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Components of Executive Control in Autism Spectrum 
Disorders: An fMRI examination of dual-mechanism accounts
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Tyler Leshd, Cameron Carterd, Marjorie Solomona,d

aDepartment of Psychiatry & Behavioral Sciences, University of California-Davis, Sacramento, 
CA, 2230 Stockton Blvd., Sacramento, CA 95817

bDepartment of Psychology, University of California-Berkeley, Berkeley, CA 94720-5800

cDepartment of Psychology, University of New Mexico, Albuquerque, NM 87131

dImaging Research Center, 4701 X Street, Sacramento, CA 95817

Abstract

Background.—It remains unclear whether executive control (EC) deficits in autism spectrum 

disorders (ASD) represent a failure in proactive EC (engaged and maintained before a cognitively 

demanding event), or reactive EC (engaged transiently as the event occurs). We addressed this 

question by administering a paradigm investigating components of EC in a sample of autistic and 

typically developing (TD) individuals during functional magnetic resonance imaging (fMRI).

Methods.—141 participants (NASD=64, NTD=77) completed a rapid Preparing to Overcome 

Prepotency task during fMRI that required participants to respond to an arrow probe based on the 

color of an initially presented cue. We examined functional recruitment and connectivity in the 

fronto-parietal task control, cingulo-opercular task control, salience and default mode networks 

during cue and probe phases of the task.

Results.—Autistic participants showed evidence of behavioral EC impairment. Analyses of 

functional recruitment and connectivity revealed that autistic participants showed significantly 

greater activity during the cue in networks associated with proactive control processes but on less 

cognitively demanding trials. On the more cognitively demanding trials, cue activity was similar 

across groups. During the probe, connectivity between regions associated with reactive control 

processes was uniquely enhanced on more-demanding (relative to less demanding) trials in ASD, 

but not in TD.

Conclusions.—The current data suggest that rather than arising from a specific failure to engage 

proactive or reactive forms of EC, the deficits in EC commonly observed in ASD may be due 
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to reduced proactive EC and a consequent over-reliance on reactive EC on more cognitively 

demanding tasks.

Keywords

executive control; cognitive control; executive functions; functional recruitment; functional 
connectivity; autism spectrum disorder

INTRODUCTION

Individuals with autism spectrum disorders (ASD) often display deficits in executive control 

(EC), the set of cognitive processes that interact to facilitate flexible, goal-oriented behaviors 

(1–7). EC is thought to rely on three core components: cognitive flexibility, updating 

and maintenance, and inhibition (8–9). In addition, EC is thought to operate as a dual­

mechanism (10): proactive control involves the maintenance of task context to bias attention 

and action preparation, whereas in reactive control, task and context information is retrieved 

at a late-stage upon action execution. Behavioral research has demonstrated that individuals 

with ASD can be impaired in some, or all, of the core components of EC (6, 11-17; for 

opposing views see 18-20), and that impairments are related to negative functional outcomes 

(21–24). However, whether impairments represent a failure in proactive, reactive, or both 

facets of EC remains unclear, with data from our lab and others providing evidence that 

proactive EC is both impaired (25–26) and spared (27–29).

Resting-state (30–31) and task-based (32) functional connectivity (FC) analyses in typically 

developing (TD) individuals provide evidence of a task-positive neural network (TPN: 

33) that can be dissociated into three sub-networks: a fronto-parietal task control network 

(FPTC) anchored in the bilateral dorsolateral prefrontal cortex (dlPFC) and posterior parietal 

cortex (PPC), that guides flexible higher-order EC (34–35) and maintains task context 

(10); a cingulo-opercular task control (COTC) network anchored in the anterior and ventral 

anterior cingulate cortex [ACC, a region that detects conflict and facilitates rapid behavior 

change (26, 36–39)], lateral anterior PFC and dorsal anterior insula cortices (IC) which 

maintain control and tonic alertness (31, 40); and a salience network (SN) anchored in 

the dorsal ACC and ventral IC that detects and integrates interoceptive, autonomic and 

emotional information (41–42)1. In addition to these task-positive networks, a ‘default­

mode’ (DMN) network anchored in the posterior cingulate cortex (PCC), medial PFC, and 

superior PPC, typically exhibits task-induced deactivation (43).

Proactive EC is thought to rely on context maintenance driven by early sustained activity 

within the dlPFC, a core region of the FPTC network (10, 44), whereas reactive control 

transiently engages the dlPFC, the ventrolateral PFC (a critical part of the COTC network) 

and the ACC (a node of both the SN and COTC networks) (26). The IC in the SN 

may function to upregulate FPTC and COTC activity and down-regulate DMN activity 

in response to cues signaling the need for enhanced control (45–46). Although distinctions 

between network contributions to dual-mechanisms of EC have yet to be fully elucidated, 

1The SN and COTC networks display such a degree of overlap that both are often classified as SN, however evidence shows that 
resting-state functional connectivity strongly differs between these two networks (30–31).
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we can summarize that FPTC and SN activity appears common to both forms of EC, 

however reactive EC additionally engages the COTC and supplementary SN regions.

Task-based neuroimaging studies in ASD generally support the existence of aberrant 

functional recruitment of these networks in EC paradigms. In tasks requiring context 

maintenance, autistic adolescents exhibit decreased FPTC activity during an initial cue (7), 

but increased FC between the vlPFC and ACC during a subsequent probe (26), suggesting 

an over-reliance on reactive control (see also 47 in children). On tasks requiring inhibition, 

autistic adolescents (7, 15) and adults (48–52)- exhibit reduced PFC, ACC, IC, and PPC 

activity. Analyses of resting-state FC have also provided support for aberrant inter-network 

FC between the SN, FPTC, COTC, and DMN in adolescents (53), through the lifespan (54) 

and in adults-(55). Research has also observed evidence for both hypo- and hyper-activity 

of SN regions in autistic adolescents and adults ASD (56–61), alongside dysfunctional FC 

with the other networks in adolescents (53, 56), leading some to suggest that the root of 

EC difficulties in ASD may be inefficient switching between the networks mediated by the 

SN (62). Furthermore, relative to TD, the SN, DMN, and FPTC exhibit delayed and less 

efficient (i.e., under-connected) development in preadolescents and adolescents with ASD 

(26, 55, 63–64). It is important to note, however, that this research differs with respect to 

sample size and age, making concrete conclusions difficult.

The current work sought to advance and clarify the behavioral and neural mechanisms of 

EC in ASD by administering a rapid event-related version of the Preparing to Overcome 

Prepotency task (65) in a large sample of adolescent autistic and TD individuals while 

they underwent functional magnetic resonance imaging (fMRI). We chose to focus on 

adolescents because this is a time of significant normative cognitive maturation and a time 

when those with ASD may fall further behind, making it an important period to study. 

Consistent with most prior research, we hypothesized that autistic participants would exhibit 

behavioral deficits on trials requiring enhanced EC, although there was a possibility that no 

deficits would be apparent (27–29). Analyzing neural recruitment and FC during the cue and 

probe phases of the task allowed us to address whether early and sustained activity in the 

dlPFC, vlPFC, ACC, and IC nodes of the FPTC and SN networks indicative of proactive 

control is impaired or intact in ASD, and subsequently whether autistic participants exhibit 

an overreliance on probe-related reactive control mediated by the vlPFC and ACC regions of 

the COTC and SN.

METHODS AND MATERIALS

Participants

Participants included 141 individuals (NASD =64, mean age = 17.69 years; SD = 2.79; 

NTD = 77, mean age = 17.25 years; SD = 3.09) enrolled in the Cognitive Control in 

Autism (CoCoA) study, at the University of California, Davis MIND Institute (Table 1). 

All participants were recruited from the greater Sacramento area through advertisements, 

advocacy groups, and the MIND Institute’s subject tracking system and research volunteer 

registry. Subjects with ASD were assessed with a Diagnostic and Statistical Manual (DSM) 

- 5 Criteria Checklist, the Autism Diagnostic Observation Schedule 2 (ADOS-2; 66), the 

Social Communication Questionnaire (SCQ, 67), and were not taking any psychotropic 

Gordon et al. Page 3

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



medications other than psychostimulants (washed out 48 hours before taking part in 

the study). Subjects with TD were screened for ASD symptoms on the SCQ and a 

DSM checklist. Participants had a Wechsler Abbreviated Scale of Intelligence (WASI)-II 

FSIQ (68) of at least 70, were screened for MRI contraindications, 91.5% were right 

handed as assessed by the Edinburgh handedness inventory (69), and all received financial 

remuneration (see also supplement section 1). Thirty-one additional participants were 

recruited but excluded due to excess motion (6 TD, 6 ASD), low accuracy (5 TD, 12 ASD), 

or being behavioral outliers (1 TD, 1 ASD). The protocol was approved by the University of 

California Davis Institutional Review Board.

Measures

Rapid Preparing to Overcome Prepotency (rPOP) Task.—The rPOP task is a 

version of the POP task (e.g.,6–7, 65) adapted for rapid event-related fMRI (Fig. 1). It 

measures participants’ ability to maintain context and subsequently overcome prepotent 

response tendencies. At the beginning of each trial, participants were presented with a 

colored cue for 500ms: a green cue instructed them to respond to a subsequent arrow probe 

by pressing the button matching the arrow’s direction, whereas a red cue instructed them to 

respond to the probe by pushing the button opposite to the arrow’s direction. Proportions of 

green and red cue trials were even, and the cue was followed by a jittered (3500–5500ms) 

fixation cross during which the task context should be maintained proactively to facilitate 

subsequent responding. The probe was presented for 500ms and consisted of a white arrow 

pointing left or right, with probe direction randomly and evenly distributed within red 

and green cues. Participants had 2000ms to respond (late responses were registered as 

non-responses). A fixation cross followed probe presentation for a jittered inter-trial interval 

(ITI) between 2500–22500ms. The experiment was split into 4 5-minute runs of 28 trials 

each (total of 112 trials).

Behavioral analysis

Scores on accuracy and latency of response to probe were submitted to 2 (cue type: red 

vs. green) x 2 (diagnosis: ASD vs. TD) ANOVAs. As red trials are presumed to require 

increased EC, deficits in EC would be revealed through poorer performance on these trials in 

comparison to green trials.

fMRI analysis

Protocol.—MRI data were acquired on a 3T Siemens Tim Trio system with a 32-channel 

phased-array head coil. An MPRAGE sequence was used to acquire T1-weighted structural 

images (TR=2530ms, TE=3.5ms, slice thickness=1 mm, FOV=256 mm, voxel size=1 mm 

iso, PAT mode=GRAPPA, PE=2). Functional T2*-weighted images sensitive to BOLD 

contrast were acquired during the four individual task runs using an EPI sequence 

(TR=2000, TE=24, FOV=224, Voxel Size=3.5 mm iso, flip angle=90°, EPI factor=64).

Preprocessing (see also supplement section 2).—Functional analysis was carried 

out in FSL (v5.0.9, 70) using a standard FEAT pipeline including non-brain removal, 

functional-to-structural registration, motion correction [framewise displacement (32) 

between successive acquisition volumes - volumes with displacements greater than 0.9mm 
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were included as confounds in the model, while any participants with greater than 20% of 

volumes showing such large displacements were removed from further analysis, n = 9]2, 

distortion correction, spatial smoothing (FWHM = 6 mm), high-pass temporal filtering, 

and group-level normalization to the MNI 2mm template. A subject-level GLM included 

four regressors of interest modelling: i) green cues, ii) red cues, iii) probes following 

green cues, iv) probes following red cues. A single nuisance regressor comprising incorrect 

and non-response trials and the first trial of each run was also included. All events were 

modelled with their duration. Six participant-specific motion parameters and a set of 

confound regressors identifying functional volumes with greater than 0.9 mm framewise 

displacement (a separate regressor was used for each high-displacement TR) were also 

included in the model.

Whole-brain functional recruitment.—Before our primary ROI recruitment and 

connectivity analyses, we examined differences in activity between green and red trials at 

the cue and probe between and within groups. Given the exploratory nature of this approach 

we limit reporting within this manuscript to key findings. See supplement sections 2 and 4 

for details of this analysis.

Region-of-interest (ROI) recruitment analysis.—Functional recruitment analyses 

were restricted to a set of independently derived 6mm radius spherical ROIs (31) that 

encompassed 115 nodes of the four critical networks: FPTC (25 nodes), COTC (14 nodes), 

SN (18 nodes), and DMN (58 nodes). For node coordinates please see the supplement. 

Mean percentage blood-oxygenation level dependent (BOLD) signal change was extracted 

from each ROI at the subject-level for green and red cues and probes separately using FSLs 

Featquery and averaged across ROI’s of the same network. These network-averaged values 

were submitted to 2 (cue type: red vs. green) x 2 (diagnosis: ASD vs. TD) ANOVAs and 

corresponding p-values were corrected using the Holm-Bonferroni method (71).

Functional connectivity.—Functional connectivity analyses were performed in the 

CONN Toolbox (v18.a; 72). FSL-preprocessed functional and structural data was passed 

into CONN following two additional steps, 1) tissue-segmentation using FSL’s FAST to 

separate CSF, WM and GM, and 2) removal of noise-signals from WM and CSF using PCA. 

Our analysis examined potential interactions in connectivity between diagnosis and cue type 

between all 115 ROI’s using bivariate correlation, ROI-to-ROI, generalized psychophysical 

interaction (gPPI) models. This approach was chosen as it optimized our ability to analyze 

connectivity between specific regions of the brain that are thought to underpin EC. This 

analysis was carried out for both the cue and probe phases of the task separately and was 

FDR-corrected using nonparametric permutation testing (α=0.05, 10,000 permutations) at 

the seed-level (q < .01).

2Following exclusions and confound removal there remained significantly greater framewise displacement in ASD than TD (t(139) = 
4.14, p < .001).
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RESULTS

Prior to analysis, behavioral data was required to pass rigorous exclusion criteria, which 

included minimum accuracy and valid trials checks (see supplement section 3).

Behavioral

There was a significant effect of cue type on accuracy [F(1, 139) = 18.71, p < .001], with 

higher accuracy on green (M = 94.36, SD = 5.01) versus red (M = 92.05, SD = 7.41) trials 

(Fig. 2). There was also a significant effect of diagnosis [F(1, 139) = 6.55, p = .012], with 

TD (M = 94.38, SD = 5.45) participants more accurate than ASD (M = 92.02, SD = 5.45). 

However, there was no interaction between the two factors [F(1, 139) = 0.69, p = .406].

There was a significant effect of cue type on participants’ mean reaction time (RT) [F(1, 

139) = 119.86, p < .001], with lower RT on green (M = 798.00, SD = 222.28) as opposed to 

red (M = 841.99, SD = 220.67) trials (Fig. 2). There was no significant effect of diagnosis on 

participants’ RT [F(1, 139) = 2.09, p = .150], but there was a significant interaction between 

the two factors [F(1, 139) = 7.99, p = .005]. Pairwise comparisons revealed that green trials 

had faster mean response latency than red trials for both the ASD [t(63) = 8.52, p < .001] 

and TD [t(76) = 6.59, p < .001] groups. However, while RTs to green trials were equivalent 

between ASD and TD [t(139) = 1.13, p = .261], ASD participants were marginally slower to 

respond to red trials than were TD [t(139) = 1.75, p = .082]3.

Whole-brain recruitment

At the cue, there was an interaction between cue type and diagnosis in a single region, the 

right VI of the Cerebellum (216 voxels; peak voxel: x = 18, y = −56, z = −22; max z-value = 

4.21, Fig. 3) that was significantly more activated in ASD relative to TD on green [t(139) = 

2.42, p = .01], but not red trials [t(139) = 0.48, p = .630]. Within diagnosis groups, activity in 

this region was significantly higher on green relative to red trials in ASD [t(63) = 3.01, p = 

.004], and marginally significantly higher on red relative to green trials in TD [t(76) = 1.91, 

p = .060]. There was no interaction between cue type and diagnosis during the probe phase. 

We refrain from interpreting this finding as our brain coverage was optimized for regions of 

the higher cortex and thus coverage of the cerebellum was inconsistent.

ROI recruitment

Cue.—Average functional recruitment in all networks excluding the DMN was found to 

significantly interact between cue types and groups [COTC: F(1,26) = 23.33, p < .001 ; 

FPTC: F(1,48) = 81.74, p <.001; SN: F(1,34) = 32.57, p < .001; Fig. 4]. For all three 

networks, this interaction was driven by increased recruitment in ASD relative to TD on the 

easier green trials [COTC: t(26) = 3.81, p < .001 ; FPTC: t(48) = 2.01, p = .050; SN: t(34) 

= 2.98, p = .005], and greater recruitment on green relative to the more difficult red trials 

within ASD [COTC: t(13) = 6.08, p < .001; FPTC: t(24) = 7.81, p < .001; SN: t(17) = 2.29, 

p = .035], while activity on red was greater than green in TD for the FPTC and SN networks 

[FPTC: t(24) = 5.30, p < .001; SN: t(17) = 6.28, p < .001].

3Including age as a covariate in both analyses did not meaningfully change the pattern of results observed.
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Probe.—Only the DMN displayed a significant interaction [F(1,114) = 8.63, p = .020; Fig. 

5]. DMN activity on red trials was marginally higher in TD relative to ASD [t(114) = 1.81, 

p = .073], while within diagnosis group activity was enhanced on green relative to red trials 

for ASD and TD [ASD: t(57) = 6.71, p < .001; TD: t(57) = 3.78, p < .001].

Functional connectivity

Cue.—Three connections showed an interaction between group and cue type. An SN node 

located in the right supramarginal/angular gyrus displayed a similar pattern of connectivity 

within a DMN and a FPTC node, both of which are located in the medial paracingulate 

gyrus [SN-DMN: F(1,139) = 15.05, pFDR = .009; SN-FPTC: F(1,139) = 17.14, pFDR = .007; 

see figure 6A/B]. Both of these connections demonstrated significantly higher connectivity 

in ASD relative to TD on the easier green trials [SN-DMN: t(139) = 3.68, p < .001; 

SN-FPTC: t(139) = 2.95, p = .004], but no between-group difference on the more difficult 

red trials [SN-DMN: t(139) = 0.09, p = .924; SN-FPTC: t(139) = 0.87, p = .391]. Within 
TD, connectivity on red trials was higher than on green trials [SN-DMN: t(76) = 3.67, p < 

.001; SN-FPTC: t(76) = 4.86, p < .001]. Within ASD, SN-DMN connectivity was marginally 

higher on green trials [t(63) = 1.84, p = .071], whereas SN-FPTC connectivity did not differ 

[t(63) = 1.08, p = .284]. Additionally, a single FPTC-FPTC connection in similar regions 

was identified as varying significantly between group and cue types [F(1,139) = 19.36, 

pFDR = .002, see Fig. 5C]. This connection demonstrated significantly higher connectivity 

in ASD relative to TD on green trials [t(139) = 2.49, p = .014], and marginally significantly 

higher connectivity in TD relative to ASD on red trials [t(139) = 1.83, p = .070]. Moreover, 

connectivity on red trials was higher than on green trials within the TD group [t(76) = 3.92, 

p < .001], and higher on green trials relative to red trials within the ASD group [t(63) = 2.37, 

p = .021].

Probe.—Two connections varied in connectivity significantly between diagnostic group 

and cue type: an SN-DMN connection between the ACC and lateral occipital cortex 

[F(1,139) = 17.72, pFDR = .005; Fig. 7A], and a COTC-DMN connection within the 

paracingulate gyrus [F(1,139) = 16.56, pFDR = .009; Fig. 7B]. The SN-DMN connection 

showed significantly higher connectivity in TD relative to ASD on green trials [t(139) = 

2.53, p = .013], but no difference on red trials [t(139) = 1.46, p = .146]. Within ASD, 

there was higher connectivity on green as opposed to red trials [t(63) = 3.31, p = .002], 

and within TD the reverse was true [t(76) = 2.53, p = .014]. The COTC-DMN connection 

showed significantly higher connectivity in ASD relative to TD on red trials [t(139) = 2.83, p 
= .005], but no difference on green trials [t(139) = 1.38, p = .170]. Within ASD, connectivity 

was significantly higher on red versus green trials [t(63) = 4.48, p < .001], but no difference 

in connectivity between trial types was apparent in TD [t(76) = 1.45, p = .151].

DISCUSSION

This study aimed to clarify conflicting prior reports of executive control (EC) deficits in 

ASD. We found that autistic individuals demonstrated impaired RT performance on red trials 

(requiring prepotent response inhibition) compared to green trials (requiring no inhibition), 

signaling that they were less successful at engaging EC than those with TD. These data are 
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consistent with most previous research (6, 11–17). However, the current work went further 

by using fMRI to elucidate how proactive and reactive control mechanisms may contribute 

to this impairment.

Proactive EC is thought to rely on preparatory engagement of dlPFC nodes of the FPTC 

(44) and SN (45–46). Across both functional recruitment and connectivity analyses during 

the cue phase of the task, we observed engagement of these regions in both groups, however 

the context within which this engagement occurred differed. Network-level functional 

recruitment in both networks (and the COTC) was uniquely enhanced in ASD on green 

trials relative to red trials and relative to green trials in TD. In our analysis of functional 

connectivity (FC), we observed enhanced SN connectivity with both the FPTC and DMN 

regardless of trial type (although to a greater extent on green trials) in ASD participants, 

while this connectivity was uniquely enhanced only on red trials in TD participants. 

Considering previous reports that the SN plays a critical role in signaling the need for 

increased FPTC, and decreased DMN activity in line with salient external stimuli (42, 46, 

62), this observation is potentially consistent with an over-prescription of saliency to green 

cues in the ASD group (given the localization of SN connectivity to the right supramarginal 

gyrus, 73). Indeed, our observation that within-network connectivity in the FPTC network 

was enhanced on green relative to red trials for ASD and on red relative to green trials 

for TD, further suggests that ASD participants engaged EC-related regions to a greater 

degree on green trials. Importantly, these data do not suggest any specific impairment in the 

ability to engage proactive EC, as there were no significant differences in recruitment and 

connectivity between diagnostic groups on red trials (although patterns of activity did differ 

across groups).

Given a situation in which ASD and TD participants invoke different strategies during cue 

processing, we might expect to see a dissociation in neural responses between trial types 

during the probe, with ASD invoking greater reactive EC on non-proactively controlled, 

more difficult red trials. Our functional recruitment analysis provided moderate support for 

this - activity in the DMN was reduced on red trials to a significantly greater degree in 

ASD, consistent with greater task-engagement (43). Moreover, SN-DMN and SN-COTC 

connectivity was enhanced on red relative to green trials for ASD while the reverse was true 

for TD. Prior research indicates that coupling between the SN and other networks is most 

evident when rapid changes in behavior are required (36), especially when such changes are 

unexpected (74). Coupled with the observation that the SN nodes observed were located in 

the cingulate cortex – a region typically involved in the detection of conflict (e.g., 37–38) 

and routinely implicated in reactive EC (26, 39) - these data may signal a more late-stage, 

reactive form of control on red trials in ASD.

Taken together, the current work suggests that no specific failures of the neural instantiation 

of either proactive or reactive EC are apparent in ASD. Considering proactive control, our 

data demonstrated that autistic participants engaged networks similar to TD, but to a greater 

degree on green trials, suggesting that rather than having impairments in proactive control, 

ASD participants simply engage it differently than TD. During subsequent processing of the 

probe, individuals with ASD must therefore engage greater reactive control on red trials, a 

notion consistent with previous observations of enhanced reactive ACC activation on tasks 
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requiring cue context maintenance in ASD (7, 26, 47). Given that some researchers believe 

reliance on reactive EC to be less efficient and more susceptible to interference (75–76), 

and that red trials constitute the more difficult of the trial types, ASD participant’s reliance 

on reactive control for these trials may conceivably underlie the associated behavioral 

impairment.

However, our results do not clarify why ASD participants engage in a different, less 

efficient, strategy than TD. We tentatively suggest that these data may begin to illuminate the 

connections between EC and recognized deficiencies in cognitive flexibility in ASD (20). 

It is possible that ASD participants begin the task with a focus on proactive EC for green 

trials but fail to learn to switch or increase engagement of proactive EC to red trials even as 

the experiment continues. Future research would benefit from experimentally manipulating 

trial types in a systematic manner to determine whether initially encountered trial types 

affect consequent neural processing. In addition, research has shown that training individuals 

in proactive control strategies can lead to enhanced task performance (77–79), and more 

TD-like PFC activation in schizophrenia patients (80). To the best of our knowledge such 

an approach has yet to be taken in behavioral or neuroimaging paradigms including ASD 

participants, making this a promising avenue for future research.

Finally, our participants were in middle-late adolescence, a period of great neural and 

behavioral maturation (81). Previous research in TD has highlighted a relationship between 

developmental stage and the type of EC most predominantly utilized, with greater reliance 

on proactive control as age increases (82–86). Combined with the current findings, this 

tentatively suggests that those with ASD may be delayed in their development of EC as 

they are with several other cognitive processes (87). However, this assumption must be 

squared with conflicting observations that later-stage adolescents with ASD rely more on 

reactive control than their younger counterparts (26). Cross-sectional work as reported here 

is inherently limited in what it can reveal about development, underscoring the importance 

of future longitudinal research.
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Figure 1. 
Rapid Preparing to Overcome Prepotency (rPOP) task schematic. ITI = Inter-trial interval.
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Figure 2. 
Mean Accuracy and reaction time (RT) split by diagnosis and cue type. Error bars represent 

standard error of the mean. * represents the marginally significant (ms) difference in RT 

driving the interaction observed.
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Figure 3. 
Whole-brain interaction analyses revealed enhanced activity in the right VI of the 

Cerebellum in ASD uniquely on green trials at cue. The figure shows group data from 141 

participants displayed on sagittal, axial, and coronal slices of the MNI 2mm brain template, 

alongside mean % BOLD signal change split by diagnosis and cue type (error bars represent 

standard error of the mean). Brain regions were identified based on a 2(Cue Type: Green vs. 

Red) x 2 (Diagnosis: ASD vs. TD) ANOVA with cluster-forming thresholds of Z > 3.09 and 

p < .05 (FWE-corrected).
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Figure 4. 
Average % BOLD signal changes in the cingulo-opercular task control (COTC), fronto­

parietal task control (FPTC), and salience SN networks at cue. Error bars represent 

standard error of the mean. * represent significant pairwise differences driving the observed 

interactions.
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Figure 5. 
Average % BOLD signal changes in the default mode network (DMN) at probe. Error bars 

represent standard error of the mean. * represents significant pairwise difference driving the 

observed interaction.
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Figure 6. 
Average connectivity values relative to baseline for three connections identified in 

the interaction analysis at cue. Error bars represent standard error of the mean. * 

represent significant pairwise differences driving the observed interactions. SMG/AG = 

Supramarginal/Angular Gyrus; PCG = Paracingulate Gyrus; SN = Salience network; DMN – 

default mode network; FPTC = fronto-parietal task control network.
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Figure 7. 
Average connectivity values relative to baseline for ACC-LOC (A), and right PCG-PCG (B) 

connections identified in the interaction analysis at probe. Error bars represent standard 

error of the mean. * represent significant pairwise differences driving the observed 

interaction. Note: ACC = Anterior Cingulate Cortex; LOC = Lateral Occipital Cortex; PCG 

= Paracingulate Gyrus; SN = Salience network; DMN – default mode network; COTC = 

cingulo-opercular task control network.
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Table 1.

Participant characteristics.

TD: N = 77 ASD: N = 64 Comparison

WASI-II FSIQ 110.05 (11.23) 103.72 (12.88)
.002

a

WASI-II VCI 105.97 (12.37) 98.11 (13.99)
.001

a

WASI-II PRI 111.74 (12.48) 109.14 (15.02) .264

Age 17.25 (3.09) 17.69 (2.79) .381

Sex 16 F; 61 M 11 F; 53 M .589

ASEBA DSM ADHD 51.47 (2.65) 59.06 (7.59) <.001

ADOS SA N/A 7.72 (1.46) N/A

ADOS RRB N/A 7.08 (2.39) N/A

ADOS CSS N/A 7.72 (1.69) N/A

a
Although between groups differences in IQ existed, IQ was not related to any of the dependent variables of interest – thus there was no credible 

evidence that IQ moderated any of the observed effects and therefore these variables were not included as covariates.

WASI = Wechsler Abbreviated Scale of Intelligence; FSIQ = Full-scale Intelligence Quotient; VCI = Verbal Comprehension Index; PRI = 
Perceptual Resoning Index; ASEBA = Achenbach System of Empirically Based Assessment; DSM = Diagnostic & Statistical Manual; ADHD = 
Attention Deficit Hyperactivity Disorder; ADOS = Autism Diagnostic Observation Schedule; SA = Social Affect; RRB = Restricted and Repetitive 
Behaviors; CSS = Calibrated Severity Score
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