
UC San Diego
UC San Diego Previously Published Works

Title
Making maps of cosmic microwave background polarization for B-mode studies: the 
POLARBEAR example

Permalink
https://escholarship.org/uc/item/1b720052

Authors
Poletti, Davide
Fabbian, Giulio
Le Jeune, Maude
et al.

Publication Date
2017-04-01

DOI
10.1051/0004-6361/201629467
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b720052
https://escholarship.org/uc/item/1b720052#author
https://escholarship.org
http://www.cdlib.org/


Astronomy & Astrophysics manuscript no. mapmaking˙POLARBEAR c© ESO 2016
December 28, 2016

Making maps of cosmic microwave background polarization for
B-mode studies: the Polarbear example

Davide Poletti1, Giulio Fabbian2,3, Maude Le Jeune1, Julien Peloton4, Kam Arnold5, Carlo Baccigalupi2,3, Darcy
Barron6, Shawn Beckman6, Julian Borrill7,8, Scott Chapman9, Yuji Chinone6,10, Ari Cukierman6, Anne Ducout11,

Tucker Elleflot12, Josquin Errard13,14, Stephen Feeney11, Neil Goeckner-Wald6, John Groh6, Grantland Hall15, Masaya
Hasegawa16,17, Masashi Hazumi16,10,17, Charles Hill6, Logan Howe12, Yuki Inoue18,16, Andrew H. Jaffe11, Oliver

Jeong6, Nobuhiko Katayama10, Brian Keating12, Reijo Keskitalo7,8, Theodore Kisner7,8, Akito Kusaka19, Adrian T.
Lee6,19, David Leon12, Eric Linder8,19, Lindsay Lowry12, Frederick Matsuda12, Martin Navaroli12, Hans Paar12,

Giuseppe Puglisi2,3, Christian L. Reichardt20, Colin Ross9, Praween Siritanasak12, Nathan Stebor12, Bryan Steinbach21,
Radek Stompor1, Aritoki Suzuki6,22, Osamu Tajima16, Grant Teply12, and Nathan Whitehorn6

1 AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité, France
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Abstract

Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance,
in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric
contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering
operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order
to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which
the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions
under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then
discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in
the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation
structure in the map domain, as well as impact it may have on the performance of the popular pseudo-spectrum estimators. We
conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible
given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special
care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain
filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We
focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods
to realistic simulations based on characteristics of an actual CMB polarization experiment, Polarbear. Our analysis and conclusions
are however more generally applicable.

Key words. Methods: data analysis - cosmic background radiation
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1. Introduction

Cosmic microwave background (CMB) experiments strive to ob-
tain accurate constraints on cosmological parameters from their
surveys. Nowadays, in the quest for B-modes (the curl-like pat-
tern in CMB polarization), their time-ordered data (TOD) con-
sists of tens of trillions of samples. Map-making, that is re-
constructing a map of the observed sky, is one of the major
steps in the data analysis pipeline of any CMB experiment. It
aims to compress the volume of the data by many orders of
magnitudes, while preserving all relevant cosmological informa-
tion (e.g., Janssen & Gulkis 1992; Wright et al. 1996; Tegmark
1997).

Map-making is usually couched as a linear problem, and the
generalized least square (GLS) technique gives a closed form
solution which is unbiased and consistent for any positive defi-
nite weight matrix. If the weight matrix is the inverse covariance
matrix of the time-domain noise, this solution is also optimal as
it has the lowest possible uncertainty. In general the principal
difficulty in the GLS estimator is in solving the inverse problem,
which requires an inversion of a large system matrix. Performing
this inversion explicitly (e.g., Borrill 1999; Stompor et al. 2001)
has become very difficult as the number of sky pixels in the sur-
veys increases: the iterative solution has therefore become the
standard practice (e.g., Wright et al. 1996; Doré et al. 2001; de
Gasperis et al. 2005; Cantalupo et al. 2010; Dünner et al. 2013;
Szydlarski et al. 2014).

Essentially every real CMB dataset requires some kind of
time-domain filtering. The purpose is usually to remove sys-
tematic effects such as drifts of often-unknown origin, corre-
lated noise components, or, in the case of ground based exper-
iments, contributions from the ground and atmosphere. Some
of these effects can readily be incorporated into the GLS solu-
tion (e.g., Stompor et al. 2001; Cantalupo et al. 2010; Dünner
et al. 2013), resulting in an unbiased, or nearly unbiased, map
estimate. However, it has become common practice to perform
the map-making procedure on the filtered data as if the filter-
ing had not been applied (e.g., Culverhouse et al. 2010; QUIET
Collaboration 2011; Schaffer et al. 2011; BICEP2 Collaboration
2014; The Polarbear Collaboration 2014). In general this ap-
proach is bound to yield an incorrect estimate of the sky signal.
However, if the filters are well matched to the data so that the
time-domain covariance matrix of the filtered data can be treated
as diagonal, this technique usually leads to an enormous sim-
plification of the inverse problem present in the GLS estimator,
simplifying the implementation and reducing the computational
cost. This approach hinges on the hope that the bias present in
the sky signal in the resulting map can be robustly estimated and
corrected for at power spectrum level by studying signal-only
simulations (Hivon et al. 2002), and that the loss of statistical
precision is minor.

In this work we study the former route and consider map-
making procedures that explicitly incorporate and correct for
time-domain filtering. We present a general, self-consistent, for-
malism developed for this purpose and discuss its properties. We
point out that even if the time-domain noise is white, such filter-
ing unavoidably leads to correlated noise in the map domain,
and in extreme cases to the presence of modes whose amplitude
can not be reliably estimated from the data. We then discuss how
maps of this kind can be further analyzed using widely popular
pseudo power spectrum estimators. Our focus throughout this

paper is on the B-mode polarization and our principal figure of
merit employed here is the uncertainty on the B-mode polariza-
tion power spectrum obtained by the different approaches.

To demonstrate the formalism in a realistic setting, we use
simulations based on the scan strategy and noise typical of the
first observational campaign of the Polarbear instrument (The
Polarbear Collaboration 2014).

This paper is organized as follows. In Sect. 2 we review the
map-making formalism and present an extension to the standard
procedure that accounts for time-domain filtering. In Sect. 3,
we discuss the effect the filtering may have on the maps recon-
structed from the filtered data. In Sect. 4, we introduce specific
filters typical of ground-based experiments, while in Sect. 5 we
give a worked example demonstrating the effects of such filters
on the analysis of mock Polarbear-like data sets. We present
the main results of this work in Sect. 6 including a performance
comparison of the different map estimators, Sect. 6.3.2.

2. Map-making in CMB experiments

This section describes the map-making formalism, emphasizing
new features related to the presence of time-domain filtering.
For the time being, we assume that the problem is algebraically
solvable and leave discussion of potential degeneracies to the
next section, Sect. 3.

2.1. The standard problem

The starting point of map-making is the calibrated time-ordered
data recorded by the detectors. We collect all these time sam-
ples in a vector, d, which contains thus Nt elements. The scan-
ning strategy of the telescope and the polarization modulation
define how the sky signal contributes to each measured sample,
dt, which can be then represented as,

dt = Ipt + cos(2ϕt)Qpt + sin(2ϕt)Upt + nt. (1)

Here nt is the noise; I, Q and U are the Stokes parameters of the
incoming light for sky pixel p being observed at time t; and ϕ is
the orientation of the linear polarization sensitive detector pro-
jected on the sky. We assume throughout that the instrumental
beams are axially symmetric and are therefore convolved with
the sky signals, which we aim at estimating. There are two im-
portant, specific cases of Eq. (1) that we will find useful in this
paper. One is that of a total intensity measurement,

dt = Ipt + nt, (2)

and the other of polarization-only measurement,

dt = cos(2ϕt)Qpt + sin(2ϕt)Upt + nt. (3)

All the Stokes parameters characterizing the signal inNp ob-
served sky pixels can be arranged in a single signalNs-vector, s,
in such a way that the Stokes parameters for one pixel are fol-
lowed by the Stokes parameter for a subsequent one. The entire
data vector, d, can then be represented in a compact way as,

d = As + n. (4)

Here, n is the noise vector with covariance matrix Cn. The point-
ing matrix A is aNt byNs known matrix. Each row of A defines
a linear combination of the signal, which contributes to the mea-
surement at the time corresponding to that row. A column of A
is a “time domain signature” of the corresponding entry of s,
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telling us when a given sky pixel was observed and with what
weight it contributed to the measured signal.

In this form, map-making is a linear statistical problem
whose solution is given by the well known GLS estimator,

ŝ = (A>MA)−1A>Md, (5)

which renders an unbiased estimate of the map for any choice
of positive definite weight matrix, M. If M = C−1

n and the noise
is Gaussian, then ŝ defines the minimum variance and maximum
likelihood solution. The linear independence of the columns of A
is for the time being taken as given. This is a necessary and suf-
ficient requirement to ensure that A>MA is invertible and thus
Eq. (5) is uniquely solvable. We discuss this issue in more detail
later.

2.2. Mapmaking with time-domain filtering

2.2.1. The filtering operator

Let us collect in a single template matrix, T, all the temporal
templates we want to filter from the data, with each template
corresponding to one column. For example, a template can be
a Nt-vector equal to one in some time interval and zero every-
where else. Such a template would stand for the removal of a
temporal offset in this interval. The size of T is considerable: in
typical ground-based CMB experiments there are hundreds of
templates per detector for every scan period (15-90 minutes of
observation), easily reaching hundreds of millions of templates.
The unwanted contributions in the temporal data can be repre-
sented as some linear combinations of the columns of T,

Tx ≡ T̂x̂, (6)

where T̂ denotes a column-orthonormal matrix that spans the
same subspace as matrix T and x and x̂ are the corresponding
sets of coefficients. In general, we have,

T̂ = T (T>T)−1/2, (7)

so,

T̂> T̂ = (T>T)−1/2> T> T (T>T)−1/2 = 1. (8)

as required.
We note that the number of columns of T̂ may be smaller

than that of T if some of the original templates are not linearly
independent. In such cases, inverting matrix (T> T)1/2 would re-
quire some pseudo-inverse and the result, (T>T)−1/2 will be ef-
fectively a rectangular matrix.

We can now define the filtering as an operator that projects
out from the data all temporal modes defined by the columns of
T̂,

d′ ≡ d − T̂T̂>d = (1 − T (T>T)−1T>) d. (9)

We note that if our goal is to filter all modes that belong to the
subspace spanned by the columns of T, and at the same time
to weight all the modes that are orthogonal to this subspace by
some symmetric weight matrix, M, then we can generalize the
filtering operator in the right hand side of Eq. (9) so it performs
both these functions simultaneously. If we further require that
the combined operator, FT, is also symmetric, such a generaliza-
tion is unique and the operator reads,

FT ≡M −MT (T>MT)−1T>M. (10)

As desired, this operator obviously filters all the modes from the
space spanned by T as,

FTT = 0, (11)

and weights by M any mode, t⊥, that is orthogonal to T, in the
sense of a scalar product weighted by M (i.e., T>Mt⊥ = 0), as

FTt⊥ = M t⊥. (12)

We emphasize that in general the filtering operator, Eq. (10)
is not equivalent to filtering the templates one after another, as
is often implemented in practice. Indeed, this would be the case
only if the templates happen to be orthogonal from the outset.
In such a case, T>MT is diagonal (i.e., t>i Mt j ∝ δi j, where ti
denotes the ith column of T) and therefore

FT = M
∏

i

M−1 Fti = M
∏

i

(
1 − ti (t>i Mti)−1t>i M

)
. (13)

If the filters are not orthogonal, and the filtering is performed se-
quentially, then removing any given template will typically rein-
troduce some contribution to templates previously filtered, and
the final result may depend on the order of the filters. These ef-
fects are often small but can sometimes be relevant.

By contrast, the filter proposed in Eq. (10) resolves all am-
biguities of this kind. With help of this operator we can now
generalize the map-making equation, Eq. (5), as

ŝ = (A>FTA)−1A>FTd, (14)

where FT acting upon d removes all the unwanted modes
and weights the others as required, while the matrix operator,
(A>FTA)−1, ensures that the estimator is unbiased. Indeed, in-
serting Eq. (4) for d we get,

ŝ = s + (A>FTA)−1A>FTn, (15)

and thus,

〈ŝ − s〉 = 〈(A>FTA)−1A>FTn〉 = 0, (16)

where the average is taken over a statistical ensemble of instru-
mental noise realizations and 〈n〉 = 0.

The map-domain noise covariance matrix of the unbiased
map estimator is (see, e.g., Tegmark (1997) or Stompor et al.
(2001))

Cŝ ≡ 〈(ŝ − s)(ŝ − s)>〉
= (A>FTA)−1A>FT 〈nn>〉FTA(A>FTA)−1

= (A>FTA)−1A>FT Cn FTA (A>FTA)−1. (17)

If M = C−1
n then this can be rewritten in a compact way as,

Cŝ = (A>FTA)−1, (18)

owing to the fact that, FT M−1 FT = FT. This simply generalizes
the standard expression for the covariance derived in the case of
the maximum likelihood map-making with no filtering, which
reads,

Cŝ = (A>C−1
n A)−1. (19)

3
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2.2.2. The meta-pixel approach

We note that an equation analogous to Eq. (14) can be de-
rived from the meta-pixel approach (e.g., Stompor et al. 2001;
Cantalupo et al. 2010). In order to do so, let us generalize the
data model in Eq. (4) to incorporate the presence of contributions
other than the CMB and noise. This can be done as follows,

d = As + Ty + w. (20)

where T is, in general, the set of time-domain templates that we
want to filter out, y is their unknown amplitude, and w is the
noise. We can rewrite Eq. (20) as,

d = [A,T]
[ s

y
]
+ w. (21)

Estimating the unknown parameters for this data model and for
the one in Eq. (4) are formally equivalent. We will assume that
[A,T] is full rank: the time-domain signature of the unknown
parameters are all linearly independent, postponing discussion of
degeneracies to Sect. 3. The GLS estimator for Eq. (20), written
in a block fashion is

ŝ = (A>FTA)−1A>FTd (22)
ŷ = (T>FAT)−1T>FAd (23)

where FT and FA are filtering operators as in Eq. (10).
As Eq. (22) shows, ŝ can be computed without explicitly

solving for the amplitude of the templates ŷ. This is the direct
approach, adopted in this paper. Moreover, this is exactly the
same expression as was derived in the previous section, Eq. (14).
There are however several advantages to this derivation. For in-
stance, it shows that if the weights are chosen appropriately
(i.e., M = Cn

−1), then the map estimated via Eq. (14) is both
maximum likelihood and minimum variance. Moreover if the
Bayesian perspective is adopted, then the posterior probability
distribution for the combined vector of unknowns in Eq. (21)
(i.e., [ s

y ]) is Gaussian and the second term in the expression for
the filtering operator, FT, Eq. (10), arises simply as a result of a
marginalization of this posterior over the unknowns contained in
y, assuming flat priors (Stompor et al. 2001).

This derivation of the estimator also suggests that the map
can be solved for in two steps rather than one. Indeed, instead
of using Eq. (22), if one first gets the estimate ŷ, then ŝ can be
estimated as,

ŝ = (A>MA)−1A>M(d − Tŷ), (24)

which, for simple M may be much easier to solve than Eq. (22).
This latter approach provides a basis for the destriping tech-

nique (e.g., Poutanen et al. 2004; Keihänen et al. 2004, 2010;
Tristram et al. 2011). We emphasize that the one- and two-step
methods are formally equivalent: they lead to the same estimate
of the sky signal. Eq. (24) is usually easy and cheap to imple-
ment as the weight matrix, M, is typically taken to be diagonal
in this context. Choosing between the two approaches is there-
fore driven by the cost of Eq. (22) compared to Eq. (23). These
two equations require handling dense algebraic objects of a di-
mension equal to the number of columns of A and T respectively.
The former is proportional to the number of observed pixels and
the latter to the number of temporal templates. As this last num-
ber typically grows with the number of detectors and the pres-
ence of spurious signals in the observations, the direct method
provides a potentially attractive approach for modern experi-
ments, which employ arrays of thousands to tens of thousands of
detectors. This includes both ground-based observatories, such

as Polarbear (The Polarbear Collaboration 2014), and planned
CMB satellite missions, like Litebird (Matsumura et al. 2016) or
COrE (The COrE Collaboration 2011). By contrast, the two-step
approach is very well suited to experiments with a limited num-
ber of detectors observing large sky areas, which produce maps
with large numbers of pixels but have relatively few templates to
be removed. For these reasons it has played particularly promi-
nent role in the analysis of the Planck data (Planck Collaboration
2016b,a).

If M is diagonal then A>MA and T>MT are usually
sparse and structured and therefore easy to compute and in-
vert. Conversely A>FTA and T>FAT are dense and potentially
large. The size of the former matrix is proportional to the num-
ber of pixels, ranging from 105 for ground-based experiments
to 109 for satellites covering the whole sky. The size of the
latter matrix also typically exceeds 108 for kilo-pixel arrays.
These matrices are not only computationally expensive to ma-
nipulate but also often too large to explicitly computate and/or
store. Consequently, the solution of the inverse problem either in
Eq. (22) or in Eq. (23) would ideally be found using some iter-
ative linear equations solvers such the preconditioned conjugate
gradient method (PCG) (e.g., de Gasperis et al. 2005; Cantalupo
et al. 2010; Szydlarski et al. 2014). However, convergence of
these iterative solvers may be hard to attain if the matrices are
not well conditioned. We discuss the PCG approach in the con-
text of the extended map-making equation, Eq. (14), in Sect. 3.3,
from the formal point of view, and in Sect. 5.3.1 and 6.1, in the
specific context of Polarbear.

2.2.3. The biased map estimator

Performed directly or iteratively, the inversion of A>FTA (or
T>FAT) is the bottleneck in both implementation and execution
time. This is why many experiments prefer to use instead the
biased map estimator

ŝ = (A>MA)−1A>FTd. (25)

As FT still acts upon the data vector, d, the templates are still ex-
plicitly filtered out of the data. However, this is not accounted for
in the system matrix, (A>MA)−1, which therefore does not cor-
rect for the filtering but only for the weighting. If M is diagonal,
this choice enormously simplifies the implementation and drasti-
cally reduces the computational cost. The price to pay is a bias in
the estimator. This bias is usually evaluated and removed at the
power spectrum level using Monte Carlo simulations and typi-
cally requires some additional assumptions (e.g., Hivon et al.
2002). This approach is thus most frequently considered to be a
part of the power spectrum estimation pipeline.

The presence of bias in the map is apparent as we have,

Bias = 〈ŝ − s〉 =
[
(A>MA)−1A>FTA − 1

]
s, (26)

which does not vanish in general. The covariance of the esti-
mated map then reads,

Cŝ ≡ 〈(ŝ − 〈ŝ〉)(ŝ − 〈ŝ〉)>〉
= (A>MA)−1A>FT 〈nn>〉FTA(A>MA)−1

= (A>MA)−1A>FT Cn FTA (A>MA)−1. (27)

Therefore, if the filters are chosen such that the matrix FT Cn FT
is nearly diagonal for any diagonal weights, M, then we can take
them to be, M = diag (FT Cn FT), yielding,

Cŝ ≈ (A>MA)−1, (28)

4
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and therefore the covariance can have a particularly simple struc-
ture. However this is rarely the case, and instead even if the true
noise is uncorrelated and M = C−1

n , the covariance reads

Cŝ = (A>MA)−1A>FTA (A>MA)−1, (29)

and thus is a dense matrix with potentially non-negligible, off-
diagonal correlations.

We note that the information content of both the unbiased
and biased maps is the same, since one can be derived from the
other via an invertible linear operation. Indeed,

ŝunbiased = R ŝbiased (30)

where R ≡ (A>FTA)−1 (A>MA) is an invertible matrix.
However, the key to the biased approach is that no attempt is
ever made to estimate the matrix R. Consequently, although the
same information is contained in both maps it is encoded dif-
ferently in each of them, and whenever equivalent biased and
unbiased maps are subsequently processed their information is
compressed differently, giving rise to different statistical proper-
ties in the resulting estimator.

3. Map-making in the presence of degeneracies

So far we have assumed that the generalized map-making equa-
tion can be robustly solved, implicitly assuming that the system
matrix, A>FTA, is invertible. However this may not always be
the case, and in this section we elaborate on this and discuss
what can be done in such circumstances.

We first note that invertibility of the system matrix is en-
sured if the matrix [A,T] is full column rank. This can be seen
immediately by noting that (A>FTA)−1 stands for an upper left
diagonal block of the inverse of the matrix,[

A>
T>

]
M [A,T] =

[
A>MA, A>MT
T>MA, T>MT

]
, (31)

which is invertible only when [A,T] is full column rank. In prac-
tice, since all the operations have to be performed numerically,
what really matters is not strict linear independence in the math-
ematical sense but rather linear independence sufficient to ensure
stable and robust, finite-precision numerical calculations, as ex-
emplified by Eqs. (22), (23), (10), (24) and (25).

In general, given a matrix B and vector z laying in its range,
if B is singular we can solve the equation Bx = z for x only down
to an unknown contribution from the nullspace of B. Typically,
the component of the solution parallel to the nullspace will be
arbitrarily set to zero and its true value unavoidably lost. In prac-
tice it could be obtained by regularizating the matrix, which in-
volves first calculating its inverse via computing and inverting its
eigenvalues. The regularization is then applied to all eigenvalues
that are smaller then some predefined threshold by setting to zero
the corresponding eigenvalue of the inverse.

[A,T] may not be full column rank for three different rea-
sons, leading to three possible types of degeneracies:

3.1. The columns of A are not independent.

This degeneracy would affect standard map-making as much as
our extension, but we include it for completeness. In this case,
the scanning strategy does not allow the reconstruction of some
sky mode. A typical example is a polarization pixel that was not
observed with sufficient redundancy in the polarization angle.

This case is easy to avoid because A>MA is easy to build. If
M is diagonal the cost is O(Nt) operations and A>MA is block

diagonal (a block for each pixel); its eigendecomposition (cost-
ing O(Np) operations) then enables us to evaluate the condition
number of each of the blocks. After pixel selection based on their
condition numbers (and the removal of the corresponding sam-
ples from the TOD) the new A>MA can be safely inverted.

3.2. The columns of T are not independent.

This reflects the fact that there is redundancy in the templates,
and basically corresponds to an attempt to filter the same tem-
plate twice. For example, this happens in practice when two dif-
ferent sets of templates (e.g., the polynomial and the ground tem-
plate filters) both remove the global offset of the TOD.

Since the final goal is to estimate ŝ and not ŷ, Eqs. (22)
and (23), this degeneracy does not pose any fundamental prob-
lem. We merely need to construct a basis of span(T) and use it
to define a new (smaller) set of independent templates T̂ as de-
scribed in Sect. 2.2.1.

In practice, the situation is also quite straightforward. By
construction, there are usually many known orthogonality rela-
tions between the templates. As a consequence, T>MT is typ-
ically reasonably easy to compute and is sparse and structured.
Its inverse can then be computed explicitly using standard matrix
inversion techniques. The condition number of this matrix pro-
vides an easy test of the linear independence of the templates,
and if it is too high the matrix has to be regularized while be-
ing inverted. Once such a regularized inverse (T>MT)−1 is com-
puted, it should be used in the projector of Eqs. (22) and (25), to
take care of the redundancies and therefore the degeneracies.

3.3. Some columns of A are not independent from the
columns of T.

This is the most insidious type of degeneracy in the map-making
problem, and its presence reflects a degeneracy between the sky
signal and the templates. In this case the reconstruction of some
sky component is not possible if the templates have been filtered.
As a trivial example, by systematically filtering the mean of the
total intensity TOD we create a degeneracy with the global offset
of the temperature map.

This type of the degeneracy manifests itself as a singularity
of both A>FTA and T>FAT. This can be seen immediately by
noting that, if the columns of A and T are not independent, then
there exits at least two modes, one in the map domain, s̃, and one
in the template domain, ỹ, such as,

As̃ = Tỹ, (32)

and therefore

A>FTAs̃ = A>FTTỹ = 0, (33)
T>FATỹ = T>FAAs̃ = 0, (34)

given that FTT = FAA ≡ 0, Eq. (11). The two modes, s̃ and ỹ,
constitute a pair of degenerate modes, which, while residing in
different domains, lead to the same effects in the time-domain
data and therefore can not be distinguished from each other.

In this case the best one can do to solve the map-making
problem is to regularize the inversion of the singular matrix and
to compute all the modes of the map for which the solution
can be obtained and determine the modes for which it cannot.
These latter modes will be missing from the reconstructed map.
We note that this is not due to the regularization procedure but
because these modes are removed from the data by the filters.
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Indeed,

AFTd = AFTAs + AFTn = AFTAs⊥ + AFTn, (35)

where the subscript ⊥ denotes the part of the sky signal orthog-
onal to the nullspace of AFTA, as the part parallel to it is unre-
coverably lost. The information about these removed modes then
needs to be propagated to next steps of the analysis and properly
taken into account to ensure that the final results are statistically
meaningful.

This route is only straightforward in practice if all the ma-
trices appearing in Eq. (31), can be constructed and decom-
posed explicitly. However, because of their sizes this may be
a formidable and often unfeasible task, even with help of the
largest massively parallel platforms and parallel software pack-
ages. If this is indeed the case, and the solution can be only de-
rived using some iterative technique, then the singular modes
may not only be impossible to compute and correct for, but in-
deed it may not be clear from the outset whether the matrices are
singular or not. In such cases this may need to be inferred post
hoc from the behavior of the solver. We discuss these issues in
more depth in Sect. 6.1.

We also emphasize that, in the presence of this kind of degen-
eracy, the maps computed by the direct and two-step approaches
may not be identical. Indeed, in the direct case the unconstrained
sky modes will be missing from the estimated map, while in the
two-step case the situation is different as the regularized inver-
sion has to happen when the estimate of the template amplitudes
is performed. Consequently, these will be degenerate “modes”
of the templates, which will be missing in ŷ, while the template-
corrected data vector, d − Tŷ, will retain a time-domain compo-
nent that should have been filtered out. Hence, the map estimated
in the second step, Eq. (24), will contain some of the degener-
ate sky modes, which were set to zero in the direct approach.
Obviously, if the fact that these modes can not be estimated is
properly taken into account in the covariance of the maps, both
maps will be statistically equivalent. We also note that to com-
pute which map modes are non-constrainable one may use the
singular modes of T>FAT, found while performing the first step
of the two-step method, and use them in the second step by re-
placing the template-corrected data vector, d − Tŷ by Tz, where
z stands for one of the singular eigenvectors. Map-domain tem-
plates resulting from this calculation will have to be then orthog-
onalized using, for example, the Gram-Schmidt procedure.

In the case of the biased map estimator, Eq. (25), this de-
generacy does not pose any numerical issue. As in the unbiased
cases the map estimate will have no contribution from the sky
signal modes residing in the nullspace of A>FTA due to the fil-
tering applied in the time domain, Eq. (35). Nevertheless, the
amplitudes of the filtered modes in the biased map will usually
be non-zero as a result of the power leaking to them from the
other pixel-domain modes.

4. The case of ground-based experiments

As a specific application of the above formalism let us consider
the map-making problem for a modern, ground-based, CMB ex-
periment, which scans the sky with a kilo-pixel array of polar-
ization sensitive detectors in the presence of both atmospheric
and ground emission. Commonly, in order to minimize the im-
pact of the atmospheric contribution, the scans are performed at
constant elevation for relatively short periods of time. The eleva-
tion is then changed to track the sky patch, which moves due to
the Earth’s rotation. The scan amplitude, the choice of the scan

elevations, and the elevation dwelling time are specific to each
observation. In the following, we consider only cases that con-
form to this general description.

The data of such an experiment are typically more complex
than the simple model exemplified by Eq. (4), whether due to
the atmospheric, instrumental, or ground contamination. Below
we describe common contributions of this type and explain how
they fit within the extended data model, Eq. (20), and how they
can be treated with the map-making technique introduced earlier.

4.1. Noise correlations

The noise is usually correlated between different detectors and
typically displays significant low frequency excess, dubbed 1/ f
noise, which arises either as an instrumental effect, or from at-
mospheric emmission, or from some other effects. As a result
the time-domain noise correlation matrix, Cn, is dense, mak-
ing its inversion and multiplication computationally demanding.
Moreover, the matrix, Cn, is unknown and has to be estimated
from the data themselves (e.g., Ferreira & Jaffe 2000). This pro-
cedure is usually difficult, especially as far as the low frequency
modes and detector-detector correlated modes are concerned.
In addition, the low frequency contributions may not be even
stationary or Gaussian, and thus can not be properly described
merely by a covariance. Consequently, using the optimal weight,
C−1

n , in the map-making process may be difficult. Using a sim-
pler weight matrix, M, does not lead to a bias in the standard
map estimator, Eq. (5), however its choice does affect the qual-
ity of the final map. This is because for different weights, the
time-domain data, d, are coadded differently on the first step
of the map-making procedure, when the right hand side of the
map-making equation, A>Md, is calculated. For instance, diag-
onal weights (in the map domain) can not selectively suppress
some temporal frequency bands over others. Consequently, if
1/ f noise is present, even if it is Gaussian and stationary, the
low frequency modes will not be properly down-weighted as
compared to the high frequency ones. This may result in stripes
appearing in the direction of the scans. The effect is particularly
apparent if the scanning strategy does not provide good cross-
linking. Non-Gaussian/non-stationary features can be even more
difficult to deal with.

Instead of down-weighting such long modes one may prefer
to filter them out, as in the filtered map-making, Eq. (14). The
time-domain data are then explicitly filtered while being com-
pressed to the pixel-domain object, A>FTd. The long term trends
present in the time-ordered data can be removed at this stage.
Such removal is blind to the origin and nature of the trends, po-
tentially removing the true sky signal together with the noise and
some unwanted spurious contributions. However, the signal-to-
noise ratio for these modes is usually very low, as the 1/ f noise
quickly dominates, and the information loss due to the potential
removal of the sky signal is typically negligible. If this is the
case, then filtering can provide a useful alternative to weighting.

The modes to be filtered out are typically assumed to be arbi-
trary linear combinations of some sufficiently rich family of tem-
poral templates, which has to be defined case-by-case. For long
term trends, the templates are often taken to be piece-wise low
order polynomials or harmonic functions defined for all samples
of the data, and are represented by columns of some template
matrix, B. If the templates are well matched to the problem at
hand, then the residual noise, w, defined as,

w ≡ n − Bx, (36)
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is expected to be ’whiter’ than the actual time-domain noise, n,
and thus approximately characterized by a diagonal noise co-
variance matrix. Here, x stands for a set of a priori arbitrary
parameters to be determined, similar to the sky signal, s, which
define the amplitudes of the corresponding templates (Stompor
et al. 2001). We point out that in general one could introduce
some additional information about the long term modes of the
noise by setting some constraints on x. As such constraints are
typically hard to identify and might not lead to a significant im-
provement in the sensitivity, we will not consider them in this
paper (see, e.g., Keihänen et al. 2010, for an implementation of
this idea in the context of the two-step map-making). As we will
see below, in their absence the map-making will discard all the
information in the data that matches the time-domain signature
of the templates, effectively filtering all template-like modes out
of the data. As previously explained, this causes a loss of a sky
mode, s̃, only if its time-domain projection As̃ is a template-
like mode. In general, subsequent observations break the degen-
eracy that a template might have with a subset of the dataset.
There are two well-known exceptions. First, the global offset of
the time streams is always filtered, as a consequence the global
offset of the temperature map is unconstrained. Second, when
observing from the Earth’s poles, scans at constant elevation al-
ways probe constant declination stripes, with different elevations
corresponding to different declinations. Filtering the offset from
the time streams of each of these scans prevents the reconstruc-
tion of the offset of each of these constant declination stripes.
These can be partially recovered if the stripes share some of the
sky pixels owing to the assumption that the sky signal is con-
stant across a pixel. The resulting constraints would typically be
weak, in particular for the relative offset of two stripes that are
not directly adjacent, which could be constrained only via the in-
termediary ones. Consequently, in such cases one should expect
poorly constrained long modes in declination.

4.2. Ground pickup

Ground-based experiments usually have non negligible ground-
synchronous signal contaminating their TOD. The most com-
mon source is ground pickup in the far side-lobes of the beam,
although the magnetic response of the experiment to the Earth’s
magnetic field may also be a concern. Experiments try to min-
imize these side lobes but, as the ground is very bright by
CMB standards, their contribution typically cannot be neglected.
This ground-synchronous signal could be thought of as a two-
dimensional template in Earth-bound coordinates. However, in
practice the situation is more complex as the signal can vary in
time and may be different for different detectors, as the level and
structure of their side-lobes may be very different (and poorly
known). Therefore we typically model the ground signal as a
one-dimensional template specific to each constant elevation
scan and to each detector, or at the very least to a group of de-
tectors located sufficiently close together in the focal plane.

Such a one-dimensional ground template can be
parametrized with the azimuth of the observation and rep-
resented by one dimensional discretized map with entries
standing for the amplitude of the ground signal in each of the
disjoint, consecutive azimuth bins. Following our previous
argument, we need to introduce such a template for each
detector and each constant elevation scan separately. These,
concatenated together, are then denoted as g. In the presence of
ground pickup, the time-domain data can be then modeled as a
sum of three terms: the sky signal term, As, the ground-pickup

term, Gg, and the noise, n. We can then write,

d = As + Gg + n. (37)

This is merely a specialized version of Eq. (20). The role played
by the matrix G is analogous to that played by the sky pointing
matrix, A. Adopting the simple binned ground template model
introduced above, each column of G is associated with some
specific azimuthal bin assigned to some specific detector and
some constant elevation scan. This column will be composed
of ones and zeros, with 1 indicating that the given measurement
was made by the specific detector and was performed within the
specific scan, when the observation’s azimuth falls within the
specific azimuthal bin.Therefore applying G to the template, g,
will add the same value of the ground pick up to all these mea-
surements. In this section we summarize the effects the modeling
of the ground pick-up may have on the quality of the map re-
covered with the unbiased map estimator, leaving more detailed
discussion to Appendix A.

We start by considering a site far from the Earth’s poles.
For a single constant-elevation scan, samples having the same
ground pickup will correspond to measurements taken by a sin-
gle detector with the azimuthal position falling into one of the
azimuthal bins. As time progresses and the sky rotates in Earth-
based coordinates (see Fig. 1 for a sketch of the geometry of
the problem) the measurements will cover the sky area extend-
ing along the RA direction in the sky coordinates. The size in
declination of the area depends on the scan elevation and the
azimuth of the bin. The sky areas covered by measurements cor-
responding to two different azimuthal bins will be disjoint and
as both these subsets are affected by a different ground pickup
amplitude, their relative offsets will be unconstrained. As a con-
sequence, a single detector map will have multiple degenerate
modes, each corresponding to a sky patch swept by a different
azimuthal bin. The degeneracies can be in part removed if data
of another detector are used, but only if the azimuthal bins of
the latter are shifted with respect to those of the first detector in
such a way that their corresponding sky patches are also shifted
and each patch of the second detector includes pixels from two
patches adjacent to the first one. Yet another factor breaking the
degeneracy here is the sky pixelization, as the sky pixels crossing
the boundary of two adjacent bin sky patches will constrain their
relative amplitude. However, in all these cases the degeneracy-
breaking may be quite weak because the overlaps typically in-
volve only a limited number of neighboring sky patches corre-
sponding to single azimuthal bins. For observations taken from
the poles the situation is different. Since the sky movement is
in the azimuthal direction the same sky can be measured in dif-
ferent azimuthal bins. Consequently, there is a significant con-
straining power on the relative offsets, leaving the overall offset
of the observed constant declination stripe as the only truly de-
generate mode. We already encountered this degenerate mode in
Sect. 4.1: the offset of the TOD is filtered also when removing
correlated noise. The consequences of this degenerate mode and
the possible degeneracy breaking effects were already discussed
at the end of Sect. 4.1.

4.3. Recap

The following useful conclusions have been drawn out in this
section (and are borne out further by a more detailed analy-
sis in Appendix A). In the presence of time-domain filtering of
the kinds discussed here, only relatively few sky modes are ex-
pected to be genuinely degenerate. Nevertheless, a few extra ill-
conditioned modes with large variance should also be expected.
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Figure 1. Top panel shows the geometry of a constant elevation obser-
vation. Grey lines represent the equatorial coordinate system at some
fixed time instant. The red line shows the scan in the horizontal coordi-
nate system with the telescope assumed to chop back and forth along a
constant elevation direction. The orientation of a polarisation sensitive
detector is shown with green lines. It is assumed to be fixed in horizon-
tal coordinates and thus varies somewhat with the observation’s azimuth
due to changes in the parallactic angle, which is marked in blue. Bottom
panel emphasizes the effects due to the sky rotation. This is marked
with orange arrows. As the sky rotates, the constant elevation scan pro-
gressively covers the sky area delineated by a dashed black line. The
area above the red line has been already observed. Also marked are its
sub-areas, which are observed when the telescope’s azimuth falls in one
of the azimuthal bins. These for instance may be used to discretize the
ground-pickup and are shown here with blue dotted lines. These sub-
areas remain disjoint as the sky rotates whenever the azimuthal bins are
disjoint, and are separated in the figure with blue solid lines.

They are mainly related to the filtering of the ground signal,
which leaves poorly constrained modes in the declination direc-
tion. The details of these modes will depend on choices made re-
garding pixelization, definition of the ground template bins, and
scanning strategy, but they will be more prominent for observa-
tions conducted from the poles. Given this, biased map-making
– by construction oblivious to the presence or absence of such
modes – may be seen as providing a more convenient and adapt-
able way to perform the analysis. Indeed, it has been the ap-
proach of choice for multiple past analyses of this kind of data

sets (e.g., Culverhouse et al. 2010; Schaffer et al. 2011; BICEP2
Collaboration 2014). However a relevant question, which we dis-
cuss in more detail in the reminder of this paper, is whether it is
feasible for a ground-based experiment to produce an unbiased
estimate of the sky signal, and if so, with what fidelity.

5. Worked example: the Polarbear experiment

This section applies the map-making formalism to realistic sim-
ulations broadly based on the Polarbear experiment. We begin
by reviewing the experimental characteristics of Polarbear, and
then describe details of the map-making process. We conclude
by considering how these different approaches impact the final
map properties and, most importantly, the measurement of the
B-mode polarization power spectrum.

Though the results and conclusions are strictly speaking spe-
cific to the Polarbear experiment, they are expected to be qual-
itatively relevant for the other on-going and planned ground-
based experiments, which typically implement a similar data re-
duction procedure.

5.1. Polarbear experiment and its observations

Polarbear is a dedicated CMB B-mode experiment operat-
ing from the James Ax Observatory in the Atacama Desert in
Northern Chile. It is composed of a cryogenic receiver mounted
on the Huan Tran telescope (HTT) (Tran et al. 2008). HTT is
a two mirror off-axis Gregorian telescope designed to ensure
low cross polarization. A 4 K aperture stop in the receiver cre-
ates a 2.5 m illumination pattern on the primary mirror, result-
ing in a beam size of 3.5′ FWHM. The receiver hosts 637 fo-
cal plane pixels (1274 transition edge bolometers) sensitive to
a spectral band centred at 148 GHz with 26% fractional band-
width (Arnold et al. 2012). Each focal plane pixel contains two
detectors, henceforth called a “detector pair”, with each detector
sensitive to a different orthogonal polarization direction. The di-
ameter of the field of view of the focal plane is 2.4◦. The optics
of the receiver includes a stepped half-wave plate that can mod-
ulate the polarization state of the incoming radiation. Since the
optics and the receiver are installed on a moving mount, the az-
imuth and elevation pointing direction can be controlled during
the observations.

The observation considered in the following analysis are
based on the first Polarbear campaign, providing a high level
of realism to the pointing and polarisation information in our
simulations. However, the simulations do not reflect all of the
properties of the data sets used in the actual data analysis.
Though Polarbear observed three patches, we restrict ourselves
to the RA23 patch (R.A. 23h1m48s Decl. −32◦48′). The nomi-
nal area of the patch, as used in the analysis of The Polarbear
Collaboration (2014) is 8.8 deg2, but the area actually observed
and considered here is much larger, amounting to approximately
43 deg2. Due to the sky rotation, the patch rises and sets, reach-
ing a maximum elevation of 82 deg while the minimum elevation
for observation is 30 deg. The scanning consists of 15-minute
constant elevation scans (CES) (NCES

t ∼ 25000 measurements
at a rate of 31.8 Hz) in which the telescope moves at a constant
velocity of 0.75 deg/s in an azimuth range of 3◦. We refer to a
single left-to-right sweep of the telescope as subscan; there are
typicallyNsub ∼ 150 subscans in a CES. The CES ends when the
patch leaves the field of view of the telescope, both the azimuth
and the elevation are then modified and a new CES is performed
at the new position of the patch. The half-wave plate position
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is constant during a CES. During the first season, its orienta-
tion was rotated by 11.25 deg every one-two days during the first
half and occasionally during the second half. More details about
the observation can be found in (The Polarbear Collaboration
2014).

5.2. Time domain data model and simulations

In this section we illustrate in detail our data model, providing
a concrete example for the general considerations presented ear-
lier in Sect. 2 and Sect. 4. Our goal is to investigate the effects
that are inherently due to the filtering, rather then the ones that
stem from a failure of the applied filtering to remove unwanted
contributions. Consequently, our simulations employ an ideal-
ized data model, neglecting important properties that real data
usually have: imperfect polarization efficiency, noise correlated
between time samples and/or detectors, temperature to polariza-
tion leakage due to differential gain, beam or bandpass between
the two orthogonal detectors, etc., implicitly assuming that all
such effects can be removed by the filters. We adopt the fil-
ters defined by the proposed data model and used for the actual
Polarbear data.

For convenience, we first consider data collected during a
single CES by a single pair of detectors in the same focal plane
pixel. This is the fundamental unit of our data model and we have
a total of Npair × NCES ∼ 1.5 · 106 of them. The two detectors in
such a pair are sensitive to two orthogonal polarizations and are
referred to as ‖ and ⊥. We model their TOD to include signal,
ground pickup, and templates related to the correlated noise and
an actual noise term,[

d‖
d⊥

]
= As + Gg + Bx + w

=

[
A‖
A⊥

]
s +

[
Gd 0
0 Gd

] [
g‖
g⊥

]
+ Bx +

[
w‖
w⊥

]
, (38)

where we have arranged the data vector so that all the measure-
ments of the first detector of the pair are gathered together and
followed by the measurements taken by the other one.

The pointing matrices, A‖/⊥, are as given by Eq. (1), and
thus have only three non-zero elements for each row, which
correspond to three Stokes parameters of a given sky pixel, p,
observed at the time assigned to the row. These are equal to
one, cos(2ϕ‖t ) and sin(2ϕ‖t ) for detector ‖ and 1, cos(2ϕ⊥t ) =

− cos(2ϕ‖t ) and sin(2ϕ⊥t ) = − sin(2ϕ‖t ) for detector ⊥, and for the
I, Q and U signal components, respectively. The block-diagonal
structure of matrix G is due to the fact that we have introduced
two independent ground templates, one for each detector of the
pair. Since we will always use the boresight azimuth to define the
azimuthal bins, each of the blocks is the same for each detector
and all focal plane pixels. Matrix B describes the time-domain
filtering and thus can have more complex structure. In particular
it needs to account for two types of contributions: the ones that
are correlated between detectors and the ones that are indepen-
dent. This can be achieved by assuming that matrix B has the
following structure,

B ≡
[

Bcorr Buncorr 0
Bcorr 0 Buncorr

]
, (39)

where we assumed that we use the same filtering of the uncor-
related part for each of the detectors. This corresponds to the

following breakdown of vector x,

x ≡

 xcorr

x‖uncorr
x⊥uncorr

 . (40)

Here, xcorr collects the amplitudes of all the time-domain modes
common to both the detectors, while x‖/⊥uncorr those specific to only
one of them.

Owing to the orthogonality of the two polarization directions
for the two detectors in a pair, we can represent their data with
summed and differenced data streams, d+,d−, which contain the
information about total intensity and polarized sky signals, re-
spectively. These are defined as,

d+ ≡
1
2

(d‖ + d⊥) (41)

d− ≡
1
2

(d‖ − d⊥). (42)

Using Eq. (38) and introducing quantities specific to each of the
new data streams, defined as,

A± ≡
1
2

(A‖ ± A⊥) (43)

B+ ≡
[

Bcorr, Buncorr
]
, (44)

B− ≡ Buncorr (45)

x+ ≡

[
xcorr

1
2 (x‖uncorr + x⊥uncorr)

]
, (46)

x− ≡
1
2

(x‖uncorr − x⊥uncorr), (47)

g± ≡
1
2

(g‖ ± g⊥), (48)

w± ≡
1
2

(w‖ ± w⊥), (49)

we can express these new data in a concise way as,

d± = A±sT/QU + Gdg± + B±x± + w±. (50)

Here sT and sQU denote sky signal vectors made of the total in-
tensity and interleaved, pixel-by-pixel, Q and U Stokes parame-
ters, respectively. These expressions emphasize that as intended
each of the new data streams contains information either about
the total intensity, d+, or polarization, d−. Moreover, as all the
amplitudes appearing on the right hand side of these equations
are specific for each data set, each of these two data sets can
be analyzed completely separately and, under the assumptions
specified earlier, without any loss of accuracy. Specifically, the
maps of the total intensity on the one hand, and the Q and U
Stokes parameters on the other can be estimated independently.
This is the approach we follow in this work.

We point out that a perfect separation of the total intensity
and polarization information is strictly speaking only possible if
the two detectors of each pixel pair are perfectly calibrated and
have identical beams. Otherwise, some residual total intensity
contribution may be present in d− and, less harmfully, some po-
larization in d+. The beams of two detectors are more likely to
be similar if they belong the same focal plane pixel. Therefore,
using d− to constrain the polarization may be less susceptible to
total intensity leakage due to beam differences than performing
global separation of the three Stokes parameters directly using
d‖/⊥ as inputs. In any case, if needed, leakage from the total
intensity to the differenced data, d−, can be modeled as a to-
tal intensity-like template and used in the map-making process.
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Though such tests were indeed performed as part of the analysis
of the actual Polarbear data set (The Polarbear Collaboration
2014), we do not consider them in the present work. Leaving
aside this kind of systematic effect, it is mathematically equiva-
lent whether we use one or the other data representation, as long
as the filtered temporal templates, defined by Bcorr and Buncorr,
are used consistently.

In Eq. (50) the pointing matrices, A+ and A−, are given as in
Eqs. (2) and (3) and therefore are composed of zeros and ones
for the summed data and have two non-zeros per row given by
cos(2ϕ‖t ) and sin(2ϕ‖t ) for the differenced data. The ground tem-
plate operator, Gd, is the same for the summed and differenced
data. As an independent ground template is used for each detec-
tor pair and for each CES, the Gd matrix has as many columns
as the number of bins used to discretize the ground signal and
as many rows as the number of samples in a given CES. We bin
the observed azimuths in intervals of the width of 0.08 deg and
thus have NCES ,p

G ∼ 100 bins per template. At any given time t
the corresponding row of Gd has only one non-zero entry (equal
to one) in a column corresponding to the ground bin observed at
this time.

The B± matrices define the time-domain filtering applied
to both data streams in order to suppress long term correla-
tions. In the Polarbear case the filtering is done subscan-by-
subscan (The Polarbear Collaboration 2014). Consequently the
B± are block diagonal with one block per subscan, and each
block displaying the same structure as in Eqs. (39) and (44). We
denote such an elemental block with a subscript, s, to emphasize
that we are referring to a single subscan. Each of these blocks re-
moves from a given subscan time-domain trends given by time
domain templates defined as polynomials up to some order, se-
lected to ensure that the noise after filtering is nearly white.
In our analysis, Bcorr, s contains four templates (the Legendre
polynomials up to the 3rd order, appropriately rescaled to be-
come orthonormal over the time interval given by the sub-
scan) and Buncorr,s contains only the constant and linear tem-
plates. Consequently, the columns of Buncorr, s are linearly de-
pendent on those of Bcorr, s and we restrict B+ to the latter ones
(i.e., B+ = Bcorr, s) without any loss of generality, as discussed
in Sect. 3.2.

w+ and w− are the noise terms, describing the noise in the
data after the ground template and temporal trends removal.
These noise terms are expected to be “prewhitened” with respect
to the actual noise in the data. In the simulations these vectors
are modeled as white with inverse variances given by ω+ and
ω− respectively. We allow for different weights for each CES
and detector pair. These weights are evaluated from the actual
data as the inverse of the average of the power spectral density
of the real data sum and difference, taken between 1.04 Hz and
3.13 Hz.

It is now straightforward to generalize these considerations
to multiple CESs and multiple detector pairs. In both cases we
stack all the TOD for every detector pair and every CES to-
gether and, for concreteness, we do so for the summed and differ-
enced data separately. The form of Eq. (50) for the concatenated
summed and differenced data remains the same but the data ob-
jects and operators on its right hand side need to be appropriately
redefined. In particular, as we define a different ground template
for each detector pair and each CES the global G±all matrix, will
be block diagonal, with each block given by the detector-pair and
CES specific matrix, Gd. The vector of the ground template am-
plitudes, g±all will accordingly be made of the detector-pair and
CES specific vectors, g±. Similar generalizations also apply to

the temporal drifts term, however in this case one may need, or
want, to account for effects that would be correlated between dif-
ferent detector pairs. Such effects could for instance be a result
of contributions to the summed data due to atmospheric fluctua-
tions. Consequently, the ultimate filtering operator, B±all, may not
be strictly block diagonal but have rather a form resembling that
of Eq. (39). In the example studied however we do not include
this possibility but introduce a separate template for each detec-
tor, each subscan and each polynomial order. This adds some
flexibility that may permit better accounting for systematic ef-
fects, but it may not be always advantageous as far as statisti-
cal uncertainties are concerned due to the significant number of
extra independent degrees of freedom this choice implies. The
number of polynomial templates per CES and detector pair is
N

CES ,p
B = Nsub×Npoly ∼ 150×Npoly, whereNpoly is four or two if

we are considering the sum or the difference of the detector pair.
Consequently the total number of templates per CES and detec-
tor pair sum (resp. difference) is NCES ,p

T = N
CES ,p
G + N

CES ,p
B ∼

700 (resp. 400).

5.3. Map-making: estimators and implementation

We estimate the sky signals using both the unbiased, Eq. (22),
and the biased, Eq. (25), estimators. The weight matrices, M, are
assumed to be block diagonal, with blocks corresponding to dif-
ferent CESs for every detector pair. The blocks are in turn taken
to be diagonal and proportional to a unit matrix with the propor-
tionality coefficient given by the noise weights as introduced at
the end of the previous section. Consequently, the weight matrix
block corresponding to the ith detector pair and cth CES reads,

M±
c,i = ω±c,i1. (51)

We define sky pixels for which the signal estimation is per-
formed prior to map-making. This is done in two steps. First, we
remove pixels for which a two-by-two diagonal block of A>MA
matrix has a condition number higher than 106. This ensures that
we retain only the pixels for which there is sufficient observation
redundancy to allow for numerically disentangling two Stokes
parameters, Q and U. In addition, we also remove pixels that
have not been observed sufficiently frequently. The threshold is
chosen as a minimal number of CESs during which the pixel
was observed, taken to be 120 here. We have found empirically
that this criterion helps avoid strongly degenerate modes local-
ized at the lightly-observed patch boundaries. As a result our sky
maps are composed of roughly 5.2 × 104, nside=2048 HEALPix
pixels covering approximately 43 deg2. Once the pixels are des-
ignated for removal we propagate this information back to the
TOD, flagging out all the samples which fall in one of those pix-
els.

Map-making requires an application of the filtering operator,
FT, to the time-ordered data vectors, d±. This has to be preceded
by a computation of the filtering operator itself. All the matrix
operators involved in the computation (i.e., B±, G, T ≡ [B±,G],
and M) are block diagonal, as is FT. We pre-compute the or-
thonormalization kernel K ≡ (T>MT)−1 via its explicit con-
struction and inversion. We first build the template coupling ker-
nel, T>MT, which requires Nt × N

2
poly ∼ 1012 − 1013 oper-

ations thanks to the sparsity and structure of the time-domain
templates. The cost of the inversion (with regularization) of the
kernel is (NCES ,p

T )3 × NCES × Npair ∼ 1013 − 1014 operations.
This number is considerable, but performing a large number of
small matrix inversions is very efficient because of the locality
of the data to be processed by the CPUs, resulting in a consid-
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erable advantage on modern massively parallel computing sys-
tems. The kernel’s rank is approximately equal to the total num-
ber of templates,NCES ,p

T ×NCES×Npair ∼ 108−109. Storing this
object in the memory is demanding, even when its block diago-
nal structure is explicitly taken into account, since it amounts to
(NCES ,p

T )2×NCES×Npair ∼ 1011−1012 double precision numbers.
We note that by construction B± and G are individually

column-orthogonal, but when considered together their columns
are in general not orthogonal and possibly not even linearly inde-
pendent. Indeed, one degeneracy of each CES and detector-pair
block is readily expected. This is the one between the constant
mode filtered by the time-domain templates and the constant off-
set of the ground template. Consequently, the kernel, K, is in
general non-trivial and its inversion needs to be regularized, see
Sect. 3.2. In doing so, we set a threshold of 106 on the condition
number of each diagonal block of T>MT. With the kernel pre-
computed and stored in the computer memory, we apply the filter
to the data without ever computing it explicitly. Instead, we per-
form the operations included in its implicit form, Eq. (10), from
the right to left, computing first Md, followed by T>(Md), and
then K(T>Md). We then loop over the TOD again to compute
A>FTd. Both these operations have a O(Nt) cost. This approach
facilitates the entire operation: storing the filtering matrix, FT,
would require a prohibitive amount of memory and its applica-
tion to a time-domain vector would take too much computational
time.

5.3.1. Unbiased map estimator

We have implemented the unbiased map estimator Eq. (22) in
two different ways. In the first case, we perform an explicit con-
struction and inversion of the A>FTA matrix, while in the second
we employ an iterative solver instead.

In the explicit implementation, we first compute A>FTA.
This is done as follows. Consider a time sample t and call p
the observed sky pixel. Since the only non-zero entries of the
t-th row of A are the columns corresponding to pixel p, the t-
th column of FT contributes only to the p-th column of FTA.
Analogously the t′-th row of FT contributes only to the p′-th
row of A>FT. Therefore, in order to build the A>FTA matrix we
loop over the elements of FT: for the (t′, t) entry we compute
its contribution to the (p′, p) block of A>FTA. As mentioned
earlier the FT matrix is not stored in the memory, but rather its
elements are computed on the fly from the matrices K and T
(stored in the memory in a compressed form). The non-zero en-
tries of FT are the NCES × Npair blocks (NCES

t by NCES
t ) on the

diagonal. These blocks are scattered across a number of proces-
sors that ranges between about 1300 and 5800, depending on the
computational platform we used. Each processor is responsible
for computing the contribution of its blocks to A>FTA and the
result is reduced at the end. Since the matrix, A>FTA, can not be
stored in the memory of a processor (and not even on an entire
compute node) we divide it into blocks (typically 576) and we
compute them one by one, at each step only considering entries
(t′, t) of FT such that (p′, p) is inside the block of A>FTA being
computed. The computational cost scales as the number of non
zero entries of FT: NCES × Npair × (NCES

t )2 ∼ 1015 operations.
We then perform the eigendecomposition of A>FTA repre-

senting it as,

A>FTA = Vdiag(e)V>. (52)

This is done with help of a ScaLAPACK routine, pdsyevr,
Blackford et al. (1997). The numerical cost is O(N3

p ) ∼ 1015

operations. This scaling relation is the main obstacle in the ap-
plication of the explicit implementation to maps with a larger
number of pixels. By construction the eigenvalues, e, are all non-
negative numbers though numerically some small eigenvalues
may turn out to be negative. The inversion of this matrix is then
performed by inverting its eigenvalues. Since the condition num-
ber of the matrix is typically very large, the inversion needs to
be regularized by employing a (pseudo)inverse defined as,

(A>FTA)−1 = Vdiag(ẽ)V>, (53)

where,

ẽi ≡

 e−1
i , if ei > 10−6 max j e j;

0, otherwise.
(54)

One of the advantages of this estimator is that once the computa-
tionally heavy objects are evaluated, we can efficiently produce
multiple simulated realizations of the reconstructed sky maps di-
rectly in the map domain, see Sect. 5.4 for more details. We em-
phasise that the construction and inversion of the system matrix
are the most complex and expensive parts of the algorithm: their
memory requirements force an intrinsically parallel implemen-
tation and a non-negligible fraction of the execution time is spent
in communication between the compute nodes.

In the case of the iterative solver, the system matrix, A>FTA,
is never explicitly constructed. Instead, we follow the general
blue-print of maximum likelihood map-making code implemen-
tations (e.g. Cantalupo et al. 2010) and apply the factors defin-
ing the matrix from right to left. The filtering operator is ap-
plied as described above, again without being ever explicitly
constructed. We use a preconditioned conjugate gradient (PCG)
technique (e.g., Golub & van Loan 1996) with the preconditioner
set to be (A>MA)−1, which is either diagonal, for the total inten-
sity, or block-diagonal, for the polarization, and can therefore
be straightforwardly computed, stored in the memory, and ap-
plied to a vector whenever needed. This is again the standard
choice (e.g. Cantalupo et al. 2010). To quantify the convergence
one typically uses the norm of the map level residuals,

r(i) ≡
|A>FTAm(i) − A>FTd|

|A>FTd|
, (55)

where m(i) stands for the solution after the ith iteration. We no-
tice that r is a dimensionless quantity. A typical requirement for
convergence would then be r(i) ≤ 10−6.

Unlike the explicit implementation, the iterative solver is
not applied to the full dataset. The constant elevation scans are
divided into 267 nearly even groups and, using the iterative
solver, one map ŝα is obtained independently for each group α.
Afterwards we coadd the maps as follows

ŝ =

∑
α

(A>MA)
∣∣∣
α

−1 ∑
α

(A>MA)
∣∣∣
α

ŝ|α, (56)

where as before |α denotes a quantity computed using only the
data belonging to subset α.

5.3.2. Biased map estimator

The biased map estimator Eq. (25) requires a construction of
A>MA, its inversion and its multiplication by a vector, A>FTd.
All these operations pose no issues given the block-diagonal
structure of the matrix and the pixel selection procedure ap-
plied to the data beforehand, which ensures that each of its
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blocks is invertible. The computational cost is then driven by
the construction of the kernel K (∼ 1013 − 1014 operations). As
mentioned earlier, this kernel is block-diagonal and can be con-
structed and inverted efficiently on a single modern processing
unit. Consequently, the entire estimator can be implemented and
executed using serial or embarrassingly parallel programming
models.

5.4. Simulations

In our analysis we use signal-only, noise-only, and signal and
noise simulated map reconstructions. As the time-domain data
set is quite large we strive to perform the simulations in the pixel
domain whenever possible. We simulate signal- and noise-only
maps separately, as described below, and the total maps are then
produced by co-addition of these at the map level.

We also produce specialized simulations in order to validate
our implementations. These are described in Sect. 5.5.

5.4.1. Signal-only maps

For the simulations of the CMB sky signal we assume the
power spectrum defined by the Planck best fit parameters Planck
Collaboration (2016c). We set the tensor-to-scalar ratio, r to
zero, for definiteness, as the value of r is not relevant in the
case considered here, given the focus of the first Polarbear cam-
paigns on sub-degree angular scales. We synthesize the ’true
sky’ maps, denoted here as ssim, using the synfast tool of the
HEALPix package (Górski et al. 2005).

To simulate the CMB-only sky maps as reconstructed with
the explicit implementation of the unbiased map-maker we take
the simulated true sky maps, ssim and remove from the simu-
lated realization of the sky maps the eigenvectors corresponding
to the eigenvalues set to zero in the A>FTA inversion regular-
ization. We have validated that this is equivalent, algebraically
and numerically, to first projecting the sky signal, ssim, to the
time-domain, A ssim, and then running the map-making proce-
dure on the derived time-ordered data. For the biased map esti-
mator we apply the operator, (A>MA)−1A>FTA, directly to the
generated, true sky maps, ssim. Again this is algebraically and
numerically equivalent to first producing the signal-only data
streams, Assim, and then applying the biased map-making op-
erator, (A>MA)−1A>F, to them.

Only for the iterative implementation of the unbiased map-
making do we actually run the map-making solver on simulated
time-streams, in order to reproduce effects related to the conver-
gence (or otherwise) of the iterative algorithm.

5.4.2. Noise-only maps

The noise-only maps reconstructed with the explicit implemen-
tation of the unbiased map estimator are computed directly in
the pixel-domain as n̂ = Vz, where z is a pixel-domain vector
of Gaussian random variables with variance given by the corre-
sponding entry of ẽ, and V and ẽ are defined in Eq. (53). This
assumes that the weight matrix, M, provides a correct descrip-
tion of the TOD noise (i.e., M = Cn

−1). Were this is not the
case, we would have to start from simulating a noise timestream,
n, with the desired noise properties and then process it with the
map-making algorithm.

For the biased map-making we follow the latter path even
if the noise is uncorrelated. We therefore start by generating
a timestream of uncorrelated Gaussian numbers of appropriate
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Temperature K-S p-value 0.27

Figure 2. Histogram of the whitened unbiased map: Vdiag(
√

e)V>ŝ,
where ŝ is estimated starting from a time-domain white noise simula-
tion (see Sect. 5.5 for the details).

variance and projecting it into the pixel-domain using the corre-
sponding map-making procedure.

5.5. Validation and verification of the map-making code

We have performed multiple tests in order to validate and verify
the map-making code. For validation, we test whether the filter-
ing operator, FT, removes all the unwanted modes as desired; for
verification we perform a number of full, end-to-end runs of the
code, testing that the various outputs have the expected statistical
properties.

Our validation test checks that the filtering operator FT sat-
isfies the relation FTTy = 0, for some vector of template am-
plitudes y. Since we are interested in map domain residuals, we
actually test whether

sres = (A>MA)−1A>FTTy = 0. (57)

We separately test the ground pick up filtering, T = G, and the
polynomial filters, T = P. In the former case, we produce a sim-
ulated ground signal timesteam as follows. For every CES, there
is an index i for each ground template bin. i ranges between 0 and
∼ 100. For each CES we set the amplitude of the ith ground tem-
plate to yG

i = 1 + 0.01× i, while the entries of y corresponding to
the polynomial templates are set to zero. We obtain a simulated
data vector dground = Ty, where d ground

t = yG
it

. This construction
has been devised in order to ensure that the simulated timestream
is a linear combination of all the ground templates, with ele-
ments that are of order unity and are always positive. This last
condition mimics the worst-case scenario of a ground signal that
is coherent in time. In a very similar fashion, we test the filtering
operator on the polynomial filters by setting d poly

t = 1 + 0.01× i,
where now i is the index of the swipe in azimuth within the CES
(remember that we have a set of polynomial templates for each
constant direction azimuthal glide). We find that the map do-
main residuals, sres, never exceed 10−6 for temperature and 10−8

for polarization. These levels are expected given the precision of
our filter orthogonalization procedure, which tends to be merely
approximate for very short subscans. They are however negligi-
ble for any practical purposes.

As part of our end-to-end verification tests we study the sta-
tistical properties of the noise-only maps produced by our map-
making code. In this case, we produce the simulated noise-only
stream in time-domain, with properties described by the diago-
nal weight matrix, M, and processed it via our code. The output
map was then prewhitened using the square root of the theoreti-
cally expected covariance, (A>FTA)−1. The result was then his-

12



D. Poletti et al.: Making maps of CMB polarization for B-mode studies

T

-0.0004 0.0004
K

Q

-2e-05 2e-05
K

U

-2e-05 2e-05
K

Figure 3. Maps of the input sky used here for the reconstruction comparison of the different map estimators.

togrammed, Fig. (2), and compared to a Gaussian with unit vari-
ance. The agreement was found to be very good, for example the
Kolmogorov-Smirnov test found p-values of 0.66 for polariza-
tion and 0.27 for temperature, showing that the (A>FTA)−1 ma-
trix (explicitly computed) reproduces correctly the covariance
properties of the unbiased map, including the correlations due to
the time-domain filtering.

Other examples of end-to-end tests, involving a direct com-
parison of the known input with the output are discussed in
Sect. 6.1. As emphasized there, the overall agreement is found
to be excellent.

5.6. Polarized power spectrum

The sky maps reconstructed from the measurements of a CMB
experiment typically serve multiple purposes. They may be the
end product of the analysis whose goal is a representation of the
sky signal in the observed sky area. However, they will often be
only a step toward some more profound statistical analysis of the
underlying signal.

In the following we will therefore not only look at the re-
constructed maps as images of the true sky, but will also com-
pare them from the point of view of the constraints on the power
spectra which can be derived from their analysis. In this latter
case, we focus specifically on the B-mode power spectrum and
use the pseudo-power spectrum approach to its estimation (e.g.
Peebles & Hauser 1974; Hivon et al. 2002). This method has
gained significant popularity in the field, thanks to its flexibil-
ity and relatively straightforward implementation. As our goal is
the spectra of the B-mode polarization, and the observations we
consider cover only a limited sky area, we use a so-called pure
pseudo spectrum approach, which explicitly corrects for the bias
and variance effects of the so-called E-to-B leakage generated
by the presence of the observed sky boundary. The technique
was first proposed in Bunn et al. (2003), and later implemented
and elaborated on in Smith (2006) and Smith & Zaldarriaga
(2007). In this work, we use a numerical code, X2Pure, devel-
oped by Grain et al. (2009), which has been described, tested,
validated and exploited both there and in follow-up work (e.g.,
Grain et al. 2012; Ferté et al. 2013, 2015; Planck Collaboration
2016d; Krachmalnicoff et al. 2016). We refer the reader to these
papers for more details.

The pure pseudo-spectrum technique removes the bias due
to leakage by estimating the E and B spectra simultaneously and
allowing for an off-diagonal EB block of the coupling kernel,
which is then used to model and subtract the leaked E power
from the B-mode spectrum. The enhancement of the power spec-
trum variance due to the leakage is then suppressed with the help
of appropriately constructed apodizations. Ideally these have to
be estimated separately for every harmonic domain bin for which
the spectrum is to be computed (Smith & Zaldarriaga 2007);
again we use the code implemented by Grain et al. (2009). Once
the apodizations are estimated we use them for all the B-mode
spectra we estimate, irrespective of the algorithm used to pro-
duce the maps.

The pure techniques are only designed to deal with E-to-B
leakage due to the cut sky. However, other sources of leakage
are also usually present. For instance, at small angular scales
leakage typically arises as a result of the pixelization adopted
for the recovered map. This is typically found to be subdomi-
nant to the uncertainty due to the noise on small scales, and thus
can typically be left uncorrected with little, if any, impact on the
precision of the final results.

Leakage can also be expected if the Q and U maps used for
power-spectrum estimation do not faithfully reflect the true un-
derlying sky signal. This is certainly the case for biased map-
making, but can also be relevant for the unbiased approach if
degeneracies are present. The leakage arising in such cases can
bias the estimated spectra on all angular scales of interest, and
thus must be carefully accounted for. Though solutions to this
problem have been proposed (e.g., Bunn et al. 2003; BICEP2
Collaboration 2014; BICEP2 and Keck Array Collaborations
2016), they are computationally very heavy. Here, instead, we
use a phenomenological approach based on Hivon et al. (2002)
and model the biased spectra as(

C̃EE
`

C̃BB
`

)
=

[
f EE
` f EB

`
f BE
` f BB

`

] (
CEE
`

CBB
`

)
+

(
NEE
`

NBB
`

)
. (58)

where C̃XX
` represents the biased power spectrum computed from

the map, while CXX
` is the true sky power spectrum to be esti-

mated.
The C̃` spectra are evaluated using X2Pure, the bins in ` are

centred at ` = 400, 700, 1100, 1500, 1900 and have a width of
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Figure 4. Maps derived with the explicit implementation of the unbiased map estimator. Top row: reconstructed maps. Middle row: difference
between the reconstructed and the input maps. Bottom row: difference between the reconstructed and the input maps with the singular modes
removed from the input maps.

∆` = 400, except for the first bin (∆` = 200). The transfer func-
tions, f XY

` , are evaluated using CMB signal only simulations as-
suming the power spectrum defined by the Planck best fit pa-

rameters Planck Collaboration (2016c) and zero tensor-to-scalar
ratio, r = 0.
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In order to evaluate f XY
` a Y-only realization of the sky

is performed using the synfast tool of the HEALPix pack-
age (Górski et al. 2005). Knowing the underlying algebra of
the map estimator, the biased map is extracted from the simu-
lated sky (analogously one could project the sky into the time-
domain using A and run the map-maker on these timestreams,
see Sect. 5.4.1 for more details). A biased spectrum C̃` is com-
puted then using X2Pure. This procedure is repeated for 100 in-
dependent sky realizations and the transfer function is evaluated
as

f XY
` =

〈C̃XX
` 〉

CYY
`

, (59)

where 〈· · · 〉 denotes the average over the 100 simulations. The
variance on this determination of f XY

` is Var(C̃XX
` )/(100 〈CXX〉2),

in our case it corresponds to an uncertainty on f XY
` of the or-

der of percent, which is sufficiently small to ignore possible bi-
ases that would arise from an inaccurate estimation of the trans-
fer functions. Analogously the noise bias, N`, is estimated as
the average of spectra produced by X2Pure on 100 noise only
maps. These maps were produced running each map-maker on
timestreams drawn from a Gaussian distribution with covariance
Cw (or through an equivalent procedure, see Sect. 5.4.2).

We now have all the ingredients needed for calculating the
unbiased power spectrum estimator, which is given by(

ĈEE
`

ĈBB
`

)
=

[
f EE
` f EB

`
f BE
` f BB

`

]−1 (
C̃EE
` − NEE

`
C̃BB
` − NBB

`

)
. (60)

This extension to polarization of Hivon et al. (2002) is equivalent
to the approach adopted by The Polarbear Collaboration (2014)
if f BE , f EB � 1, a condition which is also fulfilled in our case
since we are considering a very similar observation.

6. Results

Here we describe the maps produced from Polarbear-like simu-
lations using the different map-making approaches and their im-
plementations. We assess the maps from the point of view of
the fidelity with which they reconstruct the actual sky signal.
However, we also look at them as merely a step toward a statis-
tical characterization of the signal. In this latter case, we use the
B-mode polarization power spectrum as a comparison metric and
specifically focus on the power spectrum estimation approach as
introduced in the last section.

6.1. Reconstructed sky maps

In Figs. 3, 4, 5, 6 we compare the maps reconstructed using both
the biased and unbiased estimators, in the latter case using both
the explicit and the iterative solver. The maps were computed
assuming noiseless data and the same pixel size was adopted for
the simulation and reconstruction to avoid any pixel effects. In
none of the cases considered does the reconstructed sky corre-
spond exactly to the input. We discuss each of the cases in turn
below.

Unbiased maps via the explicit solver. The residual present in
this case, Fig. 4, is due to the presence of singularities in the
system matrix, A>FTA. As expected from our earlier discus-
sion, Sect. 3, and confirmed by our results in Sect. 6.2, there
are two such singular modes for polarization and one for tem-
perature. The inversion regularization procedure removes these

two modes from the estimated map, even if they contain actual
sky signal. These singular modes result from the interplay be-
tween the scanning strategy and the filtering. They make the fil-
tered data insensitive to these modes, which are unavoidably lost.
Therefore, the map estimated from the unbiased estimator us-
ing the explicit solver may not be strictly speaking unbiased but
provides an unbiased representation of all the modes that can be
constrained from the available data given the chosen filtering.

Unbiased maps via the iterative solver. The residual in this
case is clearly more pronounced and complex (see Fig. 5, mid-
dle panel). As we mentioned earlier we use a PCG solver and
adopt as the preconditioner the matrix (A>MA)−1. One might
expect that the result of the unbiased map estimator should be
the same, whichever solver is applied. However, the result shown
in the figure corresponds to an incompletely converged iterative
solution. Indeed, we have found that the iterative solution resid-
uals, Eq. (55), do not decay to zero, see the bottom left panel
of Fig. 5, but instead asymptote to about 10−3, which is roughly
three orders of magnitude above our fiducial convergence crite-
rion of 10−6. This is the case even if we allow as many as a few
thousand iterations. Such a behavior is indeed expected in lin-
ear systems for which the system matrix is (numerically) nearly
singular (Hanke 1995; Szydlarski et al. 2014).

To understand the effects of this lack of convergence of the
solver on the estimated maps, we have computed the (pseudo)
power spectra of the estimated map after ith iteration, bottom
right panels of Fig. 5. We see that although the very low `
part of the spectrum does indeed fail to converge, convergence
is quickly reached in the intermediate and high `-range. This
again is consistent with the singular modes found in the explicit
solver having only large angular scales. If the singular modes
are known, we could readily remove them from the solution, and
thus from the residuals, at each step of the iteration and restore
the proper convergence. However, this typically would require as
many computations as the explicit solver, undermining the most
important advantage of the iterative one.

We can still use the PCG solver in such circumstances by
using this practical workaround: instead of monitoring a single
residual as given by Eq. (55), we track the behavior of residu-
als at the scales of interest for the power spectrum, as shown in
Fig. 5. Nevertheless, we have to be aware of the fact that some
of the power in the final solution may be compromised.

In the case of the map shown in the figure, convergence
can indeed be reached in fewer than 100 iterations in the so-
called science band defined in The Polarbear Collaboration
(2014), which was the band of interest for the first round of the
Polarbear papers.

Biased maps. The biased map estimator, as expected, leads to
the largest residuals. These are particularly pronounced in the
outskirts of the map, where the pixels crossing (and thus the fil-
tering) may be highly anisotropic, but are still readily visible in
the central part of the map, where the cross-linking and pixel
sampling are better.

6.2. Eigenstructure of A>FTA.

The eigenstructure of A>FTA not only determines which modes
are missing from the final unbiased sky estimate, it also provides
information about the modes, which, while not singular, are not
well constrained by the data. This is because the matrix is closely
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Figure 5. Results from the iterative implementation of the unbiased map estimator. Top row: reconstructed maps. Middle row: difference between
the reconstructed and the input maps. Bottom row: A study of convergence of our iterative solver. The left panel shows the standard residual, as
defined in Eq. (55), which saturates and does not converge to our fiducial level of 10−6 in as many as 100 iterations. The middle and right panels
show that this lack of convergence is due to the largest angular modes as the fractional difference between the power spectrum of the input map
and the power spectrum of the ith map estimate in the multipole range ` ∈ [500, 2100] becomes quickly very small and reaches the level of better
than 0.1% in fewer than ∼100 iterations. This last observation has been used to set the convergence criterion used in the analysis of the first year
Polarbear data set The Polarbear Collaboration (2014).

connected to the noise covariance in the pixel domain, Np, as
shown by Eqs. (17) and (18).

In the case with no filtering at all the matrix, A>FTA, reduces
to the well-known A>MA, which, for the diagonal weights as-
sumed here, is block diagonal with two-by-two blocks describ-
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Figure 6. Map estimates derived using the biased map estimator, Eq. (25). Upper row: reconstructed maps. Bottom row: difference between the
reconstructed and the input maps.

ing the (weighted) coupling between Q and U Stokes parameters
in each pixel. The off-diagonal elements of these blocks will typ-
ically be negligible for pixels observed with a sufficiently homo-
geneous distribution of polarization angles, while the diagonal
elements will be approximately equal to the eigenvalues of the
two-by-two block. These are essentially given by the number of
observations per pixel, and their corresponding eigenvectors are
spatial modes equal to zero everywhere but in the given pixel.
Departure from such behavior would then indicate the presence
of strong off-diagonal coupling in some of the pixels.

The spectrum of A>MA can therefore be used as a good
reference for assessing the impact of the filtering on the map
domain noise spectrum. We compare the eigenstructure of the
matrices, A>FTA and A>MA, in Figs. 7 and 8, for temperature
and polarization respectively. In both cases, A>FTA and A>MA
have very similar spectra with the exception of tens of poorly
constrained modes, defined as those with eigenvalues smaller by
at least five orders of magnitude than the maximum eigenvalue.
The corresponding eigenvectors, Fig. 10, are long modes and, in
many cases, they exhibit a striped structure close to the bound-
aries. We interpret these modes as the result of the ground signal
filtering discussed in Sect. 4.2 as their number roughly corre-
sponds to the number of bins in the ground-bin. Indeed, follow-

ing the discussion of Sect. 4.2, we expect that with every ground-
template bin there should be an associated ill-constrained mode,
corresponding to an offset of the constant declination strip swept
by the azimuth range of the bin during the time of a single
constant elevation scan. The fact that the recovered eigenvalues
are not numerically zero demonstrates that these degeneracies
are weakly broken as expected given that the presence of sky
pixels observed with the telescope orientation corresponding to
two different ground-template bins. Consequently, this leads to
only one truly degenerate mode per each Stokes parameter map,
see Fig. 9.

We also see that the two most singular eigenvalues of the po-
larized case are significantly larger than the most singular eigen-
value in the case of temperature. The difference is at least in part
due to the numerical precision of the computations, however it
is also consistent with our earlier expectation that the polarizer
angle change across the constant elevation sweep can break the
degeneracy between the sky signal offset for each strip and the
amplitude of the ground template in the corresponding bin. In
the case under study, given the limited primary mirror chop, the
effect is very weak.

While regularizing the inversion of the matrix, A>FTA,
we remove these modes from the solution together with all
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Figure 7. Eigenvalues of the temperature block of the A>FTA and
A>MA matrices. The spectra of the two matrices are very similar. The
major difference is a group of poorly constrained modes, including one
that is formally degenerate corresponding to the offset of the map.
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Figure 8. Eigenvalues of the polarization block of the A>FTA and
A>MA matrices. As with temperature, the spectra of the two matri-
ces are very similar. In this case we also have tens of poorly constrained
modes. We also expect to have two nearly degenerate modes, one for
each Stokes parameter (cf. Fig. 7. Though they are treated as singular
because of numerical reasons, their degeneracy is partially broken, as
explained in Sect. 4.2.

the modes which are smaller than 10−6 of the maximal eigen-
value. This still leaves significant number of ill-constrained
modes in the estimated maps. Although they do not give rise
to any discernible artefacts in the caseof the noiseless results
as shown Fig. 4, when noise is included in the time-domain
data, these modes may dominate the maps visual appearance.
However, despite being noisy these modes are correctly esti-
mated, and are neither artefacts of the estimator or its imple-
mentation, nor remnants of any incompletely-filtered parasitic
signal such as atmosphere. Rather they reflect the actual uncer-
tainty that the observation and filtering incur. These modes are
typically missing in the unbiased maps derived with the itera-
tive solver as well as in the biased maps. This is because these
modes are either the most difficult to converge (in the case of the

iterative solver) or are explicitly filtered out (in the biased map-
maker). Consequently, although these maps may occasionally –
and somewhat deceptively – look better, they will nonetheless be
missing information which is correctly included in the unbiased
map computed using the explicit solver.

The main sequence of eigenvectors are “pixel-like” modes,
Fig. 11, in the sense that in each of these modes the most relevant
structure involves a very limited number of pixels. As one intu-
itively expects, these pixels move from the boundary toward the
center of the patch as the eigenvalue of the mode grows (i.e.,
as the mode is better constrained). If there were no filtering,
A>FTA would be block diagonal (it would be equal to A>MA)
and therefore each eigenvector would correspond to exactly one
pixel. Setting a threshold on the magnitude of the eigenvalues
would be then equivalent to performing a selection of the best
observed (here innermost) pixels. In the presence of filtering, the
main effect of setting a threshold is still selecting the innermost
pixels. However, because of the correlations that the filtering in-
troduces, signal is also removed from all over the map, affecting
areas relatively far from the boundary pixels removed. This ef-
fect is visible at map-level in the lower panel of Fig. 11 and it is
investigated at the power-spectrum level in Sect. 5.6: removing
modes that mainly involve pixels outside of the power-spectrum
mask has an important impact on the power spectrum uncertainty
and bias.

6.3. Power-spectrum analysis

We now investigate how the map domain properties for the dif-
ferent estimators affect our pure pseudo-power spectrum estima-
tor.

In Sect. 6.3.1, we consider the spectrum of noise-only simu-
lations as computed by X2Pure. The qualitative results support
filtering the noisiest modes from maps produced with the unbi-
ased map estimator.

Finally, in Sect. 6.3.2, we compare the unbiased power spec-
tra of the maps produced by the biased and unbiased map esti-
mators (before and after map domain filtering).

6.3.1. The noise bias

The maps generated by the different map-makers have different
noise properties, in terms of both the noise amplitude and its
correlations.

Fig. 12 shows the mean of the spectra produced by X2Pure
from the noise-only simulations, measuring the noise bias. We
then take the noise simulations in pairs and evaluate the uncer-
tainty on the noise bias as the standard deviation of the cross
spectrum of the two noise maps within a pair.

In order to interpret these results consider first the unbiased
case. The analysis of the eigenstructure of A>FTA - which is
the covariance matrix of the map estimator - has shown that the
noisiest modes involve large scales. Since the power spectrum
estimator can down-weight pixels but not modes, the large noise
power carried by these modes can dominate the power spec-
trum at large scales. This consideration suggests that the noisiest
modes are the cause of the noise increase at large scales com-
pared to the usual `2 trend.

We therefore filter our unbiased map, progressively remov-
ing the noisiest eigenvectors of the A>FTA matrix: if the eigen-
value of a given eigenvector is less than α times the maximum
eigenvalue, the mode is filtered out of the map. We consider sev-
eral values of α: 10−6, 10−5, 10−4, 10−3, 10−2, 0.05, 0.08, 10−1.
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Figure 9. Degenerate modes (the parenthesis in the title reports the corresponding eigenvalue divided by the largest eigenvalue). The degenerate
mode of the temperature (left) map reconstruction is the global offset. The Q and U maps on the left are one of the two singular modes of
polarization, the other mode is very similar: Q and U maps are swapped and the sign of one of them is flipped. The degenerate modes of the
polarization are more complex because of the modulation of the polarization angle during the observation (see Sect. 4.2). For the same reason
the degeneracy of these modes is partially broken (though they have to be treated as singular in order to preserve the numerical stability of the
inversion of the A>FTA matrix).
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Figure 10. Examples of nearly degenerate modes (the parenthesis in the title reports the corresponding eigenvalue divided by the largest eigen-
value). These modes are composed of some prominent feature at the boundaries and a (usually) weaker long mode. The structures at the boundaries
correspond to sets of pixels that are heavily affected by filtering. For polarization the dominant effect is the ground removal. At the high and low
declination ends of the observed area the redundancy of the observations is low and therefore the degeneracy breaking effects discussed in Sect. 4.2
are mild. For temperature, the high order of the polynomial filtering plays a significant role, adding prominent features at the boundaries at inter-
mediate declinations and increasing the complexity of the long modes. We emphasize that the prominent features at the boundaries saturate the
color scale.

We note that this procedure is similar to the rejection of the nois-
iest pixels in a map, the only difference is that we remove modes,
because our noise is correlated.

As the noisiest modes are removed from the unbiased map
(i.e., as α increases) the power spectrum slowly converges to `2

behavior. We note that this low ` noise increase is not caused
only by the “long modes” related to the ground template, it is
actually dominated by poorly constrained pixel-like modes: us-
ing the 10−4 threshold the long modes are removed but we still

observe an important noise excess. This suggests that the cause
is the not the ground template marginalization but the polyno-
mial filtering (or a combination of the two).

On the contrary, in the biased map the way noise is correlated
does not cause any noise increase at large scales, both the mean
and the standard deviation of the noise power spectra follow the
usual `2 behavior. We stress that in this section both the spectra
derived from the biased map and the ones derived from filtered
maps are biased: we have to debias them before making quanti-
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Figure 11. Examples of pixel-like modes (the parenthesis in the title reports the corresponding eigenvalue divided by the largest eigenvalue). These
modes involve mainly a “ring” composed of a very limited number of pixels (see the first row). In the second row, the same eigenvectors are
displayed with a color scale squeezed by roughly two orders of magnitude, emphasizing structures inside and outside of the ring. Outside of the
ring the structures quickly fade away. Also moving inwards the structures decrease their amplitude. However, compared to the outward structure,
their typical length is much larger and, most important, they do not completely disappear: they have a relevant amplitude in the whole inner region.
We emphasize that the “horizontal” structures represent the correlations induced by the ground template filtering.

tative statements about the uncertainty on their spectra, see next
section.

6.3.2. Performance comparison

As described in Sect. 5.6, in order to debias the spectra, signal
only simulations are used to evaluate the transfer functions f XY

(Fig. 13) and noise only simulations for evaluating the noise bias
Fig. 12. We use these quantities to get an unbiased power spec-
trum estimator for each map estimator and apply it to three sets
of 100 simulations: E modes only for evaluating the uncertainty
due to E to B leakage; noise only for evaluating the uncertainty
due to the noise; E and B modes and noise for evaluating the to-
tal uncertainty on the BB spectrum (E to B leakage, BB cosmic
variance and noise uncertainty).

In the first of these three cases the simulations do not contain
noise and therefore we evaluate the uncertainty as the standard

deviation of the auto-spectra of each simulation. In Sect. 6.3.1
we have shown that, for the biased power spectrum estimates,
the mean value of the noise simulations is comparable with their
dispersions, the auto-spectrum of noisy simulations would then
result in an asymmetric distribution. Consequently, in order to
evaluate the uncertainty of noisy simulations we prefer to group
them in pairs and evaluate the uncertainty as the standard devi-
ation of the cross-spectrum of the two simulations of each pair.
We note that, when the simulations contain also signal, the signal
is the same in the two simulations.

E to B leakage

As expected from the pure formalism implemented in X2Pure,
the unbiased map estimator has basically no uncertainty due to
E to B leakage (the leakage is only due to pixelization effects).
However the leakage quickly increases as the threshold on the
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Figure 12. Mean (left) and standard deviation (right) of the B-mode power spectra (as computed by X2Pure) of 100 noise only simulations for
different input maps. “Biased” refers to the biased map estimator defined in Eq. (25). The other lines refer to different maps derived from the
unbiased map estimator Eq. (22). The value in the legend is the α parameter that quantifies the amount of map domain filtering applied to the
unbiased map. Higher values of α correspond to more aggressive filtering, see Sect. 6.3.1 for more details
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Figure 13. Transfer functions of the different map estimators. For the explanation of the legend, see Fig. 12

eigenvalues increases and more modes are filtered from the map.
The leakage becomes relevant at large scales for any threshold
higher then 0.001. The biased map estimator too has a significant
amount of leakage at large scales but performs better than any
threshold greater than 0.001.

These considerations can also be made by observing the
transfer functions in Fig. 13. The BE transfer function quanti-
fies the average contribution of the EE power in the sky to the
BB power in the reconstructed map: the departure from zero is
relevant for the biased map estimator only for the first bin and it
is considerably more pronounced for α ≥ 0.001.

Noise uncertainty

In Sect. 6.3.1 we have shown that, for different map estimators
and different thresholds α, we get different dispersions of the raw
spectra of noise simulations. However, the BB transfer function
in Fig. 13 shows that they also have different loss of BB power.
Restoring this power boosts the spectrum of the noise too. The
interplay between the two effects can be non-trivial.

However, Fig. 14 shows that the latter effect has minor im-
pact: the dispersion of the unbiased spectrum of noise only simu-
lations is still the higher the lower the threshold α and the lowest
for the biased map estimator.

Because of the correlated nature of the noise in the estimated
maps, the power spectrum estimator can not properly down-
weight the noisy modes. Their large fluctuations dominate the
power at large scales, boosting the noise uncertainty. Filtering
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Figure 14. Uncertainty on the unbiased estimation of the B-mode power spectra based on 100 simulations containing E only (left panel), noise
only (central panel) and E, B and noise (right panel), see Sect. 6.3.2 for more details. The last case estimates the total uncertainty on the BB
power spectrum estimation. The spectra are estimated with help of cross-spectra of simulated pairs of maps. For the explanation of the legend, see
Fig. 12. In the case of simulations containing noise we also display the “No filters” case, in which the simulated white noise TOD are not filtered:
the simple map-making Eq. (5) is adopted.

these modes out of the map alleviates this noise excess at large
scales and the lowest noise uncertainty is reached by the most ag-
gressive filtering (α = 0.1). The biased map estimator performs
extremely well in this respect: despite the fact that its noise is
correlated too, the uncertainty due to noise is comparable with
the `2 trend expected by the uncorrelated noise case. We stress
that the unbiased and biased map estimators preserve the same
amount of information (we can convert one into the other any-
time using an invertible linear operator). The disparity in their
power spectrum noise uncertainty is purely due to the fact that
we are using a suboptimal weighting for the power spectrum es-
timation.

Total uncertainty on the BB spectrum

Finally we consider the total uncertainty on the BB spectrum
for the different map estimators. In Fig. 14 we show its spectrum
while in Fig. 15 we express it as ratio of the lensing BB spectrum
and total uncertainty.

As far as the unbiased map estimator is concerned, given the
specific noise level of these simulations, the noise plays a dom-
inant role. Controlling its large scale excess is more important
than controlling the E to B leakage and consequently we find
that the higher the threshold on the eigenvalues the lower the
overall uncertainty is. We note that the most aggressive thresh-
old removes more than 50% of the modes but retains more than
90% of the information (computed as the sum of the eigenvalues
retained over the sum of all the eigenvalues). The biased map es-
timator has good noise level over the entire spectrum and, even if
the estimator produces E to B leakage at large scales, the result-
ing uncertainty is below the noise level. As a result it performs
substantially better than any other estimator studied here in the
low ` part of the spectrum.

We also investigate how the situation would change if the
noise level was lower by extrapolating the total uncertainty as-
suming the observation time was x times longer. For each power
spectrum bin, this total uncertainty is evaluated as√
σ2

S +

(
σN

x

)2
+ 4

N
x

S , (61)

where S and N are the mean power of the signal only (E and
B) and noise only simulations respectively and the σs are their

standard deviations. For the biased map estimator the uncertainty
due to E to B leakage is smaller than the BB cosmic variance.
Therefore, the unbiased map estimator has superior leakage con-
trol but it is not the limiting factor in the case we are considering.
Consequently, the factor x required for the unbiased map estima-
tor to have better performance then the biased one is very large
(about 10). We emphasize that this statement depends strongly
on the specific case we are considering. The situation might be
very different if the E to B leakage were to provide a more signif-
icant contribution to the overall uncertainty, as can happen when
larger scales are probed. In such cases the unbiased map-making
approach may be more readily favored.

7. Conclusions

Time-domain filtering is unavoidable in the analysis of CMB
datasets. In this work we have addressed the issue of producing
unbiased sky-signal estimates from filtered time-ordered data.
We have presented a general map-making formalism that strictly
accounts for the presence of time-domain filtering and which is
capable of producing as faithful estimates of the sky signal as can
be ever obtained in such circumstances. We have shown, how-
ever, that some modes of such estimates may be unconstrained
or only poorly constrained. This happens whenever there are sky
signal modes that are degenerate (or nearly degenerate) with the
filtered time-domain modes, and which therefore cannot be fully
disentangled from these in the map-making.

Subsequently, we have focused on ground-based experi-
ments and two specific classes of filters – polynomial and
ground-synchronous – which are frequently applied to remove
long temporal modes and ground-signal pick-up. We have pre-
sented general considerations relevant to this case and then
demonstrated them on specific, simulated data sets based on the
first observational campaigns of the Polarbear experiment.

In this latter context we have shown that nearly unbiased
maps of all three Stokes parameters can indeed be derived.
Nonetheless, these contain a number of poorly constrained sky
modes which have to be properly accounted for in the ensu-
ing analysis of the maps in order to fully capitalize on the ad-
vantages of the proposed map-making. In particular, we have
shown that the performance of simple pseudo-spectrum-based
methods, commonly used to estimate the power spectra of the
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Figure 15. Ratio between the signal and the total uncertainty for B-
mode power spectra derived with the different power spectrum estima-
tion choices. The results are quoted relative to the highest ratio obtained
for the biased map. The loss of precision of the spectra derived from
the unbiased map is apparent and related to the strong correlated noise
modes present in the map. The loss can be mostly recovered with help
of a progressively more aggressive removal of the noisiest modes as ex-
pressed by the increasing value of parameter α as defined in the text and
given in the legend.

derived maps, may be significantly affected by the presence of
such modes. This is because this approach is not naturally ca-
pable of weighting different sky modes differently and therefore
these modes tend to either lead to excess noise at low multipoles
if they are left in the map, or to enhance the E-to-B leakage if
they are excised. We stress that this excess noise at low multi-
poles should not be interpreted as a downside of the map estima-
tion technique but rather a demonstration that the map-domain
correlation induced by popular time-domain filtering operations
can severely affect the performances of power-spectrum estima-
tors that use only a pixel-by-pixel weighting.

We have developed a practical approach to compensate
for such deficiency but found out that, at best, we can only
match the performance of the quicker and simpler biased map-
making, based on a simple, noise-weighted binning of the
filtered time-domain data. Consequently, more involved and
resource-consuming techniques, such as those based on max-
imum likelihood principles, may need to be employed to ex-
ploit at the full potential of the unbiased maps. If, on the con-
trary, pseudo-power spectrum estimators are used, the unbiased
maps can lead to lower E-to-B leakage than the biased ones.
Consequently, some improvements in the uncertainty of the re-
covered B-mode spectrum can be expected whenever E-to-B
leakage, and not the noise, is a dominant source of uncertainty
and aggressive mode removal is unnecessary.

We note that the availability of nearly unbiased maps should
also be important whenever multiple maps (e.g., corresponding
to different frequency bands or coming from different experi-
ments), need to be combined, as in pixel-based component sep-
aration approaches or map-level cross-analyses involving multi-

ple data sets. In some applications, some of the ill-constrained
modes may have to be removed from the unbiased map prior to
further processing, as in the power spectrum estimation used in
this work. Even though this effectively leads to biased maps, the
removed sky modes will be known and the effects of their re-
moval can be kept track of. This has to be further investigated in
more detail and on a case-by-case basis, and is therefore left for
future work.

Since the specific filters studied in this work are common
for ground based experiments, the conclusions derived in this
work should be of importance for many operating and planned
ground-based experiments.
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Ferté, A., Grain, J., Tristram, M., & Stompor, R. 2013, Phys. Rev. D, 88, 023524
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Appendix A: Filtering the ground-synchronous
signal

In this appendix we study in detail the filtering of ground-
synchronous signals, elaborating on and justifying the conclu-
sions presented in Sect. 4.2.

We start by considering the data recorded from a single de-
tector, d, during a constant elevation scan, s. According to the
data model in Eq. (37), the data recoded in a given azimuthal
bin, ψ, is

d|d,s,ψ = A|d,s,ψ s|d,s,ψ + G|d,s,ψ g|d,s,ψ + n|d,s,ψ
= A|d,s,ψ s|d,s,ψ + 1|d,s,ψ gψ + n|d,s,ψ , (A.1)

where 1|d,s,ψ is a vector of ones of the appropriate length and
gψ denotes a ground template amplitude common to all selected
samples.

Let us now focus on the shape of the sky patch corresponding
to s|d,s,ψ. The geometry of the problem is depicted in Fig. 1 and,
for the time being, we neglect the role of the sky pixels. We
consider a small azimuthal change of the pointing direction at a
point on the sky at which the parallactic angle is η. The change
in horizontal coordinates ∆(Az,El) = (δ, 0) corresponds to an
interval in the equatorial ones given by,

∆(RA,Dec) = (−δ cos η,−δ sin η) (A.2)

In particular, at the South Pole the horizontal coordinates corre-
spond to the equatorial ones after flipping the y (El) axis, thus
we have always η = π and ∆(RA,Dec) = (δ, 0). For a given
elevation, the parallactic angle is always the same for a given az-
imuth but depends on the azimuth’s value, so although it changes
across a single ground template bin the changes are very small.
Consequently, each constant elevation scan crossing a bin will
draw a line interval on the sky given approximately by Eq. (A.2).
Because of the Earth’s rotation, if we keep on crossing the bin
multiple times the intervals will cover a trapezoidal shape in sky
coordinates, as shown in the bottom panel of Fig. 1. The size of
the trapezoid depends on the bin width but also on the parallactic
angle, Eq. (A.2). However, the lines traced by the azimuthal bin
end points always follow the constant declination direction on
the sky. We note that if | sin η| = 0 , which is always the case at
the South Pole or whenever the instrument is pointed straight to
the South or the North, the width of the trapezoid in declination
is zero.

These patches, narrow in declination and elongated in az-
imuth, are degenerate (or ill-conditioned) modes. In the follow-
ing we discuss this statement in detail for both temperature and
polarization and investigate possible degeneracy-breaking ef-
fects.

A.1. Total intensity measurements.

Let us start with the total intensity measurements and consider a
data subset that has the same ground contribution. It is described
by Eq. (A.1), with the pointing matrix, A, merely composed of
ones and zeros. For this single scan the sky modes, s̃, that are
degenerate with the ground template signal have to fulfil the fol-
lowing relation, stemming from Eq. (32),

A|d,s,ψ s̃ = G|d,s,ψ g̃ = 1|d,s,ψ gψ. (A.3)

Thus for this subset of measurements, the ground template can
only give rise to a constant offset in the time-domain for all sam-
ples of the scan. Given that A here simply assigns the pixel am-
plitudes to the respective time samples without changing their
values, there is only one sky mode that reproduces this behavior:
a constant offset in the corresponding sky map,

s̃ ∝
 1
...
1

 ≡ 1 s|(d,s,ψ) (A.4)

This demonstrates that, as intuitively expected, the absolute off-
set of the map produced from these measurements is unavoid-
ably lost as it is degenerate with the ground signal, gψ.

Let us consider another data subset taken by detector d′, dur-
ing scan s′ and with the azimuth coordinate corresponding to bin
ψ′. The data for this scan can be expressed by a relation analo-
gous to Eq. (A.1). If either the scan, the detector or the azimuthal
bin is different between these two data subsets, then the subsets
will have independent, and a priori different, ground-pickup am-
plitudes gψ and gψ′ . If the sky observed during these scans over-
laps, then the combined data set, d{d,s,ψ}∪{d′,s′,ψ′}, will have again
only one degenerate mode pair,

s̃ ∝
 1
...
1

 = 1 s|(d,s,ψ)∪ s|(d′ ,s′ ,ψ′) and g̃ ∝
 1
...
1

 = 1 g|(d,s,ψ)∪ g|(d′ ,s′ ,ψ′) . (A.5)

This reflects the fact that the relative offset of the two sky maps
recovered from each of the subsets can be constrained internally
owing to the fact they overlap on the sky and have to recover the
same sky signal in each common pixel.

Otherwise, if no overlap exist, the data set made of two sub-
sets will have two degenerate pairs of modes, which can be cast
as either the absolute offsets of both of the sky patches or as
an absolute offset of both of them and a relative offset between
them.

This latter situation can happen if the two subsets correspond
to the same detector, d, and the same scan, s, but to two different
though adjacent azimuthal bins. As described above, their cor-
responding sky areas will be indeed strictly speaking disjoint.
However, as the sky maps are necessarily pixelized, there will be
some pixels on the border between two patches which will strad-
dle both of them, constraining their relative offset. The constraint
will not be very strong though, and the corresponding degener-
acy only weakly broken. An upshot of this is that a map produced
from the single constant elevation scan data of a single detector
will have as many ill-constrained modes as there are azimuthal
bins used to represent the ground pick-up. These modes will be-
come even more ill-constrained if the number of bins increases
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because the relative offset uncertainty for sky patches corre-
sponding to two extreme bins increases in proportion to

√
nψ,

while the uncertainty on the offset of two adjacent bins remains
roughly unchanged. This scaling reflects the fact that the relative
offset between two non-overlapping sky patches with n inter-
mediaries is a result of a random walk of the adjacent patches’
offsets, each subject to the same uncertainty (Stompor & White
2004). Consequently ill-constrained modes can be suppressed if
fewer azimuthal bins are used. Similarly, the uncertainty on the
offset of two adjacent bins can be decreased if larger sky pixels
are adopted, and more samples from both azimuth bins fall into
them. However, the pixel size is typically set by the beam size,
while the size of the azimuthal bins is driven by our preconcep-
tions about the ground signal and the structure of the far side
lobes. Consequently, whatever freedom is left should be used
with care, as potential improvements in statistical uncertainty
can be translated into increased ground pick-up residual.

There are two reasons why these ill-constrained modes may
be further suppressed in the final maps, combining the data of all
the detector and all of the scans.First, for a single scan the addi-
tional constraints on the relative offsets of these patches typically
also come from the data collected by different detectors. This is
because the azimuthal bins are often defined differently for dif-
ferent detectors so the sky patch corresponding to an azimuthal
bin of one detector will often overlap with two sky patches cor-
responding to two different bins of the other detector, thus pro-
viding an extra leverage on their relative offset. Second, the sky
patches corresponding to fixed azimuthal bins of different scans
can have different width because the parallactic angle is differ-
ent in the two scans (see previous section). This introduces ad-
ditional overlaps between the patches of different scans, helping
to constrain their relative offsets.

In general the global offset of the final map is expected to
be the only truly degenerate mode in the total intensity maps
derived from data that are contaminated by ground pickup that
requires explicit filtering. Notwithstanding this, the constraints
that can be set between the relative offsets of different patches
with the same ground pick up are usually inferior to those be-
tween different parts of the same patch, and some ill-constrained
large scale modes should be expected, predominantly in the dec-
lination direction.

We note that these conclusions apply qualitatively to any ob-
servational site on Earth, including the poles, with the difference
that as the single ground bin patches become very narrow in dec-
lination the relative offset degeneracies in this direction are bro-
ken only by the pixel effects. By contrast, the bin size only plays
a role in breaking the degeneracies in the azimuthal direction.

It is important to appreciate the role of the assumptions in
breaking these (near) degeneracies. The choices made about the
sky pixel size, the pixelization itself, the binning, and the size of
the bins, all impact the degeneracies and can be used, or abused,
to break them. In addition, the offset degeneracies can be bro-
ken if a less flexible model for the ground signal is used, for
instance if we impose a prior constraint on the relative change
of the ground signal from one bin to the next. The key parame-
ter in such cases would be the assumed coherence length for the
ground signal.

A.2. Polarization-sensitive measurements.

The situation for polarization-sensitive observations is poten-
tially more complex due to more complex form of the point-
ing matrix. However, it is qualitatively similar to the total in-
tensity case. For concreteness, we discuss the case with three

Stokes parameters contributing to the measurements, and thus
with the pointing matrix as defined in Eq. (1). Since the polar-
ization orientation may change during the operations because of
some polarization modulator, we introduce a different ground
pick-up amplitude not only for each azimuthal orientation of the
instrument but also for each different position of the polarizer,
as defined in the instrument coordinates. For simplicity, we will
however keep on using a single azimuthal bin number, ψ, to dis-
tinguish between the ground signal amplitudes.

We again focus on a single constant elevation scan and a sin-
gle detector. Our data model is then again given by Eq. (A.1),
where the same ground pick up is added to each measurement.
The major qualitative difference from the total intensity case is
that in the polarization-sensitive case the pointing matrix ele-
ments may be different from sample to sample, even for samples
falling into the same sky pixel on a single crossing, as could be
the case if fast rotating half-wave plate were employed to mod-
ulate the signal. However, for the data subset selected above the
angle of the polarizer is fixed in the instrument frame, so the
change of the pointing matrix elements, defined by the polar-
izer orientation but with respect to the sky coordinates, can be
only related to the parallactic angle change with the azimuth of
the observation. Typically the angle change within a range of
azimuths corresponding to a single sky pixel can be safely ne-
glected and we may assign a single polarizer angle as measured
with respect to the sky coordinates for each pixel observed with
the data subset. These angles may be somewhat different for two
different pixels if these are observed at different azimuths, but
as the latter have to fall within a single ground template bin,
the bins would need to be rather broad to make such an effect
important. Nonetheless, henceforth we assume that for the data
subset as defined earlier and characterized by the same ground-
pick up amplitude, the polarizer’s angle in the sky coordinates,
and thus the mixing matrix elements, may at most depend on the
observed sky pixels and will have a unique value for all obser-
vations falling within the same pixel. We note that such small
angle variations do not appear if the observations are conducted
from the Earth’s poles.

As in the total intensity case, the degenerate sky modes have
to be able to mimic an offset in time-domain data. This can be
the case for three linearly independent sky defined as,

s̃I ∝



1
0
0
...
1
0
0


, s̃Q ∝



0
c−1

0

0
...
0

c−1
np−1

0


, s̃U ∝



0
0

s−1
0

...
0
0

snp−1


, (A.6)

where,

sp ≡ sin 2ϕp (A.7)
cp ≡ cos 2ϕp, (A.8)

and ϕp stands for a polarizer angle in the sky coordinate in pixel
p (= 0, . . . , np − 1). Each of these sky modes is a vector of np
triples where the elements of each triple correspond to the I,
Q, and U Stokes parameters. We note that if the sky rotation is
negligible across the sky patch covered by the scan these three
modes correspond to map offsets of the maps of the respective
Stokes parameters.

Within our data subset, each pixel is observed with only a
single orientation of the polarizer and we thus cannot estimate
all three Stokes parameters separately, but merely their linear
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combination, I + Q cos 2ϕp + U sin 2ϕp, even if no ground pick
up is considered. The corresponding two-dimensional degener-
acy space is a sub-space of the three-dimensional space spanned
by the vectors defined in Eq. (A.6). Consequently, adding the
ground pick-up merely adds one degenerate vector to the map-
making problem, corresponding to the total offset of the linear
combination of the Stokes parameters, I+Q cos 2ϕp+U sin 2ϕp

1.
To recover all the Stokes parameters from data modeled as

in Eq. (1), we need at least three visits to each pixel with a differ-
ent orientation of the polarizer. These can be provided by other
detectors in the focal plane during the same or different constant
elevation scans, or come from the same detector if its polarizer
direction is modulated either on short or long timescales. In all
these cases the new data will have not only a different polariza-
tion angle but also potentially a different ground-pickup. Each
of these extra data sets can likewise have up to three degenerate
sky modes, which for data subset i (= 0, 1, 2), we denote as s̃(i)

I ,
s̃(i)

Q and s̃(i)
U , respectively. For these data sets considered together,

however only the intensity offset, s̃I = s̃(0)
I = s̃(1)

I = s̃(2)
I , always

leads to degeneracy, while s̃(i)
Q and s̃(i)

U will only do so if the po-
larizer angles for each data subset are effectively the same for all
observed pixels, and therefore

s̃(i)
Q ∝ s̃Q ≡



0
1
0
...
0
1
0


, s̃(i)

U ∝ s̃U ≡



0
0
1
...
0
0
1


, for i = 0, 1, 2. (A.9)

In this case each of the recovered maps of the Stokes parameters
will have an arbitrary offset corresponding to three degenerate
vectors, s̃I, s̃Q, and s̃U, as defined.

If the angles do change somewhat from pixel to pixel within
a single data subset (i.e., when the change of the parallactic angle
within the azimuthal bin is not negligible) only the total inten-
sity map will have an arbitrary offset. This is because in this case
A(i) s̃( j)

Q and A(i) s̃( j)
U are time-domain vectors with elements which

depend on time in a non-trivial way. Here, A(i) is a pointing ma-
trix specific to subset i, while the combined pointing matrix for
the three subset is given by,

A ≡

 A(0)

A(1)

A(2)

 . (A.10)

We therefore also see that the time-domain vectors, A s̃( j)
Q and

A s̃( j)
U , are non-trivial and therefore cannot typically be mimicked

by three ground template offsets and the degeneracy condition
in Eq. (32) can not be fulfilled.

However, as the angle change due to the sky rotation is typi-
cally small, s̃Q and s̃U may be potentially ill-constrained, even if
not strictly singular, and the offsets of the Q and U maps may be
very uncertain.

The offsets between sky patches corresponding to adjacent
ground template bins during the same constant elevation scan
can be further constrained as in the case of the total intensity

1 We also note that even if one of the cosines, cp, or sines, sp, hap-
pens to be zero, and therefore only two of the three modes in Eq. (A.6)
are indeed degenerate, the latter statement remains true and the loss of
information is the same in all these cases.

only measurements. The potential degeneracies can then be sup-
pressed with the help of data from the other detectors and/or
different scans, although again a natural expectation is that there
will be long sky modes in the declination direction which may
be ill-constrained.

If the observation is taken from the Earth’s poles, the maps
recovered from the three subsets of the data taken at the same
elevation will have all three degenerate offsets, which will prop-
agate to the final maps combining all the data. In addition, the
relative offsets between the sky patches taken at different ele-
vation will only be set by the presence of pixels common to
both patches and therefore will lead to long modes in declina-
tion which will be ill-constrained.
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