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The move from reading to writing the human genome offers new opportunities to 
improve human health. The United States National Institutes of Health (NIH) 
Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the 
development of safer and more-effective methods to edit the genomes of 
disease-relevant somatic cells in patients, even in tissues that are difficult to reach. 
Here we discuss the consortium’s plans to develop and benchmark approaches to 
induce and measure genome modifications, and to define downstream functional 
consequences of genome editing within human cells. Central to this effort is a 
rigorous and innovative approach that requires validation of the technology 
through third-party testing in small and large animals. New genome editors, 
delivery technologies and methods for tracking edited cells in vivo, as well as newly 
developed animal models and human biological systems, will be assembled—along 
with validated datasets—into an SCGE Toolkit, which will be disseminated widely to 
the biomedical research community. We visualize this toolkit—and the knowledge 
generated by its applications—as a means to accelerate the clinical development of 
new therapies for a wide range of conditions.

Genetic factors contribute to most categories of human disease, includ-
ing those that are inherited, infectious and malignant. It has therefore 
been a long-standing goal of biomedical science to develop a means 
to modify genomes within patients to correct disease-causing muta-
tions, disable the genomes of invading pathogens, arm immune cells 
to attack tumours and enable countless other therapeutic opportuni-
ties. In some instances, gene addition can have therapeutic value, and 
gene therapy—the field that develops this approach—is experiencing 
ever-increasing success1. In many other cases, however, the genome 
of the patient must be edited to achieve therapeutic benefit. Genome 
editing broadly encompasses diverse technologies that can make many 
different genomic alterations in different contexts, and the topic has 

been the subject of recent and comprehensive reviews2–4. Several con-
cepts in genome editing (Fig. 1) are central to the goals and strategies 
of the SCGE Consortium, which we describe in this Perspective.

Over the past few decades, a steady progression of techniques and 
technologies that enable user-programmable genome editing has been 
introduced, tested, improved and implemented. These include homolo-
gous recombination, zinc-finger nucleases (ZFNs), meganucleases 
and transcription activator-like effector nucleases (TALENs)5–7. Most 
recently, engineered molecular machinery8–15 derived from bacterial 
immune pathways—known as clustered regularly interspaced short 
palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins 
(CRISPR–Cas systems)16—have revolutionized genome editing2–4, in part 
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because their target sequences can be simply programmed with easily 
designed RNA guides. Despite these promising advances, challenges 
remain before the transformative potential of therapeutic genome 
editing can be fully realized. Here we outline the goals and strategies 
of the SCGE Consortium, which has been established by the United 
States NIH to accelerate the development of solutions to many of these 
challenges. The NIH has allocated around US$190 million over 6 years 
in support of the SCGE Consortium, which now includes 72 principal 
investigators from 38 institutions that are pursuing 45 distinct but 
well-integrated projects.

Until the past decade, the most prominent genome-editing platforms 
(ZFNs, meganucleases, TALENs and Cas9/Cas12a systems) relied almost 
exclusively on the realization17 that the repair of nuclease-induced 
breaks in the genome can be exploited to induce genome edits (Fig. 1a)—
either gene knockouts (through insertions or deletions generated by 
non-homologous end joining (NHEJ) or microhomology-mediated 
end-joining) or precise correction through homology-directed repair 
(HDR)18. Some editing events involve the insertion of vector-derived, 
‘cargo’ sequences into the genome: natural examples of recombinases 
and transposases that can accomplish this task have been investigated 
for decades, and some (for example, lentiviral vectors) are being applied 
for gene therapy and genome editing19. In addition, some platforms can 
be implemented in partially or completely nuclease-inactive forms, by 
tethering to other effector proteins20. These strategies include base 
editing21 (in which fused deaminase enzymes rewrite individual nucleo-
tides without inducing double-strand breaks)22–24 and prime editing (in 
which a fused reverse transcriptase introduces edits templated by an 
extended guide RNA)25. Nuclease-inactive forms can also be fused to 
enzymes to alter chromatin without changing the DNA sequence26,27 
(Fig. 1a). Of course, no platform is appropriate for all contexts, and 
factors critical to editing success include efficiency (the fraction of 
the intended loci that are edited), precision (the relative frequency of 
desired (for example, reversion of a pathogenic allele) versus undesired 
(for example, large deletions or translocations) modifications at the 
intended loci) and accuracy (how many off-target sites are unintention-
ally edited, and to what extent).

Genome editing of somatic cells can be carried out either ex vivo, 
followed by the re-introduction of edited cells into the patient, or 
in vivo, by delivering the editing machinery to tissues within the body. 
An important distinction is the editing of somatic tissues versus ger-
mline tissues: the latter has the potential to transmit genetic changes 
to future generations. The SCGE Consortium is strictly focused on 
somatic editing; germline editing is not only excluded as a goal but is 
also considered to be an unacceptable outcome that should be care-
fully prevented.

Existing capabilities and unmet needs
Genome-editing technologies have already demonstrated efficacy in 
diverse animal models of disease, including cancer, blood and meta-
bolic disorders, inherited forms of blindness and deafness, and neuro-
muscular and neurological disease2,28–30. These successes have justified 
the move towards large animal models, in which signs of efficacy have 
also been found31–33. Early-stage clinical trials have shown that autolo-
gous edited cells can stably engraft and persist in humans34–36, and there 
have been early reports of the ex vivo editing of allogeneic T cells to 
fight cancer37 as well as the use of autologous haematopoietic stem cells 
to eliminate the need for blood transfusions in patients with sickle cell 
disease. However, ex vivo editing is logistically complex, expensive and 
hard to scale, given its requirement for substantial cell-manufacturing 
infrastructure. Therefore, in vivo approaches towards the editing of 
somatic cells are being developed29, and initial targets include cell types 
that are difficult to manufacture ex vivo (for example, in the retina (clini-
caltrials.gov identifier NCT03872479) and in the liver (NCT03041324 
and NCT04601051)). These studies highlight the great potential of 

genome editing to improve human health. However, they also under-
score the need to address key limitations of these technologies. Specifi-
cally, in vivo editing still faces substantial hurdles in terms of efficacy 
and safety, especially in organ systems beyond the eye and the liver.

To achieve success in vivo, editors must be able to induce a range 
of edits to any target nucleic acid in the cell, including nuclear and 
mitochondrial DNA. Editors must be highly efficient but also safe, with 
acceptable levels of toxicity and minimal activation of innate immune 
responses. Adaptive immunity to either the editor38–41 or the deliv-
ery vehicle42,43 must also be managed, particularly in cases in which 
re-administration might be necessary to edit a desired proportion of 
a target cell population. Similarly, pre-existing immunity might need 
to be suppressed or circumvented in some cases44–47. A particularly 
daunting challenge is to develop delivery technologies that can ferry 
the editing machinery to numerous tissues in a safe and effective man-
ner. We seek to better control the precise genomic changes that we 
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Fig. 1 | Tools for editing the genomes of cells within the body. Activities of 
the SCGE Consortium converge on editing the genome of cells inside the 
human body. a, Targets of the genome editors (right) range from DNA within 
the nucleus of a cell to other nucleic acids elsewhere within a cell, such as DNA 
within the mitochondria (mtDNA) or RNA in the cytoplasm. Targets of 
epigenomic editors (left) produce targeted alteration of the chromatin 
structure—including remodelling, modification of the 3D structure and the 
direct modification of histones or DNA—without editing the DNA or RNA 
sequence. Approaches to editing cells outside of the body, as well as germline 
editing in embryos, are not directly supported by the SCGE Consortium, nor 
are strategies for gene augmentation through the addition of exogenous DNA. 
b, Interoperable tools assembled into an SCGE Toolkit will be disseminated to 
accelerate the translation of safe and effective genome-editing therapeutics 
into the clinic. Tools encompass several categories: newly developed genome 
editors, delivery technologies, reporter-animal systems, and human biological 
systems.



Nature | Vol 592 | 8 April 2021 | 197

intend to create at each targeted site, reduce the potential for unin-
tended modifications at both targeted and non-targeted sites, and 
better understand the biological consequences of unintended editing 
events. These unmet needs are addressed by the initiatives of the SCGE 
Consortium, as elaborated below.

Despite the promise of changing any DNA sequence in the genome, 
the current programmable nucleases are most effective for gene knock-
out or for the excision of specific regions of genomic DNA. In fact, many 
gene-editing approaches for the treatment of diseases that are caused 
by mutations in a single gene—such as sickle cell disease, β thalassemia, 
Duchenne muscular dystrophy and Leber’s congenital amaurosis—
are not intended to correct the inherited mutation or to restore the 
affected gene to a wild-type sequence. Instead, they are designed to 
knock out repressive genomic elements that will lead to the upregula-
tion of compensatory factors48, to remove exons that will lead to the 
production of a partially functional gene product49–51, or to remove 
aberrant splice junctions32. The current inability to easily and accurately 
program specific sequences into the genome—given that HDR is largely 
ineffective in differentiated, post-mitotic cells18—is a fundamental 
obstacle to the broad use of genome editing in the treatment of genetic 
disease. Accordingly, new technologies that enable sequence-specific 
alterations—such as base editing22,23 and prime editing25—are also part 
of the SCGE Consortium’s portfolio of projects. In fact, base editing has 
already been used to correct pathogenic mutations, and in some cases 
has resulted in phenotypic rescue of the disease52–63.

Beyond new editing capabilities, there are numerous other technical 
limitations that must be overcome to advance the field. For example, 
there have been important advances in recent years in the prediction, 
characterization and validation of possible off-target editing64, build-
ing on foundational work with ZFNs65. Nonetheless, all of these meth-
ods are inherently incomplete, because it is not feasible to achieve 
non-destructive, whole-genome sequencing of every single edited cell. 
Similarly, most approaches are based on deep-sequencing technology, 
and are therefore limited by polymerase chain reaction biases, sensi-
tivities, read lengths and the error rates of these methods. Moreover, 
off-target effects, unwanted events (for example, vector integrations, 
large deletions, rearrangements or translocations), genotoxicity and 
other adverse responses to genome editors might not be fully measur-
able in animal models. For these reasons, the development of methods 
to detect unwanted genomic events with increased predictive ability 
and sensitivity, as well as human cell and tissue systems such as orga-
noids, are important components of the SCGE program.

The most substantial hurdle to the development of gene-editing 
therapies is the establishment of safe and effective delivery strategies. 
The genome-editing field can make use of four decades of innovation in 
the fields of gene therapy1 and nucleic acid therapeutics66, which have 
resulted in the development of numerous viral and non-viral delivery 
approaches. In fact, the recent regulatory approvals of gene therapies 
using both adeno-associated virus (AAV) and lentivirus vectors, as well 
as short interfering RNA (siRNA)-based and antisense-based drugs, pro-
vide lessons that are applicable to genome editors. However, many of 
the vectors that have been developed for gene therapy, which typically 
focuses on long-term expression to compensate for genetic defects, are 
not necessarily optimal for gene editing, which often requires transient 
delivery of editors. The most frequently used editors also introduce 
other challenges, including their large sizes (SpyCas9 and TALENs), 
their repetitive sequences and the need to deliver both components of 
a heterodimer (ZFNs and TALENs), and the requirement for delivery of 
a ribonucleoprotein complex (RNP; for example in CRISPR). Finally, the 
risk of on-target or off-target activity in inappropriate tissues under-
scores the need to ensure proper tissue targeting. Collectively, these 
challenges provide considerable opportunities for innovation.

Goals of the SCGE Consortium
After reviewing the state of the field in 2017 through a series of stake-
holder workshops, the NIH Common Fund noted needs that spanned 
multiple clinical indications, genes and target tissues67. The consen-
sus was that the field needed new genome editors, delivery systems 
and biological systems to measure the safety and efficacy of various 
genome-editing strategies. The Common Fund subsequently launched 
the SCGE Consortium in 2018, by assembling a collection of multidis-
ciplinary teams working on individual projects designed to address 
these needs.

The overarching goal of the SCGE Consortium is to accelerate the 
translation of genome-editing technology to a wide range of tissues 
and diseases. One of the key challenges in the field is the comparison 
of various technologies using common metrics and standards. For 
instance, a retinal delivery system might produce on-target indels at 
a gene of interest, but it is unclear whether the same delivery system 
could correct a different gene in the lung. Developmental paths that 
enable the mixing and matching of various technologies and read-
outs are woven into the SCGE program. In one example, all new deliv-
ery technologies developed in the first three years of the program 
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Fig. 2 | New genome editors in development. Major classes of genome editors 
include nucleases, base editors (BE), prime editors, PNAs, RNA editors and 
epigenome editors. The development of new editors involves mining 
metagenomic datasets and building upon existing editors, in part by tuning 
them for increased precision and accuracy. DNMT, DNA methyltransferase; 

Acr, anti-CRISPR protein; RT, reverse transcriptase; DN1S: dominant-negative 
mutant of tumour suppressor p53-binding protein 1, 53BP1; TALE-fusions, 
transcription activator-like effector-fusion with nucleases or cytidine 
deaminases (DddA).



198 | Nature | Vol 592 | 8 April 2021

Perspective

will be tested first in small animals (for example, mice) and then—if 
successful—in large animals such as pigs and non-human primates. 
The resulting third-party data will be shared with the larger research 
community and with the public. A key value of the SCGE Consortium 
is transparency, which enables others to access its research output 
and use its results and products to inform and accelerate their own 
disease-focused projects. Along with data, we aim to deliver a collection 
of tools, reagents, methods and best-practices that will be assembled 
into the SCGE Toolkit for Therapeutic Genome Editing (or SCGE Toolkit 
in short, Fig. 1b). Through these activities and deliverables, the SCGE 
Consortium seeks to have a lasting impact by reducing the time and 
cost required to develop new therapies.

Priorities and strategies
Editing platforms
Both the discovery of new gene-editing tools and their engineering 
continue to advance rapidly. As such, we seek to discover new editors 
and build upon existing editors, in part by tuning them for increased 
precision (Fig. 2). Although the bulk of SCGE studies will focus on the 
CRISPR system that is already in widest use (SpyCas9), as well as on 
other established Cas9 and Cas12a homologues68–79, it is imperative 
to continue to identify and test new systems and related tools. For 
example, new CRISPR–Cas systems to which humans have not previ-
ously been exposed80—as well as gene editors that are based solely 
on nucleic acid analogues that do not require protein cofactors81—
could serve to circumvent detection by the immune system and also 
facilitate delivery. By searching through microbial data obtained from 
uncultivated samples, we hope to identify new systems that can be 
harnessed for the manipulation of DNA—such as helicases, nucle-
ases, transposases, or recombinases80,82–86. These new systems could 
provide resources with improved efficiencies, alternative targeting 

mechanisms, smaller cargoes for viral packaging or decreased immu-
nogenicity. This approach is exemplified by the recent development of 
Cas12j, the smallest CRISPR–Cas genome editing system yet discovered, 
which was supported by the SCGE program87.

In addition to the discovery of new CRISPR–Cas systems, we will 
continue to develop and improve engineered platforms—for example, 
base editing21—that efficiently edit genomes, including in post-mitotic 
cells and in mitochondrial DNA24. Well-established base editors can 
catalyse C-to-T transitions (cytosine base editors (CBEs))22, A-to-G 
transitions (adenine base editors (ABEs))23, or both88–90; very recently, 
C-to-G transversions in mammalian cells have also been enabled by 
base editing91,92. Ideally, programmed edits could change any nucleo-
tide at any position in the genome; however, when using CRISPR–Cas 
effectors, editable bases are limited to regions that are near a com-
patible protospacer-adjacent motif sequence. Furthermore, editable 
sequences are restricted to a window that is a defined distance from 
the protospacer-adjacent motif. Through directed evolution, mining 
of natural variation or rational engineering, we aim to develop both 
broader targeting capabilities and increased specificity. Finally, we wish 
to eliminate limitations in changes to the targetable nucleotides. Prime 
editing, developed in part through the SCGE program, is an example 
of one such technology25.

Using CRISPR–Cas systems as ‘DNA cursors’ permits us to make edits 
not only to the DNA nucleotide sequence but also to the epigenetic 
marks that can alter gene-expression profiles and ultimately influ-
ence cellular function93. Like base editors, new CRISPR–Cas systems 
or variants that provide new binding sites can improve the accessibil-
ity of these new tools to all regions of the epigenome, and much has 
to be learned and developed to first understand and then to improve 
the specificity of epigenome editors. Such an approach extends the 
genome-engineering toolbox to apply to a much broader set of dis-
eases, which can be addressed through changes in gene expression93,94 

Table 1 | Delivery systems under development

Delivery system Target tissue Administration Cargo classa PI(s)b

Viral: AAV Brain Intravenous DNA B. E. Deverman

Viral: AAV Endothelium Intravenous DNA G. Bao, W. R. Lagor

Viral: adenovirus Endothelium Intravenous DNA D. T. Curiel

Viral: AAV Brain, skeletal muscle Intravenous DNA A. Asokan, C. Gersbach

Non-viral: engineered guide RNAs Brain Local injection RNP E. J. Sontheimer, A. Khvorova, J. K. Watts,  
S. A. Wolfe

Non-viral: polymeric NP Bone marrow, lung Intravenous mRNA, PNA W. M. Saltzman, P. M. Glazer

Non-viral: polymeric NP Brain Local injection, intravenous RNP S. Gong, M. Emborg, J. E. Levine, S. Roy,  
K. Saha

Non-viral: polymeric NP Brain CED, intravenous RNP J. Zhou

Non-viral: cell-targeted NP HSPCs Intravenous mRNA J. Dahlman, P. J. Santangelo

Non-viral: liposomal NP Inner ear Local injection mRNA, RNP Z. Chen, D. R. Liu, Q. Xu

Non-viral: extracellular vesicles Bone marrow Intravenous mRNA, RNP I. Ghiran

Non-viral: PEGylated particles Brain CED RNP K. S. Bankiewicz, N. Murthy

Non-viral: ultrasound Brain Intravenous DNA, RNP K. W. Leong

Non-viral: amphiphilic peptides Lung epithelium Nasal instillation RNP P. McCray

Non-viral: engineered RNP Immune cells Intravenous RNP R. Wilson, J. A. Doudna

Non-viral: engineered RNP, VLP HSPCs Intravenous RNP E. Chaikof

Non-viral: engineered capsids Intestinal cell types Oral, intravenous DNA, mRNA, RNP K. Lam, R. H. Cheng

Non-viral: VLP T cells Intravenous RNP G. Yi

Non-viral: VLP Lung, gastrointestinal tract Intravenous RNP J. C. Tilton, M. Drumm, C. Flask, Z. Wang

Hybrid: NP and AAV Lung epithelium Inhalation/intratracheal DNA, mRNA G. Gao, D. G. Anderson, W. Xue

CED, convection-enhanced delivery; HSPCs, haematopoietic stem and progenitor cells; NP, nanoparticle; VLP, virus-like particle. 
a‘Cargo’ refers to the molecular form(s) of genome-editing enzyme component(s): DNA encoding protein and guide RNA, mRNA encoding protein co-delivered with guide RNA, a RNP  
complex or a PNA. 
bThe lead principal investigator (PI) of the project is listed first. Additional PIs follow, listed alphabetically by last name.
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or through reprogramming cell phenotypes95. Epigenome-editing 
modalities have other potential advantages, including activating 
endogenous genes and networks for gain-of-function phenotypes, 
as well as tunability, reversibility and eliminating the possibility of 
off-target mutations or genotoxicity.

Although there is a considerable focus on CRISPR–Cas related sys-
tems within the SCGE Consortium, it is crucial to continue to explore 
alternative systems, in part because they could differ both in their 
potential for delivery and in the biological or immunological responses 
that they elicit. As one example, peptide nucleic acids (PNAs) are rela-
tively small, synthetic molecules that recognize specific DNA sequences 
through triplex formation and subsequently induce editing96. The 
SCGE Consortium is developing improved methods for the production 
of PNAs, in addition to modifiers that could improve the function of 
PNAs for DNA editing, and a robust analysis of PNA function across 
many genetic loci97,98. Alternative systems could also target the many 
distinct mitochondrial genomes with human cells. These genomes are 
largely inaccessible to editing by systems that require guide RNAs or 
DNA donors, because of the current lack of reliable methods to trans-
port these classes of molecules into mitochondria. The engineering of 
editors that target mitochondrial DNA could open up genome-editing 
therapies for the treatment of mitochondrial diseases, which affect 1 in 
approximately 5,000 people24,99. The discovery of DddA—an interbacte-
rial toxin that catalyses the unprecedented deamination of cytidines 
within double-stranded DNA—led to the development of RNA-free 
DddA-derived CBEs (DdCBEs), which enabled the first purposeful 
sequence changes in mitochondrial DNA24. In addition to DdCBEs, 
other protein-based tools such as zinc fingers100–102 and TAL-like effec-
tors103,104 are being fused to nucleases to control mitochondrial genome 
heteroplasmy.

Delivery systems
Regardless of the genome-editing system that is selected to edit a par-
ticular therapeutic locus, its translation to the clinic is currently limited 
by the capacity for the editing payload to reach the nuclei of target 
cells. This translational bottleneck presents multifaceted challenges 
that differ from one target tissue to the next. An ideal delivery platform 
would be capable of conveying the required macromolecular compo-
nents across cellular boundaries and into the nucleus; able to induce 
therapeutically useful levels of editing; amenable to cost-efficient, 
reproducible and scalable production; specific for particular cell types; 
and consistent with acceptable thresholds of toxicity, genotoxicity and 
immunogenicity. Failure to satisfy any of these criteria could render 
candidate delivery strategies ineffective, inaccessible or unsafe. After 
decades of research effort dedicated to the therapeutic delivery of 
DNA or RNA, viral vectors and lipid nanoparticles have emerged as 
promising platforms105–107 through which to deliver genome-editing 
machinery. However, many existing platforms have practical limitations 

for clinical use, as highlighted by the modest supply of genetic thera-
pies in spite of extensive academic and industrial efforts. For example, 
the clinical use of AAV as a vector for the delivery of DNA that encodes 
the components of an editor (for example, a Cas protein effector and 
its guide RNA) is hampered by manufacturing bottlenecks, limited 
target-tissue tropisms, insertional mutagenesis and the immunogenic-
ity of viral proteins106. For CRISPR systems in particular, the restricted 
genome-packaging capacity can be another major issue106. Nanoparti-
cles that consist of cationic and hydrophobic molecules, loaded with 
messenger RNA (mRNA) and guide RNA cargo, provide alternative 
strategies and can be just as effective as viral vectors in terms of edit-
ing efficiency108–110. However, the broad application of genome editing 
will require nanoparticles that can target the many different types of 
tissue in the body.

To address these needs, the SCGE Consortium is working on 20 
distinct projects that will explore new methods for the delivery of 
genome-editing machinery to specific tissue types in vivo (Table 1). 
Existing viral vectors are being enhanced with improved tissue-targeting 
capacity, enabling high efficacy at lower doses. Similarly, nanoparti-
cles are being augmented with molecules that drive cell-type-specific 
association, generating powerful homing systems that can be adminis-
tered intravenously or locally. The delivery of pre-formed CRISPR RNPs 
has shown the capacity for editing of respiratory epithelial cells using 
amphiphilic cell-penetrating peptides111, retinal cells112 and neurons in 
the brain113, for which convection-enhanced delivery might augment 
tissue distribution. A hybrid approach will pair nanoparticles with an 
AAV that carries template DNA to facilitate HDR114. Virus-like particles 
constitute a chimeric strategy: virally derived carriers are packaged with 
pre-formed RNPs, potentially maintaining delivery efficiency without 
the prolonged expression of editing machinery that is potentially asso-
ciated with increased genotoxicity and immunogenicity. Other prom-
ising strategies include the use of extracellular vesicles, ultrasound, 
amphiphilic cell-penetrating peptides or chemical modifications of 
RNA components105,107,115 to improve targeted in vivo delivery (Table 1).

Testing in animals
Animal models provide essential validation of delivery systems within 
a living organism. Such models also serve as a proving ground for new 
therapeutics and a detection system for adverse events, including 
toxicity and immunogenicity. Target-indication-specific in-animal 
efficacy and safety studies are currently treated as essential by regula-
tory authorities in the United States and the European Union for nearly 
all genome-editing therapeutics that are being advanced to the clinic. 
One goal of the SCGE program is to generate in vivo reporter systems 
that are broadly applicable to many delivery systems and editing tech-
nologies, independent of the target cell or tissue type, or the specific 
disease to be corrected. These reporters should have the ability to 
detect and quantify genome editing in the intended target tissue, as 

Table 2 | Animal testing systems under development

Organism Editing events 
detected

Primary readout Secondary readout Editors PIsa

Mouse NHEJ, HDR, 
off-target cutting

Fluorescent signal in situ Luciferase SpyCas9, SauCas9, Cas12a J. D. Heaney, M. E. Dickinson,  
W. R. Lagor

Mouse NHEJ, HDR, base 
editing, PNA

Fluorescent signal in situ Luciferase, NaI 
symporter

SpyCas9, SauCas9, Cas12a, Nme2Cas9, 
CjeCas9, ABE, CBE, PNA

S. A. Murray, C. M. Lutz

Pig NHEJ, HDR Fluorescent signal NaI symporter SpyCas9, SauCas9, Cas12a, ABE D. F. Carlson; K. D. Wells,  
R.S. Prather

Macaque NHEJ, HDR, C base 
editing

Fluorescent signal Luciferase SpyCas9, SauCas9, Cas12a, CBE J. D. Hennebold; A. F. Tarantal,  
D. J. Segal

Marmoset NHEJ Akaluciferase Fluorescence SpyCas9, SauCas9, Nme2Cas9, Cas12a, 
ABE

G. Feng; A. F. Tarantal, D. J. Segal

NaI, sodium iodide. 
aThe lead PI of the project is listed first. Additional PIs follow, listed alphabetically by last name. Reporter Development and Testing Center teams are separated by semicolons.
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well as editing events that result from non-specific delivery to other 
tissues throughout the body.

Small- and large-animal testing centres (SATCs and LATCs, respec-
tively) within the SCGE Consortium centralize expertise with animal 
models (Table 2) to aid investigators in assessing the efficiency, speci-
ficity and safety of new delivery formulations in both wild-type and 
reporter-animal models. For example, the two SATCs are developing 
mouse reporter systems because mice are an ideal tool for the pre-
liminary testing of new delivery formulations given their small size, 
low costs and well-established utility. Large animals are required for 
preclinical determination of safety, efficiency, dosing and reagent 
distribution, and as alternatives to mouse models when mice do not 
adequately recapitulate human responses. Engineered nucleases have 
enabled efficient and accurate genetic modification of large animals, 
such as non-human primates and pigs. Three research teams in the SCGE 
Consortium are developing large animal in vivo reporter systems: one 
group is dedicated to pigs and two others are dedicated to non-human 
primates, specifically marmosets and rhesus monkeys. The role of the 
LATCs is to assess the efficiency and safety of in vivo genome editing 
and delivery technologies, initially in wild-type animals. When the 
research teams that create and evaluate the reporter animals have 
accomplished their goals, they will provide the reporter animals to 
the LATCs to conduct independent validation and to establish large 
cohorts for the testing of genome editors.

The reporter-animal models are designed to faithfully activate in all 
cells and tissues in response to a specific gene-editing event. Fluores-
cent proteins provide a simple and robust means to detect activity at the 
single-cell level in situ, enabling identification of the specific cell types 
that are targeted. Reporters can be designed to detect different types 
of editing activity, often with a multi-functional arrangement to enable 
user flexibility. This includes nuclease activity through the detection of 
NHEJ-mediated repair events, as well as HDR of an inactivated reporter 
protein. The capacity to detect the activity of multiple nucleases (for 
example, SpyCas9, Cas12a and others) is highly desirable to enable 
comparative studies. Embodying these principles, SCGE reporter sys-
tems (Table 2) are primarily designed as improved variations of the Ai9 
system50,116 or have a ‘traffic-light reporter’ design117,118. Other models will 

detect the activities of other types of editors, including ABEs and CBEs21 
and PNA-based editing systems96–98. Additional reporter cassettes, such 
as Akaluciferase119 or sodium iodide symporters120, will be included to 
permit longitudinal detection by distinct imaging platforms. Impor-
tantly, all new reporter animals created as part of the SCGE program 
will be available for distribution to the wider biomedical community.

Along with the development of new model organisms, new 
non-invasive methods are needed to measure editing-associated out-
comes. The SCGE Consortium is developing techniques for in vivo 
cell tracking using advanced imaging methods, including total-body 
positron emission tomography (PET) imaging121, magnetic particle 
imaging (MPI)122 and chemical exchange saturation transfer magnetic 
resonance imaging (CEST MRI)123, as outlined in Table 3. Ongoing pro-
jects will enable quantitative tracking of the locations and the fates of 
genome-edited cells after in vivo implantation124–127 or administration 
using cell labelling (MPI/MRI)128 and reporter gene (MRI/PET)129–132 
approaches. Additionally, tracking the delivery and transduction of 
gene-editing cargo using AAV capsid proteins as endogenous CEST 
MRI contrast mechanisms is being examined. Each of these methods 
can be performed alongside existing, standard, non-invasive imaging 
to assess maladaptive responses to treatment. Together, these tools 
will provide a powerful combination of methods to quantify and link 
the delivery of gene-editing technology or gene-edited cells with sub-
sequent biological outcomes.

Testing in human biological systems
The development of human biological systems to detect and mini-
mize unintended biological effects of genome editing is a major focus 
of the SCGE Consortium. Although substantial progress has been 
made regarding methods for defining the genome-wide off-target 
mutations induced by genome editors65,133–140, as well as unintended  
outcomes (such as large deletions and rearrangements) at the on-target 
site, the interpretation of potential biological consequences asso-
ciated with these mutations within human cells remains a major  
challenge141. Additionally, other effects of the editors or of the delivery 
components themselves—including the potential to stimulate immune  
responses38,39,43–45,142—have not been fully characterized. The SCGE 

Table 3 | In vivo cell monitoring and in vitro human biological systems under development

In vivo cell monitoring

Cell and tissue target Reporter and/or contrast mechanism PI(s)

hiPS cells in CNS Tri-modal: iron oxide nanoparticle labelling and tracking for MRI + MPI and 18F-DCFPyL for PET J. W. M. Bulte

Cardiac and hepatic tissues AAV2 capsid as an endogenous contrast agent Genetically encoded reporter: lysine-rich 
protein

M. Vandsburger

CAR-T cells Genetically encoded reporter genes MRI: OATP1B3 PET: NaI symporter J. A. Ronald

Whole body, muscle and liver Genetically encoded reporter: HSV-sr39tk Probe: 18F-FHBG A. F. Tarantal, D. J. Segal

Human biological systems

Tissue Cell source PI(s)

Brain WTC11 hiPS cells T. C. McDevitt

Heart WTC11 hiPS cells J.T. Hinson; T.C. McDevitt

Liver WA09 hES cells, WTC11 hiPS cells S. Kiani; T. C. McDevitt

Haematopoietic Primary T cells S. Q. Tsai

Eye WA09 hES cells K. Saha, D. M. Gamm, S. Roy,  
M. C. Skala

Muscle hiPS cells, primary myoblasts, primary immune cells C. A. Gersbach, N. Bursac,  
G. A. Truskey

Kidney WTC11 hiPS cells, BJFF hiPS cells, WA09 hES cells B. S. Freedman; R. Morizane,  
J. A. Lewis, V. Sabbisetti

CNS, central nervous system; 18F-DCFPyL, 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid; 18F-FHBG, 9-(4-[18F]fluoro-3-hydroxymethylbutyl)
guanine substrate for mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39TK); OATP1B3, human organic anion transporter polypeptide 1B3; CAR, chimeric antigen receptor; hES 
cells, human embryonic stem cells; hiPS cells, human induced pluripotent stem cells. 
aThe lead PI is listed first. Additional PIs follow, listed alphabetically by last name. Teams are separated by semicolons.
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Consortium is working to develop human cell-based and organoid plat-
forms to define the unintended biological effects of editing (Table 3).

Projects use human primary cells when possible. For example, a 
primary T cell platform will define some of the unintended biological 
effects of genome editors. T cells are readily amenable to sensitive, unbi-
ased methods for defining the genome-wide activities of editors143, and 
unique genomic rearrangements that establish a diverse T cell recep-
tor repertoire can serve as cellular barcodes, facilitating single-cell 
analysis. Ex vivo screens for a T cell adaptive immune response to 
editors can also be readily implemented. When primary cells from 
the relevant target tissue are limiting, bioengineers within the SCGE 
Consortium will use self-renewing human cells to construct functional 
three-dimensional organoids or microphysiological systems. These 
platforms can bring together multiple cell types and extracellular 
matrices in a tissue-like architecture, providing an in vitro mimic of 
complex human tissues. Relevant functional assays with these systems 
can be defined, such as force generation from skeletal muscle, contrac-
tion of cardiac tissue and phototransduction in retinal organoids144,145. 
These systems can be scaled up to enable studies at higher throughput 
than would be feasible in animal models, and can also facilitate deeper 
molecular characterization of the various outcomes after editing dif-
ferent human cell types within a tissue. An ultimate aim of these studies 
is to produce assays that are relevant to regulatory science, to better 
evaluate various genome-editing strategies. Previous studies involving 
immunodeficient mice and edited T cells have been broadly enabling 
for many immune-cell-therapy products, and any new biological system 
that is developed by the SCGE Consortium, once established, could be 
similarly enabling for studies aiming towards investigational new drug 
filings in that cell and gene-therapy space.

Integration of SCGE technologies
The initiatives described above—new editing platforms, delivery tech-
nologies, in vivo reporter systems and human biological systems—
are expected to recombine and synergize in multiple ways, both 
planned and spontaneous. One prominent example, arising from the 
ever-growing recognition of the need for greater reproducibility dur-
ing clinical translation146, is an explicit requirement for independent 
validation for all of the delivery technologies in development. Each 
delivery project involves multiple phases: an initial phase that estab-
lishes proof-of-principle within each laboratory that is developing a 
delivery technology; an intermediate phase that involves testing at a 
SATC, performed by SATC personnel; and finally, for those technologies 
that meet pre-defined SATC efficacy milestones, scale-up of the delivery 
system and testing at a LATC. Large-animal testing is contingent upon 
successful independent validation of the technology by an SATC—that 
is, outside of the laboratory that developed the delivery system in ques-
tion. In another example, investigators that are developing new editors 
might choose to apply newly developed delivery systems to enable 
testing in vivo; delivery groups might use human biological systems 
to assess performance and adverse consequences before commencing 
with animal tests; and human biological systems could be developed to 
assess the editing precision of new editing platforms. Such cross-team, 
integrated projects are nurtured through internal calls within the SCGE 
Consortium to discuss collaborative proposals each year.

Standards and the SCGE Toolkit
Although the above activities will generate a wide array of data and 
tools, the maximal impact will be achieved only when SCGE technolo-
gies use common standards and are interoperable. Data and resource 
standards and shared lexicons are imperative for the development 
of new technologies, and will be particularly critical for translating 
genome-editing systems into approved therapies147,148. To ensure the 
highest-quality data, interoperability of tools and reproducibility, the 
SCGE Consortium’s Dissemination and Coordinating Center (DCC) 
serves as a communication hub, facilitates collaboration among 

consortium members and builds platforms to enable the sharing 
of SCGE program resources and data, including through the SCGE 
Toolkit. Furthermore, to contribute to standards development, the 
SCGE Consortium is interfacing with the Food and Drug Administra-
tion, the National Institute of Standards and Technology (NIST) and the 
Defence Advanced Research Projects Agency. In particular, the SCGE 
Consortium is a member of the NIST Genome Editing Consortium.

The SCGE Toolkit (Fig. 1b) will be generated to develop the infrastruc-
ture and data to promote collaborations among the different projects 
within the SCGE Consortium, and to create a platform for investigators 
(and eventually, the broader scientific community and the public) to 
access data generated by the program. To ensure data integration and 
functional mining tools, standardized data formats and vocabular-
ies are being developed and will be made available through the SCGE 
Consortium website. There will be several components of the SCGE 
Toolkit, including a public Resource Portal to provide both consor-
tium members and other investigators with a single stop for informa-
tion on existing data repositories, public tools and algorithms used in 
genome-editing research. Investigators within the SCGE Consortium 
will submit data to these existing resources when available. As these 
components are tested, validated and used together in experimental 
procedures, they will be integrated into a centralized database for both 
the SCGE Consortium and the public, facilitating the comparison of 
results across experiments and enabling researchers to further refine 
experimental designs for genome-editing research. Because much of 
the ongoing clinical development of genome editing is occurring within 
industry, the SCGE Consortium seeks to contribute broadly accessible 
data, tools, systems and assays that could enable a more open-access 
approach for clinical development.

Outlook
New opportunities for the clinical translation of genome-editing 
technologies are arising from a deeper understanding of the human 
genome and from rapidly advancing bioengineering capabilities. The 
SCGE Consortium aims to develop new technologies and adapt exist-
ing tools to take immediate advantage of these opportunities, define 
and mitigate safety risks, and extend therapeutic genome editing into 
the most challenging somatic tissue contexts. Previous large-scale 
projects149–155 advanced the frontiers of genomics not only by produc-
ing new knowledge, but also by developing a common framework that 
ensured reproducibility, applied common standards and established 
the interoperability of distinct technologies. Inspired by these efforts, 
the SCGE program is designed to advance the field of genome editing 
towards a broadened spectrum of human therapeutic applications.
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