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An `0`2-norm regularized regression model for construction of robust cluster
expansions in multicomponent systems

Peichen Zhong, Tina Chen, Luis Barroso-Luque, Fengyu Xie, and Gerbrand Ceder∗

Department of Materials Science and Engineering,
University of California, Berkeley, California 94720, United States and

Materials Sciences Division, Lawrence Berkeley National Laboratory, California 94720, United States
(Dated: June 28, 2022)

We introduce `0`2-norm regularization and hierarchy constraints into linear regression for the
construction of cluster expansions to describe configurational disorder in materials. The approach is
implemented through mixed integer quadratic programming (MIQP). The `2-norm regularization is
used to suppress intrinsic data noise, while the `0-norm is used to penalize the number of non-zero
elements in the solution. The hierarchy relation between clusters imposes relevant physics and is
naturally included by the MIQP paradigm. As such, sparseness and cluster hierarchy can be well
optimized to obtain a robust, converged set of effective cluster interactions with improved physical
meaning. We demonstrate the effectiveness of `0`2-norm regularization in two high-component
disordered rocksalt cathode material systems, where we compare the cross-validation, convergence
speed, and the reproduction of phase diagrams, voltage profiles, and Li-occupancy energies with
those of the conventional `1-norm regularized cluster expansion models.

INTRODUCTION

First-principles density functional theory (DFT) calcu-
lations have been demonstrated as a reliable tool in com-
putational materials science. Despite the increase in com-
puting power and accuracy of DFT methods, the scaling
with the number of atoms ∼ O(n3) intrinsically pro-
hibits large-scale calculations (over 103 atoms) or sam-
pling of a high-dimensional occupancy space (millions of
structures) [1]. This is particularly relevant in systems
with configurational degrees of freedom that need to be
sampled at non-zero temperature to equilibrate states of
partial order, and their associated entropy and free en-
ergy. The state of configurational order determines many
materials properties, especially in systems composed of
many species (high-entropy systems). It has also recently
been shown to be relevant for mechanical properties in
metallic alloy systems [2, 3] and the energy density of
complex electrode materials for energy storage applica-
tion [4–7].

The cluster expansion (CE) method has been well de-
veloped to describe such configurational energetics for
metallic alloys [8, 9], as well as for ionic systems [10, 11].
The CE method expands any property (e.g., formation
energy, volume) in terms of the distribution of atoms
on a set of predefined sites. When the quantity being
expanded is the energy, the expansion coefficients are
referred to as Effective Cluster Interactions (ECI). For
example, in a multicomponent system, the energy is ex-
panded as

E(σ) =
∑
β

mβJβ 〈Φα∈β〉β , Φα =

N∏
i=1

φαi
(σi). (1)

A configuration σ represents a specific occupancy on all
the sites of the system, where σi describes which species

sits on the i-th site of the structure. The site basis
function φαi(σi) transforms the occupancy variable σi
into a scalar value. There are typically as many (non-
constant) cluster basis functions as possible occupancies
on a site minus one. The cluster basis function label
α = (α1, α2, α3, . . .) indicates a group of sites, each with
a specific basis function on it, where each entry αi labels
the corresponding site basis function φαi . Thus, the clus-

ter basis function Φα =
∏N
i=1 φαi

(σi) can be obtained by
taking the product of site basis functions.

For example, the cation sublattice of a LiMnO2 rock-
salt oxide is a binary system, where Li and Mn share
the octahedral interstitial of the FCC anion framework.
In such a system, Li can be encoded by σLi = 0 and
Mn by σMn = 1. The parameter αi takes a value from
[0, 1, ...M −1], where M is the number of allowed species
defined on the sublattice (e.g., M = 2 for Li-Mn). While
many forms of site basis function can be used[8, 12, 13],
a sinusoid (orthogonal) basis function is applied here to
transform the occupancy variable (σLi, σMn) into a value
[14], where

φj(σi) =


1 if j = 0

− cos
(
π(j+1)σi

M

)
if j is odd

− sin
(
πjσi

M

)
if j is even

. (2)

The j indicates αi in Eq.(1) and can take a value of 0
or 1. Thus, we have φj=0 ≡ 1, φj=1(σLi = 0) = −1,
and φj=1(σMn = 1) = 1. This situation corresponds
to the spin variables used in a generalized Ising model
[15, 16]. For systems with species number M > 2, the
basis functions take values beyond those of spin variables
{−1, 1} typically used in binary CE. Some examples of
other types of site-basis functions also developed for the
CE method are the Chebyshev polynomials [8] and the
indicator function (point delta function) [12].
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FIG. 1. (a) The general flowchart of constructing a CE model, including initialization of input structures, DFT calculations,
fitting and convergence check, and cluster expansion Monte Carlo (CEMC) for sampling. (b) An illustration of `2, `1 and
`0-norm regularization in a two-parameter space J = (J1, J2) . The blue circles represent the contours of the data term
||EDFT,S −ΠSJ ||22 in cost function. The red regions represent the constraints of parameters (e.g. J2

1 + J2
2 ≤ s for `2-norm,

|J1|+ |J2| ≤ s for `1-norm.) The dark red point is the intersection of data term and regularization of parameters, which jointly
determines the estimation of J .

In Eq.(1), the correlation function 〈Φα〉β is calculated
by

〈Φα(σ)〉β =
1

Nσmβ

∑
α∈β

Φα(σ), (3)

where β is an orbit representing all symmetrically equiv-
alent cluster basis functions α, and mβ is the correspond-
ing multiplicity. Nσ is the size of the supercell of con-
figuration σ; thus, the correlation function is well nor-
malized with respect to the primitive cell. Jα is the
effective cluster interaction (ECI). We refer readers to
Ref.[8, 14, 17, 18] for a more extended description of the
CE. From Eq.(1), the CE energy is linearly dependent on
the ECIs J when the configuration σ is fixed. We can
thus write

ECE(σ) = Π(σ) · J , (4)

where Π(σ) is a row vector of correlation functions and
J is the column vector of ECIs.

Fig.1(a) presents a brief illustration of how to itera-
tively construct a CE Hamiltonian. In practice, the CE
model is initially fitted on a small set of DFT calcu-
lations. Then, a simple CE is fitted that can be used
in a Monte Carlo simulation to sample new structures.
DFT calculations will be applied to a sample of the MC-
obtained structures, and a new CE will be fitted. This
procedure will be performed iteratively until the model
is converged (i.e., the cross-validation error remains low
and stable, the model reproduces DFT ground states
well, etc.) [19]. In such a process, it is always desirable
to achieve fewer training iterations, as DFT calculations
are costly in terms of CPU time. On the other hand,
fewer structures may also result in a worse fitting due to
insufficient sampling of the configuration space.

Obtaining reliable ECIs J from the DFT energy of a
set of configurations is the central problem of CE fit-
ting. Given a set of input occupancy configurations
S, the set of correlation vectors forms a feature matrix
ΠS = [Π1,Π2, ...], and the corresponding DFT energies
are used to construct the target vector EDFT,S . Deter-
mining the ECIs is an inverse problem of Eq.(4), also
called linear regression. Generally, the problem can be
solved by minimizing the cost function

min
J
||EDFT,S−ΠSJ ||22+µ||J ||p , ||x||p =

(∑
i

|xi|p
) 1

p

,

(5)
where the p-norm of J is added to regularize the fit and
suppress over-fitting, and µ controls the degree of regu-
larization. Fig.1(b) shows the comparison of `2, `1 and
`0-norm regularization in a two-parameter space J = (J1,
J2). The blue circles are the contours of the data term
error ||EDFT,S −ΠSJ ||22. The red regions represent the
regularization constraints on the parameters (||J ||p ≤ s),
which can be transformed to a Lagrangian form µ||J ||p
as shown in Eq.(5). The dark red point is the regular-
ized estimation of J , which is the intersection between
the data error term and the regularization term. The `1-
norm tends to generate sparser solutions compared with
the `2-norm, because the intersection is likely to be lo-
cated on the axis. The `0-norm counts the non-zero ele-
ments of J , where the intersection is exactly located on
the axis and thus the `0-norm imposes an exact sparsity
constraint on J .

Conventionally, `2-norm (ridge regression, p = 2) reg-
ularization can be applied when the problem is over-
determined (i.e., the number of training structures is
larger than the dimension of J). The `2-norm regular-
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ized regression reduces the over-fitting caused by intrinsic
noise in the training data. This can be achieved solely by
introducing the `2 regularization function and addition-
ally using the mixed-basis expansion [20–22]. Bayesian
approaches have also been successfully applied to esti-
mate the ECIs with a prior distribution in several binary
systems [22–24]. However, the number of ECIs increases
combinatorially with the number of species, scaling ap-
proximately as

∏
k(Mk − 1)nk , where Mk is the number

of species on the k-th sublattice, and nk is the number
of cluster sites in the same sublattice k. The explosion
in the number of basis functions when many species can
occupy a site makes it difficult to predefine which clus-
ter basis functions contribute to the expansion for high
dimensional multi-component systems (i.e., which clus-
ter basis function has a non-zero element in the solution
of J). Therefore, a sparse solver for ECIs selection is
required.

Rigorously, the exact sparse solution of Eq.(5) is ob-
tained with `0-norm regularization of J . However, it is
hard to compute the ||J ||0 in the cost function as it is an
NP-hard problem. In the compressive sensing paradigm,
the `0-norm can be transformed to an `1-norm when the
feature matrix ΠS satisfies the restricted isometry prop-
erty (RIP) condition [25]. To satisfy the RIP condition
in CE, Nelson et al. [26] proposed to generate a training
set in which each row is an identical independent dis-
tributed (i.i.d.) random vector. However, in practical
cases, the configurations in the training set S are corre-
lated, because structures are not randomly sampled, but
are mostly part of an ensemble of configurations with low
energy. Such correlations fail to satisfy the i.i.d. condi-
tion. Moreover, generating structures from a specific cor-
relation vector is also an NP-hard problem. Though the
strict compressive sensing cluster expansion is not easy
to construct in practice, the `1-norm (lasso, p = 1) reg-
ularization is widely used as feature selection, which has
shown success in various alloy and ionic systems [13, 26–
28].

In this paper, we propose an `0`2-norm regularization
approach that incorporates hierarchy constraints to gen-
erate more robust and predictive CE models. First, we
introduce the `0`2 penalty term and hierarchy constraints
in the paradigm of mixed-integer quadratic programming
(MIQP). Second, we compare the sparseness and con-
vergence rate of ECIs with those of the conventional `1
method in the Li-Mn-V-Ti-O-F disordered rocksalt sys-
tem. Finally, we demonstrate that an `0`2-regularized
CE better reproduces the correct physical interactions by
comparing with `1-CE in terms of computed phase dia-
grams, voltage profiles, and related physical quantities in
the Li-Mn-Ti-O system.

METHODS

The `0-norm regularization

In Eq.(5), p = 0 manifests itself as a pseudo-norm that
counts the number of non-zero elements of J :

||J ||0 =
∑
i

Ind(Ji), Ind(Ji) =

{
0, Ji = 0

1, Ji 6= 0
(6)

Adding the `0 term into the cost function directly penal-
izes the number of non-zero ECIs, yielding better sparse-
ness in its solution. However, optimizing a cost function
with an `0 term is an NP-hard problem and is difficult
to present in a direct way [25, 29]. Previously, Huang
et al. [30] has approached the problem by rewriting `0
optimization as a mixed-integer programming problem,
such that

min ||J ||0 ⇔ min
∑
c∈C

z0,c (7)

s.t. Mz0,c ≥ Jc, ∀c ∈ C
Mz0,c ≥ −Jc, ∀c ∈ C
z0,c ∈ {0, 1}, ∀c ∈ C

where M is a sufficiently large number (larger than the
maximum possible absolute value of any ECI), and z0,c is
a slack variable (binary integer) indicating whether the
ECI of orbit c is zero or not. Jc is constrained to 0 when
the slack variable z0,c = 0 (inactive) and to [−M,M ]
when z0,c = 1 (active). (For a rigorous mathematical
background, refer to Ref.[30].) In practice, it is shown
that one can at least obtain a sparseness-improved near-
optimal solution within a reasonable CPU time cutoff. In
our benchmark tests of the Li-Mn-V-Ti-O-F and Li-Mn-
Ti-O systems, the optimizations of ECIs were completed
within 600s using the gurobi package [31].

Hierarchy constraints

In a CE, clusters are usually enumerated in an it-
erative, low-to-high order (i.e., from singlets to pairs,
triplets, quadruplets, and so on). Practically, the CE
is truncated to a maximum of n (e.g., quadruplet clus-
ters with n = 4 are a typical limit), ignoring the higher-
order interactions to control the model complexity. To
differentiate the cluster orbits by different significance,
we take one of the basic assumptions of CE that n-body
cluster interactions become less important to the configu-
rational energy (or other scalar properties) as n becomes
larger. This assumption means that the majority of the
fitted property can be described by the lower-order in-
teractions and that the higher-order interactions serve as
the fine-tuning part in the fitting.

Such a physically inspired concept can be introduced
in the form of hierarchy constraints, as has been done
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successfully in some previous studies [32–34]. The hier-
archy constraint manifests itself as Jb 6= 0 if and only if
Ja 6= 0 (a ⊂ b), where a and b are a lower- and higher-
order cluster function orbit, respectively, and b contains
all the site bases of a as a subset. In the MIQP represen-
tation, the hierarchy relationship can be easily expressed
as a constraint between slack variables:

z0,b ≤ z0,a, a ⊂ b. (8)

This treatment was first proposed by Huang et al.
[30], where it was used in the `0`1-norm regularization
paradigm.

The `2-norm regularization

We propose that combining `2-norm and `0-norm reg-
ularization can impose true hierarchy constraints unlike
the `0`1-norm. It is to be noted that the inequality be-
tween slack variables does not necessarily impose the hi-
erarchy relation (Jb 6= 0, iff Ja 6= 0). This is because
the hierarchy constraints are defined on the magnitude
of ECIs Ja and Jb, while the slack variables z0,b, z0,a are
intermediate to represent the presence or exclusion of the
variables.

⊂ ⊂

𝓙𝜶 ≠ 𝟎, 𝐳𝟎,𝜶 = 𝟏 𝓙𝜷 = 𝟎, 𝐳𝟎,𝜷 = 𝟏 𝓙𝜸 ≠ 𝟎, 𝐳𝟎,𝜸 = 𝟏

Pseudo-active hierarchy constraints (ℓ!ℓ")

⊂ ⊂

𝓙𝜶 ≠ 𝟎, 𝐳𝟎,𝜶 = 𝟏 𝓙𝜷 ≠ 𝟎, 𝐳𝟎,𝜷 = 𝟏 𝓙𝜸 ≠ 𝟎, 𝐳𝟎,𝜸 = 𝟏

True-active hierarchy constraints (ℓ!ℓ#) 

FIG. 2. Illustration of hierarchy relations (α ⊂ β ⊂ γ) be-
tween pair, triplet, and quadruplet orbit. The different colors
on the cluster sites represent the decorating species for a given
site-basis function. The equation in red shows a pseudo-active
hierarchy constraint that may appear in `1 and its derivative
methods.

When implementing the hierarchy constraints in `0`1-
norm regularization, pseudo-active behavior can mani-
fest itself when a J = 0, but its slack variable z0 = 1
within the MIQP paradigm. J can be regularized to
zero, which is still a valid solution between [−M,M ],

even with z0 = 1. This is caused by the fact that the `1-
norm has feature-selection properties that intrinsically
produce a sparse solution [35]. This pseudo-activeness
can introduce excessive sparseness to the solution and
break the hierarchy constraints. Fig.2 presents an ex-
ample of pseudo-activeness in `0`1-norm regularization.
The excessive sparseness is introduced to the orbit β with
Jβ = 0, while all orbits α, β, γ has active slack variables
z0 = 1. The higher-order orbit γ is erroneously acti-
vated while Jβ = 0. To avoid such a situation and en-
sure proper function with `0 under hierarchy constraints,
a norm with no feature-selection properties is required.
The `2-norm is a natural choice.

With the introduction of the `0`2-norm and hierarchy
constraints, the final ECI optimization problem can be
written as

min
J

JTΠT
SΠSJ

T − 2ET
DFTΠSJ + µ0

∑
c∈C

z0,c + µ2||J ||22

(9)

s.t. Mz0,c ≥ Jc, ∀c ∈ C
Mz0,c ≥ −Jc, ∀c ∈ C
z0,b ≤ z0,a, ∀a ⊂ b, {a, b} ∈ C
z0,c ∈ {0, 1}, ∀c ∈ C,

where ||J ||22 = JTJ penalizes the magnitude of ECIs,
thus avoiding over-fitting by regularizing sampling noise
while the `0-term

∑
c z0,c optimizes the sparseness. The

hierarchy constraints ensure correct containment rela-
tionships by manifesting lower-order ECIs first to reduce
redundancy. The packages for our implementation are
available in Ref.[36].

RESULTS

As mentioned above, for systems with many species,
the number of basis functions grows rapidly. An exam-
ple of such systems are the Li-excess disordered rock-
salts (DRX), which are multicomponent systems that
can be synthesized with a wide variety of elements [37].
Recently, high-entropy DRX materials have been syn-
thesized with up to 12 metal species [6]. In addi-
tion, their configurational short-range order is critical
to their transport properties, warranting a detailed CE
approach.[5, 38] Here, we provide a heuristic solution to
study configurations in such high-dimensional DRX sys-
tems by applying an `0`2-regularized CE model to fit the
formation energy of DRX compounds.

Robustness and convergence

The convergence of the CE when the `0`2-norm and
hierarchy constraints are enforced was tested on configu-
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Li/TM

O/F

(b)
Minimize CV, get 𝜇!
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Physical solution?
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Output

FIG. 3. (a) An illustration of the rocksalt lattice structure.
The cation sites are labeled in red and can be occupied by
Li+ and transition metals (TM, including Mn2+, V3+, Ti4+

in our example) in DRX. The anion sites are labeled in gray
and can be occupied by O2− and F−. The lower panel gives
some examples of n-body (n = 2, 3, 4) clusters used in the CE
model, including intra and inter-sublattice interactions. (b)
The procedure to obtain an `0`2-norm regularized solution,
including finding the µ2 by minimizing the CV error in ridge
regression, sparseness engineering with `0 using MIQP, and
terminating if the solution is converged with good sparseness,
as well as good-reproduction-relevant physical properties.

rational disorder in the LiF–MnO–LiVO2–Li2TiO3 com-
position space. The CE model contains pair interactions
up to 7.1 Å, triplets up to 4.0 Å, and quadruplets up to
4.0 Å based on a lattice parameter a = 3 Å for the prim-
itive cell. Fig.3(a) presents the rocksalt framework of a
DRX structure. The framework contains a cation sublat-
tice (red) and anion sublattice (gray), where the cation
sites can be occupied by Li and transition metals (TM, in-
cluding Mn2+, V3+, Ti4+ in this example) and the anion
sites can be occupied by O2− and F−. A species indica-
tor where the site basis function reads φj(σi) = δi,j was
used [12]. The electrostatic energy (Ewald energy E0/εr)
is also included to capture long-range electrostatic inter-
actions (E0 is the unscreened electrostatic energy and
1/εr is fitted as one of the ECI (1/εr ≥ 0) [39, 40]. In
total, 162 ECIs (including the constant term J0) are pre-
defined in the CE Hamiltonian. The dimension of the
feature matrix ΠDFT,S is 487× 162. The performance of
the `0`2-CE is compared with the `1-CE. We emphasize
two major improvements in the `0`2-CE.

(1) Sparseness vs. cross-validation error

Cross-validation (CV) error vs. model complexity is
a general metric used to evaluate the robustness of a
CE model. The optimal trade-off between under-fitting
and over-fitting can be found with a CV test, where the
optimal model is fitted with the regularization hyper-

(a)

(b)

FIG. 4. (a) Cross-validation error (meV/atom) of the `1-CE
and the `0`2-CE. The sparseness is the number of non-zero
ECIs in the fit (||J ||0). The curves are generated by varying
hyperparameters µ0, µ1, and µ2 in regularization. (b) ECIs
convergence test vs training set size. J is the ECIs fitted with
full training data, and Jsub is the ECIs fitted with a subset
of corresponding size.

parameter µ that minimizes the CV error. In our test, a
k-fold CV error is used,

CV =

√√√√1

k

k∑
j=1

MSEj , MSE =
1

N

N∑
i=1

(EiDFT − EiCE)2,

(10)
where CV is the cross-validation error averaged over k
splits of the validation dataset, and MSE is the mean-
squared-error of each validation dataset. Here, N is the
size of the validation dataset, and k = 5 is the number of
folds. In our tests, the regularization hyperparameter µ is
selected from the logarithm space between [10−6, 10−1].
The sparseness is defined as the number of non-zero el-
ements of the solution (||J ||0) and represents the model
complexity.

The CV error versus sparseness is presented in Fig.4(a)
for an `1 and `0`2-norm regularized CE. For the `0`2-
CE, the CV error remains low as the sparseness varies
between 25 and 150 ECIs. In this regime, the `0`2-CE
shows no sign of over-fitting as the CV error remains near
the global minimum around 6 meV/atom. The `1-CE
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shows a similar optimal CV error as that of `0`2-CE near
this minimum plateau regime from 50 to 100 in sparse-
ness. However, as the model complexity changes, the
CV error increases at both low and high sparsity, indi-
cating that the `1-CE is less robust against the choice
of model complexity. Therefore, we conclude that the
`0`2-CE can reach low CV error with a lower complexity,
which is empirically believed to result in models that bet-
ter reproduce physics. A more sparse CE can increase the
computational speed of energy evaluations and is also less
sensitive to model complexity change as compared with
the `1-CE.

(2) Convergence of ECIs with a subset of training data

The second point that we want to emphasize is that the
`0`2-CE converges to its most accurate solution faster
than the `1-CE, which lowers the risk of obtaining an
over-fitted result when the configuration space is under-
sampled. This is an important improvement in the prac-
tical use of CE constructions. To test this hypothesis
and mimic the iterative sampling process, we designed a
numerical experiment based on a finished DFT dataset
(with 487 structures in total). Then, we evaluated the
quality of fits performed on subsets of training data of
increasing size. We subsequently compared the subset-
fitted ECIs Jsub with the full-set result. In such a com-
parison, the ground-truth (full set) solution is set as fol-
lows: (1) For the `1-CE, the regularization parameter µ1

is chosen at the minimum CV error according to Fig.4(a).
This solution has 99 non-zero ECIs when all 487 training
structures are used in the fitting. (2) For the `0`2-CE,
to compare the convergence rate under a similar degree
of model complexity, hyperparameters are selected such
that the `1-CE and `0`2-CE have similar sparsity. The
resulting `0`2-CE has 92 non-zero ECIs with all 487 train-
ing structures included according to Fig.4(a).

After setting the hyperparameters for both models,
we compared the normalized absolute difference ||Jsub−
J ||1/||J ||1 between the `1-CE (blue line) and `0`2-CE
(red line) in Fig.4(b). For each subset size, ten randomly
selected subsets with the same size were evaluated and
averaged. The solid square represents the average, and
the error bar represents the standard deviation resulting
from different subsets. Fig.4(b) indicates that the `1-CE
demonstrates higher deviation from the ground-truth so-
lution and converges more slowly to it than the `0`2-CE
as the training set is increased. This result unambigu-
ously demonstrates the robustness of `0`2-CE to work
with small input data sets.

ECIs with improved physics

From a general perspective of machine learning (ML),
the predictions of energies are made by fitting statistical
models on a group of data points. The statistical mod-
els can predict the absolute energy with high accuracy
by minimizing the cost function, which is constructed
by the difference between prediction and observation of
the training data. However, in materials science, relative
energy quantities are of greater significance than the ab-
solute one (such as energy above the hull, phase diagram
and the derivatives of formation energy with respect to
the compositional variables). Bartel et al. [41] critically
examined several ML models for energetics prediction,
and found that while the models predict the formation
energy (∆Hf ) of materials well, they failed to predict
the relative phase stability. Such a dilemma indicates
that the prediction error (CV or RMSE) is not the only
thing one should consider when constructing a statistical
model for the energy.

To demonstrate that the `0`2-CE also leads to a more
physically informed solution, we studied a multicompo-
nent system: Li-Mn-Ti-O oxide in an fcc rocksalt frame-
work, with Li+-Mn2+-Mn3+-Mn4+-Ti4+-vacancy disor-
der on the octahedral cation sites and Li+-Mn2+-Mn3+-
vacancy disorder on the interstitial tetrahedral sites.
The Li-Mn-Ti-O composition space contains a number
of battery-relevant systems [4, 5]. These battery sys-
tems are charged and discharged by adding or remov-
ing lithium (i.e., lithiation or delithiation) and a charge-
compensating electron, which reduces or oxidizes a tran-
sition metal. As a result, an important physical property
to correctly model in the Li-Mn-Ti-O system is the ener-
getics of Li in octahedral vs. tetrahedral sites. One sig-
nificant battery-relevant system in which the effects of Li
local environment preference are especially presented is
the LiMn2O4 spinel. When fully lithiated to Li2Mn2O4,
Li-ions occupy octahedral sites while the Li-ions occupy
tetrahedral sites for compositions LixMn2O4 when x ≤ 1.

Thus, we design two additional tests to ensure that
the CE models well represent the physics of the Li octa-
hedral vs. tetrahedral site preferences. Specifically, we
compare how well the CE model reproduces: (1) energy
differences between the Li in the tetrahedral and octa-
hedral sites in layered MnO2 and spinel MnO2 frame-
works and (2) a simplified spinel voltage profile against
the DFT ground truths. The simplified spinel voltage
profile includes the fully lithiated rocksalt-like Li2Mn2O4,
the spinel LiMn2O4, the commonly seen Li0.5Mn2O4 or-
dering, and the fully delithiated Mn2O4 and is calculated
by taking the average voltage between each set of adja-
cent orderings. The average voltage is calculated using



7

Li4Ti5O12

Li2TiO3

TiMn5O8

Mn3O4

LiMnO2

Mn5O8

Li2MnO3

Li4Mn5O12

TiMnO3

DFT 
phase diagram

Li4Ti5O12

Li2TiO3

TiMn5O8

Mn3O4

LiMnO2

Mn5O8

Li2MnO3

Li4Mn5O12

TiMn2O4

ℓ!ℓ"-CE 
phase diagram

Li2Ti3MnO8

LiMn2O3

Li7Mn5O12

Li5Mn7O16

Layered MnO2 Li occupation

𝐸#$# −𝐸%&#
DFT +0.21 eV

ℓ!ℓ"-CE +0.32 eV
ℓ'-CE +0.73 eV

𝐸#$# −𝐸%&#
DFT −0.54 eV

ℓ!ℓ"-CE −0.65 eV

ℓ'-CE −0.36 eV

Spinel MnO2 Li occupation

(a)

(b)

octahedral tetrahedral

octahedral tetrahedral

Li5Mn7O16

Li4Ti5O12

Li2TiO3

TiMn5O8

Mn3O4

LiMnO2

Mn5O8

Li2MnO3
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Li4Mn3O8
LiMn2O4

Li2TiMn3O8

FIG. 5. (a) Phase diagram generated with DFT, `0`2-CE, and `1-CE. The DFT ground states are labeled in blue text. The
incorrectly predicted ground states are labeled with red circles and text. (b) The simplified spinel voltage profile (blue line)
generated by `1-CE and `0`2-CE for spinel orderings in LixMn2O4 is compared with the DFT ground-truths (orange line). (c)
Energy difference of Li occupation in octahedral and tetrahedral sites in layered MnO2 (upper) and spinel MnO2 framework
(lower).

DFT and the following equation [42–44]:

V̄ (x1, x2) ≈ −
ELix1

Mn2O4 − ELix2
Mn2O4 − (x1 − x2)ELi

F (x1 − x2)
,

(11)
where x1 and x2 are adjacent Li contents with x1 > x2,
ELi is the DFT energy of bcc Li metal, and F is the
Faraday constant.

The CE was generated with pair interactions up to 7.1
Å, triplet interactions up to 4.0 Å, and quadruplet in-
teractions up to 3.0 Å based on a primitive cell of the
rocksalt structure with lattice parameter a = 3 Å. A si-
nusoid site basis was used (Eq.(2)). In total, 1475 ECIs
(including the constant term J0) were predefined in the
CE Hamiltonian. The dimension of the feature matrix is

1137 × 1475. Because of the high compositional dimen-
sionality, the possible number of ECIs within the inter-
action cutoffs is large. In addition, there are some con-
straints on the occupancies in the Li-Mn-Ti-O system,
such as (1) the total number of Li, transition metals,
and vacancies is fixed between octahedral and tetrahe-
dral cation sublattice; (2) the net charge of the system
must be neutral, etc. These relations and the inabil-
ity to sample all possible configurations with DFT re-
duce the rank of the feature matrix below the dimension
(rank(ΠS) = 557), which indicates that a sparse solution
is required.

From the test results in Fig.4, we notice that when
the sparseness varies, the variation of the CV error is
smaller when the CE is regularized with the `0`2-norm
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than with the `1-norm. This result indicates that `0`2 has
a hyperparameter space that is larger and more tunable,
whereas the `1-CE is more deterministic with a small
range of optimal µ1 obtained by minimizing the CV error.
Motivated by this observation, the selection of ECIs for
the Li–Mn–Ti–O system was completed as follows.

The regularization strength µ1 in the `1-CE was se-
lected from the stable plateau region when minimizing
the CV error in lasso (e.g., the µ1 associated with points
between sparseness of 50 to 100 in Fig.4). For the `0`2-
norm, the µ2 was selected from the stable plateau region
by minimizing the CV error in ridge regression, similar
to what is done for `1-CE. After obtaining the optimal
µ2, the solution for `0`2-CE was further determined by
searching µ0 for a solution with the proper sparseness (at
least ||J ||0 < rank(ΠS), µ1, µ2, µ0 ∈ [10−6, 10−1]). For
both `1-CE and `0`2-CE, several models with low CV
error were tested for their ability to well reproduce phys-
ical properties, such as minimal violation of DFT ground
states in the phase diagram, voltage profile comparison
against DFT, as well as the Li-site energy difference be-
tween tetrahedral and octahedral occupancy. The best
performing models for both `1 and `0`2 are presented in
Fig.5, respectively.

Fig.5(a) presents a comparison of ground-state phase
diagrams with the `1-CE predictions, `0`2-CE predic-
tions, and DFT calculations. The phase diagrams were
generated with in-sample training data (all 1137 struc-
tures evaluated with DFT) for both DFT and CE mod-
els. We take the DFT phase diagram as the ground
truth. In formation-energy prediction, the phase dia-
gram is a key quantity that directly demonstrates the
correct physics near the ground states. As the ground
states are formed variationally, they are particularly dis-
cerning towards spurious ECIs, as the non-physical noisy
interactions often create new ground states leading one
to miss the true ground states. Thus, a well-reproduced
phase diagram is desirable for a CE model. In our tests,
the `1-CE creates 12 new ground states, indicating that
the correct physics in terms of cluster interactions is not
well captured. However, the `0`2-CE preserves most of
the DFT ground states, with only four spurious ”ground
states” in the `0`2-CE phase diagram.

The improvement in the physics of the predictions as-
sociated with applying the `0`2-norm with hierarchy con-
straints is further demonstrated by the voltage profile
and Li-occupancy energy. In Fig.5(b), the voltage pro-
files generated by prediction using the `1-CE and `0`2-CE
(blue lines) are compared with those from DFT (orange
lines), taken as the ground truth. We can see that the
`1-CE incorrectly predicts the voltage plateau between
x = 0.5 to 1 in the LixMn2O4 spinel-like structure such
that the x = 0.5 configuration is no longer stable (the
voltage between x = 0.5 and x = 1.0 is higher than that
between x = 0.0 and x = 0.5). In contrast, the `0`2-CE
matches very well with the DFT-generated voltage pro-

files. The erroneous predictions of the `1-CE are further
confirmed by the Li-occupancy energy. In Fig.5(c), the
energy difference between Li in octahedral and tetrahe-
dral occupancy was evaluated in the layered-MnO2 and
spinel-MnO2 frameworks. The absolute error compared
with DFT is 0.52 eV (layered) and 0.18 eV (spinel) for the
`1-CE, whereas that for the `0`2-CE is 0.09 eV (layered)
and 0.09 eV (spinel), respectively. A significant reduc-
tion of prediction error is observed with the `0`2-norm
regularized CE.

DISCUSSION & SUMMARY

In two complex oxide systems, we showed that the
`0`2-CE with hierarchy constraints outperforms the con-
ventional `1-CE in terms of sparseness against CV error,
convergence rate with a subset of training-data, and some
critical physical quantities in Li intercalation materials.
More generally, the optimization of the ECIs is not deter-
ministic within a single method, and the successful con-
struction of a CE model typically relies on two aspects:
(1) choosing a valid interaction space by truncating the
clusters or orbits and (2) applying a proper optimization
algorithm to obtain the ECIs. The results in this pa-
per show that for the second step, the `0`2-norm method
is the superior choice for a robust and physical solution
compared to the conventional `1 method.

We note that one limitation of the `0`2-norm method in
the MIQP paradigm is the computational efficiency. As
solving the `0-norm is an NP-hard problem, more com-
putational time is required to solve the MIQP when more
predefined ECIs are included. The `0`2-CE works well for
relatively small or well-predefined systems (dim(ΠS) ≤
2000). Therefore, the most applicable way to use `0`2-
norm regularized CE with hierarchy constraints is likely
to be as follows: (1) define a CE within a relatively small
cutoff and truncate to quadruplet or quintuplet clusters
at most (ideally staying within dim(ΠS) ≤ 2000) and (2)
follow the procedure described in Fig.3(b) to determine
the optimal hyperparameter to obtain the ECIs. How-
ever, we note that dim(ΠS) ≤ 2000 applies to virtually
all known published CE.

To obtain a model that represents the physics of a
system well, the relative difference of energies between
configurations is of greater significance than the absolute
ones. In ordinary least-squares fitting, the cost function
only focuses on the global averaged error of the training
set, which leads to over-fitting. Adding regularization
of the ECIs can alleviate this issue by constraining the
optimization space of parameters, but our results show
that not all regularization creates physically meaning-
ful solutions. We propose that it is beneficial to include
the physically inspired constraints into the design of the
cost function, such as adding hierarchy constraints with
`0`2-norm implementation. The `0`2-CE can improve the



9

physical meaning of the solution and break the correla-
tion between coupled clusters, which is achieved by di-
rectly penalizing the number of non-zero ECIs for fea-
ture selection and enforcing hierarchy relations between
ECIs via the slack variables in the MIQP paradigm. The
`0`2-CE gives an estimation of the ECIs with reason-
able physics near the ground-states, but does not strictly
enforce the preservation of ground-states. Additionally,
the ground-state preservation can be further achieved by
adding inequality constraints on the energies into Eq.(9)
as shown in previous work [19].

In summary, our method sheds light on how to ob-
tain good ECIs for simulations in complex and coupled
multicomponent systems, with several proposed criteria
in ECIs optimization: (1) minimize the CV error under
general regression level (e.g., ridge regression); (2) as the
sparseness describes the complexity of and number of in-
dependent variables, the sparseness of the solution shall
be improved (reduced) with reasonable in-sample train-
ing error; and (3) check the near-ground-state behavior
and related physics for the optimal ECIs selection.
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Appendix: DFT calculations

DFT calculations were performed with the Vienna ab
initio simulation package (VASP) using the projector-
augmented wave method [45, 46], a plane-wave basis set
with an energy cutoff of 520 eV, and a reciprocal space
discretization of 25 k -points per Å. All the calculations
were converged to 10−6 eV in total energy for electronic
loops and 0.02 eV/Å in interatomic forces for ionic loops.
In the LiF-MnO-LiVO2-Li2TiO3 system, we used the
Perdew-Burke-Ernzerhof (PBE) generalized gradient ap-

proximation exchange-correlation functional [47] with ro-
tationally averaged Hubbard U correction (GGA+U) to
compensate for the self-interaction error on all transition-
metal atoms except titanium [48]. The U parameters
were obtained from the literature, where they were cali-
brated to transition-metal oxide formation energies (3.9
eV for Mn and 3.1 eV for V). The GGA+U computa-
tional framework is believed to be reliable in determin-
ing the formation enthapies of similar compounds [49].
In the Li-Mn-Ti-O oxide system, the strongly constrained
and appropriately normed (SCAN) meta-GGA exchange-
correlation functional was used [50]. The SCAN func-
tional is believed to have better performance at captur-
ing charge transfer due to better redox and atomic co-
ordination prediction [51, 52], which would improve the
accuracy of energetics involving introducing vacancies on
octahedral and interstitial tetrahedral sublattices in the
rocksalt framework.
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