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Dynamic signatures of electronically nonadiabatic cou-
pling in sodium hydride: a rigorous test for the sym-
metric quasi-classical model applied to realistic, ab initio
electronic states in the adiabatic representation†

Justin J. Talbot,∗a Martin Head-Gordon,a,b, William H. Millera, and Stephen J. Cotton,a

Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure making
it a potentially tractable system for the detailed investigation of nonadiabatic molecular dynamics
from both computational and experimental standpoints. The single vibrational degree of freedom,
as well as the strong nonadiabatic coupling that arises from the excited electronic states taking
on considerable ionic character, provides a realistic chemical system to test the accuracy of quasi-
classical methods to model population dynamics where the results are directly comparable against
quantum mechanical benchmarks. Using a simulated pump-probe type experiment, this work presents
computational predictions of population transfer through the avoided crossings of NaH via symmetric
quasi-classical Meyer-Miller (SQC/MM), Ehrenfest, and exact quantum dynamics on realistic, ab
initio potential energy surfaces. The main driving force for population transfer arises from the
ground vibrational level of the D1

Σ+ adiabatic state that is embedded in the manifold of near-
dissociation C1

Σ+ vibrational states. When coupled through a sharply localized first-order derivative
coupling most of the population transfers between t = 15 and t = 30 fs depending on the initially
excited vibronic wavepacket. While quantum mechanical effects are expected due to the reduced
mass of NaH, predictions of the population dynamics from both the SQC/MM and Ehrenfest models
perform remarkably well against the quantum dynamics benchmark. Additionally, an analysis of the
vibronic structure in the nonadiabatically coupled regime is presented using a variational eigensolver
methodology.

1 Introduction

Electronically nonadiabatic processes are ubiquitous throughout
many important areas of chemistry.1–6 From a computational
standpoint, dynamic predictions of these processes requires a set
of potential energy surfaces, nuclear gradients, and nonadiabatic
coupling vectors, as well as a time propagation model for the
electronic and nuclear degrees-of-freedom (DOF). One typically
prefers analytic gradients for the calculation of nuclear forces
and nonadiabatic couplings which provide the greatest accuracy

aDepartment of Chemistry, University of California, Berkeley, California 94720, USA.
E-mail: justin.talbot@berkeley.edu
bChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Califor-
nia, 94720, USA.
† Electronic Supplementary Information (ESI) available: [Additional electronic
structure and grid convergence analysis. The linearly-interpolated potential energy
surfaces, analytic nuclear gradients, first-order derivative couplings (.xlsx). The cal-
culated vibronic energy levels and select vibronic wavefunctions (.txt).] See DOI:
10.1039/cXCP00000x/

when compared with finite-difference approximations; however,
for realistically-sized molecular systems computing analytic gra-
dients and nonadiabatic couplings collectively can amount to by
far the dominant computational expense. Over the last decade,
ab initio electronic structure theory has seen substantial progress
in the efficient and accurate calculation of nonadiabatic cou-
plings either through diabatization models7–11 or directly as a
first-order derivative coupling vector in the adiabatic represen-
tation.12–16 However, providing meaningful estimates of nona-
diabatic coupling often results in a trade-off between accurate
wavefunction-based electronic structure approaches, which can
include electron correlation but create a substantial computa-
tional cost, or more approximate electronic structure theories
which allow for the study of larger systems with higher complex-
ity.

Many dynamics methods have been developed already which
can, in principle, utilize an ab initio treatment of the elec-
tronic structure when propagating the electronic and nuclear
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Fig. 1 A comparison between the EOM-EE-CCSD singlet potential
energy surfaces of sodium hydride and the ion-pair interaction energy.
The dashed line at 6.303 eV is the calculated ion-pair dissociation limit
(top). The calculated bond length dependence of the first-order deriva-
tive couplings between the excited singlet states (bottom). There are two
avoided crossings between the C-D potential energy surfaces (blue). The
first avoided crossing (R=2.72Å) has the strongest, but most localized,
first-order derivative coupling. The second avoided crossing (R≈12Å)
is weaker in comparison but causes the C state to dissociate at the
Na(4s)+H(1s) limit. The first-order derivative coupling between A-C
(green) and the A-D potential energy surfaces (brown) is also shown.

DOF. Some of these methods include FSSH17–19, Ehrenfest20–24,
AIMS25–28, and SQC/MM29,30, which all involve different ap-
proximations and cost trade-offs.31,32 Ideally, one would choose
a quantum mechanical-based method for both the electronic and
nuclear dynamics which generally offers the greatest accuracy.
However, as these methods scale exponentially with system size
they are typically prohibitively expensive for all but the lowest-
dimensional chemical systems.33–35 When true quantum me-
chanical effects, e.g., tunneling, are not too important treating
the electronic and/or nuclear DOF with classical mechanics of-
fers an appealing low cost alternative with easily parallelizable
trajectories that are directly amenable to electronic structure cal-
culations.

The symmetric quasi-classical Meyer-Miller (SQC/MM) ap-
proach is in essence a simple quantization model used in conjunc-
tion with the classical electronic+nuclear dynamics arising from
the Meyer-Miller (MM) Hamiltonian. While maintaining a foun-
dation that is based entirely in classical mechanics, SQC/MM has

predicted with reasonable accuracy a wide range of electronically
nonadiabatic processes for many model systems including site-
exciton and spin-boson models,36–41 simple Tully models,42–44

and, related to the present study, a Morse potential model of dis-
sociation dynamics45. While the treatment of model chemical
systems with SQC/MM have oftentimes been demonstrated in the
diabatic representation, for ab initio simulations the natural rep-
resentation is in terms of the adiabatic electronic states arising
from the Born-Oppenheimer approximation. Recent years have
seen significant progress in the development and application of
SQC/MM to study general molecular systems in the adiabatic ba-
sis where potential energy surfaces, nuclear gradients, and nona-
diabatic coupling vectors are calculated "on-the-fly" using avail-
able electronic structure theories.46–50 Pushing these ideas fur-
ther, demonstrative calculations of the SQC/MM model where
the results are readily comparable against experimental measure-
ments and/or quantum mechanical benchmarks, represents an-
other step towards the development of a sufficiently accurate
“black box” approach for predicting the nonadiabatic dynamics
of general molecular systems.

Alkali hydrides are some of the simplest diatomic molecules
which may serve as realistic ab initio test systems for studying
the accuracy of the SQC/MM model. Their ground electronic
states (X1Σ+) are primarily single configurational with energies
well-separated from their excited electronic states. Likewise, their
deep potential wells lend themselves to small anharmonicity con-
stants where calculations of ground state properties qualitatively
reproduce experimental observations even with crude theoreti-
cal models.51–55 In their excited electronic states, these seem-
ingly simple systems gain substantial complexity as their elec-
tronic structure at longer bond lengths takes on a considerable
amount of ionic character.56,57 This, in turn, introduces a cascade
of avoided crossings between the excited Born-Oppenheimer po-
tential energy surfaces. Since the low-lying electronic states of
these systems are generally well-described with only single and
double excitations, in a manageable active space, they are also
prime candidates for the use of accurate wavefunction theories
like equation-of-motion coupled cluster theory with single and
double excitations (EOM-EE-CCSD). The benefit of using such a
high level of electronic structure theory for a such simple systems
is that a realistic description of the underlying potential energy
surfaces may be obtained along with analytic gradients for the cal-
culation of nuclear forces and nonadiabatic derivative-coupling
vectors.58–60

While to some degree all of the alkali hydrides exhibit this se-
ries of avoided crossings, a prime example is seen in the excited
potential energy surfaces of sodium hydride (see Fig. 1).61,62

The relatively low-energy ion-pair dissociation limit, Na+(3p6)
+ H−(1s2), introduces significant anharmonicity along the A, C,
and D 1Σ+ potential energy surfaces as their outer wells take on a
substantial amount of ionic character.62 For the A electronic state,
the ionic contribution extends the outer well to long bond lengths,
in effect, forming a shallow potential well that dissociates at the
Na(3p) + H(1s) limit. As the ion-pair dissociation limit is ap-
proached by the C and D potential energy surfaces however, the
ionic character becomes more pronounced forming outer wells of
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the C and D electronic states that are purely ionic. The result, for
the C and D states, is two double-well potential energy surfaces
with two avoided crossings (R= 2.72Å, R≈ 12Å). While the C state
dissociates at the Na(4s) + H(1s) asymptote, the D state contin-
ues to follow the ion-pair interaction energy until dissociation at
the Na(3d) + H(1s) limit.†. Additionally, the displacement of the
C surface’s outer well introduces a far weaker avoided crossing
with the A surface (see bottom panel of Fig. 1).

Recent studies of sodium hydride have utilized available exper-
imental and theoretical data to fit accurate ground and excited
state potential energy surfaces. On the theoretical front, a study
by Aymar, Deiglmayr, and Dulieu found that static polarizibilities,
transition, and permanent dipole moments could be accurately
predicted by modelling the electronic structure of sodium hydride
as an effective two-electron system in the full configuration inter-
action limit—solidifying the use of double excitation methods for
an accurate description of electronic properties.† 61 Later, using
these calculations as well as available experimental data, Walji,
Sentjens, and Le Roy went on to fit highly accurate potential en-
ergy surfaces for the X and A states capable of producing vibra-
tional lines that are directly comparable to experimental measure-
ments.62,63 From experiments, a study from Chu, et al. found
the double-well potential of the C state could be accessed using
optical-optical double resonance fluorescence spectroscopy.64,65

After a potential fit analysis, the highest experimentally accessi-
ble vibrational level of the C state was determined which notably
lies directly in the region of strong first-order derivative coupling
between the C and D potential energy surfaces.

The aims of the present study are two-fold. First, electronic
structure and vibronic energy levels of the low-lying singlet elec-
tronic states of sodium hydride are presented with the hope that
these benchmarks could be confirmed through a properly con-
structed experiment. These predictions were based from EOM-
EE-CCSD quality potential energy surfaces, analytic nuclear gra-
dients and first-order derivative couplings, as well as the vibronic
eigenstates which were calculated using a variational eigensolver.
Second, using these calculations, the accuracy of SQC/MM to
model the population dynamics through this series of avoided
crossings is evaluated and compared against Ehrenfest predic-
tions and quantum wavepacket benchmarks.

2 Methods

2.1 Electronic Structure

The potential energy surfaces, analytic nuclear gradients, and
first-order derivative couplings were calculated using the EOM-
EE-CCSD method with the core-valence polarized aug-cc-pCVQZ
basis set. The EOM-EE-CCSD excitation energies of NaH, as well
as four Rydberg states of the sodium atom were used to assess
convergence with respect to basis set. The number of occupied
orbitals included in the correlated calculations was determined
from convergence tests of the excitation energies evaluated at the
ground state equilibrium bond length. Correlation consistency
was obtained after omitting the sodium atom’s 1s electrons from
the correlated calculations. Likewise, core-valence polarized ba-
sis functions were required to obtain a reasonable agreement with

available experimental data for the Rydberg states of the sodium
atom. The coupled-cluster expansion was truncated at double
excitations as it was found that including a perturbative triples
correction to the energy introduced only a slight improvement to
the correlation energy of the X electronic state at the equilibrium
bond length. The results of the convergence tests are provided
in the ESI.† All potential energy surfaces, analytic nuclear gradi-
ents, and first-order derivative couplings were calculated using a
release version of the Q-Chem 5.3 software package.66

All electronic properties (energies, gradients, and first-order
derivative couplings) were calculated on an evenly spaced grid
along a normalized Cartesian displacement vector (Q). The grid
spacing was chosen as 0.026Å. All first-order derivative coupling
vectors were deduced from analytic gradients using Szalay’s ap-
proach which is the standard method for calculating EOM-EE-
CCSD first-order derivative couplings in Q-Chem 5.3.58,59 While
the grid spacing was fine enough to not require analytic gradients
for the calculation of nuclear forces, the use of analytic gradi-
ents greatly simplifies the calculation of first-order derivative cou-
plings using EOM-EE-CCSD.58 For a few significantly displaced
bond lengths the coupled-cluster equations were non-convergent,
and these points were removed from the data set. While there
is substantial first-order derivative coupling between the C and D
potential energy surfaces near R ≈ 12Å, the grid was truncated
as convergence was particularly problematic in this region. With
the converged scan, all interior points were evaluated by inter-
polation using a linear spline with a 0.015Å grid spacing. Addi-
tional convergence tests with respect to grid size, as well as the
bond length and Q dependence of the potential energy surfaces,
nuclear gradients, first-order derivative couplings, and select vi-
brational wavefunctions are provided in the ESI.†

2.2 Time-Independent Eigensolver

In order to include the effects of first-order derivative coupling on
the vibrational energy levels, the vibronic Schrödinger equation4

was solved numerically using a modified Fourier-grid67 varia-
tional eigensolver and the Hamiltonian shown in Eq 1:

Ĥi j =
1

2µµµ

(
P̂− ih̄d(Q)

)2
i j +Ei(Q)δi j (1)

Conwhere µµµ is the reduced mass, P̂i j = −ih̄δi j~∇Q,Q’ is the mo-
mentum operator expressed in the position representation, d(Q)

is a skew-symmetric matrix of first-order derivative coupling vec-
tors, and Ei(Q) is the potential energy surface corresponding to
adiabatic state i. The vector-matrix d(Q) has elements di j(Q) ≡〈
Φi

∣∣∇∇∇QΦ j
〉

which are defined as the elements of the first-order
derivative coupling vector between adiabatic Born-Oppenheimer
electronic states Φi and Φ j after projection onto the normalized
displacement coordinate Q. The momentum operator (P̂i j) was
transformed from its diagonal momentum representation to the
position representation using a forward and reverse Fourier trans-
form accordingly.67 Solutions to the vibronic Schrödinger equa-
tion were computed variationally by expanding the eigenstates in
the direct-product adiabatic basis shown in Eq. 2:
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Ψ(r,Q) = ∑
i

Φi(r,Q)χi(Q) (2)

where χi(Q) is the nuclear contribution to the adiabatic Born-
Oppenheimer electronic state Φi(r,Q). The A, C, and D poten-
tial energy surfaces, and all corresponding first-order derivative
couplings (see bottom panel of Fig. 1), were included in the
eigensolver calculation since coupling to the B1Π state is sym-
metry forbidden. Due to the substantial grid size, integration of
the potential energy surfaces and first-order derivative couplings
required in total 2103 basis functions with 701 basis functions at-
tributed directly to each adiabatic state. For reference, the ground
vibronic energy (X,0) was calculated separately. The Hamiltonian
matrix was built and diagonalized using in-house code outside of
Q-Chem. Adiabatic only calculations were performed using the
same code by setting all matrix-vector elements di j(Q) = 0.

2.3 SQC/MM Nonadiabatic Dynamics

The SQC/MM approach to simulating nonadiabatic dynamics
combines the classical Hamiltonian of Meyer and Miller (MM)
with a simple symmetrical quasi-classical (SQC) quantization pro-
cedure for defining the electronic state occupations and other ob-
servables.

In brief, the classical MM Hamiltonian24 maps the electronic
DOF in a nonadiabatic process to a collection of classical har-
monic oscillators, one for each of the electronic states. In a dia-
batic representation, it is given by

H(x,p,Q,P) =
1

2µµµ
P2 +

F

∑
i

(
1
2 p2

i +
1
2 x2

i − γi

)
Hii(Q)

+
F

∑
i< j

(pi p j + xix j)Hi j(Q), (3)

where {xi, pi} are the coordinates and momenta of the “electronic
oscillators” corresponding to a set of F electronic states, Q, P are
the coordinates and momenta of the nuclear DOF having reduced
masses µµµ, {Hi j(Q)} is an F×F nuclear coordinate-dependent
electronic matrix (diabatic in Eq. 3), and {γi} are a set of zero
point energy (ZPE) parameters which are initially adjusted per
DOF as noted below. The evolution of the F classical oscillators in
Eq. 3 thus describes the electronic configuration in the MM model
and, in particular, the classical actions associated with each oscil-
lator

ni ≡ 1
2 p2

i +
1
2 x2

i − γi, (4)

represent the electronic occupations. The actions {ni} are specifi-
cally what are quantized via the SQC windowing protocol29,30, by
multiplicatively weighting the potential energy surfaces, {Hii(Q)}
in Eq. 3, they determine the effective forces on the nuclei.

In realistic simulations employing rigorous ab initio electronic
structure theory, the resulting electronic states are adiabatic and,
in the adiabatic representation, the MM Hamiltonian is given by

H(x,p,Q,P) =
1

2µµµ
(P+∆P(x,p,Q))2 +Veff(x,p,Q), (5)

where P is still a vector of canonical nuclear momenta but now
arises in combination with a nonadiabatic coupling vector poten-
tial given by

∆P(x,p,Q) =
F

∑
i< j

(xi p j− x j pi) di j(Q), (6)

which depends explicitly on the standard first-derivative nona-
diabatic coupling vector di j(Q) ≡

〈
Φi

∣∣∇∇∇QΦ j
〉

between adiabatic
Born-Oppenheimer electronic states Φi and Φ j (the electronic
oscillator variables {xi, pi} now corresponding to adiabatic elec-
tronic states). Eq. 5 also expresses the adiabatic MM Hamiltonian
in terms of a symmetrized, occupation-weighted potential

Veff(x,p,Q) =
1
F

F

∑
i

Ei(Q)+
1
F

F

∑
i< j

(
ni−n j

) (
Ei(Q)−E j(Q)

)
, (7)

which is commonly employed in both adiabatic and diabatic cal-
culations and guarantees the electronic dynamics are indepen-
dent of energy scale. Of course, Eq. 7 only references the diago-
nal elements of the electronic matrix {Ei(Q)≡ Hii(Q)} because it
is diagonal in the adiabatic representation.

Applying Hamilton’s equations to Eqs. 5, 6, and 7 yields
dynamically-consistent classical EOM for both nuclear and elec-
tronic DOF in terms of the canonical coordinates and momenta
appearing in Eq. 5 but, unfortunately, will explicitly require the
use of second-derivative nonadiabatic coupling matrices which are
extremely impractical to calculate in a simulation employing real-
istic quantum chemistry for the electronic states (and not readily
available in standard codes). The simple cure46 is to re-write
the canonical EOM in terms of a kinematic momentum, which
results in kinematic EOM which contain only the first-derivative
couplings di j but are nevertheless exactly equivalent; these kine-
matic EOM therefore represent the operational formulation em-
ployed exclusively in this work:

ẋi = pi
1
F

F

∑
j
(Ei(Q)−E j(Q))+

F

∑
j

x jd ji(Q) · Pkin
µ

, (8a)

ṗi =−xi
1
F

F

∑
j
(Ei(Q)−E j(Q))+

F

∑
j

p jd ji(Q) · Pkin
µ

, (8b)

Q̇ =
Pkin

µ
, (8c)

Ṗkin =−∂Veff
∂Q
−∑

i j

(
1
2

pi p j +
1
2

xix j

)
(E j(Q)−Ei(Q))di j(Q).

(8d)

In the SQC/MM approach, quantization of the classical Hamil-
tonian dynamics produced by Eq. 8 is accomplished, initially and
finally, by Monte Carlo sampling initial actions from a “window-
ing” function defined by the SQC model and, after running the
dynamics for a prescribed time interval (via Eq. 8), “binning” the
final actions by a symmetric windowing function. In this work,
the triangle windowing model was chosen in combination with
the γ-adjustment procedure, exactly as described in Ref. 45, ex-
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cept that here the adiabatic version of the MM Hamiltonian is
employed through the EOM of Eq. 8. The key point of the γ-
adjustment procedure is to set the {γi} in Eq. 4 (and therefore
in Eq. 7), per DOF (and per trajectory), so that, for each tra-
jectory, the initial force on the nuclei is that of the initial pure
quantum state—i.e., the single-surface force. With this prescrip-
tion, the {γi} still give the ensemble of trajectories an average
ZPE of 1

3 over the window function which, as described in the
SQC/MM papers, is optimal in this model and somewhat less than
the quantum value of 1

2 . Again, an important consequence of the
SQC model in combination with the γ-adjustment protocol is that
the nuclei are subject to ZPE fluctuations (in the forces from the
electronic DOF) but that the dynamics is initiated with exactly
single-surface pure state forces corresponding to the initially ex-
cited adiabatic quantum state.

2.4 Population Dynamics Simulations

The quantum/quasi-classical population dynamics on the coupled
A, C, and D states were simulated assuming a pump-probe type
experiment. The simulated experimental setup is as follows. At
time t = 0, a pump laser promotes the X ground vibronic state (X,
χ = 0), calculated either from the vibronic Schrödinger equation
(quantum) or as the harmonic oscillator ground vibrational state
(quasi-classical) to the A potential energy surface which is then
allowed to propagate for a delay time δ . At select pump-probe
time delays, between 0−250 fs, the pumped quantum wavepacket
or classical particle moving on the A potential energy surface is
promoted with a probe laser to either the C or D potential en-
ergy surfaces and allowed to further propagate. Finally, quan-
tum and quasi-classical population dynamics are recorded as the
wavepacket or classical particle moves through the avoided cross-
ing region between the C and D adiabatic states. Although the
electronic transition dipole moments between the A→ C and A→
D transitions depend on bond length,61 the population dynamics
were simulated assuming both excitations are equally possible—
for all pump-probe time delays—in order to better illustrate the
strengths and limitations of the Ehrenfest and SQC/MM models.

Using the computed vibronic energy levels, obtained by diag-
onalization of the Hamiltonian in Eq. 1, quantum wavepacket
dynamics were simulated by expanding the probed wavepacket
as a linear combination of the nonadiabatically coupled eigen-
states and this basis was propagated analytically by solving the
time-dependent Schrödinger equation. Quantum dynamics were
performed, at each pump-probe delay time, for t = 60 fs with a
0.1 fs time step. Since the normalization of the wavepacket is a
conserved quantity, the electronic state populations as a function
of time were evaluated as the summed contribution to the total
norm from each adiabatic basis function Φi.

The Ehrenfest and SQC/MM dynamics were simulated by ini-
tially sampling 25,000 nuclear positions and momentum directly
from a 0K harmonic oscillator Wigner distribution. The reduced
mass (µ = 1.050 amu) and harmonic frequency (ω = 1162.88
cm−1) were calculated from the equilibrium bond length of the
ground electronic state of NaH. Coupled-cluster with single and
double excitations and the aug-cc-pCVQZ basis set was used to

Table 1 A comparison between select adiabatic (di j(Q) = 0) and nona-
diabatically coupled vibronic energy levels and their assignments. Each
nonadiabatically coupled eigenstate was assigned to a single vibrational
level (χi) on a single adiabatic potential energy surface (Φi) by taking
the maximum squared projection.

State (Φi,χi) Adiabatic (eV) Nonadiabatic (eV) Character

X1Σ+

X,0 0.072 0.072 1.000

A1Σ+

A,0 2.850 2.850 1.000
A,1 2.888 2.888 1.000
A,2 2.928 2.928 1.000
A,3 2.969 2.969 1.000
A,4 3.011 3.011 1.000
A,5 3.054 3.054 1.000
A,6 3.097 3.097 1.000
A,7 3.141 3.141 1.000
A,8 3.184 3.184 1.000

C1Σ+

C,34 5.037 5.038 0.981
C,35 5.051 5.053 0.935
C,36 5.061 5.063 0.846
C,37 5.071 5.069 0.882
C,38 5.084 5.083 0.914
C,39 5.098 5.097 0.940
C,40 5.112 5.110 0.842
C,41 5.126 5.128 0.653
C,42 5.140 5.143 0.742

D1Σ+

D,0 5.116 5.116 0.382

calculate the harmonic frequency, reduced mass, and displace-
ment vector Q. The Wigner sampled positions and momenta were
allowed to propagate classically on the A potential energy sur-
face, with a 0.1 fs time step for a time delay δ , before being in-
stantaneously promoted to the C or D potential energy surfaces
where the particle was allowed to further propagate via Meyer-
Miller multi-surface dynamics for t = 60 fs with the same 0.1 fs
time step. The nuclear equations of motion were integrated nu-
merically with a traditional velocity-Verlet integrator and a semi-
analytic, direct diagonalization scheme was used to integrate the
equations of motion for the electronic action variables. All dy-
namic simulations were performed using in-house code outside
of Q-Chem. The Ehrenfest simulations were performed with the
same code by setting γ = 0.

3 Results & Discussion
3.1 Vibronic Level Structure
The effect of first-order derivative coupling on the adiabatic vi-
brational energy levels is shown, for a few selected eigenvalues,
in Table 1. The eigenstates were assigned to a single vibrational
level χi on the X, A, C, or D electronic states by taking the maxi-
mum squared projection onto the adiabatic basis functions Φi,χi.
The energy zero is set at the bottom of the well of the X poten-
tial energy surface allowing for direct comparison with Fig. 1.
As shown in the table, vibronic states with primarily A charac-
ter maintain their adiabaticitiy—at least for low-lying vibrational
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Fig. 2 The pump-probe delay time δ and bond length dependence of the quantum wavepacket (left) and the classical trajectories (right) propagating
along the A potential energy surface. The dashed line in both plots is the position of maximum first-order derivative coupling between the C and D
potential energy surfaces.

levels—while the adiabatic character of the highly-excited vibra-
tional levels of the C state progressively decreases until the disso-
ciation limit of the C potential energy surface is reached.†

The first-order derivative coupling between the A and C poten-
tial energy surfaces peaks at R ≈ 7Å in bond length with a delo-
calized spread of nearly ±2Å (see bottom panel of Fig. 1). This
relatively weak coupling, in addition to the even weaker coupling
between the A-D states, introduces minimal mixing with adia-
batic states from the C and D manifolds. As the outer well of
the A potential energy surfaces takes on substantial ionic char-
acter however, the resulting anharmonicity creates a potential
where the energetic splitting between vibrational levels slightly
increases with vibrational excitation (see Table 1).62 As a result,
the low-lying vibrational eigenstates of the A state are delocal-
ized over a wide range of bond lengths. For example, the average
bond length of the χ = 8 vibrational level is 〈R〉= 3.41Å which is
significantly longer than the X (χ = 0) ground state which only
has an average bond length of 〈R〉= 1.92Å.

Although energetically well separated from higher quanta elec-
tronic states,61 the D potential energy surface reaches a maxi-
mum at R= 5.30Å forming a sufficiently high barrier that localizes
low-lying vibrational states at either short or long bond lengths.†

As a result, the vibronic state with primarily D,0 character, local-
ized around shorter bond lengths, actually lies below the disso-
ciation threshold of the C potential energy surface. This embed-
ding in the manifold of C states, mediated by the strong C-D first-
order derivative coupling, results in a substantial degradation of

adiabatic character where the maximum squared projection onto
the adiabatic basis function is only 0.382. While adiabatically the
D potential energy surface supports many higher-energy bound
states, when first-derivative coupling is accounted for these states
unbind as they mix with continuum states from the C manifold.

3.2 A1Σ+ Quantum/Classical Dynamics

The time dependence of the initially excited quantum wavepacket
(X, χ = 0), propagating along the A potential energy surface, is
shown in the left panel of Fig. 2. The dashed line indicates the
bond length were the first-order derivative coupling between the
C and D states is maximum—which occurs along the repulsive
wall of the A potential energy surfaces. After initial promotion
from the X state, there is a spreading that results from anhar-
monicity as the wavepacket approaches the bottom of the A po-
tential well. This spread maximizes between R = 4Å and R = 6Å
as the wavepacket nears the classical turning point of the outer
well (δ ≈ 50 fs). Then, as the inner well is approached from
longer bond lengths, a sharp contraction of the wavepacket is
observed as it moves up the repulsive wall. For pump-probe de-
lay times longer than 90 fs, the spatial extent of the wavepacket
remains mostly intact although nodes are introduced due to fur-
ther spreading. Throughout the 250 fs pump-probe delay range
the wavepacket, moving on the A potential energy surface, passes
through the avoided crossing region a total of five times—three
from the left (shorter bond lengths) and two from the right
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(longer bond lengths).
Remarkably similar dynamics are seen when the motion on the

A potential energy surface is purely classical and sampled from
the 0K harmonic oscillator Wigner distribution as shown in the
right panel of Fig. 2. The classical motion on the A poten-
tial energy surface has a comparable spreading to the quantum
wavepacket near the outer well, between R = 4Å and R = 6Å, as
well as a similar contraction as the particle approaches the repul-
sive wall near R≈ 2Å. While both quantum and classical dynamics
have a comparable period, wavelength, and general form across
all pump-probe delay times, the primary distinction between the
two approaches is that the quantum wavepacket develops nodes
at pump-probe delay times δ > 100 fs which aren’t observed in
the classical motion.

To investigate the near classical motion of the quantum
wavepacket further, comparisons between the classical force aver-
aged over the quantum wavepacket and the classical force evalu-
ated at the quantum wavepacket’s average position as a function
of pump-probe time delay are provided in Fig. 3. The average
force calculations suggest that since the initially excited quantum
wavepacket is compact, due to the near-harmonic potential en-
ergy surface of the X electronic state, quantum motion on the A
potential energy surface can be approximated, to a reasonable
accuracy across all pump-probe delay times, with classical me-
chanics by Ehrenfest’s theorem.

3.3 Nonadiabatic Dynamics
Comparisons between quantum and SQC/MM population dynam-
ics, when the wavepacket is promoted to the C state, are shown in
the left and middle panels of Fig. 4. The contour lines represent
a 0.2 population decrease of the C state. Over the 250 fs pump-
probe delay range, there are three regions that incur substantial
population change (δ = 0−20, δ = 70−120, and δ = 160−210).
For pump-probe delay times δ < 20 fs the population transfer is
rapid, between t = 10 and t = 25 fs, ending with less than 0.2

population remaining in the C state. There are regions of pump-
probe delay times where there is no population change as the
wavepacket leaves the nonadiabatically coupled region and ap-
proaches the outer well of the A potential energy surface. As
the wavepacket approaches the avoided crossing from the right,
which occurs first near δ = 70 fs, the population transfer is again
rapid with most of the population transferring before t = 10 fs. Fi-
nally, for δ > 160 fs, the introduction of nodes in the wavepacket
and the increased spread results in an overall loss of efficiency
in population transfer ending with less than 0.3 population re-
maining in the C state after passing through the avoided crossing
region.

In general, the signed errors, which are simply defined as the
difference between the quantum and SQC/MM populations, are
around ±0.2 for population transfer from the C adiabatic state
(see right panel of Fig. 4). The contour lines in the error plot rep-
resent a change in signed error of ±0.1 population change. The
errors are more pronounced for longer simulation times (t > 50
fs), as well as longer pump-probe delay times (δ > 160 fs) with the
largest errors occurring, in general, during the final pass through
the avoided crossing. While the population transfer estimates
with SQC/MM are slightly less efficient when compared with the
quantum mechanical simulations, the SQC/MM dynamics do re-
cover the same qualitative trend. For example, there is no pop-
ulation transfer when the initially excited classical particle is out
of the nonadiabatically coupled region. Also consistent with the
quantum mechanical simulations, the population transfer begins
very quickly when the wavepacket approaches the avoided cross-
ing from the left or the right (near δ = 80,110,170, and 200 fs) but
is significantly slower when the wavepacket is promoted directly
onto the avoided crossing region (near δ = 0,90 and 185 fs).

Comparisons between population transfer calculated with the
Ehrenfest model and the quantum benchmark are provided in Fig.
5. While the signed errors between SQC/MM and Ehrenfest are
similar across most pump-probe delay times δ , slightly lower er-
rors are seen with Ehrenfest better estimating population dynam-
ics in the longer time limit (δ > 50 fs) across all three regimes.
In fact, for population transfer from the C state, errors with the
Ehrenfest model are only greater than 0.1 when the avoided cross-
ing is approached from the right (δ = 70,160 fs). Interestingly, the
errors in this region are positive where Ehrenfest tends to system-
atically overestimate the amount of population transfer compared
with SQC/MM. For a clearer comparison of the error, two single
cuts through the 2D population maps in Fig. 4 and 5 are shown,
for δ = 5 fs and δ = 70 fs, in Fig. 6.

When the wavepacket, or classical particle, is promoted to the
D state, the population transfer is more efficient overall and oc-
curs over a longer range of pump-probe delay times when com-
pared with promotion to the C state. Comparisons between the
quantum wavepacket and SQC/MM population dynamics for this
case are shown in left and middle panels of Fig. 7. Again, the
contour lines represent 0.2 decrease in population of the D state.
Quantum mechanically the population transfer is very rapid with
nearly eighty percent of the population transferring in t < 15 fs—
substantially shorter than population transfer from the C state
which takes t ≈ 30 fs. Also, when initially promoted to the D state,
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Fig. 4 SQC/MM Dynamics. The population of the C adiabatic state after initial excitation from the A adiabatic state simulated up to t = 60 fs with
pump-probe delay times (δ) between 0−250 fs. The populations are calculated from quantum wavepacket dynamics (left) and the SQC/MM model
(middle). The contour lines represent a decrease of 0.2 population in each plot. The calculated signed error between the quantum and SQC/MM
results with contour lines representing a signed error of ±0.1 (right).
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Fig. 5 Ehrenfest Dynamics. The population of the C adiabatic state after initial excitation from the A adiabatic state simulated up to t = 60 fs with
pump-probe delay times (δ) between 0−250 fs. The populations are calculated from quantum wavepacket dynamics (left) and the Ehrenfest model
(middle). The contour lines represent a decrease of 0.2 population in each plot. The calculated signed error between the quantum and Ehrenfest
results with contour lines representing a signed error of ±0.1 (right).
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adiabatic state. Comparisons are made between Ehrenfest predictions
(red), SQC/MM predictions (blue), and the quantum benchmark (black).

ranges of pump-probe delay times with no population transfer
are shorter compared with population transfer from the C state.
For longer pump-probe delay times (δ > 150 fs), the population
transfer is again less efficient overall when compared with popu-
lation transfer when δ > 50 fs and is more pronounced when the
wavepacket approaches the avoided crossing from the right.

A similar agreement between the quantum mechanical and
SQC/MM results is seen for population transfer from the D state
with SQC/MM predicting population dynamics that are remark-
ably close to the quantum benchmark. Signed errors for this case
are shown in the right panel of Fig. 7. In general, the errors are
largest when the avoided crossing is approached from the right
but still remain low over all pump-probe delay times. Compara-
ble to the population transfer from the C state, the errors progres-
sively worsen at longer pump-probe delay times with the largest
errors occurring for δ > 150 fs. When compared with the right
panel of Fig. 4, where signed errors of around −0.2 are predicted,
signed errors of around −0.1 for this case are observed for pump-
probe delay times δ > 50 and δ > 150 fs. Likewise for simulation
times t > 50 fs, the errors are less than 0.1 across all three relevant
ranges of pump-probe delay times.

Comparisons between population transfer from the D state cal-
culated with the Ehrenfest model and the quantum benchmark
are provided in Fig. 8. The errors with Ehrenfest compared with
SQC/MM are remarkably similar for this case with the signed er-
rors less than 0.2 across all pump-probe delay times.

4 Conclusions
In this work, potential energy surfaces and first-derivative cou-
plings calculated at the EOM-EE-CCSD level with a quadruple-
zeta quality core-valence polarized basis set were presented for
the low-lying singlet states of sodium hydride. The vibronic en-
ergy levels of the ground and three excited electronic states were
analyzed (X, A, C, and D) using a variational eigensolver, directly
in the adiabatic basis—which included the effect of first-order
derivative coupling. As first-order derivative coupling between
the A−C and A−D adiabatic potential energy surfaces had a neg-
ligible effect on the vibronic eigenstates, the non-adiabatic dy-
namics were effectively reduced to a coupled electronic two-state
problem involving only the C and D adiabatic states.

To illustrate the coupled dynamics on the C and D elec-
tronic states, as modulated by the nuclear DOF, a pump-probe
type experiment was assumed. In this simulated experiment,
a quantum/quasi-classical wavepacket, moving along the A po-
tential energy surface, was promoted to either the C or D adia-
batic states at selected pump-probe delay times and allowed to
further propagate. Using classical trajectories and a quantum
wavepacket constructed from the corresponding nonadiabatically
coupled vibronic states, the population dynamics were recorded
as the promoted wavepacket propagated on the coupled C and D
states. Predictions of population transfer from approximate clas-
sical models (Ehrenfest and SQC/MM) were assessed and com-
pared directly against the quantum benchmark. While Ehrenfest
had slightly less error overall, signed errors of the population
transfer from SQC/MM compared against the quantum bench-
mark were still less than 0.1 over most pump-probe delay times
with signed errors around 0.2 only when the avoided crossing was
approached from the right.

While the success of the Ehrenfest model displayed here
was directly attributed to the quantum wavepacket maintaining
compactness while passing through the C-D avoided crossing,
The Ehrenfest model is only statistically exact for a fixed nu-
clear trajectory—i.e., when the electronic and nuclear DOF are
dynamically-uncoupled. The SQC/MM approach employing the
triangle-shaped windowing methodology is statistically exact in
the same circumstances, but only for two electronic states. Since
the Ehrenfest model works well in the case of NaH, one expects
that SQC/MM would also provide a consistently good result. Of
course, both Ehrenfest and the SQC/MM methods are approxi-
mations when the nuclear motion is dynamically-coupled to the
electronic DOF. There isn’t any reason why one is going to always
strictly outperform the other. One expects, and it has been shown
here, that when Ehrenfest is adequate, SQC/MM will also be ad-
equate because the equations of motion are the same and the
Ehrenfest trajectories are a strict subset of the SQC ensemble. Of
course, in other situations, when Ehrenfest is seen to be quite in-
adequate, SQC/MM can offer a significant improvement through
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Fig. 7 SQC/MM Dynamics. The population of the D adiabatic state after initial excitation from the A adiabatic state simulated up to t = 60 fs with
pump-probe delay times (δ) between 0−250 fs. The populations are calculated from quantum wavepacket dynamics (left) and the SQC/MM model
(middle). The contour lines represent a decrease of 0.2 population in each plot. The calculated signed error between the quantum and SQC/MM
results with contour lines representing a signed error of ±0.1 (right).
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Fig. 8 Ehrenfest Dynamics. The population of the D adiabatic state after initial excitation from the A adiabatic state simulated up to t = 60 fs with
pump-probe delay times (δ) between 0−250 fs. The populations are calculated from quantum wavepacket dynamics (left) and the Ehrenfest model
(middle). The contour lines represent a decrease of 0.2 population in each plot. The calculated signed error between the quantum and Ehrenfest
results with contour lines representing a signed error of ±0.1 (right).
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the systematic and consistent incorporation of an intermediate,
but well-tested, level of electronic ZPE.
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