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An Interactive Activation Model for
Priming of Geographical Information

Paul Munro
Stephen C. Hirtle

University of Pittsburgh

ABSTRACT

Clustering effects in observed performance on spatial recognition tasks give evidence that

the judgment of spatial relationships is not based solely on Euclidean proximity, but can
depend on other similarity relationships to an equal, or even to a greater, extent. Thus, the
representation of spatial information must be coded as one of many features of an object,
and these features are expected to interact with one another. A recurrent network using the
interactive activation architecture of McClelland & Rumelhart (1981) is presented to illus-
trate the interaction of these featural representations, including a coarse coding representa-
tion of a Euclidean metric. The experiments of McNamara (1988) and McNamara, Ratcliff,
and McKoon (1984) are simulated; the model results are in qualitative agreement with the
data.

Introduction

The location of an object is certainly one of its most salient features. This is especially
true for objects which are geographically fixed, since features which are invariant tend to
have greater salience. Using a model of positional information, we can consider the
representation to be topographic, in that objects that are sufficiently proximal should
have similar (overlapping) representations.

However, recording geographical positioning is not enough, as several recent studies have
demonstrated that the memory for locations of landmarks is biased by hierarchical, and
other non-spatial, information (Hirtle & Jonides, 1985; McNamara, Hardy, & Hirtle,
1989; Stevens & Coupe, 1978). For example, Stevens and Coupe (1978) showed that sub-
jects judged Reno, Nevada to be northeast of San Diego, California, even though it is
northwest, presumably because Nevada lies to east of California. That is, the superordi-
nate relationship altered the memory of the subordinate locations. Further research has
shown similar effects for areas without explicit boundaries, where clusters arise from
differences in terrain (Allen, 1981; Allen & Kirasic, 1985), perceptions of neighborhoods
(Hirtle & Jonides, 1985; Merrill & Baird, 1987), or semantic features on artificial maps
(Hirtle & Mascolo, 1986).

Spatial Priming within Regions

In order to model in a connectionist framework the contributions of both spatial location
and cluster membership, we chose a more basic paradigm than that of distance and orien-
tation judgments. In recent work, McNamara and his colleagues have shown that a prim-
ing paradigm can be used to infer spatial knowledge, in that items that prime each other
are judged closer (McNamara, 1986; McNamara, Hardy, & Hirtle, 1989; McNamara,
Ratcliff, & McKoon, 1984).
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As one example, McNamara (1986) showed the effects of clusters on spatial memory.
Subjects in this experiment learned either the locations of objects in a layout or the loca-
tion of object names on map, where the spaces were divided into a two by two grid creat
ing four regions, as seen in Figure la.

McNamara (1986) showed not only differences in standard spatial tasks due to region
membership, but also differences in recognition times. Specifically, he showed that items
are recognized faster if preceded with a item that was close in distance, and that items
are recognized faster if preceded with an item from the same region. In the experiment,
there were twelve pairs of locations in six experimental conditions (two pairs per condi-
tion) and eight filler locations, for a total of 32 locations, or eight locations per region.
The three main independent variables were: distance between the two locations in a pair
(either close or far), whether both locations are in the same region, and for locations in
different regions, whether the locations were aligned or misaligned with respect to the
region (cf., Stevens & Coupe, 1978). The results showed a strong effect of both distance
and cluster membership. However, the effect of alignment was not consistent, in that
alignment resulted in faster recognition times for far points, but slower recognition times
for close points.

Network Structure and Function

The model follows the interactive activation scheme introduced by McClelland and
Rumelhart (1981) in their model of letter perception. This implementation consists of
three sets of units (see Figure 2):

The place units each specify a particular site. In our simulations, these are labeled
points on a map. More generally, they correspond to salient geographical locations.
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Figure 1. (A) Space of locations used by McNamara (1986). (Copyright 1986 by the Academic
Press. Reprinted by permission.) (B) Space of locations used by McNamara, et al (1984).
(Copyright 1984 by the American Psychological Association. Reprinted by permission.)
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Figure 2. Network architecture for geographical priming.

The category units specify a particular category. Category membership is a binary
function and is coded by positive and negative connections between category and place
units.

The grid units represent a uniform rectangular grid across the map. The connections
from a particular place unit to the grid units is determined by a Gaussian peak about the
coordinates corresponding to the place unit.

Thus, connections exist in both directions between the place and category units (connec-
tion matrix M) and between the category and grid units (connection matrix N), with
reciprocal connections having equal strength. The activity level of each unit is updated
iteratively, by summing a decay term with an interactive term (Grossberg, 1978; McClel-
land and Rumelhart, 1981). The interactive term includes weighted sums of the activities
of other units plus an occasional externally applied signal corresponding to an experimen-
tal stimulus. Thus, the activity a(t) of a unit at time ¢ receiving net activation z(t) from
the other units is updated according to the following differential equation:

da(t) | {r(t)(l-a(t)) z(t)>0
dt L z(t)a(t) z(t)=<0

Each iteration consists of two strokes: [1] update of the place node activities, P,(t),
integrating decay with input from the category units, grid units, and the external stimuli,
E,(t) and [2] update of the category and grid node activities, C,(t) and G,,(t), integrating
decay with input from the place units. The coupling of the activation equations is given

in Table 1.

The connection matrices, M and N are determined as functions of the distance between
places and grid sites, and membership of places in the various categories, respectively.
Since two indices are used to denote position of grid nodes, the activities G,; have two
indices indicating row and column in the grid, and elements of the matrix M have three
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Table 1
Activity Notation and Input Computation
Unit Activity a(t) Net Input z(¢t)
place unit i Pi(t) SM . Gy(t) + IN,;Ci(t) + E,(t)
category unit ¢ C,(t) ZE;P:'[”
grid unit 5 G, (t) th.‘iPt(t)

indices; M,;, denotes the connectivity of place node i to the grid node in row ;, column
k. The elements of the other matrix, N,; are set to a positive constant, a, if place 7 is in
category j, and to a negative constant, —a,, otherwise:

2
D
M.',k = Bexp| —

o
By 1 €7
Ny = I
! a, i€;

where D, is the Euclidean distance between the points represented by P, and G,,. The
representation of a place by the grid units is a regularized form of coarse coding, as
described by Hinton, McClelland and Rumelhart (1986). The network parameters a, a,,
and B are scale factors on the connection matrices, and are generally small, to keep the
system stable. The parameter o sets a distance scale on the Gaussian sampled by the
grid matrix M. In our experiments, o was usually about 1/3 the size of a map edge.

[t is important to realize that both the set of grid nodes and the set of category nodes
represent positional information; these representations differ in a number of respects, but
from an abstract point of view, they are equivalent.

Simulation Results: Spatial Priming within Regions

Each simulation consisted of three stimulus intervals: stimulus of the prime, relaxation,
and stimulus of the target. These stimulus intervals consisted of maintaining the exter-
nal input to the appropriate place node at a constant level (usually 0.1) for a fixed
number of iterations. No external stimulus was applied in the relaxation period; this
allowed the activity levels to decay (due to y). Reaction time data was simulated by
measuring times for activities to reach a criterion level. Parameters were determined
empirically by examining the time courses of node activities from selected simulations. A
particular activity level (the response criterion) was estimated to correspond to the abil-
ity to name the place in the experimental paradigm.

The three phases were typically 200 iterations, 50 iterations, and 200 iterations. The
time courses of several place nodes are plotted in Figure 3 for a simulation of the experi-
ment by McNamara (1983). For this simulation, the grid was 6 by 5 and there were 4
category units representing the four categories.

Figure 3 contains three "snapshots" of the place node activities in their corresponding
locations (cf. Figure 1a). In the simulation, place unit 21 was stimulated for 200 itera-
tions, stimulation ceased for the next 50 iterations, and place unit 25 was stimulated for
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Figure 3. Time course of place node activity when stimulating node 21 for 200
iterations, followed by 50 iterations of relaxation, followed by stimulating node 25 for
200 iterations. (A) Plot of place node activity for 5 of the 32 nodes, and snapshots of
activation levels of all place nodes after (B) iteration 200, (C) iteration 250, and (D)

iteration 450.
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the final 200 iterations. For this simulation, parameter values were a, = 0.4, a; = 0.0,
B = 0.3, y = 1.2, ¢ = 4, and the time step in our approximation to the differential
equation was At = 0.05. In comparing our model with McNamara’s data, we set the

response level 0.11. The simulation results are compared with the experimental data in
Table 2.

The results from the simulation correspond with the experimental data to a degree, but
not in close detail. They match well for the close and far conditions within a region, and
for the comparison of same-region to different-regions. However, whereas the data indi-
cated a mild interaction of alignment with distance, the simulations show a mild interac-
tion in the other direction. The weights in our model assumed an isotropic metric
(Euclidean); generation of weights using a city block metric, may lead to an interaction
consistent with the data.

Spatial Priming Along Routes

As a second example domain for the network, we turned to a related study. In an earlier
experiment, McNamara, Ratcliff, and McKoon (1984) showed similar effects for a map
where hypothetical cities were located along one of six different routes, as shown in Fig-
ure 1b.

The three main conditions were close in both Euclidean and route distance (CE-CR),
close in Euclidean, but far in route distance (CE-FR), and far in both Euclidean and
route distance (FE-FR). (The fourth logical condition of far in Euclidean distance, but
close in route distance is geometrically impossible.) In addition, McNamara, et al (1984)
used two distinct learning protocols (Experiment 1 versus 2). The data suggest that route
distance is the critical determinant of psychological distance in the cognitive map of the
subject, and that these results are not dependent on the learning protocol.

Simulation Results: Priming along Routes

Simulations of the McNamara, et al. (1984) study were performed by modeling recogni-
tion of the same pairs of items. The parameter values used for this simulation were close
to the values for the previous simulation, but not identical. The grid units were arranged
in a 6 by 5 array as in the previous simulation. Here, six category units were used, each

Table 2
Simulation Results for Priming within Regions
Condition Mean Iterations RT (msec)
Same Region
Close 45.0 705
Far 52.0 768
Different Regions
Close/Aligned 61.0 773
Close/Misaligned 87.5 753
Close/Overall 74.3 763
Far/Aligned 155.0 782
Far/Misaligned 104.0 797
Far/Overall 129.5 790
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Table 3
Simulation Results for Priming along Routes
Condition Mean Iterations RT (msec)
CE-CR 13.3 624
CE-FR 26.0 670
FE-FR 47.4 673

corresponding to one of the routes. We used a; = 0.4, 2, =-0.08,3 = 0.3, y = 1.2, o
= 4, and set the response criterion 0.08. The simulated results show a similar ordering
as the data (Table 3). However, there is again a small discrepancy in that the simula-
tions show a greater effect due to distance than appears in the experimental data.

Discussion

The network was able to represent both the locational information given by the geo-
graphic coordinates and the semantic information encoded by category membership,
whether the categories are regions or routes. The model presented is in contrast to a
spreading activation model that McNamara (1986) presents to account for his data. It
has an advantage over the implementation proposed by McNamara in that the time com-
ponent is made explicit.

These results point to a framework for representing positional information over a set of
maps, rather than a single one. These representations may be orthogonal or overlap to
various degrees. For example, the routes in the second simulation could be represented
such that intersecting routes have common features. This could be implemented by hav-
ing each category unit correspond to an intersection. We did not choose this representa-
tion because it has a problem of non-uniqueness (see Figure 1b).

The model presented complements previous connectionist models on related topics, such
as examining the role context on spatial references in language (see, Cosic & Munro,
1988; Douglas, Novick, & Tomlin, 1987), and models examining spatial search (e.g.,
Barto & Sutton, 1981, Zipser, 1986).

Further research is planned to extend the model to more complex semantic structures.
For example, McNamara, Hardy, & Hirtle (1989) have demonstrated that the ordered
tree paradigm (see Hirtle & Jonides, 1985) can be used to determine the semantic struc-
ture imposed by subjects on an otherwise nonstructured array of landmarks. Thus, a
small modification to the strategy above would be required as the resulting structure is
hierarchical rather than a single set of regions or routes. However, the general approach
should prove beneficial in the modeling of spatial knowledge.
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