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A Dynamic Connectionist Model Of Problem Solving

James Lundell and Bernice Laden
University of Washington

Connectionist computing offers a flexible approach to
modelling automatic cognitive processes, while production
systems provide reascnable models of controlled processes
involved in problem solving. Our initial motivation for the
development of this problem solving simulation was to build
a model which could predict the time required to solve a
problem and the types of errors people are likely to make
under time pressure. Aside from its predictive ability, we
believe the simulation offers a unique approach to modelling
cognitive tasks. We refer to the model as a Dynamic
Connectionist Model of Problem Solving (DCOMPS). It is
connectionist because working memory consists of
propositions which are organized into a connected
activational network, and it is dynamic because this network
changes its organization over time as a result of the firing
of production rules. Its architecture is designed to handle
a variety of problem solving tasks, including arithmetic
word problems, two-term series and a stroop task.

Our purpose in this project is to develop a model of problem
solving that predicts the time required to solve a problem and the
errors which people are likely to make under time pressure. We
assume that problem solving occurs as a series of mental events,
each of which consists of the recognition of a pattern and a
response. The time required to respond to a pattern is a function
of the interaction between automatic and controlled processes
(Neely, 1977). The two most commonly used architectures in
modelling cognitive processes, connectionist networks and
production systems, closely parallel automatic and controlled
processes, respectively. Connectionist networks are used to
simulate the pattern-matching capabilities of the cognitive system
- they are particularly good at resolving incomplete or ambiguous
patterns. These networks, however, do not easily accomodate the
goal-driven, serial nature of human cognitive processing.
Production systems, on the other hand, are goal-driven and serial
in nature. Connectionist networks do not easily deal with
instantiation of several concurrent concepts; production systems
can accommodate instantiation and variable binding.

We would like to thank Earl Hunt, Aura Hanna, Simon Farr and Penny Yee for
their comments on earlier drafts. This research was supported by a grant from
the Office of Naval Research Grant N0014-84-K-003 to the University of
Washington, Earl Hunt Principal Investigator.
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Taken together, production systems and connectionist models
compensate for each others' weaknesses. The human cognitive system
may have evolved these two types of processing primarily because
they compensate for each others' deficiencies. Thus there are
theoretical as well as pragmatic reasons for attempting to
integrate the two approaches to cognitive modelling.

Our work builds on two attempts to combine models of automatic
and controlled processing: Anderson's ACT* (1983) and Hunt and
Lansman's (1986) production-activation model. In the ACT* approach,
production rules are embedded in a connected network, and the rules
fire when they attain a sufficient level of activation.

Hunt and Lansman's theory is similar to ACT* but focuses upon
simple cognitive tasks such as the Stroop task, four and
eight-choice reaction time tasks, and has been extended to simple
arithmetic tasks (Richardson and Hunt, 1986). Production rules are
matched to features in working memory. A production rule is fired
when activation strength exceeds that of all competing productions
by a parameter delta. The time required for a given production to
fire is a decreasing function of the degree of match between the
production pattern and the contents of working memory, and an
increasing function of the number of competing productions.

Qur simulation is based upon the Hunt and Lansman system, but has
several basic changes. Hunt and Lansman represented objects as
vectors of features; we chose a propositional representation. In
the Hunt and Lansman model, activation spreads through a network of
production rules. In our model, activation spreads through a
network of propositions in which the links between the propositions
are determined by a few general principles, and can be modified by
production rules.

DCOMPS: An Overview

The program is called DCOMPS, which stands for Dynamic
Connectionist Model of Problem Solving. DCOMPS is based upon
three assertions: 1) automatic processes can be modelled by the
parallel activation of related nodes in a propositional network,
2) controlled processes can be modelled by a production system
and, 3) the time required to solve a problem is a function of the
interaction between the two processes.

The following points describe some of the more salient features
of DCOMPS:

First, we have loosely adapted the system described by Kintsch
(1974), for the propositional representation of problems. Complex
problem solving tasks are represented by simple propositions, where
a proposition consists of a predicate and one or more arguments.



Second, following Hunt and Lansman we distinguish between
internal and external channels. Working memory consists of a
semantic (internal) channel and one or more external channels. Each
channel may contain several linked propositions. Each proposition
has an activation level that is determined by the activity in the
network. Representations in the external channel have been
processed to a certain extent, but have not been semantically
encoded. In the current version, there is only one external channel
which receives propositional representations of visually presented
words or sentences. Other external channels, such as auditory and
tactile channels, could be added. Connections across channels are
allowed, although they are generally weaker than within-channel
connections.

Third, control of the problem solving process is governed by the
pattern of activation of propositions resident in working memory
over time. This in turn is governed by simple rules which dictate
how propositions may be linked together, and by the incorporation
and transformation of propositions in working memory.

The incorporation of propositional information is based on
Kintsch and van Dijk's (1978) model of discourse understanding,
Kintsch and van Dijk distinguish between a microstructure and a
macrostructure representation of text. The microstructure consists
of the part of the discourse which is currently being comprehended.
The macrostructure consists of propositions which have been
extracted from the microstructure and which are retained in working
memory as an aid to understanding incoming propositions. Because we
eventually intend to simulate many different types of visual and
auditory tasks, we have chosen to call the macrostructure and
microstructure the semantic and external channels, respectively.
Propositions are extracted from the external channel and
incorporated into the semantic channel based on the concept of
referential coherence. That is, the propositions which contain
arguments that are most often referred to are extracted first,
while other propositions tend to be discarded. Kintsch (personal
communication, July, 1986) has suggested how this theory may be
implemented in a connectionist framework.

Propositions are linked to themselves by a connection strength of
1.0. Propositions that share arguments are linked by a connection
strength of 0.5. Propositions that are both referenced by a third
proposition are linked by a strength of 0.3. For example, Pl (agent
(John)) and P3 (Object (ball)) would be linked to each other by a
strength of 0.3 if proposition P2(has (Pl P3)) were also present.
Propositions that are related more distantly are linked by a
connection strength of 0.2. For example, if P4 were (Color (red
P3)), it would be linked to Pl by 0.2. Thus for the propositions
P1-P4 we have the following connection matrix:
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Pl P2 P3 P4

Pl 1.0 0.5 0.3 0.2
P2 0.5 1.0 0.5 0.3
P3 9:3 0.5 1.0 0.8
P4 0.2 0.3 9.5 1.0

We have chosen these link strengths arbitrarily. The actual
values themselves are not as important as the idea that the
connection strengths decrease with the distance from related
propositions. Propositions placed in the external channel are given
an initial activation value of 1.0. Each proposition's activation
value at time £ is computed synchronously by the following formula:

Ant = ZAj (t-1)Ci/N
where Ap; is the activation of proposition n at time L, Aj (t-1) is
the activation of proposition i at time t-1, and C; is the

connection strength between proposition n and proposition i. N is a
normalizing factor which prevents activation in the network from
becoming unacceptably high. The activation level of each node in
the network is iteratively computed until the network becomes
sufficiently "stable", i.e. when the change in activation levels
for each node drops below a criterion amount. Once the network
reaches stability, the propositions which are most highly
referenced are the most active. In this way, a hierarchy of
activation levels is formed, and the least active propositions may
be dropped from the network. The most active propositions will then
be transformed into a semantic code and placed into the semantic
channel. The macrostructure will eventually contain a parsimonious
representation of the topic of discourse, based on the concept of
referential coherence.

As Kintsch and van Dijk (1978) have noted, referential coherence
only partially accounts for discourse comprehension. Since
comprehension requires the additional use of information resident
in long term memory, the system contains two other types of nodes:
schema nodes and rule nodes. These can be conceived of as
knowledge the system already has. Schema nodes reside in the
semantic channel of working memory where they differentially
activate certain types of propositions, and thus help control the
activation of the important aspects of a statement. For example, if
we were to read John has three dollars in the context of an
arithmetic problem, we would probably attend to the quantity three.
This is because our schema for arithmetic problems activates all
propositions which pertain to numbers. If we were to read the same
sentence at a time when we happen to need money, we would attend
more strongly to the object of the sentence, dollars.

Rules are part of the knowledge base of the system, and are
linked to classes of propositions or schema nodes which appear in
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working memory. The activation algorithm for rules is simple: rules
inherit the activation of the nodes to which they are connected.
All rules are negatively linked to all other rules by a value of
-0.5. Each time the network stabilizes, the most active rule fires.
When a rule fires, it may change the connection strength between
propositions or it may insert new propositions into working memory.
This method of inserting new propositions or 'nodes' into the
network constitutes a break with traditional connectionist
modeling.

A Specific Example: The Two-term Series Problem

The DCOMPS' architecture will be illustrated by showing how the
simulation works on two-term series problems.The two-term series
problem is a deductive reasoning task containing a relational
statement and a question. An example is: John is better than Pete.
Who is best? 1In this type of problem people make inferences based
upon linguistic, rather than logical interpretations. Performance
has been shown to be influenced by three factors: 1) lexical
marking, 2) use of negations and 3) statement-question congruence
(Clark,1969). We have incorporated these aspects into the
simulation.

TABLE 1
Eight Versions of the Two-Term Series Problem

Proposition Question

8 John is better than Pete. Who is best?
v John is better than Pete. Who is worst?
m
E Pete is not as good as John. Who is best?
2 | pete is not as good as John. Who is worst?

Pete is worse than John, Who is best?
8 Pete is worse than John. Who is worst?
A4
g John is not as bad as Pete. Who is best?
= John is not as bad as Pete. Who is worst?

There are eight versions of the two-term series problem if one
takes into consideration lexical marking, negation and congruence.
These are summarized in Table 1. We have selected one of them to
illustrate the details of our model. In text form the problem is:
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John 1s worse than Pete. Who is best? In propositional form the
text is represented as follows:

P1l (Agent John)

P2 (Worse_than P1 P3)
P3 (Agent Pete)

P4 (Question P5 P6)
P5 (Agent unknown)

P6 (Best P5)

Initially, working memory contains a reasoning schema and an
instruction node, Il, in the semantic channel. The semantic channel
is organized as depicted in Figure 1. Il is the initial instruction
to read the problem. S1 is linked to the rule Rl. When Rl is fired
the system will read the first sentence of the problem. S2 is
linked to rule R2 which when fired will attempt to solve the
problem. S4 is linked to R5. R5 will be fired if the text contains
a negation, such as John is not as good as Pete, and will transform
those propositions to a positive interpretation, Pete is better
than John. S3 is a special node which will look for any
relational propositions, such as "Better_than" or "Worse_than” in
the external channel and link itself to that proposmtlon Thus any
relational propositions will tend to be more active, and so will
receive a greater amount of 'attention'.

SO0 is initialized with an activation level of 1.0, and the system
iterates until the network stabilizes. All positive links in the
superschema are given a value of 0.5, and all negative links are
given a value of -0.5. When the system settles, rule R1,
read sentence, is highly active. The system reads in the first
sentence, John is worse than Pete Dby placing the first three
propositions in the external channel. The worse_than relationship
is lexically marked relative to the better_ than relationship. In
the current example, lexical marking is simulated through the
addition of inferences that are made by the system whenever a
worse_than relationship is encountered. DCOMPS infers that Pete is
bad, and that John is very bad. These inferences are constructed as
propositions and linked to Pl (Agent John) and P3(Agent Pete)
respectively. All inference propositions are linked to their
related propositions by a connection strength of 0.2. Inferred
propositions are given an initial activation level of 0. According
to Clark, lexically marked adjectives take longer to recover from
memory. In our interpretation, lexically marked adjectives are
adjectives which cause a number of inferences to be made. This
means that a sentence containing a lexically marked adjective will
link to more (inferred) propositions. It will take longer, on
average, for the larger network to stabilize.

At this point, node S3 in the term schema is linked to

proposition P2, (Worse than Pl P3). In order to keep the
computational overhead down, rules from the rulebase are only added
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SO(Term schema)

I1(read_problem)
S3(relation_match)
S2(answer_question)
S1(read_problem) Sa(not_match)
Hg\g; \

R1(Read_sentence) R5(Not_match) R2(Solve_problem)

Empty

Propsitional Node
Schema Node

Rule Node
Instruction Node

= 2w

Figure 1. Initially, working memory contains a schema
organized in the semantic channel.

to the network if there is a corresponding proposition match in
working memory. Rule R4, worse than_relation, is added to the
network because it now has a corresponding match in P2. The state
of the network at this point is described in Figure 2.
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SO0(Term schema)

/v
|1'(fmu_proumm 1) / \

2 ti
S4(not_match) RRAnsNEF qHwRioh) S3(relation_match)

S1(read problem)

Bules
R2(Solve_problem)
R5(Not_match)
R4(Worse_relation)
R1(Read_sentence) 4
External Channel

P2(Worse_than)

Ny

P1(Agent John) P3(Agent Pete)

Figure 2. The first sentence is read in. The relational

node of the schema, S3 is linked to the proposition P2.
Rule R4 is added to the network.

The system again cycles through the activation updating function
until the network stabilizes. This time R4 fires, which does two
things: it adds a proposition to the semantic channel asserting
that this first sentence contains a Worse_than relation, and it
incorporates the propositions P1-P3 into the schema by changing the
link strengths between the propositions to 0.3 if one proposition
is contained in another's argument list, and 0.2 if two

propositions share a common argument. Now the schema looks like
Figure 3.
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nti hann

—p S0(Term schema)

<4—
I1(read_problem 1)

Si(read problem) / ‘\\‘§3Uelation_match)

S5(Worse_relation)

P2(Worse_than)

P1(Agent John) P3(A9‘e\ni Pete)
\PB(Bad P1) P4(Bad P3)

R5(Not_match)

v R2(Solve_problem)

R1(Read_sentence)

Empty

Figure 3. Both text and inferred propositions are
incorporated into the schema.

The presence of the term schema was necessary for proper
understanding of the first sentence. The schema node S3 directed
attention towards the relation stated in the text. As a result, R4
fired and created a new proposition (S5) linking P2 and SO.
Without the schema the model would not have been able to extract
information from the sentence which is crucial to solving the
two-term series problem.

The connection strengths between the propositions are lowered
once the propositions are incorporated into the semantic channel.
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This is a decay mechanism used in the simulation which we found was

necessary to allow the system to attend to new propositions placed
on the external channel.

During the next cycle the system proceeds as before which
eventually results in the rule Rl firing. The system places the
next sentence, Who is best?, into the visual channel, setting all
activation values for P7-P9 to 1.0. Rule R6(Quest_rule) is linked
into the network. Rule R6(Quest rule) wins out, which creates
proposition Sé6(Find agent Best). I1l, the instruction to read, is
removed from the network because the Quest rule proposition is a
signal that this is the last sentence in the problem.

The system cycles through again, now firing R2 because
proposition Il has been removed from the network. Rule R2 is a
complex rule which forms various hypotheses about the answer. At
this point three hypotheses are possible: John is best, Pete is
best or the statement is incongruent with the question and must be
converted to the proper representation. These hypotheses are linked
into the network as S7, S8 and S9. DCOMPS gathers evidence for
each hypothesis by linking each one to the propositions in the
semantic channel which support it. In this case there are no
propositions which support the John and Pete hypotheses, because
the proposition terms such as P4 (Bad Pl) are incongruent with the
question, Who is best. Hypothesis S9 is most active because there
is a worse_than relation and a best question present in the current
representation, signalling that a conversion is necessary.

Three rules are linked to the three newly formed hypotheses. As
with all other rules which are present in the network, inhibitory
links are created between them. When the network stabilizes, rule
R9 (Convert) fires. This rule will reformat the propositions created
by the first sentence so that the relation is congruent with the
question. The convert rule changes worse than to better than in
P2, as well as S5. It also switches the agents, John and Pete, so
that the initial sentence now has the interpretation Pete is better
than John. The "bad" inferences drop out of working memory as well
as the convert hypothesis, S9.

Now that the problem is represented correctly, the conversion
rule no longer applies. Two hypotheses remain: John is best or
Pete is best. These hypotheses can now gather evidence because the
worse_than proposition has been converted to better than. Figure 4
depicts how these hypothese are now linked to working memory. Two
rules, R7(Agentl) and R8 (Agent2) are added to the rule list. R8 is
most active, since it is linked to Pl (Agent Pete), and
P2 (better than Pl P3). Thus, Pete is best is determined to be the
answer.
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Semantic Channel

/ S0(Term schema) \
S1(read probl:n/ \ S3(relation_match)
\ S5(Better_relation)

4(not_match)
6(Find_agent Best)

I> (Question)

P9(Best P8)

\Ns(Agent unkown)

S10(Agent_answerl)

‘\b-Pi(Agent John)

\

P2(Better_than P3 P1)

S2(answer question)

511(Agent_answer2)

N

P3(Agent Pete)

R2(Solve_problem)

RB8(Agent_answer2) R7(Agent_answer1)

R5(Not_match)

R1(Read_sentence)

External Channel
Empty

Figure 4. Hypotheses linked into working memory
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How does DCOMPS compare to empircal results?

Table 2 presents a comparison of the original Clark data and the
number of cycles required for DCOMPS to solve the same problem.
There is a Spearman correlation of .994 between the rank order of
the times required for solution by human subjects and by DCOMPS. A
tie occurs between the times required to solve John is worse than
Pete. Who is best? and John is not as good as Pete. Who is best?
We attribute this to the fact that DCOMPS takes less time to
process not statements than do people. Because John is not as good
as Pete. Who is best? is the quickest of the negatively framed
problems and John is worse than Pete. Who is best? is the longest
of the positively framed problems, a tie occurs between the times
required to solve these two problems by DCOMPS.

TABLE 2

A comparison between data from Clark (1969) and DCOMPS for
performance on two-term series problems.

Clark DCOMPS
Problem Question secs. cycles
John is better than Pete. Who is best? .61 91
John is worse than Pete. Who is worst? .62 95
John is better than Pete. Who is worst? .68 108
John is worse than Pete. Who is best? 1.00 113
John is not as good as Pete. Who is best? P 113
John is not as good as Pete. Who is worst? 1.47 128
John is not as bad as Pete. Who is worst? 1.58 130
John is not as bad as Pete. Who is best? 1.73 147

The time required to solve these problems is a function both of
controlled, serial processing and automatic, parallel processing.
That is, problems involving incongruent questions or negative
assertions require the firing of additional productions which
transform the appropriate propositions. The time required for these
factors is a result of serial operations, and can be predicted by a
simple production system model. However, the difference between
solving problems with marked and unmarked adjectives is a result of
the parallel activation of the inferred propositions which were
incorporated into the network. During some steps of the problem
solving process, it takes longer for the network to "settle" when
these additional propositions are present.
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Conclusion

DCOMPS currently performs two other tasks: arithmetic word
problems and Stroop tasks. The system solves word arithmetic
problems in a manner similar to two-term series problems. DCOMPS
begins with an arithmetic schema which aids in interpreting
sentences which appear on the external channel. In particular, the
arithmetic schema differentially activates any Quantity
propositions. As each sentence is read, rules fire which
incorporate the propositions into the schema, and classify the
propositions according to the type of set which is indicated. For
example, the sentence John has five more marbles than Sarah is
classified as a more_than set. When a question is encountered, such
as How many marbles does John have?, DCOMPS generates hypotheses
about the operations required to solve the problem based on the
sets which have been identified.

Like the two-term series problems, a theory of the particular
problem solving process already exists (Kintsch and Greeno, 1985).
Our simulation is an attempt to implement the theory within the
DCOMPS architecture, and to compare the times required by the
system to solve various problems with the times required by humans.

The time to respond to various types of Stroop conditions
compares favorably with human data in three ways. First, color
words presented in contrasting colors are not identified as quickly
as color words presented in the same color. Second, it takes DCOMPS
longer to identify the color of the word than the meaning of the
word. Third, DCOMPS displays between-trial effects. It takes the
system longer to identify a feature which was inhibited on the
previous trial. For example, if the task is to identify the color
of the word and the first word presented is the word blue printed
in the color red, it would take longer to identify the color of the
next word if its color is blue, since that feature was inhibited on
the previous trial.

We are currently working on simulating two additional types of
tasks using DCOMPS: factual and counterfactual reasoning, and
musical chord priming. Future plans for DCOMPS include: 1) pursuing
several approaches to relate DCOMPS' performance with human data,
2) studying individual differences in problem solving by
manipulating the parameters of the model, and 3) simulating several
additional cognitive tasks.

DCOMPS offers a flexible compromise between production systems
and connectionist models. Although some researchers have suggested
a way in which a static connectionist model might simulate
sequential processess (e.g, Rumelhart, Smolensky, McClelland, &
Hinton, 1986) this method is very likely to be computationally
expensive and, more importantly, to be so complex as to be
intractable in simulating problem solving tasks. DCOMPS explores
the possibility that a simple system such as the one proposed can
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solve problems which involve both sequences of actions and parallel
processing.
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