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Non-Hebbian properties of long-term potentiation enable
high-capacity encoding of temporal sequences

(non-Hebbian Iearnlng/hippocampus/long-term potentiation learning rules)

RICHARD GRANGER, JAMES WHITSON, JOHN LARSON, AND GARY LYNCH
Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92717

Communicated by Richard F. Thompson, March 15, 1994

ABSTRACT A hypothesis commonly found in biological
and computational studies of synaptic plasticity embodies a
version of the 1949 postulate ofHebb that coactivity of pre- and
postsynaptic elements results In increased efficacy of their
synaptic contacts. This general proposal presaged the identi-
fication of the first and still only known long-lasting synaptic
plasticity mechanisni, long-term potentiation (LTP). Yet the
detailed physiology ofLTP induction and expression differs in
many specifics from Hebb's rule. Incorporation of these phys-
iological LTP constraints into a simple non-Hebbian network
model enabled development of "sequence detectors" that
respond preferentially to the sequences on which they were
trained. The network was found to have unexed capacity
(e.g., 50 x 106 random sequences in a network of 10' cells),
which scales linearly with network size, thereby addressing the
question of memory capacity in brain circuitry of realistic size.

Physiological evidence has clearly shown that Hebb's pos-
tulate ". . . [when cell A] repeatedly or persistently takes
part in firing [cell B], . . . A's efficiency, as one of the cells
firing B, is increased" (1) is neither necessary nor sufficient
for induction of synaptic long-term potentiation (LTP): the
target cell (cell B) need not be fired, only depolarized, for
LTP to occur (2, 3) (necessity), and yet even repeated firing
will not induce LTP unless the depolarization exceeds the
N-methyl-D-aspartate (NMDA) receptor channel voltage
threshold (4) (sufficiency). Nonetheless, there has been a
trend in the literature to embrace the generality of Hebb's
proposal and to emphasize its similarities to the requirements
for the induction ofLTP; moreover, theoretical learning rules
based on the Hebb or "correlation" postulate yield networks
of considerable computational power (5-10). These discrep-
ancies between the physiological constraints on LTP induc-
tion versus the Hebb correlation rule raise the question of
whether non-Hebbian properties ofLTP induction are largely
extraneous to, or even impair, the behavioral and computa-
tional utility ofsynaptic plasticity, or whether such properties
may yield learning rules that confer useful functional abilities
to circuits that use them. Here we derive non-Hebbian LTP
induction and expression rules from three physiological re-
sults [showing that the (simpler) Hebb rule emerges as a
special case] and show that a network using these induction
(learning) and expression (performance) rules acts as a high-
capacity "sequence detector" that encodes and recognizes
very large numbers of temporally patterned cue sequences.

Induction and Expression of LTP

Physiological Characteristics of LTP Induction and Expres-
sion. Studies have established that stimulation patterns based
on the 4- to 7-Hz theta electroencephalogram rhythm, which

appears throughout the olfactory-hippocampal circuit in
learning animals (11), are ideally suited for producing robust
and stable LTP (12-15). The unlikelihood of complete syn-
chrony of afferents requires extension ofLTP induction rules
to account for somewhat asynchronous inputs occurring
within the envelope of a single peak of the 0 rhythm-i.e.,
brief (<100 ms) sequences of inputs.
A Hebbian coactivity rule would predict that as asynchro-

nous afferents arrive, increased depolarization of the target
neuron over the staggered arrival times will cause later inputs
to be strengthened more than earlier inputs. However, exper-
iments using asynchronous inputs have shown that this is not
the case. Experiments were done using three small inputs
stimulated in a staggered sequence (S1-S2-S3) over 70 ms
(Fig. la), testing the induction of LTP in each of the three
afferents. The synapses at S1 became potentiated the most, the
synapses at S3 were potentiated the least, and the synapses at
S2 attained an intermediate degree of potentiation (16).
LTP expression was found to exhibit order dependence

corresponding to that found for LTP induction (Fig. lb). Input
S1 was potentiated and input S2 remained weak, as would occur
in order-dependent LTP induction. Response to the sequence
S1-S2, in which the strong (potentiated) input (Si) leads, is
significantly larger than response to the opposite sequence
S2-S1, in which the weaker (unpotentiated) input leads.
Moreover, the predominant effect of potentiation is on

responses generated by the DL-a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) subclass of glutamate
receptors, which are active during normal stimulation con-
ditions; potentiation does not have a comparable effect on
NMDA receptor-dependent potentials (17-19). Thus, subse-
quent LTP induction episodes are relatively unaffected by
prior induction, another effect not predicted from Hebb's
postulate and one not included in network models.

Derivation of LTP Learning and Performance Rules. These
LTP induction and expression rules were abstracted and
incorporated into a simple multicellular network based on the
circuit in which the cited LTP rules were found, hippocampal
field CAL. The resulting network learns brief simulated
sequences lasting roughly 70-100 ms, the duration of the
sequences used in the physiological LTP experiments on
which the network is based. Intuitively, such brief sequences
are commensurate with those that occur within a single
syllabic unit of speech or during a single eye saccade.
The learning rule is abstracted from the order dependence

ofLTP induction (16) described above (Fig. la). In response
to a trained input sequence, the performance rule selectively
activates those cells whose synapses are potentiated in the
appropriate order, as suggested by the LTP expression
experiment in Fig. lb. In particular, the network consists of
A input lines innervatingM "competitive" patches (5, 20-22)
of C cells each, for a total of CM cells. The synaptic

Abbreviations: LTP, long-term potentiation; NMDA, N-methyl-D-
aspartate; AMPA, DL-a-anino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid.
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FIG. 1. Physiology of LTP induction via
temporal sequence of inputs. (a) Order-
dependent LTP induction. Sequential stimula-

IIS tion of multiple afferents to a target cell in field
CA1 of in vitro slice preparations of hippocam-

Ipus caused differential potentiation of synapses
as a function of the order in which inputs were
stimulated (16). In 22 experiments, when LTP
was induced via stimulation of inputs S1, S2,
and S3 in that order, regardless ofthe location of

S1 S2 S3 stimulation (A, B, or C), the degree of LTP
induced (shown in the rightmost bar graph) was
S1 > S2 > S3 (P < 0.05 each). [Reproduced with
permission from ref. 16 (copyright 1989 Elsevier
Science).] (b) Order-dependent LTP expres-
sion. The response of a target cell to the se-
quences Sl-Sl-S2-S2 and S2-S2-S1-S1 was
measured both before and after induction of
LTP in S1. (Bottom Left) A typical experiment
lasting 50 min, with LTP induced in the S1

mV pathway at 12 min, resulting in stable potentia-
LV tion of -66% ± 5%. (TBS, theta burst stimula-
20 ms tion.) (Top) Excitatory postsynaptic potentials

in response to the sequences S1-Sl-S2-S2 and
S2-S2-Sl-Sl, each measured 2 min before and
8 mmn after the potentiation episode (calibration
= 1 mV, 20 ins). (Bottom Right) Bar graph
shows percentage increases of the extracelllar
response area to S1 and S2 individually and to
the two sequences due to potentiation of the S1
pathway. In 18 experiments, the response to the
sequence with the potentiated pathway stimu-
lated first (S1-S1-S2-S2) was significantly

SI .S2-+ greater than the response to the reverse se-
S2 SI quence (P < 0.01; one-tailed paired t test, 17 df

= 2.75).

connection matrix W consists ofrandom synaptic weights for
the connection between each cell c and input line a. Each
input or stringX is a temporal sequence of S vectors, each of
dimensionality A. Intuitively, then, the learning algorithm
processes a temporal input sequence by performing order-
dependent potentiation (Fig. la) of the synapses of those
cell(s) that survive or "win" the lateral inhibition in the
competitive patches. The performance algorithm is based on
the order-dependent LTP expression found in Fig. lb; cells
are activated more strongly if the input sequence arrives at
the cell in the order of decreasing synaptic strengths of those
inputs at the cell. Thus, a target cell will respond selectively
to sequences on which it has been trained via order-
dependent LTP induction. Finally, LTP expression in the
model incorporates the differential effects of LTP on AMPA
and NMDA receptors (17, 19). The AMPA currents at a
synapse are changed by learning and used during perfor-
mance, corresponding to the typical connections used in
virtually all artificial neural network models. But the NMDA
channel, which is used during learning, remains relatively
unchanged by prior learning. Thus, prior learning via LTP
has little effect on subsequent learning episodes. This rule is
a significant departure from the great majority of learning
rules in neural network studies. To implement this distinc-
tion, the network uses potentiated weights, corresponding to
AMPA receptor channels, during performance but uses naive
(unchanged) weights, corresponding to NMDA receptor
channel currents during learning.

Network Modeling

Network Characteristics. The derived functional LTP in-
duction and expression rules are embedded in a network
model whose design is based on prominent architectural

features of hippocampal field CAL. Axons of primary excit-
atory (pyramidal) cells exit CA1 without recurrently contact-
ing other excitatory CA1 cells. Inhibitory (basket) cells are
outnumbered by pyramidal cells by %2 orders of magnitude,
are densely contacted by pyramidal cell axons, and in return
densely innervate pyramidal cells within a radius of 100
neighboring cells. Prior modeling results (22) have indicated
that this patchlike arrangement of a few inhibitory cells
densely contacting and contacted by many excitatory cells
can yield lateral inhibitory activity of the type modeled by
simpler competitive or "winner take all" networks (5, 9, 21).

Existing competitive-network results have focused on syn-
chronously arriving inputs in such networks; the proposed
extension to temporal sequences calls for a corresponding
extension to the modeling of lateral inhibition in the network.
In synchronous competitive or lateral-inhibition networks,
target cells that are most strongly activated by the input win
the competition and respond, whereas weakly activated
target cells are suppressed via lateral inhibitory activity,
losing the competition. In the temporal sequence network
described here, each input in the temporal sequence gives
rise to an increment of lateral inhibition, such that at each
step the most weakly activated target cells become inhibited,
whereas the rest survive. Thus, the target cell population is
"honed" via lateral inhibitory responses to the successive
inputs in the sequence, until the remaining cells are those
most strongly responding to the overall input sequence.

Learning and Perforce Formafs. Table 1 contains a
formal statement of the learning and performance rules to be
incorporated into the temporal lateral inhibition network. The
learning rule essentially specifies that for every time step s
(assumed for simplicity to be divided into S discrete time
"windows" each of fixed duration-e.g., 10 ms) in the input
sequenceX, the target cells 4 are subject to competitive lateral
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Table 1. Learning and performance rules for the simplified network algorithm
Learning (induction) Performance (expression)

Item Li. Do items L2-L3 for each input X to be learned. Item P1. Do items P2-P3 for each input X to be tested.
Item L2. For each sequential step s E {1, 2, . .. , S}, Item P2. For each sequential step s E {1, 2, . . ., SI,

retain active only winning subset of cells 4 retain active only winning subset of cells
win(Xs, s-1, WO). win(Xs, 4-i, W).

Item L3. For final winning cell c E 4, perform Item P3. Accept (recognize) if each patch responds or
order-dependent potentiation: train(WJ). else reject.

Each input X is a temporal sequence of S orthogonal vectors each of dimensionality A; i.e., each input can be thought
ofas a word with each ofthe S steps corresponding to one letter in it. During learning, each competitive patch in the network
performs lateral inhibition at each of the S time steps, at each step inhibiting insufficiently responsive cells. At the end of
the temporal sequence, the synapses of the final winning cell(s) c become potentiated with the strongest potentiation at the
first input and successively weaker potentiation at subsequent inputs. During performance, lateral inhibition patches behave
as during learning; at the end of the input sequence, if each such patch responds with at least one cell surviving the lateral
inhibition, then the sequence is recognized (accept or match); if any patch fails to respond, the sequence is not recognized
(reject or mismatch).

inhibition ,-- win(X, O), and the final winning cell c surviving
the honing process is trained according to the order-
dependence rule described above; earliest inputs potentiate
their synapses W the most, and later inputs potentiate suc-
cessively less.
The performance rule assumes the same discrete time steps

for the sequential input. At each step s, the same competitive
lateral inhibition successively reduces the set of responsive
target cells as described above. Whereas the learning rule used
naive (unpotentiated) weights for all synapses, corresponding
to activation of the NMDA receptors which induce LTP but
exhibit little if any potentiation, the performance rule uses
potentiated weights, corresponding to AMPA receptors. As a
result of synaptic potentiation during the learning phase,
different cells than when naive (unpotentiated) weights were
used will now be the most strongly responding. Thus, the
honing process now will find different cells as winners. In the
network model, as the input sequence arrives, only synapses
that were potentiated at the appropriate time step can survive
the honing process and remain responsive. Thus, if the input
was not previously learned by the network, the likelihood is
low that any target cells will respond. Only if the network was
trained on this or a related input sequence will the network
yield a responsive winning cell at the end of the honing
process. Multiple cell groups or patches of cells perform this
same operation independently and in parallel.
Computation of the Network. The result is a network that

performs an operation of "accept/reject" on its inputs. That
is, having been trained on a set of input sequences via the
learning rule, the resulting network will tend to recognize or
accept those sequences on which it has been trained, and it
will tend to reject, or not recognize, any sequences on which
it has not been trained. Typical neural network algorithms
successfully recognize inputs that are sufficiently similar to
those on which training has occurred, even if the input itself
has never been seen before; this constitutes "generalization"
or "recognition of degraded cues"-i.e., a radius of similar-
ity around learned cues, within which the network will
respond positively. The present network performs no gener-
alization; it perfectly remembers sequences on which it has
been trained, but it does not generalize to other input
sequences. The network exhibits another property, equally
unusual for a network model: its capacity. The network uses
synapses extremely efficiently, causing a network of given
size to be capable of learning a very large number of input
sequences with very low recognition error rates. More im-
portantly, the network capacity (number of inputs learnable
with fixed recognition error) grows linearly as the network
grows, enabling very high capacity from large networks.

Computational Analysis

Formal Derivation ofNetwork Capacity. The capacity ofthe
network can be cast in terms of its errors as a function of the

number of sequences stored in a network ofa given size. Two
types of errors can be distinguished: errors of collision, in
which a particular set oftarget cells respond to more than one
temporal string or "word" during training, and errors of
commission, in which a target cell responds at testing (per-
formance) time to a string on which it has not been trained.
Approximations of the values of these two error rates are
derived by the introduction of appropriate simplifying as-
sumptions (Fig. 2). The number of collisions is shown to
depend solely on the number n of inputs learned and the
number of total possible output configurations, each consist-
ing of the winning cell response from each competitive patch
in the network. IfQ is the number of distinct output patterns
already assigned after n distinct random input patterns have
been learned, then the number of collisions is n - Q. For a
network ofM competitive patches of C cells each, there are
a total of J = CM possible distinct output patterns from the
network. Let P, be the probability that a particular output
pattern is activated by an input training pattern; Po = 1 - P,
is the probability that a particular pattern is not activated by
the input. Then the expected number of assigned output
patterns D = PjJ = J(1 - PO). If patterns are assigned
randomly, then a particular output pattern is assigned with
probability 1/J; the probability of the pattern remaining
unassigned after training on n inputs is Po = (1 - 1/J)n.
Combining these equations, the expected number of colli-
sions is n - J[1 - (1 - 1/J)n], and, for n inputs, the rate EL
of collision errors is

J
EL = 1--[1-(1-1/J)M].

n
[1]

Unlike the collision rate, the probability ofa commission error
depends on the number of steps S in the input and the number
of input lines A-i.e., the length and dimensionality of the
input string. Input sequences are assumed to be relatively brief
(S < 50), corresponding to asynchronous input stimulation
occurring within a single peak ofa synchronizing rhythm such
as 0. (Such sequences can be thought ofintuitively as coherent
units such as, e.g., the briefsequence ofphonemes comprising
a spoken word.) Every learned sequence generates a memory
trace consisting of S potentiated synapses or marks, for each
entry in the input sequence. Spurious traces or paths through
the set of marked synapses also arise with training, and an
untrained input will be erroneously accepted or recognized by
the net if it activates one of these spurious traces. (For
instance, if a given cell is trained on the sequences ABC and
DEF, then that cell if tested will falsely recognize sequences
such as AEC.) For input vectors of dimensionality A (i.e., A
letters in the input "alphabet"), there are As possible input
sequences of length S. If learning n such strings produces a
total of G traces per cell in each ofM patches, n/C of which

Proc. Natl. Acad Sci. USA 91 (1994)
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as a function of the number of 0.4 E 04
sequences learned (n), plotted for ° 0.2
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ing size. Sequences learned are of o.o - ooooo0.o-c_}WO
length S = 4 randomly composed -02 - -02
from an input alphabet ofA = 500 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
orthogonal letters. Theoretical n n
curves were generated from Eq. 1 C
(see text) for n = 1000-p 10,00 in 000 d
steps of 1000. Empirical curves
were generated from runs of a
simulated network, trained incre- 800 \\.
mentally over 10 training sessions T L * *0 *U

of 103new sequences per session. \0
Training consisted of a single pre- X 600 \R *A I SI|
sentation per sequence, with -, *A *R [ECAPITAL) ICAPTOLI .A
learning proceeding according to L \I
the learning rule presented in the = 400 *T ICAPITATE) l *N *T
text and in Table 1. The four 5
curves correspond to four differ- CE|CAPILLARY) *T +*M A

ent-sized networks. Top curve is 200
the collision rate for a network -(CAPTRA ICAPITAU"il ICAP EOLINE
with one patch (M = 1) of C = 16 0 (CAPITAULSM (CAPITULAT
cells; immediately below it is a 00 20 40 60 80 I10 CALIe
network of two patches (32 cells Patches
total); next is a network of three
such patches. Bottom curve corresponds to an 80-cell, five-patch network. Theoretical curves closely match empirical results, and collision
rates shrink dramatically as the size of the network increases. (b) Empirical (s) and theoretical (o) percentage errors ofcommission are plotted
for the same four network sizes as above (with 16, 32, 48, and 80 cells). Theoretical curves were generated via the equation for commission
errors (Eq. 2), and empirical results were generated from the network as described. Again, the theoretical equation closely matches the
empirical results, and, again, errors shrink with increasing network size, becoming vanishingly small for a network ofjust 80 cells learning
104 sequences. (c) Capacity and scaling properties of the network. Contour lines in the graph indicate number of sequences that can be learned
by networks of various sizes. In particular, the number n of sequences of length S = 10 that can be learned without exceeding a fixed error
probability E = 0.001, for networks with an input alphabet of A = 10,000, varying in size up to 100,000 cells. The x axis gives the number
of patches of cells in the network (see text), and the y axis denotes number of cells per patch. Each contour curve corresponds to a specific
number n of learned sequences. The lowest curve denotes 5 x 106 learned sequences, which can be learned by a network with 5 patches (x
axis) of -250 cells per patch (y axis), or 40 patches of =125 cells per patch, etc. Each contour curve is 5 x 106 learned sequences higher than
the one below it. The highest curve shown corresponds to 45 x 106 learned sequences (via networks with, e.g., 60 patches of 1000 cells each,
or 100 patches of 900 cells each). The network corresponding to the upper right corner of the graph consists of 100,000 cells (100 patches of
1000 cells each) and has a capacity of 50 x 106 sequences, with error rate E ' 0.001. (d) Recognition and sequence completion after training
on 10,000 dictionary words. The simplified network algorithm was trained on 104 sequence strings of 6-10 letters drawn randomly from a
dictionary (see text). The network consisted of 1000 target cells arranged intoM = 5 patches of C = 200 cells each, with A = 702 input lines
(corresponding to all possible letter pairs constructed from the 26 letters of the alphabet plus a space). The network exhibited 0.002 (0.2%o)
probability of collision error during training, and 0.01 (1%6) probability of commission error during subsequent testing. The letter-order
information in each learned word is stored in the network and is exhibited via a simple search algorithm which incrementally appends all
possible letters to a given prefix and tests the network for recognition. Branches of the resulting search that led to recognized completions
of the prefix CAPI by the 1000-cell network after being trained on the 10,000 words are shown.

are nonspurious (correct) traces, then the rate of commission
errors will be [(G - n/C)/ASIM. If PF is the probability that a
particular synapse at a particular step is part of an accepted
trace, then the expected number of synapses active per step is
PFA and the expected number of traces that can be accepted
for S steps is G = (PFA)s. For n randomly chosen strings, in
each patch of C cells, a cell wins its patch competition n/C
times, marking S synapses on that cell, each with a probability
of 1/A. The probability that a synapse is not marked for each
cell that wins a competition is [1 - (1/A)]n/C; thus PF = 1 -
[1 - (1/A)]I/C, and the rate EM of errors of commission is
arrived at by combining these expressions:

EM= ({AI[1 -(1- (1/A))/c]}S - n/C) [2]

Analytical and Empirical Findings. Fig. 2 a and b plots these
theoretically derived values for collision and commission
errors along with the empirical values from simulation runs.
Four networks of increasing size were tested for their rec-
ognition capabilities after being trained on 104 randomly

generated input sequences each of length four (S = 4) with a
single training trial per input string (see Fig. 2 legend for
details). It is seen that the number of both types of error
decreases extremely rapidly with increasing network size;
with an input alphabet of 500 letters, the 16-cell network (with
500 synapses per dendrite) exhibits nearly 100% errors of
collision during training after learning only 103 inputs; there
are somewhat fewer errors for the 32- and 48-cell networks.
The probability of collision error for the 80-cell, five-patch
network is only 0.007 (0.7%) over the course of learning the
full set of 104 input strings, a rate dramatically lower than that
of the smaller networks. Intuitively, this is due to the
combinatorial nature of the network; with only one or two
patches in the network, there are few possible patterns and
thus relatively many collisions (identical patterns) generated
by different inputs. However, with multiple patches in the
network, the number of possible patterns grows factorially,
and the probability of two patterns colliding (generating
identical patterns) becomes vanishingly small.

Similarly, errors of commission decrease dramatically with
increasing network size, from an 50%o error rate after

Neurobiology: Granger et al.
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training the 16-cell network on 104 strings to an error rate of
0.046 (4.6%) for the 80-cell network.

Fig. 2c illustrates the scaling properties of the network-
i.e., how the capacity changes as a function of the size of the
network. In the commissions equation (Eq. 2), for n << As,
the quantity (n/C)/As may be neglected, allowing Eq. 2 to be
approximated byEM = {1 - [1 - (1/A)]n/C}sM. Solving for the
embedded exponent n yields

Clog(1- E/sm)
log[1 - (1/A)]

The figure is a contour graph of the relationship among the
number ofpatches in the network, the number of cells in each
patch, and the number of sequences that can be stored
without exceeding a fixed recognition error ofp (commission)
= 0.001. If cells are assumed to receive 104 synaptic contacts
on their dendrites, then a 100,000-cell network (100 patches
of 1000 cells each) stores =5 x 107 random sequences of
length 10. This corresponds to one learned every minute for
100 years (or, for 8-hr days, an input learned every 10 s for
50 years) with a 0.001 recognition error rate.

Fig. 2d gives an example of the ability of the network to
both recognize and perform completion on real words rather
than on randomly generated letter strings. A network was
constructed by using 1000 target cells receiving input from an
input alphabet A of 702 input lines corresponding to all
possible letter pairs using just the 26 letters of the alphabet
(see Fig. 2 legend). When this network was trained on 104
words randomly chosen from the dictionary, it exhibited
0.002 (0.2%) collision rate during training and 0.01 (1%)
probability ofcommission error after training. Moreover, the
trained network contains order information sufficient to
enable a simple search algorithm to complete partial strings
into learned words; the figure shows all validly identified
completions of the string "CAPI" contained in the 1000-cell
network after being trained on 104 words.

Discussion

Hebb's 1949 insight bears resemblance to the properties of
LTP, yet the detailed physiology and biophysics of long-
lasting synaptic plasticity is more complex than is captured
by this simple correlational rule, raising the question of
whether the learning models that ignore these details are as
powerful as (or more or less powerful than) models that
incorporate them. The present results begin with detailed
physiological induction and expression characteristics of
LTP that strictly obey neither Hebb's postulate nor a gen-
eralized Hebb-like correlational rule. Rather, the resulting
rule is one that depends on temporal order of arrival of
afferent activity to a target. It is interesting to note that a
correlational or Hebbian rule emerges as the special case
occurring only when all afferents arrive simultaneously.
Embedding the LTP induction and expression (learning

and performance) rules in a simple network architecture
results in a mechanism that stores temporal sequences with
high capacity and scales linearly with network size. Most
existing computational results on learning of temporal se-
quences address distinct issues such as time compression and
variable length delays, without directly addressing the issue
of capacity in terms of error rates, and no study addressing
capacity of temporal sequence storage has found capacity
greater than that reported here (23-26).

Artificial neural networks typically perform some type of
generalization-i.e., respond similarly to similar inputs, even
those on which they were not trained-and this capability is
often taken as canonical for brain circuits, mapping intu-
itively onto the need for generalization in living organisms.

The present analysis of LTP in field CA1 of hippocampus,
however, yields an algorithm that learns temporal sequences
without any significant generalization. This of course does
not imply that generalization is not performed by organisms
or by different brain networks. Rather, it raises the question
of functional interpretation of single modular components
(e.g., CA1) embedded in much larger systems (e.g., the
corticohippocampal pathway). The primary inputs to field
CA1 come from hippocampal field CA3, not a sensory field,
and the primary outputs from CA1 project to subiculum and
parahippocampal (entorhinal) cortex, not motor fields. The
relationship of the function of CA1 to that of the overall
organism is thus far from straightforward. We hypothesize
that a high-capacity, sequence-dependent, nongeneralizing
accept-reject or match-mismatch function such as that
achieved by this circuit may, in combination with the func-
tions of the other constituent circuits of the corticohippo-
campal pathway, be of considerable utility in internal mem-
ory functions such as recognition of recency, expectation,
and changing views with movement (27). Previous work using
only synchronous activity (i.e., not temporal sequences)
showed that rhythmic 0-like activity during LTP induction in
cortical networks did give rise to generalization by perform-
ing the computational task of hierarchical clustering (10).
Combining those findings with the present results suggests
the existence of computationally efficient special-purpose
brain circuitry for processing temporal and spatial structure
in the learning and recognition of environmental stimuli.

This work was supported in part by the Office of Naval Research
(Grant N00014-92-J-1625).
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