
UC Berkeley
UC Berkeley Previously Published Works

Title
Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications
to Neuroimaging

Permalink
https://escholarship.org/uc/item/1b47s3vq

Journal
Frontiers in Neuroinformatics, 10(NOV)

ISSN
1662-5196

Authors
Bilenko, Natalia Y
Gallant, Jack L

Publication Date
2016

DOI
10.3389/fninf.2016.00049

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b47s3vq
https://escholarship.org
http://www.cdlib.org/

METHODS
published: 22 November 2016
doi: 10.3389/fninf.2016.00049

Frontiers in Neuroinformatics | www.frontiersin.org 1 November 2016 | Volume 10 | Article 49

Edited by:

Pedro Antonio Valdes-Sosa,

Joint China Cuba Lab for Frontiers

Research in Translational

Neurotechnology, Cuba

Reviewed by:

Sergey M. Plis,

Mind Research Network, USA

Li Dong,

University of Science and Technology

of China, China

*Correspondence:

Jack L. Gallant

gallant@berkeley.edu

Received: 07 June 2016

Accepted: 24 October 2016

Published: 22 November 2016

Citation:

Bilenko NY and Gallant JL (2016)

Pyrcca: Regularized Kernel Canonical

Correlation Analysis in Python and Its

Applications to Neuroimaging.

Front. Neuroinform. 10:49.

doi: 10.3389/fninf.2016.00049

Pyrcca: Regularized Kernel
Canonical Correlation Analysis in
Python and Its Applications to
Neuroimaging

Natalia Y. Bilenko 1 and Jack L. Gallant 1, 2*

1Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA, 2Department of Psychology,

University of California, Berkeley, Berkeley, CA, USA

In this article we introduce Pyrcca, an open-source Python package for performing

canonical correlation analysis (CCA). CCA is a multivariate analysis method for

identifying relationships between sets of variables. Pyrcca supports CCA with or without

regularization, and with or without linear, polynomial, or Gaussian kernelization. We

first use an abstract example to describe Pyrcca functionality. We then demonstrate

how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to

implement cross-subject comparison in a natural movie functional magnetic resonance

imaging (fMRI) experiment by finding a data-driven set of functional response patterns

that are similar across individuals. We validate this cross-subject comparison method

in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we

show how Pyrcca can reveal retinotopic organization in brain responses to natural movies

without the need for an explicit model.

Keywords: canonical correlation analysis, covariance analysis, Python, fMRI, cross-subject alignment, partial least

squares regression

1. INTRODUCTION

Covariance analyses are regarded as one of the simplest approaches for finding similarities across
datasets. One type of covariance analysis, known as canonical correlation analysis (CCA), is
commonly used in statistics. CCA was first introduced by Hotelling (1936) as a method for
finding relationships between two sets of variables. In the subsequent decades it has been extended
(Hardoon et al., 2004) and applied in a variety of scientific fields, from climate modeling (Barnett
and Preisendorfer, 1987), to computational biology (Yamanishi et al., 2003), to neuroimaging
(Hardoon et al., 2007; Correa et al., 2010; Varoquaux et al., 2010). In this article we present
Pyrcca (PYthon Regularized Canonical Correlation Analysis), an open-source Python package
for performing CCA between two or more datasets. Pyrcca supports CCA with and without
regularization and kernelization.

There are several existing software packages that implement CCA. Several implementations
are available in MATLAB: Kernel Method Toolbox (https://sourceforge.net/projects/kmbox/),
emiCCA (http://www.neuro.uestc.edu.cn/emiCCA.html, Dong et al., 2015), and CCA-fMRI
(http://cca-fmri.sourceforge.net/) in SPM (Friston et al., 1994). To our knowledge, there are two
implementation of CCA in Python. The cross-decomposition module in scikit-learn (Pedregosa
et al., 2011) includes an implementation of CCA. However, it does not include kernelization.

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2016.00049
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2016.00049&domain=pdf&date_stamp=2016-11-22
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:gallant@berkeley.edu
https://doi.org/10.3389/fninf.2016.00049
http://journal.frontiersin.org/article/10.3389/fninf.2016.00049/abstract
http://loop.frontiersin.org/people/223522/overview
http://loop.frontiersin.org/people/13476/overview
https://sourceforge.net/projects/kmbox/
http://www.neuro.uestc.edu.cn/emiCCA.html
http://cca-fmri.sourceforge.net/

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

Additionally, the package PyKCCA (https://github.com/
lorenzoriano/PyKCCA) implements kernel CCA. However,
it includes minimal documentation and may not be actively
maintained.

In contrast, Pyrcca brings an implementation that supports
both kernelization and regularization to the open-source
scientific Python ecosystem. Pyrcca includes detailed instructions
and examples of general usage and applications to neuroimaging
analysis. In this article, we demonstrate application of Pyrcca
to neuroimaging data. We analyze publicly available fMRI data
recorded from the visual cortex of three subjects who were
watching natural movies (Nishimoto et al., 2011, 2014). We then
use Pyrcca to find a set ofmatching brain response patterns across
the three subjects. Although this article focuses on use of Pyrcca
to analyze neuroimaging data, Pyrcca can be used to analyze any
timeseries data. We therefore hope that Pyrcca will also be used
in other scientific fields that require timeseries analysis.

This article is structured in the following way. Section 2
introduces mathematical definitions and describes how CCA is
computed. Section 3 describes the functionality of the Pyrcca
package. Section 4 illustrates the use of Pyrcca with an idealized
example: finding linear relationships between two artificially
constructed, interdependent datasets. Section 5 illustrates the
use of Pyrcca in neuroimaging analysis: performing CCA-based
cross-subject comparison on a real fMRI dataset. To facilitate use
of Pyrcca we have released the source code on GitHub (http://
github.com/gallantlab/pyrcca), along with Jupyter notebooks
(Pérez and Granger, 2007) containing code and results presented
in Sections 4, 5.

2. CANONICAL CORRELATION ANALYSIS

CCA is a method for finding linear correlational relationships
between two or more multidimensional datasets. CCA finds a
canonical coordinate space that maximizes correlations between
projections of the datasets onto that space. CCA shares
many mathematical similarities with dimensionality reduction
techniques such as principal components analysis (PCA) and
with regression methods such as partial least squares regression
(PLS).

CCA hasmany characteristics that make it suitable for analysis
of real-world experimental data. First, CCA does not require
that the datasets have the same dimensionality. Second, CCA
can be used with more than two datasets simultaneously. Third,
CCA does not presuppose the directionality of the relationship
between datasets. This is in contrast to regression methods that
designate an independent and a dependent dataset. Fourth, CCA
characterizes relationships between datasets in an interpretable
way. This is in contrast to correlational methods that merely
quantify similarity between datasets.

CCA has one disadvantage relative to some other methods: it
can easily overfit to spurious noise correlations between datasets.
However, overfitting can be avoided by curbing the size of the
canonical coordinate space, by regularization, or both.

2.1. Mathematical Definitions
CCA is a method for finding linear relationships between two or
more multidimensional datasets. Given two zero-mean datasets

X and Y, X = (x1, x2, . . . xn) ∈ R
d×n and Y = (y1, y2, . . . ym) ∈

R
d×m (where xi, yi are d-dimensional vectors), CCA finds a

canonical coordinate space that maximizes correlations between
the projections of the datasets onto that space. For each
dimension of this coordinate space, there is a pair of projection
weight vectors, aj = (a1j, a2j, . . . anj) and bj = (b1j, b2j, . . . bmj)
called canonical weights. The resulting projections of datasets X
and Y onto each dimension of the canonical space are a pair of d-
dimensional vectors, uj = 〈aj,X〉 and vj = 〈bj,Y〉, that are called
canonical components or canonical variates. CCA maximizes the
correlations between each pair of canonical components:

ρj = max
〈uj, vj〉
‖uj‖‖vj‖

(1)

Theoretically, CCA is solved iteratively by first finding a pair of
canonical components u1 and v1, such that the correlation ρ1
between u1 and v1 is maximized. The second pair of canonical
components u2 and v2 is then found, such that the correlation
ρ2 between u2 and v2 is maximized, with the constraint that
the canonical components u2 and v2 are orthogonal to the
preceding canonical components u1 and v1, respectively. The
total number of canonical component pairs is constrained by the
dimensionality of datasets X and Y, and it must be less than or
equal to min{m, n}. However, to prevent overfitting the number
of canonical component pairs that are computed is usually fewer
than min{m, n}.

In practice, solving CCA iteratively is both computationally
intensive and time-consuming. Therefore, it is convenient to to
formulate CCA as a generalized eigenvalue problem that can be
solved in one shot. To do so, the objective function, which solves
for the maximum of the canonical correlation vector, is rewritten
in terms of the sample covariance CXY of datasets X and Y and
the autocovariances CXX and CYY:

ρ = max
〈u, v〉
‖u‖‖v‖

= max
(a · X) · (b · Y)
‖a · X‖‖b · Y‖

= max
a′CXYb√

‖a′CXXa‖‖b′CYYb‖
(2)

Without constraints on the canonical weights a and b, the
objective function has infinite solutions. However, the size of the
canonical weights can be constrained, such that a′Cxxa = 1, and
b′Cyyb = 1. This constraint results in the following Lagrangian:

L(λ, a, b) = a′CXYb−
λX

2
(a′CXXa− 1)−

λY

2
(b′CYYb− 1) (3)

The objective function can then be formulated as the following
generalized eigenvalue problem:

(

0 CXY

CYX 0

) (

a

b

)

= ρ2

(

CXX 0
0 CYY

)

(4)

For CCAwith more than two datasets, the generalized eigenvalue
problem can be extended simply (Kettenring, 1971):

0 CXY CXZ

CYX 0 CYZ

CZX CZY 0

a

b

c

 = ρ2

CXX 0 0
0 CYY 0
0 0 CZZ

 (5)

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2016 | Volume 10 | Article 49

https://github.com/lorenzoriano/PyKCCA
https://github.com/lorenzoriano/PyKCCA
http://github.com/gallantlab/pyrcca
http://github.com/gallantlab/pyrcca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

2.2. Regularized CCA
If datasets X and Y have dimension d < min {m, n} then
CCA is ill-posed and the generalized eigenvalue problem cannot
be solved without regularization. Imposing L2 regularization
resolves this problem by constraining the norms of canonical
weights a and b. Imposing the L2 penalty maintains the convexity
of the problem and the generalized eigenvalue formulation.
However, regularization relaxes the orthogonality constraint of
the canonical components. Regularization is incorporated in the
objective function:

ρ = max
a′CXYb

√

(a′CXXa+ λ‖a‖2) · (b′CYYb+ λ‖b‖2)
(6)

The generalized eigenvalue problem is also modified to
incorporate regularization:

(

0 CXY

CYX 0

) (

a

b

)

= ρ2

(

CXX + λI 0
0 CYY + λI

)

(7)

Regularized CCA is mathematically similar to partial least
squares regression (PLS). Compare to the objective function of
CCA (Equation 2) the objective function that is optimized in PLS:

ρ = max
a′CXYb√
a′ab′b

(8)

Analogously to CCA, PLS can be solved as a generalized
eigenvalue problem:

(

0 CXY

CYX 0

) (

a

b

)

= ρ2

(

I 0
0 I

)

(9)

The difference between CCA and PLS is that the PLS objective
function is not normalized by the autocovariance of the data.
Thus, PLS can be thought of as an asymptotically large
regularization of CCA, where CXX + λI and CYY + λI are
dominated by λI.

2.3. Kernelized CCA
Sometimes it is useful to project the data onto a high-dimensional
space before performing CCA. This is known as the kernel trick.
If a linear kernel function such as an inner product is used, then
kernelization is a form of dimensionality reduction. If a nonlinear
kernel function such as a polynomial or a Gaussian kernel is
used, then kernelization allows the analysis to capture nonlinear
relationships in the data.

To perform kernel CCA, a kernel function φ(X) is chosen and
the data are projected onto the kernel space:

φ : X = (x1, x2, . . . xn) → φ(X) = (φ1(X),φ2(X), . . . ,φK(X)),

where n < K.

Kernel projections of the data, KX and KY, are used instead of
datasets X and Y to solve CCA. The canonical components u and
v are projections of KX and KY onto the canonical space. The
eigenvalue problem is reformulated in terms of KX and KY:

(

0 KXKY

KYKX 0

) (

a

b

)

= ρ2

(

K2
X 0

0 K2
Y

)

(10)

If the kernel function used for kernel CCA is invertible then
regularization must be used. This is because a trivial and
undesirable solution can be found by setting a = 1 and solving
for b: b = 1

λ
KY

−1KX (or vice versa). With regularization this
trivial solution is avoided. The objective function for regularized
kernel CCA becomes:

ρ = max
a′KXKYb

√

(a′K2
Xa+ λ‖a‖2) · (b′K2

Yb+ λ‖b‖2)
(11)

The generalized eigenvalue problem is reformulated to solve
regularized kernel CCA:

(

0 KXKY

KYKX 0

) (

a

b

)

= ρ2

(

K2
X + λI 0

0 K2
Y + λI

)

(12)

While kernel CCA is advantageous for capturing nonlinear
relationships, it presents additional challenges due to selection
of the kernel function and regularization coefficient, as well
as difficulty in the interpretation of the kernel canonical
components.

2.4. Cross-Dataset Prediction with CCA
CCA finds a symmetric set of common dimensions across
datasets. These dimensions are the canonical components. Unlike
regression methods, CCA does not assume a causal relationship
between datasets. Instead, it assumes that the datasets are
dependent on one or more common latent variables. However,
it is possible to reframe CCA as a predictive model. Once CCA
is estimated between two or more datasets, and the canonical
components and canonical weights are estimated, new samples
from one of the datasets can be predicted from the canonical
weights and new samples from the other datasets. This cross-
dataset prediction is accomplished by projecting new samples
from all but one dataset onto the canonical space. The new
samples from the remaining dataset can then be predicted as
the dot product of the inverse of the canonical weights for that
dataset and the new samples from the other datasets projected
onto the canonical space via the canonical weights:

Ypredicted = b−1 · (a′Xnovel) (13)

If the observed novel data for the remaining dataset are available,
the accuracy of the cross-dataset prediction can be quantified by
correlating the predicted samples with the actual samples along
each dimension of the remaining dataset.

accuracy = corr(Ypredicted,Ynovel) (14)

Cross-dataset prediction relies on inverting the canonical weight
matrix. However, in most cases the canonical weight matrix
will not be positive definite and therefore it will not be
invertible. In this case, a pseudoinverse must be used to invert
the canonical weights. For stability, the pseudoinverse can be
regularized. In Pyrcca, we provide the option for pseudoinverse
regularization using the spectral cutoff method, in which small
eigenvalues are discarded during singular value decomposition.
Other regularization methods, such as L2 penalty, could also be
used, though they are not currently implemented in Pyrcca.

Frontiers in Neuroinformatics | www.frontiersin.org 3 November 2016 | Volume 10 | Article 49

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

3. PYRCCA FUNCTIONALITY

Pyrcca is a Python package for performing CCA. It is hosted in a
public GitHub repository (http://github.com/gallantlab/pyrcca).
For simplicity, the package is defined in one file: rcca.py. Pyrcca
requires three third-party libraries: NumPy (Van Der Walt et al.,
2011), SciPy (Jones et al., 2001), and h5py (Collette, 2013).

The Pyrcca workflow is depicted in Figure 1. The analysis
begins by instantiating one of two analysis classes defined
in rcca.py, rcca.CCA or rcca.CCACrossValidate.
The rcca.CCA class allows the user to predefine two
hyperparameters: the regularization coefficient and the number
of canonical components. The rcca.CCACrossValidate

class allows the user to estimate these two hyperparameters
empirically by using grid search with cross-validation.

Both rcca.CCA and rcca.CCACrossValidate classes
inherit from the base parent class rcca._CCABase. The class
rcca._CCABase is not used for analysis, but defines attributes
and methods shared by its two child classes.

3.1. Pyrcca Instantiation and Attributes
The code below shows how the rcca.CCA class is instantiated
with the regularization coefficient 0.1, and with 5 canonical
components to be computed.

import rcca

cca = rcca.CCA(reg=0.1, numCC=5)

If the attributes reg and numCC are not instantiated explicitly,
the default values are reg = 0.0 (no regularization) and
numCC = 10.

The code below shows how the
rcca.CCACrossValidate class is instantiated with
three regularization coefficient values: 10−3, 10−2, 10−1, and
with three numbers of canonical components to be computed: 2,
3, 4.

import rcca

cca = rcca.CCACrossValidate(regs=[1e-3,

1e-2, 1e-1], numCC=[2, 3, 4])

If the attributes regs and numCCs are not
instantiated explicitly, the default values are reg =
numpy.array(numpy.logspace(−3, 1, 10)) (ten
logarithmically spaced values between 1 × 10−3 and 1 × 101)
and numCC = numpy.arange(5, 11) (five consecutive integer
values between 5 and 10). The ranges of hyperparameter values
can be passed to the rcca.CCACrossValidate class object
as either lists or NumPy arrays.

Four additional attributes can be specified at instantiation
for both classes rcca.CCA and rcca.CCACrossValidate:
kernelcca, ktype, cutoff, and verbose.

The Boolean attribute kernelcca specifies whether
kernelization should be used (described in Section 2.3). The
attribute is set to True by default, which means kernelization is
used. If kernelcca is set to True, the string attribute ktype
specifies the type of kernel function that is used. There are two
accepted values for ktype. The default value is ’linear’,
which specifies that a linear kernel function (i.e., the inner
product of the data) is used. The other accepted values are

’gaussian’ and ’poly’. The value ’gaussian’ specifies
that a Gaussian kernel function is used. The variance for
the Gaussian kernel function is specified using an additional
attribute gausigma, set to 1.0 by default. The value ’poly’
specifies that a polynomial kernel fucntion is used. The degree of
the polynomial kernel function is specified using an additional
attribute degree, set to 2 by default.

The floating point attribute cutoff controls evaluation of
cross-validation results in Pyrcca. As described in Section 2.4,
CCA can be used for cross-dataset prediction across datasets,
which requires computing a pseudoinverse of the canonical
weight matrix if that matrix is not invertible. The pseudoinverse
can be regularized using the spectral cutoff method. The
attribute cutoff specifies the eigenvalue threshold used for
regularization. Eigenvalues smaller than cutoff are set to
zero during singular value decomposition. The default value of
cutoff is 0.0 (i.e., no regularization).

The Boolean attribute verbose determines whether status
messages about the analysis are returned to the console. The
default value is True, which means that the status messages are
returned. If verbose is set to False, the status messages are
suppressed.

When the rcca.CCACrossValidate class is used, two
additional attributes can be specified to control how the
grid search with cross-validation is implemented: numCV and
select.

The integer attribute numCV specifies the number of cross-
validation iterations used for testing each set of hyperparameters
(the regularization coefficient and the number of canonical
components). The numCV attribute has a default value is 10.

The floating point attribute select determines how the
accuracy metric is computed during cross-validation. To evaluate
each set of hyperparameters, a CCA mapping is estimated for
a subset of the data during each cross-validation iteration, and
cross-dataset prediction is performed on the held-out data. The
predictions are correlated with the actual held-out data. The
prediction performance is quantified by taking the mean of the
correlations for a portion of the samples that are predicted most
accurately. The attribute select specifies the proportion of the
samples that is used. The default value of the select attribute
is 0.2, meaning that 0.2 of the samples are used. Using a subset
of the samples to compute the accuracy metric is advantageous
when a large number of the samples are noisy.

3.2. Pyrcca Implementation and Methods
After a CCA object is created with the attributes defined
above, the analysis is run using the train() method.
After CCA training is complete, the resulting canonical
mapping can be tested using the validate() method, which
performs cross-dataset prediction with novel data. An additional
evaluation of the canonical mapping can be implemented using
the compute_ev() method, which quantifies the variance
explained by each canonical component in novel data. The
methods save() and load() are used for saving the analysis
on disk in the HDF5 format, and for loading a previously saved
analysis into memory, respectively. We describe each of these
methods in detail below.

Frontiers in Neuroinformatics | www.frontiersin.org 4 November 2016 | Volume 10 | Article 49

http://github.com/gallantlab/pyrcca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

FIGURE 1 | Pyrcca workflow. [1] The Pyrcca Python module is imported using the command import rcca. [2] A CCA object is initialized in one of two ways. If

specific hyperparameters (the regularization coefficient and the number of canonical components) are used, the rcca.CCA class object is initialized. If the

hyperparameters are chosen empirically using cross-validation, then the rcca.CCACrossValidate class object is initialized. [3] The CCA mapping is estimated

using the rcca.train() method with training datasets dataset1, dataset2, etc. [4] Once the CCA mapping is estimated, its accuracy can be tested using the

method rcca.validate() with held-out datasets vdataset1, vdataset2, etc. [5] The variance explained by each estimated canonical component for each

feature in the held-out data is computed using the method rcca.compute_ev() with held-out datasets vdataset1, vdataset2, etc.

3.2.1. Pyrcca Training
The train()method estimates the CCAmapping between two
ormore datasets. The datasets are passed to themethod as a list of
NumPy two-dimensional arrays (number of samples by number
of dimensions). The train() method is the only method that
differs in its implementation between the two CCA object classes,
rcca.CCA and rcca.CCACrossValidate.

When using the rcca.CCA object class, the analysis is
only run once with predetermined hyperparameters (the
regularization coefficient and the number of canonical
components). The code below shows how training is
implemented for two datasets after instantiating the rcca.CCA
class object with regularization coefficient 0.1 and 5 canonical
components:

import rcca

cca = CCA(reg = 0.1, numCC = 5)

cca.train([dataset1, dataset2])

When using the rcca.CCACrossValidate object class, grid
search with Monte Carlo cross-validation is first used to find
the optimal set of hyperparameters. During each cross-validation
iteration, randomly selected 20% of the training data, comprised
of blocks of 10 consecutive samples, is held out. CCA mapping
is done using the remaining 80% of the training data, for each
possible set of the hyperparameter values. Then, cross-dataset
prediction is performed using the estimated CCA mapping and
the held-out 20% of the training data (for details on cross-dataset
prediction, see Section 2.4).

The accuracy of prediction is quantified for each
cross-validation iteration in order to choose the optimal
hyperparameters. The mean of the highest correlations
between predicted and actual samples is used to quantify the
prediction accuracy. The portion of the correlations used in this
computation is specified using the select attribute. The pair
of hyperparameters with the highest cross-dataset prediction

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2016 | Volume 10 | Article 49

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

accuracy is then chosen, and CCA is run on all training data with
those values.

The code below shows how training is implemented in Pyrcca
for three datasets. First, a rcca.CCACrossValidate class
object is instantiated with three possible regularization coefficient
values: 10−3, 10−2, and 10−1, and with three possible numbers of
canonical components: 2, 3, and 4.

import rcca

cca = rcca.CCACrossValidate(regs=[1e-3,

1e-2, 1e-1], numCC=[2, 3, 4])

cca.train([dataset1, dataset2, dataset3])

The train() method adds three new attributes to the
CCA object: comps (canonical components), ws (canonical
weights), and cancorrs (canonical correlations). For the
rcca.CCACrossValidate object, the train() method
also adds attributes best_reg (optimal regularization
coefficient) and best_numCC (optimal number of canonical
components).

3.2.2. Pyrcca Validation
The validate() method assesses the CCA mapping that was
estimated using the train() method by performing cross-
dataset prediction with test data and canonical weights (for
details on cross-dataset prediction, see Section 2.4). The test data
are passed to the method as a list of NumPy two-dimensional
arrays (number of samples by number of dimensions), in the
same order as the training data. This method is the same for the
rcca.CCA and rcca.CCACrossValidate object classes.
The code below shows how validation is implemented in Pyrcca:

import rcca

cca = rcca.CCACrossValidate(regs=[1e-3,

1e-2, 1e-1], numCC=[2, 3, 4])

cca.train([dataset1, dataset2, dataset3])

cca.validate([test_dataset1, test_dataset2,

test_dataset3])

The validate() method adds two attributes to the CCA
object: preds (cross-dataset predictions) and corrs

(correlations of the cross-dataset predictions and the actual
test data).

3.2.3. Computing Explained Variance in Pyrcca
The compute_ev() method estimates the variance
explained (R2) in the test data by each of the canonical
components. The test data are passed to the method as a list
of NumPy two-dimensional arrays (number of samples by
number of dimensions), in the same order as the training
data. This method is the same for the rcca.CCA and
rcca.CCACrossValidate object classes. The code below
shows how variance explained is estimated:

import rcca

cca = rcca.CCACrossValidate(regs=[1e-3,

1e-2, 1e-1], numCC=[2, 3, 4])

cca.train([dataset1, dataset2, dataset3])

cca.validate([test_dataset1, test_dataset2,

test_dataset3])

cca.compute_ev([test_dataset1, test_dataset2,

test_dataset3])

The compute_ev() method adds the attribute ev (variance
explained for each component, for each dimension of the test
data).

3.2.4. Saving and Loading the Analysis in Pyrcca
The save()method saves all the attributes in the Pyrcca object
to an HDF5 file. The load() method loads attributes from
an HDF5 file with a Pyrcca analysis saved using the save()
method. Both the save() and the load() method are the
same for the rcca.CCA and rcca.CCACrossValidate

object classes. The code below shows how the analysis described
above can be saved to disk and then loaded from disk in a new
session:

import rcca

cca = rcca.CCACrossValidate(regs=[1e-3,

1e-2, 1e-1], numCC=[2, 3, 4])

cca.train([dataset1, dataset2, dataset3])

cca.validate([test_dataset1, test_dataset2,

test_dataset3])

cca.compute_ev([test_dataset1, test_dataset2,

test_dataset3])

cca.save("Pyrcca_analysis.hdf5")

New session

import rcca

cca = rcca.CCACrossValidate()

cca.load("Pyrcca_analysis.hdf5")

4. PYRCCA USAGE EXAMPLE

To illustrate the use of Pyrcca with realistic data, we constructed
two linearly dependent datasets and used Pyrcca to find linear
relationships between them. The goal of this analysis was
to evaluate whether Pyrcca can identify and characterize the
relationship between two artificially constructed datasets. The
rows of the datasets correspond to the number of samples in
the datasets, and the columns correspond to the number of
dataset dimensions. In the specific example of cross-subject
comparison of BOLD responses, described in Section 5, each
dataset represents BOLD responses collected from an individual
subject. In this case, the samples correspond to the timepoints of
BOLD responses, and the dimensions correspond to voxels.

To create the datasets, we first randomly initialized two
latent variables and two independent components. We then
constructed each of the two datasets by combining both latent
variables and one of the independent components. If Pyrcca
works as expected then it should capture the relationship
between the dataset by recovering two canonical components
corresponding to the two latent variables.

This example is implemented in a Jupyter notebook included
in the Pyrcca GitHub repository (http://github.com/gallantlab/
pyrcca). We encourage the reader to use the notebook to explore
this example interactively.

4.1. Pyrcca Usage Example Analysis
Two interdependent datasets with 1000 samples were
constructed by combining two latent variables and additional
independent components. The first dataset had four dimensions,
and the second dataset had five dimensions. Each dimension

Frontiers in Neuroinformatics | www.frontiersin.org 6 November 2016 | Volume 10 | Article 49

http://github.com/gallantlab/pyrcca
http://github.com/gallantlab/pyrcca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

of each dataset was constructed as a weighted sum of an
independent component (25%) and one of the two latent
variables (75%). The first latent variable was used to construct
dimensions 1 and 3 of the first dataset and dimensions 1, 3, and
5 of the second dataset. The second latent variable was used to
construct dimensions 2 and 4 of both the first and the second
dataset. The independent components and the latent variables
were all drawn randomly from a Gaussian distribution using the
numpy.random.randn() method. The code below shows
how the latent variables and independent noise components
were initialized and how the datasets were created.

import numpy as np

nSamples = 1000

latvar1 = np.random.randn(nSamples,)

latvar2 = np.random.randn(nSamples,)

indep1 = np.random.randn(nSamples, 4)

indep2 = np.random.randn(nSamples, 5)

data1 = 0.25*indep1 + 0.75*np.vstack((latvar1,

latvar2, latvar1, latvar2)).T

data2 = 0.25*indep2 + 0.75*np.vstack((latvar1,

latvar2, latvar1, latvar2, latvar1)).T

Each dataset was divided into two halves: a training set and a test
set. The code below shows how the datasets were split:

train1 = data1[:nSamples/2]

train2 = data2[:nSamples/2]

test1 = data1[nSamples/2:]

test2 = data2[nSamples/2:]

Pyrcca was used to estimate a CCA mapping between the two
training datasets. Kernelization and regularization were not used.
The maximum possible number of canonical components (four)
was found. The quality of the mapping was quantified using
cross-dataset prediction with the test datasets. The code below
shows how the analysis was implemented:

import rcca

nComponents = 4

cca = rcca.CCA(kernelcca = False,

reg = 0., numCC = nComponents)

cca.train([train1, train2])

testcorrs = cca.validate([test1, test2])

4.2. Pyrcca Usage Example Results
The results of the analysis were evaluated in two ways. First, we
examined the canonical correlations to determine the number of
meaningful canonical components recovered by Pyrcca. Second,
we quantified cross-dataset prediction performance to determine
whether the mapping estimated by Pyrcca was valid for held-out
data.

The first two canonical correlations were both 0.95, while
the third and the fourth canonical correlations were 0.10
and 0.00, respectively. This result shows that the first two
canonical components capture meaningful relationships between
the datasets, while the third and the fourth canonical components
do not. Cross-dataset prediction with test datasets was highly
accurate. The correlations of the predicted and actual held-out
data ranged from 0.90 to 0.93 for each dimension of the two
datasets. This result shows that the mapping estimated by Pyrcca
is valid for held-out datasets that depend on the same latent
variables.

Taken together, these results show that Pyrcca recovers the
structure of the relationships between the datasets defined by the
two latent variables.

4.3. Pyrcca Usage Example with
Cross-Validation
It is possible to use cross-validation to find the optimal
regularization coefficient and the optimal number of components
empirically. In the analysis described in Section 4.2, the
regularization coefficient was set to 0. However, it may be useful
to use regularization this analysis to relax the orthogonality
constraint between the canonical components. Because the latent
variables were randomly drawn from a Gaussian distribution,
they may not be orthogonal. Thus, regularized CCA may be
optimal for capturing the true structure of the similarities
between the datasets. We tested four values for the regularization
coefficient: 0, 102, 104, and 106.

Additionally, in the analysis described in Section 4.2, the
canonical correlations showed that the first two canonical
components captured meaningful relationships between the
datasets, whereas the third and the fourth component did not.
We used cross-validation to test all possible numbers of canonical
components: 1, 2, 3, and 4, to verify that two components is
indeed optimal.

The code below shows how the analysis with cross-validation
was implemented:

ccaCV = rcca.CrossValidate(kernelcca = False,

numCCs = [1, 2, 3, 4],

regs = [0, 1e2, 1e4, 1e6])

ccaCV.train([train1, train2])

testcorrsCV = ccaCV.validate([test1, test2])

The analysis was run 1000 times, with random data generated
on each iteration. The optimal regularization coefficient based
on cross-validation results varied for different initializations of
the data, but it was greater than zero for over 90% of the
iterations. The variation of the optimal regularization coefficient
was expected because the level of orthogonality between the
latent variables varies for each instantiation.

The optimal number of components was two for
97% of the iterations, based on cross-validation results.
This result was consistent with the findings described in
Section 4.2 and showed that Pyrcca was able to recover the
relationships between the datasets predefined by the two latent
variables.

The canonical correlations and test set prediction
correlations were comparable to the analysis with predefined
hyperparameters described in Section 4.2. Canonical correlations
were 0.95 for both components. The test set prediction
correlations ranged between 0.90 and 0.94 for each dimension of
the datasets.

The example described here is abstract by design. It is merely
intended to demonstrate how Pyrcca can be used to describe
relationships between any timeseries data. In the next section,
we show how Pyrcca can be applied to a concrete data analysis
problem in neuroimaging.

Frontiers in Neuroinformatics | www.frontiersin.org 7 November 2016 | Volume 10 | Article 49

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

5. CROSS-SUBJECT COMPARISON IN
fMRI USING PYRCCA

CCA has many potential applications for neuroimaging data
analysis. In this article, we focus on one particular neuroimaging
analysis problem: cross-subject comparison in an fMRI
experiment. In a typical fMRI study, data are collected from
multiple participants. Thus, there is a pressing need to compare
and combine data across individuals. The most common method
for comparing measurements from individual brains is to
resample the spatiotemporal data from individual subjects to a
common anatomical template. These resampled, transformed
data are then averaged to obtain a group map. This procedure
increases statistical power in regions of the brain where the
transformation tends to aggregate signal across individuals, but
it decreases power in brain regions that are more variable across
individuals. Signal variability stems from two sources: structural
differences in brain anatomy and differences in BOLD (blood
oxygen level dependent) signal intensity. Both anatomical and
functional variability complicates results obtained by anatomical
normalization.

To improve anatomical template registration, most modern
fMRI studies use nonlinear registration algorithms that optimize
alignment of brain curvature across subjects (Greve and Fischl,
2009; Fischl, 2012). However, these anatomical methods do not
address functional variation in BOLD signal that is less directly
tied to the underlying anatomy. There are several cross-subject
alignment methods that instead rely on correlations between
functional responses, such as hyperalignment and similarity
space alignment (Haxby et al., 2011; Raizada and Connolly, 2012;
Conroy et al., 2013). However, these methods usually require
anatomical template registration as a precursor to analysis. They
also assume a voxel-to-voxel correspondence of brain patterns
across subjects. Additionally, these methods do not reveal the
underlying structure of the similar brain responses, but only
quantify their similarity.

Cross-subject comparison by CCA can find underlying
relationships among datasets recorded from different subjects in
the same experiment. Because CCA does not require datasets
to have equal dimensionality, individual subject data do not
need to be resampled to an anatomical template before analysis.
Furthermore, the resulting canonical coordinate space can be
used to obtain a clear interpretation of the underlying similarities
in fMRI responses of individual subjects.

In this section, we demonstrate how to use Pyrcca software
to perform CCA on neuroimaging data. We used Pyrcca to
perform cross-subject comparison of fMRI data collected from
three individuals while they watched natural movies (Nishimoto
et al., 2011). This dataset is available publicly (Nishimoto et al.,
2014). We estimated canonical components across subjects in
order to identify commonalities in patterns of brain responses.
To provide further evidence of the veracity of our results, we
then used the recovered canonical component space to predict
each individual subject’s responses to novel movies based on
the other subjects’ responses. Finally, we examined resulting
canonical weights on each subject’s cortical surface and found
that the canonical components revealed retinotopic organization
in each subject.

The code for running the analyses described in this section
is implemented in a Jupyter notebook that is included in the
Pyrcca GitHub repository (http://github.com/gallantlab/pyrcca).
The user should be aware, however, that this is a computationally
intensive analysis that will take a very long time to run on a single
desktop computer. The full analysis presented here was run on a
distributed computing cluster.

5.1. fMRI Experiment
The design and methods of the fMRI experiment were described
in detail in an earlier publication from our laboratory (Nishimoto
et al., 2011). In brief, fMRI responses were recorded from
three subjects who watched natural movies in a 4 Tesla Varian
MRI scanner at UC Berkeley. Functional BOLD responses were
collected at 1 Hz. The scanning volume covered the posterior-
ventral quarter of the head with a 64×64×18matrix. The analysis
included only cortical voxels for each subject. The cortical voxels
were identified by manually aligning functional and anatomical
volumes for each subject in Pycortex (Gao et al., 2015) and
then selecting the functional voxels that overlapped with the
anatomical cortical mask. This procedure produced 34,407 voxels
for subject 1, 30,373 voxels for subject 2, and 33,356 voxels for
subject 3.

The functional data were corrected for subject motion in
FSL (Jenkinson and Smith, 2001; Jenkinson et al., 2002; Greve
and Fischl, 2009) before alignment with the anatomical volume.
Median detrending was used to remove low-frequency noise
from the data. Training and test data for each subject were
collected in alternating scans. The training movies were shown
once. The test movies were shown ten times, and the responses
were averaged to increase signal to noise ratio. The training
responses spanned 7200 timepoints (7200 s), and test responses
spanned 540 timepoints (540 s) after averaging. The subjects
provided written informed consent. The experimental protocol
was approved by the Committee for the Protection of Human
Subjects at University of California, Berkeley.

5.2. Cross-Subject Comparison Methods
Pyrcca was used to find a cross-subject CCA mapping among
the training BOLD responses of the three experimental subjects.
To reduce the computational complexity of the analysis, a
linear (inner product) kernel was used. Regularization was used
because of the kernelization and because the number of dataset
dimensions (voxels) outnumbered the number of dataset samples
(timepoints). The optimal hyperparameters for the analysis were
chosen using grid search with cross-validation. The optimal
regularization parameter was chosen from a logarithmically
spaced range of ten values between 1 × 10−4 and 1 × 102.
The optimal number of components was chosen from a linearly
spaced range of eight values between 3 and 10 components. We
selected these ranges based on pilot analyses performed on an
independent dataset that was not used for this publication.

To initiate the analysis, an instantiation of the class
rcca.CCACrossValidate was created with the
hyperparameters described above. The CCA mapping was
estimated using the train() method with the training
BOLD responses for all three subjects. The mapping was tested
by performing cross-dataset prediction on the held-out test

Frontiers in Neuroinformatics | www.frontiersin.org 8 November 2016 | Volume 10 | Article 49

http://github.com/gallantlab/pyrcca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

BOLD responses, using the validate() method. Finally,
to evaluate the influence of each canonical component on the
BOLD responses of each subject across the cortical surface,
the explained variance for each voxel was quantified using the
compute_ev() method for all three subjects. The explained
variance was evaluated using the held-out test BOLD responses.
The analysis code is shown below.

import rcca

cca = rcca.CCACrossValidate(kernelcca = True,

regs = np.logspace(-4, 2, 10),

numCCs = np.arange(3, 11))

cca.train([training_data1, training_data2,

training_data3])

corrs = cca.validate([test_data1, test_data2,

test_data3])

ev = cca.compute_ev([test_data1, test_data2,

test_data3])

5.3. Cross-Subject Comparison Results
Cross-validation was used to determine the optimal
hyperparameters. The optimal regularization coefficient
was 0.01, and the optimal number of canonical components was
3. The results of the analysis were evaluated in three ways: by
quantifying cross-subject prediction, by examining the canonical
weight maps, and by examining explained variance maps for
each canonical component.

5.3.1. Cross-Subject Prediction
The results of cross-subject prediction on held-out data were
examined by plotting the voxelwise correlations of the actual and
predicted BOLD responses on the cortical maps of the subjects.

The correlations for each subject were also plotted as a histogram.
To evaluate whether the prediction accuracy was significant, the
correlations were subjected to an asymptotic significance test.

Figure 2 shows the results of the cross-subject prediction.
Panel A shows the cortical map for subject 1, with the color
of each voxel representing the correlation of the predicted and
actual responses for that voxel. The predicted responses in the
visual cortex voxels were highly accurate, as expected in a natural
movie experiment. Panel B shows an overlayed histogram of
the prediction correlation values for all three subjects, with
correlation values for each subject plotted in a different color.
The prediction performance is consistent across subjects. Based
on the asymptotic significance test of the prediction correlations,
11,134 voxels were predicted significantly for subject 1, 9158
voxels for subject 2, and 9360 voxels for subject 3 (p < 0.05,
corrected for multiple comparisons using False Discovery Rate).
Significant accuracy of cross-subject predictions demonstrates
that Pyrcca can be used to predict BOLD responses to novel visual
stimuli based on cross-subject similarity and without an explicit
model.

5.3.2. Canonical Weight Maps
The canonical components estimated by Pyrcca were examined
by plotting the voxelwise canonical weights on the subjects’
cortical maps. Three canonical components were estimated
in the analysis, making it possible to use a single cortical
map to visualize all canonical components at once. One
color channel (red, green, or blue) was assigned to each
canonical component and the canonical weights for all three

FIGURE 2 | Accuracy of cross-subject prediction with Pyrcca. (A) Cross-subject prediction performance for subject 1 plotted on a flattened cortical map. The

cortical map was created by digitally inflating the cortical surface of each hemisphere of the brain of subject 1, and then making relaxation cuts to create a flat map.

Only the occipital lobe is shown here. Known regions of interest were identified in a separate retinotopic mapping experiment and are outlined in white. Each location

in the cortical map represents a single voxel. The color of each voxel corresponds to the correlation between the held-out BOLD responses and responses predicted

from the corresponding BOLD responses of subjects 2 and 3, and the estimated canonical components. Correlations for voxels in which prediction accuracy fell

below the significance threshold (p < 0.05, corrected for multiple comparisons) are set to 0. The subject’s responses are well predicted for voxels throughout the

visual cortex. (B) Cross-subject prediction performance for all subjects plotted as an overlayed histogram. The correlations for subject 1 are plotted in red, the

correlations for subject 2 are plotted in blue, and the correlations for subject 3 are plotted in green. The black vertical line indicates the threshold of statistical

significance (p < 0.05, corrected for multiple comparisons). Cross-subject prediction accuracy is consistent across subjects. This figure demonstrates that Pyrcca can

be used to accurately predict BOLD responses to novel visual stimuli based on cross-subject similarity.

Frontiers in Neuroinformatics | www.frontiersin.org 9 November 2016 | Volume 10 | Article 49

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

canonical components for each voxel were plotted using an RGB
colormap.

Figure 3 shows the canonical weights for all three canonical
components estimated by Pyrcca plotted on the cortical map for
subject 1. The red channel represents the voxel’s canonical weight
for the first canonical component, the green channel represents
the voxel’s canonical weight for the second canonical component,
and the blue channel represents the voxel’s canonical weight
for the third canonical component. The ranges of the canonical
weights were balanced by rescaling each set of the canonical
weights to span the range from zero to one. The absolute value
of the canonical weights was taken to adequately visualize the
contribution of the negative and positive weights. The resulting
color of each voxel shows how much its response is described
by each of the three canonical components in relation to one
another.

The three canonical components estimated by Pyrcca capture
distinct retinotopic patterns in the BOLD responses. Red voxels
are primarily described by the first component. These tend to

FIGURE 3 | Cortical map of voxelwise canonical weights. The canonical

weights for all three canonical components estimated by Pyrcca are shown on

a flattened cortical map for subject 1. Each of the canonical components is

assigned to one color channel. The first canonical component is represented

by the red channel, the second canonical component is represented by green,

and the third canonical component is represented by blue. Thus, the color of

each voxel reflects its canonical weights for all three canonical components, as

shown in the three-dimensional RGB colormap at the center of the figure.

Canonical weights have been rescaled to span the range from zero to one,

and the absolute value of the weights has been taken. This map shows how

the BOLD responses of each voxel are described by the three canonical

components. The recovered map reveals retinotopic organization of the visual

cortex.

be located in retinotopic areas that represent the periphery of
the visual field. Green voxels are primarily described by the
second component. These are located in V1, the first stage of
visual processing in the cerebral cortex. Blue voxels are primarily
described by the third component. These tend to be located
in the foveal retinotopic areas and in area MT+, a motion-
selective cortical region. Purple voxels (red and blue combined)
are described by both the first and the third component. These
tend to be located in MT+ and the intraparietal sulcus, areas that
process visual motion and that regulate spatial attention.

5.3.3. Explained Variance Maps
Each canonical component was visualized individually by
plotting the canonical weights on the subjects’ cortical maps,
together with the variance of the held-out responses for each
voxel that was explained by that canonical component.

Each panel in Figure 4 shows one of the canonical
components visualized on the cortical map of subject 1. Each
voxel is colored according to a two-dimensional colormap. The
hue of the voxel represents its canonical weight for one canonical
component. The hue ranges from blue for negative weights, to
white at zero, to red for positive weights (note that the contrast
between the negative and positive weights is meaningful, but
the sign is arbitrary). The brightness of each voxel represents
the variance of the held-out BOLD responses of that voxel that
could be explained by that canonical component. The variance
ranges from 0 to 75%. The resulting maps demonstrate how well
each voxel’s response can be described by each of the canonical
components.

The first component, plotted in panel A, best explains
responses of the voxels that represent the visual periphery. The
second component, plotted in panel B, best explains a contrast
between voxels located in V1 and voxels located in MT+ and
intraparietal sulcus. The third component, plotted in panel C,
explains a contrast between voxels that represent the visual fovea
and those located in MT+ and intraparietal sulcus.

5.3.4. Summary of Results
Taken together, these findings reveal the similarity of BOLD
responses across individual subjects. The prediction correlation
map in Figure 3 demonstrates that novel BOLD responses to
natural movies can be predicted based on cross-subject similarity.
The canonical weight map in Figure 3 describes the variation
of the BOLD responses to natural movies in terms of the
estimated canonical components. The maps in Figure 4 describe
the contribution of each canonical component to the variation in
BOLD responses. These maps reveal retinotopic variation in the
responses. Pyrcca allows us to uncover interpretable dimensions
of shared BOLD responses to a complex visual stimulus in a
data-driven way, without imposing an explicit model.

6. CONCLUSION

In this article, we introduce Pyrcca, a Python module for
performing regularized kernel canonical correlation analysis,
with a cross-validation method for hyperparameter selection.
Pyrcca can be used to quantify similarity across datasets and to

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2016 | Volume 10 | Article 49

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

FIGURE 4 | Cortical maps of canonical weights and variance explained by each canonical component. Each panel shows both the canonical weights for

one of the estimated canonical components and the variance of the held-out BOLD responses that was explained by that canonical component. Each voxel is colored

according to a two-dimensional colormap shown in the center of each panel. The hue represents the canonical weight of each voxel. Blue indicates negative

canonical weights, white indicates zero weights, and red indicates positive canonical weights. The canonical weights have been rescaled to span the range from −1

to 1. The brightness reflects the variance of each voxel’s held-out BOLD responses that is explained by that canonical component. The variance ranges from 0 to

75%. (A) The first component best explains responses of the voxels that represent the visual periphery. (B) The second component best explains a contrast between

responses of voxels located in V1 and those located in MT+ and intraparietal sulcus. (C) The third component explains a contrast between voxels that represent the

visual fovea and those located in MT+ and intraparietal sulcus.

predict novel data via cross-dataset mapping. We demonstrate
Pyrcca on an artificial example, where we use it to estimate linear
relationships between two datasets. In a second example, we show
how Pyrcca can be used to find shared dimensions of individual
subject fMRI responses to a natural movie experiment. These
dimensions are interpretable and can be used to predict novel
subject responses to a held-out stimulus.

Cross-subject comparison demonstrates only one application
of Pyrcca to neuroimaging data analysis. There are many
neuroimaging questions that can be addressed by using Pyrcca
to find relationships between interdependent neuroimaging
datasets. For example, BOLD responses for one subject could
be compared between different experiments to find similarities
in the effects of different tasks and stimuli on brain responses.
Responses measured using various imaging methods, such as
fMRI, electroencephalography (EEG), and electrocorticography
(ECoG), could be compared using Pyrcca for the same individual
and the same task.

Although we focus on neuroimaging data analysis
applications, Pyrcca can be used to analyze timeseries data
in any scientific domain. We hope that researchers will find
Pyrcca suitable for a variety of analysis objectives.

DATA SHARING

The Pyrcca software presented in this article is available on a
shared GitHub repository: http://github.com/gallantlab/pyrcca.

The examples described in the article can be found in a Jupyter
notebook in the GitHub repository. The fMRI data analyzed in
this article are available on a shared public repository: http://
crcns.org (Nishimoto et al., 2014).

AUTHOR CONTRIBUTIONS

NB wrote the Pyrcca software, designed and conducted the
analyses, and created the figures. JG supervised the research. NB
and JG wrote the manuscript.

FUNDING

This work was supported by grants from the National Eye
Institute (EY019684) and from the Center for Science of
Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370. NB was additionally
supported by the NSF Graduate Research Fellowship Program
(1000089083).

ACKNOWLEDGMENTS

We thank Tolga Cukur, Mark Lescroart, Adam Bloniarz,
Alexander Huth, and Anwar Nunez-Elizalde for helpful
discussions about the analysis and software. We thank
Shinji Nishimoto for sharing the data used in this
article.

Frontiers in Neuroinformatics | www.frontiersin.org 11 November 2016 | Volume 10 | Article 49

http://github.com/gallantlab/pyrcca
http://crcns.org
http://crcns.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

REFERENCES

Barnett, T. P., and Preisendorfer, R. (1987). Origins and levels of monthly and

seasonal forecast skill for United States surface air temperatures determined

by canonical correlation analysis.Monthly Weather Rev. 115, 1825–1850.

Collette, A. (2013). Python and HDF5. Sebastopol, CA: O’Reilly Media, Inc.

Conroy, B. R., Singer, B. D., Guntupalli, J. S., Ramadge, P. J., and Haxby, J. V.

(2013). Inter-subject alignment of human cortical anatomy using functional

connectivity. NeuroImage 81, 400–411. doi: 10.1016/j.neuroimage.2013.

05.009

Correa, N. M., Adali, T., Li, Y.-O., and Calhoun, V. D. (2010). Canonical

correlation analysis for data fusion and group inferences. IEEE Signal Proc.

Magazine 27, 39–50. doi: 10.1109/MSP.2010.936725

Dong, L., Zhang, Y., Zhang, R., Zhang, X., Gong, D., Valdes-Sosa, P. A., et al.

(2015). Characterizing nonlinear relationships in functional imaging data using

eigenspace maximal information canonical correlation analysis (emiCCA).

NeuroImage 109, 388–401. doi: 10.1016/j.neuroimage.2015.01.006

Fischl, B. (2012). FreeSurfer. NeuroImage 62, 774–781. doi: 10.1016/j.neuroimage.

2012.01.021

Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E., and Penny, W. D.

(2007). Statistical Parametric Mapping: the Analysis of Functional Brain Images.

London: Academic Press.

Gao, J. S., Huth, A. G., Lescroart, M. D., and Gallant, J. L. (2015). Pycortex: an

interactive surface visualizer for fMRI. Front. Neuroinform. 9:23. doi: 10.3389/

fninf.2015.00023

Greve, D. N., and Fischl, B. (2009). Accurate and robust brain image alignment

using boundary-based registration. NeuroImage 48, 63–72. doi: 10.1016/j.

neuroimage.2009.06.060

Hardoon, D. R., Mourao-Miranda, J., Brammer, M., and Shawe-Taylor, J. (2007).

Unsupervised analysis of fMRI data using kernel canonical correlation.

NeuroImage 37, 1250–1259. doi: 10.1016/j.neuroimage.2007.06.017

Hardoon, D. R., Szedmak, S., and Shawe-Taylor, J. (2004). Canonical correlation

analysis: an overview with application to learning methods. Neural Comput.

16, 2639–2664. doi: 10.1162/0899766042321814

Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R.,

Gobbini, M. I., et al. (2011). A common, high-dimensional model of the

representational space in human ventral temporal cortex. Neuron 72, 404–416.

doi: 10.1016/j.neuron.2011.08.026

Hotelling, H. (1936). Relations between two sets of variates. Biometrika 28,

321–377. doi: 10.1093/biomet/28.3-4.321

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved

optimization for the robust and accurate linear registration and motion

correction of brain images. NeuroImage 17, 825–841. doi: 10.1006/nimg.2002.

1132

Jenkinson,M., and Smith, S. (2001). A global optimisationmethod for robust affine

registration of brain images.Med. Image Anal. 5, 143–156. doi: 10.1016/S1361-

8415(01)00036-6

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open Source Scientific Tools

for Python. Available online at: http://www.scipy.org

Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika

58, 433–451. doi: 10.1093/biomet/58.3.433

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., and Gallant, J. L.

(2011). Reconstructing visual experiences from brain activity evoked by natural

movies. Curr. Biol. 21, 1641–1646. doi: 10.1016/j.cub.2011.08.031

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., and Gallant, J. L.

(2014). Gallant Lab Natural Movie 4T fMRI Data. CRCNS.org. Available online

at: http://dx.doi.org/10.6080/K00Z715X

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res.

12, 2825–2830. Available online at: http://scikit-learn.org/stable/about.html#

citing-scikit-learn

Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific

computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Raizada, R. D., and Connolly, A. C. (2012). What makes different people’s

representations alike: neural similarity space solves the problem of across-

subject fMRI decoding. J. Cogn. Neurosci. 24, 868–877. doi: 10.1162/

jocn_a_00189

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array:

a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30.

doi: 10.1109/MCSE.2011.37

Varoquaux, G., Sadaghiani, S., Pinel, P., Kleinschmidt, A., Poline, J.-B., and

Thirion, B. (2010). A group model for stable multi-subject ICA on fMRI

datasets. NeuroImage 51, 288–299. doi: 10.1016/j.neuroimage.2010.02.010

Yamanishi, Y., Vert, J.-P., Nakaya, A., and Kanehisa, M. (2003). Extraction

of correlated gene clusters from multiple genomic data by generalized

kernel canonical correlation analysis. Bioinformatics 19(Suppl. 1):i323–i330.

doi: 10.1093/bioinformatics/btg1045

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Bilenko and Gallant. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 November 2016 | Volume 10 | Article 49

https://doi.org/10.1016/j.neuroimage.2013.05.009
https://doi.org/10.1109/MSP.2010.936725
https://doi.org/10.1016/j.neuroimage.2015.01.006
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.3389/fninf.2015.00023
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2007.06.017
https://doi.org/10.1162/0899766042321814
https://doi.org/10.1016/j.neuron.2011.08.026
https://doi.org/10.1093/biomet/28.3-4.321
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1093/biomet/58.3.433
https://doi.org/10.1016/j.cub.2011.08.031
http://dx.doi.org/10.6080/K00Z715X
http://scikit-learn.org/stable/about.html#citing-scikit-learn
http://scikit-learn.org/stable/about.html#citing-scikit-learn
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1162/jocn_a_00189
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1016/j.neuroimage.2010.02.010
https://doi.org/10.1093/bioinformatics/btg1045
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging
	1. Introduction
	2. Canonical Correlation Analysis
	2.1. Mathematical Definitions
	2.2. Regularized CCA
	2.3. Kernelized CCA
	2.4. Cross-Dataset Prediction with CCA

	3. Pyrcca Functionality
	3.1. Pyrcca Instantiation and Attributes
	3.2. Pyrcca Implementation and Methods
	3.2.1. Pyrcca Training
	3.2.2. Pyrcca Validation
	3.2.3. Computing Explained Variance in Pyrcca
	3.2.4. Saving and Loading the Analysis in Pyrcca

	4. Pyrcca Usage Example
	4.1. Pyrcca Usage Example Analysis
	4.2. Pyrcca Usage Example Results
	4.3. Pyrcca Usage Example with Cross-Validation

	5. Cross-Subject Comparison in fMRI using Pyrcca
	5.1. fMRI Experiment
	5.2. Cross-Subject Comparison Methods
	5.3. Cross-Subject Comparison Results
	5.3.1. Cross-Subject Prediction
	5.3.2. Canonical Weight Maps
	5.3.3. Explained Variance Maps
	5.3.4. Summary of Results

	6. Conclusion
	Data Sharing
	Author Contributions
	Funding
	Acknowledgments
	References

