual student 

responses varied in form.  

Figure 4.3  

Nathan’s Description of How to Calculate the Areas of Fibonacci Rectangles and 

Find Their Sums, Including a Typed Explanation to a “Friend” (top) and Submitted 

Photos (bottom left and right). 

 

  

 Generated a Claim. This category refers to the student responses that included 

a mathematical claim. In the Happy Numbers task, a task that prompts students to 

generate a claim from Lesson 2, students were asked to make an argument about 2-

digit or 3-digit happy numbers, or “something else”. Nathan generated the following 

claim: “10 to any exponent is a happy number…”. In order to generate a claim, 

students had to state a claim beyond simply restating the problem or describing a 

procedure.  

“I started by finding the size of the rectangles then I 
continued on by putting them onto a chart and adding them 
all together. The first + the second + the third etc.”
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Responses for Qualifying-a-claim Tasks 

 Below I describe the types of responses from the third lesson, which 

culminated with students qualifying a claim and then justifying their choice of 

qualification. Complete descriptions of the types of responses summarized in Table 

4.2 (above) will include a brief characterization and example of student work. 

Overview.  

 Table 4.2 is organized so that differences between the two opportunities to 

justify how they qualified a claim (Item #1 and Item #2) can be highlighted. In 

Lesson 3, students were given the opportunity to make two arguments by justifying 

two of the claims they qualified as either ‘always’, ‘sometimes’, or ‘never’ true. I 

note that empirical arguments were predictably the more common form of 

argumentation. Six empirical arguments were submitted for each of the items (not, 

necessarily, by the same students). Descriptions of responses follow.  

No Response.  

 This category includes all students who did not submit any photos or type-

written responses in the online forms for Items #1 or #2 of Lesson 3. 

Qualified only.  

 These students qualified claims but did not justify. Students would qualify a 

claim as “always”, “sometimes”, or “never” true by clicking on a conjecture (A – F) 

and dragging it to a column of their choosing (See Figure 4.4 for an example). In this 

response type, no other written calculations, explanations, or attempts to justify were 

included. 
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Figure 4.4 

Sample of a Student who Qualified-only. Alisha’s Cards Shown With Her Own 

Placements. 

 

Qualified and justified.  

 This category includes all students who qualified claims and justified them, 

i.e., they made an argument. There are three kinds of argument that emerged from the 

data: empirical arguments, partial arguments, and general arguments. Each of these 

arguments is described further here. 

Empirical.  

 An empirical argument is one where conjectures are “validated, impugned, or 

subverted by appeals to physical facts or sensory experiences” (Harel & Sowder, 

1998, p.252). In the case of middle school students, this can take the form of an 

inductive empirical argument, where calculated examples, without any warrants or 

backing, are taken as demonstrations of a conjecture’s validity or counterexamples to 

Cards!  Click and Drag these 
statements to make a 
conjecture.. 

Always True Sometimes True Never True
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demonstrate invalidity. There are also perceptual empirical arguments that rely on 

“rudimentary mental images” (Harel & Sowder, 1998). An example of an empirical 

argument is shown in Figure 4.5. Amaya argued that the sum of four consecutive 

whole numbers is never divisible by four by citing three examples.  

Figure 4.5  

Amaya’s Empirical Argument that Conjecture A is Never True (diagram below). 

 

 

 

Partial.  

 This category includes responses where students made a claim and included a 

warrant, but absent any other backing, data, or examples, the argument is incomplete. 

It is similar to the Proof Production Level 2 category presented in other work (Knuth, 

Choppin, & Bieda, 2011). For example, Evelyn asserted that the sum of four 

consecutive whole numbers is never divisible by four “…because the number always 

Convince yourself.  Explore and make a conjecture
● Pick 2 conjectures (either A, B, C, D, E, or F).
● Upload a photo for each one.  How you convinced yourself if it was Always, Sometimes, or 

Never true.  Basically, how you explored the conjecture.

[Put photo 1 here using “Insert” and “Image”] [Put photo 2 here using “Insert” and “Image”]



 96 

is equal to a decimal number and not a whole number” (from type-written response). 

Absent any examples or backing for the warrant, the claim remained unproven.  

General.  

 General arguments are those that reflect analytic proof schemes (Harel & 

Sowder, 1998). Analytic proof schemes can be transformational or axiomatic. 

Transformational proof schemes are ones where “justifications are concerned with 

general aspects of a situation and involve reasoning oriented toward settling the 

conjecture in general” (Harel & Sowder, 1998, p.673, emphasis added) while 

axiomatic proof schemes are reflected in students who are comfortable working with 

mathematics as an organized body of knowledge “so that subsequent results are 

logical consequences of preceding ones” (p.674). The example below (see Figure 4.6) 

comes from Nathan’s work in Lesson 2. Nathan’s argument contains a claim (“10 to 

any exponent is a happy number”), data (4 examples), and a warrant (“1 to any power 

is one and 0 to any power is zero so 1 + any number of 0’s is still one”). I also include 

a diagram using the Toulmin model as an organizing scheme to highlight the parts of 

the argument.  

 In summary, this section characterized student responses to tasks that ask 

students to either generate a claim (Lessons 1 and 2) or qualify a claim (Lesson 3). 

These characterizations included images of student work, descriptions of 

distinguishing characteristics, and where possible references to previous research. 

Figure 4.6 
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Nathan’s General Argument. Typed Argument (left), Photo of Examples as Data 

(right), and Diagram (bottom).  

 

 

Shifts Toward Generalizing 

 In this section, I show how students’ work changed over time, going beyond 

describing how they generated examples toward justifying with general arguments. I 

review the written work of focal students Nathan and Nina, as students who 

exemplify the generalizing that emerged, to illustrate how their written work changed. 

Focal Student 1: Nathan  

  In response to the Fibonacci’s Rectangles task (Lesson 1), Nathan described a 

procedure (see Figure 4.3, above). Nathan is a middle-achieving student whose 

language fluency is recorded as “English Only”. When asked to generate and justify a 

“10 to any exponent is 
a happy number 
because 1 to any 
power is one and 0 to 
any power is zero so 1 
+ any number of 0's is 
still one” 
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claim about predicting sums of areas of Fibonacci Rectangles (Lesson 1), he 

described the procedure to generate a data table (by calculating the areas and then 

adding them). In response to the Happy Numbers task (Lesson 2), Nathan made a 

general argument. As a class, students spent time finding as many of the two-digit 

happy numbers (17 possible) as time permitted. Then, students were asked to make an 

argument about happy numbers. Nathan argued that “10 to any exponent is a happy 

number…” (see Figure 4.6, above). His claim is general, i.e., relevant to any power of 

ten. Moreover, Nathan justified the argument with implicit references to two 

mathematical properties. Nathan’s statements that, "1 to any power is one" implicitly 

refers to the identity property of multiplication while "0 to any power is zero" 

implicitly refers to the multiplication property of 0, which states that zero times any 

number is zero. Albeit a simple argument, it seems to exemplify an axiomatic proof 

scheme because Nathan is settling the conjecture in general and working with 

mathematics as an “organized body of knowledge” (Harel & Sowder, 1998).  

 In response to the Consecutive Sums task (Lesson 3), Nathan similarly 

argued, primarily with words and examples, that the sums of four consecutive whole 

numbers are never divisible by four (‘Conjecture A’). Nathan’s argument contained 

the example, “1+2+3+4 = 10” (see Figure 4.7). From here, Nathan noted that “it 

keeps adding 4 to 10”. At this point, I highlight a key aspect of Nathan’s argument: 

the representation of the multiples of four with words. To conclude, he stated that “10 

+ any multiple of 4 will not be divisible by four.” While Nathan made the statement 

as a matter of fact, the argument is general without the use of variables or a visual. 
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The absence of variables does not detract from the fact that Nathan represented with 

words what Usiskin (1988) referred to as an equation, or open mathematical sentence, 

where the variable is unknown: “10 + any multiple of 4” can be understood as 10 + 

4n. Nathan demonstrated a conceptual understanding of one purpose for variables.  

 Nathan’s written work changed from describing how to generate a data table 

to making a general argument and using the concept of variable. In Lesson 1, he 

described the procedure for calculating values to place in a table. In Lesson 2, he 

implicitly referred to two mathematical properties to make a general argument. In 

Lesson 3, he used the concept of variable when he justified his claim. After Lesson 1, 

Nathan described more than calculations but mathematical properties and concepts to 

support his arguments. He used language to represent and leverage mathematical 

properties (e.g., “0 to any power is zero”) as warrants and then invoked the 

mathematical concept of variable (“10 + any multiple of 4” as 10 + 4n) using mostly 

words.  

  



 100 

Figure 4.7 

Nathan’s General Argument from Lesson 3, Including Claim and Rationale (top), 

Examples (middle), and Diagram (bottom). 

 

 

 

Focal Student 2: Nina  

 Nina is a high-achieving student whose language fluency is recorded as RFEP. 

In Lesson 1, Nina provided a description for a procedure. In Lesson 2, Nina was 

asked to predict sums of areas of Fibonacci Rectangles and to generate an argument 

Convince a Skeptic (Explain with words and/or upload a photo of your work to 
show symbols, visuals, examples, or other work)

Conjecture 1.

I think it’s always true.. (B).  because.... Any 2 
consecutive numbers added together will be 
odd. (an odd + an even is odd, and consecutive 
numbers are always odd + even) For example, 
1+2+3+4+5 = 15, and 15 IS divisible by 5.

Conjecture 2.

I think that A is never true because it keeps adding 
4 to 10, and 10 + any multiple of 4 will not be 
divisible by 4. For example, 1+2+3+4=10 and 10, is 
NOT divisible by 4.

● A skeptic doesn’t believe you.  Show how your conjectures work for any sum.  What math ideas 
support your conjecture?  What picture or visual?  Can you demonstrate an example?

Convince yourself.  Explore and make a conjecture
● Pick 2 conjectures (either A, B, C, D, E, or F).
● Upload a photo for each one.  How you convinced yourself if it was Always, Sometimes, or 

Never true.  Basically, how you explored the conjecture.

[Put photo 1 here using “Insert” and “Image”] [Put photo 2 here using “Insert” and “Image”]
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about why the prediction works. She filled in the table of values and described the 

procedure to calculate values in the table. The description of the procedure is shown 

in Figure 4.8.  

Figure 4.8 

Nina’s Description from Lesson 1, Including Her Narrative (left) and Annotations 

(right). 

  

 Nina’s response was categorized as generating no claim (see Figure 4.2, 

above). The response was a complete listing of each happy number that she found. 

The submission was a complete response to Part A of the task, but not a response to 

the final prompt, which invited students to find more Happy Numbers (without 

calculating), containing either two or three digits, and justify why their method 

works. After Lesson 2, Nina and I conferenced about her response. In Lesson 3, Nina 

submitted two general arguments (see Figure 4.9 for diagrams and Figures 4.10 and 

4.11 for original work). 

  

The Sum of the 
Areas will always 
be the area, of 
the rectangle 
you're on, plus 
the previous Sum 
of the Areas. 
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Figure 4.9 

Diagrams of Nina’s General Arguments for Conjectures E (top) and F (bottom).  
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Figure 4.10 

Nina’s Written Argument for Conjecture E. ‘Convince Yourself’ (top), ‘Convince a 

Friend’ (middle), and ‘Convince a Skeptic’ (bottom). 

Convince yourself.  Explore and make a conjecture
● Pick 2 conjectures (either A, B, C, D, E, or F).
● Upload a photo for each one.  How you convinced yourself if it was Always, Sometimes, or 

Never true.  Basically, how you explored the conjecture.

[Put photo 1 here using “Insert” and “Image”] [Put photo 2 here using “Insert” and “Image”]

Convince a Friend.  [Add text to each box]

Conjecture 1.

When I was exploring conjecture E, I 
remembered that, out of the two consecutive 
whole numbers I needed to add, one would be 
even and the other would be odd. This comes in 
handy because, when you add an odd number 
and an even number together, you get an odd 
number. Therefore, when you add two 
consecutive whole numbers, you will always get 
and odd number as the answer.

Conjecture 2.

When I was exploring conjecture F I noticed 
that every time I tried it out, the conjecture was 
correct. 

● Use words to explain what your work shows for each conjecture.  Explain how you know if it’s 
Always, Sometimes, or Never true.
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Figure 4.11 

Nina’s Written Arguments for Conjecture F. ‘Convince Yourself’ Response (top), 

‘Convince a Friend’ Response (middle), and ‘Convince a Skeptic’ Response (bottom). 

  

Convince a Skeptic (Explain with words and/or upload a photo of your work to 
show symbols, visuals, examples, or other work)

Conjecture 1. Conjecture 2.

● A skeptic doesn’t believe you.  Show how your conjectures work for any sum.  What math ideas 
support your conjecture?  What picture or visual?  Can you demonstrate an example?

Convince yourself.  Explore and make a conjecture
● Pick 2 conjectures (either A, B, C, D, E, or F).
● Upload a photo for each one.  How you convinced yourself if it was Always, Sometimes, or 

Never true.  Basically, how you explored the conjecture.

[Put photo 1 here using “Insert” and “Image”] [Put photo 2 here using “Insert” and “Image”]

Convince a Friend.  [Add text to each box]

Conjecture 1.

When I was exploring conjecture E, I 
remembered that, out of the two consecutive 
whole numbers I needed to add, one would be 
even and the other would be odd. This comes in 
handy because, when you add an odd number 
and an even number together, you get an odd 
number. Therefore, when you add two 
consecutive whole numbers, you will always get 
and odd number as the answer.

Conjecture 2.

When I was exploring conjecture F I noticed 
that every time I tried it out, the conjecture was 
correct. 

● Use words to explain what your work shows for each conjecture.  Explain how you know if it’s 
Always, Sometimes, or Never true.
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Nina’s arguments used algebraic concepts, such as modeling a situation with 

variables, and seemed to use axiomatic proof schemes. In her argument for 

Conjecture E (which stated that “The sum of two consecutive whole numbers is an 

odd number”), Nina used warrants, backing, and data to support her selection that the 

conjecture was “Always” true. Nina’s warrant stated that the conjecture must be true 

because when adding two consecutive whole numbers “one of the numbers … would 

have to be odd and the other number would have to be an even number.” As backing, 

she included a “numerical order” list of whole numbers that is annotated with the 

letters “o” and “e”, presumably to designate odd and even numbers and illustrate 

them alternating (see Figure 4.10). Nina suggested that the pattern could be extended 

indefinitely using ellipses and the abbreviated phrase, “etc.” Her data included what 

appeared to be four strategically chosen examples. Two of the examples included 

sequences of numbers that begin with even numbers, “4+5=9” and “10+11=21,” and 

the other two included sequences of numbers that begin with odd numbers, “1+2=3” 

and “25+26=51”. This argument is general and shows Nina’s capacity for creating 

and using her own resources, such as the “numerical order” list with annotations, and 

strategic and thoughtful use of examples (Ellis et al., 2012).  

 Nina’s second argument was closer to an algebraic proof because it relied on 

the algebraic properties that make transformations of equations possible, such as the 

distributive property. Nina qualified Conjecture F, “The sum of six consecutive whole 

numbers is divisible by the sum of the middle two numbers,” as always true. Like her 

argument for Conjecture E, Nina recorded some examples in the “Convince Yourself” 
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portion of the Convince Form, essentially an empirical argument. Then, she 

“convinced a friend” by stating that she “noticed” the conjecture was true for every 

example. Then, when “convinc[ing] a skeptic”, she used variables to model the 

situation. Nina modeled the sum of six consecutive numbers as “n + (n+1) + (n+2) + 

(n+3) + (n+4) + (n+5)” or “6n+15” (see Figure 4.11). This equation embodies 

Usiskin’s (1988) use of variable for the purpose of ‘equations’ where the variable is 

unknown. Nina highlighted the middle two terms as having a sum of “2n+5” and 

implicitly used the distributive property to assert that “…you will always be able to 

multiply the sum of the two middle numbers by 3 to get the sum of the six 

consecutive whole numbers.” Nina left implicit that if the sum of the two middle 

numbers is a factor of the sum of the six consecutive whole numbers, then the sum of 

the six consecutive whole numbers is divisible by the sum of the two middle numbers 

(by the definition of ‘factor’). Nina changed from writing descriptions and lists to 

making generalized arguments that provided warrants, backing, and examples to 

justify the ways she qualified claims.  

 Nina’s written work changed from describing procedures and listing examples 

(in Lessons 1 and 2) to making general arguments that included mathematical 

resources she created, and modeling with variables. Nina used writing to 

communicate the kind of generality that is required of a mathematical proof. 

Specifically, her use of ellipses, the phrase “etc.”, and the word “always” point 

toward settling her qualification of Conjecture E in general (see Figure 4.10). When 

justifying her qualification of Conjecture F as always true, Nina modeled the situation 
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with variables and then used language (rather than transforming the equations) to 

indicate that the product of three and the “middle two numbers” (as ‘2n + 5’) will 

always yield the sum of six consecutive integers (as ‘6n + 15’).  

Using Examples in Logically Sound Ways 

 In this section, I show how students’ responses changed from using examples 

to support their claims (without considering examples that do not) to using examples 

as data or evidence in a mathematical argument that is consistent with all available 

examples. I review the written work of focal students Renato and Amaya to illustrate 

the change. While empirical arguments are not considered general (as they do not 

consider the need for a general justification), the change reflects a use of examples 

that is logically sound and part of a larger process for understanding a problem 

situation. 

Focal Student 3: Renato  

 Renato is classified as a “low-achieving student”, but he learned to justify the 

ways he qualified claims in the final task. For Lesson 1, students worked on the 

Fibonacci Rectangles task. They were asked to conjecture about any patterns present 

in the tables they generated. Renato submitted a photo that shows a table with the first 

two sums of rectangle areas for the Fibonacci Rectangle task coded as no-claim (see 

Figure 4.12). The photo contains the first four rectangles that are generated using the 

numbers in the Fibonacci sequence. The sequence that Renato lists includes “1, 1, 2, 

3, 5, 8, 13, 21” and his rectangles have dimensions 1 X 1, 1 X 2, 2 X 3, and 3 X 5. 

The table has columns for the “sum of the area” and “breakdown shapes”. The two 
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listed sums of 3 and 9 are correct for the sums of the first two and three rectangles, 

respectively. The student’s response did not include a pattern or a claim, so this 

response was coded as ‘generated no claim’.  

Figure 4.12 

Renato’s Photo Submission for Lesson 1. 

 

 In Lesson 2, the Happy Numbers task asked students to find two- or three-

digit happy numbers (without calculating) and justify why their method works. Recall 

that Happy numbers are found by separating the digits of a number, squaring each 

digit, and then adding the resulting products. If the result is 1, then the number is 

‘happy’; however, if not, then the process repeats until it results in a 1 or a number is 

repeated (in which case the number is not ‘happy’).  

 In his response for Lesson 2, Renato described the procedure specified above 

(see Figure 4.13). Strictly speaking, the description is not correct because Renato 

indicated “multiply[ing]” by two rather than squaring, but the example in the photo 
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correctly illustrates the arithmetic procedure and shows 23 as a “happy” number. 

Renato performed the procedure correctly, although he described it without canonical 

mathematical language.  

Figure 4.13 

Renato’s Photo Submission (left) and Accompanying Description (right): Lesson 2. 

  

 In response to the Consecutive Sums task (Lesson 3), Renato used examples 

to support the ways he qualified claims. To begin, Renato qualified four of the six 

conjectures correctly (see Figure 4.14). Of those, he selected two to justify 

(Conjectures A and B). When prompted to ‘convince a friend’ that the qualifications 

are correct, Renato listed one example for each (see Figure 4.15), generating 

empirical arguments. He did not post any additional work in response to the prompt 

for ‘convincing a skeptic’.  

  

you have to get a 
number separate the 
number and then 
multiply each number 
by two.and if it ends at 
one then its happy 
and if it doesnt then its 
not happy 
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Figure 4.14 

How Renato Qualified Claims 

 

Figure 4.15 

Renato’s Empirical Argument for Conjectures A and B 

 

As with all empirical arguments, Renato did not address the need for a more general 

argument. Based on the strength of a single example, the claims are assumed to be 

justified as always true (as in the case of Conjecture B) or never true (as in the case of 

Conjecture A). Generality notwithstanding, the way Renato qualified the claims and 

their respective examples were correct. At this point, Renato was poised to consider 

Cards!  Click and Drag these 
statements to make a 
conjecture.. 

Always True Sometimes True Never True

Convince a Friend.  [Add text to each box]

Conjecture 1. A:1+2+3+4=10÷4=2.5 is never 
true

Conjecture 2. B:1+2+3+4+5=15÷5=3 always 
true

● Use words to explain what your work shows for each conjecture.  Explain how you know if it’s 
Always, Sometimes, or Never true.
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how to represent this mathematical situation (e.g., with variables or other visual 

representation). In comparison to the first two lessons, Renato’s response changed to 

reflect an empirical proof scheme, thus showing progress. In Lesson 1, he was just 

beginning to engage the task (showing some calculations without having generated a 

claim) and in Lesson 2, his response was to describe a procedure.  

 Renato’s written work shows a student whose engagement with examples 

changed over the lessons. The first two lessons culminated in tasks that prompted 

students to generate a claim. In Lesson 1, Renato submitted two examples. He made 

no claim about patterns in the table. In Lesson 2, Renato provided an example and 

described the process for generating examples to fill a table. Thus, he used language 

to describe how he would fill the table. Lesson 3 culminated in a task prompting 

students to qualify claims for which Renato correctly qualified four of the six claim 

cards and justified the selections of two (Conjectures A and B) with empirical 

arguments. This illustrates how Renato’s use of examples changed as they are no 

longer the main substance of Renato’s responses, but evidence to support a larger 

argument about how the claims were qualified.  

Focal Student 4: Amaya 

 Amaya is classified as a mathematically “low-achieving student” and learned 

to avoid logical fallacies and argue empirically. In Lesson 1, she attempted to 

generate a claim and justify it. The Fibonacci Rectangles task asks students to find 

patterns in the sums of rectangles whose dimensions are derived from the Fibonacci 

sequence. Amaya generated the claim that “A pattern of the sum of rectangles it [sic] 
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keep adding more squares and the pattern is going by odd and even” (see Figure 4.16, 

emphasis added). It appears that Amaya was suggesting that one possible pattern in 

the sums is the alternation of the sums as odd and even numbers. Amaya also 

included a photo of her data table. Note that she did not support the claim with the 

data available in the table (see Figure 4.16). There are both even and odd sums 

present in the “sum of the areas” column, but they do not go “by odd and even”.  

Eventually, Amaya changed to using her examples as data in an empirical 

argument that considered all available examples. In Lesson 2, Amaya did not submit 

a response. In Lesson 3, Amaya submitted her card sort for the Consecutive Sums 

task, where claims were qualified by placing conjecture cards in columns labeled 

“Always True”, “Sometimes True”, and “Never True”. Amaya correctly placed three 

cards (Conjectures A, B, and E) and possibly a fourth (Conjecture C; see Figure 

4.17). Amaya submitted empirical arguments to justify how she qualified Conjectures 

A and B. She argued that the sum of four consecutive whole numbers (Conjecture A) 

is never divisible by four, citing three examples (see Figure 4.5, above). Similarly, 

she argued that the sum of five consecutive whole numbers (Conjecture B) is always 

divisible by five (see Figure 4.18), citing the same number of examples. 
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Figure 4.16 

Amaya’s Claim (top) and Data Table (bottom) from Lesson 1 
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Figure 4.17 

Amaya’s Qualified Claims for Lesson 3 

 

Figure 4.18 

Amaya’s Empirical Argument for Conjecture B, Lesson 3 

 

 From Lesson 1 to Lesson 3, Amaya changed how she used the available 

examples. In Lesson 1, she generated a claim that the Fibonacci rectangle pattern was 

Cards!  Click and Drag these 
statements to make a 
conjecture.. 

Always True Sometimes True Never True

Convince yourself.  Explore and make a conjecture
● Pick 2 conjectures (either A, B, C, D, E, or F).
● Upload a photo for each one.  How you convinced yourself if it was Always, Sometimes, or 

Never true.  Basically, how you explored the conjecture.

[Put photo 1 here using “Insert” and “Image”] [Put photo 2 here using “Insert” and “Image”]
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going “by odd and even” (Figure 4.16). This preconceived idea was not supported by 

all the data available in her table, which indicated values of 3, 9, 24, 64, 168, 441, and 

1155. So, this argument represents cherry picking because only some of the data 

support the claim: a logical fallacy. By Lesson 3, Amaya was selecting examples as 

empirical data to justify the ways she qualified claims, but all the available examples 

support the way the claims are qualified. Amaya’s written work highlights the need to 

draw students’ attention to a collection of examples as an example space (Watson & 

Mason, 2005) rather than focusing narrowly on only those examples that support a 

priori beliefs. 

Generating Claims 

 In this section, I show how, lesson-to-lesson, students shifted from not 

generating any claims to generating claims in one of two forms: generating claims or 

qualifying claims. I review descriptive data from Lessons 1, 2, and 3 and show how 

some students initially had difficulty generating claims and justifying them (Lesson 

1), shifted toward generating claims and justifying (in Lesson 2) and then qualifying 

and justifying claims (in Lesson 3). In this section, I review overall responses to the 

tasks and illustrate changes in how students made claims with the written work of 

focal students Oscar and Filomeno. 

 In Lesson 1, only three of the 14 respondents (there were 44 total participants) 

generated a claim in response to the Fibonacci Rectangles task, which asked them to 

generate a claim (see Table 4.1). Nine participants submitted descriptions of 

procedures, two participants submitted work without generating a claim, and 30 
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participants submitted no response. None of the responses that included claims were 

justified (or even justifiable). One example was discussed in Amaya’s written work, 

above (see Figure 4.16). The claim she generated was countered by her own 

presented data (examples). Likewise, Oscar and Filomeno generated claims that were 

not supported by the data and examples they provided. Both appear to be attempts at 

empirical arguments of the second type: perceptual (Harel & Sowder, 1998).  

 Oscar is characterized as a “low-achieving student” but is a participant in the 

Special Education program. A full-time Instructional Assistant supports his activity in 

the classroom tasks because of the nature of his cognitive diversity. Oscar’s claim 

was that the sums of areas for Fibonacci Rectangles “…were going up by 3 every 

time” (see Figure 4.19). While his table of values seems to corroborate that claim, the 

calculations that produced the “sum of the areas” column were not correct.  

Figure 4.19 
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Oscar’s Generated Claim (left) and Data (right) for Lesson 1. 

 

 Filomeno also made a claim that was not supported by his own data. He 

asserted that each subsequent term in the table could be reached by adding some 

number of threes (see Figure 4.20). Only some of the data in the table supported this 

claim. This appears to also be a case of cherry-picking. 

Figure 4.20 

I convinced a friend by 
explaining him that the 
fibonnaci numbers in the 
squares and rectangles 
were going up by 3 every 
time. 
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Filomeno’s Generated Claim with Two Examples (upper and lower left) with Data 

Table (right) 

  

The table of values that Filomeno supplied includes values that support the claim and 

others that do not. For example, 9, 24, 441, and others, can be represented as a sum of 

some number of threes. However, other values cannot be represented as the sum of 

some number of threes (i.e., 64 and 3,025). Consequently, it is possible that Filomeno 

generated the conjecture without verifying each datum in the table. Alternatively, 

Filomeno may have been aware of the discrepancy but ignored it. Either way, it could 

also be considered a form of cherry picking. 

 For both focal students, Oscar’s and Filomeno’s arguments appear to 

represent attempts at perceptual empirical arguments. These are arguments based on 

“rudimentary mental images” (Harel & Sowder, 1998). For example, for Filomeno, 

the data in the table appear to follow a pattern where each sum contains a multiple of 

three (written as a sum of some number of threes). However, two values do not 

satisfy the claim. The written work for both students appears to illustrate a habit of 

I kept on adding 3 to match 
up with the numbers in the 
sheet. 
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mind called “pattern sniffing” (Cuoco, Goldenberg, & Mark, 1996) and suggests that 

they are on their way to generating a viable claim. 

 In Lesson 2, two of the nine participants generated and submitted claims for 

the Happy Numbers task, which prompts students to generate a claim. Most students 

did not submit responses, but five students submitted descriptions and two submitted 

work with no claim (see Table 4.1). Antonio and Nathan submitted claims that they 

generated and justified. Antonio asserted that two numbers were “the same”, i.e., both 

happy numbers, because the order of the digits did not matter (see Figure 4.21). 

Although this is not a general claim, it does demonstrate that two numbers, 301 and 

310, both result in being happy numbers because the digits are “…just in different 

orders [sic]”.  

Figure 4.21 

Antonio’s Generated Claim (top) and Data (bottom) Submitted in Lesson 2. 
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Antonio’s calculations showed how squaring the digits of 301 and 310 will result in 

the same sum of 1. Thus, they are both happy numbers. Nathan, on the other hand, 

provided a far more general claim because it applies to any power of ten. Nathan 

claimed that “10 to any exponent is a happy number…” (see Figure 4.22). His claim 

is general because it is relevant to any power of ten. Moreover, Nathan justified the 

argument implicitly using two mathematical properties. Nathan’s statements that, "1 

to any power is one" implicitly uses the identity property of multiplication while "0 to 

any power is zero" implicitly uses the multiplication property of 0. Albeit a simple 

argument, it was the first argument generated by a student that represented an 

axiomatic proof scheme (Harel & Sowder, 1998).  

 While Antonio’s and Nathan’s arguments differ in terms of generality, they 

appear to represent significant mathematical progress. Focal student Nathan was the 
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first student to generate and justify a general claim: applicable to a class of numbers 

(i.e., the powers of ten). Antonio’s written work illustrates a critical inflection point in 

learning to construct arguments. Antonio’s focus, the ‘sameness’ of two specific 

examples, relies on the mathematical property of commutativity, i.e., not simply on 

the calculations that show that both numbers are Happy. How much longer before 

Antonio comes to the realization that the digits of any happy number can be 

rearranged to create more happy numbers? The kind of exploration in which Antonio 

engaged could be a gateway to generating more general claims and justifying them. 

Antonio’s argument is discussed at length in a future section (Chapter 5) and in the 

student-researcher conference which took place after Lesson 2. 

Figure 4.22 

Nathan’s Argument (left) and Examples (right) from Lesson 2. 

 

 

“10 to any exponent is a happy 
number because 1 to any power is 
one and 0 to any power is zero so 
1 + any number of 0's is still one” 



 123 

 The Consecutive Sums task (Lesson 3) was different from the other two major 

tasks that students completed. First, students qualified claims by sorting “conjecture 

cards” as always, sometimes, or never true (6 total cards available). So, claims (or 

conjectures) did not need to be generated by the students. Secondly, due to low 

participation rates (Lessons 1 and 2), I changed the presentation of the Convince 

Form. Rather than the online form, which was accessible through external links, I 

made editable slides available for each student in the Google Classroom platform 

(which is where their classwork is typically housed).  

 Overall, Lesson 3 saw a dramatic increase in participation. Most participants 

qualified claims (40 of 44). These students qualified an average of 5.3 claims (out of 

six possible) at a rate of 77.5% correct (i.e., nearly four out of the five qualifications 

were correct). Eleven of the 40 participants made at least one argument (either 

empirical, partial, or general) to justify the ways they qualified the claims while the 

rest qualified claims without justifying or did not respond. See Table 4.4 for a 

summary. 

Table 4.4 

Summary of Responses for Items 1 and 2 of Lesson 3 (Qualifying-a-claim Tasks). 

Qualifying a claim Item 1 Responses Item 2 Responses 
No response 4 7 
Qualified Claim, only 29 28 

Qualified and 
justified Claim 

Empirical 6 6 
Partial 2 0 
General 3 3 

 Total 44 44 
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 In summary, the changes in the students’ participation reflect a move from not 

generating claims (or not making viable claims) in Lesson 1 to generating and 

justifying mathematical claims in Lesson 2, and then selecting and justifying claims 

in Lesson 3. In Lesson 1, most students (30 of the 44 participants) did not submit 

work. Most of the submissions included descriptions of procedures (9 students) and 

some generated non-viable claims that appear to be attempts at perceptual empirical 

arguments. No viable claims were generated in Lesson 1. In Lesson 2, much like 

Lesson 1, most students did not submit work (N = 35) and descriptions of procedures 

were the most common response (N = 5). A critical difference is that the claims 

generated in Lesson 2 were both viable, one of which represented an analytic proof 

scheme. Whereas Lessons 1 and 2 culminated in tasks prompting students to generate 

a claim, Lesson 3 culminated in a task prompting students to qualify claims. The 

majority of students (40 of the 44 participants) qualified claims and 11 of those 

students attempted to justify how they qualified claims with either empirical, partial, 

or general arguments. The focal students were typical of the latter group of 11 

students who went beyond simply qualifying claims and included an argument. 

 This represented a significant improvement in participation and the kinds of 

arguments students made. Moreover, students who qualified claims (only) had a 

slightly higher percent correct than those who qualified claims and then attempted to 

justify how they qualified the claims (78.4% versus 74.2%). The high level of 

participation and increased presence and variety of arguments supports the notion that 

students should be scaffolded to make better arguments by first giving them task that 
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ask them to qualify claims and then justify them before moving to tasks that ask 

students to develop and generate their own claims to justify. Tasks that ask students 

to qualify claims (rather than generate them) model the kinds of claims that are 

possible, as well as the kind of generality that is valued in mathematical argument and 

proof.  

Summary of Findings 

 As students learned to generate claims and justify them through their written 

work, the data suggest several considerations. Students’ early efforts were susceptible 

to logical fallacies, specifically in the form of cherry picking. As students worked to 

generate a claim, they were either willing to ignore some of the available data or did 

not (correctly) account for all of the available data. Consequently, there appears to be 

a need to focus students on the entire corpus of examples as related to whatever 

mathematical claims are at play.  

Discussion  

 Student descriptions of procedures resemble the procedural explanations 

found in other research (for example, see Hebert & Powell, 2016). Procedural 

explanations use mathematical vocabulary to describe the procedures employed by 

students rather than mathematical concepts. The difference is critical because only the 

latter engenders writing for the purposes of mathematical reasoning (Casa et al., 

2015). For the participants of this study, a procedural explanation related to, for 

example, the steps taken to determine whether a number is happy is only a first step 



 126 

in a larger process of inquiry that ultimately seeks to generate more generalized 

claims applicable to classes of numbers that might be ‘happy’.  

 A next step in learning to generate claims, students would need to consider 

their examples as interconnected (Watson & Mason, 2005). A shift from generating 

examples (or describing how to generate them) to using them as evidence to support a 

claim is also significant. For example, in the case of Antonio. Antonio implicitly used 

the commutative property of addition as a warrant for the “sameness” of two 

examples. Teachers should notice this kind of reasoning and support it. That shift 

could signal a transition from the task of generating examples, where calculating each 

example is the focus, toward searching for and noticing patterns in the examples, with 

examples serving a variety of purposes (Ellis et al., 2012).  

 The analysis also showed that some students shifted from not generating 

claims to generating and justifying claims in Lesson 2 and qualifying and justifying 

claims in Lesson 3. In Lesson 1, only three of the 44 participants attempted to make a 

claim, but none of the claims were valid. In Lesson 2, two students made valid claims 

and justified them. By Lesson 3, 40 of the 44 participants qualified claims from a 

given set, 10 of whom even made an argument (either empirical, partial, or general). 

Initially, I was discouraged by the students who qualified claims, only because this 

seemed a minimal level of participation. However, students who qualified claims 

(only) in Lesson 3 averaged 78.4% accuracy (i.e., roughly 4 out of 5 cards were 

correctly placed as ‘always,’ ‘sometimes,’ or ‘never’ true). The ‘qualified claims 
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(only)’ category represented the largest group of students (29 students for Item 1 and 

28 students for Item 2).  

 One explanation for these responses could be the relative ease of qualifying a 

claim when compared to generating a claim. Since qualifying a claim required less 

effort than generating one, more students participated. Indeed, Banes (2019) found 

stronger student responses, i.e., students’ written efforts to justify, associated with 

tasks that asked students to qualify claims (what she referred to as “selected-claim” 

tasks) and did not require students to “develop and articulate” their own claim (p.25). 

Alternatively, the increase in participation could have been a consequence of a 

change in presentation of the Convince Form. In Lessons 1 and 2, I supplied students 

with an outside link to a fillable form where they could upload photo files and type 

responses to prompts (see Appendix H). In contrast, Lesson 3’s form was placed as an 

embedded activity (editable slides) among the other classroom assignments on the 

Google Classroom platform (see Appendix I). They clicked and dragged the claims to 

whichever column seemed an appropriate way to qualify them (either as “always 

true”, “sometimes true”, or “never true”) and then had the options to justify their 

choice by typing text and/or uploading photos to additional slides. It is possible that 

the inclusion of the form with their other classroom assignments provided a familiar 

platform and greater motivation to complete it.  

 While the “absence” of justifying by three out of four students is concerning, 

the students qualified claims with great accuracy. So, why did students who took time 

to qualify so many claims so accurately not take the time to justify their 
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qualifications? It is possible that many students were simply overly concerned with 

getting the “right answer” quickly (Lampert, 1990). Having submitted their answers, 

perhaps they did not feel a need to continue.  

  The students who generated their own claims, Nathan and Antonio, represent 

an important shift when compared to the beginning of the study. Like their peers, 

neither of these students generated a claim in Lesson 1. However, in Lesson 2, 

Nathan generated a claim about a class of numbers (“10 to any exponent”, i.e., the 

powers of 10). This shift toward generating claims about a class of numbers, rather 

than individual examples, represents the kind of generalization that is emblematic of 

mathematical arguments. 

Conclusions and Implications for curriculum and instruction 

 We need to expand how we analyze arguments so that we include an analysis 

of the claims. Numerous students communicated difficulty when asked to generate 

their own claim (i.e., with open-claim tasks). However, fewer had difficulty with 

tasks that prompted them to qualify a claim, so this might be a good starting place for 

all students. Using tasks that prompt students to qualify a claim could be a good place 

to practice building an example space and looking for mathematical structure. In turn, 

students could use their newly acquired capacities for navigating example spaces to 

refine their capacities for developing, refining, and ultimately generating claims. This 

kind of dialectic approach needs to be included in curriculum and instruction in order 

to support students ongoing efforts to learn the proof process. 
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 By the end of the study, 90% (40 out of 44) participants (most of whom had 

not previously submitted work) were selecting claims, although only 11 of them 

justified their selections with arguments. Among those 29 students that did not justify, 

they chose always, sometimes, or never with 78.4% accuracy. Twenty-seven of these 

29 students were multilingual (see Table 4.3). This could suggest that language is an 

issue for justifying, as well as generating claims. However, many of the students who 

put claims, only, were also lower achieving students. Of the 29 that made claims-only 

in Lesson 3, 19 were from the low-achieving group of students and nine were from 

the middle-achieving group. Only one was from the high-achieving group. It could be 

that for lower-achieving students, the intensive demands on mathematical calculation 

and communication are creating a barrier to focusing their efforts on justifying.  

 Additional research needs to provide further analyses of students’ empirical 

arguments to see how those change. Drawing distinctions between different kinds of 

empirical arguments might be a useful step toward understanding how students 

engage examples and, eventually, guiding students to engage the underlying 

structures that an example space might offer. Expanding how we analyze empirical 

arguments could be a productive way to guide students toward more general 

arguments that utilize analytic proof schemes. Before introducing tasks that prompt 

students to generate a claim, curricula should introduce tasks that prompt students to 

justify a given claim or qualify a claim and justify their choices (Banes, 2019). 

Students need time to see the connections and relationships between generating 

claims, justifying them, and the data (often as examples) upon which they base their 
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reasoning for themselves. That means that ample time must be allotted for students to 

explore and construct an example space and a variety of claims. Moreover, students 

should be encouraged to use different types of examples for different purposes (Ellis 

et al., 2012). For example, teachers could support students to consider not only ‘easy’ 

or ‘first-thought-of’ examples but expand to include ‘conjecture-breaking’ or 

‘generic’ types of examples for the purposes of ‘understanding’, ‘checking’, or 

‘supporting a general argument’ (Ellis et al., 2012).  
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Chapter 5: Conferencing as a place for oral revision  

 In this chapter I present analyses of the Convince Form and the mathematical 

conferences. In my analysis of the conferences, I examine students’ writing, other 

inscriptions, and their classroom discussions (as a mathematical text) to document 

how they revised or extended their submitted work. This analysis addresses Research 

Question 3: 

3. In what ways did students revise their mathematical arguments during 

conferencing? 

 Here I describe the organization of the chapter in two sections. The first 

section describes the methodology relevant to the analyses in this chapter. The second 

section examines two focal students (Nina and Antonio) to illustrate how some 

students revised their responses to make an argument or revised their argument. 

Nina’s written work illustrates how she changed from a list of calculations to generate 

novel examples without a need for calculating. Antonio’s written work illustrates how 

he revised his empirical argument, expanding to include a visual representation, and 

moved toward an analytic argument. In the third section, I examine the written work 

of Yolanda and Ricardo to illustrate how some students revised their procedures for 

testing claims and usage of formal terms. The chapter concludes with a discussion of 

the results and then implications for research and practice. 

 Research question #3 sought to further understand the kinds of arguments, if 

any, students generated in writing. In the previous chapter, I analyzed student 

responses in the Convince Forms. In this chapter, I analyze how students revised or 
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extended their work during oral conferencing. The analysis shows that during 

conferencing, some students revised procedures and their use of formal terms while 

others revised arguments. I illustrate the findings through the work of four focal 

students that show how during conferencing 1) two students revised their responses to 

make an argument or revised their argument (Nina and Antonio) and 2) two students 

revised the procedures related to testing claims and their use of formal terms 

(Yolanda and Ricardo).  

 During the conferencing, 10 of the 11 students orally revised the work they 

submitted in the Convince Forms, which were submitted at the end of each lesson. 

Table 5.1 summarizes the students’ names by conference round and the revisions they 

made. As a reminder, the first round of conferences involved five students and 

focused on their Convince Form responses for Lesson 2 (Happy Numbers task). The 

second round of conferences involved seven students and focused on their Convince 

Form responses for Lesson 3 (Consecutive Sums task). Additional information on the 

conferences can be found in the Methodology section, below, and the Methodology 

chapter (Chapter 3).  
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Table 5.1 

Summary of Conferences by Round, Includes Revisions and Pre/post Conference 

Codes. 

T
as

k  

Student 
Pre-
Conference 
Codes 

Conference Revisions 
Post-
Conference 
codes 

R
ou

nd
 1

- 
H

ap
py

 N
um

be
rs

 (
H

N
) 

Nina* Generated No 
Claim 

Nina revised a list of calculated 
examples to Included novel examples 
generated without calculating. 

Qualified and 
Justified 
(empirical) 

Noah Generated No 
Claim 

Clarified how to calculate exponents 
and test for a Happy Number. 

Generated No 
Claim 

Norbert Description Revised description of the Happy 
Number procedure and related 
argument. 

Qualified and 
Justified 
(empirical) 

Ricardo* Description Ricardo revised the Happy Number 
procedure when we clarified words 
and phrases.  

Description 

Antonio* Qualified and 
Justified 
(partial) 

Revised claim about 301 and 310 
being the same (i.e., Happy Numbers), 
and generated novel examples without 
calculating. 

Qualified and 
Justified 
(general) 

R
ou

nd
 2

-  
C

on
se

cu
ti

ve
 S

um
s 

(C
S

) 

Jose Qualified 
Claim, Only 

Jose revised his empirical argument by 
providing definitions for odd/even 
numbers that informed a new warrant. 

Qualified and 
Justified 
(partial) 

Marta Qualified 
Claim, Only 

Revised procedures for Conjecture B 
and generated an empirical argument. 
Clarified the term “consecutive”.  

Qualified and 
Justified 
(empirical) 

Yolanda* Qualified 
Claim, Only 

Revised procedures for Conjecture C 
and generated an empirical argument. 
We clarified the term “consecutive”.  

Qualified and 
Justified 
(empirical) 

Maggie Qualified 
Claim, Only 

Revised response for Conjecture B to 
generate an empirical argument. She 
needed support with calculation and 
formal terms.  

Qualified and 
Justified 
(empirical) 

Josefina Qualified and 
Justified 
(empirical) 

Revised empirical argument on 
Conjecture B. She needed support with 
formal terms (“average”).  

Qualified and 
Justified 
(empirical) 

Amaya Qualified and 
Justified 
(empirical) 

No revision.  Qualified and 
Justified 
(empirical) 

Antonio* Qualified and 
Justified 
(empirical) 

Antonio revised his empirical 
argument on Conjecture B to include a 
warrant based on a visual he 
generated.  

Qualified and 
Justified 
(general) 

*Focal Student in this chapter. 
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In the first round, most students revised their work to reflect a new proof scheme or 

other revisions, such as revision of a procedure or use of vocabulary. In the second 

round of conferences, which focused on the Consecutive Sums task, four of the seven 

students entered having qualified claims, only (see Figure 4.4 for description). These 

students explored definitions, relevant vocabulary, and procedures, ultimately leading 

to them expanding into empirical and even somewhat general arguments. Only one 

student was committed to the ideas they started with, not revising any part of their 

response. 

Methodology 

  A fuller description of the methodology is available in the Methodology 

chapter (Chapter 3). Briefly, I will summarize the approach here. I conducted two 

rounds of conferences. The conferences were conducted like student interviews 

(Brenner, 2006). First, I prepared for the conference by examining student responses 

to the Convince Form, in which students were prompted to convince themselves, a 

friend, and a skeptic of the certainty of their mathematical claim(s). Then, I prepared 

1-3 follow-up questions to elicit further reflection. Then, I met individually with 

students for 10 – 12 minutes. I use proof schemes (Harel & Sowder, 1998) and the 

Toulmin model of argument (Toulmin, 2003) as frames to describe student arguments 

and how they changed. 

 As described earlier, the role of the mathematical writing that was submitted 

in the Convince Forms was to assess student engagement with mathematical structure 

and provide a shared focus of attention for the conference (Moschkovich, 2004). The 
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lesson called for teachers to assess student work and provide written feedback. The 

written feedback could involve (MARS, p.T-3): 

1. Writing one or two questions on the student’s work and returning that to the 

student, or 

2. Selecting a few questions that would help the “majority” of the students, 

writing them on the board, and discussing them with the class. 

After assessing the student work, I presented the questions in the conference setting to 

ensure that the feedback was understood (Aguirre & Bunch, 2012) and elicited further 

engagement with mathematical structure. Thus, the Convince Form provided a shared 

focus of attention, and the oral conference provided a time and place where we could 

further organize, clarify, reflect upon, or revise the ideas in the written responses to 

support learning. That is, we used writing as a tool for mathematical learning 

(Gillespie et al., 2014). 

 Because the analysis examined the ways students revised written work while 

conferencing, I selected focal students from both rounds of conferencing, alongside 

demographic diversity, achievement levels and English proficiency. Focal students 

Nina, Antonio, and Ricardo all responded to all three Convince Forms when given the 

opportunity. Yolanda only responded to the final Convince Form but agreed to 

participate in the conference. I invited six of the nine students who filled out 

Convince Forms for the first round of conferencing (after Lesson 2) and five attended. 

I invited 20 of the 40 students who filled out Convince Forms (after Lesson 3; with an 
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additional four students on stand-by) and seven attended. The four focal students 

were selected from the 11 unique students that attended conferences.   

Supporting Creation and Development of Arguments 

 In this section I review the evidence that students made or revised arguments, 

by using a new proof scheme. Below, I review the written work of Nina 

(conferencing on Happy Numbers task) and Antonio (conferencing on Happy 

Numbers task and Consecutive Sums task).  

Focal Student 1: Nina 

 During the conference, Nina described two phenomena that moved past listing 

examples to deducing some novel happy numbers.  

 Prior to the conference, I reviewed her response to the Happy Numbers task, 

which was coded as ‘generated no claim’. As noted in the previous chapter, Nina’s 

response included no claims or arguments (see Figure 4.2). Her work is again 

presented in Figure 5.2. Nina submitted a page of calculations, six screen shots to 

show additional calculations (only one of which is shown in Figure 5.2), a list of 

numbers she designated as happy (with a “Y”), and a brief statement.  

Figure 5.2 
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Nina’s ‘No Claim’ Response from Lesson 2, Prior to Conference: Written Work (left), 

a List of Happy Numbers (upper right), and a Type-written Statement.  

 

 We began the conference by reviewing Nina’s list of examples available in the 

screenshots. She said that she “noticed” that, in addition to 68, 86 is a happy number 

(turn 8), elaborating that they have the same “digits” (turn 10). I asked, “what pattern 

are you noticing? Can you name the pattern?” and she responded, “I’m not sure” 

(turns 11-12). Following her observation, I asked her if other numbers have the “same 

numbers” and she correctly provided additional examples of “…94 and 49… and 97, 

79” (turns 13 – 16). I asked Nina why it was happening. Eventually, she explained 

that squaring the digits and adding them would give the same “sequence” (turns 17 – 

22).  

7 Salvador What kinds of patterns are you seeing? Here's 68. 

In the picture above, I showed my 
work and how I explored the 
problem. You can see that some 
of the numbers I worked on were 
happy numbers and some were 
not. 
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8 Nina I notice that 86 also... Is also a happy number.  

9 Salvador Yeah. 86 IS also a happy number. 

10 Nina They have the same, like, um numbers. The digits. 

11 Salvador Yeah. They do. Ok. Well… can you… What do you think 

about that? What pattern are you noticing? Can you name the 

pattern? 

12 Nina I'm not sure. 

13 Salvador Well, you said they have the same digits. Do any of the other 

numbers have the same digits? 

14 Nina Yes. 

15 Salvador which ones? 

16 Nina Like, 94 and 49. and 97, 79.  

17 Salvador Good. Good. Good. So. So… Now if I ask you… How about 

this then, now if I ask you, why is that? Do have any idea why 

that's happening? Like if 68 is a happy number why does that 

mean 86 will be a happy number? How is that working? 

18 Nina Because you're.. Uh.. Square the individual numbers and … 

yeah. 

19 Salvador Cause you square the individual numbers? And then what? 

20 Nina And then you add them? 

21 Salvador uh huh. 

22 Nina So, you're gonna get the same, like, sequence for the … yeah. 
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 Nina had difficulty articulating a claim at this point, so I asked her if she could 

use her idea to find three-digit happy numbers. Nina asserted that “you can get the 

same digits but put a zero in between or at the end” (turn 28). I asked her why it 

works, and Nina said, “Because when you square zero, you ‘re gonna get zero, so it 

doesn’t make any change in the final answer” (turn 34). At that point, I asked Nina to 

use her ideas to determine which numbers must be happy numbers if 478 is a happy 

number (Part C of the Happy Numbers task- Turn 37). Nina correctly determined 

4,780, 4,078, and 8,740 were all happy without the need for calculation (turns 40 – 

42). Thus, her argument deepened and expanded beyond a need to calculate each 

novel happy number.  

37 Salvador …and use your pattern. I’m asking you to use your pattern. So, 

maybe not to calculate too much but if your pattern… if your 

ideas are right, then what other numbers could you make with 

that 4-7-8?  

38 Nina You can add a zero in between. 

39 Salvador Ok. So, like.. And get what? What number would work, then? 

40 Nina Like, 4,780?  

41 Salvador ok. That's good. What other numbers, maybe? 

42 Nina Like 4,078 or eight hun-- eight thousand seven hundred and 

forty… and forty. Yeah.  

43 Salvador Oh, you changed the order, too, that time. 8,740?  
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44 Nina yeah. 

45 Salvador Would it still work if you just changed the order of the 478? 

46 Nina Yeah. Because they're the same numbers… you use the same 

numbers.  

 By generating three novel happy numbers, Nina is demonstrating some 

implicit knowledge of the mathematical structure at play. She used zeros as an 

additional digit to create more happy numbers because they do not change the value 

of the sums. This change in her argument suggests the implicit use of the identity 

property of addition. Her statement that adding zero “doesn’t make any change in the 

final answer” implicitly refers to the additive identity property, which states that any 

number added to zero sums to the number (i.e., a + 0 = a). 

 Nina also changed the order of the digits of happy numbers to generate novel 

happy numbers because rearranging the addends will not change the value of the sum. 

This move reflects the implicit use of the commutative property of addition because 

she is transposing the digits of Happy Numbers to account for why previously found 

Happy Numbers, like 94 and 49, were both happy and also to generate new happy 

numbers without a need for calculation. Nina states that the digits can be rearranged 

because they use the “same numbers” (Turn 46) but does not explicitly name or 

describe the commutative property (which is typically stated as: a + b = b + a). 

 These shifts represent a significant change: from listing examples of happy 

numbers to generating novel happy numbers without the need for calculating. While 

Nina encountered difficulty when prompted to articulate the patterns she was 
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describing, she was generating examples for the purpose of “support[ing] a general 

argument” (Ellis et al., 2012). This type of example can be used to support deductive 

proofs whereas the original list she provided was more aligned with a different 

purpose, i.e., “check[ing]” to see if a conjecture holds (Ellis et al., 2012). Nina’s work 

so far is best classified as making an empirical argument because she has not 

explicitly stated her claim(s) or warrant(s). However, her work is laying the 

foundation for a more deductive proof. As evidence amasses, Nina would need to 

explicitly articulate her claim and use of mathematical properties as warrants. It is 

also moving towards an analytic proof scheme by seeking a general solution to the 

implicit claim that the digits of any Happy Number can be rearranged to generate new 

ones. Our mathematical discussion (in the form of a conference) provided new “text” 

that Nina could use to revise her argument.  

Focal Student 2: Antonio 

 In this section I review both of Antonio’s conferences to illustrate changes in 

his arguments. During Antonio’s first conference, he, like Nina, described how the 

order of happy numbers could be changed and that adding a digit of zero could 

generate novel happy numbers. During his second conference, he shifted from an 

empirical argument to an analytic argument with the use of a representation he 

improvised.  

 Antonio’s first conference was very similar to Nina’s in two ways. First, he 

indicated that the commutative property and the identity property of addition were 

useful for determining novel happy numbers. Secondly, he had difficulty explicitly 
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articulating his assertions about how he was generating novel happy numbers. Prior to 

the conference, I reviewed Antonio’s Convince Form response to Lesson 2 and coded 

it as generating a claim in response to a task that prompts students to generate a claim 

(see Figure 4.21 and related discussion). In summary, Antonio asserted that 301 and 

310 were “the same”, i.e., both happy numbers, because the order of the digits did not 

matter (see Figure 4.21). While this is not a general claim, he did demonstrate that 

two numbers, 301 and 310, both result in being happy numbers because the digits are 

“…just in different orders [sic]”. This work, which served as the starting point for the 

conference, is presented again in Figure 5.3. 

Figure 5.3 
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Antonio’s Claim (top) and Evidence (bottom) Submitted in Lesson 2. 

 

 

 Antonio’s initial work includes two important phrases. The first is that “the 

numbers are the same just in different orders” and “same numbers just a [sic] extra 

zero added which does not change anything…” (Figure 5.3). Once the conference was 
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under way, I asked Antonio if these ideas would be true for other happy numbers 

(turn 27, emphasis added). He responded that he would try with 28 and 280 (turn 32). 

27 Salvador Do you think that'll be true for other happy numbers?  

28 Antonio Maybe. Like, um, like 30 and 300. Like, it's the same thing 

because the zero doesn't change the effect of the-- wait, wait. 

Let's see. Naw, naw. 30 and 300 are like kinda the same. That's 

what I think. Wait. Did I put 30 and 300 as an example? No. I did 

that one.  

29 Salvador You put 310. Yeah, and 301. 

30 Antonio Yeah. Cause I saw that the 1 and the zero were-- like, it's the 

same thing. It's just the 1 and zero are switched in 301 and 310. 

In 301, the zero's first and in 301 the one is first.  

31 Salvador Right. So, what I'm saying-- yeah. What I'm asking you is, um, 

maybe look at the list of other happy numbers and-- is your 

conjecture true for, maybe, another happy number? Wait, 

pick another happy number and see if it still works with another 

one.  

32 Antonio I'll try it with 28 and 280.  

33 Salvador ok. [wait] Let me know when you're ready, ok? 

Eventually, Antonio found that 28 and 280 are both happy, providing some 

confirming data that adding a zero digit would produce a novel happy number (turn 

60). At that point, I asked Antonio if he could say something “general” about the 
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pattern he found (turn 61). In response, he commented that “…every single one of 

these… examples—the zero is nothing” (turn 62). He used more general language in 

the phrase “every single one”. While the argument is empirical, the use of generalized 

language might suggest Antonio’s awareness of a need for a more general argument: 

one that is applicable to a class of numbers rather than individual examples. His use 

of language seems to suggest an eye toward settling the conjecture in general, which 

would be a foot in the realm of analytic arguments.  

 At that point, we discussed a fictitious student, Eva, who found that 478 was 

happy (Part C of the Happy Numbers task). I asked Antonio to use the ideas we 

discussed to predict other happy numbers. Antonio generated three more novel happy 

numbers: 4,780, 748, and 874.  

60 Antonio …equals 1. Zero squared equals zero and then another zero 

squared and that equals one. Now, I have to do 280. 2 squared. 64 

plus zero. 68. yeah. I think I… 280 and 28 are like the same. 

61 Salvador ok. Good. So, what can you say in general about-- like, what 

pattern did you find? Like, what's your conjecture? So, now you 

have two examples, but what's like your conjecture?  

62 Antonio So, for if you go to 70.. No. 70 is not-- 68. I feel like 68 and 680 

are like the same thing because when I-- and every single one of 

these, like, examples-- the zero is nothing. So, it equals to the-- it 

would be like the same as 6 squared plus 8 squared because the 

zero does not equal anything.  
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At that point, Antonio said, “I get it now” (turn 76). I asked him what his conjecture 

was now, and he replied: 

…you could switch the numbers around, as long as the numbers stay the 

same. Like, if there's three digits and you switch ‘em around, it won't change 

the sums because you're squaring all three of the numbers. You're not, like, 

what's it called? How do I say this? You're not.. You're not uh.. like, I don't 

know how to explain it, but like, if it were anything else beside like what 

we're doing, it probably wouldn't be. (turn 80). 

Antonio articulated that “switching” the digits of a happy number could generate a 

new happy number and eventually described the commutative property of addition as 

a warrant. I asked him what “we” know about addition, and he responded “…that one 

thing where you switch the numbers it doesn’t change. I forgot. Isn’t it, like, 4 plus 8 

and you switch 8 plus 4 it’s, like, the same thing. I forgot what it’s called.” (turn 84). 

I reminded him that the name of the property he is describing is the commutative 

property and he responded, “there you go!” (turn 86).  

 During Antonio’s first conference his argument changed from justifying why 

two specific numbers (301 and 310) were both happy (an empirical argument), to 

justifying why he could generate any number of happy numbers by rearranging the 

digits or adding a zero digit (an analytic argument).  

 During the second conference, we discussed his response to the Consecutive 

Sums task. In this task, students were given six claims (Conjectures A – F), asked to 

qualify each claim as always, sometimes, or never true, and then justify how they 
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qualified each claim. Per Antonio’s choice, we focused on Conjecture B, which made 

the claim that “The sum of five consecutive whole numbers is divisible by 5.” While 

Antonio’s initial response engendered an empirical proof scheme that leveraged the 

examples in a table of values as data, by the end of the conference he used an analytic 

proof scheme that used a visual representation for the sums of five consecutive 

integers to justify how he qualified the claim. At some point prior to the conference, 

Antonio’s Zoom microphone broke, so he responded to my oral prompts using the 

‘chat’ and ‘screen share’ features of the meeting platform, only.  

 Antonio’s initial work stated that the sum of five consecutive whole numbers 

is always divisible by five because the sums end in zero or five (see Figure 5.4). This 

appeared to be a perceptual empirical argument, which rely on “rudimentary mental 

images” (Harel & Sowder, 1998). We reviewed the response and I said, “Alright, so, 

this is what you put for Conjecture B. And, um, maybe in the chat real quick maybe 

just put what it is that we're seeing” (turn 13). In response, Antonio typed “There [sic] 

adding 1 to each number like in the first one it was 1 +2+3+4+5=15 and then on the 

seceond [sic] one it was 2 +3+4+5+6 which equaled 20” (turn 14). This statement did 

not seem to match his written work, which emphasized sums ending in zero or five. 

So, I responded “…you said the sum would end in zero or five and I wanted to know-

- how do you know that?” (turn 23). Antonio said, “I did 5 x every number like the 5 

multiplication table and I saw that all of the sums ended either in 0 or 5” (turn 24). 

Then, I asked him to use “symbols or a picture” to illustrate what he was describing.  

Figure 5.4 
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Antonio’s Argument for Conjecture B, Submitted Prior to Conference. Convince 

Yourself (top) and Convince a Skeptic (bottom). 

 

 

 At that point, Antonio represented generating examples like placing and 

removing cards. Antonio generated the images in Figure 5.5 by using the “Insert 

drawing” feature of a Google Doc. When it was complete, he chatted me, “do you get 

what im [sic] doing” and I responded, “Maybe explain a little with words” (from chat 

file, 12/10/2020). He explained, “Im [sic] crossing off the first one and adding 

another one to the end like the first one was 1 +2+3+4+5 then I crossed the 1 out and 

added a 6th one which made it 2+3+4+5+6” (from chat file, 12/10/2020). I pressed 

for elaboration asking aloud, “So, what happens when you trade that 1 for a 6?” and 

he responded in chat, “it adds one to the next number it increases the sum youre [sic] 

gonna get”. I pressed again asking, “how much does it increase by?” and he 

responded in chat, “by 5.” (chat file, 12/10/2021).  

Figure 5.5 

Convince yourself.  Explore and make a conjecture
● Pick 2 conjectures (either A, B, C, D, E, or F).
● Upload a photo for each one.  How you convinced yourself if it was Always, Sometimes, or 

Never true.  Basically, how you explored the conjecture.

[Put photo 1 here using “Insert” and “Image”]
[Put photo 2 here using “Insert” and “Image”]

Conjecture B is works for any sum because for example if it is adding 5 
consecutive numbers the sum would end with a 0 or a 5 , and if it ends 
with 0 and 5 it could be divided by 5 , proof : 1+2+3+4+5=15, 15 divided 
by 5 is 3, and then 2+3+4+5+6=20 , 20 divided by 5 is 4 , the next one is 
3+4+5+6+7=25 , 25 divided by 5 is 5 and then you keep going. 
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Antonio’s Representations for the Sum of Five Consecutive Whole Numbers  

 

 

 

 

 The series of visuals shown in Figure 5.5 represents sums of five consecutive 

whole numbers. Per Antonio’s description, the left-top image represents the sum, 

1+2+3+4+5 = 15. The second image shows the first rectangle crossed out and a 6th 

rectangle added, representing 2+3+4+5+6 = 20. In effect, “trading” the one for a six 

adds five to the sum. Likewise, the images suggest that trading the 2 for a 7 and the 3 

for an 8 would also results in net gains of 5 to the sum. In this manner, the sums 

always add five to the original sum and are, therefore, always divisible by five. This 
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representation is recursive, but nevertheless could represent a step toward an analytic 

proof scheme because it seeks to settle the conjecture in general. 

 In this section I reviewed evidence that two students either created or changed 

their arguments (vis-à-vis proof schemes) during the conferences. In Nina’s written 

work, she considered her list of examples more deeply and generated novel happy 

numbers without the need for calculation and implicitly referenced the commutative 

and identity properties of addition as warrant for doing so. In his first conference, 

Antonio also expanded from his focus on two examples to leverage the commutative 

and identity properties of addition to settle his Happy Numbers conjecture in general. 

In Antonio’s second conference, he shifted from observing a pattern in a table to 

generating a representation to illustrate why each new sum of five consecutive 

numbers will add five to the previous and, consequently, remain divisible by 5. In 

sum, the students’ arguments changed from a focus on calculating examples to a 

focus on generating novel examples, implicitly using mathematical properties as 

warrants for their claims, and striving to explicitly articulate a general mathematical 

argument. 

Revising Procedures and Revealing Areas for Support 

 In this section I review the evidence that two students revised procedures and 

their use of formal terms. Overall, four of the 11 students who participated in 

conferences used part of the time to clarify and revise procedures related to the tasks. 

I began the conferences by reviewing what they had submitted in the Convince Form. 

And then, I used eliciting and probing questions to understand and extend their 



 151 

reasoning. Our conferences often included my suggesting a new example or I would 

guide them through an example and then support them to generate additional 

examples on their own. When they used examples to test claims on their own, I took 

that as evidence of a revision.  

 Additionally, five20 of the 11 students who completed conferences clarified 

vocabulary. One of us would ask a question about a term which might lead to a 

revision of how to use formal vocabulary. For example, when considering the 

Consecutive Sums task, I asked Maggie, “Do you remember what consecutive 

means?” (Turn 13, Maggie’s transcript). She responded, “No” so we reviewed the 

meaning and moved on. When students used formal vocabulary in ways that aligned 

with the teacher’s usage, when they previously had not, I took that as evidence of a 

revision. I review the written work of Yolanda and Ricardo to illustrate how students 

revised procedures or formal terms.  

Focal Student 3: Yolanda 

 Up to the point of the conference, Yolanda had participated minimally in the 

study activities. For example, although she participated in classroom discussion and 

activities, she did not submit arguments for Lessons 1 or 2. In Lesson 3, which 

culminated in the Consecutive Sums task, Yolanda qualified claims by completing the 

card sort (see Figure 5.6). Yolanda’s card sort was mostly correct (83%), but she did 

not justify any of the choices (i.e., did not complete the Convince Form). During the 

conference, we discussed the claim that “To find the sum of consecutive whole 

 
20 Three of the students were the same as those who clarified procedures. 
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numbers, find the middle number and then multiply it by how many numbers there 

are” (Conjecture C): the only conjecture that Yolanda indicated as sometimes true. 

Figure 5.6 

Yolanda’s Qualified Claims for Consecutive Sums Task. 

 

 Afterwards, Yolanda decided to discuss Conjecture C. I then asked her if she 

could test the claim, to which she responded, “I don’t know” (turn 42). I picked an 

example for her to test, 3 + 4 + 5, and she responded by simply adding them to get 12 

(turn 44). At this point, I supported her to test the conjecture by walking her through 

the steps to determine whether multiplying the middle number by the number of 

addends equals the sum (turns 49 – 58). Then I asked her to come up with her own 

example to test and she suggested “2 + 4 + 6” (turn 64). Because she used 

consecutive even numbers, I asked if those were consecutive numbers and she 

responded, “No. How do you know what a consecutive number is?” (turns 65 – 66).  

Cards!  Click and Drag these 
statements to make a 
conjecture.. 

Always True Sometimes True Never True
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45 Salvador Ok. It equals 12. But does it work? Is it sometimes true for the 

other one? Like, how you said, like, uh.. I'll read it again. To 

find the sum of consecutive whole numbers, find the middle 

number and then multiply by how many numbers there are? 

Does this work? 

46 Yolanda Yes? 

47 Salvador Why does it work? 

48 Yolanda Because.. Well, actually, I don't know. 

49 Salvador Well, let's take it in pieces. What's the middle number? 

50 Yolanda The middle number? Like from the problem? 

51 Salvador Yeah. 

52 Yolanda Four? 

53 Salvador ok. And how many numbers are there? 

54 Yolanda Three. 

55 Salvador Ok. So, if you multiply the middle number by how many 

numbers, what do you get? 

56 Yolanda Twelve. 

57 Salvador So, did it work? 

58 Yolanda Yeah. 

59 Salvador Ok. So, it worked. On that one. Um, let's think of more 

examples. Can you think of another one on your own? 

60 Yolanda No. [laughs] 
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61 Salvador [laughs]. Just try. Try. Try another one with three numbers.  

62 Yolanda Um.. 

63 Salvador Or try one with four numbers or try one with five numbers. Just, 

kinda-- You're gonna need to try some examples, maybe. Let’s 

just focus on examples for a minute.  

64 Yolanda Two plus four plus six? 

65 Salvador Well, I'll put it in the chat. The only thing about this, I'm gonna 

say, is-- Ima ask you: are these consecutive numbers? 

66 Yolanda No. How do you know what a consecutive number is? 

67 Salvador Oh. Ok. Good. Good question… 

 This interaction suggested that Yolanda was not confident with the procedure 

for testing the claim in Conjecture C. When I asked if she could test it, she said “I 

don’t know”. When I provided three consecutive numbers to test, she responded with 

the sum, which did not constitute a complete test of the conjecture. The interaction 

also suggests that she was not using the term “consecutive” in the way intended by 

the conjecture, since Yolanda suggested three consecutive even numbers rather than 

whole numbers (turn 64). In addition to Yolanda, four of the 11 students who 

conferenced used key terms with a meaning different than intended. This included 

terms such as ‘consecutive’ (three students), ‘squaring’, ‘average’, ‘pull apart’, and 

the circumflex (“^”), which will be discussed later. I continued the conference by 

clarifying what “consecutive” means and reviewing a procedure to test the conjecture 

with another two examples (turns 83 – 116).  
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 At this point, I asked Yolanda to make an example, “maybe with more 

numbers” (turn 119). She suggested “9 + 10 + 11 + 12” (turn 120). Yolanda ran into 

difficulty when she realized that there was no middle number per se. Yolanda 

described her conundrum in the following way: 

Because it's four and if you-- you could put four in a group so then it would be 

two and two. But then, there wouldn't be a middle number. Or, at least, 

there can't be. And the middle numbers could be 10 and 11.. but it would have 

to be one. (turn 138, emphasis added) 

In her comment, Yolanda indicated that there is no middle number in a set of four 

consecutive whole numbers. At that point, I suggested trying a sum of five 

consecutive numbers and she agreed. I asked her if the conjecture works for 1 + 2 + 3 

+ 4 + 5 (turn 143) and Yolanda repeated a difficulty with the testing procedure she 

encountered earlier—adding rather than multiplying. 

143 Salvador What if we had this. Does it work now? [types “1 + 2 + 3 + 4 + 5 =” in 

chat] 

144 Yolanda Yeah. 

145 Salvador Same thing. So, like, what's the sum? And the, does it work?  

146 Yolanda The middle number would be three. 

147 Salvador Ok. Keep going.  

148 Yolanda Three and.. And there’s five. Three and five, right? 

149 Salvador mm. hmm.  

150 Yolanda Eight. Right? [inaudible] 
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151 Salvador Oh. Remember the original thing. 

152 Yolanda Yeah. Eight. 

153 Salvador It's ‘times’. It's ‘find the middle number and then multiply by how 

many numbers’. So, it's.. 

154 Yolanda Ohhhhhhh. 

155 Salvador Times five, not plus five.  

156 Yolanda oh. Fifteen. 

157 Salvador Yeah. Good. Ok. So, does that work? Is that the sum? 

158 Yolanda Yeah. 

 Yolanda went through each step to test the conjecture but made a calculation 

error. Yolanda verified that the middle number was a 3 (turn 146), and that there were 

five numbers (turn 148). Then, rather than multiply the 3 by 5 to confirm that the 

product and sum of consecutive whole numbers is equal, she added 3 and 5 to get 8 

(turn 152). I reminded her that the test procedure calls for multiplying and she made 

the adjustment.  

 At this point, I turned my focus back to Yolanda’s qualifying Conjecture C as 

sometimes true. I invited Yolanda to “say more” about when the conjecture does and 

does not work. Yolanda responded, “Because if you do 4, I don’t think it’ll be able to 

work but if you do more, it could possibly work. Or if you do less” (turn 160). I asked 

if “3 + 4” worked and Yolanda said, “That can’t work” (turn 162) because “it’s only 

two and there would at least have to be three” (turn 164). To conclude, we reviewed 

what we had done, and I asked her to summarize when she thought the conjecture 
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worked. In the chat, she responded, “it works when there is [sic] 3 and 5+ numbers 

but it won’t work if it’s 4 or 2 numbers” (chat file 12/7/2020).  

 During the conference, Yolanda benefitted from support with the procedures 

for testing Conjecture C using examples and using the term “consecutive” with the 

intended meaning. Yolanda refined her working definition of what “consecutive” 

means, as we can see in Turn 80 when she completed a sequence of three numbers 

and in Turn 112 when she suggested testing 6, 7, and 8. Her initial suggestion to test 

“2 + 4 + 6” (turn 64) used consecutive even numbers (not consecutive whole 

numbers). My clarification supported her work on the task, this time using the 

intended meaning for consecutive. Then, she articulated that the conjecture worked 

for 3 and 5 addends but not for 2 or 4 addends (chat file 12/7/2020).  

Focal Student 4: Ricardo 

 Prior to the conference, Ricardo had two opportunities to turn in arguments. 

For Lessons 1 and 2, he submitted a description of a procedure. Before beginning the 

conference, I reviewed Ricardo’s response for Lesson 2 (the Happy Numbers task), 

which we would discuss. The Happy Numbers task prompts students to find two- or 

three-digit happy numbers without calculation and justify their method (for a 

complete description see Figure 3.2 and related discussion). Prior to the conference, 

Ricardo submitted a description of the procedure to find happy numbers where part of 

the procedure to test an example is illustrated with a calculation and described in a 

text thread with a friend using a non-canonical reference to ‘prime factorization’ 

(Figure 5.7).  
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 During the conference, I worked to clarify vocabulary and the testing 

procedure with Ricardo. Just as we got started, Ricardo asked a clarifying question 

about the “little arrow thing”. He asked if the circumflex (“^”) represented 

multiplication (for example in the expression “3 ^ 2”). I clarified that it is used to 

represent exponentiation when the use of superscript is not available. Then, we turned 

to the work he submitted. I asked him to explain to me what he was doing in the 

example (Figure 5.6, top). He said that he did not remember (turns 31 – 32). I 

reviewed the procedure with him and asked him what “squaring” something means, 

as a check for understanding (turn 35). Ricardo responded, “Isn’t it like, um, double it 

or…” (turn 36). We reviewed exponents and then we went on to review some of the 

happy numbers found in class.  

Figure 5.7 
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Ricardo’s Description of Happy Numbers for Discussion in the Conference. 

 

I invited Ricardo to focus on exploring the first nine whole numbers and he 

recognized an error another student made testing the number “1”. I asked Ricardo if 

the student was right (see Figure 5.8). He responded, “I think… well, it would be 1 

plus 1, so… but shouldn’t there be a zero?” We discussed that it could be “02 + 12”, 

so the sum is 1 and 1 is happy. Ricardo moved on to test other numbers and asked a 

clarifying question about the testing procedure: “For eight, does zero to the fourth 

power plus four to the second power work? Or does it have to be second power?” 

(Figure 5.9 and Turn 60, below). This question revealed that he was not yet confident 

in using the testing. Rather than squaring 8, he wrote “8 = 0^4 + 4^2” (Figure 5.9). 

Figure 5.8 
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Student Error Caught by Ricardo. 

 

 

Figure 5.9 

Ricardo’s Notes for Testing ‘8’. 

 

 This kind of error, placing “4+4” at the center of an arrangement of other 

symbols (see highlighted portion of Figure 5.9 and Turn 62 below), could also 

indicate that he was using his own meaning, rather than the intended meaning, for 

“pulling apart” digits of a number. In prior classwork, examples used only two-digit 

numbers to describe the testing procedure for Happy Numbers (see Figure 3.2). As a 

reminder, the digits of the number 23, for example, would be “split”, “pulled apart”, 

or otherwise separated and then squared like this: 22 + 32. The results would be added, 

and the process repeated until a sum is 1 or a value repeated. When confronted with a 

single-digit number, 8, Ricardo appears to have split the value of 8 and then appended 

whatever additional information seemed to make sense.  
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60 Ricardo um. For eight, does zero to the fourth power plus four to the 

second power work? Or does it have to be second power? 

61 Salvador Um.. They all have to be to the second power, so, like,.. For 

eight, I don't know. Walk me through it. Show me-- show me 

what you mean. Is it-- Maybe hold your paper up. Can you hold 

your paper up and show me?  

62 Ricardo [student shows paper: “8 = 0^4 + 4^2”] 

63 Salvador ok. Hold on. Let me see. [looks]. How come you-- oh. Ok. You 

got zero… no. Don't do to the fourth power. It would always be 

squared. Like it would be zero squared and then it would be 

eight squared.  

64 Ricardo Like this? [student shows revised work: "8 = 0^2 + 8^2"] 

65 Salvador Yeah. Zero squared plus eight squared. You could use, like, 

regular exponents on your paper. I'm just doing it with the little 

arrows on the computer cause, um, I don't know how to make 

the small 2. You know how they make the little, tiny 2. But it's 

ok. Either way is ok.  

66 Ricardo um. [works silently]. Um. For six I did zero to the second 

power plus six to the second power.  

67 Salvador ok 

68 Ricardo And for 5 I did the same, except five to the second power.  
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 Ricardo revised the first part of the testing procedure and attempted two more 

numbers, each time beginning, but not completing, the procedure (Turns 66 and 68). 

For example, he tested 5 and 6 and suggested that 6 could be happy (turn 72). When I 

asked him if the sum was 1, he said, “No” (turn 74). We reviewed the testing 

procedure again and the conference time expired before he could successfully revise 

the entire testing procedure.  

 During conferencing, Ricardo used support for the testing procedure and in 

using formal terms with the intended meaning. The procedure to test whether a 

number is happy or not can require substantial calculation (see Figure 5.1 for 

examples), thus presenting a formidable obstacle for entry into the heart of the task 

for some students. Ricardo caught a mistake another student when finding the happy 

number involved a single step, which is the case with the number 1. Ricardo did not 

generate additional examples without help. By the end of the conference, Ricardo 

squared digits and added the products, successfully completing the first step in the 

procedure to test the claim. Difficulties with foundational concepts and interpreting 

formal vocabulary (e.g., “squaring” and calculating exponents) and novel symbols 

(i.e., the circumflex as “^”) presented obstacles to Ricardo’s progress on the task. 

Moreover, the open-ended nature of testing a number for being ‘happy’ could have 

presented another obstacle. During the conference, I provided support when I could 

identify these difficulties and supported the student’s access to the task. 
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Summary of Findings 

 In this chapter, I presented evidence to show how students generated or 

expanded their arguments (Nina and Antonio). Nina began with a list of calculations, 

indicating which numbers were Happy. The list was provided because she was asked 

to find each of the 17 Happy Numbers between 1 and 99. In the end, Nina was 

generating novel Happy Numbers with four digits (4,780, 4,078, and 8,740) without 

the need for calculation. She implicitly used the commutative and identity properties 

of addition as warrants for her implicit claim that rearranging the digits of or adding a 

zero-digit to a Happy Number will generate a novel Happy Number. Antonio’s first 

conference was very similar in that he also generated novel Happy Numbers (4,780, 

748, and 874) based on an implicit claim that one could take the digits of that number 

and “switch them around” to generate more. Likewise, he described and implicitly 

used the commutative and identity properties of addition as warrants. These findings 

are significant because they show how students’ persistence with examples led to a 

change in purpose. Initial examples were chosen out of convenience or even by 

prescription of the task, then later examples were generated through deduction. 

  I also presented evidence that students revised the testing procedure and use 

of formal terms (Yolanda and Ricardo). Yolanda revised the testing procedure when 

we clarified what “consecutive” means. She revised her usage for ‘consecutive’ to go 

on and test additional examples. Yolanda needed sustained support when completing 

the test procedure, but she discerned that her claim—that “To find the sum of 

consecutive whole numbers, find the middle number and then multiply it by how 
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many numbers there are” is sometimes true—holds for 3 and 5 addends, but not 2 or 4 

addends. This is an empirical argument, as it focuses on these particular cases, but she 

is making progress toward something more general. How long before she recognizes 

that odd numbers of addends have a middle number whereas even numbers of 

addends do not? Ricardo revised his usage for the term “squaring” as well as use of 

the circumflex (“^”). While this is not a formal term, its usage in mathematics is 

common when superscript is not available. During conferencing, Ricardo’s also 

revealed how much support he needed, only having revised a part of the testing 

procedure. 

Discussion 

 In this chapter I documented how students’ arguments changed and provided 

evidence that students from a variety of mathematical proficiencies created or revised 

an argument, as well as how students revised testing procedures for claims and usage 

of formal terms. I presented data from two focal students, Nina and Antonio, to 

illustrate how students either created or revised their arguments using a proof schemes 

framework (Harel & Sowder, 1998). I also presented data from two additional focal 

students, Yolanda and Ricardo, to show how we clarified testing procedures and 

formal terms.  

 Nina and Antonio made or improved their arguments during the conferences. 

Nina began her conference having submitted a list of examples. During the 

conference, she noticed that the digits of 68 could be transposed to create another 

happy number, 86. She also noticed that adding a zero digit could generate additional 
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happy numbers. These kinds of noticings can occur when students have access to an 

example space and time to (re)organize the available examples (Watson & Mason, 

2005). Nina and Antonio noticed some similarities or differences among the examples 

allowed them to anticipate what should be a happy number. That is, they both 

generated novel happy numbers without the need for calculating based on what they 

noticed about the available examples.  

 The shift in focus from examples to noticing how the examples are the same 

or different is not trivial. The example space can be a critical tool for enabling the 

noticing but the noticing itself is part of a larger process of inquiry. Rivera & Becker 

(2007a, 2007b) describe an account of the process of inquiry as consisting of three 

kinds of reasoning: abduction, induction, and deduction. In this trivium, the process 

of inquiry begins with what “may be” (abduction), followed by testing what is 

“actually operative” (induction), and then stating what “must be” (deduction) (Rivera 

& Becker, 2007a). Abduction foregrounds inference and is creative (Rivera & 

Becker, 2007a). In the conferences, I supported abduction, as well as the other stages 

of inquiry, so that students were able to revise their arguments in relation to important 

aspects of the mathematical structure embedded in the examples. In doing so, students 

were positioned to infer generalities, test their inferences with novel examples, and 

reason inductively.  

 Yolanda and Ricardo revised two procedures and refined their meanings for 

formal vocabulary words, increasing their access to the task. Academic language can 

function as a “symbolic border” that prevents students who speak stigmatized 
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varieties of English and multilingual students from full participation in learning 

activities (Valdés, 2017). At the same time, Yolanda made significant progress 

toward defining cases for which her claim is “sometimes” true. During the 

conferences, I supported students’ reasoning by directly clarifying the intended 

meaning for important formal terms and symbols (such as “consecutive” and the 

circumflex, “ ^ ”). During the conferences, students also revised relevant testing 

procedures. The conferences served as a safe space where their difficulties were 

revealed and revising procedures or refining meanings was a central goal.  

 Students benefitted from support for expanding the types and purposes of 

examples. For example, (re)arranging the available examples led to Nina and Antonio 

to conjecture about how they examples were related (i.e., they remarked on the digits 

being the same for some examples). In turn, they generated novel examples, thus 

expanding to use novel examples to check a conjecture and possibly support a general 

argument. Testing novel examples did not always lead to the confirmation of a 

conjecture. For example, Norbert conjectured that numbers ending with 7, 0, or 3 

would be happy (based on the fact that 7, 10, and 13 were all happy, and then 97, 100, 

and 103 were all happy) (Turn 44, Norbert transcript). When he tested 17, 20, and 23, 

it failed. This failure is a triumph in that it is a demonstration of the student’s 

engagement with empirical reasoning and expanding by using his examples for the 

purpose of conjecture busting (Ellis et al., 2011).  

 Finally, I present a note about “funneling”. Funneling “involves a series of 

closed questions that progressively move students toward saying something desired 
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by the teacher” that is ultimately not productive for learning (Munson, 2018, p.83). I 

reviewed one interview (with Amaya) and found that I unintentionally used 

questioning to funnel the student a particular direction. Amaya was discussing 

Conjecture A (“The sum of four consecutive whole numbers is divisible by 4.”). She 

said that it is never true because, “[inaudible] Oh. They didn't work because they give 

you a odd number for the-- or they give you… They probably won't work because it 

might give you, like, a decimal number.” (Turn 36, emphasis added). Rather than 

explore her comment about decimals, I guided the conversation toward another topic. 

After a while, and she responded, “I don’t know” to my questions (Turns 82 and 120) 

and I got a sense that the conference was not productive. She is the only student who 

made no revision in the conference. I reflected that when we follow students’ 

reasoning, there is less mystery for the student because they are not guessing at what 

the teacher might be thinking. In following the students’ reasoning, we validate their 

thinking and then provide their own thinking back to them for further consideration. 

Rather than seek to understand and support the student’s reasoning, funneling seeks 

to push students toward a predetermined answer the teacher is looking for (Munson, 

2018; Wood, 1998). Funneling can be a serious pitfall and engenders deficit views of 

students by privileging the teacher’s ideas.  
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Chapter 6: Discussion, Conclusions, and Implications 

 The purpose of this qualitative study was to understand students’ developing 

mathematical arguments in a middle school, early algebra classroom that featured 

mathematical writing and oral conferencing. This included examining how students 

used the Convince Form to develop and justify claims, and then how conferencing 

with students about their written arguments might have supported them to further 

revise. The unit provided students opportunities to write mathematical arguments as a 

regular part of classroom instruction and introduced a Convince Form and 

mathematical conferencing to support their efforts to justify mathematical claims 

submitted as part of the instructional unit on mathematical argumentation. The unit 

consisted of three lessons: two of which (Lessons 1 and 2) culminated in tasks that 

asked students to generate a claim and justify it, and a third lesson that asked students 

to qualify up to six claims and justify how they qualified them. In addition, I 

conducted two rounds of mathematical conferences: one round after Lesson 2, and 

one round after Lesson 3. The research questions below guided this study: 

1. When asked to do mathematical writing and supported with conferencing in 

a remote context, what kinds of arguments do students make? 

2. How did the mathematical arguments of individuals change over the course 

of a unit of instruction on generating, selecting, and justifying claims? 

3. In what ways did students revise their mathematical arguments during 

conferencing? 
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 To answer the first research question, I examined the written work students 

submitted in the Convince Forms from each lesson. In the first analysis, I cataloged 

the kinds of responses students submitted for each task type. I described the responses 

given in Convince Form submissions for Lessons 1 and 2, which used the original 

form (Appendix H; available as a Google Form) and culminated in tasks asking 

students to generate and justify a claim. I also described the responses given in the 

modified Convince Form (Appendix I; available in their Google Classroom as 

editable slides) used in Lesson 3, which culminated in a task asking students to 

qualify and justify claims. In Lessons 1 and 2 students were prompted to generate and 

justify their own claim about mathematical situations described in the tasks. In 

Lesson 3, students were asked to qualify up to six claims using a non-neutral qualifier 

(e.g., always, sometimes, or never true) and justify the ways they qualified the claims.  

 Research Question #1 and #2 sought to understand how students developed 

claims and justified them in a unit that included mathematical writing and 

conferencing. The mathematical writing samples, which were gathered as responses 

to the Convince Form, provided a written record of the kinds of responses that 

students submitted and how those responses changed over the duration of the study. 

The findings described in Chapter 4 highlight how students’ responses changed in 

three major ways. First, they moved away from writing descriptions of procedures to 

writing arguments using empirical and even analytic proof schemes. Second, students 

increasingly used examples in mathematically sound ways. Third, students went from 



 170 

writing responses that contained no claims to qualifying claims (when offered a list of 

non-neutral qualifiers) or generating claims (when invited).  

 To answer the third research question, I examined the written work and video 

recordings of the conferences to see how the opportunities for discussion and revision 

supported students to revise their arguments. I considered the proof schemes 

(external, empirical, or analytical; Harel & Sowder, 1998) students used in the 

previously submitted work and then examined how students revised their responses. I 

found that some students revised their work by using a new proof scheme or amended 

the initial scheme they had used. I also found that students revised the procedures 

they used to test/check examples and how they used formal vocabulary. The 

conferences provided time and space to explore examples and students’ reasoning 

more deeply. Students had increased opportunities to continue generating examples 

and I guided them to reflect on their examples. These opportunities contributed to 

how students used examples for new purposes and made their claims and warrants 

more explicit.  

 Research Question #3 sought to understand how students used writing 

practices engendered in the Convince Form and mathematical conferences to revise 

or improve their arguments. To answer this question, the mathematical writing 

samples gathered in the Convince Form were used to 1) assess the student 

engagement with mathematical structure, and 2) provide a shared focus of attention 

(Moschkovich, 2004), which was the basis for the conferences. The findings 

described in Chapter 5 include: 1) students revised their responses using new proof 
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schemes or elaborating their argument and 2) students revised procedures related to 

testing claims and their use of formal terms. Thus, the support provided in the 

conferencing made a difference in terms of facilitating student revision of arguments, 

procedures, and meanings for vocabulary.  

Relation to Literature 

 Regarding Research Questions #1 and #2, I found that when prompted for 

written arguments, some students changed from writing descriptions of procedures to 

generating claims in Lessons 1 and 2. Previous research has documented the kinds of 

procedural explanations that students generate when they describe procedures in lieu 

of generating mathematical arguments (Hebert & Powell, 2016). While Hebert & 

Powell (2016) found that procedural descriptions were “not favorable for instruction” 

(p.1531), others have found that when students use every day and technical language, 

“…the mathematical register is brought to life…” (Nemirovsky et al., 2005, p.199). 

There is evidence of this rousing to “life” in the students’ movement from 

descriptions to generating claims.  

 Changing from writing descriptions of procedures to generating claims is 

significant and was difficult for students to achieve. The change demonstrates that 

some students were engaging the process to develop and generate claims, a crucial 

step in any argument. It reflects a shift in attention from how to calculate a single or 

small collection of examples to the patterns engendered in those examples. This 

aligns with Ellis’ (2011) recommendation that grounding problems in “direct 

experience with quantity” can support students to generalize. The shift in attention 
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from calculating individual examples to building sets of examples can help students 

to eventually “see” the mathematical structures that shape the patterns. At the 

beginning of the unit, students appeared to be focused on calculating examples. Then, 

their attention focused on describing how those examples should be calculated. This 

was what some students submitted as “arguments” in Lessons 1 and 2.   

 In Lesson 3, I found that when prompted to qualify claims and justify how 

they qualified them, students correctly qualified claims and at times justified them 

using empirical or analytic proof schemes. Like other research involving middle 

schoolers justifying claims, I found that empirical arguments were most common (see 

Knuth, Choppin, & Bieda, 2009 or Healy & Hoyles, 2000). I also found that students 

engaged examples in more mathematical ways.  

 Students’ changing responses can be understood in terms of how they used the 

example space21 (Watson & Mason, 2005). As students moved beyond descriptions to 

develop claims and consider approaches to justifying, their initial attempts involved 

multiple instances of cherry-picking. The initial move away from describing 

procedures is important because such procedural writing is not considered to involve 

mathematical reasoning (Casa et al., 2015) and does not reflect a holistic view of the 

example space. The process of inquiry has been modeled as having three stages: 

Entry, Attack, and Review (Mason, Burton, & Stacey, 1982). Part of the entry phase 

is a process called specializing whereby students try specific cases, making 

 
21 An example space can be thought of as a collection of examples that is interconnected and structured 
by a larger mathematical generality (Watson & Mason, 2005).  
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calculations, to look for insights that might apply generally. The movement from 

generating examples, to “cherry picking” examples, and later toward using examples 

as data in an argument might reflect how students are using examples with an 

awareness of the entire example space (Watson & Mason, 2005). This awareness is 

required if students are to notice any patterns within the example space and then make 

general claims about classes of numbers. 

 As the awareness of patterns grows, students might begin to use examples for 

different purposes and refine their claims, suggesting a dialectic relationship between 

example use and “seeing” mathematical structure. If a dialectic relationship is 

presumed to exist between students’ construction of example spaces and further 

refinement of claims about the example space, then it would behoove teachers and 

curricula to support more engagement, individually and in groups, with calculating, 

organizing, and reflecting upon examples. Currently, hierarchical views of proof and 

proving (for example, see Chimoni et al., 2018; Healy & Hoyles, 2000; Knuth, 

Choppin, & Bieda, 2009; and Küchemann & Hoyles, 2011), which consider the 

calculation and use of examples as inferior to more general arguments, provide 

implicit encouragement to move past the calculation and use of examples quickly. At 

the middle school level, students might benefit from a deeper engagement with an 

example space to explore mathematical structures at play. 

 This study provides empirical evidence that students who are multilingual, 

low-achieving, or designated as special education can engage in mathematical 

argument and illustrates how they can do so with support. This study contributes 
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uniquely to the literature by illustrating in detail the ways that, with support, students 

who are multilingual, low-achieving, or designated as special education engage in 

mathematical argument. Many students used the support engendered in the 

discussions, collaboration, and writing tasks to engage the process of inquiry. 

Specifically, they engaged in the specializing process, and some moved toward later 

stages of the inquiry. Beyond Entry, the Attack and Review stages each involve a 

different way of engaging examples, justifying, and claims (Mason, Burton, & 

Stacey, 1982). Importantly, examples are never completely gone from the process.  

 The use of ‘audience’ in the mathematical writing tasks was hypothesized to 

support students by enhancing the writing expectations but many students ignored the 

hypothetical audience. While the use of audience was recommended by Banes (2019) 

and others (Casa et al., 2015), especially for multilingual students learning language 

and mathematics (Wilkinson, 2018), the students did not consistently generate 

responses appropriate to the proposed audience. It is possible that the use of an 

authentic audience might be more compelling for students. For example, Aguirre, 

Mayfield-Ingram, & Martin (2013) describe a project22 where students presented 

student disciplinary data related to school suspensions to the principal of the school. 

In a case such as this, the use of an authentic audience could be more compelling and 

create a need for students to be more convincing. 

 
22 See Chapter 4 entitled, “Cultivating Mathematical Agency: “He Was Suspended for Being 
Mexican”. 
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 In response to the third research question, I found that students revised their 

responses using new proof schemes or elaborating their arguments. These changes in 

student work corroborate findings in previous research. For example, Ellis (2007) 

suggested that students benefit from iterative cycles of generalizing and justifying as 

one of four “mechanisms for change” to support increasingly sophisticated forms of 

algebraic reasoning (p.208). The other mechanisms included “focus,” 

“generalizations that promote deductive reasoning,” and “influence of deductive 

reasoning on generalizing” (Ellis, 2007). Each of these mechanisms is reported to 

work dynamically (and non-hierarchically) where focus on quantitative reasoning and 

supporting analytic proof schemes can help students learn to generalize. Ellis (2007) 

emphasizes that rich tasks are important, as well as the role of teachers. Importantly, 

Ellis concludes that “Although correct algebraic generalizations and deductive forms 

of proof remain a critical instructional goal, [the] study suggests that students’ 

incorrect, nondeductive generalizations and proofs may serve as an important bridge 

toward this goal” (p.224). The conclusion that “incorrect” generalizations can be a 

bridge toward deductive proofs is relevant to this study because the incipient proof 

schemes that students communicate are important building blocks for more 

sophisticated understandings of proof, but only if students have opportunities to 

reflect on them and revise their arguments.  

 This work extends Ellis’ (2007) work by showing how conferencing provided 

a productive instructional support for students writing and revising arguments. The 

conferences illustrate the need to support students to generate and (re)organize 
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example spaces so that they can get to a point of inferring generalities. Once the 

support was in place, students responded by noticing structural aspects of the task and 

testing them, i.e., extending their empirical reasoning. For example, Nina and 

Antonio noticed how digits could be rearranged or a zero digit could be added to 

create novel happy numbers. They found some empirical support for a more general 

idea. They were subsequently positioned to begin the process of proving their general 

ideas deductively. The importance of the need for support in earlier stages of 

justifying was crucial for focal students Yolanda and Ricardo. With support, they 

clarified procedures and vocabulary so that they could move past the initial parts of 

the task.  

 The analysis supports a view of the learning of mathematical argument not as 

a series of stages but as the refinement and revision of claims, justifying schemes, and 

the use of examples in a spiraling, dialectic process (see Figure 6.1). A view of 

learning mathematical argument that is framed by stages typically positions empirical 

arguments as inferior to analytic ones (for example, see Healy & Hoyles, 2000; 

Knuth, Choppin, & Bieda, 2009; and Küchemann & Hoyles, 2011). Unfortunately, 

for many URM students, mathematics education engenders a racialized experience 

(Martin, 2006; McGee, 2017) and debates around their “readiness” to study rigorous 

mathematics can reflect racial inequities and disproportionately affect their access to 

rigorous mathematics education. Moreover, for multilingual students, fluency in 

English can be used as an added layer of gatekeeping (NASEM, 2018). By 

conceptualizing the learning of mathematical argument as the refinement and revision 
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of claims, justifying schemes, and use of examples in a spiraling, dialectic process, 

students’ linguistic and mathematical strengths are not cast in deficit ways but 

embraced and developed throughout the learning of mathematical argument.  

Figure 6.1 

Comparison of Proof Schemes as Hierarchically Organized and as a Constellation of 

Approaches to Proving 

 
 The analysis also shows that tasks prompting students to qualify a claim and 

then justify how they qualified are more accessible than tasks prompting students to 

generate a claim. Banes (2019) suggests that qualifying claims (which she describes 

as “selecting claims”) can scaffold students’ efforts to justify by removing the need to 

develop or generate a claim on their own. This kind of access is an important way to 

support students’ entry into the dynamic process suggested by Ellis (2007).  

 This study documented increased student participation and increased variety 

of proof schemes when students qualified claims before justifying them and thus 
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provides empirical support for Banes’ (2019) suggestion. Generating a claim might be 

a formidable obstacle to the dynamic process of justifying. Consequently, the use of 

claims that students can qualify and then begin the process of justifying could serve 

as a more accessible entry point. In the future, research should consider generating a 

claim and justifying a claim, separately. This could guide researchers to understand 

each part as its own process but also understand how these two activities might 

support each other. Supporting students’ by encouraging multiple types of and 

purposes for example-use can help them through such a process by creating 

opportunities for them to discern the mathematical structures that shape the example 

space. Mathematical arguments can be falsely dichotomized as “empirical” or 

“deductive”. The analysis here shows that empirical reasoning is not the “floor” and 

supporting students earlier in the inquiry process can be beneficial. 

 During the conferences, a lack of “academic language” and “basic skills” did 

not seem to prevent students from learning about mathematical argument. Students 

were able to revise procedures and vocabulary related to the task at the same time that 

they revised their arguments. This is important because the assumption that students 

require fluency either with language or basic skills is a commonly used rationale for 

withholding rigorous mathematical content (NASEM, 2018; Martin, 2009). I also 

found that students were making different kinds of arguments, and in some cases the 

same student made different kinds of arguments. Hence, different proof schemes are 

not necessarily used or learned hierarchically (i.e., from concrete—or empirical—to 

abstract). This is significant because proof schemes are often presumed to be learned 
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in a fixed learning trajectory where empirical proofs, which make use of examples, 

precede analytic ones, which are related to general aspects of a mathematical situation 

(Chimoni et al, 2018; Healy & Hoyles, 2000; Knuth, Choppin, & Bieda, 2009; and 

Küchemann & Hoyles, 2011). This analysis refutes arguments about student lack of 

“readiness” to study algebra if they are making empirical arguments.  

 This study builds on the proof scheme taxonomy by considering the proof 

schemes as a constellation of competencies that can be developed independently, as 

well as in relation to one another. This perspective is counter to views that position 

empirical arguments as inferior to analytic ones. In this analysis, empirical arguments 

and analytic arguments were related through a dialectic process that involved a deep 

engagement with quantitative reasoning, generating and refining claims, and 

opportunities to discuss, describe, and revise written arguments. 

Future Research 

 One limitation of this study was the low participation rates, especially early 

on. The COVID-19 pandemic forced millions of students and teachers into remote 

instructional settings. Consequently, myriad issues arose that worked against full 

participation. For example, the lower rates and quality of internet connectivity found 

in the local community became a formidable obstacle to student participation. The 

difficulties that students encountered when navigating new platforms and submitting 

work via online forms sharply attenuated participation and could erode some of the 

conclusions drawn in this study. A study in a more traditional classroom setting (i.e., 

in-person) might provide additional data in support of the findings presented here.  
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 Pedagogy of Acompañamiento (Sepúlveda, 2011) would be useful to future 

analyses of these data because it is relevant to the kind of conferencing conducted in 

this study. Sepúlveda (2011) describes acompañamiento as “a fellowship and 

engagement with one another without goals and objectives” (p.560). This pedagogical 

approach to literacy could be expanded to approach mathematical reasoning, thus 

framing future study of such reasoning in mathematics conferences. While I had some 

“goals and objectives”, they were not specific (in terms of students coming to my 

own pre-determined conclusion). Acompañamiento is predicated on a few guiding 

principles: 1) that social justice can’t be done “to” students, 2) affirmation of student 

ideas and experience, and 3) relationships based in empathetic love. This approach 

could be used alongside other approaches in mathematics research that foreground 

relationships between teachers and students. This can be a problem because of the 

deficit views teachers hold of multilingual students (Faltis & Valdés, 2016). Also, the 

pedagogy of acompañamiento is based in a loving ethos that requires that teachers 

suspend a priori notions in favor of seeking to understand student reasoning and 

expression.  

Implications for Practice  

 Researchers and practitioners have called for instruction to include the use of 

rehumanizing mathematics instructional practices (Goffney et al., 2018) so that 

students can participate in ways that support their full access to mathematical content 

and activity. These types of instructional practices could include, but are not limited 

to, those that support co-construction of mathematical knowledge, collaboration with 
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peers, shared mathematical authority, the use of multiple entry points for 

mathematical tasks, and the use of multiple forms of assessment. The analyses 

presented here support a focus on example spaces that could support further 

engagement with the refinement of mathematical claims and the available ways to 

justify them.  

 Some students revised their arguments even at the same time that they were 

revising how they used procedures and meanings for formal vocabulary. This finding 

directly refutes a common belief that students must master the “basic skills” of 

mathematics or language as a precondition to engage in rigorous mathematics. Some 

of the study participants did both at the same time. This study shows the details of 

how multilingual students constructed mathematical arguments and illustrates how 

multilingual students can do rigorous mathematics, while developing English. The 

“English Language Learner” (ELL) designation is not relevant to access to such 

work. Future research should explore how professional development can feature 

mathematical conferencing as a pedagogical strategy for supporting all students, but 

especially multilingual students. 

 More research is needed to explore how having an authentic audience might 

change student responses. The study featured an activity where students reasoned to 

an imagined audience (in the Convince Form). My early assumption was that an 

imagined audience would be sufficient for students to consider the unique rhetorical 

demands of, for example, convincing oneself, a friend, or a skeptic. However, many 

students either ignored the imagined audience or considered the imagined audience 
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with a seemingly performative response. Future research could use classroom 

activities that address school or community issues in such a way that students use 

mathematics as a tool when working with other stakeholders and thus provide an 

authentic audience.  

 Students leveraged the work produced in shared documents when generating 

arguments. A student (Amaya) commented that she preferred to work collaboratively 

as a whole class than individually or in groups “Because, people had, like, answers. 

[inaudible] how they had answers and I could understand that more” (Turn 128, 

Amaya transcript). In her comment, Amaya referred to examples as “answers” and 

leveraged the crowd sourcing of examples to use in her own argument. I wonder 

whether the students were leveraging culturally based modes of participation in 

mathematical activity. For example, considering the learning-by-observation-and-

pitching-in framework (LOPI; Rogoff, 2014), it might be possible to support and 

examine student contributions to shared documents and how they support 

learning. The LOPI framework represents an “informal learning” model that includes 

seven facets23 that focus on students collaborating to contribute to a shared endeavor. 

Using shared documents to collectively develop conjectures about mathematical 

 
23 Seven facets: 1) community organization incorporates children in the range of ongoing endeavors of 
their families and communities, 2) learners are eager to contribute and belong as valued members of 
their families and communities, 3) the social organization of endeavors involves collaborative 
engagement as an ensemble, with flexible leadership as the people involved coordinate fluidly with 
each other, 4) the goal of learning is transforming participation to contribute and belong in the 
community, 5) learning involves wide, keen attention, in anticipation of or during contribution to the 
endeavor at hand, 6) communication is based on coordination among participants that builds on the 
shared reference available in their mutual endeavors, and 7) assessment includes appraisal of the 
success of the support provided for the learner as well as of the learner’s progress toward mastery 
(Rogoff, 2014). 
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situations might leverage a cultural practice to promote deeper engagement with the 

process of mathematical inquiry and support the use of culturally sustaining 

pedagogies (Alim, Paris, & Wong, 2020).  

A final comment 

 Focusing on student reasoning is a long-standing recommendation in the 

literature on equity in mathematics education and mathematics education writ large 

(Goffney, Gutiérrez, & Boston, 2018; Leinwand, Brahier, & Huinker, 2014; 

Moschkovich, 2013a, 2013b; NCTM, 2014). However, much of mathematics 

instruction for URM students continues to over-emphasis the role of procedures 

(NCTM, 2018), especially regarding multilingual students (NASEM, 2018). Focusing 

on student reasoning means resisting ‘funneling’, a common pitfall for many teachers. 

Funneling undermines student agency and indirectly communicates deficit views of 

students by positioning the student’s ideas as secondary or inferior to the teacher’s 

ideas. Focusing on student reasoning means accompanying students’ ideas, wherever 

they might go. This means that teachers should suspend their judgements about 

“right” and “wrong”, thus communicating confidence in students’ ideas, and support 

students to pursue and develop their ideas. There is often a temptation to short-circuit 

the learning process by jumping directly to a generalized statement, but this does not 

serve learning. The expediency comes at the expense of learning. 

 Supporting reasoning is critical to the inquiry process, especially for URM 

students. Since mathematics education can be viewed as a white institutional space 

(Battey & Leyva, 2016; Martin, 2009) where deficit views of students are rampant 



 184 

vis-à-vis language (NASEM, 2018), race (Martin, 2006), gender (Fennema, 1974; 

Leder, 2019), and intersectionally in the case of Black and Latinx girls (Copur-

Gencturk, Cimpian, Lubienski, and Thacker, 2020), then efforts to facilitate entry to 

mathematical inquiry must provide some kind of redress or remedy to the ubiquitous 

violence (symbolic, epistemological, and even physical) that is visited upon them. It 

is possible that focusing on student reasoning presents a kind of remedy by 

consciously holding the teacher’s a priori goals and judgements about mathematical 

capacity at bay to create space for students to reveal, develop, or construct their own 

mathematical goals and capacities to meet them.  

 The gatekeeping function of mathematics, and algebra in particular, is well 

documented (Martin, 2009; NCSM & TODOS, 2019; NRC, 1998; Stein et al., 2011; 

Stephens et al., 2017). Access to rigorous mathematics can be blocked when students 

are seen as “unprepared” or “unable” to study more advanced mathematics. 

Arguments for grouping students by their perceived abilities, i.e., tracking, are 

typically based on an assumption that the instruction and materials will be 

commensurate with student “abilities” and those abilities will be accurately assessed. 

However, observed test scores can be attributed to the students’ interactions with the 

learning environment rather than their mathematical abilities (Boaler & Sengupta-

Irving, 2016; Martin, 2009). Likewise, achievement of multilingual students is also 

sensitive to characteristics of the learning environment (Barwell, Moschkovich, & 

Setati Phakeng, 2018; Goodrich, Thayer, & Leiva, 2021). Moreover, access to 

advanced mathematics classes for multilingual students can be further mitigated by 
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the inappropriate usage of tests for English proficiency, especially when support 

classes for English and mathematics are tracked together (NASEM, 2018). All 

students in this study benefitted from access to good tasks and support in revising 

their arguments. By introducing support as it was required by these students, the 

conferencing mitigated the effects of gatekeeping and promoted access to advanced 

mathematics for these students. This study provides an example of how to support 

access for all students in learning to construct mathematical arguments.  
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Appendix C Background Questionnaire (Mathematics Education and Linguistic) 
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Appendix D Early Algebraic Thinking Pre and Post Tests (Adapted from 

Chimoni, Pitta Patazi, & Christou, 2018) 
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Appendix E Summary of the unit of instruction  

 
Argument Lesson 1 

 
Materials: 

● Presentation Slides- Day 1 (URL-1) 
● Discussion board- Day 1 (URL-2) 
● PI-4 Resource Page- Day 2  

○ Group A: (URL-3)  
○ Group B: (URL-4) 

● Convince Form- Day 2 (URL-5) 
 
Session 1. Oct 20, 21 
 
Intro/ Task 1 (10 mins) 

● “Show that when you add any two even numbers, your answer is always even. 
Provide an explanation that would convince a classmate that the answer is 
always even” 

● Show with pictures, symbols, tables, or whatever you think is convincing. 
● Invite students to share screens/ ideas/ responses. 

 
Arguments (20 mins) 

● 5. Discuss working definitions (these are not formal definitions, but something 
we use to get going) for: 

○ Conjecture. “A statement that you think might be true but which you 
are not yet absolutely sure of. It can be tested to see whether or not it is 
true” 

○ Argument. Conjecture with a justification that includes mathematical 
reasons and examples as evidence.  

○ Proof. “An argument showing why a statement is certainly true. 
Statements that concern infinitely many possible cases cannot be 
proved by listing a finite number of confirming cases” 

● 10. Discuss and record justifications in the discussion board (URL-2) 
○ Review discussion board layout 
○ Invite students to contribute to the discussion board. 

Task 2 (15 mins). 3-5 mins to work independently, 10 minutes for discussion board. 
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● “The sum of two consecutive numbers is always an odd number. For example, 
5 + 6 = 11 and 8 + 9 = 17. Show that the sum of any two consecutive numbers 
is always an odd number.” 

● Show with pictures, symbols, tables, or whatever you think is convincing. 
● Discuss and record arguments 
● Post in the discussion board for further comment 

○ Invite students to contribute to the discussion board. 
○ Discuss pros and cons of each argument. How is it convincing? How is 

it not? How were examples used? Did they use mathematical 
properties as reasons?  

Homework: Read PI-4 (CPM p.527)-- if time permits, read problem together for 
understanding. No written work required yet. 
 
Session 2. Oct. 22, 23 
 
Intro/ PI-4 (30-40 minutes) 

● Class reads task and answers clarifying questions. 5-7mins. 
○ How is the pattern growing? 
○ Illustrate rectangles (teacher) 

■ Invite students to describe each and predict the next 
○ Areas. 

■ What’s area of each rectangle? 
■ What’s the sum of the areas for the first two? 
■ ...the first three? 

○ Show the table. Teacher asks: “How do we get the next sum of areas?” 
● Students work individually for 5-7 minutes on PI-4/D, E (Slide 15).. 5-7 mins. 

○ Students complete resource page  
○ Students should be prepared to share findings. 

● Students return to whole-class. We use a shared resource page to fill in the 
table and more rectangles (teacher scribes?).  

○ Share conjectures.  
○ Share some arguments, examples. 

Convince Form (7-10 minutes)- (URL-5) 
● In notebook. Students summarize what they have found and explain it to a 

friend that is assumed to be their own age but not quite as good at math. 
Explain their conjecture, how they justified it, what the examples showed and 
how they used properties, definitions or other math ideas. 

● In notebook. Students use pictures, symbols, tables or whatever to justify the 
argument to a skeptic. 
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● Fill/Submit online Convince Form. 
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Argument Lesson 2 

 
Materials: 

● Presentation Slides- Day 1 – [URL 1] 
● Discussion board- Day 1  

○ Group A: [URL 2] 
○ Group B: [URL 3] 

● PI-13 Resource Page- Day 2  
○ Group A: [URL 4] 
○ Group B: [URL 5] 

● Convince Form- Day 2: [URL 6] 
● Journal #2: [URL 7] 

 
Session 1. Oct 27 28 (about 45 minutes) 
 
Intro 

● Closure for Fibonacci task. 
●  

Task 1 (10 mins) 
● “If you add any three odd numbers together, is your answer always 

odd?” 
● Provide an explanation that would convince your teacher that the answer is 

always odd. 
● Conjectures, examples, evidence, and Comments 

 
Discussion board (10 mins) 

● 10. Discuss and record justifications in the discussion board (link) 
○ Review discussion board layout 
○ Invite students to contribute to the discussion board. 

■ Written explanation  
■ photo 

Task 2 (15 mins). 3-5 mins to work independently, 10 minutes for discussion board. 
● “Zara found a cool trick. She thinks of a number between 1 and 10. She 

adds three, doubles the result, and then she writes the answer down. 
Then, she goes back to the number, doubles it, adds six, and writes the 
number down. Will Zara’s two answers always be equal for any number 
between 1 and 10?” 

● Show with pictures, symbols, tables, or whatever you think is convincing. 
○ More than one. Pictures? Words? symbols? 
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● Discuss and record arguments 
● Post in the discussion board for further comment 

○ Invite students to contribute to the discussion board. 
○ Discuss pros and cons of each argument. How is it convincing? How is 

it not? How were examples used? Did they use mathematical 
properties as reasons?  

 
 
Session 2. Oct. 22, 23 (about 45 minutes) 
 
Intro/ PI-13 (p.534). Resource page:  

● Class reads task and answers clarifying questions. 5-7mins. 
○ Read Slide 1. Include intro up to, and including, the definition of a 

happy number. 
○ Read Slide 2. Read example of “34”. Illustrate why it’s not a happy 

number.  
■ Students should put each calculation in the chat. 
■ Show that the sequence repeats at 89, thus, 34 is not a happy 

number. 
● Students work individually on Question A (Slide XX).. 10 mins. 

○ Students complete resource page-  
○ Students should be prepared to share findings. 
○ Students return to whole-class. We use a shared resource page to fill in 

the 17 2-digit happy numbers and discuss patterns.  
■ Share conjectures.  
■ Share some arguments, examples. 

● Students return to work individually to complete the list of 17 and work on 
Question B. 10 mins. 

○ On their own resource pages, students find 5 three-digit happy 
numbers. 

○ Share with whole class. 
● Students work on Question C and conjecture on “what other numbers must be 

happy numbers? How do you know? Find at least 10 more happy numbers”. 
10 minutes. 

○ Students work on resource page 
○ Students share in whole-class 

Convince Form (7-10 minutes)- [URL 6] 
● In notebook. Students summarize what they have found and explain it to a 

friend that is assumed to be their own age but not quite as good at math. 
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Explain their conjecture, how they justified it, what the examples showed and 
how they used properties, definitions or other math ideas. 

● In notebook. Students use pictures, symbols, tables or whatever to justify the 
argument to a skeptic. 

● Fill/Submit online Convince Form. 
Journal #2: [URL 7] 
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Argument Lesson 3 

 
Materials: 

● Presentation Slides- [URL 1] 
● Resource Page- Day 1. Task 1, 2 Discussions. 

○ Student Form for Google Classroom: [URL 2] 
○ Group Discussion: 

■ Group A: [URL 3] 
■ Group B: [URL 4] 

● Discussion Board- Day 1. Responses to Student Samples.  
○ Student Form for Google Classroom: [URL 5] 
○ Group Discussion 

■ Group A: [URL 6] 
■ Group B: [URL 7] 

● Convince Slides- Day 2: (as slides!)  
○ Student link for Google Classroom: [URL 8] 
○ For presentation: 

■ Group A: [URL 9]  
■ Group B: [URL 10] 

 
Session 1. Nov 17 18 (about 45 minutes) 
 
Intro- START RECORDING. 

● Slide 1. Hello 
● Slide 2. Day 1 overview. 

Task 1 
● Slide 3. Task 1. Consecutive Sums. 15 minutes. Think about the task and use 

the resource page to organize your thoughts and examples. Let’s do some 
together. 

○ Do 5 examples with the students. Make sure they understand and 
explain what “consecutive” means. The resource page should also ask 
the questions: 

■ Experiment with some numbers 
■ Try to make a conjecture about which numbers can be made.  
■ Try to prove your conjecture. 
■ If you have time, say and prove another conjecture about sums 

of consecutive whole numbers.  
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○ Whole Class. In the Resource page (public), gather examples from all 
students, identify “common issues” [see table below] and prompt 
students appropriately. 

○ Keep track of conjectures. 
○ List questions for each of the conjectures on the resource page (based 

on “Common Issues” document). 
Task 2 

● Slide 4. Task 2. Consecutive Sums 2. 15 minutes. “Continue on your 
individual resource page and think about the conjecture. Investigate whether 
it’s true.  

○ Do a few examples with students and then allow them time to work.  
○ Return to whole-class discussion. Poll students for Y/N (is the 

conjecture true?).  
○ Ask for a few volunteers to share their work (share screens?) 

● Slide 5. Questions for Sample Responses.  
○ Understand what they did. 
○ Q1: Explain their reasoning in your own words. 
○ Q2: Why does it (not) convince you? 
○ Which do you prefer? Explain your reasoning.  

● Slides 6-9. Student Samples. Review 4 mins. 
● Slide 10. Discussion Board.  

○ What is different about the methods? 
○ Which do you prefer and why? 
○ What are the pluses and minuses of the different methods? 
○ Which are easiest? Why? 
○ Which are most convincing? Why? 
○ Which are easy to use with other kinds of conjectures? 

 
Responses to Student Samples: 

● Complete Form for Q1, Q2. 
○ Form should have copies of each Sample with Q1 and Q2 possible 

responses. 
 
Session 2. Nov 19 20 (about 45 minutes) 
 
Intro. Always, Sometimes, or Never. 

● Slide 12. Review conjectures from Task 1; Day 1. 10 mins. 
○ Review conjecture.  

■ Review each conjecture 
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■ Make 2-3 examples 
■ Answer questions as a group. 

○ Ask questions. 
● Slide 13. Review conjectures A-F and do a couple of examples (in the chat). 

10-12 mins. 
○ Students work on their own. 
○ Use the PDF that has instructions (in Google classroom) 
○ Take notes and be ready to share on public document. 

● Come back as a class. Review some initial thoughts for several conjectures. 
10-12 mins. 

○ Describe like a card-sort. 
○ Go to break-out groups and talk.  
○ Make some final agreements. 
○ Emphasize agreement and organized notes to submit a good photo! 

● Slide 14. 11:30 am. Describe how the Slides will work to submit work. 10 
mins. 

● Slide 15. Emphasize: 
○ The proof is important. So, consider any sum. 
○ Upload the photo of work. 

● Slide 16. Remind students about conferences. 
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Appendix F Transcript Conventions 

Transcript Conventions (adapted from Moschkovich, 2008) 

Timed pause [3 sec] 
Measured in seconds, this symbol represents an 
interval of silence. 

Period . 
Indicates a falling pitch or intonation at the 
conclusion of an utterance. 

Question mark ? 
Indicates a rising vocal pitch or intonation at the 
end of an utterance. 

Exclamation point ! 
Indicates the end of an utterance with emphatic 
and animated tone.  

Italics Italics Indicates emphasis on a word or phrase. 

Hyphen ― 
Indicates an abrupt halt between syllables or 
words. 

Parentheses ( ) Talk for which transcriber doubt exists. 
Double 
parentheses 

(( )) Transcript annotations 

 
Other guidelines 

• Gestural descriptions will be placed on a new line, using the different font.  

• A new turn will be marked with a change of actor (evident in the numbering). 

So, speech and gestures will be counted in the same turn to support an 

integrated view of communication. If another actor interjects with a simple 

gesture (i.e., no speech), then it would have its own turn number as a 

communicative act. If it’s accompanied with speech, then they would be 

considered part of the same communication act.  

• Use phonetic spellings (e.g., ‘gonna’) to accurately reflect how (in) formal the 

speech might be. 
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Appendix G Math Journal Prompts 
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Long answer text

Add !le

5. Describe your past experiences with proof and proving.  This includes math classes, but also 
outside of math class and outside of school.

Upload up to "ve photos that help explain your answers above.  Please number the drawings in the 
photos.  In addition to photos, you can add a voice message to explain them more!
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Long answer text

Long answer text

Long answer text

3. What frustrates you the most about proof?

4. What would help you write a be!er conjecture or claim?

5. What would help you write a be!er proof or justi"cation?
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Long answer text

Long answer text

Add !le

How are proof and proving in a math class di"erent from other kinds of proof (for example, in a 
science class, history class, or in an argument with a family member)?

If you had a conference with Mr. Sal, describe how the math conferences were helpful or not helpful. 
(2 or 3 sentences)

Upload a photo of any writing, pictures, or examples you wrote.
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Appendix H Convince Form (online) 
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Appendix I Modified Convince Form (slides) 

 

 
 
  

9/9/21

1

Cards!  Click and Drag these 
statements to make a 
conjecture.. 

Always True Sometimes True Never True

1

Justify your conjecture! Convince yourself.
● Pick 2 conjectures (either A, B, C, D, E, or F).
● Upload a photo for each one.  How you 

convinced yourself if it was Always, 
Sometimes, or Never true.  Basically, how you 
explored the conjecture.

[Put photo 1 here using “Insert” and “Image”] [Put photo 2 here using “Insert” and “Image”]

2
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9/9/21

1

Convince a Friend.  [Add text to each box]

Convince a Friend. Write an explanation of 
what your work shows for the first conjecture.  
Explain how you know if it’s Always, Sometimes, 
or Never true. 

Convince a Friend. Write an explanation of 
what your work shows for the second 
conjecture.  Explain how you know if it’s Always, 
Sometimes, or Never true.  

3

Convince a Skeptic (Explain with words and/or upload a photo of your work to 
show symbols, visuals, examples, or other work)

A skeptic doesn’t believe you.  Show how your 
first conjecture works for any sum.  What math 
ideas support your conjecture?  What picture or 
visual?  Can you demonstrate an example?

A skeptic doesn’t believe you.  Show how your 
second conjecture works for any sum.  What math 
ideas support your conjecture?  What picture or 
visual? Can you demonstrate an example?

4
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Appendix J Final tasks for each lesson. 

 
Fibonacci Rectangles (Lesson 1) (Dietiker 
et al., 2013 Problem PI-4, p.527) 

Happy Numbers (Lesson 2) 
(Dietiker et al., 2013, Problem 
PI-13, p.534) 

Consecutive Sums (Lesson 3) (MARS, 2015) 

The Fibonacci Numbers are those numbers 
found in the following sequence: 
 
1, 1, 2, 3, 5, 8, 13, 21, … 
 
a. How is the sequence growing? 
b. If the measures of the sides of a 

rectangle are consecutive Fibonacci 
numbers, it is called a “Fibonacci 
rectangle.” Here are the first four: 

c.  
 
 
 

 
 
What’s the area of each rectangle? 
What’s the sum of the first two? The 
first three? 

d. Copy and complete the table (up to 8): 
  

Number of 
Rectangles 

Sum of the 
Areas 

What is a happy number? 
Square each of the digits of a 
number and add the results. 
Repeat the process until you get 
either: 
• “1”- and the number is 

happy! 
• Or it repeats forever. Not 

happy. 
 
[Example of each shown] 
 
a. There are 17 Happy 

numbers (1-99). Find as 
many as you can! 

b. Find 5 3-digit happy 
numbers. 

c. Eva found out that 478 is a 
happy number. 
What other numbers must be 
happy numbers? 
How do you know? 
Find at least 10 new happy 
numbers. 
 

[Added note:] 

[In your groups] Decide whether each conjecture 
is Always, Sometimes or Never True. If the 
conjecture is Always or Never true, write down 
how you can be sure. 
 
If the conjecture is Sometimes true, write down 
when it is true and when it is not.  
 
Use ideas from the sample work you have looked 
at and make notes on your Math Notebooks– We 
will submit photos. 
 
Agree about each conjecture before moving on. 
Explain your thinking on your slides (and upload 
the photos [t]here). 
 
After placing the cards, pick two conjectures to 
prove!  
 
For each one, use symbols, words, visuals, 
examples, and other ideas to prove your conjecture 
is Always, Sometimes, or Never true. 
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2 3 

3 9 

4   

5   

6   

7   

8   

 
e. Use your table. Look for any special 

numbers. Can you find any patterns? 
For example, what seems special about 
the sum of the areas for an odd number 
of rectangles?  
How are these numbers connected to 
the Fibonacci numbers? Extend the 
table if you need or want more data! 

f. How can you predict the sum of the 
areas of Fibonacci rectangles?  
Use your patterns to predict the sum of 
the areas of the first 15 Fibonacci 
rectangles. 
Find out if your pattern worked. 

 
Make an argument about… 
...which 2-digit numbers are 
happy numbers and HOW you 
know 
--or-- 
...how you know what 3-digit 
numbers are happy 
--or-- 
...something else? 
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