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A QUASI-EXACT TEST FOR COMPARING TWO
BINOMIAL PROPORTIONS

KARIM F. HIRJI, SHU-JANE TAN AND ROBERT M. ELASHOFF
Department of Biomathematics, School of Medicine, University of California, Los Angeles, CA 90024-1766, U.S.A.

SUMMARY

The use of the Fisher exact test for comparing two independent binomial proportions has spawned an
extensive controversy in the statistical literature. Many critics have faulted this test for being highly
conservative. Partly in response to such criticism, some statisticians have suggested the use of a modified,
non-randomized version of this test, namely the mid-P-value test. This paper examines the actual type I
error rates of this test. For both one-sided and two-sided tests, and for a wide range of sample sizes, we show
that the actual levels of significance of the mid-P-test tend to be closer to the nominal level as compared with
various classical tests. The computational effort required for the mid- P-test is no more than that needed for
the Fisher exact test. Further, the basis for its modification is a natural adjustment for discreteness; thus the
test easily generalizes to r x ¢ contingency tables and other discrete data problems.

INTRODUCTION

Comparison of two independent binomial proportions occurs frequently in statistical practice.
We use the following notation to describe it. Let 4 and B denote the number of successes in
independent samples from two binomial populations (n,, n,) and (n,, n,), respectively. Define
n = n, + n,. Then the joint probability of a particular realization is

Pr(d=a B=b= (:) (;’2)”';(1 B (M)

fora=0,1,...,n,and b=0,1,...,n,, and where ¢ = n, — aand d = n, — b. Usually it is of
interest to test Hy:m, = 7, against H, :m, # m,, or to test Hy:my = n, against H,:m, > m,.

A vast amount of research effort, spanning over half a century, has focused on the above
problem. A volummous literature exists, and prominent statisticians have engaged in acrimoni-
ous debates. Yet the question of the appropriateness of various approaches remains clouded by
considerable controversies.!? Among applied statisticians a sort of nonchalant attitude towards
these controversies seems to have emerged; their practice appears to be guided by what has been
described as ‘conventional wisdom’.? Thus in practice, when the two sample sizes are large,
analysts generally employ the Pearson chi-square test. With small to moderate sample sizes, they
use either the Fisher exact test or the Yates continuity corrected chi-square test.

The latter two tests have, almost since their advent, faced numerous criticisms on both
theoretical and empirical grounds. Yates' summarizes the history of and the arguments behind
these critiques. Recent critiques have focused on the empirical performance of these tests.>™®
Either from their own extensive studies, or from a review of work done by others, these authors
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argue that the Fisher exact and the Yates chi-square tests are excessively conservative when used
with small to moderate sample sizes. The consequence of implied loss of power then diminishes
the practical utility of both these tests.

Consequently, identification of test procedures whose actual type I error rate is closer to the
nominal significance level, especially when the sample sizes are not large, has become an
important research issue. D’Agostino et al.® showed that even with small sample sizes the
uncorrected chi-square test and the Student ¢-test based on binary data generally provide actual
significance levels not far from the postulated levels. Upton® and Overall et al.® evaluated a wide
variety of test procedures for this problem. From the above and related research it appears that
with consideration of both ease of computation and the average or median actual significance
level, one would recommend use of one of the three tests - the Pearson chi-square test, the t-test or
the scaled chi-square test - for almost all sample sizes encountered in practice. The bases for all
these tests, however, are asymptotic approximations. This is reflected in the tendency of the actual
significance levels of these tests to vary, at times appreciably, about the nominal level. The
conduct of above cited and other similar studies entailed a limited configuration of sample sizes,
nominal significance levels and true common parameter values. Thus there is not yet a complete
picture regarding the variability of the actual significance levels of these and other tests.

Tocher” presented a version of the Fisher exact test that not only attains the nominal level
exactly, but that also has some optimal power characteristics. This test involves the use of an
extraneous randomization procedure. Such a feature makes the test unappealing to practising
statisticians, especially those who work with biomedical data.®® Lancaster® proposed the use of a
non-randomized test procedure for discrete distributions derived from a consideration of the
randomized test and based on the concept of a mid-P-value. Since then various authors have
suggested employment of a mid-P-based procedure in connection with the Fisher exact test,!013
Most recently, Barnard'*'3 advocated reporting both the traditional P-value and the mid-P-
value when performing the Fisher exact test. Despite the simplicity and intuitive appeal of this
concept as well as its potential for use in a wide variety of discrete data situations, apart from a
limited comparison done by Miettinen,'? no comprehensive evaluation of the mid-P-test has
appeared. None of the above cited papers that critically evaluated the Fisher test mentions it, and
in general statisticians appear to be unaware of its existence.

In this paper, we investigate the properties of the mid-P-test for comparing two independent
binomial proportions. For a wide variety of sample and population configurations, we compare
the actual significance levels of the mid-P-test (M) with those of the Fisher exact test (F), the
Pearson chi-square test (X), the scaled chi-square test (S) and the Student t-test (T). The
comparisons performed are for both one-sided and two-sided tests, at four commonly used levels
of significance, and for a total sample size that ranges from 4 to 100. The next section describes
these five test procedures.

THE TESTS

The Pearson and scaled chi-squared tests
For an observed configuration (a, b), the chi-square statistic is
X? = (ad — bc)®n/{n,nya + b) (c + d)}.

A two-sided a-level test then consists of comparing this value with a cut-off value obtained from a
x? distribution with one degree of freedom (d.f)) or a standard normal distribution. A one-sided
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test would reject if, additionally, the difference between the observed proportions was in a
specified direction.

The scaled chi-square statistic derives from use of the appropriate mean and variance of the
conditional hypergeometric distribution, and is X? = X?*(n — 1)/n, which one compares with a x?
statistic with 1 d.f. Both these tests are approximate tests because the distributions of X > and X 2
approach that of x? with 1 d.f. only when the sample sizes are large.

The Student ¢-test

This test uses the means and the variances of the two binomial distributions to compute the
classical two independent samples t-statistic based on a pooled estimate of the variance. The
significance of the result obtains by comparison of the statistic with cut-off values derived from
the Student ¢ distribution with n; + n, — 2d.f.

The Fisher exact test

Derivation of the Fisher test involves consideration of the conditional distribution of 4 give
A + B, which depends only on the parameter ¢ = =, (1 — 7,)/{n,(1 — m,)}. A testof m, = m,
against 7, # 7, is equivalent to a test of ¢ =1 against ¢ # 1, and a test of 7, = n, against
m, > m, is equivalent to a test of ¢ = 1 against ¢ > 1. Hence one can construct a test based on the
conditional distribution for these hypotheses. Define

f(a,s,¢)=Pr(A=alA+ B=s5,¢) and S(a,s, )= Pr(A > a|lA + B=s; )
Then for the one-sided a-level test, we would reject if the f(a, s, 1) + S(a,s, 1) < .

For the three asymptotic tests described above, owing to the symmetric nature of the reference
distributions, the two-sided tests are uniquely defined. But that is not the case for the hyper-
geometric distribution. For asymmetric distributions, there are many different ways to obtain a
two-sided test. These are based either on various measures of deviation from variously defined
central points of the distribution, or upon consideration of the area in the two tails, or on the
principle of minimum likelihood.'® Upton® computed two-sided P-values for the Fisher exact test
in terms of the absolute deviation from the mean of the null conditional hypergeometric
distribution. P-values based on deviation from the median may also be appropriate. Hill and
Pike'” suggested two methods for computing two-tailed P-values; the first was based on the odds
ratio, while the second included, in addition to the conditional probability of the observed tail, all
terms of the other tail such that the sum of their conditional probabilities did not exceed that of
the observed tail. Yates,' quoting R. A. Fisher, considers doubling the conditional probability of
the observed tail as the appropriate two-sided P-value. Cox'® also used this method in
connection with general conditional exact tests for discrete data. Pratt and Gibbons!? suggest the
use of a technique, apparently originated by Neyman and Pearson, that orders all observations
on the basis of their probability. For the F test, one can use this method by ordering all
observations in the conditional space in terms of their null conditional probability.

Since this paper does not seek to compare all methods for computation of a two-tailed P-value,
we selected to study only the two-sided tests constructed with the methods of Cox'® and Pratt
and Gibbons'® because of their generality, as well as their adaptability to the concept of mid-P-
value described below. Hence the two methods that we used to construct a two-sided test,
respectively called the minimum likelihood method and twice the smallest tail method, were:
() F1: reject if Pri{y:f(y,s1)<f(a,s,)}|A+ B=s]<a, or (i) F2: reject if minimum
{f(a,s,1) + S(a,s, 1), 1 — S(a,5, 1)} < a/2.
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We call the above tests exact because they are based on an exact, albeit conditional,
distribution for the problem. Tests based on exact conditional or unconditional distributions lead
to some form of control over the actual significance levels. Thus all these three tests, F, F1 and F2,
guarantee non-exceedance of the nominal significance level. Further, these are conditional tests
where the conditioning has served to eliminate a nuisance parameter.

The mid-P-test

Lancaster® described the concept of a mid-P-value for univariate discrete distributions. Tradi-
tionally, the definition of a P-value is the probability of obtaining the observed or a more extreme
configuration if the null hypothesis is true. In a continuous distribution, inclusion or exclusion of
the observed point from the critical region is immaterial in P-value computation. In a discrete
distribution that is not the case, and its inclusion is what leads to the conservativeness of exact
test procedures with discrete data. Lancaster® proposed computation of the mean of the two
probabilities obtained by inclusion and exclusion of the observed point. This is equivalent to
inclusion of half the probability of the observed point in each tail. This quantity, called the
mid-P-value, then forms the basis for accepting or rejecting the null hypothesis.

We can then apply the concept of a mid-P-value to the conditional hypergeometric distribution
used for the Fisher exact test. With this modification, the above one-sided procedure becomes:
M: reject if the 0-51(a, s, 1) + S(a, s, 1) < a. The two-sided test can now be carried out in the
following two ways:

(i) MI: reject if
o5 Pri{y:f(y,s, ) =f(a, s, D}|A+ B=s]+ Pr[{y:f(3.s, ) <f(a,s, )} |[A+ B=5s]<q,
and
(i) M2: reject if
0-5/(a,s, 1) + minimum{S(a, s, 1), t — S(a,s, 1) — fla,s 1)} < /2.

The general formulation of M2 is due to Vollset.2°

A mid-P-based test is a quasi-exact test because, although it is based on an exact (conditional)
distribution, it does not guarantee non-exceedance of the nominal significance level. The extent to
which the mid-P approach reduces the conservative bias of the Fisher exact test, and its
performance relative to other tests for comparing two binomial proportions, need to be assessed
empirically. In the next section, we describe the design of such an empirical study.

METHODS

We conducted a study to compare the actual significance levels of the five tests (X, S, T, F and M)
described above. The two sample sizes n, and n, were varied among all possible values in the set
{2,4,6,....,50}, giving a total of 625 configurations ranging from equal to the highly unequal,
and from very small to moderately large sample sizes. The nominal significance levels studied
were the commonly encountered levels, 0:01, 002, 0-05 and 0-10. For each of these combinations
of sample sizes and significance levels, we computed the actual level of significance for each test
when the common binomial parameter = = n, = n, took the values 0-1,0-2,0-3,0-4 and 0'5. This
was done as follows. For sample sizes n, and n,, the sample space Q(n,, n,) is the set of all integer
valued pairs (a, b) with 0 < a < n, and 0 < b < n,.?!*22 Suppose that for a given test performed
at a nominal level &, R(x, n,, n,) is the subset of Q(n,, n,) over which the null hypothesis is
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rejected. Then, when the null is true with the binomial parameter equal to n, the actual
significance level of the test is

N Z ) (:l) (:2) na-l-b(l _ n)c-kd.

Before presenting the results, we mention some salient features of our study. We did not study the
situation when 7 > 05 as the results for it are almost equivalent to those for = < 0-5. They are not
exactly identical. See the exchange between Schawe?* and Garside?* for a discussion of this issue.
For comparative purposes, however, not much additional information would accrue by also
presenting results for = > 0-5 if the two sample sizes are varied in a symmetric fashion so as to
include balanced as well as unbalanced sample size configurations. This is what we have done in
the present study. D’Agostino et al.,* who also studied only the cases with n < 05, criticized
earlier comparative studies for the limited number of configurations of significance levels, sample
sizés and binomial parameter values considered. Their study represented an improvement over
the earlier ones in this regard. Thus, for each a level, they studied 660 configurations of sample
sizes and 7. They gave results, however, for a two-sided test only, without explicitly stating how
they performed the two-sided test. In our study, for each specified significance level, we looked at
a total of 3125 sample size and binomial parameter configurations for both one-sided and two-
sided tests. Thus not only did we study the same « levels as they did, but for each level we give
results for almost five times the number of configurations for both one-sided and two-sided tests.

RESULTS

The overall results appear in Tables I and II respectively for one-sided tests and two-sided tests.
These tables give some selected percentiles of the distributions of the true a-levels for the 3125
configurations studied. The Oth, 50th and 100th percentiles correspond, respectively, to the
minimum, median and maximum actual significance levels. First we note that for each nominal
a-level, our results confirm the excessive conservativeness of the exact tests, namely, F for the one-
sided, and F1 and F2 for the two-sided. For the two-sided exact tests, however, the minimum
likelihood method (F1) is not as conservative as the method of computation of twice the observed
tail probability (F2). This observation is important as some consider the Fisher exact test more
conservative in a two-sided than in a one-sided situation.?* Qur results show that before one can
reach a firm conclusion one must ensure that the basis is not the more conservative of the various
methods for computation of a two-sided P-value.

Further, our results also support earlier observations regarding the Pearson chi-square (X), the
scaled chi-square (S) and the ¢ (T) tests. These tests generally provide true significance levels not
far from the nominal ones. The median actual levels of these three tests are quite close to the
nominal levels, with those of T closest when compared with all the other four tests. S performs
somewhat better than X or T in terms of extent of exceedance of the nominal level. For two-sided
tests, T has a much higher maximum actual significance level compared with the other two when
the nominal level is 0-01 and 0-02. In general, S is slightly more conservative than X or T. The
basic problem with these three tests is the wide range over which the actual a-level varies. In some
situations they are as conservative as the Fisher exact test, while in other situations their actual
levels are more than one and a half times the nominal level. Thus although the frequency of a very
low, true a-value relative to the nominal value is low, and that of a relatively very high value also
low, the mere simultaneous existence of these possibilities is disquieting. This is even more so if
such a possibility depends, as we shall show below, on the value of the unknown nuisance
parameter.
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Table 1. Percentiles of the distributions of ASL, one-sided test

Percentile X T S F M
NSL = 001
0 0-000 0-000 0-000 0-000 0000
5 0-000 0000 0-000 0-000 0-000
10 0-000 0-000 0-000 0-000 0-000
25 0-007 0-007 0-006 0-001 0004
50 0010 0010 0-009 0004 0007
75 0-011 0012 0-010 0-005 0-008
90 0-0t5 0015 0013 0-005 0-009
95 0020 0020 0017 0-006 0009
100 0070 0070 0-060 0007 0011
NSL =002
0 0-000 0-000 0-000 0-000 0-000
5 0-000 0-000 0-000 0-000 0-000
10 0003 0002 0001 0-000 0001
25 0017 0016 0015 0004 0011
50 0020 0020 0019 0-008 0015
75 0022 0022 0021 0010 0017
90 0027 0027 0026 0011 0018
95 0034 0034 0-031 0012 0019
100 0-086 0-086 0080 0015 0023
NSL = 005
0 0-000 0-000 0-000 0-000 0-000
5 0004 0-003 0-003 0-000 0001
10 0-029 0024 0025 0001 0-009
25 0048 0-045 0-045 0015 0035
50 0052 0049 0050 0023 0042
75 0056 0053 0-054 0028 0046
90 0064 0061 0061 0031 0048
95 0073 0-069 0-069 0032 0049
100 0131 0128 0128 0039 0057
NSL =010
0 0-000 0-000 0-000 0-000 0-000
5 0058 0-041 0046 0-001 0012
10 0-093 0-086 0089 0009 0050
25. 0-099 0095 0-096 0038 0079
50 0104 0-100 0-101 0051 0089
75 0110 0-105 0107 0060 0095
90 0121 o114 0117 0065 0-098
95 0134 0122 0-128 0067 0100
100 0190 0172 0179 0078 0117

ASL is actual significance level; NSL is nominal significance level; X is chi-square; T is ¢;
S is scaled chi-square; F is Fisher exact; M is mid-P

The performance of the mid-P-test falls between that of the F test on the one hand, and the §, X
and T tests on the other. It is considerably less conservative than F; its median actual level is
much higher than that of F but still somewhat below the nominal level. But it does not exhibit the
tendency to overshoot the desired a-level by a large amount that characterized X, T and S. This is
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Table II. Percentiles of the distributions of ASL, two-sided test

Percentile X T S F1 F2 MI M2
NSL = 001

0 0-000 0-000 0-000 0-000 0-000 0000 0-000
s 0-003 0004 0-002 0000 0-000 0-000 0-000
10 0005 0006 0-004 0:001 0-000 0003 0:001
25 0-008 0009 0-007 0003 0-001 0-006 0-003
50 0009 0010 0:009 0005 0003 0-008 0-006
75 0010 0011 0010 0-006 0004 0009 0-008
90 0012 0013 0011 0007 0-005 0010 0-009
95 0015 0117 0014 0007 0-005 0011 0:009
100 0050 0125 0047 0-009 0:007 0014 0011
NSL = 002

0 0-000 0000 0-000 0000 0-000 0-000 0-000
5 0005 0009 0-004 0-000 0-000 0004 0-000
10 0009 0014 0007 0-003 0:001 0009 0-003
25 0012 0017 0011 0007 0-003 0014 0:007
50 0014 0020 0013 0011 0007 0017 0014
75 0015 0021 0014 0013 0009 0019 0017
90 0016 0-024 0015 0014 0011 0020 0018
95 0020 0028 0019 0015 0011 0022 0018
100 0057 0125 0057 0018 0014 0026 0023
NSL = 0:05

0 0000 0-003 0-000 0-000 0-000 0-000 0-000
5 0032 0:030 0028 0-006 0001 0-019 0007
10 0037 0036 0035 0012 0-005 0-029 0013
25 0045 0044 0044 0020 0010 0039 0024
50 0050 0-049 0048 0030 0-020 0-045 0:039
75 0053 0052 0051 0035 0:025 0049 0044
90 0056 0055 0-054 0:038 0029 0052 0047
95 0059 0057 0056 0:039 0030 0055 0048
100 0125 0125 0-086 0046 0038 0075 0:057
NSL = 010

0 0-005 0:005 0004 0-000 0:000 0-000 0:000
5 0070 0-064 0-064 0019 0:007 0-061 0:020
10 0079 0073 0074 0031 0014 0073 0:033
25 0096 0091 0091 0047 0025 0085 0-063
50 0102 0098 0-098 0064 0045 0093 0084
75 0107 0-103 0103 0073 0055 0099 0-090
90 0114 0107 0107 0078 0061 0-106 0-095
95 0119 0110 o111 0082 0063 0113 0097
100 0-156 0-146 0-146 0094 0076 0134 0114

ASL is actual significance level; NSL is nominal significance level; X is chi-square; T is ¢; S is scaled chi-square; F1 is
Fisher exact (minimum likelihood); F2 is Fisher exact (twice smallest tail); M1 is mid-P (minimum likelihood);
M2 is mid-P (twice smallest tail)

true for all nominal levels, and for both one-sided and two-sided tests. For the two-sided test, M1
corrects the conservativeness of the Fisher test by a greater degree than does M2.

We also looked at the influence of the total sample size and the common binomial parameter
value on the actual a-level. In the interest of economy we present, in Tables III, IV and V, the
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Table 111. Effect of total sample size on ASL (NSL = 0-05)

N =2-20 N =22-40 N = 42-60 . N =62-80 N = 82-100
Percentile S M S M S M S M S M
One-sided test
0 0000 0000 0000 0000 0000 0000 0000 0-000 0000 0-000
5 0000 0000 0000 0000 0002 0000 0042 0035 0045 0039
10 0001 0000 0004 0001 0024 0014 0045 0038 0046 0040
25 0019 0004 0041 0022 0045 0036 0048 0042 0049 0044
50 0043 0020 0049 0037 0050 0042 0050 0045 0050 0046
75 0055 0033 0055 0042 0055 0045 0052 0047 0052 0048
90 0071 0040 0067 0045 0062 0047 0055 0049 0054 0050
95 0087 0042 0078 0047 0069 0048 0059 0-050 0056 0052
100 0118 0055 0118 0055 0128 0057 0076 0057 0-066 0057
Two-sided test
0 0000 0000 0003 0001 0002 0001 0032 0021 0040 0032
5 0007 0004 0020 0015 0033 0029 0041 0029 0044 0043
10 0015 0008 0028 0022 0036 0-033 0044 0033 0046 0044
25 0028 0015 0038 0032 0043 0040 0047 0041 0048 0047
50 0041 0028 0045 0042 0048 0045 0049 0044 0050 0048
75 0052 0039 0050 0-046 0050 0-048 0051 0046 0051 0049
90 0060 0047 0054 00st 0053 0052 0052 0048 0053 0052
95 0066 0054 0058 0055 0055 0055 0054 0050 0056 0055
100 0085 0075 0084 0062 0086 0062 0060 0057 0060 0059

ASL is actual significance level; NSL is nominal significance level; S is scaled chi-square; M is mid-P

results for the S and M1 tests only. The results for the other tests do not add to a comparative
evaluation of the mid-P-test other than what we have already observed from the overall results.
Further, we restrict these results to the 0-05 nominal level, the most commonly used level in
practice. The differences in the relative performance of S and M1 between the 0-05 and the other
three levels appear in the text.

Table ITI shows the influence of total sample size on S and M1 at the 0-05 level. At all sample
size levels, and for both one-sided and two-sided tests, we see that M1 provides actual levels that
are better (in the sense of not exceeding the nominal level) than those of S (or X or T), at the same
time as not being as conservative as the F or F1, F2, or M2. At larger sample sizes the
performance of S is similar to that of M1. We observed a similar picture at the 0-01 level. At the
0-02 and 0-10 levels, the two-sided M1 test showed a tendency to have slightly larger actual a-
levels than the two-sided S test when the total sample size exceeded 60. This is due to the fact that
the sample sizes we selected used 2 < n, <50 and 2 < n, < 50, and not 4 < n, + n, < 100.
Hence, samples with a greater degree of imbalance at the larger total sample sizes are not
represented in the configurations we studied. In other words, with unbalanced samples, the S (and
X and T) tests can have true a-levels quite above the nominal level even if the total sample size is
large. When the sample sizes are equal, the disparity between S and M1 is not as wide. This can be
seen from Table IV. We further discuss this issue below.

In Table V we show the effect of the value of the common binomial parameter on the S and M1
at the 0-05 significance level. Here we see that for one-sided tests, the relationship between S and
M1 at all points in the parameter space is the same as what we observed overall. A similar picture
prevailed for one sided tests at the 0:01, 0-02 and 0-10 levels. For two-sided tests, while M1
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Table IV. Effect of total sample size on ASL (NSL =0-05),
equal sample sizes

N1 =2-24 N1 =26-50
Percentile S M S M
One-sided test
0 0-002 0-000 0042 0027
5 0010 0-000 0044 0033
10 0024 0004 0-045 0038
25 0040 0023 0-048 0042
50 0047 0037 0051 0045
75 0-052 0043 0053 0046
90 0057 0-047 0056 0050
95 0064 0052 0057 0051
100 0073 0-055 0063 0057
Two-sided test
0 0-000 0000 0039 0020
5 0-000 0-000 0043 0029
10 0003 0-001 0045 0032
25 0027 0011 0048 0039
50 0045 0034 0049 0-044
75 0-051 0-041 0052 0-047
9% 0059 0045 0-057 0050
95 0-064 0048 0-058 0052
100 0070 0050 0-060 0057

ASL is actual significance level; NSL is nominal significance levei;
S is scaled chi-square; M is mid-P

performs better than S near the boundary of the parameter space, we observe a slight reversal
near the centre. We also observe this reversal at the 0-01 and 0-02 levels but not at the 0-10 level.

The relationship between &, n, and n, on the one hand, and the actual a-level on the other, can
be quite complex. We illustrate this relationship for two configurations in the case of onc-sided
tests: Figure 1 deals with the situation with a moderately sized, balanced sample (1, = n, = 25),
and Figure 2 with a large, unbalanced sample (1, = 90, n, = 5). Looking at Figure 1 we see that,
in balanced samples, both tests are quite conservative for values of 7 near 0 or 1. As n approaches
0-5, S becomes non-conservative quite rapidly, with a tendency to overshoot the nominal level.
The actual a-level of M, on the other hand, increases less rapidly, tending to remain close to but
below the nominal a-level. For unbalanced samples (Figure 2) we see that both tests are quite
conservative over a large portion of the parameter space near the boundary. For the rest of the
values of , while S exhibits a marked tendency to overshoot the true a-level, M tends to fluctuate
below or close to the nominal level. In both the above cases, we found the performance of X and T
to be similar to, but somewhat worse than, that of S. Further, the picture for two-sided tests is
somewhat more complex but the basic message is the same.

FREQUENTIST APPROACHES TO THE PROBLEM

Critics of the Fisher exact test continue to produce extensive documentation of its ultra-
conservativeness. The sheer scope of this evidence seems to put their position beyond challenge.
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Table V. Effect of binomial parameter value on ASL (NSL = 0-05)

z=01 n=02 =03 =04 n =05
Percentile S M S M S M S M S M
One-sided test
0 0000 0-000 0000 0000 0000 0000 0000 0000 0000 0000
5 0000 0-000 0001 0000 0013 0004 0040 0012 0035 0004
10 0000 0-000 0016 0007 0040 0027 0044 0027 0044 0033
25 0026 0015 0044 0034 0046 0039 0047 0040 0048 0040
50 0049 0-032 0050 0041 0050 0043 0050 0044 0050 0044
75 0058 0-040 0055 0045 0054 0046 0053 0047 0052 0047
90 0073 0-044 0062 0047 0061 0048 0056 0-048 0055 0048
95 0085 0-046 0068 0050 0065 0049 0060 0049 0057 0049
100 0128 0-055 0110 0057 0090 0057 0091 0057 0073 0057
Two-sided test
0 0000 0-000 0-000 0-000 0000 0000 0000 0000 0000 0000
5 0020 0-013 0033 0030 0036 0033 0027 0016 0014 0007
10 0028 0019 0036 0033 0039 0037 0040 0-029 0043 0028
25 0036 0-030 0042 0039 0046 0044 0046 0042 0046 0040
50 0044 0-039 0047 0046 0048 0048 0049 0046 0049 0045
75 0048 0-044 0050 0048 0050 0049 0051 0050 0052 0052
90 0055 0-047 0052 0049 0053 0050 0053 0055 0055 0056
95 0063 0047 0054 0050 0054 0051 0054 0056 0056 0059
100 0086 0-053 0074 0053 0062 0056 0065 0070 0070 0075

ASL is actual significance level; NSL is nominal significance level; S is scaled chi-square; M is mid-P

On the other hand, the defenders of this test base their arguments on a basic imperative to use a
conditional test whatever the design of the study, and also on their questioning of the validity of
an unconditional evaluation of a conditional test. Excluding those who advocate a Bayesian or
semi-Bayesian approach to the problem,?*2¢ we have grouped the positions taken by various
protagonists in this ongoing debate into four principal categories, which we describe and discuss
below.

Conditional inference

The proponents of the Fisher exact test consider performance of conditional inference as the only
logically sound alternative. More accurately, their position advocates performance of conditional
inference embedded in the conditional sample space. Thus not only should inference be based
only on information contained in the conditional sample space, but even the evaluation of this
procedure should be within this restricted space. This is the position taken, for example, by
Yates,! a number of discussants of his paper, and Hill.2” Barnard'4 comes close to adopting this
view. This approach avoids the problem of conservativeness by declaring unconditional evalu-
ations as irrelevant, and by arguing that one should not have concern for arbitrarily fixed
significance levels, but instead should report the actual attained P-value and, possibly, the next
highest P-value, or even the mid-P-value.

There are two fundamental objections to this approach. The first relates to the level of
conditioning used. Basu,2¢ in a criticism of this position, argues that instead of conditioning on
just the two margins, why not also condition on the difference between values on one of the
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Figure 1. Actual significance levels of one-sided 0-05 nominal level S and M tests for n, = n, = 25

diagonals of the 2 x 2 table? This would yield an even more restricted sample space. Indeed, why
not condition on all the data? In our opinion, the conditionalist position has not provided a
satisfactory response to this critique. We note here that for the problem under study, one cannot
justify the conditionalist position by resorting to the principle of ancillarity.2® For the problem of
comparing two binomial proportions, the total number of successes is not an ancillary statistic,?®
as is sometimes erroneously stated.?%3°

The second problem with the conditionalist position concerns the choice of the evaluative
sample space for the problem. Barnard,?! Pearson,>> Kempthorne,*' Rice*? and many others
have implicitly or explicitly argued that the sample space for any problem is fixed by the study
design, and hence in the case of the problem of comparing two independent binomial proportions,
this space is that given by (1). We make a distinction between the inferential sample space, that is
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Figure 2. Actual significance levels of one-sided 0-05 nominal level S and M tests for n, =90 and n, =5

the probability space used for drawing inferences from the data, and the evaluative sample space,
that is the probability space used for assessing any mode of performing inference for a problem.
The former may be a subspace of the latter. Thus, while we do not rule out performance of
conditional inference on an a priori basis, we feel that one should assess all the methods of
performing inference on the basis of repeated sampling done over the probability model specified
by the study design. In case of the problem under study, this model is given by (1).
Consequently, we feel that the empirical evidence of the excessive conservativeness of the
classical Fisher exact test (and the Yates continuity corrected chi-square test?) for comparing two
independent binomial proportions is valid and incontrovertible. The evidence from our study
provides further support to this position. Thus a- partial explanation of its continued use in
practice, as noted by several authors, is the mystique associated with the word ‘exact’. Un-
doubtedly, this test enables elimination of the nuisance parameter in a clever fashion, and the
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computation of exact conditional probabilities for outcomes in the conditional sample space.
These advantages, however, do not appear to outweigh its ultra-conservative performance, and
the consequent loss of power for detection of realistic alternatives.

Moreover, in the context of the probability model (1), we feel that there is need for caution in
interpreting the P-values given by the Fisher exact test (or, for that matter, those from the
Pearson chi-square, the mid-P, and most tests for this problem). Traditionally the definition of a
P-value is the probability of obtaining an observation as extreme as or more extreme than the
realized one if the null hypothesis is true. If, however, any nuisance parameter is unspecified under
this hypothesis, then such a probability is unknown, and the P-value loses its traditional
interpretation. Thus, for the problem of comparing two binomial proportions, we cannot consider
the P-values obtained from most tests as probabilities, under repeated sampling, of obtaining the
observed or a more extreme observation. They are merely numbers that seem to behave like
unconditional probabilities. We discuss below some exceptions to this rule.

Approximate inference

We describe this approach as the use of test procedures based on various approximations, derived
mainly from asymptotic arguments, with the understanding that we must then evaluate such
procedures in the context of the model given by (1). This is the position taken by Berkson,*
D’Agostino et al.> and Upton,® for example.

While concurring with the need for unconditional evaluation advocated in this approach, we
feel that its proponents have yet to come to terms with two shortcomings. First, it seems that they
implicitly reject conditional inference per se rather than conditional inference in the form given by
the classical Fisher exact test. Under this view, the Fisher exact test is valid only if both marginals
are fixed by design. A forthright expression of this position is expounded by Haviland? and
Andres and Luna del Castillo,2° and a critique of it is given by D’Agostino** and Mantel.** Thus,
in their zeal to criticize the Fisher exact test, the strict anti-conditionalist position overlooks
examination of other forms of conditional inference, such as that based on conditional mid-P-
values. Further, even the conduct of empirical assessment of the Fisher exact test has been non-
comprehensive. D’Agostino et al.> pointed out some of the shortcomings, and in this paper we
mention factors such as two-sided tests, unbalanced samples and true parameter values, in
relation to which a complete assessment of the performance of various tests needs to be done.

Unconditional inference

Barnard?! pioneered this approach. He devised a test procedure from a direct consideration of
the unconditional sample space (1). Subsequently various authors have given test procedures that
we can regard as extensions and modifications of his basic approach.’-35:3¢ This approach,
which we term unconditional exact testing, allows for interpretation of a P-value as an upper
bound on the unconditional probability of the critical region. Thus with this approach both the
inferential space and the evaluative space are given by (1).

Upton® evaluated the test developed by Barnard,?! and found it to be somewhat conservative.
Another problem with this approach is its computational complexity in the general case. While in
this age of omnipresent microcomputers it is quite feasible to perform such tests for two binomial
proportions,*? it is infeasible to perform such unconditional tests for the 2 x 2 table with no fixed
margins, for r x ¢ tables, or for general discrete data problems even with large mainframe
computers. Storer and Kim3? also point out computational problems associated with exact
unconditional tests and propose the use of an approximate unconditional test. In terms of non-
exceedance of nominal levels, this test appears to be similar to the mid-P-test.
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Randomized inference

This approach, developed by Tocher,” relies upon the conduct of an auxiliary random experiment
upon observation of the data and before one draws inference from the data. It is the only
approach that deals satisfactorily with the problem of conservativeness. We note that the basis for
this approach is a conditional inferential space. Camilli and Hopkins®® compared the power of
the Tocher test with that of the chi-square test when the total sample size is small, and Lloyd*®
provides an interpretation and justification of a two-sided version of it. To date, however, this
approach has theoretical interest only, and numerous authors have criticized its use in a practical
setting.®®

Aconditional inference

This approach, which for the lack of a better term we call ‘aconditional inference’, neither
considers conditional inference as the sole valid method in all settings, nor restricts conditional
inference only to situations where the study design justifies it. Rather, conditioning is seen as one
of the techniques, within the context of an unconditional sample space, of deriving inferential
procedures. Thus for the problem at hand, this approach considers the sample space (1) to be the
appropriate evaluative space. But it does not advocate use of either a conditional or an
unconditional inferential procedure on the basis of some a priori dictum. According to this
viewpoint, from the 2 * "2+ 1) subgsets of the sample space, the Fisher exact test provides but
one method selecting a critical region. There are many other subsets, such as those given by the
classical approximate tests, or by various unconditional tests, that can be considered as well.
Which one, if any, is to be preferred depends on the criterion used; moreover, this is a question
that needs to be subject to theoretical and empirical evaluation in the context of the complete
sample space.

Gleanings of this approach are found in D’Agostino®? and Mantel,>* and we subscribe to it as
well. Here conditioning is seen as a device for deriving exact distributions, free from nuisance
parameters, which can be used to perform tests of hypothesis or to derive confidence intervals for
a parameter of interest,*® Thus, unlike Barnard'* or Williams,® it is in this spirit that we
advocate consideration of the mid-P-test. This test provides but another method of constructing a
critical region, and, if closeness to nominal levels in an important criterion for assessing a test
procedure, then we have shown that it performs quite well.

CONCLUDING REMARKS

For the problem of comparing two independent binomial proportions, our study and review of
the literature leads us to the following conclusions:

(i) The classical Fisher exact test and the Yates continuity corrected chi-square tests are too
conservative for practical use.

(i) When the two samples are nearly equal, and when one anticipates that the underlying true
binomial value is near 0-5, one can use the scaled chi-square, the Pearson chi-square, the ¢
or the mid-P tests for all sample sizes.

(iii) In case of quite unequal sample sizes, or when the common binomial parameter is near 0
or 1, we recommend the mid-P-test even when the total sample size is large. The approx-
imate unconditional test of Storer and Kim3” would also perform well in this situation.

(iv) For computation of two-sided Fisher or mid-P-values, the method of minimum likelihood
is less conservative than that of doubling the one-sided P-value, and is to be preferred. This
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recommendation is opposite that given earlier by Dupont*! and Lloyd,*® who examined
the issue from the viewpoint of sensitivity of P-values to minor changes in the contingency
table.

Various authors have argued for the use of a mid-P-test on intuitive and theoretical grounds.
Lancaster® derived it from a consideration of randomized tests and investigated its properties in
some discrete distributions. Here we view it as a natural adjustment, on the probability scale, for
discreteness. Stone*? provided a rationale for it in the context of a general theory of significance
testing. Barnard'* gave a justification for it in terms of approximating continuous distributions
and he computed the mean and variance of the distribution of mid-P-values. Our study
empirically documents its appropriateness, for the problem of comparing two binomial pro-
portions, in a repeated sampling framework.

One may argue that the mid-P-value does not correspond to a repeated sampling probability of
a defined event. But, in the presence of nuisance parameters, neither do P-values obtained from
the traditional tests. All are merely numbers that provide a guide to action. Determination of
which one is more appropriate requires examination of which one has actual error levels closer to
postulated levels.

Further, the use of the mid-P-value generalizes to rx ¢ contingency tables and to higher-
dimensional discrete data problems. The computation of a mid-P-value does not require more
work than that needed for computation of the traditional ‘exact’ P-value. With availability of
efficient algorithms for computation of exact conditional distributions,>® 43-46 jt s feasible to use
mid-P-based procedures for more complex problems. Further, we can use the concept of mid-P in
an unconditional setting as well. Hirji*’ studied a multiparametric mid-P-test for matched case-
control studies. Here the mid-P procedure performed better than traditional large sample
procedures, while it avoided the high degree of conservativeness of the ‘exact’ method. Vollset®°
investigated use of mid-P-based procedures for analysis of the common odds ratio in several 2 x 2
tables. A more thorough assessment of the use of the mid-P-value for more complex situations,
however, remains to be done.
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