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Effect of solute atoms on dislocation
motion in Mg: An electronic structure
perspective
T. Tsuru1,2 & D. C. Chrzan2

1Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1195,
Japan, 2Materials Science & Engineering, University of California, Berkeley, California, 94720, USA.

Solution strengthening is a well-known approach to tailoring the mechanical properties of structural alloys.
Ultimately, the properties of the dislocation/solute interaction are rooted in the electronic structure of the
alloy. Accordingly, we compute the electronic structure associated with, and the energy barriers to
dislocation cross-slip. The energy barriers so obtained can be used in the development of multiscale models
for dislocation mediated plasticity. The computed electronic structure can be used to identify substitutional
solutes likely to interact strongly with the dislocation. Using the example of a-type screw dislocations in Mg,
we compute accurately the Peierls barrier to prismatic plane slip and argue that Y, Ca, Ti, and Zr should
interact strongly with the studied dislocation, and thereby decrease the dislocation slip anisotropy in the
alloy.

M
agnesium alloys have great potential for the next generation of structural materials. Presently, Mg alloys
are the lightest metals in practical use. Widespread application, however, has been limited because of a
key weakness stemming from their hexagonal-close-packed (hcp) crystal structure: Their elongation-to-

failure is extremely low due to the strong anisotropy in plastic deformation1.
A number of studies have focused on improving the ductility of Mg alloys. One approach is to enhance their

ductility and strength through grain refinement2–4 or controlling spacing of stacking faults5. However, the
expensive refining process drives up materials costs. Another approach is to introduce solute atoms. Fracture
of magnesium alloys generally occurs as a result of strain concentration generated by piled-up basal dislocation at
{1012}-type deformation twin, both of which are introduced in the early stage of the plastic deformation of Mg6.
The atomic structure and crystallographic orientation between basal dislocation and {1012} twin in Mg has
become clear7–9. The pileup of dislocations arises, in part, because slip on the basal plane is substantially easier
than slip on prismatic and pyramidal planes10. This failure mechanism might well be alleviated if one can increase
the stress required for basal plane slip, while simultaneously enhancing the probability for dislocation cross slip.

Theoretically, it is now clear that the chemistry of dislocation solute interactions can play a large role in the net
effect of the solute on twining11 and dislocation mobility12–14. Recent first-principles calculation with flexible-
boundary-conditions allowed for the computation of the interaction energy between a dislocation and solute
atoms, and to predict the solution strengthening through an energy-based calculation of the equilibrium structure
of the dislocation15. The dislocation core structure and the effect of chemical interaction on solid-solution
strengthening were predicted16,17.

Solution softening has a critical role in changing the fracture mode of Mg, and this change is associated with the
improved ductility18. However, the origins of this softening effect can be difficult to discern within available
theories. In a previous report19, the softening effect of Y within Mg was studied by combining first-principles
electronic structure based calculations of generalized stacking fault energies with the Peierls-Nabarro model20,21.
While these calculations predict the softening effect of Y, the underlying quantum mechanical origins of the
effects were not identified. Thus this model is not able to identify easily other candidate alloying additions for
increasing the ductility of Mg.

Here, we introduce an electronic structure based approach to understanding the dislocation solute interaction.
Rather than focusing solely on the total energy of the dislocation core, and the computation of the Peierls barrier,
we additionally focus on the changes in the electronic structure that take place while the straight dislocation is
overcoming its Peierls barrier in the elemental metal. These changes in electronic energy levels, as revealed by
changes in the electronic density of states (DOS), are compared with DOS projected onto substitutional solutes in
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the same metal, and the comparison is used to gauge qualitatively the
solute/dislocation interaction strength. Though the procedure
should be generally applicable, we apply it to solute/dislocation inter-
actions in Mg alloys, revealing clearly the effects of Y on the motion
of screw dislocations in Mg. We then use this understanding to
identify additional alloying elements likely to have a similar effect
on the mobility of these dislocations.

Results
Dislocation core structure and motion in pure Mg. The dislocation
core structures and Peierls barriers in a periodic supercell22,23 are
considered. An initial atomic configuration is constructed by solving
for the displacement field of the dislocation dipole within a periodic
continuum linear elasticity theory (see Methods and Supplementary
Information). Within this method, the distortion tensor arising from
the dislocations is assumed to be periodic, and is expanded in a Fourier
series following reference [23]. The Fourier coefficients for the
distortion tensor are computed by minimizing the total elastic energy
of the system subject to the constraints placed on the distortion tensor
by the presence of the dislocations within the unit cell. The atomic
displacements are then found by integrating the distortion tensor.

The initial conditions for the density functional theory computa-
tions assume that each cell contains an a-type screw dislocation

dipole composed of dislocations with Burgers vectors of
a
3

1120h i
on the basal or prismatic plane (Fig. 1a), where a and c are defined
as the lattice constants of Mg (Supplementary Table 1S). The struc-
ture of the periodic array is shown in Fig. 1b. The (periodic) strain
fields of the periodic array of screw dislocation dipoles are shown in
Fig. 1c. Though the strain fields are periodic, the predicted displace-
ments in the z-direction (the line direction of the dislocations) are
not (Fig. 1d). The elasticity theory prediction for the atomic displa-
cements within the unit cell is shown in Fig. 1e using the differential
displacement map introduced by Vitek24,25. The relative displace-

ment associated with first to third nearest neighbor atoms in
1120ð Þ plane with in-plane cutoff distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=4za2=3

p
is visua-

lized by vector arrows. Note that this initial solution assumes that the
dislocations do not dissociate into partials. This unit cell is then
relaxed using DFT (see Supplementary Information for details)
and the resulting structure is shown in Fig. 1f. After the relaxation,
the screw dislocations display the expected dissociation on the basal
planes.

We used the nudged elastic band (NEB) method26 to compute the
physical and electronic structure of the dislocation as it passes over
the Peierls barrier. Two initial configurations corresponding to the
most stable dislocation dipole structure position and the position
where one of the dislocations moves along the Æ0001æ direction were
prepared, as shown schematically in Fig. 1g. (The initial and final
configurations of the NEB calculation are also represented schem-
atically in Figure S2 configurations (1) and (4) respectively.) The
NEB calculations were performed with 11 relaxing replicas. The
energy difference during dislocation glide on basal, prismatic and
pyramidal plane is shown in Fig. 2 as well as the differential displace-
ments at several important transition states for the case of glide on
the prismatic plane. It is seen from the initial and final states that this
screw dislocation dissociates on the basal plane into partial disloca-
tions. This is consistent with the results of previous theoretical stud-
ies16,17,19, and arises from the low energy of the basal plane stacking
fault. The dislocations glide easily on the basal plane – there is essen-
tially no energy barrier between symmetrically equivalent structures.
On the other hand, the motion on the prismatic plane requires sur-
mounting an energy barrier as demonstrated by the NEB calculation.

Dislocation motion on the prismatic plane can be divided into
three steps, an observation consistent with the Friedel-Escaig mech-
anism proposed by Couret and Caillard10. The first step is the con-
striction of the partial dislocations on the basal plane that yields the
compact core screw dislocation capable of gliding on the prismatic
plane. The second step is glide on the prismatic plane. The third step
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Figure 1 | Construction of dislocation core structure of hcp crystals. (a) A unit cell of hcp structure with basal and prismatic plane identified. (b) Periodic

array of dislocation dipoles. (c) Strain fields of exz and eyz calculated by the elastic theory in a periodic cell. (d) Displacement field of uz component

obtained by the path integration of strain field along x and y. (e) The differential displacements map of dislocation core predicted by the elasticity theory

described in the text. (f) Same as e, but map of the relaxed dislocation core by DFT. (g) Schematic image of dislocation moving along to the Æ0001æ
direction.
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is redissociation into partials split on the basal plane. From Fig. 2 it is
evident that a major portion of the energy barrier for motion of the
dislocation on the prismatic plane is the energy required to constrict
the partial dislocations enabling cross-slip. This energy accounts for
most of the (approximately) 0.06 eV/b Peierls barrier, with b the
Burgers vector of the dislocation. The apparent barrier for glide of
the compact dislocation is much lower approximately 0.01 eV/b for
prismatic and pyramidal glide.

The energy barrier so computed includes two general contribu-
tions: (I) the energy barrier expected for an isolated dislocation and
(II) the changes to this barrier arising from the interaction with the
periodic images. This second contribution can rightly be considered
an artifact of the supercell geometry, and so we need a means to
understand its impact. The calculation of the Peierls barrier within
a periodic supercell approach has been considered by Cai et al.27 and
Pizzagalli et al.28 Here, we again choose to adapt Daw’s formulation
of the periodic elasticity problem23 to model the changes in elastic
energy within our periodic supercell as the dislocation moves over
the Peierls barrier (Supplementary Table S2 and Fig. S2).

Specifically, we note that the motion of the dislocation on the
prismatic plane can be modeled at the continuum scale by account-
ing for changes in the elastic energy and the stacking fault energy
upon constriction of the partials to form a compact core dislocation.
Within Daw’s periodic supercell formulation, we can compute the

changes in elastic energy associated with constricting the partials to
within twice the core distance, rc, (at this distance the dislocation core
regions just begin to overlap) moving the compact dislocation by one
lattice parameter in the slip direction, and then re-dissociating the
compact core into partials. The changes in elastic energy so com-
puted are then combined with the computed stacking fault energy to
predict the change in total energy associated with moving the dis-
location over its Peierls barrier. The value of rc is chosen so as to best
fit the DFT results (see Supplementary Information for details). This
procedure leads to the choice rc 5 0.9b.

The comparison between the continuum approach and the atomic
scale results is plotted in Fig. 2b. The continuum theory does very
well overall, only showing a slight difference at the endpoint (that can
be attributed to a small change in dislocation core energy – see
Supplementary Table S2 and Fig. S2). The implication is that the
bulk of the Peierls barrier to prismatic glide is, in fact, the increase
in elastic energy and the associated reduction in stacking fault energy
associated with the transformation to a compact core. Moreover, it is
clear that the classical model for this constriction process is a robust
and accurate description, now verified by a calculation rooted firmly
in quantum mechanics.

The linear elastic description of the periodic supercell enables one
to discern the effects of the periodicity on the computed Peierls
barrier. Figure 2c shows the continuum theory predictions for the
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Figure 2 | Energy difference during the dislocation motion. (a) The stable energy paths are calculated by NEB simulations for the motion of screw

dislocation in the basal, prismatic and pyramidal plane. Some important transition states for motion on the prismatic plane are visualized by the

differential displacement map. Reaction coordinate is divided into three parts depending on the type of event; the constriction of partial dislocations to

create a compact core, the motion of compact core, and the redissociation of the dislocation into partials. (b) The energy difference in the prismatic plane

compared with fitted continuum theory prediction. (c) The effect of supercell size on the energy difference in the process of dislocation motion within the

continuum theory. Based on this continuum extension of the atomic scale results, the Peierls barrier of an isolated dislocation gliding on the prismatic

plane is 0.075 eV/b.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8793 | DOI: 10.1038/srep08793 3



energy barrier as a function of supercell size. The predicted Peierls
barrier converges to 0.075 eV/b for a supercell containing 96 3 48
four-atom unit cells. Based on this calculation, the primary effect of
the supercell geometry is to reduce the partial constriction energy by
approximately 0.015 eV/b. A secondary effect is to introduce an
additional barrier to dislocation motion, 0.007 eV/b. Both effects
can be eliminated by considering the continuum theory in the large
supercell limit (,18,000 atoms).

Returning to the quantum mechanical formulation of the prob-
lem, we note that it allows us to understand the changes in the
electronic structure associated with motion of the dislocation along
the prismatic plane. The electronic structures of the initial config-
uration and the sixth replica corresponding to the partial and com-
pact dislocations, respectively, are shown in Fig. 3. We examined the
site-projected DOS on four atom positions, labelled A-D, and an
additional atom far from the dislocation core. Thus, we are able to
track the evolution of the site-projected DOS as the dislocation passes
over the Peierls barrier.

Examination of the DOS presented in Fig. 3 establishes two points.
First, dislocations do not bring great changes in the states of the
outermost s electrons of Mg. Second, the p-states just below the
Fermi level are influenced strongly by the passage of a dislocation.
While the projected DOS for the atoms A and C, indicated by red
lines, is reduced by the compact dislocation, the projected DOS for
atoms b and d are increased. Further, while there are small changes
associated with the site-projected DOS of these atoms in the disso-
ciated dislocation core, the rearrangements are much more pro-
nounced in the case of the compact core. These p-states, therefore,
participate in the bonding rearrangements that take place as the
dislocation transitions from dissociated partials to a compact dis-
location in order to surmount its Peierls barrier. A similar effect is
apparent in the charge density derived from the states near the Fermi
level. Figures. 3c–d show the charge density plots for the dissociated
and compact dislocations, which are drawn by VESTA software29.

There is substantial rearrangement of the charge upon the transition
from dissociated to compact core.

These changes in the electronic structure of the dislocation as it
surmounts its Peierls barrier constitute, in some sense, the electronic
structure of the dislocation motion. We are now in the position to
identify substitutional elements that might interact strongly with the
dislocations in Mg.

Electronic states of solutes in Mg. The principle underlying our
analysis is very simple. Introduction of a substitutional solute atom
changes the electronic structure near the solute. If these changes
occur in the same energy range associated with the changes in the
electronic structure of the dislocation during motion, strong
chemical hybridization can occur between the solute atom states
and those states associated with dislocation motion. If these states
also lie below the Fermi level, this hybridization will lead to a strong
physical interaction between the dislocation and the substitutional
solute atom.

To explore this idea, we computed the electronic structures of Al,
Zn, Y, Ca, Ti and Zr substitutional atoms within Mg (see
Computational Details). The site-projected DOS are shown in
Fig. 4. From the figure, it is clear that Al and Zn have only minimal
effect on the DOS in the energy range associated with the motion of
the dislocation (22 eV to 0 eV). In contrast, Y, Ca, Ti, and Zr show
relatively large changes in the electronic states in this energy range.
We expect, therefore, that substitutional Al and Zn will not interact
strongly with the dislocation, but that substitutional Y, Ca, Ti and Zr
will.

Effect of solutes on dislocation core. Based on this evidence, we
then considered directly the interaction of the dislocation with
substitutional solute atoms. Specifically, we confirmed that the
dislocation core structure is strongly influenced by Y, Ca, Ti and
Zr, and is relatively unchanged in the case of Al and Zn. A typical
comparison is shown in Fig. 5. The dislocation remains dissociated
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into partial dislocations in case that the Al and Zn solutes are added,
because Al solute does not influence p states of atoms near the
dislocation core. In contrast, it is seen that a dislocation dissociated
in the basal plane shrinks immediately as a result of the strong
interaction with Y, Ca, Ti and Zr solutions. It is interesting to note
that the partial charge density for a dislocation core with Al and Y
shows a similar distribution to those for a partial and perfect
dislocation cores in pure Mg, respectively. The density of states of
these solute elements added near the dislocation core of Mg are
shown in Fig. 4b, where s and p states of Mg and d states of each
solute element are given in the same graph. A clear distinction can be
seen between the two types of groups: Al does not have d states and
Zn has few d states if any in the energy range of interest. On the other
hand, Y, Ca, Ti and Zr show prominent d states between 22.0 and
0.0 eV. These d-states are available for hybridization with the
p-states of the Mg, and ultimately lead to the strong interaction
between these alloying additions and the dislocation core structure.
These calculations, therefore, confirm that one can use the electronic
structure of the dislocation motion to identify substitutional alloying
elements that interact strongly with the dislocations in Mg. However,
we need to understand the effects of this interaction on dislocation
motion.

As shown above, in pure Mg glide of a screw dislocation on the
prismatic plane is only possible in the compact core configuration.
Our calculations show that the strongly interacting solutes bind to,
and thus stabilize, the compact core. To explore the range of this
binding, we performed a NEB calculation of the motion of disloca-
tion in a cell with one column of Mg atoms replaced by Y. The results
of this calculation are shown in Fig. 6.

There are three important observations that arise from study of
Fig. 6. First, the presence of the Y leads to a core transformation from
dissociated core to a compact core, with the Y atoms within the core.
Second, the compact core is stable for a broad range of distances
between it and the Y, approximately 3/2 c in either direction, with
c the length of the high symmetry axis in Mg. Third, the dislocation
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core is bound to the row of Y atoms by at least 0.2 eV/b, and this
energy increase takes place (primarily) over a distance of 3/2 c.

We are now in the position to consider the effects of alloying
additions on the slip anisotropy of Mg. As stated above, slip aniso-
tropy is one of the origins of the poor ductility in Mg. In the absence
of solute atoms, screw dislocations glide on the basal plane with
almost no Peierls barrier, where as the Peierls barrier for prismatic
and pyramidal slip are quite large, and this leads to elastic limit ratio

for slip on these planes10:
sprismatic

sbasal
~20. Given this situation, slip

anisotropy can be improved if one increases the strength of basal
plane slip.

Hardening effect of solutes of basal plane. Consider the basal plane.
Introduction of Y as substitutional solute will lead to, locally, strong
binding of the basal plane screw dislocation to the Y atom. If one
assumes that the final state of the NEB calculation presented in Fig. 6
is not interacting with the dislocation, one expects this binding
energy to be approximately 0.2 eV per Y atom. As noted in Fig. 6,
this binding is dissipated over a distance of roughly 3/2 c. Using the
binding energy per unit length, and the estimate of the interaction
distance, one can estimate the pinning strength of an assumed
immobile single Y atom30–32 (this calculation is presented in the
Supplementary Information.). Incorporating this pinning strength

into simple models for obstacle controlled glide, we estimate that Y
levels of 1 at.-% will increase the yield stress of the basal glide plane
by approximately 90 MPa. If the strengthening of the prismatic slip
plane is similar, in magnitude, the elastic limit ratio is reduced to
sprismatic

sbasal
<1:5. The introduction of 1 at.-% Y is expected to reduce

the elastic limit ratio for slip on these two planes by a factor greater
than 10. However, the strengthening of the prismatic plane is likely to
be reduced (as discussed below) suggesting that Y may be even more
effective at reducing slip anisotropy.

Consider now glide of the same screw dislocation on the pris-
matic plane. As noted above, the largest contribution to the Peierls
barrier for slip on this plane is the energy associated forming the
compact core from the dissociated partials. However, in the pres-
ence of a Y atom, the core does not dissociate. In fact, motion of the
dislocation through the Y atom requires overcoming only a small
Peierls barrier, approximately 0.02 eV/b. (We do not expect this
barrier to be subject to large corrections from the periodic supercell
approach.) So, if the density of Y atoms can be made sufficiently
large to keep large portions of the screw dislocation cores compact,
cross slip onto, and glide on the prismatic plane will require sub-
stantially less stress.

We can estimate the density of solute atoms necessary to maintain
the compact core structure for the screw dislocations in Mg using the
data in Fig. 6. If we assume that the extent of the solute atom’s
electronic structure along the dislocation core is roughly the same
as its extent normal to the core, we expect that a single solute atom
influenced dislocation properties within a spherical region of the

crystal with volume
4p
3

3c
2

� �3

. This volume contains, within pure

Mg, approximately 6
ffiffiffi
3
p

p
c
a

� �2
<85 atoms. Again, at approximately

1 at.-% Y, large portions of the dislocation core are expected to be
found in the compact configuration.

Experimentally, there is some support for our model. Recent
experimental studies have indeed found that Ca solutes enhance
non-basal slip deformation (H. Somekawa, private communication)
although they make the fracture toughness weaker as a result from
the grain boundary segregation30, and that Zr solutes improve the
elongation to failure with a positive effect on grain refinement31,32 in
which multiple slip plays an important role.

Discussion
There are three primary conclusions from our work. First we have
shown that by combining a continuum linear elasticity theory for
periodic dislocation arrays with density functional theory calcula-
tions employing the nudged-elastic-band formalism for finding

saddle point, that we can compute the Peierls barrier for
a
3

1120h i
screw dislocation slip on the prismatic planes of Mg. For an isolated
dislocation, this barrier is computed to be 0.075 eV/b. Moreover, the
barrier arises from the constriction energy of the partial dislocations,
exactly as expected within the Friedel-Escaig model for cross-slip.

Second, we have computed the changes in electronic structure
associated with the motion of the dislocation over its Peierls barrier.

For the
a
3

1120h i screw dislocation in Mg, these changes occur prim-

arily in p-states right below the Fermi level. Alloying additions with
electronic states in this energy range are, therefore, likely to interact
strongly with the dislocation core, and thereby influence its motion.
These additions, in turn, can be identified through simple computa-
tion of their electronic structure when embedded within an otherwise
perfect bulk. Based on this analysis, we argue that substitutional Y,
Ca, Ti and Zr are expected to interact strongly with the screw dis-
location cores in Mg, whereas Zn and Al are expected to have little
interaction.
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Third, we have shown by direct computation that Y stabilizes the

compact core for the
a
3

1120h i screw dislocations in Mg. This com-

pact core is then able to glide on the basal, prismatic and pyramidal
planes. So the same solute addition both increases the stress required
for slip on the basal plane, and enables cross-slip to prismatic and
pyramidal planes. Both of these effects have the potential to increase
the ductility of Mg, through the blunting of basal plane dislocation
pileups that are linked to fracture.

Methods
For more details, see Supplementary Information.

Dislocation in a periodic cell. The introduction of dislocations within our periodic is
accomplished through application of a continuum linear elastic theory solution for
the periodic dislocation dipole array23. The distortion field caused by periodic
distribution of dislocations is expressed as a Fourier series:

D rð Þ~
X

G

~D Gð Þ exp iG:rð Þ, ð1Þ

with D
5

(r) the distortion tensor at point r, G the reciprocal lattice vectors, and ~D Gð Þ
the Fourier coefficients describing the distortion tensor. The elastic energy per unit
length of the supercell can be expressed in terms the ~D Gð Þ’s:

Eelastic~
1
2

Accijkl

X
G

eDij Gð ÞeD�kl Gð Þ, ð2Þ

with Ac the area of the supercell containing the dislocation dipole and cijkl the elastic
constants of the material. The distortion field is then chosen to minimize the total
elastic energy subject to the topological constraints imposed by the dislocations. The
predicted displacement at the atomic positions is obtained by a line integral starting
from a reference coordinate. In this work, the screw dislocation dipole with Burgers

vectors of the type
a
3

1120h i is studied. The dipole is inserted into a 288 atom supercell

with the dimension of 12 3 6 periodic units along [0001] and 1100½ �, respectively
(Supplementary Fig. S1).

Computational details. DFT calculations were carried out using the Vienna Ab initio
simulation package (VASP)33,34 with the Perdew–Burke–Ernzerhof formulation of
the generalized gradient approximation to the exchange-correlation density
functional35. The Brillouin-zone k-point samplings were chosen using the
Monkhorst–Pack algorithm36. The plane-wave energy cutoff was set at 400 eV. The
outer s and semi-core p electrons were considered as valence electrons. 1 3 1 3 9 and
2 3 2 3 25 k-point samplings were used for structural relaxation and density of states
calculation, respectively. The fully relaxed configurations were obtained by the
conjugate gradient method that terminated the search when force on all the atoms
was reduced to less than 0.005 eV/Å. The transition state during dislocation motion
were calculated using NEB calculations26 with eleven intermediate replica images, and
forces converged to better than 0.01 eV/Å.
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