
UCSF
UC San Francisco Previously Published Works

Title
Real-Time Point Process Filter for Multidimensional Decoding Problems Using Mixture Models

Permalink
https://escholarship.org/uc/item/1b46v20b

Authors
Rezaei, Mohammad Reza
Arai, Kensuke
Frank, Loren M
et al.

Publication Date
2021

DOI
10.1016/j.jneumeth.2020.109006

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b46v20b
https://escholarship.org/uc/item/1b46v20b#author
https://escholarship.org
http://www.cdlib.org/

Real-Time Point Process Filter for Multidimensional Decoding
Problems Using Mixture Models

Mohammad R. Rezaei1, Kensuke Arai2, Loren M. Frank3, Uri T. Eden2, Ali Yousefi4

1Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan
84156-83111, Iran

2Department of Mathematics and Statistics, Boston University, Boston, MA 02215

3Department of Physiology, University of California, San Francisco, San Francisco, CA 94158

4Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 02215

Abstract

There is an increasing demand for a computationally efficient and accurate point process filter

solution for real-time decoding of population spiking activity in multidimensional spaces. Real-

time tools for neural data analysis, specifically real-time neural decoding solutions open doors

for developing experiments in a closed-loop setting and more versatile brain-machine interfaces.

Over the past decade, the point process filter has been successfully applied in the decoding of

behavioral and biological signals using spiking activity of an ensemble of cells; however, the filter

solution is computationally expensive in multi-dimensional filtering problems. Here, we propose

an approximate filter solution for a general point- process filter problem when the conditional

intensity of a cell’s spiking activity is characterized using a Mixture of Gaussians. We propose

the filter solution for a broader class of point process observation called marked point-process,

which encompasses both clustered – mainly, called sorted – and clusterless – generally called

unsorted or raw – spiking activity. We assume that the posterior distribution on each filtering

time-step can be approximated using a Gaussian Mixture Model and propose a computationally

efficient algorithm to estimate the optimal number of mixture components and their corresponding

weights, mean, and covariance estimates. This algorithm provides a real-time solution for multi-

ayousefi@wpi.edu .
Author contributions
Mohammad Reza Rezaei: Writing - Original Draft, Methodology, Software, Formal analysis. Kensuke Arai: Writing- Reviewing
and Editing, Validation. Loren M. Frank: Writing- Reviewing and Editing, Resources. Uri T. Eden: Writing- Reviewing and Editing.
Ali Yousefi: Conceptualization, Writing - Original Draft, Funding acquisition.

Competing interests statement
The authors declare no competing interests.

Code availability
A copy of the source code utilized in this research along with sample data can be found in the following GitHub link: https://
github.com/Eden-Kramer-Lab/GMM_PointProcess.

Data availability
The data sets used for benchmarking will be available from the corresponding author upon reasonable request.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

Published in final edited form as:
J Neurosci Methods. 2021 January 15; 348: 109006. doi:10.1016/j.jneumeth.2020.109006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Eden-Kramer-Lab/GMM_PointProcess
https://github.com/Eden-Kramer-Lab/GMM_PointProcess

dimensional point-process filter problem and attains accuracy comparable to the exact solution.

Our solution takes advantage of mixture dropping and merging algorithms, which collectively

control the growth of mixture components on each filtering time-step. We apply this methodology

in decoding a rat’s position in both 1-D and 2-D spaces using clusterless spiking data of an

ensemble of rat hippocampus place cells. The approximate solution in 1-D and 2-D decoding is

more than 20 and 4,000 times faster than the exact solution, while their accuracy in decoding a rat

position only drops by less than 9% and 4% in RMSE and 95% highest probability coverage area

(HPD) performance metrics. Though the marked-point filter solution is better suited for real-time

decoding problems, we discuss how the filter solution can be applied to sorted spike data to better

reflect the proposed methodology versatility.

Keywords

Point-process filter; Real-time filter; Marked point-process filter; State-space modeling; Mixture
model; Gaussian mixture model; Mixture merging algorithm; Mixture dropping algorithm

1. Introduction

The point-process modeling framework is widely used in the analysis of neural spike trains

[1–5], and particularly in conjunction with the filtering framework [6, 7], can be used to

link the spike train data to low-dimensional dynamical external covariates like movement

or sensory inputs [2, 4, 5]. As examples, statistical filtering employing point process noise

models has been used in estimation of a rat’s position given the spiking activity of its

hippocampal place cells [2, 3], and also in decoding of arm-movements [8]. However, when

the dimension of the dynamical covariates increases, computational cost becomes expensive

[1, 9]. We previously developed a computationally efficient point-process filter solution for

high-dimensional decoding problems, which reduces the computational cost of the filter

implementation [10]. In the development of this algorithm, we used a non-parametric

Gaussian kernel to estimate the conditional intensity functions of each cell from the data

[11]. However, this estimation is still computationally expensive for real-time applications,

which limits the application of the proposed filter solution in real-time experimental designs.

In a more recent work, we have demonstrated the feasibility of building an adaptive

parametric conditional intensity function (CIF) using Mixture of Gaussians (MoGs), similar

to a Gaussian Mixture Model (GMM) for a distribution. MoG is a powerful and flexible

model for representing multi-modal and complex functions and distributions and MoGs

follows the same functional form as GMM, except its mixing weights are not normalized

to one. Using this class of CIFs, we can develop new solutions which greatly reduce the

computational cost of the filter solution [10]. Here we demonstrate such a solution and

present an accurate, computationally inexpensive point-process filter solution when neural

activity of a cell is characterized by MoGs.

The point process filter is comprised of two models: the state transition model and an

observation model [11, 12]. The state transition model characterizes how the external or

behavioral covariate(s) – called the state variable – change over time, and the observation

model defines the likelihood of observing a spike event as a function of the previous

Rezaei et al. Page 2

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

spiking activity and the state variable [12]. The state transition in the case of navigation

through space can be well characterized by a low-dimensional random walk model [13–15].

Under this modeling assumption, for a posterior distribution in the GMM class, the one-step

prediction [16] is again of GMM class, which has an analytical solution. The posterior

distribution, e.g. the filter solution, is proportional to the product of one-step prediction

and the likelihood of observed spiking data. Given a MoGs model for the cells’ CIFs, the

posterior can be thought of as a multiplication of two mixtures of Gaussian functions - one

from the observation likelihood and the other one from one- step prediction. Multiplication

of a MoGs and a GMM results in a new MoGs, to which a GMM is proportional to [17];

thus, the modeling challenge in this filter problem switches from calculating one- step filter

and approximating the likelihood function [10] to optimally controlling the growth of the

number of mixture components over each processing time-step.

There are two main approaches that are developed to manage the growth of number of

mixture components. The first approach relies on functional approximation, where the filter

solution at each time-step is approximated using a fixed number of mixture components

[18–20]. The second approach relies on minimizing some forms of distance measure

between two distributions [21–24]. In this approach, two GMMs, one which is completely

known and the – other one with a lower number of mixture components is built to

approximate the first one. In practice, the first approach has a larger computational cost

and induces bias in the filter solution as the pre-defined number of the mixture components

or their fixed parameters can be optimal for a limited number of processing time-steps. The

second approach has the capacity to change the number of mixtures and their parameters

per each time-step given the observation process and its likelihood function [25]. However,

there are a couple of modeling challenges in defining a proper distance measure, identifying

an optimal number of mixtures, or finding an optimal stopping criterion. In this research,

we mainly focus on the second approach and propose a revised distance measure and

stopping criterion, which will address issues of the previously developed methodologies

[5, 11]. In our solution, we use a symmetric Kullback–Leibler (KL) [26–28] distance and

develop procedures for merging and dropping mixture components [26]. In the dropping

procedure, we identify which mixture component(s) can be dropped from the mixture

pool; whilst, in the merging procedure, we propose a new procedure to sequentially merge

mixture components [29–31]. For both procedures, we define stopping criteria to determine

when a further merging or dropping of mixture components is not desirable. We use both

merging and dropping procedures in our filter solution and demonstrate this new filter

solution application in both 1-D and 2-D decoding. We compare performance result of this

approximate filter solution with the exact filter solution and show the computational time

for both methods. In the appendix section, we also provide a comparison study between

the classical KL measure and the symmetric one utilized in this research. This comparison

highlights the importance of a proper distance measure in controlling the mixture growth.

The drop-merge method proposed here can be applied to other non-linear and multi-modal

filter problems when the computational cost of the exact solution becomes prohibitive. We

develop the filter solution for the marked point process data. The marked point-process

is a broader class of point-process, in which, each event in time has an associated mark.

Unsorted or raw spiking data – broadly, called clusterless data – fall to the category of

Rezaei et al. Page 3

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

marked point-process, where features associated with each spike event define its mark. A

sorted spike is a specific category of the marked point-process, where the identity of each

spike is its mark information. The filter solution proposed here encompasses both clustered

and clusterless spike data. We start by Methods section where we propose our filter solution.

We then demonstrate the solution application in 1-D and 2-D decoding problem, where

we provide an inclusive analysis of both performance and computational complexity of the

proposed solution. In particular, we compare the solution with the numerical solution which

is generally called the exact solution. We also provide a detailed analysis of the proposed

solution in the appendix section. In the discussion section, we elaborate on the potential and

application of our proposed solution alo’g the future direction of this research.

2. Methods

2.1. Problem Definition

For the marked point-process observation, the instantaneous probability of observing a spike

at time t with a spike waveform mark in ℳ − ℳ ∈ ℜK, where K represents the dimension, is

defined by

λ t, m ∣ Ht = lim
Δt 0

Pr a spike witℎ m mark in (t, t + Δt] ∣ Ht /Δt (1.a)

Λ t ∣ Ht = ∫
M

λ t, m ∣ Ht dm (1.b)

here λ t, m ∣ Ht is called the joint mark intensity function, which defines the instantaneous

probability of a spike at time t with a mark m , and Λ t ∣ Ht defines the intensity function

of the “ground process” [11]. Ht represents the full history of spiking from all recorded

neurons up to time t [32, 33]. We assume neural spiking depends on a covariate vector Xt;

therefore, we construct a joint mark intensity model of the form λ t, m ∣ Ht = g Xt, m . We

further assume that the joint mark intensity function can be expressed as a MoGs over both

Xt and mark spaces

g Xt, m = ∑
u = 1

U
λudet 2πΣx, u

− 1
2exp − 1

2 Xt − μx, u ′Σx, u
−1 Xt − μx, u ⋯

det 2πΣm, u
− 1

2exp − 1
2 m − μm, u ′Σm, u

−1 m − μm, u

(2)

Where, λu > 0 defines the rate of uth mixture. Note that the sum of λu is not normalized.

μx, u, Σx, u Is the mean and covariance matrix of the uth mixture model over Xt space, and

μm, u, Σm, u define the mean and covariance matrix of the corresponding mixture over mark

space. Under this assumption, the intensity function of the ground process [9, 34] is

Rezaei et al. Page 4

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Λ Xt = ∑
u = 1

U
λudet 2π Σx, u

− 1
2exp − 1

2 Xt − μx, u ′Σx, u
−1 Xt − μx, u (3)

In the marked point-process framework, the likelihood of being at a coordinate Xk when

observing Nk, – assumed to be either 0 or 1, spikes in the interval Δk = tk − 1, tk with marks

m k − m k is observed when Nk is 1 – is defined by

L Xk; ΔNk, m k ∝ λ tk, m k ∣ Hk Δk
Nkexp −ΔkΛ tk ∣ Hk Nk ∈ 0, 1 (4)

Where, Xk is a discrete-time representation of Xt for the Δk time interval. Note that when

there is more than one spike event in the Δk time interval, we can partition this interval

to smaller time intervals and assume each of these multiple events happens in one of the

shorter time intervals [11]. In equation (4), the joint mark conditional intensity and ground

conditional intensity definition characterize neural activity of an ensemble of cells. For

example, both models can represent multi-unit spike mark events recorded using a tetrode

[35]. In Appendix A, we define the likelihood function for multiple ensembles of cells

activity sampled from multiple independent groups of electrodes. In the rest of this paper,

we focus on, the likelihood function defined in equation (4). Extension of the filter solution

and drop-merge algorithms to models of activity of multiple cell ensembles is straight

forward.

Using g Xt, m and Λ Xt definition, the likelihood function is defined by

L Xk; Nk, m k ∝ g Xk, m k Δk
Nkexp −ΔkΛ Xt ΔNk ∈ 0, 1 (5)

We assume that the time Xk evolution is a Markovian process [36]. We also assume that the

time evolution of Xk can be described by a linear state equation

Xk = Ak − 1Xk − 1 + Bk − 1 + W k − 1 W k − 1 ∼ N 0, ΣQ (6)

Where Wk is a multivariate normal with zero mean, and Ak − 1 and Bk − 1 are the state and

input matrices defining the state evolution over time. Under this assumption, the one-step

density of state Xk, is defined by

p Xk ∣ Xk − 1 ∼ N Ak − 1Xk − 1 + Bk − 1, ΣQ (7)

Given the observation process and the state evolution equation, the exact posterior

distribution of the state at time index K is defined by

Rezaei et al. Page 5

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

p Xk ∣ N1⋯k − 1, m 1⋯k − 1 = ∫ p Xk ∣ Xk − 1 p Xk − 1 ∣ N1⋯k − 1, m 1⋯k − 1

dXk − 1
(8.a)

p Xk ∣ N1⋯k, m 1⋯k ∝ L Xk; Nk, m k p Xk ∣ N1⋯k − 1, m 1⋯k − 1 (8.b)

We assume p Xk ∣ N1⋯k, m 1⋯k can be approximated by a GMM defined by

p Xk ∣ N1⋯k, m 1⋯k ∼ ∑
v = 1

Vk
wk, vdet 2π Σk, v

− 1
2exp

− 1
2 Xk − μk, v ′Σk, v

−1 Xk − μk, v

(9.a)

∑
v = 1

Vk
wk, v = 1 & wk, v > 0 (9.b)

Where, Vk is the number of mixture components at time index k and wkv is the weight of the

vth mixture component with corresponding mean and covariance matrices − μk, v, Σk, v .

Using those definitions, we now develop a solution that estimates a parsimonious number of

mixture components Vk, and corresponding μk, v, Σk, v per each filtering time-step. Under

the assumption that Λ(⋅) is constant over the state domain, there is also a closed-form

solution for the one-step prediction (equation 8.a) and filter update (equation 8.b). Appendix

B describes the closed form solution for the general case where Λ t ∣ Ht is not constant

in detail. However, the number of mixture components is multiplied by a scalar factor

corresponding to the number of mixture components in the likelihood function - equation

(8.b) – per each filtering time-step and this leads to an exponential growth in the number

of mixture components over time, as does the computational cost of the filter solution.

Fortunately, many of these mixture components either have an infinitesimal weight or

share a similar mean and covariance matrices, allowing us to optimally drop or merge

mixture components on each filtering step. Here, we demonstrate how mixtures merging and

dropping algorithms, which are later used in 1-D and 2-D decoding of rat position in a maze

using neural spiking activity recorded from multiple tetrodes.

2.2. Dropping ad Merging Procedure for a GMM

Let’s assume P is a GMM defined by

P (X) = ∑
k = 1

K
πkN X; μk, Σk ∑

k = 1

K
πk = 1 (10)

where K is the number of mixture components and nk is the mixing weight for the kth

mixture component. For this GMM, μk, Σk define the mean and covariance of the kth

Rezaei et al. Page 6

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

mixture component. We want to merge or drop P components, while the new mixture model

Q properly represents P. We use the following divergence measure to assess the similarity

between P and Q distributions, which is defined by

B(P ∥ Q) = DKL(P ∥ Q) + DKL(Q ∥ P) = EP log P
Q + EQ logQ

P (11)

Where, DKL(P ∥ Q) is KL divergence from P to Q, and DKL(Q ∥ P) is KL divergence from

Q to P. B(P ∥ Q) is nonnegative and symmetric, and it is zero when P and Q are the same

[28]. Thus the objective is to minimize B(⋅) while the components of P are merged or

dropped.

minB(P ∥ Q) = min EP log P
Q + EQ logQ

P = max EP logQ
P − EQ logQ

P (12)

The idea behind constructing the B(P ∥ Q) divergence measure is that the first term -

DKL(P ∥ Q) - favors similarity between Q and P over the spaces covered by P components,

and the second term – DKL(Q‖P) – punishes the same similarity over the spaces covered

by Q components. While DKL(P ∥ Q) is less sensitive to merging components of P in

constructing Q, DKL(Q ∥ P) favors keeping components of P, specifically those whose

merging causes the space covered by Q to grow. We can also change contribution of

DKL(P ∥ Q) and DKL(Q ∥ P) in B(P ∥ Q), which is defined by

minBw(P ∥ Q) = maxw EP logQ
P − (1 − w)EQ logQ

P 0 ≤ w ≤ 1 (13)

Where, w can be tuned depending on the dropping or merging preferences. We recover

B(P ∥ Q), called the Jensen–Shannon divergence, when w is set to 0.5. Jensen–Shannon

divergence is widely used in machine learning and other fields, including bioinformatics and

genome analysis [28].

A closed-form expression for Bw(P ∥ Q) exists only when P and Q have one mixture

component – e.g. the multivariate normal. In general, we should use numerical methods

or an approximate solution to find the value of Bw(P ∥ Q), when either P or Q have

more than one mixture component. Note that, the minimization problem defined in (12),

which includes merging and dropping mixture components, is a combinatorial optimization

problem and it becomes computationally expensive as the number of P mixture components

grows. In the following subsections, we first derive an approximate closed-form expression

for B(P ∥ Q); we then propose a sub-optimal sequential merging and dropping procedure

along with stopping criteria.

2.3. An approximate closed-form expression for B(P ∥ Q)
We use a second-order Taylor expansion to approximate logQ(X)/P (X) around point X0. To

do this expansion, we define logQ(X)/P (X) as F(X), where its Taylor expansion is defined by

Rezaei et al. Page 7

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

F (X) = logQ(X)/P (X) ≈
F X0 + X − X0

T ∇F X0 + 1
2 X − X0

THF X0 X − X0
T (14)

where, ∇F X0 and HF X0 are the gradient and Hessian of F(X) at X0 respectively. Let’s

assume that we pick X0 to be a local maximum of the posterior distribution; the local

mamum naively corresponds to the GMM’s means when the overlap between mixture

components’ highest density region (HDR) over space of X is low. With this assumption,

we argue the second order Taylor expansion can provide an accurate approximation of the

P(X). This is because each mixture component of P(X) can be approximated independent of

other mixture components; or, F(X) around each local maximum is close to logarithm of two

multivariate normal defined by corresponding mixture component of P(X) and the one from

Q(X) that approximates this mixture. This logarithm will only have linear and quadratic

terms of X, and the second Taylor expansion will provide an accurate approximation of it.

As a result, for a more general form of P(X) with possible overlaps between the mixtures’

HDR, the second order Taylor expansion will provide a reasonably accurate estimate of

F(X), when Q(X) is being created to be close to P(X) – i.e., maxx |Q(X) − P (X) | ≪ ε. Note

that we take the expectation of the F(X) with respect to P(X); as a result, expectation of the

linear term of the expansion around means of P(X) mixture components become close to

zero if we assume the mixture components HDR do not significantly overlap. When Q(X)

is chosen to be close to P(X), we can ignore the expectation of the second order term as

it becomes negligible compared to F(X0). This is because the second order term of the

expectation is close to difference between two covariance, where we chose covariance of

Q(X) components close to P(X). Figure 1 demonstrates this for a problem with 3 mixture

components for P(X) and two different Q(X) with 2 mixture components. In the example

(Figure 1), the approximation of Bw(P ∥ Q) with the first-order Taylor expansion is 0.741 for

drop step and is 2.09 for merge step, which are reasonably close to actual value of BW(P‖Q)

which is 0.707 for drop step and is 1.83 for merge step (calculated numerically). As a result,

the first-order Taylor expansion provides a reasonably approximation of BW(P‖Q), which

can be used to build a closed form solution of Bw(P ∥ Q).

We build Q by merging and dropping P components; the merging or dropping, stop when the

similarity between Q and P starts to significantly drop. Using the Taylor expansion defined

in equation (14), B(P ∥ Q) is approximated by

B(P ∥ Q) ≅ ∑kπklogQ μk /P μk − ∑k∗πk
∗logQ μk

∗ /P μk
∗

(15)

Where, πk
∗ is the weight of k*th mixture component of Q mixture model with μk

∗, Σk
∗ - note

that, the number of mixture components in Q can be different from P. In derivation of this

approximation, we linearize F(X) around the mean of each mixture component of Q and P,

and then take their expectation over P and Q distributions.

Equation (15) provides a closed-form solution for B(P ∥ Q). Note that, B(P ∥ Q) is also a

function of the mixture components’ covariances - Σk
∗ - which changes Q μk

∗ values. We can

Rezaei et al. Page 8

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

also use a second order Taylor expansion to get a better approximation of B(P ∥ Q). The

approximation will have a closed-form solution, which can be derived by a similar procedure

described in the derivation of equation (15). Using equation (15), we can estimate the

divergence measure between P and Q analytically. In both dropping and merging procedures,

we examine different Qs built by dropping or merging P components and find the one with

the lowest B(P ∥ Q). As we discuss in the following sections, the mean and covariance of

merged components are derived analytically; thus, the computational cost of the merging

and dropping processes is merely the cost of computing equation (15) for different Qs.

2.4. Dropping Process

In the dropping process, we take one of the P components out and rescale other mixtures’

weight to keep their sum equal to one. We then check the distance between these mixture

models – Q – and P to find which mixture component can be dropped. We repeat this

procedure until a stopping criterion is met (the dropping process is described in Table 1). αd

is an upper bound threshold for the mixture components’ weights, and it determines which

component(s) of the GMM can be dropped. Its range is [0 to 1), and a larger value lets

mixture components with larger weights to be dropped from P(X). When it is set to zero, no

dropping happens. If αd is set to close to 1, most of the mixture components can be dropped

from P(X).

In practice, αd is set to a small number – for example, 0.01. The dropping process checks

which of P mixture components with a small mixing weight can be dropped; a component

which gives the lowest divergence measure, B P ∥ Q−s . Note that the dropping process

does not drop mixture components solely based on their mixing weights; this is important

in optimally dropping mixture components - specifically, when there are many mixture

components – or combinations of mixture components with an overall mixing weight

smaller than αd.

We describe the analytical filter solution in Appendix B. In the filter solution, new mixture

components are generated at the spike times. We first estimate parameters of these mixture

components and we then call the dropping procedure to optimally drop those mixture

components which contribute less in P distribution. The dropping process is also called

on spike times; note that, the number of mixture does not grow on non-spike time steps -

Appendix B.

2.5. Merging Process

In the merging process, we search for a pair of mixture components which can be merged

while minimally increasing the divergence measure B P ∥ Qi ∘ j − Qi ∘ j represents the new

mixture model with it’s i and j mixture components being merged. The merging process is

run sequentially; as a result, per each iteration, number of mixture components in Q drops by

one. The merging process is repeated until a stopping criterion is met (The merging process

is defined in Table 2). αm indirectly controls the increase in the divergence measure. It is a

normalized parameter between 0 and 1; in general, a larger value of am lets more growth in

the divergence measure. If αm is set to zero, it means no merging will happen If it is set to 1,

it lets two mixtures to be merged unconditionally.

Rezaei et al. Page 9

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In practice, αm is set to a small number – for example, 0.01. For the merged components, we

expect two criteria to be simultaneously satisfied. First, it must have the lowest B P ∥ Qi ∘ j ;

second, the merged component weight should be close to sum of two merged components

weight. αm Checks the second criteria, and it is the largest deviation that is accepted for

the discrepancy between the weight of merged component and sum of the weights of two

components being merged.

The merging process is called after dropping process and it is called on each time-step.

Over the non-spike periods, mixture components in the filter solution diffuse over space

and this implies these components can be merged. On the spike times, new mixture

components are generated by multiplying one-step prediction mixture components and the

mixture components from the likelihood function. A subset of these mixture components

can be merged, particularly when the likelihood function and one- step prediction mixture

components coincide over space, they are good candidates for a merge.

2.6. Logic of the Dropping Function

The main challenge in a filter problem with a multimodal likelihood function – here, defined

as a mixture model – is the exponential growth of mixture components over time. To build

a computationally efficient and accurate filter solution, the key is to optimally control the

number of mixtures per each processing time-step. Clearly, dropping mixture components

based on their mixing weights is not an optimal solution to this problem. This is because

two mixture components with the same mixing weights and different covariance matrixes

cannot be treated the same. Also, without a merging process, there is always a chance that

the number of mixture components will explode over time. Mixture components might also

be generated with similar means and covariance, and their number will grow after being

generated. Our proposed methodology addresses how these mixture components can be

dropped and merged while maintaining a minimum divergence between P and Q.

A key factor in our proposed method is the definition of the divergence measure,

B(P ∥ Q) . B(P ∥ Q) Penalizes the merging process – and similarly dropping process – when

the merged components, will change the domain of space covered by both Q and P mixture

components. This is in contrast with commonly used divergence measure – like standard KL

divergence, which are insensitive to changes beyond the domain of space supported by P.

Merging only happens when a reciprocal similarity is maintained between P and Q. Thus, Q
cannot significantly change the domain of space covered by P and this will lead to a more

accurate approximation of P.

B(P ∥ Q) – In its exact expression - is always positive with a minimum of zero. This

implies that a part of information will be lost in the merging or dropping process, and the

extent of the information loss leads to either a variance or bias error. The algorithm has

multiple control mechanisms to maintain an accurate estimation of P over different filtering

time-steps. We study different properties of drop-merge method in detail in the application

section.

Rezaei et al. Page 10

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.7. Failure Modes

The main challenge in the proposed methodology is the computational cost of the two

optimization processes – and particularly the merging process – when the number of mixture

components is relatively high. The number of searches over mixture pairs – and αm –

becomes of order 0(K3S) – K is the number of mixture components in P and S is the number

of samples over αm. In practice, we use about 10 samples over αm; thus, a relatively large

number of mixtures – for instance, larger than 100 – can lead to an expensive computation.

In practice, the number of mixtures is reasonably low given that many of the mixture

components are withdrawn in the dropping step.

The approximate cost function defined in equation (15) provides an analytical solution

for B(P ∥ Q). The accuracy of B(P ∥ Q) calculation can be improved by using a second

order Taylor expansion or increasing number of samples to measure B(P ∥ Q) using a

Monte Carlo simulation [37]. The other possible solution is to find an upper bound for

B(P ∥ Q) and minimize that [26]. Though, tiere are multiple upper bound derivation for KL

distance, finding similar bounds for B(P ∥ Q) is not easy. In practice, the approximation

defined in equation (15) provide a reasonable approximation for B(P ∥ Q) and adding more

computation load for a better approximation of B(P ∥ Q) might not be needed.

3. Application

In this section, we applied the proposed methodology to experimental data recorded by

a multi-electrode array in the hippocampus of a rat. The data used in this analysis were

recorded from 9 tetrodes in the CA1 and CA2 regions of the hippocampus [38]. Spikes

were detected offline by choosing events whose peak- to-peak amplitudes were above

a 100uV threshold in at least one of the channels. We demonstrate the computational

time and accuracy of the exact solution and the drop-merge method. For the drop-merge

method, we show the result for different ranges of αm and αd. Besides the performance

and computational time, we study how the number of mixture components evolve on each

processing time-step. We decode the movement trajectory in the W-maze using 2 different

approaches. First, we represent the position of the maze in 1-D by only considering the

linear distance of the rat from the home well, using a MoGs conditional intensity derived

using the algorithm described in Ken et al. [39]. We then decode directly the rat position in

2-D, once again using a MoGs conditional intensity derived using the algorithm described in

[39].

3.1. Decoding maze trajectory in 1-D representation

In this problem, the rat moves from the home well – Figure 2(a) – to both the left or

right arms, and it gets back to its starting point. We use a linearization scheme to express

the position in 1-D by mapping the constrained linear distance from the home well to the

interval [−6, 6]. In this representation, there is no distinction between left and right arms.

For this problem, we used neural activity recorded from one tetrode – out of 9 – implanted

in the rat hippocampal area [11]; the conditional intensity mixture model built using this

data consists of 35 mixture components. The update time resolution is 1 millisecond, and

the state transition process variance is set at 0.01 – the variance of the state transition model

Rezaei et al. Page 11

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is numerically estimated using the rat position data. We assume the rat movement trajectory

follows a random walk model and thus we set Ak to 1 and Bk to 0. We run the model over

26 seconds of the data – about 26000 time points. Figure 2(b) shows the time and position

of occurrence of unsorted spikes whilst the rat traversed the maze. For the exact solution,

we use Riemann Sum ‘ntegj d method [40] with 961 samples in the range of −12 to 12 –

or a 0.025 spatial resolution – to calculate the likelihood function and rat position posterior

estimation. We calculate the root-mean-squared error (RMSE) between actual rat position

and the mean of posterior distribution plus 95% highest probability coverage area (HPD)

[41] to assess both the exact and proposed model performance. We use a numerical method

to calculate the HPD. We calculate the posterior distribution for different points of X – here,

in 2-D space– and sort these data points based on their likelihood values. We then find the

data points which construct 95% HPD area. Figure 4 shows the decoding result of the exact

solution and the proposed methodology with ad = 0.15 and αm = 0.12.

The processing time in the drop-merge method is variable, and it increases when a larger

number of mixture components is needed to approximate the posterior distribution of the

rat position. For the time steps when the number of mixture components on the previous

time step is low – generally, 1, the drop-merge method runs about 200 times faster than

the exact solution (Figure 4(d)). However, when the number of mixture components on the

previous time step is large, processing time of the drop-merge method becomes longer than

the exact solution. For example, for αm and αd equal to 0.1, there are time steps with a

processing time 2.6 times larger the average processing time in the exact solution (Figure

4(e)). However, this situation is the worst scenario and it only happened in less than 0.17%

of time steps in our example.

Note that per each time-step, we can change αd and αm depending on the number of mixture

components needed to be processed avoiding the instances with a long processing time.

The average processing time in the drop-merge method is 15 times faster than the exact

solution independent of choice of and ad values. By defining an optimal choice for αd and

αm, we can even gain a higher computational time efficiency. In Appendix D, we show

the histogram of processing time for the exact solution and drop- merge method with αd =

0.15 and αm = 0.12 to provide a better picture about different methods’ the processing time

statistics.

Using the performance result presented in Figure 4, we can choose specific values for αd

and αm based on our goals for speed and accuracy. Here, we picked αd = 0.15 and αm =

0.12 for the drop-merge method, which gives about 22 times faster processing time than

the exact solution. The RMSE of the drop-merge method is only 6% higher than the exact

solution, and the 95% HPD is almost the same as the exact solution. Table 3 provides further

information on the drop-merge method for this choice of αd and αm.

The comparison results show that the drop-merge algorithm is capable of reducing the

decoding computational time, which is the main goal of this algorithm. Note that the

computational time efficiency is attained without substantial decreases in accuracy. The

result reported here demonstrates the algorithm potential in tracing the exact solution, whilst

saving the computational cost; the computational efficiency becomes a m ore critical factor

Rezaei et al. Page 12

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in high-dimensional decoding problems. Thus, now we study properties of the drop-merge

algorithm in a 2-D decoding problem.

3.2. Decoding maze trajectory in 2-D

The previous section projected a 2-D position onto a 1-D representation and ignored the

distinction between left and right. In reality, the animal’s horizontal position is a 2-D

variable, and here we develop a solution for this more realistic case. While in the 1-D

decoding problem, we used neural recording from one tetrode – or, just one cells ensemble

– in building the conditional intensity and decoding step; here, we use the recordings

from nine different tetrodes in both the encoding and decoding step. We find that with

six or more tetrodes, we observe a satisfactory decoding result; however, we use a larger

number of tetrodes to better assess the performance and computational cost of the exact and

drop-merge method. We build the conditional intensity for each tetrode individually and then

use them together in the decoding step – see Appendix A for a description of extending

the encoder and decoder model to the case where there are conditional intensities from

multiple tetrodes. Similar to 1-D task, we estimate the state transition model’s parameters

like variance numerically using the rat position data. Figure 5(a) shows the movement

trajectory in 2-D space; here, each point of the maze - or, the rat po ition - has a distinct

coordinate.

Figure 6 shows the decoding result of the exact solution and drop-merge methodology (αm

= 0.1 and αd = 0.05) for both X and Y dimensions. The decoding result using the proposed

methodology shows a similar posterior estimate of the exact solution in these sample time

points. To better assess the decoding result and computational time efficiency using the

drop-merge method, we ran the drop-merge method for a range of αd and αm values. Figure

7 shows the performance result and different statistics of computational time efficiency of

drop-merge method for a range of αd and αm.

Table 4 shows the performance of the exact and proposed methodology in the 2-D decoding

for αd = 0.1 and αm = 0.05. The computation time of both methodologies are reported

as well. The performance result and computational time efficiency in the 2-D decoding

problem are aligned with the result observed in 1-D decoding problem. We get even more

computational time efficiency with our proposed method, as desired. The performance result

of the drop-merge method is similar to the exact method, while its computation time is

at least 2500 times faster than the exact method. The average processing time is about

3.0 milliseconds for each time step – 1 millisecond time interval. Here, we implemented

these algorithms in MATLAB (MATLAB Release 2017a The Math Works, Inc., Natick,

Massachusetts, United States) platform and scaling their computational time by 3 or 4 times

to get below 1 millisecond should be achievable by optimizing the code or implementing it

using Matlab Compiler, Python, or C++.

Discussion

We developed an approximate filter solution for a class of marked point-process filter

problems, in which the conditional intensity of the neural activity of an ensemble of cells, is

defined by a MoGs. In developing the solution, we approximated the posterior distribution

Rezaei et al. Page 13

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

using a GMM. We then proposed a drop-merge method, which collectively estimates the

optimal number of mixture components plus their corresponding parameters - weight, mean,

and covariance matrix - per each time-step. We further examined drop-merge algorithm in

both 1-D and 2-D decoding problems using neural data recoded from rat hippocampus place

cells. For 1-D problem, we use neural recording of one tetrode to estimate the rat position.

In 2-D decoding problem, we applied the drop-merge method for multiple tetrodes recording

which is a more realistic scenario for a decoder problem. The result in both problems

show the capability of the proposed method in conjunction with GMM encoder model for a

real-time neural decoding in 2-D and even higher dimensional decoding problems.

The specific aim of this research was to develop a computationally efficient decoder model.

This requires building a concise picture of which factors will affect the merge and drop

processing time. The drop and merge algorithms are combinatorial optimization problems;

thus, their associated computational time is determined by the initial number of mixture

components being processed. The dropping and merging algorithms iteratively drop the

mixture components until the corresponding stopping criterion is met. For the initial mixture

model P with K mixture components, the maximum number of iterations for dropping

or merging algorithms is K. In the mth-iteration of the dropping or merging algorithm,

we compare K − m − 1 different mixture models in the dropping algorithm, or (K −

m) X (K − m − 1)/2 different mixture models in the merging algorithm to find which

of these new mixture models with either dropped or merged components give the lowest

divergence measure. The dropping algorithm is computationally less expensive than the

merging algorithm; thus, it is called first to reduce the number of mixture components being

passed to the merging algorithm. When the expected number of mixture components are

limited, the merging algorithm can be called without the dropping algorithm. Each internal

iteration of the drop or merge itself becomes more expensive with an increase in K, as

the cost of calculation of P and Q in the divergence measure increases with K. P(X) and

Q(X) must be evaluated at K different values of X, and for KL(Q ∥ P), we calculate these

values for K − m different points of X, because K − m is the number of mixtures in Q
after the mth call of either merging or dropping algorithms. However, we can reduce this

computational load using values of P(X) and Q(X) calculated in the previous iteration of the

merging and dropping algorithms. Note that in the dropping algorithm, a mixture’s mean

and covariance are the same in each iteration, except their mixing weights are changing on

each iteration. Additionally, KL(Q ∥ P) is estimated using a subset of X points that already

calculated in the previous iteration of dropping algorithm. Thus, we can use previous values

of P(X) and Q(X) – specifically, values of their mixture components – to significantly

reduce the computation of calculating KL(Q ∥ P) and KL(Q ∥ P), and thus the computational

time of B(P ∥ Q). For the merging algorithm, the mean and covariance of only one mixture

component changes from one iteration to the next, while the mean and covariance of all

other mixture components stay the same as previous merging iteration. Thus, we can use

these values to reduce the computational time of calculating B(P ∥ Q) in the current iteration

of the merging algorithm. Overall, the computation time of B(P ∥ Q) in the dropping

algorithm is less than merging algorithm; thus, the topping algorithm is called first as it

has the lower computational cost. The computation time analysis for the more demanding

2-D decoding, shows that merging algorithm can deal with up to 10 mixture components

Rezaei et al. Page 14

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in P within 1 millisecond computational time. The dropping process takes less than 1

millisecond to run on a GMM with up to 70 mixture components, and it is called ahead

of merging process to bring the number of mixtures down. In general, we can run both the

dropping and merging algorithm in less than 2 milliseconds per processing time-step, which

is fast enough for real-time decoding application. Note that these results are based on the

algorithm implementation in MATLAB – a scripting programming language, and reducing

this computation time to less than 1 millisecond is feasible for structured programming

platforms like C++ [42], Python (Python Software Foundation, https://www.python.org/), or

MATLAB Compiler (MATLAB and Build MEX Toolkit Release 2017a The Math Works,

Inc., Natick, Massachusetts, United States).

The drop and merge algorithms solely deals with the mixture components and it is

independent of the processing step that generate the mixture model; thus, we can use other

approximation techniques to build GMM models and utilize the merging and dropping

algorithm to manage the growth in the number of mixture components over time. We use

a first order Taylor expansion to find an analytical solution for B(P ∥ Q) calculation. We

can use other approximation techniques like the second order Taylor expansion, approximate

upper bound [26], or Monte Carlo simulation [37]. Note that in both dropping and merging

algorithms, we have a secondary mechanism - characterized by αd and αm - which limit

the extent of divergence between P(X) and Q(X). Under this control mechanism the first

order Taylor expansion gives a good estimate of B(P ∥ Q). However, both the merging and

dropping algorithms can be run using different estimations of B(P ∥ Q).

The filter solution in 1-D decoding problem is not computationally expensive; however, it

becomes expensive in 2-D decoding problem and almost intractable in higher dimensions.

The filter solution using GMM posterior proposed her’ accompanied with the merge-drop

algorithm can be a proper solution for the decoding problems with higher dimensional

spaces. The average computation time in drop-merge method is about 3 milliseconds for

2-D decoding, and this is about 4000 times faster than the exact solution. The computation

time in 2-D decoding has only increased from 1 millisecond - in 1-D decoding - to 3

milliseconds, whilst the exact solution computation cost jumped from 24.4 milliseconds

to 11909 milliseconds (about 12 seconds). For the merging and dropping algorithms,

the computational cost in the algorithm arises only in calculation of P(X) and Q(X)

distribution, not the algorithm itself. Thus, we expect the computation cost grow linearly

by the dimension of the problem and this makes the algorithm suitable for high-dimensional

decoding problem.

The specific aim of this research was to build a computationally efficient decoder model;

however, proposed solutions must retain a comparable performance with regard their

decoding accuracy. We studied two performance metrics – RMSE and 95% HPD – to

compare the decoding result using the exact and our proposed filter solutions. For αd =

0.15 and αm = 0.12, RMSE is only about 6% percent above the exact solution. The 95%

HPD coverage area is 81.0 percent which even 0.7% percent better that the exact solution. A

similar performance trend can be seen for the 2-D decoding problem; for αd = 0.1 and αm

= 0.05, we get about 4000 times computational efficiency compared to the exact solution.

This computational saving comes with 9% increase in RMSE and with only 3.7% drop in

Rezaei et al. Page 15

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.python.org/

the 95% HPD coverage area measure. The result suggests that the approximate filter solution

along with the merge-drop algorithm give an accurate decoding performance whilst reaching

a significant computational saving.

Though our proposed solution provides a boost in computational efficiency, a better picture

of how this saving emerge from will helps us to address future improve of the framework.

We examined in Appendix C, how the computational saving changes on the spike ad non-

spike times for merging-dropping algorithms. The computational saving in 1-D decoding

mostly comes from non-spike time points, where the merging and dropping algorithms are

run on GMMs with a small number of mixtures. The merging-dropping algorithm provides

a parametric distribution for the rat position on each filtering time step, and thus, this makes

benefiting from non-spike time in reducing computational time possible.

Note that in the dataset used in this analysis – for 1-D decoding, 95% of data points are non-

spike. For 2-D decoding, we observed a consistent computational saving in both spike and

non-spike time points. Though the computational saving in non-spike timing is an order of

magnitude larger than the spike-time, we get a significant boost in the computational time.

Principally, we aim to use the proposed methodology in this research in a multi-dimensional

decoding problem, and its computational benefit has been reflected in 2-D decoding studied

here. Sparseness of the neural activity plays a significant rule in boosting the computational

efficiency of our filter solution; in other work, we gain from our signal properties in reaching

a better computational saving. This neural property is present independent of the dimension

of the decoding problem, and it is retained in higher dimensional decoding problems.

A distinct component of the merge-drop algorithm proposed here is its divergence or

distance metrics. We used a symmetric divergence measure in our merging and dropping

algorithms, and we argued that the choice of divergence measure is an important factor in

reaching a comparable performance to the exact method. In Appendix C, we run the same

1-D decoding problem described in the application section using our proposed algorithms

with a KL divergence measure. Using KL divergence, the performance metrics degrade

significantly. Also, the average number of mixtures per processing time-step is lower than

the symmetric measure. The KL divergence measure tends to merge mixture components,

and this leads to a lower number of mixtures in average. Though computation wise this

is a desired phenomenon, this leads to a biased posterior distribution of the rat position,

degrading the overall performance in drop-merge method using a KL distance measure.

However, there are also other approximation methods based on pair-wise distance metrics

like those being defined in Kolchinsky ‘s paper (et al. [43]), where it proposes a family of

estimators based on pair-wise distance between mixture components and provides closed

form expressions of the upper bounds of the mixture entropy for MoGs [43]. The other

approximation is based on component-wise Taylor-series expansion of the logarithm of

a Gaussian components define in Huber’s paper (et al. [44]), which the employed order

of the Taylor-series expansion and the number of components used for splitting allows

balancing between accuracy and computational demand. We will consider them to improve

the accuracy of our algorithm in future works.

Rezaei et al. Page 16

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The merge-drop algorithms proposed here are not parameter-free models; however, we

only need to pick two parameters, one for the merge and one for the drop algorithm.

For the examples demonstrated here, we picked optimal αd and αm by considering a

balanced performance and computational time saving. Selecting suitable values for αm and

αd depends on the trade-off we expect between the decoding accuracy and computational

speed. The optimal choice for accurate decoding is when αd and αm are both set to 0;

however, this setting does not provide any computational saving. As a result, we set αd

to a small value (like 0.1) to drop mixtures with a negligible mixing weight and set αm

to small values (like 0.05) to let the merging of mixture components to happen. We can

determine these setting in our training data like the way we showed in Figures 4 and 7; as

a result, we try different combinations of αd and αm values to find the setting which gives

a desired decoding speed and accuracy. To get even higher computational saving, we can

change αd and αm on every processing time step given the number of mixtures needs to

be processed. Thus, the drop-merge method is suitable for almost all decoding problems in

hand by changing its αd and αm parameters properly.

We discussed how the values of αd and αm parameters can affect the accuracy of the

decoder model; the other concern is the order of drop and merge algorithms are being

called. The question is whether we should do the drop process first then the merge step

(drop-merge) or the merge step first followed by the drop process (merge-drop). As we

discussed, the drop algorithm has a less computational time, where the merge process

takes longer time to be completed. To reduce the computation time, which is our main

objective, we first apply the drop algorithm and then run the merge process. By applying

the drop algorithm first, we might lose some information of the posterior distribution, but

we showed that this information loss does not change our decoding accuracy drastically.

To further examine this, we ran our decoder algorithm on a part of the 1-D task for both

scenarios (drop-merge and merge-drop) where the decoding results are shown in Figure 8.

Figure 8 shows that the decoding accuracy does not change significantly, but the merge-drop

algorithm is about 100 times slower than the drop-merge process.

The approximation filter solution using GMM and a MoGs conditional intensity can be

applied for other filter problems, where the posterior has a complex and multi-modal

distribution. Mixture models are powerful and flexible tools to approximate complex and

multi-modal functions and distributions like modeling neural activity in response to external

stimuli. The idea of using mixture models to characterize neural activity and utilize them

in developing computationally efficient inference steps like filter has a great promise in

the neural decoding problems. The importance of mixture models becomes even more

significant when a filter solution needs to be developed for multi-dimensional decoding

problems.

So far, we discussed computational saving and performance of the approximate filter

solution and the merge-drop algorithms. However, there are other steps need to be taken

or addressed in future research to further enhance accuracy and particularly computational

efficiency of the proposed solution. Though the exact solution becomes computationally

expensive, its processing time per each processing step is predictable. In contrast, the

processing time in the merge-drop solution is a function of t,’ number of mixture

Rezaei et al. Page 17

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

components being passed to these algorithms. When the number of mixture components

become large, these algorithms require a large time to compare different pairs and this

causes processing time to be long. We need to find the solution like optimal choices for

αd and αm control the overall computational time per processing time or identifying the

candidate mixture components which will be merged or dropped in place of checking

all possible pairs. To control the larger computation time when the number of mixture

components grows, we can use a hybrid solution. In our previous work [10], we proposed a

sampling procedure to update ‘he filtering distribution and find the number of Gaussian

mixture components necessary to maintain an accurate approximation. In the hybrid

solution, we can use the sampling solution at time instances when the number of mixture

components grows to control the number of mixture for the next filtering step using the

drop-merge algorithm. The proposed merge-drop solution is being built upon one-step

optimality; in other words, we assume the approximate solution on each point is an accurate

representation of the filter solution, and we build the next time step filter solution based

on this assumption. However, a more accurate solution requires accounting the performance

accuracy on the next processing steps as well. The idea is how we can use the sparseness

property of neural activity to build a more accurate filter solution. For example, we

should consider that each spiking activity follows by a non-spiking period and build the

approximate filter solution which optimizes the filter solution on the current and future

processing time. Here, we build a partial two-steps optimality and how we can extend this

optimality to longer period is of a great interest.

4. Conclusion

In this article, we proposed a computationally efficient filter solution for the marked point-

process filter, when the observation conditional intensities (CIFs) are defined by a MoGs.

In developing this solution, we assumed the posterior distribution at each time step can

be approximated by a GMM, and we derived the solution to optimally define the number

of mixture components and their corresponding parameters (mixing weights, mean, and

covariance) for each filtering time step. For a CIF defined by a MoGs and random-walk

state transition process, we show the posterior estimation can be reasonably approximated

using a new GMM. Under this assumption of posterior and conditional intensity, the number

of posterior mixture components grows each time step, and the merging and dropping

procedures proposed here provides a systematic procedure to optimally control the number

of mixtures, while it maintains a pre-defined level of similarity to the exact solution. We

demonstrated the solution in both 1-D and 2-D decoding problems, and we showed that

our proposed solution maintains a similar performance to the exact solution, while its

computational time is significantly lower. The computational cost drops below the data

update time, which makes the solution suitable for real-time applications. The proposed

methodology can be applied to other non-linear or higher-dimensional filter problem, where

an accurate solution with a minimal computational time is needed.

Acknowledgments

This research was partially funded by R01 MH105174 and SCGB grant #320135. We would like to thank Dr. Eric
for implementing the algorithm in Python and debugging the source code.

Rezaei et al. Page 18

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Appendix A: Likelihood Function for Activity of Multiple Cell Ensembles

Let’s assume we have C independent extracellular electrodes, each one is recording

the spiking signals from an ensemble of neurons. In the interval Δk, we observe

Nk
C = Nk

c :c = 1⋯C events, where Nk
c ∈ 0, 1 and it defines spiking event of cth ensemble

of cells’ neural activity with m k
c mark − m k

c is observed when Nk
c = 1. We can assume mark

spike events of each of these C cell ensembles are independent of each other given the

history term and external covariate - Xk; thus, the likelihood of Xk given the spike mark

events is defined by

L Xk; ΔNk
C, m k

1⋯m k
C ∝ ∏c = 1

C λc tk, m k
c ∣ Hk Δk

Nk
c
exp −ΔkΛc tk ∣ Hk

Nk
c ∈ {0, 1}

(A.1)

Note that the exponential term - exp −ΔkΛc tk ∣ Hk - is present in the likelihood function

independent of observing a spike or not. Let’s define

ΛT tk ∣ Hk = ∑c = 1
C Λc tk ∣ Hk (A.2)

We can also define sum of observed event in Δk by

Nk
T = ∑c = 1

C Nk
c

(A.3)

When Nk
T is zero, the likelihood function is only defined by ΛT tk ∣ Hk .

However, when Nk
T ≥ 1, we can partition Δk to smaller time intervals defined by

Δk
i = tk − 1 + i − 1

Nk
T Δk tk + i

Nk
T Δk and assign one of mark spike events to each of

Δk
i i = 1⋯Nk

T . Let’s assume ci is one of those ensembles with a spike event, then the

likelihood function for Δk
i is defined by

L Xk; ΔNk
ci, m k

ci ∝ λci tk, m k
ci ∣ Hk

Δk
Nk

T
Nk

ci
exp − Δk

Nk
T ΛT tk ∣ Hk (A.4)

Here, we factorize the likelihood function to multiple likelihood function calculated in

shorter time intervals. We can also properly scale ΣQ – random walk covariance matrix – to

ΣQ/Nk
T and run one-step prediction and update rule in this partitioned time intervals. Under

this modeling assumption, the likelihood function in equation (A.4) is the same as equation

(5) defined when we only have the joint mark conditional intensity and ground conditional

intensity for the activity of one cell ensemble. In (A.4) definition, we ignored different time

sequence of those Nk
T events in Δk interval; thus, we can have Nk

T ! different combinations

Rezaei et al. Page 19

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in building the filter solution when there is more than one spike mark event in an interval.

Under this modeling assumption, we change the interval of filter update given the number

of events being observed in a time interval. We could also start with shorter time interval

for each time step, where the probability of observing more than one event in the interval is

infinitesimal.

Appendix B: Closed Form Solution for Posterior Distribution of State - Xk\k

– Under Assumption of a Mixture of Gaussians (MoG) for the Joint Mark

Intensity Function

Let’s assume the posterior distribution of state at time k − 1, Xk − 1 ∣ k − 1 , is defined by

equation (8.a).

Xk − 1 ∣ k − 1 ∼ ∑v = 1
Vk − 1wk − 1, vdet 2πΣk − 1, v

1
2exp

− 1
2 Xk − 1 − μk − 1, v ′Σk − 1, v

−1 Xk − 1 − μk − 1, v
(B.1)

Where, Vk−1 defines number of mixtures and μk − 1, v, Σk − 1, v are the mixtures’ mean and

covariance estimates. The one-step prediction - defined in equation (8.a) – for the state

transition process defined in equation (7) can be described by

Xk ∣ k − 1 ∼ ∑v = 1
Vk − 1wk − 1, vdet 2π Σk, v

∗
1
2exp

− 1
2 Xk − μk, v

∗ ′Σk, v
∗ −1 Xk − μk, v

∗
(B.2a)

μk, v
∗ = Ak − 1 μk − 1, v + Bk − 1 (B.2b)

Σk, v
∗ = Ak − 1Σk − 1, vAk − 1′ + ΣQ (B.2c)

Let’s assume there is a spike with mark m o at time k. By replacing m o in equation (2), we

have

g Xt, m 0 = ∑u = 1
U λu

∗det 2π Σx, u
1
2exp − 1

2 Xt − μx, u ′Σx, u
−1 Xt − μx, u (B.3.a)

λu
∗ = λudet 2π Σm, u

− 1
2exp − 1

2 m o − μm, u ′Σm, u
−1 m o − μm, u (B.3.b)

where, g Xt, m o becomes a MoG with known - un-normalized - weights.

Rezaei et al. Page 20

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For the filter update on a spike time, g Xt, m o is multiplied by Xk ∣ k − 1 - we call this

new term Xk ∣ k − 1
λ . There are U mixture components in g Xt, m 0 and V k − 1 mixtures

in Xk ∣ k − 1; their multiplication will generate a new MoGs with Vk − 1U mixture

components. This is because multiplication of two multivariate normal distributions with

m1, Σ1 and m2, Σ2 is a new multivariate normal [45] defined by

N m1, Σ1 × N m2, Σ2 = Cc N mc, Σc (B.4.a)

Cc = N m1; m2, Σ1 + Σ2 (B.4.b)

mc = Σ1
−1 + Σ2

−1 Σ1
−1m1 + Σ2

−1m2 (B.4.c)

Σc = Σ1
−1 + Σ2

−1 −1
(B.4.d)

Where, mc, Σc define n e new components’ mean and covariance and Cc is a scaling term

– if the w1 and w2 are the weight of those two components, the new component weight

becomes w1w2Cc.

The g(∵ ,) term only appears on spike times; thus, for a non-spike time index,

Xk ∣ k − 1
λ = Xk ∣ k − 1. Whether there is a spike on time index k or not, Xk ∣ k − 1

λ is

defined by a mixture of Gaussians. The last step in the filter update is multiplying

Xk ∣ k − 1
λ by exp −ΔkΛ Xk .

Multiplication of Xk ∣ k − 1
λ by exp −ΔkΛ Xk does not follow a Gaussian mixture model

structure; however, we can use Gaussian approximation method to represent the posterior

using a Gaussian mixture model. The other possible solution is to first approximate

exp −ΔkΛ Xk using a Gaussian mixture model; and then the filter update follows a similar

procedure already described in deriving Xk ∣ k − 1
λ on a spike time. Note that exp −Δk Λ Xk

is the same on all filtering time-steps, and it can be approximated by a MoGs once

for the entire processing time. This methodology becomes problematic if we use many

mixture components to approximate exp −Δk Λ Xk ; this is because, the number of mixture

components become significantly large within a few filtering time-steps, so we choose to

approximate the Gaussian approximation method to build the posterior [46]. Using this

method the number of Gaussian mixture components does not grow – we refer to Xk ∣ k − 1
λ ,

and it is a reasonably accurate approximation specifically when Λ Xk doesn’t have many

local maxima and sharp curvatures. This happens when there are many cells firing over the

maze space a rat explores. Let’s assume Xk ∣ k − 1
λ is defined by

Rezaei et al. Page 21

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xk ∣ k − 1
λ ∼ ∑z = 1

Z wk, z∘ det 2πΣk, z
∘ − 1

2exp − 1
2 Xk − μk, z∘ ′Σk, z

∘ −1 Xk − μk, z∘ (B.5)

Where Z might be either Vk − 1U or Vk − 1 and wk − 1, z∘ , μk, z∘ , Σk, z
∘ are the mixture

components parameters. To update the weight, mean, and covariance of each mixture

component, we Taylor expand −ΔkΛ Xk , the logarithm of exp −ΔkΛ Xk , about a different

point for each mixture component. Specifically, for the zth mixture component, we expand

the −ΔkΛ Xk about the one-step prediction mean μk, z∘ for that component using a second-

order Taylor expansion. Finally, we complete the square to generate a new GMM. We

use the following updates for the posterior mean, covariance, and mixture weight of each

mixture component

Σk, z
−1 Σk, z

∘ −1 − ∇xxΛ μk, z∘ Δk (B.6.a)

μk, z μk, z∘ + Σk, z∇xΛ μk, z∘ Δk (B.6.b)

wk, z wk, z∘ det Σk, z
det Σk, z

∘ exp Δk∇xΛ μk, z∘ + 0.5∇xΛ μk, z∘ TΣk, z∇xΛ μk, z∘ (B.6.c)

where, ∇x and ∇xx are the gradient and Hessian operators [47]. Note that there is a closed-

form solution for the gradient and Hessian operators for a normal density function and

GMM. The gradient and Hessian for a normal density function with (μ, Σ) at point X is

defined [45] by

∇xp(X) = − p(X)Σ−1(X − μ) (B.7.a)

∇xxp(X) = − p(X) Σ−1(X − μ)(X − μ)′Σ−1 − Σ−1
(B.7.b)

Where, p(X) is the density function of a multivariate normal with (μ, Σ) parameters. Note

that in (B.6.a), there is a possibility of an updated covariance matrix to become non-positive

definite. In this case, we ignore updating this covariance estimate and thus its mean and

weight update. In other words, we only update those mixture components, for which their

updated covariance matrix is positive definite (PSD).

Here, we described every processing step needed in calculating the filter update rule at each

filtering time-step. This provides a closed-form solution for a marked point process filter

when the joint mark intensity function is defined by a MoGs. The posterior distribution

generated here will be the input to our dropping and merging algorithms which are designed

to optimally control the growth of mixture components over consecutive processing time.

Rezaei et al. Page 22

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Appendix C: Perfoi mance Analysis of Dropping and Margining Algorithms

using a KL divergence measure

KL divergence [26] is widely used in machine learning and particularly distribution

approximation [48]. Here, we analyzed the performance result of our proposed algorithm

using a KL distance in 1-D decoding, already introduced in the application section. The

problem setup and modeling parameters are the same, and we only use the KL(P ∥ Q) in

place of B(P ∥ Q) to assess similarity between P(X) and Q(X) distributions.

Figure C.1 shows the decoded trajectory using KL divergence method with αd = 0.15 and αd

= 0.12. The graph shows that the decoder fails to follow the rat trajectory. Also, the posterior

distribution shows a larger growth over space compared to the exact method. We examined

different values of αd and αm, and we observed similar characteristics there as well. We

ran the same performance analysis described in the application section, and the performance

results are shown in Figure C.2 and Table C.1 respectively. The result shows that we reach

a better computational efficiency as the average number of mixture becomes lower using the

KL distance. For instance, for αd = 0.15 and αd = 0.12, the average computational saving

is about 10% better than the drop-merge method using B(P ∥ Q). However, we observed a

larger RMSE error and a significant reduction in 95% HPD measure.

As Figure C.1 shows, the decoder fails to follow the rat movement trajectory. However, we

can argue when the decoder follows the trajectory, we can get a better 95% HPD coverage

area performance; however, this comes with a payoff in RMSE error. This implies that we

expect to have a larger RMSE using KL divergence, even when it properly traces the rat

movement trajectory.

Rezaei et al. Page 23

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure C.1.
Decoding result using KL divergence a. Decoding result using the exact solution (this is the

same as figure 3(a)) b. Decoding result using KL divergence method with αd = 0.15 and

αm=012. Decoding result using drop-merge method with KL divergence measure follows

the rat movement trajectory for the first half of the data, but it fails to properly trace the

movement trajectory for the second half of the data.

Rezaei et al. Page 24

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure C.2.
Performance and computational time efficiency of KL divergence method for 1-D decoding

task using different αd and αm parameters. b. 95% HPD coverage performance map. c.
Average computational time efficiency (CTE) using KL drop-merge method. d. Maximum

computational time efficiency using KL drop-merge method. e. Minimum computational

time efficiency using KL drop-merge method. f. Median of computational time efficiency

using KL drop-merge method.

Rezaei et al. Page 25

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure D.1.
Computational time analysis and its relationship with the number of mixture models in

drop-merge method for 1-D decoding task. a. Average number of GMM components for

different values αd and αm created for the filter solution at each processing time step. b.
Maximum number of GMM components for different values αd and αm created for the

filter solution at each processing time step. c. Average computational time efficiency using

the drop-merge method. Here, the average processing time in the exact method is divided

by the average processing time per time step using the drop-merge algorithm. So, a value

of 25 implies that the drop-merge method run 25 times faster than the exact solution. d.
Maximum computational time efficiency in the drop-merge method. For instance, a value

of 215 implies that for the corresponding parameter setting there is at least one time step

where the computation saving is 215 times faster than average processing time of the exact

solution. e. Average computational time efficiency using the drop-merge method on spike

times. Here a value of 1.5 implies that the exact-merge method run 1.5 times faster than the

exact solution on spike times. f. Average computational time efficiency using the drop-merge

method on non-spike time point. For example, a value of 3000 implies that the drop-merge

method run 3000 times faster than the exact solution on non-spike times.

Rezaei et al. Page 26

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Table C.1.

Performance result using the exact and proposed solution in 1-D decoding problem.

Method Setting RMSE
(cm)

95%
HPD

Processing
Time (ms)

Avg.
Number of
Mixtures

Average
Number of
Mixtures on
Spike Time

Maximum
Number of
Mixtures

Exact
Solution

dx = 0.025 0.80 80.5 24.4 NA NA Na

GMM-
based
method

αd = 0.15
αm = 0.12

4.2 55.7 1.0 1.08 2.48 9

Appendix D: Further An lysis n Computation Efficiency and Performance of

the Exact and Drop-Merge Solution

We argued that the processing time of the drop-merge algorithm changes as the number

of mixture components in GMM being passed to these algorithms change. Note that the

number of mixture components in these GMMs are different given a spike event happens or

not. Thus, we study how the drop-merge algorithm processing time change as a function of

the number of mixture components in GMMs at spike and non-spike time events.

Figure D.1 (a) and Figure D.1 (b) show the average and the maximum number of mixture

components being passed to the drop-merge algorithm per each time-step. For αm = 0.12

and αd = 0.15, this number are 1.25 and 12 respectively. Figure D.1 (e) shows the average

computational time saving on the spike times; for αm = 0.12 and αd = 0.15, the processing

time of the drop-merge algorithm on spike time is about the same for the exact solution.

Figure D.1 (f) shows the average computational time saving on non-spike times; for αm

= 0.12 and αd = 0.15, the computational time saving is about 2500. This result suggests

that computational saving is not merely emerging from utilizing the merging and dropping

algorithms on each filtering time-step; however, there is a significant computational saving

on the non-spike time where the merge and drop algorithms deal with a relatively low

number of mixture components in GMM -note that merging or dropping are not needed

when there is one mixture component for filter solution in the previous time point. Non-

spike time’ are a bout 95% of the whole processing time, and this is being reflected in the

overall computational saving. Note that we gain this computational saving because we build

a parametric distribution model - here, a GMM - for the posterior distribution of the rat

position on each filtering time step, and this leads to a super-fast algorithm – even, analytical

solution – when the number of mixture components in GMM becomes small.

Figure D.2 provides further information on the processing time for specific numbers of

mixture components in GMMs being passed to the drop-merge algorithm. Note that the

number of mixture components in the conditional intensity of the cell ensembles plays a

role in the number of mixture components being generated in these GMMs, which are not

studied here. For the MoG model used in the 1-D decoding task, the number of mixture

components is 35. This means on the spike times, the number of mixture components in the

GMM being passed to the drop-merge algorithms are 35 times higher than non-spike times.

Rezaei et al. Page 27

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure D.3 shows the histogram of processing time over the whole dataset. These graphs are

consistent with the results shown in Figure D.1 (e) and Figure D.1 (f). The processing time

for 80% of time points are less than 1 millisecond using the drop-merge algorithm.

The result in 2-D decoding showed a significant boost in computational time efficiency

compared to 1-D decoding. Here, we repeated the same sort of analysis run for 1-D

decoding for 2-D decoding. Figure D.4 (a) and figure D.4 (b) suggest the number of mixture

components in the GMMs being passed to the drop-merge algorithm is relatively lower than

1-D decoding. This means that the overall computational time efficiency will be even larger

compared to 1-D decoding. Figure D.4 (e) and Figure D.4(f) support this assumption; Figure

D.4(e) shows that we even get the computational time efficiency at spike times - a property

which was absent in 1-D decoding. Figure D.4 (f) shows that this computational time

efficiency is huge at non-spike time points, and thus, we reach a computationally efficient

algorithm for 2-D decoding. Figure D.5 and Figure D.6 will further support this claim and

provide a furth r information about the merging-dropping algorithm characteristics. Note

that the histogram of the computational time in the exact solution is in second time scale.

Rezaei et al. Page 28

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure D.2.
1-D decoding task computational time in (ms) for differed number of mixture models per

spike and non-spike time. The merge and drop parameters are αd = 0.15 and αm = 0.12.

Note the average processing time for the exact solution is 22 ms. Note that Y-axis - number

of mixture components - represents number of mixture components on the previous time

filter solution; merge and dropping algorithms process 35 times of this number.

Rezaei et al. Page 29

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure D.3.
Histogram of 1-D task computational time for the exact filter solution and drop-merge

method. a. Histogram of computational time for the exact filter solution. Its mean is about

25 ms, and as it shown most of timestep. have computation time near this value. b. The

histogram of computational time for drop-merge method with αd = 0.15 and αm = 0.12. We

provide a closer look to computational time for a processing time below 1.2 ms. The result

shows, most of computational times for 1-D task in the drop-merge algorithm are below 1.0

ms. This means the algorithm is real-time in most timesteps. Also, we can see there are some

timesteps with computational time near 23.0 ms, about 8.0% of timesteps, and less than

0.1% of timesteps with computational time more than 60 ms.

Rezaei et al. Page 30

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure D.4.
Computational time efficiency analysis and its relationship with the number of mixture

models in drop-merge method for 2-D decoding task. a. Average number of GMM

components for different values αd and αm. b. Maximum number of GMM components for

different values αd and αm. c. Average computational time efficiency using the drop-merge

method. Here, the average processing time in the exact method is divided by the average

processing time per time step using the drop-merge algorithm. So, a value of 4000 implies

that the drop-merge method run 4000 times faster than the exact solution. d. Maximum

computational time efficiency in the drop-merge method. For instance, value of 62000

implies that for corresponding sets of parameters, there are time steps that runs about 62000

times faster than the exact solution. e. Average computational time efficiency using the

drop-merge method on spike times. Here a value of 500 implies that the drop-merge method

run 500 times faster than the exact solution on spike times. f. Average computational time

efficiency using the drop-merge method on non-spike time point. For example, a value of

8000 implies that the drop-merge method run 8000 times faster than the exact solution on

non-spike times.

Rezaei et al. Page 31

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure D.5.
2-D decoding task Computational time result (ms) with αd = 0.05 and αm = 0.1 parameters

setting for different combinations of mixture models and number of spikes in drop-merge

method. Columns of the figure describe maximum number of mixture models, and rows

describe number of spikes. Each element of the figure is the average computational time for

related combination of number of spikes and maximum number of mixture models.

Rezaei et al. Page 32

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure D.6.
Histogram of 2-D task Computational time for exact filter solution and drop-merge method.

a. histogram for exact filter solution. Its mean is about 11.5 sec, and as it shown most of

timesteps have computation time near this value. b. histogram for drop-merge method with

αd = 0.05 and αm = 0.1 parameters setting. We provide a closer look to computational time

for a processing time below 3.5 ms. The result shows, most of computational times for 2-D

task in the drop-merge algorithm are below 1.0 ms. This means the algorithm is real-time

in most timesteps. Also, we can see there are some timesteps with computational time near

100.0 ms, about 9.1% of timesteps, and less than 0.1% of timesteps with computational time

more than 300 ms.

Rezaei et al. Page 33

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

[1]. Koyama S, Eden UT, Brown EN, and Kass RE, “Bayesian decoding of neural spike trains,” Annals
of the Institute of Statistical Mathematics, vol. 62, no. 1, pp. 37, 2009/07/30, 2009.

[2]. Huang Y, Brandon MP, Griffin AL, Hasselmo ME, and Eden UT, “Decoding Movement
Trajectories Through a T-Maze Using Point Process Filters Applied to Place Field Data from Rat
Hippocampal Region CA1,” Neural Computation, vol. 21, no. 12, pp. 3305–3334, 2009/12/01,
2009. [PubMed: 19764871]

[3]. Brockwell AE, Rojas AL, and Kass RE, “Recursive Bayesian Decoding of Motor ortical Signals
by Particle Filtering,” Journal of Neurophysiology, vol. 91, no. 4, pp. 1899–1907, 2004/04/01,
2004. [PubMed: 15010499]

[4]. Brown EN, Frank LM, Tang D, Quirk MC, and Wilson MA, “A Statistical Paradigm for Neural
Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat
Hippocampal Place Cells,” The Journal of Neuroscience, vol. 18, no. 18, pp. 7411, 1998.
[PubMed: 9736661]

[5]. Sarma SV, Eden UT, Cheng ML, Williams ZM, Hu R, Eskand E Brown r, a, d E. N., “Using Point
Process Models to Compare Neural Spiking Activity in the Subthalamic Nucleus of Parkinson's
Patients and a Healthy Primate,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 6,
pp. 1297–1305, 2010.

[6]. Särkkä S, Bayesian filtering and smoothing: Cambridge University Press, 2013.

[7]. Bobrowski O, Meir R, and Eldar YC, “Bayesian filtering in spiking neural networks: Noise,
adaptation, and multisensory integration,” Neural computation, vol. 21, no. 5, pp. 1277–1320,
2009. [PubMed: 19018706]

[8]. Sung-Phil K, John DS, Leigh RH, John PD, and Michael JB, “Neural control of computer cursor
velocity by decoding motor cortical spiking activity in humans with tetraplegia,” Journal of
Neural Engineering, vol. 5, no. 4, pp. 455, 2008. [PubMed: 19015583]

[9]. Fox D, Hightower J, Liao L, Schulz D, and Borriello G, Bayesian Filtering for Location
Estimation, 2003.

[10]. Ali Yousefi AG, Guidera Jennifer, Karlsson Mattias, Frank Loren, Eden Uri, “Efficient Decoding
of Multi-Dimensional Signals from Population Spiking Activity Using a Gaussian Mixture
Particle Filter,” Transactions on Biomedical Engineering, 2018.

[11]. Deng X, Liu DF, Kay K, Frank LM, and Eden UT, “Clusterless Decoding of Position from
Multiunit Activity Using a Marked Point Process Filter,” Neural Computation, vol. 27, no. 7, pp.
1438–1460, 2015/07/01, 2015. [PubMed: 25973549]

[12]. Truccolo W, Eden UT, Fellows MR, Donoghue JP, and Brown EN, “A Point Process Framework
for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic
Covariate Effects,” Journal of Neurophysiology, vol. 93, no. 2, pp. 1074–1089, 2005/02/01, 2005.
[PubMed: 15356183]

[13]. Gorenflo R, and Mainardi F, “Random walk models approximating symmetric space-fractional
diffusion processes,” Problems and Methods in Mathematical Physics: The Siegfried Prössdorf
Memorial Volume Proceedings of the 11th TMP, Chemnitz (Germany), March 25–28, 1999,
Elschner J, Gohberg I and Silbermann B, eds., pp. 120–145, Basel: Birkhäuser Basel, 2001.

[14]. Gerstein GL, and Mandelbrot B, “Random Walk Models for the Spike Activity of a Single
Neuron,” Biophysical Journal, vol. 4, no. 1, pp. 41–68, 1964. [PubMed: 14104072]

[15]. Codling EA, Plank MJ, and Benhamou S, “Random walk models in biology,” Journal of The
Royal Society Interface, vol. 5, no. 25, pp. 813, 2008.

[16]. Arulampalam MS, Maskell S, Gordon N, and Clapp T, “A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no.
2, pp. 174–188, 2002.

[17]. Bromiley PA, “Products and convolutions of Gaussian probability density functions,” Tina
Memo, 2003.

[18]. Baudry J-P, Raftery AE, Celeux G, Lo K, and Gottardo R, “Combining Mixture Components
for Clustering,” Journal of Computational and Graphical Statistics, vol. 19, no. 2, pp. 332–353,
2010/01/01, 2010.

Rezaei et al. Page 34

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[19]. Pearson K, “Contributions to the Mathematical Theory of Evolution,” Philosophical Transactions
of the Royal Society of London. A, vol. 185, pp. 71–110, 1894.

[20]. Newcomb S, “A Generalized Theory of the Combination of Observations so as to Obtain the Best
Result,” American Journal of Mathematics, vol. 8, no. 4, pp. 343–366, 1886.

[21]. Wang H. x., Luo B, Zhang Q. b., and Wei S, “Estimation for the number of components in a
mixture model using stepwise split-and-merge EM algorithm,” Pattern Recognition Letters, vol.
25, no. 16, pp. 1799–1809, 2004/12/01, 2004.

[22]. Melnykov V, “Merging Mixture Components for Clustering Through Pairwise Overlap,” Journal
of Computational and Graphical Statistics, vol. 25, no. 1, pp. 66–90, 2016/01/02, 2016.

[23]. Hennig C, “Methods for merging Gaussian mixture components,” Advances in Data Analysis and
Classification, vol. 4, no. 1, pp. 3–34, 2010/04/01, 2010.

[24]. Kasahara H, and Shimotsu K, “Testing the Number of Components in Normal Mixture
Regression Models,” Journal of the American Statistical Association, vol. 110, no. 512, pp.
1632–1645, 2015/10/02, 2015.

[25]. Figueiredo MAT, and Jain AK, “Unsupervised learning of finite mixture models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 381–396, 2002.

[26]. Hershey JR, and Olsen PA, “Approximating the Kullback Leibler Divergence Between Gaussian
Mixture Models.” pp. IV-317–IV-320.

[27]. “Letters to the Editor,” The American Statistician, vol. 41, no. 4, pp. 338–341, 1987/11/01, 1987.

[28]. Shannon CE, “A mathematical theory of communication,” The Bell System Technical Journal,
vol. 27, no. 3, pp. 379–423, 1948.

[29]. Baudry J-P, Raftery AE, Celeux G, Lo K, and Gottardo R, “Combining Mixture Components for
Clustering,” Journal of computational and graphical statistics : a joint publication of American
Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North
America, vol. 9, no. 2, pp. 332–353, 2010.

[30]. Celeux G, and soromenho G, “An entropy criterion for assessing the number of clusters in a
mixture model,” Journal of Classification, vol. 13, no. 2, pp. 195–212, 1996/09/01, 1996.

[31]. Hennig C, Methods for merging Gaussian mixture components, 2010.

[32]. Eden UT, and Brown EN, “CONTINUOUS-TIME FILTERS FOR STATE ESTIMATION FROM
POINT PROCESS MODELS OF NEURAL DATA,” Statistica Sinica, vol. 18, no. 4, pp. 1293–
1310, 2008. [PubMed: 22065511]

[33]. Snyder DL, and Miller MI, Random Point Processes in Time and Space: Springer-Verlag, 1991.

[34]. Daley DJ, and Vere-Jones D, An introduction to the theory of point processes: volume II: general
theory and structure: Springer Science & Business Media, 2007.

[35]. Buzsaki G, “Large-scale recording of neuronal ensembles,” Nature Neuroscience, vol. 7, pp. 446,
04/27/online, 2004. [PubMed: 15114356]

[36]. Rabiner LR, “A tutorial on hidden Markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[37]. “Preliminaries,” Simulation and the Monte Carlo Method, 2017.

[38]. Karlsson M, Carr M, and Frank L. J. C. D. h. d. o. K. N. B., “Simultaneous extracellular
recordings from hippocampal areas CA1 and CA3 (or MEC and CA1) from rats performing an
alternation task in two W-shapped tracks that are geometrically identically but visually distinct,”
2015.

[39]. Arai K, Liu DF, Frank LM, and Eden UT, “Marked point process filter for clusterless and
adaptive encoding-decoding of multiunit activity,” bioRxiv, 2018.

[40]. Schoenberg IJ, “The Integrability of Certain Functions and Related Summability Methods,” The
American Mathematical Monthly, vol. 66, no. 5, pp. 361–775, 1959/05/01, 1959.

[41]. Hyndman RJ, “Computing and Graphing Highest Density Regions,” The American Statistician,
vol. 50, no. 2, pp. 120–126, 1996/05/01, 1996.

[42]. Stroustrup B, “Foundations of C++.” pp. 1–25.

[43]. Eskenazis A, Nayar P, and Tkocz T. J. T. A. o. P., “Gaussian mixtures: entropy and g eometric
inequalities,” vol. 46, no. 5, pp. 2908–2945, 2018.

Rezaei et al. Page 35

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[44]. Huber MF, Bailey T, Durrant-Whyte H, and Hanebeck UD, “On entropy approximation for
Gaussian mixture random vectors.” pp. 181–188.

[45]. Pedersen K. B. P. a. M. S., “The Matrix Cookbook,” 2012.

[46]. Eden UT, Frank LM, Barbieri R, Solo V, and Brown EN, “Dynamic Analysis of Neural
Encoding by Point Process Adaptive Filtering,” Neural Computation, vol. 16, no. 5, pp. 971–998,
2004/05/01, 2004. [PubMed: 15070506]

[47]. Binmore K, and Davies J, Calculus : [concepts and methods], Cambridge: Cambridge University
Press, 2007.

[48]. Fox CW, and Roberts SJ, “A tutorial on variational Bayesian inference,” Artificial Intelligence
Review, vol. 38, no. 2, pp. 85–95, 2012/08/01, 2012.

Rezaei et al. Page 36

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Highlights

• We propose the filter solution for a broader c ss of point process problems

• This algorithm estimates posterior distribution using a Gaussian Mixture

Model

• This algorithm provides a real-time solution for multi-dimensional point-

process filter problem

• This algorithm attains accuracy comparable to the exact solution outperforms

previously published methods in speed

Rezaei et al. Page 37

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1. Expansion of P(X) using Q(X).
P(X) is comprised of 3 mixture components with means [−1,−0.5,0] and variances [1, 1, 1]

and mixing weights of [0.6,0.1,0.3] (top plots). a. Expansion of P(X) using Q(X) in drop

step. Q(X) is the approxim ate of P(X) where the third mixture is dropped and the mixing

weights of the other two has been adjusted accordingly (second plot from top). The three

button plots show log P (X)
Q(X) , log Q(X)

P (X) × Q(x), and log P (X)
Q(X) × P (X); respectively. It is clear

that the rate of P(x) decay is significantly faster that the quadratic term and thus, it makes the

error negligible. b. Expansion of P(X) using Q(X) in merge step. Q(X) is the approximate

of P(X) where the third mixture is dropped and the mixing weights, means, and variances of

the other two has been adjusted accordingly (second plot from top).

Rezaei et al. Page 38

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
The maze structure, the rat movement trajectory, and observed neural data. a. We use

a linearization scheme to map the 2-D position in the maze to 1-D, by mapping the

constrained linear distance from the home well, to the interval [−6, 6]. In this representation,

there is no distinction between left and right arms. b. Recorded Movement trajectory during

1-D task. c-f. Timing and mark value of observed spikes from all 4 tetrode channels.

The mark values above threshold area (dark area) are more informative for decoding

movement trajectory than others inside this area. Each data point present spike event. The

decoding result using the drop-merge method shows a similar decoding results as the exact

solution (figure 3(a) and 3(b)). To better assess the decoding result and computational

efficiency using the drop-merge algorithm, we ran the algorithm for a range of αd and αm

values. Figure 4 shows the performance result and different statistics of computational time

efficiency of the drop-merge method for a range of αd and αm.

Rezaei et al. Page 39

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Decoding result using a. The exact solution and b. The drop-merge method with αd = 0.15

and αm = 0.12. Decoding result using the proposed methodology is similar to the exact

solution for the most of time steps.

Rezaei et al. Page 40

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Performance and computational saving of drop-merge algorithm for 1-D decoding task

using different αd and αm parameters – αd and αm are the drop and merge stopping

criteria defined in Table 1 and 2. Each performance map in a, b is normalized to the

corresponding result derived from the exact filter solution. a. RMSE performance map.

Value of 1 corresponds to a similar RMSE measure for the exact and proposed method.

A lower value reflects more accurate decoding. b. 95% HPD coverage performance map.

A value close to 1 corresponds to a similar coverage area for both the exact and proposed

method. A larger value is more desired. c. Average computational time efficiency (CTE)

using the drop-merge method. In c to f figures, the average processing time in the exact

method is divided by the average processing time per time step using drop-merge method.

For the exact solution, we use a Riemann Sum integral with a 0.025 step. The 0.025 is

the coarsest resolution which maintains the exact solution’s performance, when it is run

with much finer resolutions. A larger value is more desired, for instance, a value of 20

implies that the drop-merge method run 20 times faster than the exact solution d. Maximum

computational time efficiency using the drop-merge method. For instance, a value of 215

implies that for the corresponding parameter setting there is at least one time step where the

computation saving is 215 times faster than average processing time of the exact solution. e.
Minimum computational time efficiency using the drop-merge method. For instance, a value

of 0.5 implies that for the corresponding parameter setting, the longest processing time of

the drop-merge method is twice the average processing time in the exact solution. f. Median

of computational time efficiency using the drop-merge method. For instance, a value of 210

implies that for the corresponding parameters setting, half of time steps run at least 210

faster than exact solution.

Rezaei et al. Page 41

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
The maze structure, the rat movement trajectory, and sample neural data. a. W-maze, the rat

moves from the center arm to the left and right arms to get food reward. The rat coordinates

are scaled from 0 and 1 – in the figure, (0.5, 0) is the coordinate of the rat position

shown in the figure b. Both movement trajectories along X and Y directions. c-f Timing

and mark value of observed spikes from all channels for one of tetrodes. The mark values

above threshold area (dark area) are move informative for decoding movement trajectory

than others inside this area. For the exact solution, we use Riemann Sum integral method

[40] with 300 samples in the range of −1 to 2 – corresponding to 0.01 spatial resolution

to calculate the likelihood function and rat position posterior estimation. The finer spatial

resolution in 2-D compared to the value being used in 1-D decoding addresses the change

in coordinate scale used to represent the rat position in the maze. We calculate the same

Rezaei et al. Page 42

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

performance measures as we used in the previous section to assess both the exact and

drop-merge model performance.

Rezaei et al. Page 43

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Decoding result using the exact method and the drop-merge method with αd = 0.1 and αm =

0.05. A) Decoding result using the exact method. B) Decoding result using the drop-merge

method. The decoding result in A and B are similar for the most of time steps.

Rezaei et al. Page 44

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Performance and computational time efficiency of the drop-merge method for 2-D decoding

task using different αd and αm parameters. Each performance map is normalized to the

corresponding result derived from the exact filter solution. a. RMSE performance map.

Value of 1 corresponds to a similar RMSE measure for the exact and proposed method.

A lower value is more desired b. 95% HPD coverage performance map. A value close to

1 corresponds to similar coverage area for both the exact and proposed method. A larger

value is more desired. c. Average computational time efficiency (CTE) using the drop-merge

method. Here, the average processing time in the exact method is divided by the average

processing time per time step using the drop-merge algorithm. For the exact solution, we

use a Reimann Sum integral with a 0.01 spatial resolution. A larger value is more desired;

for instance, a value of 4000 implies that the drop-merge method run 4000 times faster than

the exact solution d. Maximum computational time efficiency using the drop-merge method.

A value of 62000 implies that for corresponding sets of parameters, there are time steps

that runs about 62000 times faster than the exact solution. e. Minimum computational time

efficiency using the drop-merge method. f. Median computational time efficiency using the

drop-merge method.

Rezaei et al. Page 45

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
The algorithm decoding result for a piece of the 1-D decoding task data for two different

scenarios of merge-drop and drop-merge. a) The merge-drop algorithm, processing time is

about 130 milliseconds, RMSE is 0.87, and HPD is 85%. b) The drop-merge algorithm,

processing time is about milliseconds, RMSE is 0.85, and HPD is 84%.

Rezaei et al. Page 46

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rezaei et al. Page 47

Table 1.

Dropping Process Algorithm

1. Set stopping criteria αd

2. Set pd = 0

3. Set Q(X) = P(X) - components of Q are represented by πk
∗, μk

∗, Σk
∗

 k = 1, ⋯, K*

4.
Define Q−z(X) = ∑s = 1 ∖ z

K∗ πs∗

1 − πz∗
N X; μs∗, Σs

∗

5. Find k0 such that k0 = arg min
s ∈ 1⋯K∗ ∩ pd + πs∗ < αd

B P ∥ Q−s

6. if k0 ≠ ∅ pd = pd + πk0
∗ , Q(X) = Q−k0(X) and jump to 4

7. if k0 = ∅, Stop

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rezaei et al. Page 48

Table 2.

Merging Process Algorithm

1. Set stopping criteria αm
2. Set Q(X) = P(X) - components of Q are represented by πk

∗, μk
∗, Σk

∗
 k = 1, ⋯, K*

3. Define Qk1 ∘ k2(X; α) as

Qk1 ∘ k2(X; α) = 1 − α πk1
∗ + πk2

∗ ∑k = 1 ∖ k1, k2
K∗ πk

∗

1 − πk1
∗ − πk2

∗ N X; μk′
∗ Σk

∗ + α πk1
∗ + πk2

∗ N X; μk1 ∘ k2, Σk1 ∘ k2

μk1∘k2 = μk1
∗ πk1

∗

πk1
∗ + πk2

∗ + μk2
∗ πk2

∗

πk1
∗ + πk2

∗

Σk1 ∘ k2 =
πk1

∗

πk1
∗ + πk2

∗ Σk1
∗ +

πk2
∗

πk1
∗ + πk2

∗ Σk2
∗ +

πk1
∗ πk2

∗

πk1
∗ + πk2

∗ 2 μk1
∗ − μk2

∗ μk1
∗ − μk2

∗ ′

4. For each (k1, k2) in the set find αk1, k2 = arg min
0 < α < 1

B P ∥ Qk1 ∘ k2(X, α) and set βk1, k2 = B P ∥ Qk1 ∘ k2 X, αk1, k2

5. Find k1
∗, k2

∗
 in the set such that αk1

∗, k2
∗ ≥ 1 − αm ∩ βk1

∗, k2
∗ ≤ βk1, k2 ∀k1, k2

6. if k1
∗, k2

∗ ≠ ∅ Q(X) = Qk1
∗ ∘ k2

∗ X; αk1
∗, k2

∗ , and jump to 4

7. if k1
∗, k2

∗ = = ∅, Stop

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rezaei et al. Page 49

Table 3

Performance result using the exact and proposed solution in 1-D decoding problem

Method Setting RMSE
(cm)

95%
HPD

Processing
Time (ms)

Avg. Number
of Mixtures

Average Number
of Mixtures on
Spike Time

Maximum
Number of
Mixtures

Exact
Solution

dx = 0.025 0.80 80.5 24.4 NA NA NA

GMM-based
method

αd = 0.15
αm = 0.12

0.85 81.0 1.1 1.21 2.8 11

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rezaei et al. Page 50

Table 4

Performance result using the exact and proposed solution in 2D decoding.

Method Setting RMSE
(cm)

95%
HPD

Processing
Time (ms)

Avg. Number
of Mixtures

Average Number
of Mixtures Spike
Time

Maximum
Number of
Mixtures

Exact Solution dx = 0.01 0.153 97.0 11961.0 NA NA N

GMM-based
method

αd = 0.1
αm = 0.05

0.1675 93.3 3.0 1.07 1.1 5

J Neurosci Methods. Author manuscript; available in PMC 2022 February 10.

	Abstract
	Introduction
	Methods
	Problem Definition
	Dropping ad Merging Procedure for a GMM
	An approximate closed-form expression for B(P∥Q)
	Dropping Process
	Merging Process
	Logic of the Dropping Function
	Failure Modes

	Application
	Decoding maze trajectory in 1-D representation
	Decoding maze trajectory in 2-D

	Discussion
	Conclusion
	Likelihood Function for Activity of Multiple Cell Ensembles
	Closed Form Solution for Posterior Distribution of State - Xk\k – Under Assumption of a Mixture of Gaussians (MoG) for the Joint Mark Intensity Function
	Perfoi mance Analysis of Dropping and Margining Algorithms using a KL divergence measure
	Table C.1.
	Further An lysis n Computation Efficiency and Performance of the Exact and Drop-Merge Solution
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7
	Figure 8
	Table 1.
	Table 2.
	Table 3
	Table 4

