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OPTIMAL SOLAR PV, BATTERY STORAGE, AND SMART-INVERTER ALLOCATION IN ZERO-

NET-ENERGY MICROGRIDS CONSIDERING THE EXISTING POWER SYSTEM 
INFRASTRUCTURE 

 
By 

 
Laura Martinez de Novoa 

 
Doctor of Philosophy in Mechanical & Aerospace Engineering 
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In response to climate change and sustainability challenges, various incentive 

programs have promoted solar photovoltaic (PV) economic feasibility and interconnection 

into the low voltage electrical distribution system. However, the existing power system 

infrastructure can only accommodate a limited amount of PV generation before reverse 

power flow (PV generation flowing back into the distribution network) becomes an issue. 

This limits the ability to achieve Zero Net Energy (ZNE) behind individual meters and in 

whole communities since ZNE communities typically require large PV deployments. In 

parallel, district-level energy systems, such as Advanced Energy Communities (AEC) 

microgrids— electrically contiguous areas that leverage the clustering of load and 

generation by integrating multiple utility customer-owned Distributed Energy Resources 

(DER) — that include battery storage, offer a great prospect for integrating high levels of 

solar PV into the built environment. 

Designing the least-cost and technically feasible system to serve a district load has 

been a challenge to utilities and city planners. Battery energy storage and smart-inverter 
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technologies emerge in this context to enable higher penetration of solar PV by locally 

regulating voltage and controlling active and reactive power flows. However, there is no 

straight forward way nor a practical rule or consensus on how to size such assets optimally. 

This work proposes a Mixed Integer Linear Program (MILP) optimization to 

determine the least-cost DER portfolio consisting of inverter-connected solar PV and 

battery storage. It also allocates it in a multi-node electrical grid and dispatches it 

considering the existing electric infrastructure limits (transformer capacities and nodal 

voltage magnitudes). Novel linearization techniques such as polygon relaxations are used 

to limit otherwise non-linear apparent power flows at transformers. A novel Alternating 

Current (AC) decoupled linearized power flow is also integrated into the MILP 

optimization. Moreover, for the first time, smart-inverter droop-control functions are 

included in the DER optimal allocation problem. Results show that such comprehensive 

MILP is achievable and tractable for a 115-node AEC. 
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1 Introduction  

Within an Advanced Energy Community microgrid, DER assets allow for most of the energy 

demand to be generated and consumed internally. External energy transfers enter the 

community if local production is insufficient. Excess electricity is exported to the wide-area 

electricity grid. 

Optimally designing AEC to serve commercial, and industrial loads, while minimizing cost and 

maximizing the penetration of solar PV, has been a challenge to Distribution System Operators 

(DSO) and city planners. Moreover, a significant share of AEC project success depends upon 

achieving an adequate allocation of DER such as PV and battery storage resources while 

considering the existing urban power system infrastructure to support and enhancing the overall 

utility grid network characteristics. 

We first attempt to demonstrate the local impacts of inverter-connected DER in the local power 

systems that it is integrated. We are interested in the challenges associated with the grid 

integration of large-scale PV deployments into the existing power system infrastructure. From 

the results of worst-case steady-state simulations, presented in Chapter 4 utility distribution 

transformer overloads are visibly the worst negative impact of a large deployment of solar PV. 

Over voltage excursions showed to be another major limiting factor to large PV deployments. 

These results drove the development of novel transformer constraints to limit the reverse power 

flow at the transformer level (limiting the total apparent power injection at that node), as 

described later in Chapter 5. And also an AC Decoupled Linearized Power Flow (DLPF) 

formulation to constrain nodal voltages, as described in Chapter 6 

In chapter 5, a Mixed Integer Linear Program optimization is proposed to decide the best DER 

portfolio, allocation, and dispatch, for an AEC that achieves ZNE and islanding while respecting 

electrical grid operational constraints, with a focus on distribution transformer overloads. The 

main strategies to avoid transformer overloads were found to be careful sizing and siting of 
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battery energy storage and also optimally re-distributing PV throughout the community, which 

increased the ability of the electric infrastructure to support a PV deployment that is 1.7 times 

larger than the existing transformer capacity without the need for infrastructure upgrades.  

In Chapter 6, a new approach to model the linearized power flow in distributed energy resources 

allocation and dispatch optimization is developed here. The model uses the Decoupled 

Linearized Power Flow(J. Yang, Zhang, Kang, & Xia, 2016) approach. DLPF has the advantage 

of being suitable for meshed networks, while the majority of current models use LinDistFlow, 

which is only suitable for radial networks. First, a validation is provided for the DLPF voltage 

magnitude and branch power (in kVA) solutions against LinDistFlow and the true AC power 

flow (ACPF) solution for a meshed benchmark network, a 33-node system. Then, the DER 

allocation and dispatch problem are formulated as a MILP and DLPF and LinDistFlow are used 

to model constraints on the electric power network infrastructure that limits voltages to ANSI 

C84 standard limits. The implementation of DLPF developed here improves the accuracy of 

nodal voltage calculation for meshed networks. The LinDistFlow solution fails to capture true 

under and over voltages; it also underestimates the optimal PV and battery storage capacities 

when compared to the DLPF solution. 

Advanced inverter controls are a recent requirement for providing voltage support on distribution 

feeders with large PV deployments and high reverse power flow. These control functions, 

especially those that involve locally injecting or absorbing reactive power, require appropriate 

inverter sizing to accommodate for the reactive power support. The industry had historically 

adopted an AC/DC ratio smaller than one, which limits the inverter potential for reactive power 

support when at full Direct Current (DC) output —and when most needed. Optimal Volt-Var 

control (VVO) strategies have been devised, yet, currently, most commercial inverters adopt 

droop-control functions (which provide a more equitable share of reactive power regulation 

between customers). There is no consensus on how to size inverters optimally, in order to 

provide the necessary amount of reactive power compensation when in droop-control. In Chapter 

7, a MILP for optimal DER investment planning is developed to optimally size inverters that can 

equitably provide voltage support for a ZNE microgrid with high PV penetration. Results show 

that the optimal AC/DC ratio is location-specific and ranges from 0.83 to 1.5. We also find a 

correlation between inverter AC/DC ratio and maximum nodal over-voltage and provide a curve 

fit model for optimal inverter sizing.  
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1.1. Research goals 

The goal of the current research is to optimize the allocation (sizing and siting) and dispatch of 

inverter-connected solar PV and battery storage to minimize cost and guarantee power quality in 

distribution feeders of a grid-connected, or islanded, urban microgrid that requires large 

deployments of renewable solar PV, and often, zero-net-energy. 

1.2. Objectives to meet goals 

1. Continuously review the literature on DER optimal allocation, dispatch, smart inverters, 

zero-net energy microgrids, advanced energy communities, and related topics.  

2. Determine the ability of baseload inverter-connected DER to regulate voltage on a 

constrained system. 

3. Develop and verify a steady-state power flow model of a distribution feeder of an urban 

microgrid with high penetration of solar PV. Determine the solar PV hosting capacity of 

the existing microgrid infrastructure, considering existing service transformers and voltage 

limits. Model battery energy storage and smart-inverters with reactive power support into 

the model to improve solar PV hosting capacity. 

4. Implement power system infrastructure constraints into an existing single-node, time-series 

MILP optimization framework for DER allocation in a ZNE microgrid. Constraints focus 

on service transformer capacity limits and AC power flow for limiting nodal voltage 

excursions. Determine optimal DER allocation in a ZNE microgrid under these constraints. 

5. Implement Smart Inverter Volt/Var and optimal PQ control functions into the optimization 

framework. Determine optimal inverter sizing and abstract a practical model from the 

simulations. 

1.3. Approach  

This dissertation encompassed six key tasks, one for each objective described previously. This 

section describes how each task, and specific activities, maps to the chapters constituting this 

dissertation. 
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Task 1: Background  (Chapter 2) 

An extensive, continuous literature review on the topics below was made throughout 

this research. Relevant concepts were extracted and summarized in a background chapter 

to familiarize the reader with the following concepts: 

 DER hosting capacity of power systems 

 DER and voltage control 

 Optimization methods applied to renewable, distributed energy systems, and power 

flow modeling 

 Smart-inverter functions 

 Advanced energy communities 

Task 2: Determine baseload DER ability to regulate voltage on constrained 

systems  (Chapter 3) 

 Model a generation-constrained transmission system to investigate and demonstrate 

the ability of an inverter-connected DER to locally regulate voltage 

 Carry out steady-state load flow simulations for different DER deployments, 

operating at a unity, i.e., pure active power injection) and leading power factor, i.e., 

having a combination of active and reactive power injection. 

 Determine best DER placement that achieves greater grid benefits 

 Determine impacts on overall system steady-state voltage stability 
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Task 3: Create an urban microgrid test case with high PV penetration. 

Develop a steady-state power flow model to identify and quantify main 

impacts in existing power system infrastructure. Implement battery energy 

storage and smart-inverters into the steady-state model to mitigate impacts 

(Chapter 4) 

 Create a real-world microgrid test case. Characterize an existing urban district power 

system in Southern California through satellite imagery and on-site surveys. 

 Model the high voltage (230 kV) transmission and medium/low voltage (12kV / 

480/240/120 V) distribution feeders, with a high penetration of inverter-connected 

solar PV. Model any existing grid-support equipment, such as shunt capacitor banks, 

or load tap-changing transformers. 

 Perform worst-case steady-state load flow simulation to identify and quantify the 

negative impacts on the existing power system infrastructure. Determine the 

(minimum) PV hosting capacity. 

 Judiciously size and site battery energy storage and smart-inverters operating at a 

fixed power factor to eliminate negative impacts and increase the test case PV hosting 

capacity 

Task 4: Implement power flow and distribution transformer constraints into a 

time-series MILP optimization framework for DER investment planning. 

Determine the optimal DER allocation (Chapter 5 and Chapter 6) 

 Starting from an existing MILP optimization model, namely DERopt (R. J. Flores, 

2016). Implement additional decision variables and constraints relevant to microgrid 

operations, such as export to the utility grid, and zero-net-energy constraints.  

 Formulate and implement linearized AC power flow constraints (Decoupled 

Linearized Power Flow) into exiting optimization model  

 Incorporate other relevant grid constraints into the optimization model, such as 

transformer capacity constraints and nodal voltage constraints. 
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 Use the model to determine optimal DER allocation for the test case. 

Task 5: Implement smart inverter functions into the MILP optimization 

framework. Determine optimal smart inverter capacity for minimizing 

voltage deviation (Chapter 7) 

 Model within a MILP framework two smart inverter controls Volt-Var and optimal 

PQ. 

 Optimally size the solar PV inverter to minimize voltage deviations caused by solar 

PV in high penetrations. 

 Abstract an approximated model for AC/DC inverter sizing from simulations 

1.4. Structure of this dissertation 

Chapter one Background intends to provide introductory first-principles knowledge to the reader 

that is unfamiliar with some of the concepts that will be explored here. Chapters three through 

seven map directly to the tasks outlined. Each chapter has its own applicable introduction, 

literature review, gaps found in current literature, contributions, and results. A summary section 

at the end of each chapter identifies the major points and insights from the results. Lastly, 

Chapter 8 Conclusions consolidates all the most relevant findings and provides the main 

conclusions of this work. 

It is worth mentioning that the results and analysis of most chapters of this dissertation were 

submitted to prestigious peer-reviewed journals, as mapped by the table below. Chapter 5 was 

recommended by the editor in Chief of Applied Energy to a special edition Progress in Applied 

Energy. 
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Chapter 3: 

 

Transmission Integrated Grid Energy Resources to Enhance Grid 
Characteristics 
L Novoa, R Neal, J Brouwer 
Applied Energy (manuscript submitted, in review process) 

Chapter 5: 

 

Optimal renewable generation and battery storage sizing and siting 
considering local transformer limits 
L Novoa, R Flores, J Brouwer 
Applied Energy 256, 113926 

Chapter 6: 

 

Optimal DER Allocation in Meshed Microgrids with Grid Constraints 
L Novoa, R Flores, J Brouwer 
Applied Energy (manuscript submitted Dec 2019) 

Chapter 7: 

 

Optimal solar inverter sizing considering Volt-Var droop-control and 

PQ control for voltage regulation 

L Novoa, R Flores, J Brouwer 
Applied Energy (manuscript to be submitted early 2020) 
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2 Background 

2.1. DER hosting capacity 

Hosting capacity is defined as the maximum level of additional DER penetration that an existing 

electric power system can accommodate while maintaining acceptable system performance 

(Bollen & Hassan, 2011). Grid performance can be analyzed concerning “performance indices”, 

which depend upon applicable technical standards, local network configuration and operation, 

which will vary regionally (Schwaegerl, Bollen, Karoui, & Yagmur, 2005). These indices refer 

to different aspects of power supply, such as power quality, short circuit contribution, power 

system protection, reliability, and safety (Stetz, 2014). Figure 2.1 illustrates the concept of 

hosting capacity, where a given performance index limit was exceeded above acceptable 

deterioration limit. In a hosting capacity study, however, not only one but a combination of 

performance indices is likely to be considered, characterizing it as a multi-dimensional problem; 

once one given limit is exceeded the maximum hosting capacity is reached.  

 
Figure 2.1 – Definition of hosting capacity (when a performance index is exceeded)   (Bollen & Hassan, 2011).  

In general, the three primary criteria used in hosting capacity analysis are (Electric Power 

Research Institute (EPRI), 2015; EPRI; APS, 2017; EPRI, Smith, & Rogers, 2015; Southern 

California Edison, 2016): 
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 Voltage excursions, which is limited by the absolute overvoltage magnitude, or a 

percent deviation from the nominal value. 

 Equipment overloads (or thermal limits) which are limited by current flows, and thus, 

power flows allowed through equipment, such as transformers and cables. 

 Protection, which examines whether the addition of DER interferes with the ability of 

existing protection schemes to identify and respond to abnormal conditions. One 

example is when DER is located   

 

In a hosting capacity analysis, these indices are usually evaluated under a worst-case scenario for 

example, during a severe reverse power flow event; which occurs when a low load condition is 

associated with significant PV generation, thus, the power is that is not consumed locally is 

exported. In an RPF condition, the receiving bus voltage rises above nominal 1 per unit (P.U.)  

The boundedness of these constraints should also be evaluated in practical terms. Thus, the 

analysis nature (i.e., steady-state vs. time-domain) plays a vital role in how conservative the 

hosting capacity results are. Steady-state worst-case type analysis often results in over-

conservative limits, i.e., it is designed for a condition that only happens during one hour in the 

entire year, and most times, over-voltage or overloading issues might be acceptable within a 

short period. These nuances are often captured by time-series simulations (Christos, 2016)  

Hosting Capacity is heavily influenced by the DER allocation within the system. Thus, one can 

also define a Minimum and Maximum hosting capacity (Electric Power Research Institute 

(EPRI), 2015), which depicts the more/less optimal DER allocation. In other words, at the same 

DER penetration level, different DER allocation (sizes and siting) deployments across the system 

can cause different impacts, perhaps because some locations have more voltage rise headroom, 

or are close to the head (beginning) of a feeder, where the total impedance is lower. Figure 

2.2.illustrates the concept of minimum and maximum hosting capacity. 

In this work, optimal allocations of DER will aim to maximize the total hosting capacity of a low 

voltage microgrid, which will be further discussed in section 2.3. 
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Figure 2.2 – Concept of Minimum and Maximum Hosting Capacity.  Source: (Electric Power Research Institute (EPRI), 2015) 

2.2. Voltage challenges caused by DER 

To illustrate the prevalent technical challenge caused by high penetrations of DER that are 

Distributed Generators (DG), we refer to power flow concepts. The voltage excursion caused by 

DG is illustrated in Figure 2.3 (Christos, 2016; Mahmud, Hossain, & Pota, 2011; Stetz, 2014). 

Considering a two-bus system with a load and a DG unit, it will likely export power to the 

upstream distribution grid (P and Q). In order to do so, it has to operate at a higher voltage than 

the voltage at the sending end. For Kirchhoff’s Law of Voltage (KLV), we can express the 

voltage phasor at the sending end ( �̂�𝑆 ), or the grid voltage as: 

 
Figure 2.3 – Two-bus distribution system with DG and a load.  Adapted from (Mahmud et al., 2011) 
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�̂�𝑆 =  �̂�𝑅 − 𝐼 𝑍 (1) 

�̂� =  𝑅 + 𝑗𝑋 (2) 

Where �̂�𝑆 is the voltage at the receiving end, where the load and DG are connected, 𝐼 is the 

current phasor flowing through the line.  

The complex power flowing through the network can be expressed as, where 𝑃 and 𝑄 are the 

active and reactive power respectively. 

�̂� = 𝑃 + 𝑗𝑄 = �̂�𝑆𝐼 ∗ (3) 

From which we can write 

𝐼 =  
𝑃 − 𝑗𝑄

�̂�𝑆

 (4) 

  

Thus, we can readily define the voltage difference (raise or drop) ∆𝑉 between the receiving and 

sending end as: 

∆𝑉 =  �̂�𝑅 −  �̂�𝑆 =  𝐼 𝑍 = ( 
𝑃 − 𝑗𝑄

�̂�𝑆

) (𝑅 + 𝑗𝑋) =
𝑅𝑃 + 𝑋𝑄

�̂�𝑆

+ 𝑗
𝑋𝑃 + 𝑅𝑄

�̂�𝑆

 (5) 

Since the voltage drop between the sending and receiving end is small, the voltage drop can be 

approximated by the real part of Eq. (5), also, if the sending end voltage is taken as the reference 

bus voltage, its angle is zero. Thus, it equals to the sending voltage magnitude. 

�̂�𝑆 =   𝑉𝑠 (6) 

Moreover, we can finally write  

∆𝑉 ≈
𝑅𝑃 + 𝑋𝑄

𝑉𝑠
 (7) 

Moreover, writing the active and reactive power flows 𝑃 = 𝑃𝐷𝐺 − 𝑃𝐿  and 𝑄 = ±𝑄𝐷𝐺 − 𝑄𝐿 

∆𝑉 ≈
𝑅(𝑃𝐷𝐺 − 𝑃𝐿) + 𝑋(±𝑄𝐷𝐺 − 𝑄𝐿)

𝑉𝑠
 (8) 

Some important observations can be drawn from Eq. (8): 

 𝑉𝑠 can be considered a stiff, source, and therefore, constant.  

 As the DG active power output 𝑃𝐷𝐺  increases, ∆𝑉 increases 

 As the load active 𝑃𝐿 and reactive 𝑄𝐿 power consumption increases, ∆𝑉 decreases 

 The DG can absorb (−𝑄𝐷𝐺) or inject (+𝑄𝐷𝐺) reactive power. 
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  If DG absorbs reactive power,  ∆𝑉 decreases (equivalent to operating at a lagging 

PF) 

 If DG injects reactive power,  ∆𝑉 increases (equivalent to operating at a leading PF) 

The distribution system’s resistance 𝑅 and reactance 𝑋 can be reduced (typically by costly line 

upgrades) in order to reduce the voltage rise.  

Voltage rises are likely to occur when DG is exporting power. The legacy power system 

networks were designed to handle unidirectional passively (radial) power flows from the 

centralized generation resources to the high voltage transmission system, and finally to the 

medium and low voltage distribution system, where commercial, industrial, and residential loads 

are connected. Extreme RPF events pose a significant technical challenge to the current grid 

paradigm and limit the PV hosting capacity of a circuit. In this work, ways to increase PV 

hosting capacity by locally controlling active and reactive power flows, using smart-inverter 

advanced functions, and more specifically, how to optimally parameterize these functions will be 

proposed. 

2.3. Optimal DER allocation in a microgrid environment 

Microgrids are defined as clusters of load, generation, and storage resources, that can operate 

autonomously (independent of the main electric grid, i.e., islanded) or grid-connected. Moreover, 

the notion of a microgrid also entails a certain level of advanced control capabilities, which 

assure system reliability during islanded operations (Hatziargyriou, 2014). Microgrids provide a 

platform to integrate DER into the medium and low voltage distribution network, with focus on 

meeting loads with local generation (Kwasinski, Weaver, & Balog, 2017). DER include 

distributed generation, including, but not limited to microturbines, solar PV and fuel cells (FC), 

and wind turbines and also storage systems such as batteries, power-to-gas (P2G), flywheels, 

ultra-capacitors, to mention a few.  

To allocate DER in any system, pure analytical techniques, and, more recently, optimization and 

artificial intelligence hybrid techniques have been used. The approach of allocating DER in a 

Microgrid environment is no different from allocating it in a grid-connected system, only the 

goals of the system and constraints might be different to capture the goals of a microgrid 

environment, for instance, ZNE, islanding, enhanced reliability, among others.  
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There are in the current literature a large number of different solution methodologies to the DG 

allocation problem, which can be broadly categorized in (1) sensitivity/pure analytical, (2) 

classical optimization, and (3) artificial intelligence techniques (Arabali, Ghofrani, Bassett, 

Pham, & Moeini-Aghtaei, 2017), and also (4) hybrid intelligent (Pesaran H.A, Huy, & 

Ramachandaramurthy, 2017) 

Sensitivity/pure analytical methods represent the system in a mathematical model and compute 

its direct numerical solution. These techniques are fast, simple, accurate, and easy to implement, 

but can only be applied to small-scale systems. Techniques used in this approach are Eigenvalue 

Based-Analysis (EVA), Index method (IMA), Sensitivity Based Method (SBM) and Point 

Estimation Method (PEM). (Arabali et al., 2017). 

Classical optimization methods are used to minimize (or maximize) a given goal, or cost 

function, subjected to given technical/operational constraints (equality and inequality 

constraints). These methods are useful for continuous and differentiable domains and are 

characterized by relatively slower convergence rates and computational times. These techniques 

involve Optimal Power Flow (OPF), Linear Programming (LP), Mixed Linear Integer 

Programming (MILP), Mixed Non-linear Integer Programming (MINLP), Dynamic 

Programming (DP), Sequential Quadratic Programming (SQP), and Ordinal Optimization (OO). 

(Arabali et al., 2017). 

 Artificial intelligence (meta-heuristic) techniques are usually applied to solve complex nonlinear 

optimization problems through intelligent techniques methodology inspired by natural 

phenomena. Some challenges often associated with this technique involve premature 

convergence, local optima, and unstable results. Such techniques are the Genetic Algorithm 

(GA), Fuzzy Logic (FL), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), 

Tabu Search (TS), and Ant Colony Search (ACS). (Arabali et al., 2017). For further reading on 

these techniques, and many other hybrid intelligent methods, (Rezaee Jordehi, 2016), and 

(Pesaran H.A et al., 2017), are recommended, which are a comprehensive review compendium 

all these existing approaches.  

A number of practices have been used for DER allocation in energy systems. The most simplistic 

one involves allocating a single specific type of DER, such as solar PV, or wind, in a single node 

according to a particular optimization goal and constraints. This analysis is usually performed in 
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an “aggregate approach”, and it is static, or steady-state. Several “enhancements” to this 

approach were developed in subsequent studies, such as (1) optimizing a portfolio (mix) of DER, 

and allocating it (2) including heating and cooling demands in the load elements (3) 

incorporating the time-coupling of DG and load (and sometimes it’s inherent uncertainty) in a 

time-domain, dynamic simulation (4) considering electric power grid constraints, in a multi-node 

approach, (5) considering electric energy storage, and lastly, (6) considering smart-grid 

technologies to achieve better grid performance. However, most studies in the literature to date 

only implement one or two of the improvements mentioned above, but not all of them.  

2.4. Optimization formulations applied to DER allocation 

Optimization problems for DER allocation are typically non-linear, highly constrained, multi-

objective, mixed-integer, multi node, thus, finding a near-global optimal solution is challenging 

(Rezaee Jordehi, 2016). DER type, location, real and reactive power outputs are the standard 

decision variables computed. In the following section, typical formulations for steady-state 

(static) DG allocation problems found in the recent literature are reviewed. Time-domain 

(dynamic) optimizations follow a similar formulation, but compute a decision variable for each 

time-step 𝑡, increasing the problem dimension significantly. 

2.4.1. Objective function 

The optimization problem is built to minimize (or maximize) an objective function that is 

formulated using a group of parameters in a logical manner that translates a single objective or a 

weighted multi-objective (WMO) (Arabali et al., 2017). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = 𝛼 𝑥1 + 𝛽 𝑥2 + ⋯ + 𝛾 𝑥𝑛 (9) 

Where 𝑥1, 𝑥2 , 𝑎𝑛𝑑 𝑥𝑛 are individual objectives and 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 are weight factors (the sum of 

weight factors should always equal to one).  

The most common objective function goals in the existing research works are listed below: 

 Cost  

The costs of DER allocation involve construction/investment (capital cost), financial (principal 

and interest), O&M (facility management, regular maintenance fuel, and equipment 
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replacement). Nonetheless, there are also possible financial returns from surplus energy sales, 

reduction of emission of pollutants, infrastructure upgrade deferrals, and potential tax credits.   

An approach shown in (Arabali et al., 2017) formulates the objective function for cost as: 

max 𝑓𝑐𝑜𝑠𝑡 = 𝐶𝐷 + 𝐶𝑒 −  𝐶𝐷𝐺 − 𝐶𝑙  (10) 

Where: 𝐶𝐷 =  ∑ 𝑇max  𝑖
∗ 𝐶𝑤 ∗ 𝐹𝑉 ∗ 𝑃∑ 𝐷𝑔 𝑖

𝑇
𝑖=1   is the generated income, where  𝑇 is the number of 

years, 𝑇max  𝑖
 is the annual average operating hours for the DG. 𝐹𝑉 is the ratio of average output 

and the rated power of the DG, and 𝑃∑ 𝐷𝑔 𝑖
 is the power produced by the DG unit . 𝐶𝑤  is the grid 

electricity price. 𝐶𝑒 =  ∑ 𝑇max  𝑖
∗ 𝐶𝑐 ∗ 𝐹𝑉 ∗ 𝑃∑ 𝐷𝑔 𝑖

𝑇
𝑖=1  are the emission reduction benefits, where 

𝐶𝑐 is the conventional fuel generation environmental costs  𝐶𝐷𝐺 =  ∑ 𝑇max  𝑖
∗ 𝜕 ∗ 𝐶𝐷𝐺𝑗

∗𝑇
𝑖=1

𝑃∑ 𝐷𝑔 𝑖
 are the investment costs, where 𝐶𝐷𝐺𝑗

 is the cost of an individual equipment,  𝜕 =
𝑟∗(1+𝑟)𝑡

(1+𝑟)𝑡−1
 

is the average cost factor of a DG fixed investment, r is the annual profit, t are the planning years  

𝐶𝑙 =  ∑ 𝛽𝑖 ∗ 𝑐𝑖 ∗ 𝑇max  𝑖
∗ 𝑃∑ 𝐷𝑔 𝑖

𝑇
𝑖=1  are the O&M costs, where 𝑐𝑖 is the unit capacity factor,  𝛽𝑖 is 

the O&M cost per unit of power 

 System Active Power Losses 

When optimally sized and placed, DG can reduce system losses by 10-20% (Arabali et al., 

2017). The power loss formulation usually focuses on reducing branch power, and most times, 

active power losses. The exact loss or the “i-squared” loss which is calculated from the branch 

current, can be formulated as in (Sultana, Khairuddin, Aman, Mokhtar, & Zareen, 2016). It is 

worth pointing out that not only instantaneous, but accumulated losses over time, such as daily 

losses or annual losses can also be the focus of the minimization. Equation (11) refers to the 

exact active power loss flowing from branch 𝑖  to branch 𝑗 (Arabali et al., 2017) and Equation 

(12) refers to the copper losses caused by branch current 𝐼𝑏𝑖 passing through a resistor 

𝑅𝑏𝑖 (Prakash & Khatod, 2016). Another approach is to calculate the power loss index (Prakash & 

Khatod, 2016) as in Equation (13), which calculates the % reduction in copper losses after DG is 

placed, which is a quantity that should be maximized.  

𝑚𝑖𝑛 𝑓𝑙𝑜𝑠𝑠𝑒𝑠 =  𝑃𝐿 =  ∑ ∑[𝛼𝑖𝑗(𝑃𝑖𝑃𝑗 + 𝑄𝑖𝑄𝑗) +  𝛽𝑖𝑗(𝑄𝑖𝑃𝑗 − 𝑃𝑖𝑄𝑗)]

𝑁

𝑗=1

𝑁

𝑖=1

 (11) 
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𝛼𝑖𝑗 =
𝑅𝑖𝑗

𝑉𝑖𝑉𝑗
cos (𝛿𝑖 −  𝛿𝑗) 

𝛽𝑖𝑗 =
𝑅𝑖𝑗

𝑉𝑖𝑉𝑗
sin (𝛿𝑖 −  𝛿𝑗) 

𝑃𝐿 =  ∑|𝐼𝑏𝑖|2

𝑁

𝑖=1 

 𝑅𝑏𝑖 (12) 

𝑃𝐿𝑖 =  (1 −
𝑅𝑒 {𝑃𝐿𝑎𝑓𝑡𝑒𝑟𝐷𝐺

}

𝑅𝑒 {𝑃𝐿𝑏𝑒𝑓𝑜𝑟𝑒𝐷𝐺
}
)  𝑋 100% (13) 

 Voltage profile excursions  

Voltage profile improvement i.e., maintaining bus voltages 𝑉�̅� as close to their nominal operation 

value 𝑉𝑛𝑜𝑚 ̅̅ ̅̅ ̅̅ ̅is also commonly chosen as an optimization goal. One approach is to calculate the 

Voltage Profile Index (VPI) (Arabali et al., 2017). When included in the objective function, the 

VPI penalizes the size-location pair that gives higher voltage deviations from the nominal value, 

as written in Equation (14). 

𝑉𝑃𝐼 = max (
|𝑉𝑛𝑜𝑚
̅̅ ̅̅ ̅̅ | −  |𝑉�̅�|

|𝑉𝑛𝑜𝑚
̅̅ ̅̅ ̅̅ |

)  𝑖 = 1, … , 𝑛 
(14) 

 

 Emissions from grid and DER 

Emission goals can be translated into economic revenues originated from emission reductions. 

One of such approaches was already shown in Equation (9)  𝐶𝑒 . In another approach shown in 

(Falke, Krengel, Meinerzhagen, & Schnettler, 2016), the total emissions of CO2 equivalent are 

computed. The total emissions include both emissions caused by manufacturing (𝐸𝑖 
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

) 

and operation (𝐸𝑖 
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

) of each DG 𝑖, and are minimized, as shown in Equation (15). A Life 

Cycle Analysis (LCA) are likely necessary to be applied to the DER technologies to obtain 

𝐸𝑖 
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

. 

min 𝑓𝐶𝑂2𝑒𝑞
=  ∑[𝐸𝑖 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
+  𝐸𝑖 

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
]

𝑁

𝑖=1

 (15) 
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One approach to calculate operation emissions based on power output is shown in (Basu, 

Bhattacharya, Chowdhury, & Chowdhury, 2012) 

𝐸𝑖 
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

=  ∑ [𝛼𝑖 + 𝛽𝑖 + 𝑃𝐷𝐺𝑖𝑚𝑎𝑥
+ 𝛾𝑖𝑃𝐷𝐺𝑖𝑚𝑎𝑥

2]

𝑁

𝑖=1

 (16) 

Where 𝛼𝑖 , 𝛽𝑖 , 𝑎𝑛𝑑 𝛾𝑖  are CO2 or NOx emission coefficients of the 𝑖𝑡ℎ DER determined by a least-

squares fit on equipment data of emissions vs power output. 

 Reliability  

Multiple analyses had shown that a DG reduced both the magnitude and duration of failures, 

directly by being available when the central generation was not or indirectly by reducing stress 

on the system components, so the individual system component reliability is increased. Also by 

locally reducing load and enabling feeder tie operations that were avoided due to high-load 

conditions, (Arabali et al., 2017). The System average interruption frequency index (SAIFI) 

indicates how often an average customer is subjected to sustained interruption over a predefined 

time interval: 

𝑆𝐴𝐼𝐹𝐼 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑆𝑒𝑟𝑣𝑒𝑑
=  

∑ 𝜆𝑖𝑁𝑖 

∑ 𝑁𝑖
 (17) 

Where 𝜆𝑖is the failure rate, and 𝑁𝑖 is the number of customers of load point i. (Arabali et al., 

2017) 

Another index, the System average interruption duration index (SAIDI) indicates the total 

duration of interruption an average customer is subjected to for a predefined time interval: 

𝑆𝐴𝐼𝐹𝐼 =
𝑆𝑢𝑚 𝑜𝑓 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑠𝑡𝑖𝑜𝑛 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑆𝑒𝑟𝑣𝑒𝑑
=  

∑ 𝑈𝑖𝑁𝑖  

∑ 𝑁𝑖
 (18) 

Where 𝑈𝑖 is the annual outage time (Arabali et al., 2017). These indices can be included in the 

cost function to penalize solutions that are unreliable. 

 DER hosting capacity, DG penetration 

It is worth mentioning that the vast majority of previous literature work is mainly focused on 

minimizing cost and copper losses. Another interesting optimization objective, which will be 
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significantly explored in this work, is to maximize the installed capacity of DG installed in the 

network, for increasing total renewable energy penetration into the existing power system.  

max 𝑓𝐷𝐺𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 
= ∑ 𝑃𝐷𝐺𝑖

𝑁

𝑖=1

 (19) 

A comprehensive list of many other possible objective functions is provided in (Pesaran H.A et 

al., 2017), as illustrated in Figure 2.4. 

 
Figure 2.4 – DG allocation Optimization Objectives . (Pesaran H.A et al., 2017) 

2.4.2. Constraints 

As in a typical optimization formulation, the objective function for the DG allocation problem 

should satisfy given equality ℎ𝑖(𝑥) =  0 or inequality  𝑔𝑖(𝑥) ≤  0 constraints such as: 

 Voltage constraints  

 The voltage at the 𝑖𝑡ℎ  𝑉𝑖 bus should always stay within upper and lower limits 𝑉𝑖 and  

𝑉𝑖 respectively, as shown in (20) (Arabali et al., 2017). Limits for voltage are usually taken as the 

(ANSI, 2005) 
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𝑉𝑖 ≤  |𝑉𝑖| ≤  𝑉𝑖  (20) 

 Current (thermal) constraints (line and transformer) 

The apparent power flowing from branch 𝑖 to branch 𝑗 (𝑆𝑖𝑗 ) should not exceed the maximum 

rated power the circuit or transformer can withstand 𝑆𝑖𝑗 𝑚𝑎𝑥 , as shown in Equation (21) (Arabali 

et al., 2017) 

𝑆𝑖𝑗 < 𝑆𝑖𝑗 𝑚𝑎𝑥    (21) 

 Power Balance 

At each node, the power generated from the DG at each node 𝑖, (𝑃𝐺𝑖
 𝑎𝑛𝑑 𝑄𝐺𝑖

) plus losses 

(𝑃𝐿, 𝑎𝑛𝑑 𝑄𝐿) should equal the active and reactive load et each node (𝑃𝐷𝑖
 𝑎𝑛𝑑  𝑄𝐷𝑖

), as shown in 

Equation (22) (Arabali et al., 2017). If the system is grid-connected and allows for import and 

export, these decision variables can be included as shown in Equation (24). 

∑ 𝑃𝐺𝑖
+ 𝑃𝐿

𝑁

𝑖=1

=  ∑ 𝑃𝐷𝑖
 

𝑁

𝑖=1

 

∑ 𝑄𝐺𝑖
+ 𝑄𝐿

𝑁

𝑖=1

=  ∑ 𝑄𝐷𝑖

𝑁

𝑖=1

 

(22) 

∑ 𝑃𝐺𝑖
+ 𝑃𝐿

𝑁

𝑖=1

+  𝑃𝑔𝑟𝑖𝑑𝑖𝑚𝑝𝑜𝑟𝑡
=  ∑ 𝑃𝐷𝑖

 

𝑁

𝑖=1

+ 𝑃𝑔𝑟𝑖𝑑𝑒𝑥𝑝𝑜𝑟𝑡
 (23 

 Storage constraints 

Battery storage can be modeled in the case of a time-domain dynamic simulation, which will 

account not only for power but energy balances. An approach to model storage was shown in 

(Mashayekh, Stadler, Cardoso, & Heleno, 2016), and can be written as shown in Equations (24), 

(25), and (26). 

𝑆𝑂𝐶𝑛,𝑠,𝑡 = (1 − 𝜙𝑠) ∗  𝑆𝑂𝐶𝑛,𝑠,𝑡−1 + 𝑆𝐼𝑛𝑛,𝑠,𝑡 – 𝑆𝑂𝑢𝑡𝑛,𝑠,𝑡 

(24) 
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𝑆𝑂𝐶𝑠 ≤ 𝑆𝑂𝑢𝑡𝑛,𝑠,𝑡 ≤  𝑆𝑂𝐶𝑠 
(25) 

𝑆𝐼𝑛𝑛,𝑠,𝑡 ≤ 𝐶𝑎𝑝𝑛,𝑠 ∗  𝑆𝐶𝑅𝑡𝑠 

𝑆𝑂𝑢𝑡𝑛,𝑠,𝑡 ≤  𝐶𝑎𝑝𝑛,𝑠 ∗ 𝑆𝐷𝑅𝑡𝑠  
(26) 

Where: 

𝑆𝐼𝑛𝑛,𝑠,𝑡  = Energy input to storage technology s at node n, kWh 

𝑆𝑂𝑢𝑡𝑛,𝑠,𝑡 = Energy output from storage technology s at node n, kWh 

𝐶𝑎𝑝𝑛,𝑠 = Installed capacity of continuous technology k at node n, kW or kWh 

𝑆𝑂𝐶𝑠/𝑆𝑂𝐶𝑠 =  Min/max state of charge for storage technology s, % 

𝑆𝐶𝑅𝑡𝑠/ 𝑆𝐷𝑅𝑡𝑠  = Max charge/discharge rate of storage technology s, kW 

In the case of storage, the power/energy balance equation will need to also include the power 

charge/discharge from the battery, modifying the active power portion of Equation (22) to 

include storage would result in: 

∑ 𝑃𝐺𝑖
+ 𝑃𝐿

𝑁

𝑖=1

+ 𝑆𝑂𝑢𝑡𝑛,𝑠,𝑡  =  ∑ 𝑃𝐷𝑖

𝑁

𝑖=1

+  𝑆𝐼𝑛𝑛,𝑠  (27) 

 Power Flow 

The power flow equations are active and reactive power balance equations at each node. An 

approach used by (Arabali et al., 2017) uses the AC nonlinear power flow equations as 

constraints, where P and Q generated by the DG are 𝑃𝐺𝑖
 𝑎𝑛𝑑 𝑄𝐺𝑖

 . 𝑉𝑖 and 𝑉𝑗 are the voltages at 

nodes 𝑖 and 𝑗 and  𝛿𝑖 𝑎𝑛𝑑 𝛿𝑗 are the respective voltage angles | 𝑌𝑖𝑗| and 𝜃𝑖𝑗 represent the 

admittance magnitude and angle from the admittance matrix.  

𝑃𝐺𝑖
−  𝑃𝐷𝑖

− ∑|𝑉𝑖||𝑉𝑗|

𝑁

𝑗=1

|𝑌𝑖𝑗| cos(𝛿𝑖 − 𝛿𝑗 – 𝜃𝑖𝑗) = 0 

𝑄𝐺𝑖
− 𝑄𝐷𝑖

− ∑|𝑉𝑖||𝑉𝑗|

𝑁

𝑗=1

|𝑌𝑖𝑗| sin(𝛿𝑖 − 𝛿𝑗 – 𝜃𝑖𝑗) = 0 

(28) 
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 Power imported from the grid 

It is often necessary to limit the power provided by the network 𝑃𝑔𝑟𝑖𝑑. Otherwise, for most cost-

based objective functions, the load is likely going to be supplied fully by power imported from 

the grid, which is cheaper, and the optimization problem returns zero DER installed capacity. 

0 ≤ 𝑃𝑔𝑟𝑖𝑑 ≤ 𝑃𝑔𝑟𝑖𝑑 (29) 

 Space and area 

Available space for DER installation is a constraint often overlooked in the literature, but 

essential for obtaining more realistic results. An approach suggested by (Y. Yang, Zhang, & 

Xiao, 2015b) is directly applied to PV systems and rooftop area. 𝑁𝑃𝑉,𝑛 is the installed capacity of 

the PV system in building 𝑙. 𝐴𝑟𝑒𝑎𝑃𝑉 , 𝑗 is the area occupied by each kW of the PV panel and 

𝑀𝑎𝑥𝑅𝑜𝑜𝑓𝑙 is the roof area space of building 𝑙. 

𝑁𝑃𝑉,𝑙 ∗ 𝐴𝑟𝑒𝑎𝑃𝑉 ≤ 𝑀𝑎𝑥𝑅𝑜𝑜𝑓𝑙 (30) 

 Power factor (PF)   

DG units are usually operated in PQ mode with a constant power factor. However, in some 

studies, the DER was allowed to operate to export or import reactive power. An approach shown 

in (Prakash & Khatod, 2016), an inequality constraint was set to bound the operating PF of the 

DG from 0.8 to unity.  

0.8 ≤ 𝑃𝐹𝐷𝐺,𝑗 ≤ 1 (31) 

The PF can also be controlled by setting a fixed PF value and optimizing the amount of reactive 

power output/absorbed by the DG, as shown in (Arabali et al., 2017)  

𝑄𝐺𝑖
≤ 𝑃𝐺𝑖

√𝑃𝐹−2 − 1 (32) 

A comprehensive list of many other possible objective functions is provided in (Pesaran H.A et 

al., 2017), as illustrated in Figure 2.5. 
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Figure 2.5 – DG  Allocation Optimization Constraints (Pesaran H.A et al., 2017) 

2.4.3. Optimal power flow 

The first optimal power flow problem was proposed in 1962 by J. Carpentier (Carpentier, 1979). 

Since then, many authors have contributed to the development of the central problem 

formulation to apply OPF to many different applications. The OPF problem is simply an 

optimization formulation, i.e., a minimization or maximization of an objective function having it 

constrained within a set of equality and inequality constraints that describe the power flows 

across the system nodes and determine the power system operational limits. These equality and 

inequality conditions define the feasible region for the OPF problem. Most times, these 

formulations are nonlinear and non-convex (Abdi, Beigvand, & Scala, 2017). OPF formulations 

are widely used for the economic dispatch of generators, i.e., optimize generation to reduce cost. 

Nonetheless, OPF formulations have been gaining attention and applied to other goals such as 

minimize losses, regulate voltage and maximize DER penetration. 

The decision variables of an OPF control the solution space dimension, thus, for n decision 

variables the dimension of the solution space will be n. Examples of such variables may include 

active power generation of all nodes (Except slack bus), reactive power injections for voltage 
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regulation equipment, voltages across the system node, tap settings in the transformers, and so 

forth.  

A sample OPF problem, as taken from (Zhang, 2013) can be expressed as:  

minimize 𝑓(𝑃1, 𝑃2, … . , 𝑃𝑛)  

 subject to  ℎ𝑖(𝑥) =  0               𝑖 = 1, … , 𝑚 

𝑔𝑗(𝑥) ≤  0                                     𝑗 = 1, … , 𝑟    

(33) 

(34) 

(35) 

Where (33) is the cost function, usually defined on the real power outputs, Equation (37) 

represents the equality constraints, usually expressed by the physical load flow equations, and 

equation (38) represents the inequality constraints that typically define system operating limits. 

The OPF problem is usually solved using Newton-type methods, which have a non-guaranteed 

convergence to a local minimum (Zhang, 2013). Various other methods have also been proposed, 

such as Distributed and Parallel OPF (DPOPF), Multiphase OPF (MOPF), linearization 

approaches, iterative approaches, unbalanced three-phase OPF (TOPF), Alternating Direction 

Method of Multipliers (ADMM). Each of these methodologies is summarized in (Abdi et al., 

2017), and also have their computational performances compared. 

Amongst some of the challenges/recommendations identified in the field of OPF applied to 

microgrid and smart-grids (Abdi et al., 2017) (Ehsan & Yang, 2017)are:  

 The increased dimension of the optimization problem, especially when considering 

distribution systems at a lower voltage level. 

 The unbalance nature of loads 

 The integration of energy storage, which requires a dynamic time-series simulation, 

or Optimal Energy Flow (OEF) 

 The incorporation of uncertainties of renewable generation 

 Hybrid techniques combining analytic metaheuristic and computations methods 

should be explored 
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2.5. Smart-inverter functions 

The main smart-inverter functions to be considered in this work and summarized in this section 

were initially proposed in the “ERPI, Common Functions for Smart Inverters – Phase 3” report 

(Electric Power Research Institute (EPRI), 2014). This report was the result of a collaborative 

industry and utility work facilitated by EPRI. It proposes a core set of key smart-inverter 

functions that will facilitate higher DG penetration without affecting system power quality or 

reliability. These functions are considered mandatory in California under Rule 21, and in other 

utilities with the IEEE Standard 1547-2018. 

2.5.1. Fixed power factor 

This function provides a mechanism to regulate the DER’s power factor to a pre-set fixed value. 

Attention is needed for the sign convention used, as illustrated in Figure 2.6, there are two 

different sign conventions typically used in industry: 

1. IEC: Generated or Supplied active power is positive. Demanded active power be negative. 

2. IEEE: leading (capacitive, producing Var) PF is positive and lagging (inductive, absorbing 

Var) PF is negative. 

Also, a PF of +1.0 and -1.0 are essentially the same (zero Vars). 
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Figure 2.6 – IEC and IEEE power factor sign convention.  Adapted from (Electric Power Research Institute (EPRI), 2014) 

2.5.2. Volt-Var 

A smart inverter with a Volt-Var function controls reactive power, Var, to regulate local voltage. 

The function uses a “configurable curve”, i.e., a two-dimensional X-Y array, which defines a 

linear function of the desired Volt-Var behavior. Vars are the controlling variable and Volts are 

the variable to be controlled. The Y-axis is the percent available Vars, in other words, the power 

capacity that the inverter can provide at a given moment without limiting its Watt output, which 

usually takes priority. Also, the array X-values are defined as the “Percent Voltage”, as defined 

in Equation (36), which is the voltage value but expressed in percentage of the Reference 

Voltage (𝑉𝑟𝑒𝑓). 
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𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (%) =
𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑉𝑟𝑒𝑓 
 𝑥 100% 

(36) 

Figure 2.7 illustrates a typical Volt-Var function. The four points, P1 through P4, indicate the 

desired percentage available Var level (Q1 through Q4) for a given voltage value in percentage 

of 𝑉𝑟𝑒𝑓 (V1 through V4). Noting that P2 and P3 represent a “dead-band”, which a 

corresponding Var output of 0%, or 0 Var. In addition, expressing the points in the curve as 

percentages allows the use of the curve for many different DERs without having to adjust for 

local conditions such as nominal voltage. 

 
Figure 2.7 – Example Volt-Var function curve. Adapted from (Electric Power Research Institute (EPRI), 2014). 

 

Different manufacturers can have different Volt-Var behavior characteristics such as a horizontal 

line or two points forming a ramp. In some cases, it might also be desired to have a hysteresis 

behavior. The hysteresis adds the benefit of avoiding any unnecessary fluctuations, for instance, 

as can be observed in Figure 2.8 the same amount of Vars Q3 = Q5 is outputted when the voltage 

decreases from V3 to V5. 
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Figure 2.8 – Example of Volt-Var function curve with hysteresis. Adapted from (Electric Power Research Institute (EPRI), 

2014). 

Lastly, these curves should be implemented as “modes”, so a single inverter can have many 

modes pre-programmed, which can be interchanged by a signal broadcast, or also scheduled over 

time.  

2.5.3. Volt-Watt 

An inverter with a Volt-Watt function is able to reduce its Watt output gradually in order to 

achieve a target voltage level at the PCC. The specific need for such a function arises from cases 

where a high PV penetration at low loads can cause feeder overvoltage. This function adopts the 

same “configurable-curve” approach as the Volt-Var function. An example of such a curve is 

shown in Figure 2.9, where a horizontal line extends across the lowest voltage, V1, and to the 

highest voltage, V3, until an operational limit is reached. The horizontal axis is expressed in 

percent of  𝑉𝑟𝑒𝑓. The vertical axis is the inverter’s Maximum Watt output, also in percentage. 

Thus, for a system with nominal 480 V, and the function settings are V2 = 105% and V3 = 

110%, the Watt reduction would begin for voltages above 504 V and be reduced to zero at 528 

V.  
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Figure 2.9 – Example of Volt-Watt function curve.  Adapted from (Electric Power Research Institute (EPRI), 2014). 

There is a separately defined function designed for systems containing energy storage: the 

Absorbed Volt-Watt function. There are two proposed ways to limit the rate of charging power, 

the Low-Pass Filter Limiter, where 𝜔 = 2𝜋𝑓 and 𝜏 is the time-constant of the filter, defined in 

Equation (37) and Figure 2.10. 

 

                             
(37) 

 

 
Figure 2.10 – Low Pass Filter Limiter Example.  Adapted from (Electric Power Research Institute (EPRI), 2014). 

There is also the Rate of Change Limiter, defined in Equation (38), which establishes a 

maximum value for the rising and falling rates of the Watts limits. 

𝑑𝑊𝑎𝑡𝑡𝐿𝑖𝑚𝑖𝑡

𝑑𝑡
≤ 𝑅𝑖𝑠𝑒 𝐿𝑖𝑚𝑖𝑡                

𝑑𝑊𝑎𝑡𝑡 𝐿𝑖𝑚𝑖𝑡

𝑑𝑡
≥  𝐹𝑎𝑙𝑙 𝐿𝑖𝑚𝑖𝑡 (38) 

Frequency Domain Time Domain 
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 Interactions between Volt-Var and Vol-Watt 

The interaction between the Volt-Var and Volt-Watt functions is direct and intentional. In all 

functions described so far, Watts must take precedence over Vars regardless of voltage, and it 

might be that an inverter that is producing its full Watt capacity does not have any extra Vars to 

offer. Nonetheless, in most cases, there is a sufficient margin between the inverter VA rating and 

the peak PV array output (W); therefore, there is enough room for significant Vars production. 

The combined operation of both functions allows for the reduction of Watts when there is a local 

voltage rise, also enabling more Vars production. 

To clarify the combined operation described above, consider the following two scenarios. In the 

first one (Figure 2.11), the PV active power output, in blue, is 100% of the inverter limit. This 

means that the available Var output, in yellow, is zero until the Watts are reduced by the Volt-

Watt function. As the voltage increases so does the ability to produce Vars. 

 

 
Figure 2.11 – Interaction between Volt-Var and Volt-Watt – Scenario 1.  Adapted from (Electric Power Research Institute 

(EPRI), 2014). 

In the second scenario, shown in Figure 2.12, the PV active power output, in blue, is only 80% of 

the maximum inverter output. Thus, there is a maximum available Var output capacity of 60%, 

in yellow, (from the constant VA circle) until the Volt-Watt function reduces the Watts. 
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Figure 2.12 – Interaction between Volt-Var and Volt-Watt – Scenario 2.  Adapted from (Electric Power Research Institute 

(EPRI), 2014). 
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3 Baseload DER ability to 

regulate voltage on 

generation-constrained 

systems  

Highlights 

 Large-scale baseload DER is deployed to support a constrained transmission system 

 A combined active/reactive power injection is ideal for voltage regulation 

 Placing DER on the bus with the lowest voltage achieves greater overall grid benefits 

 DER deployment enhances the overall system steady-state voltage stability 

 

This chapter presents a steady-state power flow analysis that investigates and demonstrates the 

ability of an inverter-connected DER to locally regulate voltage in a real-world transmission 

(500/230/66 kV) power system that is generation-constrained, that is, it has a generation deficit 

and therefore an unbalanced generation/load. A MW-scale DER operating as baseload (that is, 

able to output constant power) is able to output a combination of active and reactive power, by 

operating at a fixed (leading/lagging) power factor.  

Power flow simulations are carried out for different DER deployments. Results show that DER 

can reduce line losses and provide local voltage support. The allocation of only three DER 

systems operating at a 0.7 leading power factor or as a pure reactive source is able to maintain all 

system nodal voltages 0.98 p.u. or above when it otherwise would have dropped to near 0.92 p.u. 

when the systems main power source, a 2.0 GW nuclear plant, went off-line. The best DER 

placement is proven to be always at the weakest point in the system (at the end of the circuit, at 

the lowest voltage bus) as opposed to being distributed across nearby buses. Moreover, the DER 

deployment enhances the overall system steady-state voltage stability 



 

32 

 

3.1. Approach  

In this chapter, high-temperature fuel cells are proposed as the distributed energy resource and 

are referred from this point forward in the text as TIGER (Transmission Integrated Grid Energy 

Resources). The practical potential of fuel cell distributed generation was earlier recognized in 

numerous studies (Bauen, Hart, & Chase, 2003; Bischoff, 2006; Cragg, 1996; Das, Das, & Patra, 

2014; Dufour, 1998; Krumdieck, Page, & Round, 2004; Tarman, 1996; Toonssen, Woudstra, & 

Verkooijen, 2009). The attractiveness of this power source stems from the following features: 

 The high-availability factor: a TIGER station’s power output is constant, non-

intermittent, and only dependent on fuel supply. Thus, most of the challenges 

associated with highly dynamic and unpredictable DER no longer apply for TIGER 

stations. 

 The high efficiencies achieved in small-scale systems, which can be further increased 

with combined heat and power applications. 

 The high energy density and availability of sufficient land  in many substations or 

nearby transmission ROW 

 The modular design allowing tailored power output and enhanced load following 

capabilities 

 The inverter-based connection, which provides flexibility for reactive power 

compensation and minimal short circuit contribution 

 Low noise and pollutant emissions favoring siting and permitting within urban areas 

 The resulting short lead times for construction and commissioning. 

These features lead to another benefit, namely the ability to site TIGER stations where they can 

provide grid benefits such as improving voltage profiles and reducing transmission line losses. In 

TIGER stations, all of the produced active and reactive power is transferred to the grid through 

an inverter, which allows for a flexible power output that can be adjusted to supply active and 

reactive power as needed. In the stationary fuel cell market, there are now a number of 

commercially available, next-generation multi-megawatt systems, several of those are the result 

from the U.S. distributed generation Fuel Cell Program (Mark C. Williams & Maru, 2006), (M. 
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C. Williams, Strakey, & Singhal, 2004). Moreover, various utilities in the U.S. and Korea are 

deploying such systems as large-scale fuel cell power parks (Curtin & Gangi, 2015). 

There is a common concern regarding the capabilities of fuel cells to operate dynamically, 

providing adequate load following. Appropriate thermal management is a typical challenge, 

which can be accomplished well for low temperature fuel cell systems such as proton exchange 

membrane or phosphoric acid fuel cells, but is more challenging for high-temperature fuel cells 

such as solid oxide or molten carbonate fuel cells. If thermal management is not accomplished 

well dynamic temperature excursions could lead to accelerated cell degradation. The benefits of 

TIGER stations evaluated in this paper assume a typical steady-state baseload operation, but it is 

known that the actual grid is dynamic. Meaningful research progress has been made in achieving 

a superior load-following capability for stationary fuel cell systems. In (Barelli, Bidini, & 

Ottaviano, 2016) an SOFC was able to respond to a 46% step down in power, this should be 

sufficient to meet the part-load operation requirements for a transmission substation.  

The key points this chapter will investigate are the ability of TIGER stations to assist in 

supporting the local voltage profile of regions with poor load/generation balance, the ability to 

reduce resistive line losses, and optimal TIGER placement, when operating at a unity power 

factor, 0.7 leading power factor, and at pure reactive power injection. We will also investigate 

the effects on the system steady-state voltage stability using P-V curve analysis methods.  

3.1. Model Development and Assumptions 

The test case used for this analysis is a real-world transmission system located in Southern 

California. Figure 3.1 illustrates the geographical location of its primary substations, 

transmission lines, and corresponding voltage levels. An “A” substation is one where the 

transformer high voltage winding is connected at 230 kV, and an “AA” substation is one 

connected at 500 kV. The test case is bounded by the dashed lines and it is referred to here as the 

SONGS system.  
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Figure 3.1 – Southern California Main Transmission substations and system boundary for SONGS System.  (Southern 

California Edison (SCE), 2016a) 

A steady-state power flow model of the SONGS system was developed in PowerWorld™, an 

industry standard power flow simulation software, to solve for the steady-state power flows and 

nodal voltages. Figure 3.2 illustrates a simplified one-line diagram of the model. There are 

thirteen 230 kV buses, two synchronous generators, one at the system slack bus and other located 

at the SONGS bus, and one synchronous condenser, which corresponds to two generator units 

retired in 2013 that currently operate as synchronous condensers to provide voltage support to 

the area (“AES Uses Synchronous Condensers for Grid Balancing,” n.d.). 
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Figure 3.2 – One-line diagram of SONGS system 

Loads were modeled as constant power (PQ) and having a unity power factor. Demand values on 

the 230/66 kV transmission substations were taken from the 2017 peak load forecast contained in 

the CAISO 2015-2016 Transmission Plan (California ISO, 2016), and shown in Table 3.1. 

Interconnection studies in this area have identified total current distributed generation at those 

substations, in MW (Southern California Edison (SCE), 2016a).  

The base values for the per-unit calculations used were 𝑆𝑏𝑎𝑠𝑒 = 100 MVA, 𝑉𝑏𝑎𝑠𝑒 = 230 kV, thus 

using equations (39) and (40) (Grainger & Stevenson, 1994), we calculated that  𝑍𝑏𝑎𝑠𝑒 = 529 Ω, 

and 𝐼𝑏𝑎𝑠𝑒 = 251 A. 

𝑍𝑏𝑎𝑠𝑒 =
𝑉𝑏𝑎𝑠𝑒

2

𝑆𝑏𝑎𝑠𝑒
 (39) 

𝐼𝑏𝑎𝑠𝑒 =
𝑆𝑏𝑎𝑠𝑒 

√3𝑉𝑏𝑎𝑠𝑒

 (40) 
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The boundaries of the test case, as shown in Figure 3.1 are the 230 kV buses at Serrano, Del 

Amo, and Chino. These points were modeled as Thevenin equivalent reactances assuming a 

short circuit duty of 50 kA at Del Amo and Chino substations and 63 kA at Serrano. For these 

boundary lines, the short circuit per-unit (p.u.) impedance values used were 𝑍𝑝𝑢 = 0.005, for Del 

Amo and Chino buses and 𝑍𝑝𝑢  = 0.004 for Serrano. San Diego was modeled as a 700 MW load 

assuming SONGS would typically meet this amount of power flow toward SDG&E service 

territory. 

Table 3.1– Substation 2017 Peak Load forecast 

Substation 

Name 

Load 

Forecast - 

2017 (MW) 

Total 

Distributed  

Generation 

Barre 723 - 

Chino 741.3 - 

Del Amo 545.2 - 

Ellis 700 450 MVar1 

Johanna 461 - 

Lewis 657 - 

Santiago 879 - 

Viejo 378 - 

Villa Park 737 - 

SONGS - 2,200 MW 

San Diego 700 - 
1  Source (AES California, n.d.) 

 

Line lengths were obtained from Southern California Edison’s DERiM map (Distributed Energy 

Resource Interconnection Map), publicly available at (Southern California Edison (SCE), 

2016a). Line impedance was obtained from the following assumptions: 

 All conductors are assumed to be Aluminum Steel Reinforced (ASCR) 

 230 kV lines 

o Lapwing conductor: 1590 kcmil, R = 0.0622 Ω /mile, and X = 0.364 Ω /mile 

o 140 feet height vertical single-circuit transmission tower layout 

o 20 feet spacing between phases 

o Transposed lines 
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 Reliability Must Run (RMR) capacitor banks, usually deployed at the 230kV level to 

compensate the inductance of the transmission lines were not modeled since the goal 

is to determine the ability of TIGER stations alone to regulate voltage. 

3.2. Scenarios 

Table 3.2 summarizes all scenarios considered. For each scenario, a steady-state power flow 

simulation was performed. Base Case 1 and Base Case 2 (no TIGER stations) represent the test 

case before and after the main generation source is retire. The “TIGER with pure active power 

injection” scenarios aim to study the ability of TIGER station to provide local voltage support. 

Incremental 100 MW TIGER stations were allocated at the nodes with the lowest steady-state-

voltage in the Base Case 2 (San Diego, SONGS, Viejo and Santiago) as described in Table 3.2.  

To study the effects of reactive power injection by TIGER stations, i.e., the “TIGER with MVar 

injection” scenarios, the same “TIGER with pure active power injection 

“ scenarios were simulated with two additional TIGER operating conditions: (1) each TIGER 

station operated at a 0.7 constant leading power factor. And (2) the TIGER stations were 

operated with pure reactive power injection. 

Table 3.2 – Scenario Description 

Base Cases Base case 1: Main generation source online  

 

Base case 2: Main generation source offline  

 

TIGER with 

pure active 

power 

injection 

(unity power 

factor) 

 

1 TIGER  

Santiago 

SONGS 

San Diego 

 

2 TIGER 

San Diego + SONGS 

SONGS + Viejo 

SONGS + Santiago 

Santiago + Viejo 

2 x San Diego  

 

3 TIGER 

SD + SONGS + Viejo 

SONGS + Viejo + Santiago 

3 x San Diego 

 

TIGER with 

MVar 

injection 

(leading 

power factor) 

Previous TIGER scenarios, having each a 100 MVA inverter operating at 70 

MW /70 MVar (0.7 PF lead) output 

Previous TIGER scenarios, having each a 100 MVA inverter operating at 100 

MVar (pure MVar injection) 
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3.3. Results and Discussion 

3.3.1. Voltage profiles 

To capture the effect of TIGER size upon voltage support, i.e., the effect that each given MW 

has in voltage profile improvement, an index is here presented, namely, the “Voltage 

Improvement Index”, VII. This index was based on similar indices already presented in the 

literature (Chiradeja & Ramakumar, 2004; Gil, El Chehaly, Joos, & Cañizares, 2009). For 

calculating the VII, the per-unit voltage at a given bus 𝑖 after TIGER placement (𝑉 𝑝𝑢𝑖  ) is 

subtracted from the per-unit voltage at a given bus 𝑖 before TIGER placement (𝑉𝑝𝑢𝑖𝑜
) and then 

divided by the voltage in the base case. The result is then divided by the TIGER penetration 

(𝑇𝐼𝐺𝐸𝑅𝑝𝑒𝑛) defined in Equation (41), which is the percentage of the load met by TIGER at a 

given bus. For instance, a VII of 0.5 indicates that the bus voltage improved 0.5% per 1% 

TIGER penetration increase, and a higher VII implies there are higher voltage improvements per 

MW installed. This index was calculated for the deployments of TIGER in the San Diego bus, 

and its trend is shown in Figure 3.3 

𝑇𝐼𝐺𝐸𝑅𝑝𝑒𝑛 =  100 ×  
∑ 𝑃𝑇𝐼𝐺𝐸𝑅𝑖

𝐿𝑜𝑎𝑑𝑖
 

 

(41) 

𝑉𝐼𝐼 =

100 ×  
𝑉𝑝𝑢𝑖𝑜

− 𝑉 𝑝𝑢𝑖  

𝑉𝑝𝑢𝑖𝑜

𝑇𝐼𝐺𝐸𝑅𝑝𝑒𝑛
 

(42) 

 

 
Figure 3.3 – Voltage improvement index, VII vs. TIGER penetration (%) 
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By analyzing the VII, it is clear that there are diminishing returns associated with the addition of 

TIGER station capacity to support system voltage, as VII goes progressively down with TIGER 

penetration in a non-linear fashion. This is consistent with prior work suggesting that at low 

penetrations of DER, these indices are relative linearly additive, and as the DER penetration 

increases, VII becomes non-linear (Gil et al., 2009). 

To achieve further voltage improvements, this analysis also considers reactive power injection. 

This is possible since TIGER stations are connected to the grid through switching power 

electronics inverters. Considering a 100 MVA rated inverter, the total output can be (1) up to 100 

MW, (2) or any combination of MW and MVar that respects the apparent power rating. A 

combination of 70 MW and 70 MVar output, corresponding to a leading power factor of 0.7, is 

evaluated here, or (3) pure 100 MVar of reactive power. Reactive power injection in this system 

is intuitive since long transmission lines have a high X/R ratio, i.e., the ratio of its reactance to its 

resistance; thus, they are a reactive power sink. The results shown in Figure 3.5 capture that 

TIGER stations operating at a 0.7 leading PF (i.e., a combination of active and reactive power 

injection) achieved a higher overall rise in voltage profiles of the buses that needed voltage 

support compared to pure active power or pure reactive power injection (illustrated in Figure 

3.5(b)). These results agree with the results obtained in (Hessenius, Ang, & Hamilton, 2006).  

The advantage of using a 0.7 power factor is clear because, as one might expect, voltages rely on 

power flows, active and reactive. If the local demand for active power increases, this demand 

must be met by an increased amount of power, and current, flowing through transmission lines. 

Meeting these demands locally will reduce these flows and regulate local voltages. Also, it is 

known from voltage regulation fundamentals that operating at a leading power factor will 

increase the receiving end voltage (Grainger & Stevenson, 1994). 

To illustrate these facts, consider a two-bus system, shown in Figure 3.4, comprised of a 200 

MW load that is fed by a remote System generator (slack) through a transmission line with 

impedance Z = 0.01R + j0.1X p.u., with the load also locally supplied by a 100 MVA TIGER. 

When the TIGER operates at unity power factor, it will offset 100 MW of active power flow 

from the upstream system, but the transmission line still acts as a reactive power sink. In the 0.7 

leading PF case, less load is displaced, but now the TIGER bus is a reactive power source, which 

will increase the local voltage. In the pure reactive power injection case, the load now needs to 
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be fully met by the upstream remote generator; moreover, 100 MVar is injected back to the 

System upstream and the terminal voltage again increases.  

Looking again at the voltages in Figure 3.4,  one can infer that pure reactive power injection 

seems the most attractive solution for regulating voltage, however, reactive power compensation 

is only effective over short distances, whereas active power will flow higher upstream. This 

effect can be observed by the comparison of the leftmost graphs in Figure 3.5 where the 0.7 

leading PF case shows an overall better voltage regulation, i.e., the difference between receiving 

end and sending end voltage magnitudes, for the entire system. Thus, a combination of active 

and reactive power injection is found to regulate voltage more effectively than only active power 

in systems like the SONGS system with long power lines.  

 
Figure 3.4 – TIGER Power Factor and resulting power flows 
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Figure 3.5 – (a) 100 MW TIGER. (b) 70 MW/70 MVar TIGER. (c) 100 MVar TIGER 
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3.3.2. Steady-State voltage stability  

Voltage stability typically involves determining the operating point at which a system reaches its 

so-called voltage collapse. There have been extensive efforts in the literature devoted to 

identifying optimal placement of DER to improve local voltage stability, which is likely in the 

weakest bus in the system (Abdel-Akher, Ali, Eid, & El-Kishky, 2011; Angelim & Affonso, 

2016; H. Chen, Chen, Shi, & Duan, 2006; P. Chen, Member, Malbasa, & Kezunovic, 2013; 

Ranjan & Das, 2003). The primary focus of the current analysis, is not, however, optimal DER 

placement. Here, we start from the point that we already know the weakest bus in the system, 

namely, the San Diego bus, which is fed by two long lines that transfer power from the system 

all the way down to the local loads in San Diego. Thus, we focus rather on how adding a TIGER 

station at the weakest bus affects the system’s voltage stability. Though several other papers 

have already evaluated this subject, few have compared the effects of different operating power 

factors on voltage stability. Besides, in this work, we also consider pure reactive power injection. 

The SONGS system was divided into two regions.  One region is considered the “Source” (all 

buses upstream San Diego) while the other is considered the “Sink” (San Diego) and several 

steady-state power flow simulations were carried out increasing the amount of power transfer 

between the injection groups until the system in each case reached the point of voltage collapse. 

The power transfer increase is determined by an increase in the load at the San Diego bus and a 

corresponding increase in generation from the system slack bus (within the Source).  

For each simulation, the system bus voltages are plotted against the system total power Shift as 

defined by Equation (43) i.e., the amount of power the Source injection group added to its 

normal operation, Δ𝑃, to meet San Diego load growth plus the added power losses, Δ𝐿𝑜𝑠𝑠𝑒𝑠.  

 

𝑆ℎ𝑖𝑓𝑡 = Δ𝑃 + Δ𝐿𝑜𝑠𝑠𝑒𝑠 [𝑀𝑊] (43) 

 

These results are usually plotted in what is known as a P-V curve analysis, where the maximum 

Shift obtained before the point of voltage collapse is of particular interest. A higher maximum 

shift implies that more power can be transferred from Source to Sink before the voltage 

collapses, and is associated with a more stable system. 

The scenarios simulated in these analyses include (1) Base case (no TIGER), (2) one 100 MW 

(unity power factor), (3) one 70 MW /70 MVar (0.7 leading PF), and (4) one 100 MVar (pure 

reactive power injection) TIGER stations placed solely at the San Diego bus (Bus 13). Figure 3.6 
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illustrates the P-V curves for all system buses and Figure 3.7 provides a comparison between the 

P-V curves for the San Diego bus for each of the scenarios. The obtained values for Maximum 

Shift, Maximum Load, and Initial Voltage at the San Diego bus are summarized in Table 3.3. 

Table 3.3 – P-V analysis summary: San Diego bus Maximum shift, Maximum Load Growth, Initial voltage, and Total System 
Losses. 

Scenario Maximum 

Shift (MW) 

Max load at 

San Diego 

(MW) 

Total System 

Losses 

(MW)  

Initial 

Voltage 

(p.u.) 

Base Case 790 1,400 90 0.925 

Unity PF 900 1,500 100 0.937 

0.7 leading PF  930 1,525 105 0.957 

Pure reactive power injection 880 1,450 130 0.958 

 

In the Base Case, without any TIGER station support, a maximum shift of 790 MW is achieved, 

which means that the system voltages remain stable (the solution converges) even if the loads at 

the San Diego bus increased from 700 MW to 1,400 MW, which is a 700 MW load growth plus 

90 MW in line losses. For a 100 MW TIGER station operating at unity power factor, the 

maximum shift increases to 900 MW, and, as expected, this means that the system can 

accommodate 800 MW of load growth at San Diego up until 1,500 MW, plus 100 MW in line 

losses. The maximum shift can be further increased to 930 MW if the TIGER station is operated 

at a leading 0.7 power factor and the load that can be accommodated slightly rose to 1,525 MW, 

which implies an 825 MW load growth, noting that when a combination of active and reactive 

power is involved, the load growth is not just the linear addition of initial load and TIGER 

station local active power injection. We attribute this to the positive effect reactive power 

injection has in supporting voltage: the initial terminal voltage at the San Diego bus is improved 

from 0.937 p.u. (unity PF) to 0.958 p.u. (0.7 leading PF). Thus, an increased Maximum Shift is 

allowed before the voltage collapses. The same voltage benefit is observed when the TIGER 

station injects purely reactive power. However, as discussed in the previous section, this scenario 

comes at the expense of increased line losses, which will offset the voltage benefits and reduce 

the Maximum Shift achieved in this scenario to 880 MW, the lowest of all TIGER scenarios.  

In summary, the potential for a TIGER station operating with a leading power factor of 0.7 for 

enhancing the system voltage stability is higher than that for a TIGER operating with a unity 

power factor. Also, pure active power operation demonstrated the smallest improvement in 

voltage stability. 
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Figure 3.6 – P-V curves for TIGER @ San Diego - variable power factors 

 

Figure 3.7 – P-V curve at San Diego bus 

3.4. Summary  

This chapter evaluated how baseload DER, such as TIGER stations, large-scale fuel cells 

integrated at transmission substations, affect voltage profiles, line losses, and voltage stability of 

a system affected by the loss of a significant part of its power generation. The Southern 

California SONGS system was used as a case study; nonetheless, we regard this analysis to be 
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representative of similarly constrained systems. One of the major distinguishing features of this 

analysis is that several other studies have investigated the impacts of distributed generation in 

transmission systems, but few have analyzed inverter-connected DER capable of operating 

within a range of power factors. 

As seen from the results, the installation of only three TIGER stations operating at 70 

MW/70MVar or 100MVar each was able to maintain voltages throughout at 0.98 p.u. or above, 

when it otherwise had dropped to near 0.92 p.u. when the 2.0 GW nuclear plant went off-line. 

Moreover, the deployment of a single TIGER station operating at 70 MW/70MVar or at 100 

MVar was able to maintain voltages throughout at 0.95 p.u. or above. 

 

Regarding baseload DER impact in voltage profiles, we found that: 

 The location that best contributes to an overall voltage improvement is at the bus with 

the lowest voltage. There are also diminishing returns in the system voltage 

improvement per MW of TIGER stations deployed. 

 In systems with long lines, reactive power injection is, in fact, more effective to raise 

voltage profiles than active power injection. The combined active/reactive power 

injection scenario is found to be most attractive for voltage regulation; thus, the 0.7 

leading PF case shows an overall better voltage regulation for the entire system. 

Concerning line loss reductions, we found that: 

 There is a clear trend of diminishing returns in loss reduction per MW of local 

generation installed. Thus, line loss reduction and DER size do not scale linearly. 

 The best locations proved to be the weakest points in the system, i.e., at buses with 

the lowest terminal voltages, as opposed to the buses with the highest loads. 

 As expected, when operating at a leading power factor, i.e., injecting reactive power, 

the resistive losses increased.  

Finally, in terms of voltage stability:  

 The potential for a TIGER station operating with a leading power factor of 0.7 for 

enhancing the system voltage stability is higher than that for a TIGER station 
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operating with a unity power factor, while pure active power operation demonstrated 

the smallest improvement in voltage stability. 
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4 Steady-state power flow 

analysis of the impacts of 

large solar PV deployments 

in an urban power system 

Highlights 

 A novel, real-world urban community microgrid test case is developed from site surveys 

of the existing urban infrastructure 

 Large PV deployments (the economically-optimal) overload most of the transformer 

infrastructure, from up to 400% of existing rated capacity. 

 Limiting PV adoption to not overload the existing transformer infrastructure also avoids 

overvoltage deviations above 1.02 per unit. 

The primary objective of this chapter is to describe the development of a power system test case 

that is representative of a real-world urban community microgrid. We then use this test case to 

identify potential challenges associated with large-scale PV deployments into this system 

A neighborhood in Huntington Beach, CA known as Oak View and illustrated in Figure 4.1, is 

chosen for this purpose. The test case is then modeled in a steady-state load flow software. 

Worst-case steady-state load flows are simulated for peak load operation and for the following 

PV deployment scenarios: (1) High-Penetration (optimal) PV, which deploys the optimal solar 

PV capacity that minimizes cost over the project lifetime (2) Realistic PV (transformer-

constrained), which represents a scenario where PV deployments are constrained by transformer 

size and local demand. (3) High-Penetration (optimal) PV +battery energy storage and smart-

inverter, which adds to scenario 1 distributed battery electric energy storage systems and smart 

inverters capable of reactive power compensation.  
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From the characterization of the Oak View power system until the test case and steady-state 

model development and finally, the result analysis, a significant understanding of challenges on 

grid integration of PV in high-penetration was obtained. Below is a summary of the significant 

results and findings. 

The worst reverse power flow event occurs on a sunny weekend in spring, where temperatures 

were mild, and load demand is lower. For this specific test case, the worst-case RPF occurred 

during the Easter Sunday of April 2015, at 1:00 PM. 

There are locations in the feeder more prone to challenges in hosting DER. As seen from the 

results, impacts on the 66 kV level are negligible, i.e., no 66 kV feeders or substation transformer 

is overloaded nor registers over voltage problems. Moreover, over voltages and transformer 

overloads are, in general, more likely to occur at the lower voltage 480V, 277 V, 208 V or 120/ 

240 V level, at the secondary buses. Additionally, over voltages are exacerbated as PV is 

deployed further away from the substation. Line overloads are more likely to happen at the head 

of the feeder (closest to the substation) since at this point all the RPF currents from radial 

branches add up.  

Judiciously siting the DER can be challenging, especially given the discrete nature of the power 

and energy ratings at which DER components (PV panels, battery storage, transformer, and 

feeders) scale-up. The analysis approach of this chapter points to the lack of an integrated tool to 

optimize the DER size and siting while considering system dynamic (time-series) operation and 

the resultant power flows, voltages, and branch currents at the electric grid network and related 

infrastructure. The integration of these constraints in the DER allocation problem formulations is 

essential for a practical and comprehensive hosting capacity evaluation, especially when 

including battery storage and smart inverters. Ideally, the optimization suite would 

simultaneously account for all constraints and compute a unique final solution.  

The results from this chapter provide key insight into how a high-penetration of solar PV in an 

urban power system negatively affects utility equipment, especially transformers. These results 

inspired the further development of this work regarding the devising of additional constraints 

often overlooked in typical optimal DER allocation analysis. These extra constraints aim to limit 

the reverse power flow at the transformer level (limiting the total apparent power injection at that 

node). These novel constraints applied to transformer nodes are discussed in Chapter 5 
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Additionally, results from this chapter regarding how voltage excursions are another major 

limiting factor to large PV deployments, point to the need of a linearized power flow formulation 

(that is also suitable for meshed networks) to accurately describe (and limit) the impact of these 

deployments. Chapter 6 describes the development of a linearized decoupled power flow 

formulation that can be integrated into a MILP for DER optimal allocation.  

The following sections of this chapter provide details concerning the test case and steady-state 

power flow model development, the design scenarios studied, and the results obtained. 

4.1. Test Case  

The Oak View community has over 300 buildings, of which, 280 are multi-family homes. 

Remaining buildings are destined for commercial and industrial activities, including a waste 

processing facility, small commercial shops, a large manufacturing facility, a primary and an 

elementary school, a community center, and a public library.  
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Figure 4.1 – Oak View community, used as the test case, and its different building sectors: Commercial and Industrial, 
School, and Residential  

4.1.1. Power system characterization 

An extensive survey to characterize relevant substations and circuits surrounding Oak View was 

performed using a tool provided by the local electricity utility, the DERIM (Distributed Energy 

Resources Interconnection Map) ArcGIS© database (Southern California Edison (SCE), 2016b). 

DERIM provides the precise geographical location of sub-transmission and distribution 

substations and circuits throughout the utility’s service territory. 

4.1.2. 66/12 kV substation (Ocean View) 

Oak View is powered by two 10 MVA transformers at the Ocean View substation, which step-

down voltage from the 66 kV sub-transmission to the 12 kV distribution voltage level (Southern 
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California Edison (SCE), 2016b). Figure 4.2 shows an aerial view of the Ocean View substation 

obtained from Google Earth Pro© (Google Inc., 2017).  

 

Figure 4.2 – View of Ocean View Substation from Google Earth. 

4.1.3. 66 kV sub-transmission circuits and neighboring substations 

Five 66 kV sub-transmission circuits create a network between Ocean View and six other 

neighboring 66/12 kV substations: Ellis, Bolsa, Barre, Trask, Brookhurst, and Slater.  Figure 4.3 

illustrates these feeders and respective lengths, measured using a Google Earth toolbox. 
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 Figure 4.3 – 66 kV circuits from Ocean View substation.  Source: DERIM circuits exported to Google Earth 

4.1.4. 12 kV distribution circuits (from Ocean View) 

Seven 12 kV distribution circuits originate from Ocean View and deliver electricity to Oak View 

and the surrounding area (Figure 4.4). They are named Smeltzer, Bushard, Beach, Bishop, Heil, 

Standard, and Wintersburg. The Oak View residential customers are fed by Smeltzer 12 kV, and 

a few north-west commercial customers are fed by Standard 12 kV. 
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Figure 4.4 – 12 kV circuits from Ocean View Substation. Source: DERIM circuits exported to Google Earth.  

4.1.5. Service transformers and low voltage distribution circuits 

At the time of model development, not all circuit branches that serve Oak View were mapped in 

DERIM. Thus, the remaining 12 kV circuit branches that originate from both Smeltzer and 

Standard feeders were identified through a site survey. Figure 4.5 shows these branching circuits 

in pink. The Smeltzer and the Standard circuits (as mapped in DERIM) are shown in lime green 

and light blue, respectively. The pink branch circuits terminate on the primary side of 

distribution service transformers, which are either pole-top, pad-mounted, or underground, 

depending on the customer type, load, and service voltage.  

The local distribution transformer infrastructure used in Oak View was also identified through a 

site survey. Examples of pole-top and pad-mounted transformers are illustrated in Figure 4.6. In 

total there are 35 single-phase service transformers, which feed the residential loads and 14 

three-phase service transformers, which feed the school, commercial, and industrial loads. Figure 

4.5 identifies and maps all transformers. 
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Figure 4.5 – Oak View circuits and Transformers.  Source: DERIM circuits exported to Google Earth. 

      
(a)                                                (b) 
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(c) 

Figure 4.6 – Oak View pole-top service transformers (a) single-phase 25 kVA (left) (b) three-phase 75 kVA pole top (right) (c) 
three-phase 300 kVA pad mounted.  

Transformer voltage and load ratings were determined through communication with SCE 

distribution city planners, and through site visits. The transformer rated parameters are shown in 

Table 4.1, which also shows the estimated maximum and minimum loads aggregated by each 

transformer. These loads were estimated by first calculating total annual building energy 

consumption using Energy Use Intensity (EUI) surveys kWh/ft2 multiplied by building areas 

surveyed on Google Earth. The national EUI surveys used as reference include the Residential 

Energy Consumption Survey (RECS) ( EIA n.d.), the Commercial Buildings Energy 

Consumption Survey (CBECS) (EIA n.d.), and the Manufacturing Consumption Survey (MECS) 

(EIA n.d.). Full details on building demand modeling are presented in Brouwer et al.(R. Flores et 

al., 2018). Since in this analysis we are interested in power flows, not energy totals, once the 

estimated energy consumption is calculated, a “flat” (average) load profile is obtained by 

dividing the annual energy total by 8,760 hours/year. Then, a peak and valley factor, calculated 

based on the DOE synthetic load profiles, are applied to these profiles to determine the minimum 

and maximum hourly demand.  
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Table 4.1 – Oak View transformer infrastructure – voltage and power ratings, and maximum/ minimum loads fed by a 
transformer 

# Customer Voltage 
Max Load  

(kVA) 

Min Load 

(kVA) 

Rating 

(kVA) 

Single-Phase 

1 Residential 120/240 19 10 25 

2 Residential 120/240 15 9 25 

3 Residential 120/240 15 8 25 

4 Residential 120/240 14 8 25 

5 Residential (Solteros Apt.) 120/240 39 22 100 

6 Residential 120/240 37 21 50 

7 Residential 120/240 37 20 50 

8 Residential 120/240 36 20 50 

9 Residential 120/240 25 14 100 

10 Residential 120/240 43 24 50 

11 FRC + Lib. 120/240 31 17 37.5 

12 El School 480, 120/240 14 11 75 

13 Residential 120/240 12 7 15 

14 Residential 120/240 31 17 50 

15 Residential 120/240 29 16 50 

16 Residential 120/240 42 23 50 

17 Residential 120/240 22 12 25 

18 Residential 120/240 23 13 25 

19 Residential 120/240 40 22 50 

20 Residential 120/240 29 16 50 

21 Residential 120/240 19 11 50 

22 Residential 120/240 9 5 15 

23 Residential 120/240 12 6 15 

24 Residential 120/240 25 14 37.5 

25 Residential 120/240 48 27 50 

26 Residential 120/240 27 15 37.5 

27 Residential 120/240 76 42 100 

28 Child Day Care 120/240 9 5 15 

29 Discount Tire 120/240 20 18 25 

30 El School (East) 120/240 17 13 25 

31 Residential 120/240 57 32 75 

32 Residential 120/240 54 30 75 

33 Residential 120/240 38 21 50 
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34 Building Materials 120/240 32 12 75 

35 WILLY'S Auto 120/240 50 18 75 

3-Phase 

1 Ind. Offices 120/208 50 18 75 

2 Ind. Offices 120/208 101 36 150 

3 Ind. Offices 120/208 101 36 150 

4 Ind. Offices 120/208 142 51 150 

5 Zodiac 480Y/277 838 302 1500 

6 Pre-School 120/208 34 12 75 

7 El School 480Y/277 94 52 300 

8 El School 480/208Y,120 20 16 75 

9 Republic 1 480Y/277 121 43 150 

10 Republic 2 480Y/277 23 8 50 

11 Republic 3 480Y/277 326 117 350 

12 Republic 4 480Y/277 69 25 100 

13 Republic 5 480Y/277 117 42 150 

14 HBC + Disc Tire 120/208 114 41 150 

4.1.6. Current generation and projected load  

The DERIM database (Southern California Edison (SCE), 2016b) provides information on the 

current existing generation and projected (2018) load at the substations and 12 kV feeders as 

well as feeder lengths. 

Table 4.2 – 66/12 kV Substations – Existing generation and projected load [16] . 

Substation (66/12 kV) 
Total Existing Generation 

(MW) 

Projected Load  

(MW) 

Ocean View 3.13 49.20 

Barre  3.35 75.50 

Brookhurst 3.30 44.80 

Bolsa 2.90 40.00 

Ellis  3.95 42.50 

Slater 4.42 50.50 

Trask 5.58 86.10 
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Table 4.3 – 12 kV Feeders – Existing generation and projected load [16]. 

Feeder (12 kV) 
Total Existing 

Generation (MW) 

Projected Load  

(MW) 

Length (mi) 

Smeltzer 0.39 7.77 6.29 

Standard 0.40 9.37 2.98 

Bushard 0.63 8.25 6.13 

Beach 0.12 3.56 2.76 

Bishop 0.08 7.96 2.7 

Heil 0.66 6.46 4.25 

Wintersburg 0.84 8.93 4.1 

4.2. Model development and assumptions 

A steady-state power flow model was developed in ETAP© (Operation Technology Inc., 2017), 

which is a commercially available power flow software. ETAP utilizes iterative numerical solver 

methods to solve the traditional power flow problem, as defined in (Grainger & Stevenson, 

1994). The load flow results are nodal voltages, currents, and branch active and reactive power 

flows. ETAP has a graphical interface that offers a quick and easy development platform for 

modeling spatially-resolved electric circuits. Moreover, it specifies the exact circuit location of 

any voltage or rated power capacity limits violation. 

The dashed lines of Figure 4.7 define the geographical boundaries that are assumed for this 

analysis. The model starts at the high voltage sub-transmission level (66/12 kV) and comprises 

the 66/12 kV neighboring substations, 12 kV feeders, and the Oak View community test case. 

Figure 4.8 illustrates the one-line diagram of the model in the ETAP environment. Thus, the Oak 

View test case is a sub-network (highlighted in pink) connected to the main-area electric grid 

network.  

To model the current load and generation at each 66/12 kV substation and 12 kV feeder, default 

load and generator ETAP “blocks” are connected to each substation. The load and generation 

magnitudes are based on the current generation and projected load values from DERIM (Table 

4.2 and Table 4.3, respectively 
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Figure 4.7 – Power Flow system boundaries geographical location of substations, 66 kV, and 12 kV lines. Source: (Southern 

California Edison (SCE), 2016b) 
 

The base values used for the per-unit calculations are 𝑆𝑏𝑎𝑠𝑒 = 100 MVA, 𝑉𝑏𝑎𝑠𝑒 = 230 kV, thus 

using equations (44) and (45) (Grainger & Stevenson, 1994), it follows that  𝑍𝑏𝑎𝑠𝑒 = 529 Ω, and 

𝐼𝑏𝑎𝑠𝑒 = 251 A. 

𝑍𝑏𝑎𝑠𝑒 =
𝑉𝑏𝑎𝑠𝑒

2

𝑆𝑏𝑎𝑠𝑒
 (44) 

𝐼𝑏𝑎𝑠𝑒 =
𝑆𝑏𝑎𝑠𝑒 

√3𝑉𝑏𝑎𝑠𝑒

 (45) 

The boundaries of the system are the 230 kV buses at Bolsa, Trask, Barre, Brookhurst, Ocean 

View, Ellis, and Slater, as shown in Figure 4.7. These points are modeled as Thevenin equivalent 

Barre 

Ocean View 

Slater 

Bolsa 
Brookhurst 

Trask 

Ellis 

200 kV 

66/12kV 
substations 
Substation 

System Limits 

System nodes 
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reactances, assuming a short circuit duty of 50 kA at all substations. For these boundary lines, 

the short circuit impedance values used are 𝑍𝑝𝑢 = 0.0023.  

 
Figure 4.8 – High voltage 66/12 kV one line 

For the low voltage Oak View model, we limit our analysis to one single circuit. Therefore, 

without loss of generality, we combined Standard and Smeltzer circuits by adding loads from 

Standard at the end of Smeltzer (nodes 38, 44, and 28, as shown in Figure 4.9. 
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Figure 4.9 – Oak View test case low voltage system network graph.  Triangles represent load clusters connected to 

transformer nodes. Load types are residential (R), commercial (C) and industrial (I). 

4.2.1. Loads and PV systems 

4.2.2. Residential  

For modeling residential systems, the three-phase 12 kV overhead distribution feeders are 

converted into a single-phase, three-wire (two lines and one neutral, known as split-phase) 

connection. Utilities alternate between the phases used in these connections: AB, BC, or CA, to 

avoid load unbalances. The same approach is used in this chapter. 

In the split-phase configuration, the service transformers’ secondary winding is center-tapped 

(each section has the same number of windings, and consequently, the same voltage) and the 

center tap is connected to a grounded neutral. In this flexible wiring configuration, there are two 

output secondary voltages: 240 V between the two hot phases (L1 and L2) and 120 V between 

one phase and the neutral (center tap), in other words, the phase, (or line-to-ground) voltage is 

half the line-to-line voltage. This configuration is useful in a residential application since lights 

and small plug loads are connected to 120 V, while large appliances such as air conditioners, 
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dish, and clothes washers, and dryers, are connected to 240 V. A wiring diagram for this type of 

connection is shown in Figure 4.10.  

 
Figure 4.10 – Wiring diagram for sub-transmission and distribution voltages. 

Figure 4.11 shows the circuit schematics of a typical residential PV installation. The PV arrays 

are grouped into strings of 10 up to 15 modules and connected in parallel in a junction box. The 

junction box then feeds the DC side of the inverter (PV+ and PV-). The AC side of the inverter 

outputs the PV power in a single-phase three-wire (L1, L2, N) connection that ties into the 

home’s main service panel, which is also the point of connection to the distribution grid. 

 

Figure 4.11 – Typical Residential PV installation  (Solar Pro & Berdner, 2008) 
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Due to a limitation on ETAP’s solar PV panel and inverter model blocks, which only support 

three-phase connections, the residential PV installations were modeled as AC current sources. It 

is expected that this workaround does not affect the accuracy of the steady-state power flow 

simulations. Nonetheless, this approach still poses the drawback of not having an inverter 

component explicitly modeled to account for efficiency losses. However, converter efficiencies 

are usually high (>96%); thus, the expected error is negligible. 

Figure 4.12 illustrates a typical residential PV installation modeled in the ETAP environment. 

The 12kV 3-phase distribution line originates from the 12kV circuit. A phase-splitter splits 

phases A and B, which is used in the single-phase service. A single-phase transformer transforms 

the 12kV distribution voltage into the 240/120V residential voltage. In the main service panel, 

the multi-family building loads are connected in parallel with the PV array, at 240V. The dashed 

lines enclose the aggregate system, i.e., an aggregation of multi-family building loads and PV 

arrays, modeled behind each service transformer. All other residential buildings are modeled 

following this approach.  



 

64 

 

 
Figure 4.12 – Example of ETAP model for a typical residential installation 

4.2.3. Commercial & industrial  

Commercial and Industrial (C&I) customers are serviced with three-phase power. The service 

transformer voltage ratings depend upon customer needs. Typical three-phase voltage levels used 

by Southern California Edison are 480/277 V for large-scale customers and 120/208 V for 

smaller-scale customers. Figure 4.13 illustrates a typical C&I installation modeled in ETAP. The 

three-phase transformer steps down the voltage from 12 kV to 480/277 V in a wye configuration. 

A three-phase load is connected to the secondary of the transformer, and on the same bus, the 

three-phase inverter and PV array system are also connected. A central inverter approach is used 

for the PV installation.  
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Figure 4.13 – Example of ETAP model for a typical C&I installation 

4.2.4. Conductor sizing 

The conductor American Wire Gauge (AWG) sizing methodology followed the 

recommendations made in the National Electric Code (NEC) (National Fire Protection 

Association (NFPA) n.d.). Section 222.5 regulates that overhead spans serving 1,000 V and 

above shall not be smaller 4 AWG, for bare aluminum conductors on air. Moreover, Section 

230.23 regulates that for service spans, the conductors shall not be smaller than 6 AWG 

aluminum. 

Hence, for the three-phase 12kV lines, 4 AWG is used, while for the 240/120V service 

connections, 6 AWG is used. The sizes of the conductors are shown in Figure 4.12 and, right 

next to the respective conductor (shown as “#6” or “#4). Nonetheless, there are instances where 

the wire AWG was increased to accommodate a local load demand that would create a circuit 

overload condition for that specific branch. For the PV AC output, three conductors are used, one 

for each phase (A, B, and neutral). These conductors provide the thermal limit for the PV power 

flows. 

4.2.5. Worst-case reverse power flow 

A reverse power flow condition is created when the PV generation surpasses the local load, 

resulting in power flowing from the local PV node towards the upstream distribution system. The 

worst reverse power flow event occurs typically on sunny, cold days in spring, particularly on 
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weekends, when the load is even lower. RPF causes the voltages at the substation and local 

nodes to rise above nominal 1 p.u.  

The worst-case steady-state simulations in this chapter simulate the system at the worst-case RPF 

since it is the operation point that limits the system voltage-based hosting capacity. To identify 

the exact time in the year when the worst-case RPF happens, an “RPF Factor” was calculated; 

The maximum value of the RPF Factor indicates the time where worst-case RPF happens.  

For calculating the RPF we assumed a real-world times-series aggregated demand profile for a 

distribution substation in Southern California and a normalized hourly PV generation profile, 

obtained from a PV system installed in at UC Irvine. For each hour of the year, the load demand 

was subtracted from the PV generation. The worst-case RPF happens during Easter Sunday, on 

04/05/2015 at 1:00 PM. Figure 4.14 shows how the load demand on Easter Sunday was much 

lower compared to the rest of the year, this can be attributed to the mild temperatures in spring, 

which reduces the need for AC cooling, and also the fact that it was a holiday. Moreover, by 

observing Figure 4.15, during this same day there was significant PV generation during 

compared to the rest of the year, typical of clear sunny spring days. Therefore, 04/05/2015 at 

1:00 PM is the snapshot in time chosen for all worst-case steady-state simulations in this 

analysis. 

 
Figure 4.14 – Oak View annual load profile distribution  - Highlight shows load profile on 04/05/205 (Easter Sunday). Colors 

show detail about month 

Easter Sunday 
04/05/2015 

Hour 
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Figure 4.15 – Normalized PV generation profile for a system in Southern California, at UC Irvine.  Highlight shows data for 

Easter Sunday 04/05/2015. Colors show details about month 

4.3. Scenarios 

Four scenarios were created to represent the real operational conditions of the Oak View test 

system. Table 4.4 provides a detailed description and goals of each scenario. The Peak load 

scenario was simulated during the worst-case evening peak, which happened on October 11th, 

2015 at 6 PM. The remaining scenarios were simulated during the worst-case reverse power flow 

as identified in the previous session, which occurred on Easter Sunday of April 2015 at 1 PM. 

Table 4.4 – Scenarios simulated in the steady-state power flow model  

Scenario Name Description 

Peak Load / No PV 

generation 

Simulates a period of high congestion: the residential evening 

peak demand hour.  Oak View loads are modeled as the peak 

values and PV generation is zero (no generation in the evening). 

High-penetration 

(optimal PV) 

Simulates a large PV deployment (8.8 MW), or the optimal 

amount of solar PV that minimizes the total project lifetime costs 

(fixed and operational) while meeting operational constraints. 

The amount of PV deployed is calculated using Homer Pro©. 

Easter 
Sunday 

04/05/2015 

Hour 
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Realistic PV 

(transformer-

constrained)  

Simulates a reduced PV deployment (6.3 MW) constrained to 

avoid transformer overloads and bus overvoltages. the PV array 

size connected to a given transformer must add up to 90% of the 

transformer rating plus the minimum load connected to that 

transformer 

Optimal PV + EES + 

Smart-Inverter 

Simulates the optimal PV capacity and also an (oversized) 

electric energy storage (EES) capacity associated with smart-

inverter Var injection function, which can assist the system 

during the worst-case RPF.   This scenario aims to investigate 

the potential of battery energy storage and smart-inverter 

technology on improving local power quality; Battery storage 

aims to remove the worst-case reverse power flow, i.e., charge to 

absorb excess power, and the smart inverter aims to absorb 

reactive power (operate at a lagging power factor) to reduce over 

voltages. 

4.4. Results and Discussion 

Table 4.5 provides the capacity and voltage ranges, in % of rated capacity and per-unit, taken as 

marginal and critical. Here, only critical values are considered inappropriate, whereas marginal 

values are acceptable even though they are not ideal for regular power system operation. 

Table 4.5 – Critical and Marginal Limits for Loading and Bus Voltage 

 Critical Marginal 

Loading (%)   

Bus 100 95 

Cable 100 95 

Line 100 95 

Transformer 100 95 

Generator 100 95 

Inverter 100 95 

Bus Voltage (p.u.)  

Over Voltage 1.05 1.02 

Under Voltage 0.95 0.98 
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4.4.1. Peak Load 

The Peak Load scenario provides a validation of the Oak View test case. Its results provide a 

starting point for any necessary power system infrastructure upgrades, such as transformer TAP 

settings, reactive power compensation, and adjustments to conductor AWG sizing to remove any 

critical voltage excursions and cable overloads. These upgrades are made under the assumption 

that the current real-world system has a good power quality. Thus, 31 MW of distributed 

capacitor banks were added to the model to correct the low voltages at the terminal buses of the 

12 kV feeders originating from Ocean View, as to approximate 1.0 p.u. Also, the TAP of the 

secondary of a 3-phase transformer, which feeds one of the industrial loads, was increased to 2.5. 

Moreover, six Smeltzer circuit segments needed to be upgraded from 4 AWG (which is capable 

of handling 63.4 A, at 12 kV). The circuit segment closer to the Ocean View substation was 

upgraded to 3/0 AWG to handle a 140 A, at 12 kV incoming current to feed all peak loads. 

Likewise, five other adjacent segments were upgraded to 2/0 and 1/0 AWG, according to the 

current flow they needed to handle (averaging 100 Amps).  

Figure 4.16 shows the system voltage profile, staring at the 66 kV System node, and all the way 

down to the Oak View secondary nodes. Buses are ordered by distance from the System node. 

The 66 kV system operates within the desired voltage margins. The 12 kV system, however, 

operates mostly below marginal limits. One can notice how under voltages are aggravated as the 

distance from the System node increases. There were no instances of a transformer or cable 

overload for this scenario. 
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Figure 4.16 – Peak Load Scenario – Voltage Profile for 66 and 12 kV systems 

Figure 4.17 illustrates a PV installation in a utility customer bus and highlights a primary and a 

secondary bus. Primary buses connect to the primary side of the transformers, at the high voltage 

level (12 kV). Secondary buses are connected to the secondary side of the transformer, at the 

lower voltage levels (480, 208 V if 3-phase and 240/120 V if single-phase). Utility customer 

loads are connected to the secondary bus.  

 
Figure 4.17 – Example of Primary, Secondary (NET) and PV buses at the Oak View test case 

4.4.2. High-penetration (optimal PV) 

This scenario, in which we will refer to as Optimal PV, simulates a large PV deployment, which 

is the optimal solution to the DER allocation problem, i.e., the system size that reducing overall 

project costs. Our initial attempt to solve the optimal DER allocation problem uses a commercial 

software for optimal energy systems design, HOMER Pro© (HOMER Energy LLC, 2017). The 

software sizes distributed energy assets for grid-connected or islanded loads to minimize cost. 
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The user indicates the types of generation technologies intended for the project, the hourly load 

profile to be met, and the location-specific weather database. A MILP optimization computes the 

best design, i.e., the DER and inverter capacities to match the direct current power output of the 

DER systems to the alternating current power load requirements. To analyze the grid impacts of 

large PV deployments, the DER capacities are judiciously allocated withing the Oak View test 

case and a steady-state load flow was performed in ETAP. 

4.4.3. Optimal set of DER to serve the Oak View test case  

Figure 4.18 shows where the Oak view community modeled in HOMER. The system is grid-tied, 

and the DER are solar PV and battery electric energy storage (EES). 

 
Figure 4.18 – HOMER Pro© Modeling Environment – Oak View DER assets and connections 

A synthetic load profile is used to represent the aggregate Oak View load (McDonald, 2017)— 

which includes residential, commercial, and industrial loads. Table 4.6 lists the parameters of the 

DER technology considered. The electric energy storage chemistry assumed here is Lithium-ion, 

since the storage needs are short-term and highly-cyclic. Li-ion batteries provide a combination 

of technical advantages that make them attractive for grid-scale applications, such as a high 

energy density (~200 Wh/kg), a long lifetime (~10,000 cycles), a high cycle efficiency ( 85-

90%), and a suitable depth of discharge (10%)(Zakeri & Syri, 2015). Besides, the recent growing 

adoption of Li-ion batteries for ancillary services in improving grid stability and reliability, as 

well as recent improvements in its manufacturing, materials, and processing is reducing its final 

levelized cost of energy. A four to one energy to power ratio, i.e., a fully charged EES can be 

fully discharged at full power for four hours, is assumed. The weather database used is NREL’s 

TMY3, using data from the weather station located in Long Beach (NREL, n.d.). The utility rate 

structure assumed is the SCE TOU 8-B, and grid exports for revenue are not allowed.  

Oak View Load 

EES 
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Table 4.6 – DER technology parameters assumptions 

Technology Manufacturer Unit Size 

PV Panel Canadian Solar C26X 325P (Solar, 2017) 325 W 

EES Tesla Power Pack 2 (Tesla, 2017) 50 kW/ 210 kWh 

Weather Database TMY3 (NREL, n.d.) -- 

 
Table 4.7 – DER technology cost assumptions  

Technology Capital 

($/kW) 

Fixed O&M 

($/kW/year) 

Variable 

O&M 

($/MWh) 

Fuel Cost 

($/MMBtu) 

Lifetime 

(years) 

Solar PV  2,500 15 N/A N/A 25 

EES 500 22 – 27.50 N/A N/A 15 

 

Table 4.8 – Oak View test case DER Optimal Design computed by HOMER Pro  

Technology Ratings/Units 
Total Energy 

(kWh/year) 

PV 8,823 kW 14,667,696 

EES 

62 units 

2,705,520 2,800 kW 

11,759 kWh 

Inverter 4,129 kW  

Grid Import 4,500 kW (peak) 15,226,784 

Grid Sales Not allowed 0 

Excess Electricity (Curtail) 451,153 kWh 

Net Grid Purchases 15,226,784 kWh 

 

Figure 4.19 shows the dynamic operation of the DER optimal design as computed by HOMER 

Pro. The following observations can be made: 
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Figure 4.19 – Oak View hourly dynamics in summer (left) and winter (right).  BEES = battery energy storage. 

 The EES charges daily with solar PV generation. It also discharges daily to meet the 

evening peak demand. The EES performs a complete cycle (charges and discharges 

fully) daily. 

 There is some excess solar PV generation from 10 AM to 16 PM (red shaded area). 

All excess PV is ultimately curtailed since the system cannot store energy (EES is 

fully charged) nor export power beyond the grid export limit. 

 Grid purchases are limited to 4.5 MW. Initially, grid imports were set to equal the 

Oak View peak load. This limit then was progressively decreased until an unfeasible 

solution was reached. Thus, a 4.5 MW grid import capacity was the lowest feasible 

capacity required to meet the peak demand. 

4.4.4. Allocation of optimal PV in the Oak View test case 

For the Optimal PV scenario, the Realistic PV scenario is used as a starting point. All solar PV 

installation are equally scaled up by a factor of 1.4 (8,823 kW/6,277 kW). Using this approach, 

however, due to area constraints (i.e., the suitable available area for PV deployment), there is a 

1,028 kW PV capacity shortage that can’t be allocated. This remaining capacity is then 

judiciously allocated to the larger rooftops, mostly at customers located at the C&I corridor, who 

are also connected at a higher service voltage level and usually behind bigger transformers.  

The voltage profiles of the Oak View test case under this scenario are shown in Figure 4.20, 

Figure 4.21, and Figure 4.22. One can notice that no critical over voltages occur. In fact, for all 

primary buses and most of the secondary buses, there are no overvoltage conditions at all. It is at 
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2 of the secondary buses that (marginal) overvoltages occur. Nonetheless, for this scenario, most 

of the transformers are overloaded; 43 critical transformer overloads range from 107 to 491% of 

rated capacity. Besides, five lines are critically overloaded from 105% to 169% of the rated 

capacity. These line overloads occur at the head of the Smeltzer circuit. Table 4.9 summarizes 

these results. 

 
Figure 4.20 – Optimal PV Scenario - Voltage Profile for 66/12 kV system 

 
Figure 4.21 – Optimal PV Scenario - Primary Buses Voltage Profile 
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Figure 4.22 – Optimal PV Scenario – Secondary Buses Voltage Profile  

 
Table 4.9 – Optimal PV Scenario - Events 

Summary  Count 
Min  

(%) 

Avg.  

(%) 

Max  

(%) 

Transformer Overloads 
    

Critical 43 107 124 491 

Marginal 0 -- -- -- 

Line Overloads 
    

Critical 5 135 150 169 

Marginal 0 -- -- -- 

Over Voltages 
    

Critical 0 -- -- -- 

Marginal 2 102.6 102.8 103.0 

 

In sum, in this scenario, the power system is severely overloaded. It realistically represents the 

current challenge of increasing the PV penetration in urban power systems.  

4.4.5. Realistic PV (transformer-constrained) 

The Realistic PV scenario aims to reduce the PV deployed at the test case as to never overload 

transformers during a reverse power flow event. The approach is to size the PV capacity to equal 

the transformer capacity plus 90% of the minimum load demand at that transformer, as shown in 

Equation (46). The 90% is used as a “security factor”, since a reverse power flow condition that 

equals to 100% of the transformer rated capacity is not desirable. 

𝑅𝑒𝑎𝑙𝑖𝑠𝑡𝑖𝑐 𝑃𝑉 (𝑘𝑉𝐴)

=  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑅𝑎𝑡𝑖𝑛𝑔 (𝑘𝑉𝐴) +  0.9 ∗ 𝑀𝑖𝑛𝑖𝑚𝑢𝑛 𝐿𝑜𝑎𝑑 (𝑘𝑉𝐴) 
(46) 
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This approach is less conservative than the approach typically adopted in other hosting capacity 

analysis. For example, in (Electric Power Research Institute (EPRI), 2015), the PV rated power 

in kW is always less or equal than the transformer kVA, therefore, it does not consider the fact 

that local loads are contributing to absorbing some PV power, and in turn, reduce RPF. The total 

amount of PV deployed in the Realistic PV scenario is 6,277 kW, which is 30% smaller than the 

Optimal PV scenario (8,823 kW). It is also only 42% of the maximum area-limited PV potential 

(14,661 kW). 

The results from the Realistic PV scenario show that this approach eliminates all transformer 

overloads, and also critical overvoltages issues. One marginal over voltage above 1.02 p.u. still 

occurs at a secondary bus, as seen in Figure 4.25. 

 
Figure 4.23 – Realistic PV Scenario - Voltage Profile for 66/12 kV system 

 
Figure 4.24 – Realistic PV Scenario - Primary Buses Voltage Profile 
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Figure 4.25 – Realistic PV Scenario – Secondary Buses Voltage Profile 

Table 4.10 summarizes the critical and marginal events for the Realistic scenario. As carefully 

intended, there are no transformer overloads, and there is only one occurrence of a marginal 

overvoltage, which occurs at one secondary node. Nonetheless, there are still 4 line overloads 

(three critical and one marginal), which mostly occur near the head of the Smeltzer 12 kV feeder 

and the point where the currents originating from RPF at branches circuits adds up. The critical 

overloads range from 103 to 114 % of rated conductor capacity. 

Table 4.10 – Realistic PV Scenario – Events 

Summary 
 

Count 
Min  

(%) 

Avg.  

(%) 

Max 

(%) 

Transformer Overloads  
    

Critical  0 N/A N/A N/A 

Marginal  0 N/A N/A N/A 

Line Overloads  
    

Critical  3 103 107 114 

Marginal  1 96 96 96 

Over Voltages  
    

Critical  0 - - - 

Marginal  1 102 102 102 

 

4.4.6. Optimal PV + EES + Smart inverter (Fixed PF) 

This scenario aims to eliminate some of the negative power quality events observed in the High-

penetration (Optimal PV) scenario, such as critical transformer and line overloads, and 

undesirable over voltages. The strategy is to use battery electric energy storage, modeled as 

constant PQ loads, to absorb the excess solar PV generation and alleviating RPF events. 

Moreover, the local control of reactive power is also explored by enabling the solar PV inverter 
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to operate at a fixed power factor, i.e., absorbing or delivering reactive power. For this, it is 

necessary to couple two aspects of power system modeling: (1) the dynamic operation of battery 

storage, i.e., charging and discharging energy balances, and (2) steady-state power flows. Figure 

4.26 shows the daily dynamics of the solar PV, load, and battery energy storage for the high-

penetration (Optimal PV) scenario, where the optimal amount of storage recommended by 

HOMER Pro 2,800 kW/11,759 kWh is also deployed. One can see from the battery 

charging/discharging dynamics that the EES is already fully charged (100% SOC) on 04/05/2015 

at 1:00 PM, which is when our worst-case steady-state power flow simulation is performed. 

Hence, the EES does not assist with absorbing excessive PV during the worst-case RPF. In other 

words, the EES system does not add value to reduce overloads and overvoltages.  

Hence, here we investigate the effects of having a larger (oversized, compared to the optimal 

design) EES system that would be able to contribute to absorbing excess PV at the worst-case 

RPF. A simple energy balance is performed on April 5th, 2015, accounting for solar PV 

production and hourly load demand. The EES is then sized to have enough energy capacity to 

charge with all the excess PV generation that occurs at 1:00 PM. The required EES size is 

determined to be 7,200 kW and 30,238 kWh. Note that because power and energy rating are 

coupled, the power rating of the EES is significantly oversized, since the EES requirements are 

based on its energy capacity, and the Tesla Powerpack 2 offers a power-to-energy ratio of one to 

four (210 kWh/50kW). These values are then used as inputs in HOMER, which simulates the 

battery operation for one year, from which we can get the SOC and charging power at the worst-

case RPF: 85% SOC and a 4,232 kW charging rate. Note that the charging power is only 60% of 

total EES rated power capacity, this charging power is used in the steady-state power flow 

simulation. Figure 4.27 illustrates the dynamic operation of the resulting design. 
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Figure 4.26 – Battery storage (BESS) Charge Power, Discharge Power, and State of Charge for the entire month of April 

2015.  Points highlighted show values for the specific day April 5th. 

 

 
Figure 4.27 – Optimal PV + battery (BESS) design. .Battery rating is 7,200 kW/30,238 kWh. Battery will have around 85% 

SOC at 1:00 PM, and will charge at a 4,232 kW rate. 
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Having the total required EES calculated, we judiciously allocate the EES at the C&I corridor. 

Residential EES are avoided due to barriers such as high investment cost associated with a lack 

of financial incentives/market mechanisms to such systems, besides backup power.   

Manually allocating EES throughout the Oak View test case is an iterative process. The approach 

taken is to match EES charging power with the local transformer net-load (i.e., PV generation 

minus total load behind the given transformer). For this, the net-load at every C&I transformer is 

calculated. The required charging power is always 60% of the EES rated capacity, as observed in 

Figure 4.27. Thus, the net load is divided by a factor of 0.6 to obtain the EES rated power 

needed. Another assumption considered here is that EES rated capacities are discrete values. The 

discrete value used in this analysis is based upon the Tesla Powerpack 2 rating of 50 kW. Thus, 

each EES system needs to be a multiple of 50 kW. Thus, the final EES values are all rounded up 

to the closest multiple of 50.  

After the EES is sized for all C&I customers using this methodology, the amount is compared to 

the amount required in the energy balance analysis (7,200 kW). The EES capacity allocated is 

short by 150 kW. This means that more EES would need to be judiciously deployed at other 

locations. For this, we also need to define the maximum allowed EES charging load that can be 

supported by each transformer. This amount equals the transformer net-load plus 90% of the 

transformer’s rated power. This way, the transformer imports equal to only 90% of its rated 

capacity. Therefore, the remaining 150 kW are judiciously allocated at the transformers that 

could host new EES charging loads, at 50 kW increments. Table 4.11 shows these values for 

every transformer where EES is allocated. The “EES minimum rated power” equals the rated 

power that zeros-out the transformer’s net-load. The “EES maximum rated power” equals the 

EES rated power that causes an import that equals 90% of the transformer’s rated power. The 

“EES rated power” is the final EES system discrete size that is allocated to each transformer. 

Table 4.11 – Optimal PV + EES Scenario - EES capacity allocated at AEC transformers 

Transformer Customer 

EES minimum  

rated power 

(kW) 

EES maximum  

rated power 

(kW) 

EES rated power 

 (discrete) 

(kW) 

11 FRC + Library 71.9 134.4 100 

7 Elementary School 571.4 1071.4 600 
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27 Child Day Care 28.7 53.7 50 

28 Discount Tire 45.4 87.1 50 

1 Ind. Offices 143.1 255.6 150 

2 Ind. Offices 324.4 549.4 350 

3 Ind. Offices 286.1 511.1 300 

4 Ind. Offices 1,264.5 1,489.5 1,300 

3 Zodiac 1,892.8 4,142.8 2,050* 

4 Pre-School 142.8 255.3 150 

9 Republic 1 286.4 511.4 300 

10 Republic 2 95.2 170.2 100 

11 Republic 3 668.9 1,193.9 700 

12 Republic 4 190.8 340.8 200 

13 Republic 5 260.7 485.7 300 

6 Building Materials 48.2 160.7 50 

8 WILLY'S 143 255.5 150 

9 HBC + Disc. Tire 286.3 511.3 300 

TOTAL 7,200 kW 

*EES added to match the required capacity of 7,200 kW. 

 

Figure 4.28 illustrates how EES is modeled in ETAP. A 1,300 kVA (1,300 kW) EES is deployed 

at transformer 4 and eliminates the overload condition. Note that the EES charges at 790 kW, 

which is 60% of its rated power capacity plus wiring losses. Once the EES charging loads are 

added, however, it creates a marginal under voltage condition at the secondary bus. To 

counteract this problem, the PV inverter at this bus is set to operate at a 98% leading power 

factor, i.e., the inverter injects reactive power to increase the local voltage. Thus, for all other 

five instances of marginal under voltages created by elevated EES charging loads, the PV 

inverter power factor is manually adjusted to correct the local voltage to close to 1 per unit. 
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      (a) 

 
(b) 

 
(c) 

Figure 4.28 – EES storage deployed behind an overloaded transformer. (a) A 150 kVA transformer is overloaded (red) due to 
a 755 kVA reverse power flow, (b) A 1,300 kVA EES load is deployed to charge at 791 kVA, causing an under voltage of 97.28 % 
per unit at the secondary node. (c) Smart-inverter Fixed-PF functionality (98% PF leading) corrects the voltage to 100.3 % per-

unit. 

The voltage profiles of this scenario are captured by Figure 4.29, Figure 4.30, and Figure 4.31 

which compare the voltage profiles of the previous scenarios: High-penetration (Optimal PV) 

and Optimal PV + EES + Volt-Var compensation. One clear observation is that even though EES 

is initially deployed to eliminate transformer overloads, it also has a positive impact on reducing 

marginal overvoltages, especially on secondary buses, as seen in Figure 4.31. As seen in Table 
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4.12, a significant number (28) of overloads still occur in this scenario, in the residential areas, 

where no battery energy storage. 

 

 
Figure 4.29 – Optimal PV (with and w/o battery (BESS)) comparison- Voltage Profile for 66/12 kV system 

 
Figure 4.30 – Optimal PV (with and w/o battery) comparison - Voltage Profile for Primary buses 

 

 
Figure 4.31 – Optimal PV (with and w/o EES) comparison - Voltage Profile for Secondary buses 
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Table 4.12 – Optimal PV + EES + VVar Scenario events  

Summary  Count Min Avg. Max 

Transformer Overloads 
    

Critical 28 107 115 120 

Marginal 0 -- -- -- 

Line Overloads 
    

Critical 0 -- -- -- 

Marginal 0 -- -- -- 

Over Voltages 
    

Critical 0 -- -- -- 

Marginal 0 -- -- -- 

 

4.5. Summary  

 A real-world urban neighborhood microgrid test case was developed from site 

surveys on the existing urban infrastructure. 

 Transformer overloads were visibly the worst negative impact of large deployment of 

solar PV. For the Optimal PV scenario, an 8,823 kW solar PV deployment overloads 

43 transformers up until around 400% rated capacity and causes two over voltages 

above 1.02 per-unit besides causing four line overloads. 

 By limiting PV deployment to not overload the existing transformer capacity, the 

total PV deployment is reduced to 6,277 kW (a 30% reduction), and one marginal 

overvoltage of 1.02 p.u. occurs. 

 At all the locations deployed, EES not only avoided transformer overloads but also 

eliminated marginal overvoltages. 

 For the optimal sizing of battery energy storage, a time-series simulation was 

necessary to account for charging/discharging dynamics and energy storage capacity 

(SOC). 
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5 Optimal Solar PV and 

Battery Storage Sizing and 

Siting Considering Local 

Transformer Limits  

Highlights 

 An optimization for DER allocation incorporates utility transformer constraints 

 A polygon relaxation models the apparent power flow through power transformers 

 TOU, NEM, and wholesale rates are modeled for each utility customer type 

 A novel, renewable energy battery storage is modeled to export under NEM rates 

5.1. Literature Review 

A significant challenge involving DER integration into the utility grid network is to allocate (i.e., 

to assign an amount or portion of a resource) to a particular recipient node, which entails both 

sizing and siting these resources into the existing electric distribution grid. Ideally, DER 

allocation and dispatch can be done, so that no additional distribution infrastructure upgrade is 

required. Known issues caused by DER, specifically PV systems when installed in high-

penetration, include but are not limited to voltage rise during low load periods, and reverse 

power flow, that is, a flow of power from a section of a radial circuit towards the main 

distribution substation, which increases electric power losses and creates issues in protection 

equipment (Jahangiri & Aliprantis, 2013),(von Appen, Braun, Stetz, Diwold, & Geibel, 2013). 

Solving the problems mentioned above is essential to promote an increase in the PV hosting 

capacity of urban district systems, which are rising to be one of the most effective ways to 

integrate not only PV but a suite of DER into a local distribution grid. Thus, the types of DER, 

their allocation within the system, as well as their operation and dispatch have to be carefully 
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chosen to improve the overall system performance while meeting customer demand. Judicious 

and systemic DER deployment (allocation and dispatch) is recommended over random 

deployment (Prakash & Khatod, 2016) and is essential to enable the very high PV penetrations 

required for ZNE. 

Simultaneously, there has been much recent interest in developing the concept of Advanced 

Energy Communities — electrically contiguous areas that leverage the clustering of load and 

generation by integrating multiple utility customer-owned DER (Electric Power Research 

Institute (EPRI), 2017). Within an AEC, DER assets allow for most of the energy demand to be 

generated and consumed internally. External energy transfers enter the community if local 

production is insufficient. Excess electricity is exported to the wide-area electricity grid. AEC 

can operate grid-connected or as islanded microgrids (for resiliency purposes) under certain 

circumstances of containing a sufficient DER to match the loads and a microgrid controller, AEC 

and microgrids may share typical DER and local control resources and electric infrastructure 

topology. Moreover, AEC facilitate the integration of clean and innovative DER technologies 

into the existing utility grid infrastructure, minimizing the need for upgrades while maximizing 

the local renewable generation hosting capacity to provide environmental, societal, and utility 

benefits (Electric Power Research Institute (EPRI), 2017).  

The present chapter evaluates a piece of the broader AEC vision, assuming total electrification of 

community energy demand as ZNE developments are expected to be introduced (Electric Power 

Research Institute (EPRI), 2016). Moreover, we only consider PV and battery storage as our 

DER. Nonetheless, the analysis and models developed can be easily extended to include a 

broader variety of DER. 

For most AEC, the ultimate goal is to allow for ZNE operation. To achieve ZNE operation, a big 

challenge is how to increase the hosting capacity, i.e., the maximum DER penetration for which 

the power system infrastructure operates satisfactorily (Electric Power Research Institute (EPRI), 

2015), in urban distribution systems. Historically, DSOs have employed rules-of-thumb for DER 

integration. The “15% rule” only allows for DER penetration below 15% of the local maximum 

load (Palmintier et al., 2016). Various other DSOs have employed (and some still employ) 

similar rules of thumb. For example, in Canada, DG deployment shouldn’t exceed 60% of the 

transformer rating at the main substation. In Portugal, the total DG ratings should be lower than 
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25% of the medium voltage/low voltage (MV/LV) transformer rating. In Spain, the total DG 

ratings should be lower than 50% of the MV/LV transformer rating and lower than 50% of the 

thermal limit of the affected feeders. In Italy, the total DG ratings should be lower than 65% of 

the MV/LV transformer rating and lower than 60% of the thermal limit of the affected feeders 

(Ismael, Abdel Aleem, Abdelaziz, & Zobaa, 2019). These conservative and somewhat arbitrary 

rules are practical but impose a limit on achieving high-penetration of renewable generation and 

ZNE.  

In California, DSOs have been required to provide a high-level hosting capacity analysis of their 

medium-voltage circuits with some utilities developing interactive GIS map tools, such as 

DERIM maps (Southern California Edison (SCE), 2016b). However, the DER allocation in the 

lower voltage (<12 kV) portion of the circuit, specifically regarding distribution transformer 

constraints, has not been addressed. 

Given the need of deploying PV in high penetrations to meet AEC ZNE goals, a significant share 

of AEC project success depends upon achieving an adequate allocation of DER such as PV and 

battery storage resources while supporting and enhancing the overall utility grid network 

characteristics. There have been numerous state-of-the-art optimization approaches applied to the 

development of computational tools for the investment planning and operation of DER. In 

district systems, DER allocation can be performed optimally to maximize benefits to the utilities, 

project owners, and customers. These benefits include, but are not limited to: minimizing project 

cost, minimizing power system electric losses, maximizing renewable penetration, minimizing 

carbon emissions, maximizing the PV hosting capacity, or achieving zero-net-energy operation.  

The underlying DER allocation problem is typically non-linear, highly constrained, multi-

objective, mixed-integer, and multi-modal. Thus, finding a global optimal solution is challenging 

(Rezaee Jordehi, 2016). Known optimization techniques used in the literature include, but are not 

limited to linear programming (LP), mixed integer linear programming, mixed integer non-linear 

programming (MINLP), dynamic programming (DP), sequential quadratic programming (SQP), 

ordinal optimization (OO), cone programming (CP), and heuristic methods such as genetic 

algorithms (GA) and particle swarm optimization (PSO) (Arabali et al., 2017). 

Amongst the most common approaches are MILP formulations, in which only some variables are 

constrained to be integers, while other variables are allowed to be continuous. Integer programs 
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can model many practical situations, such as scheduling, and resource allocation(Conforti, 

Cornuéjols, & Zambelli, 2014) due to their flexibility in modeling constraints involving binary or 

integer decisions (yes or no, and on or off behaviors)There is also a wide availability of robust 

commercial solvers, that allow control and awareness of the optimality gap between optimal and 

integer solution(Mansini, Ogryczak, & Speranza, 2015). MILP algorithms can be solved in 

polynomial time, that is, computing time is defined by a polynomial function of the instance size, 

therefore, the MILP computational burden increases significantly with the scale of the problem, 

typically requiring the program developer to balance model complexity with tractability(Mansini 

et al., 2015). 

The most straightforward DER allocation problem involves allocating a single specific type of 

DER at a single node, according to a particular optimization goal and a set of constraints. This 

analysis is usually performed by aggregating all loads and generation together (i.e., “aggregate 

approach”) and assuming the lossless transfer of energy between nodes. A number of 

enhancements to this approach were developed in subsequent literature, such as (1) optimizing a 

portfolio (mix) of DER(Ren & Gao, 2010),  (2) considering the time-coupling of generation and 

load in a time-domain, dynamic simulation (Falke et al., 2016; R. J. Flores & Brouwer, 2018a; 

Huang, Zhang, Yang, Wang, & Kang, 2017; Ren, Zhou, Nakagami, Gao, & Wu, 2010; Stadler, 

Groissböck, Cardoso, & Marnay, 2014) (3) siting DER on different nodes of a network (Basu et 

al., 2012), (4) incorporating electricity grid constraints (Mashayekh et al., 2017; Morvaj, Evins, 

& Carmeliet, 2016; Qiu, Zhao, Yang, Wang, & Dong, 2018; Y. Yang et al., 2015b; Y. Yang, 

Zhang, & Xiao, 2015a), (6) energy storage (Grover-Silva, Girard, & Kariniotakis, 2018), (5)  

DER uncertainty (Grover-Silva, Heleno, et al., 2018; Z. Wang, Chen, Wang, Kim, & Begovic, 

2014), and (7) smart-grid technologies (Chanda & De, 2014; Santos, Fitiwi, Shafie-khah, 

Bizuayehu, & Catalão, 2016).  

5.1.1. Related Work 

Many dynamic optimization approaches for DER allocation already exist where the objective 

function is to allocate DER and also dispatch DER such that cost is minimized, or other multi-

objective formulation. A few examples of such analyses are listed below: 
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Falke et al.(Falke et al., 2016) developed a multi-objective optimization for the design of a 

district electricity and heat supply system to minimize annual costs (investment, demand, and 

operation) of energy supply and CO2 emission equivalents. The decision variables included the 

heating network connections, DER types, sizes, and operation. The problem was decomposed 

into three sub-problems (heating network, DER, and energy efficiency measures design, and 

DER operation) and solved iteratively to reduce computational complexity. The solution 

approach involved the heuristic spanning tree method (Kruskal’s method), an evolutionary 

algorithm, and a deterministic operation simulation.  

Flores et al. (R. Flores & Brouwer, 2017) developed a MILP model to minimize the cost of 

energy while limiting greenhouse gas (GHG) emissions. The decision variables used were DER 

type, size, and operation. Two primary technology scenarios were explored (DER including 

storage with and without electrical export).  Li et al. (Li, Roche, Paire, & Miraoui, 2017) 

decomposed the DER allocation problem into a leader-follower problem. The leader problem 

was a genetic algorithm to search for the best sizing values of each component to minimize cost. 

Each candidate solution was then fed into the follower problem, a MILP, which was used to 

solve the DER sizing and obtain the optimal energy management strategy.  

In many publications that use these optimization strategies, authors did not include grid 

constraints (voltage at nodal buses, power flows through distribution lines and transformers), and 

assumed that the grid infrastructure has an unlimited capacity. Results from these studies are 

optimal for a distributed energy system comprised of a single node but may lead to suboptimality 

or infeasibility when applied to a distribution grid network (Mashayekh et al., 2016). Moreover, 

single-node, aggregate modeling approaches do not allow for DER siting and can under-estimate 

DER capacities and project costs, since they do not account for the electrical distribution grid 

infrastructure and its constraints and internal losses (Mashayekh et al., 2016). All previously 

mentioned literature sources do not include simultaneous optimization of (1) DER size and 

location, (2) DER operation, and (3) impact on the local power system infrastructure. Four recent 

studies, however, were found to address these sub-problems simultaneously. 

Mashayekh et al. (Mashayekh et al., 2017) used a MILP approach to determine optimal 

technology mix, size, placement, and dispatch in a multi-energy (electric, heating, and cooling) 

microgrid, using a multi-node, time-series approach. The objective (minimize cost or CO2 
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emissions) was constrained by linearized power flow (LinDistFlow) constraints, nodal voltage 

constraints, and linearized apparent power constraints for cable current limits. The DER 

simulated here were P-type (can only output active power), but the building loads were assumed 

to consume reactive power at a fixed power factor. An 18-node radial test system was used as a 

test case, where DER was limited to be installed only at three pre-defined nodes within the 

network.  

Another study was presented by Morjav et al.(Morvaj et al., 2016) which described a framework 

for computing optimal DER size, location, and type, in an energy hub. Different combinations of 

a genetic algorithm and a MILP were compared. For the MILP formulation, the objective  of 

minimizing cost and CO2 emissions was constrained by linearized AC power flow equalities, 

voltage limits (±10%), and linearized current limits using a combination of linearization 

techniques including a first-order Taylor series approximation, and piece-wise linearization of 

the squared real and imaginary current components. The test case consists of 5 residential 

buildings connected on a radial network. The authors noted that a system with more buildings 

would be computationally intractable.  

Additional recent work by Ehsan et al. (Ehsan & Yang, 2019) proposed a Mixed Integer 

Quadratically Constrained program for the optimal DER mix, siting, and sizing in multi-energy 

microgrids considering load and generation uncertainties. The objective of minimizing cost and 

carbon emissions is constrained by the simplified non-linear DistFlow formulation of voltage and 

line apparent power flow limits. The DER is PQ (active and reactive power) type, but with no S 

(apparent power) limit coupling of P and Q. The test case used was a 19-bus radial microgrid. 

Lastly, a recent study by Alturki et al.(Alturki, Khodaei, Paaso, & Bahramirad, 2018) developed 

an optimization-based hosting capacity calculation using MILP for sizing and siting DG aiming 

to maximize the total DG deployments. Voltage limits were constrained as well as DG output 

and line capacities considering active and reactive power flows separately (i.e., without 

considering the apparent power coupling). The IEEE-33 bus radial distribution grid was used as 

a test case. The near-optimal hosting capacity solution calculated by this method was found 

superior compared to traditional iterative hosting capacity calculation methods. While this study 

presented a brilliant strategy for maximizing PV penetration, the active and reactive power flow 

coupling was not captured. 
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The survey of current literature shows that the focus on modern multi-nodal DER allocation 

methods has been on ensuring feasible power flow between nodes while maintaining acceptable 

voltage levels. These previous approaches typically do not include: 

 Limiting the power flow injections through distribution transformers; recent projects 

on large scale urban district systems (R. Flores et al., 2018) suggest that transformer 

overloads will be a significant hurdle for DER integration into the urban low voltage 

network. 

 The coupling between active (P) and reactive (Q) power in power flow constraints, 

due to its non-linear relationship (𝑆 =  √𝑃2 + 𝑄2 )  

 Large-scale test cases. Current formulations typically use a large number of 

constraints involving binary and integer variables, which can make the problem 

computationally intractable. Hence, most test-cases in the literature consider only 

small and non-scalable grid networks. 

 The variety of utility electricity tariffs that a mix of residential and commercial and 

industrial utility customers are subjected to, and the different markets where 

renewable DER can participate, namely Net-Energy-Metering (NEM) and wholesale.  

 Explicit models of battery storage systems that can only charge from renewable 

sources, and in turn, meet utility requirements for exporting under NEM rates. 

 The limited physical area available for a realistic DER deployment into the built 

urban environment. 

5.1.2. Contributions  

This chapter proposes a mixed integer linear program optimization to allocate PV and battery 

storage size and location across an AEC with complex existing distribution grid infrastructure. 

The objective is to minimize cost throughout the time-resolved dynamic operation of the system 

during a representative year using known load and solar insolation profiles. Desired operation 

goals such as Zero-Net-Energy and islanding as a microgrid for resiliency during unplanned grid 

outages are also modeled. The electrical distribution network is modeled in a multi-nodal 

approach, and the flows of both active and reactive power are taken into account. For a realistic 
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formulation of the DER allocation problem, minimum discretized DER sizes are enforced so that 

the global optimal solution can be guaranteed within a pre-defined optimality gap. 

The present work adds to the previous literature by proposing a novel, yet straight-forward, 

approach to avoid distribution transformer overloads by constraining non-linear nodal apparent 

power injections with the use of polygon relaxations, which is less computationally intensive 

than piecewise-linearization since it does not need the addition of binary variables and special 

ordered sets. 

In summary, the contributions of the current chapter are: 

 The optimal DER allocation for a real-world electric distribution system, here defined as an 

Advanced Energy Community microgrid, considering its aggregated behavior as a grid-connected 

system or islanded, its diverse load profiles (residential, commercial and industrial) and limited 

physical space for DER deployment. 

 Distribution transformer apparent (S) power flows are explicitly limited through a novel constraint, 

using a straightforward linearization method that allows for the test system to be scaled to more 

than 30 nodes;  

 Electricity rates used to account for the realistic time of use (TOU) and demand rate structures for 

each individual residential, commercial, or industrial customer. Also, DER is allowed to take 

advantage of different market mechanisms such as NEM and wholesale rates, to add revenue 

streams;  

 A novel storage concept is modeled, namely the Renewable-tied Energy Storage System (REES) 

i.e., storage that charges exclusively from renewable solar PV energy, which is for that reason 

allowed to export electricity back to the utility grid under NEM rates; and  

 District or community-wide operation goals such as Zero Net Energy and islanding are modeled. 

5.2. Problem Formulation  

The optimization formulation presented here builds upon the work presented in (R. Flores & 

Brouwer, 2017; R. J. Flores & Brouwer, 2018), namely the DERopt tool. We review the original 

problem formulation in Section 5.2.2 and 0 and expand upon the prior by introducing reactive 

power balances to the original formulation and transformer constraints with a polygon relaxation 

method, presented in Section 5.2.4.  
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5.2.1. Notation 

The applicable model sets, Parameters, and Decision Variables   

 m ∈ M : Set of all months  

 s ∈ S : Set of all summer months (S ⊂ M) 

 t ∈ T : Set of all hourly increments in month m  

 o ∈ O : Set of all hourly increments during on-peak in summer month s (O ⊂ T) 

 p ∈ P : Set of all hourly increments during mid-peak in summer month s (P ⊂ T) 

 b ∈ B : Set of all buildings  

 x ∈ X: Set of all transformers 

 j ∈ Jx: Set of buildings that are connected to transformer x (J ⊂ B) 

 𝜆 ∈ Λ : Set of line segments for polygon relaxation 

 

The applicable decision variables and parameters for the optimization model are shown in Table 

5.1 and Table 5.2, respectively.  

Table 5.1 – List of decision variables used in DERopt 

Decision Variable Description Units 

𝑃import𝑡,𝑏
 Power imported from the grid 

to building b at hour t 

kW 

𝑃DC𝑚,𝑏  Maximum demand during 

month m at building b 

kW 

𝑃DC𝑠,𝑏

on  , 𝑃DC𝑠,𝑏

mid
 Maximum on-peak and mid-

peak demand during summer 

month s and building b 

kW 

𝑆PV𝑏  Solar PV capacity adopted at 

building b 

kW 

𝑃PV BLDG𝑡,𝑏  Power generated by solar PV 

at hour t at building b 

kW 

𝑃PVNEM,𝑡,𝑏  Power exported under NEM 

rates at hour t from building b 

kW 

𝑃𝑃𝑉𝑊,𝑡,𝑏  Power exported under 

wholesale rates at hour t from 

building b 

kW 

𝑆EES𝑏
 , 𝑆REES𝑏

 EES/REES capacity adopted 

at building b 

kWh 

𝑒EESt,𝑏
 , 𝑒REES𝑡,𝑏  EES/REES state of charge t 

hour t at building b 

kWh 
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𝑃EESch,𝑡,𝑏
  𝑃REES𝑐ℎ,𝑡,𝑏

 EES/REES  charging power 

at hour t at building b 

kW 

𝑃EESdch,𝑡,𝑏
 , 𝑃REES𝑑𝑐ℎ,𝑡,𝑏

 EES/REES discharging 

power at hour t at building b 

kW 

𝑃REES𝑁𝐸𝑀,𝑡,𝑏
 Power exported from REES 

at NEM rates at hour t at 

building b 

kW 

𝑛EES , 𝑛REES  Binary variable indicating 

EES/REES adoption at 

building b 

n/a 

𝑃𝑇𝑥
, 𝑄𝑇𝑥

, 𝑆𝑇𝑥  Active, Reactive, and 

Apparent Power flows 

through transformer x at hour 

t 

kW/kVAr/kVA 

Table 5.2 – List of parameters used in DERopt 

Parameter Description Units Value 

𝑃BLDG𝑡,𝑏
 , 𝑄BLDG𝑡,𝑏

   Power (active and reactive) 

demand at building b, at 

hour t 

kW / 

kVAr 

Based on URBANopt 

outputs 

𝐴𝑏  Area available for solar PV 

installation at building b 

m2 Based on methods 

described in Section  

𝐼𝑡 Normalized Average 

available insolation at hour t 

kW/kWp Taken from(White, 

2016) 

𝐶grid𝑡,𝑏
 Utility electricity charge at 

hour t at building b 

$/kWh Southern California 

Edison Rate 

Structures 

𝐶DC𝑚
 Non-TOU demand charge 

in month m  

$/kW 14.88 

CDC𝑜

on , CDC𝑠 
mid  On-peak and Mid-peak  

demand charge in summer 

month s  

$/kW 23.74 (on) 

6.55 (mid) 

𝐶NEM𝑡,𝑏
 Net energy metering price 

at which electrical utility 

purchases energy from 

building b at hour t 

$/kWh Energy charge Cgrid,t 

minus transmission 

and distribution cost 

𝐶W𝑡,𝑏
 Wholesale price at which 

electrical utility purchases 

energy from building b at 

hour t 

$/kWh 0.03 
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𝐶Cap
𝑃𝑉  Capital cost for solar PV 

system   

$/kW 2000  

𝐶O&M
𝑃𝑉  O&M cost for solar PV 

system 

$/kWh 0.001 

𝜂PV Efficiency of PV at nominal 

conditions  

% 18 

𝐶Cap
EES , 𝐶Cap

REES Capital cost of EES/REES  $/kWh 600 

𝐶O&M
EES  , 𝐶O&M

REES Cost to charge/discharge  

EES/REES 

$/kWh 0.001(R. J. Flores & 

Brouwer, 2018) 

𝛼 Retained EES/REES 

storage between hourly 

periods 

% 99.99 

𝜂EES𝑐ℎ
 𝜂EES𝑑𝑐ℎ

 EES/REES charging 

efficiency 

% 90 

𝜂REES𝑐ℎ
 , 𝜂𝑅𝐸𝐸𝑆𝑑𝑐ℎ

 EES/REES charging 

efficiency 

% 90 

𝛿EES ,  𝛿REES Maximum EES/REES state 

of charge 

% of 

purchased 

capacity 

95 

𝛿EES ,  𝛿REES Minimum EES/ REES state 

of charge 

% of 

purchased 

capacity 

10 

𝜇EES ,  𝜇REES Maximum EES/ REES 

charging rate 

% of 

purchased 

capacity 

25 

𝜇EES ,  𝜇REES Maximum EES/ REES 

discharging rate 

%of 

purchased 

capacity 

25 

𝑆EES , 𝑆REES    Big M constant for 

EES/REES size 

kWh 99,999 

𝑆EES , 𝑆REES  Minimum EES/REES size kWh 13.5 

𝑆�̅�𝑥
 Power Rating of 

transformer x 

kVA Based on power 

system  topology 

𝑃𝐹 Building power factor n/a 0.90 (Residential) 

0.85 (C&I) 

𝛼𝑥  Transformer x p.u. loading % 1 

σ𝑏 Max PV installation  

coefficient at building b 

kW/ft2  0.005 (Residential) 
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0.009 ( C&I) 

𝜃𝑖 Angle of segment i of 

polygon relaxation 

degrees Based on the number 

of polygon sides 𝐿 

𝐿 Number of sides for 

polygon relaxation 

n/a 22 

5.2.2. Objective Function 

The objective function 𝐽(𝑥) is the sum of various individual cost components to be minimized. 

The cost parameters, defined by the 𝐶 variables, include the cost of utility grid imports (Cgrid), 

demand charges (𝐶DC, 𝐶DC
on, 𝐶DC 

mid), the cost to purchase (Ccap) and operate DER (CO&M), and the 

revenue generated by exporting excess electricity to the grid under both NEM (CNEM) and 

wholesale rates (CW). The cost parameters are multiplied by the specific decision variables, 

which include the building hourly power flows (𝑃 variables for import, PV production, and 

battery charge and discharge), the maximum power demand over a month (PDC variables), and 

the PV/EES/REES capacity adopted (𝑆PV, 𝑆EES and 𝑆REES). All individual cost components are 

added through a specific time interval: 𝑡 (hourly), 𝑚 (monthly), or 𝑠 (during summer months), 

and across all buildings 𝑏 as follows in Equation (47). Therefore, the first line of the objective 

function captures the costs associated with purchase and sale of energy, the second line captures 

the cost associated with demand charges, and the third, fourth and fifth lines capture the cost 

associated with purchasing and operating the adopted DER.  

 

𝐽(𝑥)  = ∑ (∑ 𝐶grid𝑡,𝑏
𝑃import𝑡,𝑏

− 𝐶NEM𝑡,𝑏
(𝑃PVNEM,𝑡,𝑏 +  𝑃REESNEM,𝑡,𝑏) − 𝐶𝑊𝑡

𝑃PVW,𝑡,𝑏

𝑇

𝑡=1

𝐵

𝑏=1

 

+ ∑ 𝐶DC𝑚

𝑀

𝑚=1

𝑃DC𝑚,𝑏
+ ∑ (𝐶DC𝑠

𝑜𝑛 𝑃DC𝑠,𝑏

𝑜𝑛 )

𝑆

𝑠=1

  + ∑ (𝐶DC𝑠

𝑚𝑖𝑑𝑃DC𝑠,𝑏

𝑚𝑖𝑑 )

𝑆

𝑠=1

 

+ 𝐶cap
PV 𝑆PV𝑏

+ 𝐶O&M
PV  (𝑃PVBLDG,𝑡,𝑏 

+ 𝑃PVNEM,𝑡,𝑏
+ 𝑃PV𝑊,𝑡,𝑏

) 

+ 𝐶cap
EES𝑆EES𝑏

+ 𝐶O&M
EES  (𝑃EESch, 𝑡,𝑏

+ 𝑃EESdch, 𝑡,𝑏
) 

+ 𝐶cap
REES𝑆REES𝑏

+ 𝐶O&M
REES (𝑃REESch, 𝑡,𝑏

+ 𝑃REESdch, 𝑡,𝑏
+ 𝑃REESNEM, 𝑡,𝑏

)) 

(47) 
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The objective function is thus minimized subject to a set of equality and inequality constraints, 

and also integer constraints, lower 𝑙 and upper 𝑢 bounds, which limit strictly positive variables 

and Big M limits. 

The MILP optimization problem is given by the following functions and constraints: Where 𝐽(𝑥) 

is the objective functions and A and B are the respective coefficient matrices for the 

𝑥 continuous decision variables and 𝑦 integer decision variables. The problem is subjected to 

linear equality and inequality constraints, 𝑙 and 𝑢 upper and lower bounds, and integer 

constraints on 𝑦. The objective function is minimized subject to a set of equality and inequality 

constraints, and also integer constraints, which are detailed in the following sections. 

𝐦𝐢𝐧 
𝒔. 𝒕.  

𝐽(𝑥) 

𝐴𝑥 +  𝐵𝑦 ≤ 𝑏  
𝑙 ≤ 𝑥 ≤ 𝑢 

𝑦 𝜖 ℤ𝑛 

𝑦 ≥ 0 

(47) 

(49)-(69),(74) 

* 𝑙 and 𝑢 are specific to variable 

(48) 

5.2.3. General Constraints  

In this optimization formulation, equality and inequality constraints are formulated to: 

 Ensure the electrical energy balance within each building, i.e., the electrical demand of the building, 

is entirely met at each time step while maintaining feasible operation; 

 Set maximum and minimum generation output constraints for each DER; 

 Control the operation of all electrical energy storage systems; and  

 Limit the states of charge and charging rates for each battery system. 

A concept similar to the Energy Hub, introduced in Morvaj et al.(Morvaj et al., 2016), is 

explored here, but only applied to electricity balances. Here, each building and its connected 

DER (PV, EES, and REES) represent a Building Energy Hub. Hence, the electricity needs of 

every building are to be met by an optimally sized combination of PV, EES, REES, and 

electricity imports. The model also makes the distinction between active (P), reactive (Q), and 

apparent (S) power flows. Considering active power, Equation (49) requires that at all times 𝑡, 

for every building 𝑏, the active electrical load (𝑃BLDG𝑡,𝑏
) plus any EES charging (𝑃EESch,𝑡,𝑏), is 

met through electricity imports (𝑃import𝑡,𝑏
), currently available solar production sent to the 

building (𝑃𝑃𝑉BLDG,t,𝑏), and the discharging of any EES or REES assets (𝑃EESdch𝑡,𝑏 and 
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𝑃REESdch𝑡,𝑏). Considering reactive power, Equation (50) requires that, the reactive electrical load 

of each building (𝑄BLDG𝑡,𝑏
), which will depend upon a fixed local power factor (𝑃𝐹) will be 

entirely met by utility reactive power imports (𝑄import𝑡,𝑏
). Note that no security or reliability 

margins are included in our formulation.  

𝑃import𝑡,𝑏
+  𝑃PVBLDG, 𝑡,𝑏

+  𝑃EESdch, 𝑡,𝑏
+  𝑃REESdch, 𝑡,𝑏

=  𝑃BLDG 𝑡,𝑏
+  𝑃EESch, 𝑡,𝑏

 (49) 

 𝑄import𝑡,𝑏
=  𝑄BLDG𝑡,𝑏

= PBLDGarctan (𝑃𝐹) (50) 

Equations (51), (52) and (53) relate electrical imports to both non-TOU and TOU demand 

charges. Where subscripts 𝑜 and 𝑝 are the set of all hourly increments during on-peak and mid-

peak, respectively, in summer month s. 

𝑃import,t,𝑏 ≤  𝑃𝐷𝐶,𝑠,𝑏 (51) 

𝑃import,o,𝑏 ≤  𝑃DC,𝑠,𝑏
on   (52) 

𝑃import,p,𝑏 ≤  𝑃DC,𝑠,𝑏
mid  (53) 

Solar PV adoption and operation constraints are shown in Equations (54) and (55). Equation (54) 

limits PV production by the PV capacity adopted (𝑆𝑃𝑉𝑏
) and available insolation (𝐼𝑡 ). Equation 

(55) limits the size of the PV adoption at each building according to the maximum available 

rooftop area ( A𝑏) and the kW/ft2 ratio (σ).  

𝑃PVBLDG, 𝑡,𝑏
+  𝑃PVNEM, 𝑡,𝑏

+  𝑃PV𝑊, 𝑡,𝑏
+  𝑃REESch, 𝑡,𝑏

≤ 𝐼𝑡𝑆PV𝑏
  (54) 

𝑆PV,𝑏 ≤ σ A𝑏 (55) 

Within electrical energy storage, the model considers two types of storage, (1) electrical energy 

storage, or EES, which can store imported utility electricity and excess renewable produced 

onsite and also (2) renewable electric energy storage, or REES, which is the storage exclusively 

supplied by renewable onsite PV. A distinction between EES and RESS is made because only 

energy storage exclusively charged using renewable energy is allowed to be exported to the grid 

under California NEM rates. Both the EES and REES share similar types of constraints. 

Equations (56) and (60) show the energy balance for the EES and REES respectively. The 

difference between EES and REES is the presence of the 𝑃𝑅𝐸𝐸𝑆 𝑁𝐸𝑀 𝑑𝑐ℎ𝑟𝑔,𝑡,𝑏 variable, allowing 

electricity export from any adopted REES. Note that wholesale import, i.e., electricity imported 
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to the building, billed at wholesale prices, is not considered for REES charging since initial 

simulations indicated that this pathway is not economically attractive due to the REES round trip 

efficiency. Equations (57) and (61) limit the maximum state of charge by the installed capacity 

for the EES and REES, respectively. Equations (58) and (62) limit the maximum discharge rate 

by the size of the adopted battery, and Equations (59) and (63) limit charging to the battery for 

the EES and REES system, respectively. Equations (17) and (18) require that if EES and REES 

systems are adopted, a minimum system size is installed. The minimum battery size is based 

upon the popular Tesla Powerwall size of 13.5 kWh (Tesla, 2019). The variables 𝑛𝐸𝐸𝑆,𝑏 and 

𝑛𝑅𝐸𝐸𝑆,𝑏 are binary variables, that is, integer variables that are restricted to values of 0 or 1.  

𝑒EES,𝑡,𝑏 = 𝛼EES𝑒EES (𝑡−1),b + 𝜂EES ch𝑃EES ch,𝑡,𝑏 −
𝑃EES dch,𝑡,𝑏

𝜂EES dch

 
(56) 

𝛿EES𝐸EES,𝑏 ≤ 𝑒EES ,𝑡,𝑏 ≤ 𝛿E̅ES𝐸EES,𝑏 (57) 

𝑃EES dch,𝑡,𝑏 ≤ �̅�EES𝑆EES,𝑏 (58) 

𝑃EES ch,𝑡,𝑏 ≤ 𝜇EES𝑆EES,𝑏 (59) 

𝑒REES,𝑡,𝑏 = 𝛼REES𝑒REES (𝑡−1),b + 𝜂REES ch𝑃REES ch,𝑡,𝑏 −
𝑃REES dch,𝑡,𝑏 + 𝑃REES NEM,𝑡,𝑏

𝜂EES dch

 
(60) 

𝛿REES𝐸REES,𝑏 ≤ 𝑒REES ,𝑡,𝑏 ≤ 𝛿R̅EES𝐸REES,𝑏 (61) 

𝑃REES dch,𝑡,𝑏 +  𝑃REES NEM,𝑡,𝑏 ≤ �̅�REES𝑆REES,𝑏 (62) 

𝑃REES ch,𝑡,𝑏 ≤ 𝜇REES𝑆REES,𝑏 (63) 

(1 − 𝑛EES,𝑏) 𝑆EES ≤ 𝑆EES, 𝑏 ≤  (1 − 𝑛EES,𝑏) 𝑆E̅ES (64) 

(1 − 𝑛REES,𝑏) 𝑆REES ≤ 𝑆REES, 𝑏 ≤  (1 − 𝑛REES,𝑏) �̅�REES (65) 
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Equation (66)  constrains the value of exported electricity under NEM rates to the cost of 

imported electricity. Equation (67) imposes the ZNE operation, i.e., total imports must be less 

than or equal to total exports by the end of the year.   

∑ ∑ 𝐶NEM𝑡,𝑏 (𝑃PV NEM,𝑡,𝑏 + 𝑃REES NEM 𝑡,𝑏)

𝑇

𝑡=1

𝐵

𝑏=1

≤  ∑ ∑ 𝐶grid,𝑡,𝑏𝑃import.𝑡,𝑏

𝑇

𝑡=1

𝐵

𝑏=1

 

(66) 

∑ ∑ 𝑃PV NEM,𝑡,𝑏

𝑇

𝑡=1

+  𝑃PV W,𝑡,𝑏 +  𝑃REES NEM ,𝑡,𝑏

𝐵

𝑏=1

 ≤  ∑ ∑ 𝑃import.𝑡,𝑏

𝑇

𝑡=1

𝐵

𝑏=1

 

(67) 

5.2.4. Transformer Constraints and Polygon Relaxation 

Here, we extend the formulation to a multi-node approach, where every Building Energy Hub 

(i.e., building load and corresponding DER resources) is connected to spatially resolved nodes 

instead of a single physical (aggregated) node. The multi-node method allows for the modeling 

of the electric power distribution grid and the constraints involved with the physical power 

network and equipment. 

The maximum amount of current limits the power capacity of a transformer at the rated voltage, 

so it does not exceed its design temperature. Ratings are specified in kilovolt-amperes (kVA), 

which corresponds to the total apparent power that can flow through transformer windings, 

which includes active (kW) and reactive (kVAr) power flows (Kurtz, Shoemaker, & Mack, 

1997), as shown in Figure 5.2. Transformer overloads are typically acceptable for a short amount 

of time, and a typical transformer loading curve varies according to different ambient 

temperatures (U.S.Department of the Interior Bureau of Reclamation - Facilities Engineering 

Branch, 2000). Nonetheless, even short periodic overload conditions will affect the equipment 

lifespan and maintenance needs.  

We assume a distribution transformer is connected to a given node in the network and serves one 

or a cluster of Building Energy Hubs. Figure 5.1 illustrates one such transformer 𝑇𝑥, which 

supplies only one Building Energy Hub, and its associated Solar PV and battery electric energy 

storage systems. 
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Figure 5.1 – Schematic of one Building Energy Hub used in the multi-nodal approach.  Transformer 𝑇𝑥  is one node, to 

which a cluster of buildings and DER are connected. 

As shown in Figure 5.1, each building has a net energy flow of imports minus exports from solar 

PV and REES. The net real and reactive power flows for all building energy hubs that are 

connected to the same transformer are aggregated using Equation (68) and (69).  

𝑃T𝑥
= ∑ 𝑃import𝑗

 – 𝑃PVNE𝑀𝑗
− 𝑃PV W𝑗

− 𝑃REES dch NEM𝑗

 𝑗 ∈ 𝐽𝑘

 
(68) 

𝑄T𝑥
= ∑ 𝑄import𝑗

 

 𝑗 ∈ 𝐽𝑘 

 
(69) 

In Equations (70) and (71), for each time step, the absolute value of the apparent power flowing 

through a given transformer 𝑥, 𝑆𝑇𝑥, defined by the vector sum of active and reactive power, 

cannot exceed a given percentage (𝛼) of its kVA rating (𝑆�̅�𝑥
), where 𝛼 is a coefficient used to 

allow under and overloading. Ultimately, all buildings and DER will have a transformer, or node, 

with such constraints associated with it.  

𝑆T𝑥
=  √𝑃T𝑥

2 +  𝑄T𝑥

2  (70) 

𝑆T𝑥
= 𝛼𝑆T𝑥

 (71) 
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Since a MILP method cannot directly capture the nonlinear constraints shown in Equations (70) 

and (71), a polygon relaxation of the apparent power circle shown in Figure 5.2 is performed. 

The method was inspired by Archimedes’ 𝜋 calculation process using polygons of an increased 

number of edges to approximate a circle(Archimedes (ed.Heath), 1897) . This particular 

approach was used as an effective method for modeling directional thrust for a ship (Erdal, 

2015). First, a polygon with Λ sides is inscribed inside the circle created by Equation (70). A 

second circle with radius 𝑠𝑇𝑥
< 𝑆�̅�𝑥

   can be inscribed within the polygon. In this case, the 

maximum 𝑠𝑇𝑥
 is defined by 𝑠𝑇𝑥

= 𝑆�̅�𝑥
𝑐𝑜𝑠 (

𝜋

Λ
), where increasing the number of sides L decreases 

the difference between maximum 𝑠𝑇𝑥
 and  𝑆�̅�𝑥

. Considering that the error as defined by the 

difference between 𝑠𝑇𝑥
 and 𝑆�̅�𝑥

 is given by Equation (72), absolute error can be reduced below 

1% by setting the number of polygon sides Λ to 22. Using this approximation, power through a 

transformer can be written as Equation (73), and implemented directly into the MILP 

optimization model as Equation (74). 

𝜖 = 𝑆T𝑥
− 𝑠T𝑥

=  𝑆T𝑥
(1 − cos

𝜋

Λ
 ) → Λ ≥

𝜋

arccos (1 −
𝜖

𝑆T𝑥

) 

 
(72) 

𝑠T𝑥
= 𝑃T𝑥

cos (𝜃𝜆) +  𝑄T𝑥
sin (𝜃𝜆)   ,    𝜃𝜆 =

𝜋

Λ
+ 𝜆 (

2𝜋

Λ
) , 

𝜆 = 0,1, … , Λ − 1 

(73) 

𝑠T𝑥
≥ [ cos (𝜃𝜆)  sin(𝜃𝜆)] [

𝑃T𝑥

𝑄T𝑥

] (74) 



 

103 

 

 
(a)  

(b) 

Figure 5.2 – (a) Operating regions for the transformer must be constrained  so that 𝛼𝑆𝑇𝑥
=  √𝑃𝑇𝑥

2 +  𝑄𝑇𝑥

2  and 

 (b) Depiction of the polygon relaxation constraint 

 

Similar polygon relaxation techniques have been explored and used in recent literature (Ahmadi, 

Member, & Mart, 2015; Gholami, Shekari, & Grijalva, 2019; Mashayekh et al., 2017), but to the 

best of our knowledge, this concept has not been previously applied to limit transformer apparent 

power flows in a linear optimization.  

5.3. Test Case 

We use as test case the same system introduced in Chapter 4, a neighborhood in Huntington 

Beach, CA known as Oak View. The Oak View community includes over 300 buildings, 

including commercial and industrial operations, a primary school and library, and over 280 

primarily multifamily homes. In this chapter, we take a step further and model the time-varying 

load demand as well as the time-varying PV resource, which are necessary inputs for the time-

series MILP. A summary of both modeling and the description of assumed DER properties used 

in the current work are presented in this section. 

5.3.1. Electrical Demand and Resource Modeling  

Representative loads from the entire Oak View community building stock were selected from 

each of the three primary building sectors, namely, residential, commercial, and industrial. 

Detailed models of these buildings were developed in EnergyPlus (McDonald, 2017). The 
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outputs of these building models were used as inputs to the current DERopt optimization. 

Examples of a residential, commercial, and year-round industrial demand, colored by season, are 

presented in Figure 5.3. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.3 – Transformer-aggregated demand profiles  for (a) Residential loads, (b) Commercial loads, and (c) Industrial 
loads. Color shows representative load variations for different seasons. 

 

The building energy simulations produced hourly-resolved loads over an entire year. In order to 

pursue a tractable optimization model, the building annual energy datasets are reduced using the 

k-medoids methodology presented in Domíngues et al.(Domínguez-Muñoz, Cejudo-López, 

Carrillo-Andrés, & Gallardo-Salazar, 2011). The building energy simulation data was filtered to 

yield three representative days for each month. Finally, buildings behind a single transformer 

that are not subject to a demand charge were aggregated to reduce problem scale. Since the 

applicable Southern California Edison residential rates do not include a demand charge 

(Southern California Edison, 2019), most residential buildings were aggregated behind a single 

transformer. Thus, for residential loads, the terminology used here as “Building #” in fact refers 

to a cluster of residential buildings behind a single transformer. 

Solar generation measured from a PV system installed at the University of California, Irvine was 

used as input (White, 2016). The annual generation profile dataset captures and seasonal and 

weather variations.  

The maximum PV capacity for each building (or group of residential buildings) was determined 

using aerial images of the neighborhood and the PV software HelioScope (Folsom Labs, 2017). 

The maximum amount of PV kWp (kilowatts peak) that each rooftop in the Oak View 

community would be able to accommodate was determined considering rooftop geometry, set-

backs and keep-outs determined by rooftop equipment, exhaust ports, and fire safety code 

Hour

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

kW

20

30

40

50

60

70

80
Year-Round Horly Demand. Colored by Season - Building: 10

Summer

Spring

Winter

Hour

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

kW

0

20

40

60

80

100

120
Year-Round Horly Demand. Colored by Season - Building: 28

Summer

Spring

Winter

Hour

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

kW

0

100

200

300

400

500

600

700

800

900
Year-Round Horly Demand. Colored by Season - Building: 1

Summer

Spring

Winter



 

105 

 

requirements. From this survey, the kWp installed/ft2 coefficient (𝜎) was determined to be 0.009 

kWp installed/ ft2 for commercial and industrial buildings and 0.005 a kWp installed/ft2 for 

residential buildings. A detailed list of all building load maximum demand, total energy demand, 

allowable PV area, in ft2, the associated transformer number and its power rating, and building 

power factor is presented in Table 5.3. 

Note that, in the Oak View case, the commercial and industrial rooftop area that is structurally 

capable of having a solar PV installation is relatively small in comparison to the loads in those 

same buildings. As a result, approximately 25% of some large industrial loads can be met 

through onsite solar PV. Prior to optimization, it is clear that community-scale ZNE in this 

particular community is only feasible when the remaining 75% is produced elsewhere in the 

community. Figure 5.4 illustrates results from this analysis, where C&I buildings 3,5, and 6 

cannot meet their total annual energy demand with their own total annual onsite PV generation.  

 
Figure 5.4 – Building total annual demand versus maximum total onsite yearly PV production, both in (kWh) 

5.3.2. Electrical Distribution Infrastructure 

Our AEC microgrid test system was developed based upon the real-world infrastructure installed 

in the Oak View neighborhood. The topology of the electrical power system, was already 

presented in Chapter 4, and is shown again in Figure 5.5 for completion. The Oak View AEC 

comprises single and multi-family residential buildings, a primary school, a library, a small park, 
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and some industrial and commercial properties. The power distribution system to support the 

community is a three-phase 12 kV feeder, which branches into single-phase, 240 V phase-to-

phase (120 V phase-to-ground) circuits, for residential service and three-phase 480/277 V for 

commercial and industrial service.  

 
Figure 5.5 – Advanced Energy Community Low Voltage distribution grid network topology and load allocation  (loads 

identified as residential, R, commercial, C, or industrial, I) 

The test system is comprised of 54 nodes, 56 branches, 31 clustered building loads, and 30 

transformers. The Slack bus is node 1, and it represents the PCC with the wide-area grid. 

A load allocation was performed, using 31 representative buildings (and aggregated residential 

buildings), placing them in the nodes as shown in Figure 5.5 and scaling up their loads 

(clustering) to obtain a representative share of loads from each sector. For this community, 

electricity demand is 60% Industrial, 27% Residential and 13% Commercial. The distribution 

transformer kVA ratings, listed in Table 5.3 were sized to accommodate the aggregated loads 

served (i.e., all power flows kept below 1.p.u. loading), taking into consideration the discretized 

ratings of transformers that are commercially available. We assume only rooftop PV is installed 

in the community.  
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Table 5.3 – AEC building loads, Maximum demand (kW), Total annual demand (kWh), Type, Rate Structure, Total Area 

(ft2), Maximum rooftop PV installed (kW),  Connected Transformer number, Transformer rating (kVA) 

Building 

# 

Max 

Load 

(kW) 

Total 

(kWh) 

Load 

Type 

TOTAL 

Area (ft2) 

Max PV 

(kW) 
PF 

Transformer 

# 

Transformer 

Rating 

(kVA) 

1 872 2,743,640 I 140,086 1296 0.8 37 1250 

2 27 78,338 I 23,843 221 0.8 40 37.5 

3 100 327,587 I 1,892 18 0.8 28 150 

4 18 57,404 I 22,673 210 0.8 44 25 

5 170 840,106 I 24,575 227 0.8 39 250 

6 1152 6,550,187 I 52,881 489 0.8 41 1500 

7 5 8,066 I 6,278 58 0.8 42 25 

8 27 99,994 I 21,403 198 0.8 28 37.5 

9 21 68,847 I 27,140 251 0.8 43 37.5 

10 76 350,279 R 114,103 573 0.9 2 100 

11 420 1,585,376 R 308,880 1552 0.9 54 500 

12 91 423,972 R 128,665 647 0.9 4 150 

13 55 259,589 R 60,870 306 0.9 6 75 

14 146 676,063 R 201,141 1011 0.9 30 200 

15 6 24,338 R 1,719 9 0.9 18 25 

16 138 655,735 R 159,390 801 0.9 22 200 

17 90 449,899 R 121,954 613 0.9 8 150 

18 10 48,347 R 11,620 58 0.9 31 25 

19 81 374,790 R 88,777 446 0.9 16 100 

20 24 98,388 C 16,109 149 0.85 29 37.5 

21 24 35,067 C 3,987 37 0.85 34 37.5 

22 9 12,180 C 1,624 15 0.85 27 25 

23 49 56,530 C 4,867 45 0.85 35 75 

24 30 36,350 C 5,441 50 0.85 14 37.5 

25 74 109,745 C 11,990 111 0.85 38 100 

26 35 47,181 C 4,419 41 0.85 10 50 

27 79 120,429 C 15,379 142 0.85 33 100 

28 108 143,182 C 36,866 341 0.85 12 150 

29 779 1,655,836 C 155,232 1436 0.85 36 1000 

30 9 12,288 C 1,572 15 0.85 26 25 

31 20 38,001 C 6,691 62 0.85 11 25 

5.3.3. Cost and Operational Assumptions 

All DER cost and operational assumptions used are listed in Table 5.4. Our assumed capital cost 

for a battery storage system is based on the 2018 Lazard’s Levelized Cost of Storage Analysis 



 

108 

 

report(Lazard, 2018b), and it is specific to Lithium-ion, behind-the-meter Commercial & 

Industrial projects with battery storage co-located with PV. Also, the cost is composed of the 

storage module, the balance of system, and related engineering procurement and construction 

costs. We also assume that the O&M fixed cost is embedded in the capital cost monthly 

payments, and the variable O&M costs are assumed from (R. J. Flores & Brouwer, 2018) 

Table 5.4 – DERopt Cost and Operational Assumptions 

Assumption PV EES 

Capital Cost 2,000 $/kW 

(installed)(Lazard, 2018a) 

600 $/kWh (installed)(Lazard, 

2018b) 

O&M Cost 0.001 $/kWh (generated) 

(R. J. Flores & Brouwer, 

2018) 

0.001 $/kWh (charged/discharged) 

(R. J. Flores & Brouwer, 2018) 

Min SOC - 0.1 

Max SOC - 0.95 

Ramp rate - 0.25 (% of capacity) 

Efficiency 20% 90% (Charge/Discharge) 

State of charge holdover - 99.5% 

Interest rate 8% 

Project lifetime 10 years 

Equity 20% 

Required Return 12% 

 

DERopt also captures electrical utility rates for all building and sector types and also captures the 

intricacies of exporting electricity, under NEM and wholesale rates. Under NEM rates, the utility 

customer can export electricity at the rate at which it is purchased, or retail rates, minus a non-

bypassable charge (typically around $0.02 per kWh). However, a utility customer can only 

export as much electricity as it is imported. Moreover, the customer can only receive credits on 

their monthly bill, and cannot receive direct payment. In DERopt, if more electricity is exported 

than imported, the excess is not credited to the utility customer under NEM rates, but the 

customer is still able to sell electricity under wholesale rates, with values that are typically 

around $0.02 per kWh.  
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The utility electricity tariffs modeled in DERopt are based on Southern California Edison Time-

of-Use (TOU) rates schedules as of 2018. For large C&I customers, Schedule TOU-8-B-2 kV to 

50 kV for general service is adopted, and for residential customers, Schedule TOU-D-A for 

domestic service is adopted. Figure 5.6 illustrates the TOU rate schedules energy price ($/kWh) 

on the primary axis and demand charge ($/kW) on the secondary axis. Note that utility rates vary 

by season: Summer (from June to September, spanning 4 months) and Winter (from October to 

May, spanning 8 months) and also by day of the week (weekend versus weekday); for a given 

season and customer class, weekday rates are almost always more expensive than weekend rates. 

Moreover, in the TOU rate schedule assumed here, electricity prices can differ by up to nine-

fold, which is the case for residential summer weekday on-peak rate versus off-peak rate. 

Demand charges are applied only to C&I customers and are also time-dependent. The differences 

in electricity price, driven by the TOU rate schedules, and demand charges strongly influence 

battery storage dispatch.  

 
Figure 5.6 – Rate structures for utility electricity.  Schedule TOU-8-B is used for large C&I utility customers, and Schedule D-

A is used for residential utility customers. Color shows detail on different Schedules. Weekend rates are shown by dotted lines, 
and the secondary axis shows demand rates on dashed lines. 
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5.4. Results and Discussion  

The optimization algorithm is implemented in MATLAB R2015a (The MathWorks Inc., n.d.) 

using the YALMIP R20181012 toolbox (Lofberg, 2005; Löfberg, 2019) and CPLEX v.12.8 

(IBM, 2017) for the MILP solver. The k-medoids methodology reduces our dataset to 36 

representative days for simulating the entire year; therefore, 864 hourly intervals are simulated. 

The hardware used for the optimization is an Intel Xenon CPU E5-2680 v2 @2.80 GHz server 

with 20 cores, 40 threads, and 32 GB of RAM.  Simulation times average 280 seconds (with area 

and polygon transformer constraints, and around 41 minutes with island constraints. It is worth 

noting that piecewise linearization of the transformer constraints was implemented for the same 

scenarios and run times ranged from 25 to 30 minutes. Thus, polygon constraints are 

approximately 6 times faster. 

The results presented in this section aim to identify the relevance and impacts of including 

transformer constraints (TC) in the design of AEC systems. To capture common district system 

and microgrid goals, two strategies are tested: (1) Zero Net Energy constrained, i.e., to annually 

produce as much electricity as demanded, and (2) Islanding constraint, i.e., to be able to meet 

critical loads under a non-planned utility grid network outage situation. The solar PV area 

constraint was also evaluated. Thus, the first set of scenarios simulated refers to ZNE operation 

with and without transformer constraints, the second set explores area constraints added to the 

first scenario set, and the third set employs the same constraints of the second set but explores a 

microgrid islanded operation instead of ZNE operation. The list of all scenarios simulated is 

given below: 

1. ZNE / ZNE + Transformer Constraints: ZNE operation, constrained area for rooftop PV 

adoption, with or without transformer constraints;  

2. ZNE + Area Constraints / ZNE + Area Constraints + Transformer Constraints: ZNE 

operation, constrained area for rooftop PV adoption, with or without transformer constraints;  

3. Island/ Island + Transformer Constraints:  Island operation, constrained area, with or 

without transformer constraint. It is assumed that critical loads are industrial and school, all 

other loads are shed. During islanding, there is no revenue for NEM and wholesale exports. 
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5.4.1. Using Optimization to Quantify and Eliminate Transformer 

Overloads 

In all scenarios, excessive amounts of PV power (or REES discharge in some cases) export are 

the root cause for transformer overload. The degree to which these overloads exceed transformer 

ratings (without transformer constraints considered) is shown in the left panels of Figure 5.7, 

where each data point represents a transformer rated power capacity is plotted against its all-time 

maximum overload, i.e., its maximum power injection recorded over the optimization timeframe. 

The x-axis was split into two data ranges: 25-500 kVA and 500-1500 kVA for better 

visualization of results. Overloaded transformers are shown in red and above the dotted line.  

Out of a total of 30 transformers, the number of overloaded transformers was 13 for the first 

scenario, 17 for the second scenario, and 15 for the islanded scenario. The increase in 

transformer overloads when constraining the area points to the leveraging of the available 

physical area for PV deployment within the community, and the resulting increased PV adoption 

behind transformers feeding buildings with a larger rooftop area, namely transformers T11, T12, 

T29, T33, and T36. For almost all of those transformers, the maximum, area-constrained PV 

deployment is adopted (see Table 5.3 for maximum area-constrained PV deployment size and 

Table 2 in the Appendix, for transformer PV adoption) and these capacities lead to power 

production that is well beyond the transformer power ratings.  

After transformer constraints are applied, the kVA flows through each transformer are forced to 

comply with their kVA power rating, and overloads are eliminated as shown in the right panels 

of Figure 5.7. All transformer overloads were eliminated by either reducing PV adoption, 

increasing battery energy storage adoption, or curtailing PV at the C&I buildings.  

Figure 5.8 plots the net power flow through one given transformer, namely T54, over the 

optimization timeframe, before and after transformer constraints were applied; positive flows 

indicate exports to the grid. T54 is rated at 500kVA and feeds a large residential load cluster and 

hosts a large PV adoption that is in the MW order of magnitude (we refer the reader to Table 2  

in the appendix for the detailed adoption values for all scenarios). Overloads, which occurred in 

the scenario without transformer constraints, are indicated by the solid red curve and are 

compared against the transformer-constrained operation, indicated by the dashed blue curve. 

Notice that high exports of excess PV generation cause overloads. These high exports, however, 
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are removed in the constrained scenarios through the adoption of battery energy storage, which 

“clips” the high PV exports by charging with the excess PV generation. Transformer constraints 

leveraged the adoption of 855 kWh of combined EES and REES for the ZNE case. For the area-

constrained ZNE case, this adoption is even higher, at 2,332 kWh, to meet ZNE with a reduced 

PV adoption.   
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ZNE 

Without Transformer Constraints 

 
(a) 

ZNE 

With Transformer Constraints  

 
(b) 

ZNE (area-constrained) 

Without Transformer Constraints 

 
(c) 

ZNE (area-constrained) 

With Transformer Constraints 

 
(d) 

Island  

Without Transformer Constraints 

 
(e) 

Island  

With Transformer Constraints 

 
(f) 

Figure 5.7 – Transformer overloads  for (a) ZNE without transformer constraints and (b) ZNE with transformer constraints. 
(c) ZNE without transformer constraints and (d) ZNE with transformer constraints, (e) Island, without transformer 

constraints and (f) Island, with transformer constraints. 
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         ZNE 

 
        ZNE (area-constrained) 

 
Figure 5.8 – Transformer 54 (500kVA) kVA power flows: comparison of before (solid red curve) and after (blue dashed 

curve)  transformer constraints for ZNE (top), ZNE area-constrained (middle) and island (bottom) scenarios.  

5.4.2. Impacts of Transformer Constraints on DER Allocation 

Figure 5.9 compares the DER allocation in each individual building for each scenario set. 

Buildings 1 to 9 are industrial loads, buildings 9 to 19 are residential loads and buildings 20 to 31 

are commercial loads. The first scenario set (Figure 5.9a) does not impose any constraints on the 

area available for PV installation. With no transformer constraints applied, PV is adopted in 

proportion to the magnitude of the building loads. Therefore, most (63%, or 6.7 MW) of the total 

community PV capacity is adopted in the residential sector, as our test case has a large number of 

residential loads, followed by the industrial sector (24%, or 2.53 MW), and commercial sector 

(13%, or 1.37 MW). This allocation, overloads local transformers, as shown in Figure 5.7. When 

transformer constraints are added, however, the PV capacity is redistributed leading to a shift of 

the PV capacity from the residential to the C&I sector, which has its typically larger transformer 

capacity leveraged to compensate for the reduction in PV on the residential sites, with smaller 

transformers. For instance, the PV adoption is reduced at Building 11, a cluster of residential 

buildings (from 2,222 kW to 1,096 kW) and increased at Building 6, an industrial site (from 894 

to 2,766 kW).  
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After imposing area constraints for PV installation (Figure 5.9b), PV adoption becomes more 

evenly distributed across the buildings in the community, and little to no EES/REES is adopted. 

Intuitively, area constraints recommend PV system placement not at the buildings with larger 

loads but upon the buildings with available rooftop space. The constraint leverages the buildings 

in the residential and commercial sectors with enough area available for PV adoption to support 

the demand in the industrial sector, which cannot meet the energy demand using onsite PV. As 

discussed previously, this is often true for industrial building types, and regarding our test-case 

system, this fact is illustrated in Figure 5.4. Thus, these loads will likely depend upon energy 

imports from neighboring buildings, which reinforces the benefits of aggregating various loads 

as a community/microgrid if the goal is community-scale ZNE. As a result, the PV adoption in 

the vast majority of commercial and residential buildings equals to the maximum amount of 

area-limited maximum PV hosting capacity. For instance, PV adoption on Building 36, a cluster 

of commercial loads, is increased from 876 kW to 1,436 kW, the local area-constrained 

maximum PV capacity. This DER allocation, however, causes overloads, especially in 

residential transformers that are typically smaller in power capacity. When transformer 

constraints are added, transformer overloads are avoided through the adoption of EES/REES. 

REES storage is shown to be preferred (Figure 5.9) since discharge for grid export is allowed.   

For the island case, a significant amount of storage is deployed to accomplish islanding even 

without transformer constraints. Nonetheless, excessive exports to meet neighboring loads also 

cause transformer overloads. Therefore, there is a shift from EES to REES investment since 

batteries are extensively required to export to neighbors.  

In sum, all previous cases highlight the value of an optimal DER investment planning with 

transformer constraints, especially in area-constrained situations, where the local PV capacity 

must be high and can’t be reduced to meet ZNE goals, and storage must be deployed to avoid 

transformer overloads. The optimization can find the least cost allocation, where and how much 

DER should be installed, even though it might not have been the most obvious solution. 
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(a) 
 

 
(b) 

 

 
(c) 

Figure 5.9 – Building DER allocation comparison with and without transformer constraintsfor scenarios: (a) ZNE, (b) ZNE 
(area-constrained), and (c) Island (area-constrained). Transformer kVA ratings are indicated by an x marker. 

 
 

Island (area-constrained) 

 

ZNE (area-constrained)  

 

ZNE 
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From the aggregate AEC perspective, for all scenarios, transformer constraints promote a slight 

increase in overall PV adoption, which is always accompanied by an increase in battery energy 

storage adoption. Table 5.5 lists the total DER adoption per DER type (PV, EES, and REES) for 

each scenario, where the trend described above is confirmed. At first, the increase in total PV 

adoption with transformer constraints may seem counterintuitive. We suspect that this increase is 

driven by the round-trip efficiency (RTE) of battery energy storage. A case run with 100% RTE 

for both EES and REES shows a marginal 1.4% increase in PV adoption, which confirms our 

guess. Moreover, from a design perspective, this trend is indeed reasonable, since the increased 

PV and battery storage capacity is (1) better sized to meet loads locally while avoiding large 

imports and exports that will result in transformer overloads, and (2) more distributed amongst 

buildings, as shown in Figure 5.9. 

In total, for the area-unconstrained ZNE case transformer constraints add 101 kW of PV (1% 

increase), 2,104 kWh of EES (6 fold increase) and 254 kWh of REES (inexistent beforehand). 

For the area-constrained ZNE case, transformer constraints add 631 kW of PV (5.6% increase), 

2,259 kWh of EES (12 fold increase), and 10,844 kWh of REES (inexistent beforehand). For the 

islanded case, transformer constraints do not significantly change the total PV and EES plus 

REES combined installed capacity; interestingly, PV and total storage capacities remain identical 

for practical purposes (ignoring differences below 10 kW/ 20 kWh). However, the locations of 

the DER resources change noticeably: the optimization reduces PV adoption in certain buildings, 

to remove transformer overloads while relocating storage (both EES and REES), and migrating 

426 kWh of EES storage capacity to REES.  
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Table 5.5 – Total Building DER adoption for all scenarios 

Scenario 
DER 

Type 

Total DER allocated 

Without 

Transformer 

Constraints 

With 

Transformer 

Constraints 

ZNE 

(unconstrained) 

PV (kW) 10,585 10,686 

EES (kWh) 424 2,528 

REES (kWh) 0 254 

ZNE  

(area-constrained) 

PV (kW) 10,580 11,211 

EES (kWh) 261 3,220 

REES (kWh) 0 10,844 

Island 

(area-constrained) 

PV (kW) 9,902 9,914 

EES (kWh) 11,402 10,976 

REES (kWh) 19,875 20,280 

 

The different DER allocations of Table 5.5 produce different total project costs. For the ZNE 

scenarios, adding transformer constraints substantially increased cost. For our specific test case, 

the first year of operation total cost (including equipment capital cost and operational costs) for 

the ZNE scenario with no transformer constraints is about $3.5 million. When transformer 

constraints are added, this cost goes up to $3.81 million. Similarly, for the area-constrained ZNE 

case, the first-year cost is $3.57 million without transformer constraints and $5.07 million with 

transformer constraints. The need for battery energy storage adoption drives the cost increase. 

However, for the island scenario, since the initial storage adoption was already required for 

islanding, there is not a significant difference between costs before and after transformer 

constraints are applied; the total cost is $6.66 million without transformer constraints and $6.67 

million with transformer constraints 

5.4.3. Transformer versus Storage Investment Costs 

To address the choice of installing storage instead of upgrading transformer infrastructure, we 

provide a brief analysis of costs for each option. In total, using the cost assumptions from Table 

5.4, the annual electricity costs for the Oak View AEC ZNE scenario increase by over $1.5 

million (this includes the annual amortized capital cost and also operation costs/revenue over one 

year). However, a simple cost exercise might show the value of adding this extra DER capacity. 

First, the total additional transformer capacity that would otherwise be needed to accommodate 
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the PV reverse power flows to achieve community ZNE is 6,565 kVA. Assuming a transformer 

replacement cost of $147/kVA (PG&E, 2016), the total cost of all replacements would be 

$965,055. However, with additional DER, the amount of revenue per kWh exported at the PCC 

increases from (from $0.17 to $0.26 per kWh). This happens because battery storage reduces 

grid imports (and in turn exports because of ZNE operation) at the PCC in 48% (from 8.58 GWh 

to 4.49 GWh). Simultaneously, REES performs arbitrage, that is, delayed export until peak cost 

periods. All of these effects and capabilities could become extremely valuable to the utility grid 

network that attempts to support very high renewable penetrations. The added flexibility inherent 

to battery storage will likely introduce possibilities for new and more valuable revenue streams, 

not yet considered here, building the case for a possible recovery of the investment throughout 

the project lifetime.  

Additionally, with the added storage, the PV electricity used to directly power the AEC loads 

increases by 12%. Moreover, the reduced grid imports avoid a total of 7,040 MTCO2 over 10 

years, estimated considering the hourly grid emission factors for the CAISO grid in 2018 

(CAISO, 2018). Moreover, before any DER deployment, 17.39 GWh is imported from the grid 

to meet the annual AEC demand. After PV and battery storage deployments, at best, the total 

grid electricity imports are reduced by 74% (to 4.49 GWh), and 5.94 GWh electricity is exported 

at the PCC back to the bulk system (due to the ZNE constraint) as renewable PV electricity. The 

total carbon emissions offset would consider both the time-resolved offset associated with utility 

imports and the marginal carbon benefit of exporting excess renewable generation back to the 

utility. The detailed analysis required to resolve a useful approximation of these emissions 

currently falls outside the scope of this work 

From a technical perspective, locally deploying storage to prevent transformer overloads avoids 

extremely high reverse power flows, which guarantees that the “duck curve” effect (California 

Independent System Operator (CAISO), 2016) does not propagate upstream in the distribution 

system which would require infrastructure upgrades elsewhere. Extending this problem to 

include additional adjacent communities, connecting electrical infrastructure, and decisions 

surrounding infrastructure upgrades and community versus utility energy resources would begin 

to capture the various tradeoffs that must be considered as society moves to high renewable 

penetration. Moreover, the current analysis does not capture the cost benefits from the added 

resilience and reliability inherent to the local generation and storage. Lastly, as is shown for the 
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islanding scenario when storage is inevitably necessary, transformer constraints will provide 

valuable information on where to locate these assets, while the sole use of line and voltage 

constraints may not. 

5.5. Summary  

This chapter developed a mixed integer linear program for the optimal DER investment planning 

and operation of an advanced energy community microgrid, constrained by available physical 

space for rooftop solar PV deployment and also grid constraints with a novel technique to 

include transformer power constraints. We used a real-world test case, involving 31 customer 

loads modeled in EnergyPlus, to accurately represent the community aggregated load stock of 

residential, commercial, and industrial utility customers. We modeled operation goals typically 

desired for district systems such as Zero-Net-Energy and islanding as a microgrid during 

unplanned grid outages. 

Regarding DER allocation in urban district systems, in order to meet ZNE or islanding goals 

within an AEC, our results show that: 

 In urban district systems, ZNE can only be accomplished at a community level; large utility 

customers in the C&I sector most likely cannot entirely deploy enough PV to meet local electricity 

demand since they typically have high demand and there is a limited amount of space available for 

rooftop PV deployment at those sites. Therefore, to accomplish ZNE, the available area for PV 

installation in the residential sector needs to be leveraged to support the community energy goals. 

 Transformer overloads will likely occur as a result of high PV deployments in low voltage 

urban networks due to transformer sizes that were not designed to consider significant 

reverse power flow of PV electricity. Thus, including transformer constraints in the 

optimization problem formulation will provide a more accurate DER allocation; the large 

amount of local solar PV required to meet ZNE is most times larger than what currently installed 

low-voltage utility distribution transformers can handle. Thus, the negative grid impacts associated 

with a high PV penetration will not only manifest as voltage and line ampacity margins being 

violated, which is the main focus of previous literature but also likely be accompanied by 

transformer overloads due to high reverse power flows (excess PV exported back to the grid). 

 It is possible to altogether remove transformer overloads while integrating high penetrations 

of solar PV into the AEC without any required transformer upgrades; integrating transformer 

constraints into a MILP optimization to limit the power flows at the transformer level produces 
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entirely different optimal DER allocation and operation results. The main strategies to avoid 

overloads are deploying battery energy storage and also optimally re-distributing PV throughout 

the community. 

 Polygon relaxations are a practical linearization approach for transformer power flow 

constraints; using polygon relaxations to capture the non-linear relationship between active and 

reactive power flows at the transformer showed adequacy in accuracy (errors below 1%), and 

computation tractability (run times of approximately 4 minutes), as well as a superior 

computational performance. When compared to comparable linearization methods such as 

piecewise linearization or linear interpolation, polygon relaxation run time is about six times faster.  

 The use of transformer constraints within DER investment planning, associated with the 

right battery storage allocation and dispatch, will effectively increase PV penetration as 

opposed to the use of practical rules, such as the “15%” rule. Taking the ZNE, area-constrained 

scenario as an example, the total PV installed capacity over the entire community is 11,211 kW 

which is 1.7 times greater than the total installed transformer capacity of 6,500 kVA which shows 

an excellent potential for PV hosting capacity maximization beyond conservative rules of thumb. 
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6 Optimal DER Allocation in 

Meshed Microgrids with 

Grid Constraints 

Highlights  

 A novel linear decoupled power flow method is applied to a MILP for DER optimal 

allocation. 

 The novel method has an improved accuracy for nodal voltage solution is improved 

for meshed networks  

 As a result, the accuracy of the optimal DER allocation is improved. 

6.1. Literature Review 

The design of microgrids that enable reliable delivery of clean energy involves numerous 

modeling challenges that go beyond simple load and generation balancing. We refer to this 

design process as DER optimal allocation problem, which consists of determining the best 

(optimal) type, size, location, and dispatch of DER to meet a customer load. The problem is non-

linear, highly constrained, multi-objective, mixed-integer, and multi-modal. Successful solution 

methods tend to reduce the complexity of this problem through omission or simplification of 

complex components, until a more tractable problem is obtained. The research community has 

identified many specific goals and constraints that are crucial to obtaining a cost-effective, 

accurate, and realistic design. One approach is centered on modeling the local electric utility 

infrastructure in place in order to design the DER system to work within current utility 

infrastructure and power quality constraints. 

One big challenge is to linearize the highly non-linear power flow equations, which relate active 

and reactive power flows through a power system with voltage magnitudes and phase angles 

while maintaining sufficient accuracy. There is a vast body of work addressing this individual 
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effort (Akbari & Tavakoli Bina, 2016; Baran & Wu, 1989b; Coffrin & Hentenryck, 2013; 

Macedo, Montes, Franco, Rider, & Romero, 2016; Z. Yang, Bose, Xia, Zhong, & Kang, 2016), 

and amongst most notable achievements are the formulations proposed by Bolognani et 

al.(Bolognani & Zampieri, 2016) and the  LinDistFlow(Baran & Wu, 1989a) equations. 

Bolognani et al.(Bolognani & Zampieri, 2016) derived a linear approximation of the power flow 

equations with a bounded error starting from the relationship between apparent power, voltage, 

and current, formulated as nodal injections at PQ nodes (that is, nodes in which the active and 

reactive power are imposed, or known, and do not depend on nodal voltage). One of the main 

assumptions of this method is that the apparent power flow is sufficiently small, so its 

relationship with voltage is explicit. Moreover, in its simplified formulation (considered in this 

paper) shunt admittances are assumed negligible.    

LinDistFlow(Baran & Wu, 1989a) simplifies a set of recursive branch flow equations for 

computing active (P), reactive (Q) powers, and voltages (V) across a radial network using the 

forward and backward updates method from known values at the sending/receiving feeder ends. 

First, in the backward update (that is, starting from the last branch in the network and moving 

towards the reference node) all real and reactive power branch flows are calculated from known 

load P and Q injection values. Then, in the forward update (starting from the reference node and 

moving towards the end of the circuit), branch voltage drops are calculated, and all nodal 

voltages and phase angles are updated. This approximation was explicitly developed for radial 

networks. One of its central assumptions is that the branch losses quadratic terms 

𝑅(𝑃2 + 𝑄2)/𝑉2 and 𝑋(𝑃2 + 𝑄2)/𝑉2, where R and X are the branch resistance and reactance 

respectively, are small (and thus negligible) compared to the branch power flows. Even though 

the LinDistFlow equations have been widely used in a variety of models (Fachbereich, 2018; 

Klauber, 2016; Mashayekh et al., 2017; H. Wang et al., 2017) to calculate voltage and branch 

flows within an optimization model, we identify a clear drawback: it is not suitable for meshed 

networks.  

Two benefits associated with meshed networks are increased reliability and more uniform 

voltage profiles resulting from the redundant power flow paths. Meshed grids architectures have 

been used in the medium voltage distribution level. One example is Consolidated Edison’s 

underground meshed network in New York City. A common approach to a meshed grid network 
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in a microgrid is the typical ring bus architecture with N+1 level of redundancy. There are many 

microgrid projects, including notable examples from the DOE Smart Power Infrastructure 

Demonstration for Energy Reliability and Security (SPIDERS) program and the Renewable and 

Distributed Systems Integration (RDSI) program that use a meshed grid network. Amongst these 

projects are the Santa Rita Jail microgrid, in Alameda County, California,(Chevron Energy 

Solutions Company, 2014) Twenty Nine Palms military microgrid (Bose & Russel, 2012), 

Illinois Institute of Technology: Perfect Power Prototype(Award & Fc, 2014). Operational 

meshed microgrids include the Philadelphia Navy Yard (Kumar, 2015),  Princeton University 

campus (“Princeton Microgrid,” 2019), and the University of California San Diego 

campus(Washom, 2013).  

The modeling challenge surrounding meshed networks stem from the fact that the concept of 

“upstream” and “downstream” power flow no longer applies. Recent literature with focus on 

meshed networks has revisited and expanded specific topics such as novel formulations for 

power flow(Bharti & Mala De, 2018; J. Yang et al., 2016),  protection coordination(Bello et al., 

2018), voltage and frequency control(Riverso, Sarzo, & Ferrari-Trecate, 2015), voltage 

regulation(Brandao, Pomilio, Caldognetto, Buso, & Tenti, 2016), and DER power 

management(Patterson & Geary, 2016). Moreover, a novel linearized power flow solution 

developed by Yang et al. (J. Yang et al., 2016), demonstrated superior accuracy and robustness 

when applied to meshed networks as compared to previous methods. The formulation does not 

depend on the radial topology of the network since it uses nodal injections as opposed to branch 

flows. Additionally, it is particularly interesting from an optimization standpoint because it 

decouples the relationship between voltage and phase angle, which typically gives rise to a 

quadratic problem formulation(J. Yang et al., 2016). The key improvements in the assumptions 

underlying the DLPF formulation are the inclusion of shunt suceptances, the voltage difference 

across buses and the conductance matrix G. In fact, the DLPF model is a generalization of 

Bolognani et al. (Bolognani & Zampieri, 2016) formulation, for meshed networks with PV 

(voltage controlled) nodes.  

In this analysis, we use Yang et al. DLPF approach to implement voltage and branch kVA flow 

constraints (which we refer here to grid constraints) in the DER optimal allocation problem. 

While the DLPF formulation proposed by Yang et al. can be incorporated into a MILP 

optimization problem, it has not yet been formulated to do so. First, we compare the nodal 
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voltage and branch kVA flow solutions proposed by LinDistFlow and Bolognani et al., against 

DLPF solutions for the radial and meshed benchmark 33-node systems. Then, we test the DER 

optimal allocation problem in a real-world 115-node meshed microgrid test case, comparing 

results when using either DLPF or LinDistFlow formulation for the linearized power flow while 

enforcing grid constraints.  

6.2. Contributions  

This chapter addresses the gap in the literature regarding the study of linearized power flow 

formulations applied to meshed networks within a mixed-integer linear optimization. To the best 

of our knowledge, all previous DER investment-planning studies that incorporate grid constraints 

assume radial circuits, which are indeed the vast majority of low voltage distribution feeders. 

Nonetheless, meshed microgrids and networked systems topologies will likely pose a challenge 

to the traditional way to implement a linearized power flow within a linear optimization, and so 

far, no study has proposed a suitable approach that is accurate for such systems.  

The contributions of this chapter are:  

 To leverage the novel decoupled linearized power flow formulation and implement it 

into a MILP optimization for DER investment planning. 

 To quantify the impact on DER allocation when using a formulation that is not 

suitable for meshed networks. 

 To compare the effects of stricter voltage constraints (ranging between 0.95 – 1.05 

p.u) on DER optimal adoption. 

6.3. Problem Formulation 

This section summarizes the underlying equations that model the grid constraints as implemented 

in DERopt, an optimal DER allocation tool initially established in  (R. J. Flores & Brouwer, 

2018). All-electric network topology parameters, such as per unit branch resistances (𝑟𝑖𝑗), 

reactances (𝑥𝑖𝑗), base values for per unit calculations, and branch connections, follows the 

format of a MATPOWER (Zimmerman, Murillo-Sánchez, & Thomas, 2011)  — an open-source 

MATLAB toolbox for solving the AC steady-state power flow problem — test case input file. 
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From this file, we calculate the sparse nodal admittance matrix 𝑌. The constraints developed in 

this current work are implemented using the original DERopt formulation described in Chapter 

5, section 5.2 such as energy balances and technology constraints, and also referred in (Novoa, 

Flores, & Brouwer, 2019). 

The optimization algorithm is implemented in MATLAB(The MathWorks Inc., n.d.) R2015a  

using the YALMIP(Lofberg, 2005; Löfberg, 2019) R20181012 toolbox and CPLEX(IBM, 2017) 

v.12.8  for the MILP solver. The k-medoids methodology reduces our dataset to 36 

representative days during the entire year; therefore, we simulate 864 hourly intervals. The 

hardware used is an Intel Xenon CPU E5-2680 v2 @2.80 GHz server with 20 cores, 40 threads, 

and 32 GB of RAM. 

6.3.1. Notation 

In this section, we define relevant model sets and subscripts used in the DLPF formulation. 

Additionally, Table 6.1and Table 6.2 provide a list and description of all model parameters and 

decision variables. Bold variables represent matrices (or vectors) that collect the n (nodal) values 

or b (branch) values for t (hourly) increments of the model decision variables. 

The variables 𝜽, 𝒗, 𝒑, and 𝒒 are t-dimensional vectors which collect the decision variables for 

each time step (𝜃𝑡, 𝑣𝑡 , 𝑝𝑡, and 𝑞𝑡), and are indicated in bold. Also, power flow variables are 

indexed by the sets S, the set of PV nodes, L, the set of PQ nodes, and R, the set of reference 

nodes. 

 t ∈ T : Set of hourly increments  

 n ∈ N : Set of nodes 

 i ∈ I: Set of “From” nodes 

 j ∈ J: Set of “To” nodes 

 b ∈ ℬ: Set of branches 

 𝜆 ∈ Λ : Set of line segments for polygon relaxation 

 L: Set of PQ nodes 

 S: Set of PV nodes 

 R: Set of reference (slack) nodes 
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Table 6.1 – Model Parameters  

Parameter Description Units Value 

𝒀 Nodal admittance matrix. ℝ𝑁×𝑁(sparse) p.u. Based on MATPOWER 

study case provided  

𝑮 Nodal conductance matrix. ℝ𝑁×𝑁(sparse) p.u. Based on MATPOWER 

study case provided 

𝑩 Nodal susceptance matrix. ℝ𝑁×𝑁(sparse) p.u. Based on MATPOWER 

study case provided 

𝑩′ Nodal susceptance matrix without shunt 

elements. ℝ𝑁×𝑁(sparse) 

p.u. Calculated from B 

𝜽0 Initial voltage angle  ∈ ℝ(𝑁−1)×𝑇 degree Based on MATPOWER 

study case provided 

𝒈𝒊𝒋 Branch conductance matrix. Elements   
𝑔𝑖𝑗 are entries   ∈ ℝℬ×𝑇  

p.u. Based on MATPOWER 

study case provided 

𝒃𝒊𝒋 Branch susceptance matrix. Elements   
𝑏𝑖𝑗 are entries  ∈ ℝℬ×𝑇  

p.u. Based on MATPOWER 

study case provided 

𝜶 DLPF parameter matrix  ∈ ℝ(𝑁−1)×(𝑁−1) (sparse) p.u. 𝑁

𝐿
  (From  (J. Yang et al., 

2016)) 

𝜷 DLPF parameter matrix  ∈ ℝ(𝑁−1)×(𝑁−1) (sparse) p.u. 𝑀

𝐻
 (From  (J. Yang et al., 

2016)) 

 �̃� DLPF parameter matrix  ∈ ℝ(𝑁−1)×(𝑁−1) (sparse) p.u. 𝐻 − 𝛼𝑀 (From  (J. Yang 

et al., 2016)) 

�̃� DLPF parameter matrix  ∈ ℝ(𝑁−1)×(𝑁−1) (sparse) p.u. 𝐿 − 𝛽𝑁 (From  (J. Yang 

et al., 2016)) 

𝑉𝑏𝑎𝑠𝑒  Base voltage for per-unit calculations kV 12 /0.48 /0.120  

𝑆𝑏𝑎𝑠𝑒  Base apparent power for per-unit calculations MVA 100  

𝑍𝑏𝑎𝑠𝑒  Base impedance power for per-unit calculations Ohms 1.44(12kV),  

0.0023(480V), 

0.0004(208 ) 

𝑣 , �̅� Upper and lower voltage limit for voltage 

constraints  

p.u. 0.95 p.u. and 1.05 p.u. 

respectively 

𝑺𝒊𝒋𝑹
 Power Rating of branch connecting buses i 

and  

p.u. Based on power 

system  topology 

𝜽𝝀 Angle of segment 𝜆 of polygon relaxation degrees Based on the number 

of polygon sides 𝐿 

𝚲 Number of sides for polygon relaxation n/a 22 

𝝐 Approximation error for polygon relaxation p.u. <1% 
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Table 6.2 – Model decision variables 

Decision 

Variable 

Description Units 

𝜽 Nodal Voltage phase angle matrix. ℝ𝑁−1 degrees 

𝒗 Nodal Voltage magnitude matrix.  ℝ𝑁−1 p.u. 

𝒑 Nodal Active power injection. ℝ𝑁−1 p.u. 

𝒒 Nodal Reactive power injection. ℝ𝑁−1 p.u. 

𝒑𝒊𝒋 Branch active power flow. ℝ𝑁−1 p.u. 

𝒒𝒊𝒋 Branch reactive power flow. ℝ𝑁−1 p.u. 

𝐬𝐢𝐣 Branch apparent power flow. ℝ𝑁−1 p.u. 

6.3.2. Decoupled Linearized Power Flow 

We formulate the governing power flow equations using the original DLPF formulation 

presented in (J. Yang et al., 2016). Please refer to (J. Yang et al., 2016) for the original derivation 

of the DLPF model. Here, we summarize the resulting linearized power flow equations only. We 

adapt the DLPF formulation to a matrix format that can be implemented in a MILP optimization, 

i.e., the power flow solution is calculated for every hourly interval t, which corresponds to each 

hourly interval at which the decision variables must be calculated, within the optimization 

timeframe. Thus, the DLPF constraints are implemented for each time step. 

Equation (75) defines the conductance 𝐺 and susceptance 𝐵 matrices as the real and imaginary 

parts of the nodal admittance matrix 𝑌𝐵𝑈𝑆 , which collects the individual i-j admittance values. 

Equation (76) defines nodal voltage phase angles, 𝜽[𝑆;𝐿], in degrees and Equation (76) (77) 

defines the matrix that collects all nodal voltage magnitudes, 𝒗𝐿 , in per-unit.Variables  

�̃�−1, �̃�−1, �̃�, �̃�, ∝ 𝒂𝒏𝒅 𝜷  are time-invariant parameters, which only depend upon network 

topology ( for the interested reader, the definition of these variables can be found in  (J. Yang et 

al., 2016)) Variables. 𝒑[𝑆;𝐿] and 𝒒𝐿 collect the per-unit reactive and active power nodal 

injections, which equal transformer injections, as defined by Equation (78) .Variables 𝑷𝑇 𝑸𝑇 

collect transformer nodal injections (𝑃T𝑥𝑡
.and 𝑄T𝑥𝑡

). 
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𝒀𝐵𝑈𝑆 = 𝑮 + 𝑗𝑩  (75) 

𝜽[𝑆;𝐿]  = �̃�−1[𝒑[𝑆;𝐿] + �̃� −  𝜶(𝒒𝐿 + �̃�)]  (76) 

𝒗𝐿 = �̃�−1(𝒒𝐿 + �̃�) −  𝜷 (𝒑[𝑆;𝐿] + �̃� ) (77) 

𝒑[𝑆;𝐿] = 𝑷𝑇𝑥
  , 𝒒𝐿 =  𝑸𝑇𝑥

  (78) 

𝜶 =
𝑵

𝑳
=  

𝑮[𝑆;𝐿],𝐿

−𝑩𝐿,𝐿
, 𝜷 =

𝑴

𝑯
−

𝑮[𝐿;𝑆],𝑅

𝑩[𝑆;𝐿],[𝑆;𝐿]
′   

(79) 

�̃� = 𝑯 − 𝜶𝑴 ,    �̃� = 𝑳 − 𝜷𝑵 (80) 

�̃� =  [
𝑩𝑆,𝑅

′ −𝑮𝑆,𝑅 −𝑮𝑆,𝑆

𝑩𝐿,𝑅
′ −𝑮𝐿,𝑅 −𝑮𝐿,𝑆

] [
𝜽𝑅 
𝒗𝑅

𝒗𝑆

]  
(81) 

�̃� =  [𝑮𝐿,𝑅 𝑩𝐿,𝑅 𝑩𝐿,𝑆] [
𝜽𝑅 
𝒗𝑅

𝒗𝑆

] 
(82) 

𝒑𝒊𝒋 = (𝒗𝑖 − 𝒗𝑗)𝒈𝒊𝒋 − (𝜽𝑖 − 𝜽𝑗)𝒃𝒊𝒋 (83) 

𝒒𝒊𝒋 = (𝒗𝑖 − 𝒗𝑗)(−𝒃𝒊𝒋) + (𝜽𝑖 − 𝜽𝑗)𝒈𝒊𝒋 (84) 

𝑔𝑖𝑗 =
𝑟𝑖𝑗

𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2  , 𝑏𝑖𝑗 =
𝑥𝑖𝑗

𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2    (85) 

6.3.3. Voltage Constraints  

Equation (86) limits all nodal voltages, at time t, to an upper and lower per-unit bound. We use 

the voltage bounds suggested by the ANSI C84.1 standard(ANSI, 2005). 

𝑣  ≤  𝑣𝑡 ≤ �̅� (per unit) 
(86) 
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6.3.4. Branch kVA Constraints  

Similar to Chapter 5, where non-linear the transformer capacity limits, we perform a polygon 

relaxation of the apparent power circle of branch kVA 𝒔𝒊𝒋
2 = 𝒑𝒊𝒋 

2 + 𝒒𝒊𝒋
2 , A second circle with 

radius 𝑠𝑖𝑗  smaller than the branch rated power capacity (𝑆𝑖𝑗𝑅
), that is,  𝑠𝑖𝑗 < 𝑆𝑖𝑗𝑅

  , can be 

inscribed within the polygon. In this case, the maximum 𝑠𝑖𝑗 is defined by 𝑠𝑖𝑗 = 𝑆𝑖𝑗𝑅
 𝑐𝑜𝑠 (

𝜋

Λ
), 

where increasing the number of sides Λ decreases the difference between maximum 𝑠𝑖𝑗 and rated  

𝑆𝑖𝑗𝑅
. Considering that the error is defined by the difference between 𝑠𝑖𝑗  and 𝑆𝑖𝑗𝑅

 is defined by 

Equation (88), the absolute error can be reduced below 1% by setting polygon sides Λ to 22. 

Using this approximation, power through a branch can be written as Equation(89), and 

implemented into the optimization model as Equation (90) For simplifying notation, the 

subscript t is omitted here. Nonetheless, the polygon constraints are applied to every time step. 

𝒔𝒊𝒋
2 = 𝒑𝒊𝒋 

2 + 𝒒𝒊𝒋
2  (87) 

𝝐 =  𝑺𝒊𝒋𝑹
− 𝐬𝐢𝐣 = 𝑺𝒊𝒋𝑹

(1 − 𝑐𝑜𝑠 (
𝜋

Λ
))   Λ ≥ (

𝜋

𝑎𝑟𝑐𝑐𝑜𝑠(1−
𝜖

𝑆𝑖𝑗𝑅
)

) (88) 

𝒔𝒊𝒋 = 𝒑𝒊𝒋𝑐𝑜𝑠 (𝜽𝝀)  + 𝒒𝒊𝒋𝑠𝑖𝑛 (𝜽𝝀)   ,    𝜽𝝀 =
𝜋

Λ
+ 𝑘 (

2𝜋

Λ
) ,  𝜆 = 0,1, … , Λ − 1 (89) 

𝒔𝒊𝒋 ≥ [ cos (𝜽𝝀)  sin(𝜽𝝀)] [
𝒑𝒊𝒋

𝒒𝒊𝒋
] (90) 
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Figure 6.1 – Polygon relaxation for branch kVA power flows (𝑠𝑖𝑗  ). 𝑝𝑖𝑗  and 𝑞𝑖𝑗  are branch active and reactive flows 

respectively. A polygon of 𝛬 sides is inscribed in the complex power circumference (dashed line) that defines the branch kVA flow 
limit according to its rated power 𝑆𝑖𝑗𝑅

 . The k sides of the polygon, and respective angles 𝜃𝜆 are used to calculate the 

approximated apparent power limit : 𝑠𝑖𝑗 = 𝑆𝑖𝑗𝑅
 𝑐𝑜𝑠 (

𝜋

𝛬
), which is the radius of the circumference inscribed within the 𝛬-sided 

polygon (solid red line). Equation (72) defines the error of this approximation. 

6.4. Test Cases 

This section describes the various model inputs required for the comparison of the different 

ACPF linearization methods 

6.4.1. Radial and Meshed Test Circuits 

We use as test circuits the radial IEEE-33 node and an adapted meshed version, as proposed in 

Ref (Baran & Wu, 1989a).  This circuit is chosen due to the large body of work that has 

previously examined it as well as the ease of converting it to a multi-mesh system. The circuit is 

a 12.4 kV primary radial distribution feeder with 33 nodes, the total loading of 3.7 MW/2.3 

MVar, the official test case loading,(0.85 lagging average power factor), and a maximum R/X 

ratio of 3.03. For a meshed test case benchmark, five looping branches are added to the radial 

feeder. Figure 6.2 shows the schematics of the feeder radial and meshed topologies. For 

complete branch impedance and nodal injection values, the reader can refer to Ref (Baran & Wu, 

1989a). 
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(a) (b) 
Figure 6.2 – (a) Radial 33-node feeder test case.  (b) Adapted meshed 33-node network test case, a hypothetical 12.4 kV 

system with 33 nodes and 32 branches for the radial case plus five looping branches for the meshed case. Total loading is 3.7 
MW/2.3 MVar. The maximum R/X ratio is 3.03.  

6.4.2. Real World Meshed Microgrid Circuit 

The purpose of this circuit is to represent a real microgrid system. Therefore, we use the real-

world distribution power system introduced in Chapter 4 and load and PV time-series data 

detailed in Chapter 5. Node 1 is the slack node and represents the PCC with the wide-area 

electricity grid. We assume a balanced, 3-phase power system. The primary service voltage is 

12.47 kV, and the secondary voltages are 480 V for C&I customers and 208 V for residential 

customers. There are 115 nodes, 31 transformers that serve load clusters, and 117 branches. Of 

the 117 branches. Three are looping branches. The maximum R/X ratio is 3.5 for primary circuits 

and 5.5 for secondary circuits. Figure 6.3 shows the schematics of the circuit topology.  

 

 

Figure 6.3 – Test case topology, based on a real-world power system  modeled as 115 nodes, 31 of which are transformers 
that serve clusters of industrial, commercial, and residential loads. The primary voltage is 12.47 kV, and secondary voltages are 

480 V, and 208 V. Node 1 is the PCC with the wide-area grid.  
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To capture the worst-case voltage drop possible, we extend our test case to include secondary 

circuits. Hence, we model each distribution transformer from which secondary lines (line drops) 

extend out to the customer loads. We model transformers as per unit impedances connected in 

series between a primary (higher voltage) and a secondary (lower voltage) node. We use typical 

values(Eaton & Cooper Industries, n.d.) for distribution transformer equivalent per-unit 

impedances. To simplify the analysis, we aggregate customer loads on the same transformer into 

a single (constant PQ) load cluster. Each load cluster connects to the secondary of the 

transformer through an equivalent line drop circuit. We assume transformer kVA rated power 

values are just above the maximum peak load of its load cluster and place all load cluster at the 

end of the secondary conductors. We assume an average of five customers per transformer; 

therefore, we divide the equivalent line drop circuit impedance by five. Finally, we assume the 

length of the secondary conductor is 65 feet. We assume a 0.9 lagging power factor for 

residential customers and 0.8 lagging power factor for C&I customers. The primary lines 

conductors used are assumed to be in overhead configuration, using ACSR aluminum conductors 

with 4 AWG  (R=2.17 ohm/mile, X=0.61 ohm/mile) and secondary line drops are assumed to be 

6 AWG (R=3.46 ohm/mile, X=0.63 ohm/mile) (CME Wire and Cable, 2016) as per NEC 

conductor size minimum requirements for overhead spans and service drops (Articles 

225.6(A)(2) and 230.23(B), respectively)(National Fire Protection Association, 2014). The 

ampacities assumed for these conductors are 127 A and 101 A, respectively, based on a covered 

conductor in free air at ambient 40°C (104°F), according to NEC Table 310.15(B)(21)(National 

Fire Protection Association, 2014).  

6.4.3. Assumptions on DER Technology and Cost  

The ultimate goal of this work is to improve the methods for modeling power flows typically 

involved in the DER investment planning and dispatch problem. Although the quantity of 

available DER is extensive, without loss of generality, we assume the DER technology available 

are renewable solar PV and electrical battery storage.  

We assume that the initial cost of solar is $2,000 per kW(Lazard, 2016), that ongoing operations 

and maintenance costs are $0.001(R. J. Flores & Brouwer, 2018) per kWh, and that the solar PV 
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panel has a nominal electrical conversion efficiency of 20%(R. J. Flores & Brouwer, 2018). For 

the electrical battery energy storage, we assume a generic battery type that has an initial cost of 

$600(Lazard, 2018b) per kWh, operations and maintenance cost of $0.001(R. J. Flores & 

Brouwer, 2018a) per kWh discharged, has a power to energy ratio of four, and has a charging 

and discharging efficiency of 90%(R. J. Flores & Brouwer, 2018). We assume the system is 

deployed in the CAISO territory, where the economic value streams available to the battery 

change depend upon the charging source. Note that, if a battery is exclusively charged by onsite 

renewables, then it can discharge to offset utility imports or export back to the grid at any time 

under net energy metering rates. However, if a battery is partially or wholly charged using grid 

electricity, it is ineligible to export any electricity back to the grid. 

6.5. Results and Discussion 

In this section, we perform a validation of the DLPF method against the exact AC power flow 

(ACPF) solution and provide a comparison between commonly used linearized power flow 

methods proposed in the literature for meshed and radial test-circuits. We follow by testing the 

DLPF formulation with our DER optimal allocation model DERopt to constrain voltages, and 

branch kVA flows. 

The MATLAB toolbox for power flow calculations, MATPOWER(Zimmerman et al., 2011), is 

used to provide the benchmark for the exact ACPF solution. The other linearization methods 

were implemented in MATLAB using algorithms available at public GitHub repositories 

(LinDistFlow(Schweitzer, 2018), Bolognani et al. (Bolognani, 2014) and steady-state DLPF(J. 

Yang, 2016)). We use as simulation platform the Intel Xenon CPU E5-2680 v2 @2.80 GHz 

server with 20 cores, 40 threads, and 32 GB of RAM. We implement all formulations in 

MATLAB R2015a (The MathWorks Inc., n.d.), and for the MILP optimization, we use YALMIP 

R20181012 toolbox (Lofberg, 2005; Löfberg, 2019) and CPLEX v.12.8 (IBM, 2017) for the 

MILP solver. 
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6.5.1. DLPF validation and comparison with other linearization 

techniques for radial and meshed network 

The goals of this section are to (1) validate DLPF against the exact ACPF solution and (2) to 

demonstrate the improved accuracy of the DLPF method to calculate nodal voltage magnitudes 

and branch flows in a meshed network. For this, we compare the steady-state DLPF formulation 

against (1) the full AC power flow solution, calculated using MATPOWER (2) the formulation 

proposed in Bolognani et al. and (3) LinDistFlow. We use the test feeder proposed in Ref (Baran 

& Wu, 1989a) and described in Section 6.4.1 as the benchmark. Starting with the IEEE-33 node 

radial feeder, Figure 6.4 presents the results of the comparison between methods. The voltage 

profiles (Figure 6.4a.) of the linearized methods match quite closely with the exact solution. Note 

that all linearized methods overestimate the true voltage value, which translates into a 

conservative constraint if the goal is to limit over-voltages. The errors in Figure 6.4b. are the 

percent difference between the approximated solution and the exact AC power flow solution. 

Figure 6.4b shows that the voltage magnitude error for all methods falls below 1% for all 

linearization methods, indicated a high degree of accuracy for voltage estimation. As expected, 

the voltage error increases with distance from the slack node, as the growing impedance will 

increase the approximation error of the simplifying assumptions. This echoes the results shown 

in (Mashayekh et al., 2017). The LinDistFlow solution is the most accurate and produces a 

maximum error of 0.02844 p.u., which is very close to the 0.028 p.u. upper bound approximation 

error estimated in (Fachbereich, 2018). This demonstrates the merit of using LinDistFlow for this 

particular application.  

Figure 6.4.c compares branch power flows (apparent power: 𝑆 = 𝑃 + 𝑗𝑄). Equations (83) and 

(84) define the DLPF branch power solution. Since Bolognani et al. does not provide a 

formulation for power flow, we use Equations (83) and (84) to calculate the branch power flows 

for that method, taking the voltages and phase angle solutions as inputs. All linearized solutions 

show similar degrees of accuracy, with some deviations for Bolognani et al.’s method. The 

errors lie within 5% of the true value, mostly due to the assumption across all methods of lossless 

lines. This assumption leads to the underestimation of power flows necessary to meet the load. 

Branch flow errors increase at higher power flows (higher current), which happen most 

frequently at the nodes closer to the slack node. While LinDistFlow achieves the most accurate 

linearization for this radial test case, all methods perform with a similar error. 
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             33-node Radial Feeder 

 
(a) 

 
(b) 

 
(c) 

 
Figure 6.4 – The (a) Voltage Magnitude and (b) Voltage Percent Error at each node of the radial 33-node case comparing 

the full AC power flow (ACPF), DLPF, Bolognani, et al., and LinDistFlow solutions. As Bolognani et al. do not provide a power flow 
solution, we use the angle and voltage solutions in the DLPF formulation. An X indicates errors smaller than 0.1% 

 

.Figure 6.5 shows the results of the same comparison but using the meshed network benchmark. 

Regarding voltage magnitude, we see in Figure 6.5a how the LinDistFlow solution starts to 

deviate significantly from the true voltage value, with a much more significant percent error, 

underestimating true voltage values by over 3%. Note that even though a 3% error might seem 

small, a 3% per unit difference can be significant given that ANSI C.84(ANSI, 2005) standard 

margins for unacceptable voltage levels are in the range of ±5% from the nominal value. The 
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DLPF solution, on the other hand, overestimates true voltage slightly for this test case. 

Nonetheless, the DLPF and Bolognani et al solutions demonstrate higher accuracy for voltage 

magnitudes. Regarding branch power flows, the LinDistFlow solution overestimates the true 

value by 3 MVA at the point of common coupling. These results are reasonable considering the 

underlying assumptions made during linearization of the AC power flow equations. This 

validation shows that the DLPF formulation can achieve higher levels of accuracy for meshed 

networks, and comparable accuracy to LinDistFlow for radial networks.  
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             33-node Meshed Network 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.5 – The (a) Voltage Magnitude and (b) Voltage Percent Error at each node of the meshed 33-node case comparing 
the full AC power flow (ACPF), DLPF, Bolognani et al., and LinDistFlow solutions.  An X indicates errors smaller than 0.1%.  As 

Bolognani et al. does not provide a power flow solution, we use the angle and voltage solutions in the DLPF formulation 

6.5.2. Meshed microgrid test case  

The goal of this section is to validate the DLPF performance when applied to our third 

benchmark case. Since we are interested in investigating over voltages caused by high PV 

penetration and reverse power flows, we simulate a steady-state, worst-case injection that 
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represents an extreme solar PV and load scenario that totals to a 6.2 MW export (negative nodal 

injections) back to the grid. The total export is distributed evenly across all transformer nodes. 

We also simulate a total reactive power import of 3.1 MVar, which corresponds to a 0.89 lagging 

power factor. The magnitude of the MW exports reflects a high PV penetration scenario (above 

200% of peak load), while the magnitude of the MVar imported reflect each building assumed 

power factor and reactive demand. 

Figure 6.6 shows the comparison results. Regarding voltage (Figure 6.6.a), note how the 

LinDistFlow solution progressively worsens at the looped branches while DLPF and Bolognani 

et al. solutions again, slightly overestimate voltages. Errors (Figure 6.6.b) are kept below 5% for 

DLPF and Bolognani et al., while LinDistFlow errors reach -15% at nodes that are found along 

and at the end of looped circuits. As expected (Figure 6.6.c), LinDistFlow also has the worse 

branch kVA flow accuracy, both overestimating and underestimating kVA flows at different 

branches. We omit LinDistFlow solution in the absolute/percent error comparisons of Figure 

6.6.c and Figure 6.6.d since it was significantly higher than the other errors. DLPF solution tends 

to overestimate kVA flows by less than 5% (0.4 MVA max), while Bolognani et al. solutions 

tend to underestimate kVA flows by a maximum of 12% in certain branches. 

The test case used here is a real distribution circuit. In this instance, the DLPF is able to produce 

a more accurate solution. During simulations, we noticed that Bolognani et al. performance 

deteriorated with higher reactive power flows, that is, when operating at a lower 0.70 lagging 

power factor, the maximum absolute voltage error went from 0.0364 p.u. to 0.0637 p.u., whereas 

the DLPF solution kept a good performance; its absolute voltage error went from 0.0215 p.u.to 

0.0287 p.u. 
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             Meshed test case (primary nodes) 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 6.6 – The (a) Voltage Magnitude and (b) Voltage Percent Error at each primary (12 kV) node of the meshed network 
case comparing the full AC power flow (ACPF), DLPF, Bolognani et al., and LinDistFlow solutions. Errors smaller than 0.1% are 

indicated by an X. 
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6.5.3. DERopt solution with grid constraints for a meshed microgrid 

The goal of this section is to compare results found by our MILP optimization model for DER 

allocation for a base case (DERopt without any voltage or power flow grid constraints) versus 

using either DLPF or LinDistFlow as the load flow formulation. We selected these two AC 

power flow approximations due to their accuracy when analyzing meshed and radial circuits, 

respectively.  

The primary result of this section is how the optimal DER allocation solution changes depending 

upon the load flow formulation. The optimization minimizes investment cost while meeting a 

yearly zero-net-energy constraint, i.e., total imports must be less than or equal to total exports by 

the end of the year. Also, PV adoption is constrained by the physical area (rooftop) available for 

installation. For more details on DERopt formulation, we direct the reader to  (R. J. Flores & 

Brouwer, 2018)(R. J. Flores & Brouwer, 2018b; Novoa et al., 2019). For the comparison, we use 

the 115-node meshed network system presented in Section 6.5.2 as the test case. The grid 

constraints considered are nodal voltage and branch kVA flow limits, which were presented in 

Section 6.3.3 and 6.3.4, respectively. Therefore, the optimal DER allocation and dispatch 

solution will always respect the local electric power system infrastructure limits while achieving 

ZNE at the least possible cost. 

The base case adopts DER (10,577 kW PV and 120 kWh of EES). Figure 6.7 shows the post-

processed ACPF voltage profiles for this solution. Each curve represents the voltage profile 

calculated at a given time-step over the optimization timeframe. The markers indicate the worst 

case under-voltage (UV) and over-voltage (OV) – both true and linearized - over the 

optimization timeframe. The solid and dotted black lines highlight days in winter and summer, 

respectively, at 1 PM and 6 PM. For the base case, voltages range between 0.887 - 1.187 p.u.  

These extreme values occur at the same secondary node (node 88), which hosts 1,552 kW of PV 

and no EES. The worst UV occurs at an evening peak in October, and the worst OV occurs at 

solar max output at 1 PM in August. As shown by other DER interconnection modeling efforts 

(Mead, Donde, Garnett, & (PG&E), 2015; NREL & SolarCity, 2016), most of the voltage issues 

occur at the lower voltage, secondary circuits. These results show the expected outcome of poor 

power quality when neglecting utility infrastructure during DER allocation.  
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Figure 6.7 –  Base Case. Voltages range between 0.887 – 1.187 p.u.  Markers indicate the worst case under voltage and 

over voltage over the optimization timeframe. Solid and dotted black lines highlight days in winter and summer, respectively, at 
1 PM and 6 PM. 

 

After testing the base case, we implement the linearized AC power flow constraints. The first 

constraint tested prevents only over-voltages. Thus, voltage can only be 5% above its nominal 

value, or 𝑉 ≤ 1.05 p.u. The second voltage constraint tested assumes the stricter ANSI Range 

A(ANSI, 2005) voltage limits, which also limit under-voltages; thus, voltage is only allowed to 

be ± 5% its nominal value, or 0.95 ≤  𝑉 ≤ 1.05 p.u. 

Table 6.3 summarizes results and compares differences in DER (PV, EES, and REES) adoption 

when using either DLPF or LinDistFlow load flow formulations for the different voltage 

constraints simulated.  

To meet only OV constraints, i.e., 𝑉 ≤ 1.05 𝑝. 𝑢., DLPF recommends a 10,857 kW solar PV 

system, while LinDistFlow recommended a 10,771 kW system, which is 0.8% smaller. 

Regarding energy storage, DLPF recommends a combined capacity (EES and REES) of 6,004 

kWh, while LinDistFlow recommends a 4,308 kWh system, which is 28.3% smaller. 
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To meet the stricter voltage limits 0.95 ≤  𝑉 ≤ 1.05 𝑝. 𝑢. , i.e., limiting both over and under-

voltages, the DLPF solution recommends 11,052 kW of solar PV, while the LinDistFlow 

solution recommends 10,953 kW, which is 8.96% smaller. Regarding battery energy storage, the 

DLPF solution recommends a combined capacity of 11,006 kWh while the LinDistFlow solution 

recommends 8,887 kWh, which is 19.3% smaller. 

Therefore, the LinDistFlow solution underestimates both PV and the total battery storage 

capacity needed to meet voltage constraints; it also suggests a higher share of the battery be 

strictly REES. 

Table 6.3 –DER adoption DLPF vs. LinDistFlow for the base case and two different voltage constraints.  
Percentages show the percentual difference between LinDistFlow solution and DLPF solution.  

DER 

total adoption 

Base Case 𝑉 ≤ 1.05 0.95 ≤  𝑉 ≤ 1.05 
No V 

constraints 
DLPF LinDistFlow DLPF LinDistFlow 

PV (kW) 10,577 10,857 10,771(-0.8%) 11,052  10,953(-8.95%) 

EES (kWh) 120 3,536 3,216 (-9.95%) 8,767 7,760 (-11.5%) 

REES (kWh) 0 2,468 1,092(-55.8%) 2,239 1,127(-49.7%) 

Total Storage 

(kWh)  

120 6,004 4,308(-28.3%) 11,006 8,887(-19.3%) 

 

To understand the underlying reasons for the results above, we look at the ability of each method 

to accurately approximate nodal voltage and branch power flows. We simulate the first constraint 

that prevents OV greater than 1.05 p.u. Figure 6.7 compares the linearized voltage profiles 

calculated using DLPF and LinDistFlow against the exact (post-processed) true voltage solution, 

or ACPF, calculated using MATPOWER. The DLPF voltage profiles for the entire optimization 

timeframe and for only a single time step (solid and dotted black lines), shown in Figure 6.7show 

an accurate linear approximation for voltage magnitude. The linearized voltage solutions range 

between 0.873 - 1.050 p.u. while the true (ACPF) voltage values range between 0.851 - 1.048 

p.u. Recall that the base case (no voltage constraints) maximum OV reaches 1.179 p.u.; thus 

DLPF was effective in limiting OV. We note that the DLPF solution always suggests that the 

voltage at a given node is higher than the true voltage, or over-voltages are overestimated and 

under-voltages are underestimated. Thus, DLPF always captures and limit OV events but may be 

unable to capture and limit UV events.  
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Figure 6.8 – Comparison of the voltage magnitude solution using DLPF (top) and LinDistFlow (bottom) against the ACPF 

(post-processed) true voltage solution.  Each curve represents the voltage profile at a given time-step over the optimization 
timeframe. Markers indicate the worst case UV and OV (true and linearized) over the optimization timeframe. Solid and dotted 
black lines highlight the true and linearized voltages, respectively, at a given time step.  
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The LinDistFlow voltage profiles, however, differ significantly from the true voltage solution 

across the meshed nodes, as shown in Figure 6.8. One can observe this difference over a single 

time step — the true voltage is plot as a solid line, and the LinDistFlow solution is plot as a 

dotted line. The linearized voltage solutions range between 0.856 – 1.050 p.u. while the true 

voltage solution values range between 0.805 – 1.077 p.u. Therefore, LinDistFlow underestimates 

over-voltages and overestimates under-voltages across meshed nodes.  

We then simulate the full ANSI Range A voltage limits of 0.95 – 1.05 p.u. to test the stricter 

voltage constraints. Figure 6.9 shows that for both DLPF and LinDistFlow, the linearized voltage 

solution ranges between 0.95 and 1.05 p.u.; however, the true voltage solution ranges, for DLPF, 

from 0.947 to 1.048 p.u., while for LinDistFlow, from 0.932 to 1.077 p.u. Therefore, neither 

DLPF nor LinDistFlow are able to capture and prevent UV below the 0.95 p.u. constraint. 

However, DLPF is still effective in preventing the OV in this particular case, while LinDistFlow 

exceeds the OV constraint by 0.022 p.u., or 2.2%.  
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Figure 6.9 – Comparison of the voltage magnitude solution using DLPF (top) and LindistFlow (bottom) against e ACPF (post-

processed) true voltage solution.  Each curve represents the voltage profile at a given time step over the optimization 
timeframe. Markers indicate the worst case UV and OV (true and linearized) over the optimization timeframe. Solid and dotted 
black lines highlight the true and linearized voltages, respectively, at a given time step.  
 

From the results of Table 6.3 we can also investigate the effects of voltage constraints in the 

optimal DER allocation. Strictly looking at the DLPF solution, compared to the base case, 

constraining OV causes a 2% increase in solar capacity and the combined battery storage 

capacity increases by 50-fold. If under voltages are also to be limited, the PV capacity increases 

by 2.7% from the base case, and total storage capacity increases by nearly two-fold from the OV 

limit case. Therefore, voltage constraints suggest a need for slightly more solar PV and 

significantly larger storage capacity when compared to the base case. 

Regarding branch kVA power flows, Figure 6.10 compares solutions for the DLPF and 

LinDistFlow, and the true, post-calculated ACPF solution. Each curve shows the kVA power 

flows at all branches for a given time step. Solid and dotted black lines highlight true and 

linearized, respectively, branch kVA flows at a single given time step. Markers show the worst 

case (maximum) true and linearized kVA branch flows. For both DLPF and LinDistFlow, the 

true worst-case kVA flow happens at the node closest to the PCC, the branches with the highest 

power flow magnitude. Both approximation methods underestimate kVA flows (which is 
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expected form the underlying assumption of lossless lines), but DLPF is closer to predicting the 

correct solution than LinDistFlow. Nonetheless, both DLPF and LinDistFlow underestimate true 

kVA branch flows, which indicates that the solution does not respect branch kVA limits 

imposed, and the model likely needs to include a safety margin. 

 
(a) 

 
(b) 

Figure 6.10 – Comparison of branch kVA power flows for DLPF (a) and LinDistFlow(B) solutions, compared to the true, post-
calculated branch kVA power flow.  Each curve shows the kVA power flows at all branches for a given time step. Markers 

indicate the worst case kVA power flows (true and linearized) over the optimization timeframe. Solid and dotted black lines 
highlight true and linearized, respectively, branch kVA flows at a single given time step. 

 

The run times for both implementations varied between 70 minutes to 3 hours, depending on the 

number of constraints. The base case (no voltage or branch constraints) ran in 150 seconds. The 

LinDistFlow solution with only overvoltage constraints ran in 70 minutes while the DLPF 

solution took 85 minutes. For the full voltage constraints, the LinDistFlow solution took 83 

minutes while the DLPF solution took 185 minutes. The optimality gap between the optimal and 

integer solution was limited to 0.4% in all runs. 

6.6. Summary  

This chapter developed a new approach to model the linearized power flow in a MILP for DER 

optimal allocation and dispatch to minimize cost. We provided a validation of the DLPF voltage 

magnitude and branch kVA power solutions against LinDistFlow and ACPF for a meshed 

benchmark network. We then formulated the DER allocation and dispatch problem as a MILP 

and used DLPF and LinDistFlow to model voltage and branch kVA flow constraints.  

Our results show that: 
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 For radial circuits, LinDistFlow is the most accurate linearization method. 

Considering voltage magnitude, all linearized methods achieve a high degree of 

accuracy for voltage estimation: for our steady-state validation, linearization errors lie 

within 1% of the true value. For branch kVA flows, the errors lie within 5% of the 

true value. 

 For meshed networks, DLPF is the most accurate linearization method. At the 

loops, LinDistFlow underestimates true voltage values, which occurred in both our 

steady-state validation and within our dynamic MILP optimization. Bolognani et al. 

approximation errors have the same order of magnitude, but slightly higher.   

 The use of LinDistFlow within a DER optimization for a meshed network with 

voltage constraints may lead to undersized optimal PV and battery systems. The 

LinDistFlow solution will underestimate both OV and UV. Thus, it is not able to fully 

capture the magnitude of over and under voltages, and as a result, recommending 

undersized PV and battery systems.  

 The DLPF solution is effective for limiting overvoltages, but might not capture under 

voltages. The DLPF solution slightly overestimates overvoltages (conservative) and 

underestimates under voltages (not strict enough).  
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7 Optimal solar inverter 

sizing considering Volt-Var 

droop-control and PQ 

control for voltage 

regulation 

Highlights 

 A MILP optimization for inverter sizing minimizes voltage deviations in a ZNE 

microgrid 

 Smart inverter Volt-Var and optimal PQ functions are modeled within a linear 

optimization 

 A novel linear approach to minimize the absolute voltage deviations is introduced  

 An approximated model for AC/DC inverter sizing model was abstracted from 

simulations 

7.1. Literature review  

The low voltage electric distribution grid is being required to interconnect an increasing number 

of distributed energy resources such as solar photovoltaics. As a result, in moments of low load 

and high PV generation, reverse power flow — and subsequent overvoltages — threaten the 

local power quality. Reactive power support (by injecting or absorbing Vars) is a useful 

technique for controlling voltage excursions, and system operators have historically used 

Capacitor banks and Static Var Controllers (SVCs) for this end. However, they usually allow for 

only fixed-step Var increments and often operate at slower time scales, which can lead to over or 

under-voltage compensation (Thompson, Martini, & Seeley, n.d.).  
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A more effective way to provide reactive power support and local voltage control is by 

leveraging the potential of existing DER-interfacing power inverters to control Var absorption 

and injection. This method has only started to be considered in the U.S. somewhat recently since 

early grid interconnection standards, such as the IEEE 1547-2003 (IEEE, 2003), strictly 

prohibited the DER from regulating local voltage actively. There have been several initiatives 

started mostly by professionals in the utility sector to update such regulations. In California, the 

Smart-Inverter Working Group (SIWG) worked with the California Public Utilities Commission 

(CPUC) to update California interconnection standard, Rule 21, to accommodate and make 

advanced smart-inverter functions mandatory for new projects. A revision to Rule 21 (California 

Energy Commission, 2014) states that all new inverters interconnecting DER must have smart-

inverter capabilities, i.e., be equipped with a set of control functions that enable the local control 

active and reactive power. California’s updated Rule 21 also drove the review process to the 

widely-used IEEE 1547-2003 interconnection standard, now in a most updated version, IEEE 

1547-2018 (IEEE, 2018). Per the new standard, a category framework is established for voltage 

regulation (Category A and B) and disturbance ride-through requirements and (Category I, II, 

and III). Depends on the category, the DER inverter is required to absorb/inject, a certain 

percentage of its nameplate kVA. 

Smart-inverters and their advanced control functions can play a crucial role in facilitating the 

penetration of renewable solar PV into the electric grid and the hosting capacity, i.e., how much 

solar PV any given feeder can accommodate before causing an overvoltage (EPRI et al., 2015), 

of distribution feeders (NREL & Schauder, 2014). The relationship between voltage, DER active 

and reactive power consumption and generation, and network impedance is well known: the 

consumption of active power and/or consumption of reactive power (inductive Vars)  locally 

reduces voltage. Conversely, the generation of active power and/or injection of reactive power 

(capacitive Vars) will locally raise voltage proportionally to system resistive and reactive 

impedances (Marra, Fawzy, Bulo, & Blažič, 2012; Smith, Sunderman, Dugan, & Seal, 2011).  

Therefore, smart-inverters can regulate voltage by (1) controlling the local reactive power, (2) 

controlling the local active power output, which poses the clear drawback of hindering the full 

utilization of PV assets, (3) leveraging co-located battery energy storage to store surplus 

generation, or (4) a combination of the above. Nonetheless, as already observed in previous 

studies (Alyami, Wang, Wang, Zhao, & Zhao, 2014), low voltage distribution systems are more 
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resistive than reactive, usually referred to as having a high R/X ratio, due to the short length of 

its circuits. Therefore, regulating the real power output in these types of networks is a very 

effective way of managing voltage.  

Another current challenge involving DER integration to the grid is to allocate, i.e., to assign an 

amount of a resource to a particular recipient node, commonly known as the process of “sizing 

and siting” these resources into the existing electric distribution grid. Thus, the types of DER 

(solar, storage, demand response) as well as their allocation within the grid network, and their 

operation has to be carefully chosen to meet customer demand without creating power quality 

issues and hindering system reliability. 

In this context, this chapter proposes the optimal sizing of smart-inverters that are equipped with 

typical advanced functions such as Volt-Var-Optimization (VVO), to increase the PV hosting 

capacity of a community microgrid required to have a high penetration of solar PV to meet Zero-

Net-Energy. 

The goals of this chapter are (1) determine the optimal solar PV portfolio, size, and location 

within a real-world, ZNE urban electric distribution system (2) implement smart-inverter Volt-

Var and PQ control function into the existing optimization framework to (3) optimally size the 

interfacing inverter while (4) minimizing cost and voltage deviations while (4) considering 

physical, electrical power system constraints. We then quantify power quality improvements in 

voltage. 

The smart-inverter droop-control functions considered in the last analysis were initially proposed 

in the “ERPI, Common Functions for Smart Inverters – Phase 3” report (Electric Power Research 

Institute (EPRI), 2014).  

7.1.1. Related Work 

Many authors have explored novel methods for voltage regulation and control for high 

penetration of DER, their effectiveness, their impact on the network, and their interoperability 

with existing network devices. 

One method is by the use of droop control curves programmed in DER inverters, known as 

“smart-inverter functions”. The Volt-Watt and Volt-Watt, for example, define active and reactive 

power injections as piecewise linear functions of voltage and are a standard set of autonomous 

functions applied to voltage control.  
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A widely used approach to voltage control with a solar PV DER is the Volt-Watt function – 

active power curtailment based on local voltage – which uses the inverter rated apparent power 

as the static reference for the droop-based active power curtailment. (Luthander, Lingfors, & 

Widén, 2017) implemented a fixed-slope Volt-Watt control that was effective in removing all 

overvoltages in a three-phase 10 kV/400V distribution test system with a 100% PV penetration at 

the expense of a 31% reduction of the total PV generation. Dynamic approaches, on the other 

hand, use the inverter operation points at the time the overvoltage occurs as the reference for 

curtailment. (Y. Wang, Zhang, Li, Xiao, & Abdollahi, 2012) described a dynamic Volt-Watt 

control that curtails active power by predicting the resulting voltage variation using a Thevenin 

equivalent circuit at the point of injection. The method continually updated the droop-control 

curve slopes, and completely prevented overvoltages in the IEEE 34-bus test case. (Alyami et al., 

2014) proposed a dynamic Volt-Watt control that does not require global system information, 

which eliminated overvoltages in the IEEE-13 bus system. 

The Volt-Var function – Var output based on local voltage – is another common smart-inverter 

droop control strategy that regulates local reactive power absorption or injection. (Smith et al. 

2011) demonstrated a static Volt-Var function, which provided adequate voltage support for a 12 

kV circuit with 450 inverters operating in parallel. (Jahangiri and Aliprantis 2013) proposed a 

distributed control strategy for a dynamic Volt-Var function that avoids instabilities caused by 

the interactions of a large number of inverters operating in parallel. In that previous work, the 

proposed distributed control scheme mitigated overvoltages successfully in simulations of 

realistic distribution feeders with high (50%) smart-inverter penetration. (Seuss et al. 2015), 

showed a Volt-Var control that improved hosting capacity in a 12.47 kV distribution feeder by 

72% (from 600 to 900 kVA). The author also points out that, at voltage-constrained buses, the 

Volt-Var control only improves the hosting capacity until a line thermal constraint is hit due to 

the injection of extra reactive currents, which may be even more challenging in distribution 

systems with a low X/R ratio. (Turitsyn et al. 2011) also points out the increased losses due to 

Volt-Var control. 

One other method is the optimization of reactive power dispatch in a Volt-Var Optimization 

(VVO). (Farivar, Neal, Clarke, & Low, 2012) proposed an optimal inverter reactive power 

dispatch that was able to mitigate rapid and significant voltage fluctuations caused by a 5 MW 

PV deployment in a 12 kV, 56-node radial rural distribution feeder in Southern California. 
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Another VVO method to dispatch inverter Var resources was proposed by (Arnold et al., 2016), 

where a linearized optimal power flow formulation (LinDistFlow) was effective in limiting the 

voltage to +-5% bounds while minimizing voltage imbalance between phases in the radial IEEE 

13 node test feeder.  

Some authors extended the optimal Var control to both optimal Var and Watt control (or active 

power curtailment), which we refer here as optimal inverter PQ control. (Su, Masoum, & Wolfs, 

2014) proposed an optimal PQ control strategy to minimize generation cost, losses, and voltage 

imbalance. The authors extended the analysis to single-phase inverters, which, when optimally 

dispatched, removed overvoltage and phase voltage imbalances in a 101 node three-phase, four-

wire 22 kV/415V/240 V low voltage distribution feeder in Perth, Australia, with 39% solar PV 

penetration. (Sepehry, Heidari Kapourchali, Aravinthan, & Jewell, 2019) showed a similar 

optimal inverter PQ dispatch strategy, using a linearized unbalanced power flow, which 

minimized cost and wind curtailment while meeting power quality operational grid constraints in 

the radial IEEE-37 and IEEE-60 bus test cases. (Dall’Anese, Dhople, Johnson, & Giannakis, 

2014) optimized inverter PQ dispatch in a 12-node residential low voltage (LV) test feeder with 

pre-selected inverter deployments to minimize losses, curtailment cost, and flat out the voltage 

profile. In that early work, the authors noted that inverters at the end of the feeder curtailed more 

active power and absorbed more reactive power to regulate voltage as compared to the other 

inverters. 

Therefore, having PQ control does not provide a fair share between inverters of the burden of 

regulating system voltage by providing reactive power compensation and/or active power 

curtailment. As noted, inverters located at nodes with high impedance will be taxed with more 

regulation (Collins & Ward, 2015; Dall’Anese et al., 2014; Marra et al., 2012; Turitsyn, Šulc, 

Backhaus, & Chertkov, 2011). Droop-control strategies are usually employed to guarantee a 

more equal share of voltage regulation, and we will explore to what extent this regulation is 

distributed equally amongst inverters in our simulations. 

The literature has shown successful use of different smart-inverter functions to mitigate 

overvoltages and, in turn, increase a feeder’s voltage-based hosting capacity. However, the 

optimal choice of inverter size (kVA) is still a standing research question. Most inverters are set 

to operate in droop control with watt-priority, i.e., reducing reactive power output to meet the 

maximum rated active power output. Thus, in watt-priority mode, the inverter kVA capability 
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limits its ability to provide reactive power regulation, especially in instances where the inverter 

size margin (i.e., the inverter capacity beyond DER nameplate) is tight, and the DER is at full 

active power output. In a study led by the utility PG&E (Mead et al., 2015), it was shown that 

droop-controlled smart-inverters on the secondary (low voltage side) of a typical distribution 

feeder with high PV penetration had limited effect on reducing high voltage conditions due to an 

inverter capacity limitation for reactive power injection. In this previous study, the inverters were 

slightly undersized – a common practice in large-scale deployments, namely inverter clipping. 

(Seuss, Reno, Broderick, & Grijalva, 2015) also demonstrated a case where the inverter did not 

have enough capacity for reactive power injection to remove all overvoltages violations in a 12.4 

kV feeder with a 1.3 X/R ratio. The previous study also performed a sensitivity analysis to 

explore the role of inverter sizing and Volt-Var control potential and showed that the best 

inverter size, i.e., the size that will maximize the PV hosting capacity before reaching the point 

of diminishing returns, varied for one feeder to another, and ranged from 121% to 135%.  

In the literature, there is not a clear consensus on how much inverter capacity beyond or below 

DG nameplate is needed, and many authors have judiciously assumed different values. For 

example, (Abate, McDermott, Rylander, & Smith, 2015; Dall’Anese et al., 2014; Farivar et al., 

2012; Rylander, Li, Smith, & Sunderman, 2016; Rylander et al., 2017; Schultis, 2019; Smith et 

al., 2011; Turitsyn et al., 2011) assumed a 10% oversizing margin, which is the equivalent of 

allowing a reactive power injection with a power factor of 0.90 lagging, even during peak active 

power production. (Jafari, Olowu, & Sarwat, 2019) oversized inverters by 15%, (EPRI et al., 

2015; Seuss et al., 2015) oversized inverters by 20%, and (Su et al., 2014) oversized the inverters 

by 60%. Authors in (Jahangiri & Aliprantis, 2013; Sepehry et al., 2019), assumed the inverter 

rating matches the DG rated capacity, while in (Ding et al., 2016; Stetz, 2014) the inverters were 

undersized by up to 10% below DG rated capacity. 

Ideally, for each control function, there would be one global inverter size margin that is effective 

in all situations. However, the amount of reactive power necessary for a given compensation 

strategy to be useful is shown to be strongly related to the electric power system characteristics 

such as feeder R/X (resistance versus reactance) ratio, source impedance, and PV penetration 

levels (EPRI et al., 2015; Rylander et al., 2017; Seuss et al., 2015; Smith et al., 2011; Su et al., 

2014). Therefore, the optimal inverter size margin is likely location/feeder-specific. One recent 

study by (Ali, Raisz, & Mahmoud, 2019) proposed an optimization-based method to oversize 
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inverter capacity. However, it did not consider a droop-control strategy, nor a fair sharing of 

regulation amongst inverters. 

The previous discussion points to a gap identified in literature regarding the lack of studies that 

optimally size inverters that use voltage-reactive power droop-control within an optimal DER 

allocation (size and site) problem. 

7.1.2. Contributions  

 Include smart inverter Volt/Var droop-control and optimal PQ control functions in a 

MILP optimization formulation for the DER allocation problem. By introducing a 

novel linearization approach. 

 Optimally size inverters for minimizing voltage deviations in a low voltage 

distribution feeder with a high PV penetration. A novel approach to minimize the 

absolute voltage deviations is introduced in the objective function 

 Model and compare optimal AC/DC inverter sizing for inverter PQ and droop-control 

strategies. 

7.2. Notation 

We define below relevant model sets and the subscripts defined in this chapter regarding smart 

inverter integration into the model. We assume the reader is familiar with the previous DERopt 

model sets and decision variables. For reference see the notation sessions on Chapters 4 and 5. 

Table 7.1 and Table 7.2 provide a list and description of new model parameters and decision 

variables.  

 

 t ∈ T: Set of hourly increments  

 n ∈ N: Set of nodes 

 i ∈ I: Set of “From” nodes 

 j ∈ J: Set of “To” nodes 

 b ∈ ℬ: Set of buildings 

 𝜆 ∈ Λ: Set of line segments for polygon relaxation 

 x ∈ X: Set of transformers 

 h ∈ H: Set of inverters 

 L: Set of PQ nodes 
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 S: Set of PV nodes 

 R: Set of reference (slack) nodes 

 
Table 7.1 – Model decision variables 

Decision Variable Description Units 

𝑆i̅nv𝑏
 Inverter adoption at building b kV 

𝑃Invℎ𝑡
,  𝑄Invℎ𝑡

,  𝑆Invℎ𝑡 
 Active, Reactive, and Apparent Power flows through 

inverter h at hour t 

kW/ 

kVar/ 

kVA 

𝑄invBLDG
 Building reactive power demand kVA 

𝑄𝑖𝑛𝑑ℎ,𝑡
 Inductive Reactive Power absorbed by inverter h at hour t kVar 

𝑄𝑐𝑎𝑝ℎ,𝑡
 Capacitive Reactive Power injected by inverter h at hour t kVar 

𝜽 Nodal Voltage phase angle matrix. ℝ𝑁−1 degrees 

𝒗 Nodal Voltage magnitude matrix.  ℝ𝑁−1 p.u. 

𝒑 Nodal Active power injection. ℝ𝑁−1 p.u. 

𝒒 Nodal Reactive power injection. ℝ𝑁−1 p.u. 

𝑞𝑎𝑛𝑐 Linearized reactive power regulation for Volt-Vat curve p.u. 

 

Table 7.2 – List of parameters used in DERopt 

Parameter Description Units Value 

𝜔 Weight for penaltty function  N/A 1 for PQ control 

1,000 for Volt-Var control 

𝑣1, 𝑣2, 𝑣3 , 𝑣4 Volt-Var inverter voltage curve 

settings  

p.u. 0.90, 0.97, 1.03, 1.1 

𝑞1, 𝑞2, 𝑞3 , 𝑞4 Volt-Var inverter Var curve 

settings 

p.u. (Var) 0.60, 0, 0, -0.60 

𝑚𝑐𝑎𝑝, 𝑚𝑖𝑛𝑑 Volt-Var curve slopes N/A Dedepnds upon Volt-Var 

curve 

7.3. Problem Formulation 

We extend the Building Energy Hub concept presented in Chapter 5 and in (Novoa et al., 2019) 

to include an interfacing DER inverter. The schematics in Figure 7.1 illustrates a building energy 
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hub, which includes the building load (𝐵𝐿𝐷𝐺𝑏) the local DER adopted (𝑃𝑉𝑏 , 𝐸𝐸𝑆𝑏, 𝑅𝐸𝐸𝑆𝑏), and 

the interfacing inverter (𝐼𝑛𝑣𝑏), which connects the direct current DER to the building AC loads 

and a distribution transformer (𝑇𝑥). Each distribution transformer connects one or a cluster of 

building energy hubs to the AC low voltage electric grid network. DERopt optimally sizes the 

interfacing inverter (𝑆i̅nv𝑏
) accommodate the active net power flows from PV generation, battery 

storage charging and discharging, and also the necessary reactive power flows to provide voltage 

local support. Equations (91) and (92) provide the active and reactive power balances within the 

building energy hub. Each building load 𝑃BLDG can be fed by a mix of power imported to the hub 

(𝑃import), PV generation ( 𝑃PVBLDG
), and any battery power (𝑃EESdch

, 𝑃REESdch
). The building 

reactive power demand (is calculated at a fixed power factor from the active power demand, 

thus, 𝑄BLDG  = PBLDGarctan (𝑃𝐹).The building reactive demand can be met by grid imports 

(𝑄import) or by reactive power produced by the inverter (𝑄invBLDG
). Equation (93) constrains all 

PV power generation, that is, the PV generation to meet building loads (𝑃PVBLDG
) and the PV 

generation exported for revenue under the NEM and wholesale markets (𝑃𝑃𝑉𝑁𝐸𝑀
, 𝑃𝑃𝑉𝑊

 ) to the 

PV system rated power (𝑆P̅V𝑏
) times the normalized local insolation (𝐼). Note that equation (93) 

calculates the value of the decision variable (𝑆P̅V𝑏
) and since it is an inequality, it allows for 

power curtailment. We adopt the load convention for all power flow throughout the entire hub; 

therefore, positive values mean import, and negative values mean export. All variables described 

above have positive values. Equations (94) and (95) calculate the net real and reactive power 

flows through the inverter (𝑃inv𝑡,𝑏
, 𝑄inv𝑡,𝑏

), therefore these variables can assume either a positive 

(import) or negative (export) value, and using this modeling approach, the inverter cannot import 

and export power at the same time. The only active power import through the inverter happens 

when EES charges using grid power (𝑃EESch
) and all other power flows regarding PV generation 

(𝑃𝑉BLDG, 𝑃𝑉NEM, 𝑃𝑉𝑊) and battery discharge (𝑃EESdch
, 𝑃REESdch

, 𝑃REESNEM
) are exports.  

Regarding reactive power flows, the inverter can meet part (or all) of the reactive building load 

(𝑄invBLDG
) or also provide ancillary services (𝑄anc) such as when a smart-inverter has a Volt-Var 

droop-control curve implemented. 𝑄anc can assume either a positive or negative value. A 

positive value indicates that inductive reactive power is absorbed by the inverter and a negative 

value, capacitive reactive power being injected. By this modeling approach, the inverter cannot 

provide both capacitive and reactive compensation at the same time, which makes physical 
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sense. The variable 𝑄anc can be broken down into two positive quantities: 𝑄cap and 𝑄ind. Such as 

𝑄anc =  𝑄ind −  𝑄cap  Equations (96) and (97) calculate the net real and reactive power flows 

through the transformer 𝑇𝑥, 𝑃T𝑥
 and 𝑄T𝑥

 respectively . These net flows take into account grid 

imports (𝑃𝑖𝑚𝑝𝑜𝑟𝑡, 𝑄𝑖𝑚𝑝𝑜𝑟𝑡), renewable power exports (𝑃𝑃𝑉𝑁𝐸𝑀
, 𝑃𝑃𝑉𝑊

, 𝑃REESNEM
 ), and inverter 

ancillary services (𝑄𝑎𝑛𝑐 , 𝑄cap, 𝑄ind), as illustrated in Figure 7.1.  

We note that even though battery storage is defined here, this analysis does not consider the 

adoption of battery energy storage since we want to focus on the sole ability of smart inverters to 

locally regulate voltages.  

 
Figure 7.1 – Schematic of one Building Energy Hub used in the multi-node approach.  Transformer 𝑇𝑥  is one node, to which 

a cluster of buildings and adopted DER (𝑃𝑉𝑏 , 𝐸𝐸𝑆𝑏 , 𝑅𝐸𝐸𝑆𝑏) are connected. Inverter 𝐼𝑛𝑣𝑏 connects the DER adopted at building 
b to the AC side of the distribution system.  

 

𝑃import𝑡,𝑏
+  𝑃PVBLDG,𝑡,𝑏

+ 𝑃EESdch,𝑡,𝑏
+  𝑃REESdch,𝑡,𝑏

=  𝑃BLDG 𝑡,𝑏
+  𝑃EESch,𝑡,𝑏

 (91) 

𝑄import𝑡,𝑏
=  PBLDGarctan (𝑃𝐹) − 𝑄invBLDG𝑡,𝑏

 (92) 

𝑃PVBLDG,𝑡,𝑏
+ 𝑃PVNEM,𝑡,𝑏

+  𝑃PV𝑊,𝑡,𝑏
+ 𝑃EESchPV,𝑡,𝑏

+ 𝑃REESch,𝑡,𝑏
≤ 𝐼𝑡𝑆PV𝑏

 (93) 
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𝑃inv𝑡,𝑏
=  𝑃EESch,𝑡,𝑏

− 𝑃EESdch,𝑡,𝑏
− 𝑃REESdch,𝑡,𝑏

− 𝑃REES,NEM𝑑𝑐ℎ,𝑡,𝑏
− 𝑃PVBLDG,𝑡,𝑏

− 𝑃PVNEM,𝑡,𝑏
 − 𝑃PVW,𝑡,𝑏

   

(94) 

𝑄inv𝑡,𝑏
= − 𝑄invBLDG𝑡,𝑏

+ 𝑄anc𝑡,b  (95) 

𝑃T𝑥𝑡
=  ∑ 𝑃import𝑗

– 𝑃PVNE𝑀𝑗
− 𝑃PV W𝑗

− 𝑃REES dch NEM𝑗

 𝑗 ∈ 𝐽𝑘

 (96) 

𝑄𝑇𝑥𝑡
= ∑ 𝑄import𝑐 

+ 𝑄anc𝑐 

 𝑐 𝜖 𝒞𝑥 

 
(97) 

7.3.1. Zero-Net-Energy Operation  

The Zero Net Energy operation is formulated using the same Equations defined in Chapter 5, 

section 5.2.3 and omitted here for brevity. 

7.3.2. Decoupled Linearized Power Flow 

We formulate the governing power flow equations using the decoupled linearized power flow 

formulation introduced in Chapter 6, session 6.3.2 and we omit it for brevity. 

7.3.3. Inverter Constraints  

7.3.4. Polygon Relaxation 

The inverter rated power capacity 𝑆i̅nv limits the amount of current (equivalently, the amount of 

power) it can inject into the grid. The industry expresses power ratings in kilovolt-amperes 

(kVA), i.e., the vectorial sum of the active 𝑃inv (kW) and reactive 𝑄inv (kVAr) power injections; 

Equation (98) shows this relationship. Therefore, the inverter apparent power injection at any 

given time 𝑆inv can’t exceed its power rating 𝑆�̅�𝑛𝑣 

𝑆𝑖𝑛𝑣 =  √𝑃𝑖𝑛𝑣
2 + 𝑄𝑖𝑛𝑣

2 ≤  𝑆�̅�𝑛𝑣  (98) 
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Equation (98) dictates inverter power flows; however, a MILP formulation cannot directly 

capture non-linearities. Thus, we perform a polygon relaxation of the apparent power circle, as 

shown in Figure 7.2 and formulated by the constraints in equations (99) through (102). Equation 

(102) defines the approximation error, which is the difference between 𝑠 and 𝑆̅. For our particular 

problem, we can reduce the absolute error below 1% by setting the number of polygon sides Λ to 

22. Using this approximation, power through an inverter can be written as equation (100), and 

implemented into the MILP optimization as equation (101). Equation (99) obtains the optimal 

value for the inverter size (𝑆�̅�𝑛𝑣) decision variable. 

 
Figure 7.2 – Depiction of the polygon relaxation constraints and operating regions for the inverter (shaded in yellow). 

𝑠 =  𝑆�̅�𝑛𝑣𝑐𝑜𝑠 (
𝜋

Λ
) (99) 

𝑠 = 𝑃𝑖𝑛𝑣 cos(𝜃𝜆)+ 𝑄𝑖𝑛𝑣 sin(𝜃𝜆),           

𝜃𝜆 =
𝜋

Λ
+ 𝜆 (

2𝜋

Λ
)         𝜆 = 0,1, … , Λ − 1 

(100) 

𝑠 ≥  [cos (𝜃𝜆)    sin(𝜃𝜆) ] [
𝑃𝑖𝑛𝑣

𝑄𝑖𝑛𝑣
] 

(101) 

𝜖 = 𝑆�̅�𝑛𝑣 − 𝑠 =  𝑆�̅�𝑛𝑣 (1 − cos
𝜋

Λ
 ) 

Λ ≥
𝜋

arccos (1 −
𝜖

𝑆�̅�𝑛𝑣
) 

 

(102) 
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7.3.5. Inverter Droop Control (Volt-Var) 

The inverter static Volt-Var droop-control curve is illustrated in Figure 7.3. The per-unit reactive 

power injection/absorption (𝑞) varies as a linear function of the per-unit voltage at the inverter 

terminals (𝑣). This curve is defined by four points, or v-q pairs, namely the inverter settings. A 

dead band between points 𝑣2 and 𝑣3 is the region where no reactive power compensation occurs. 

The inverter settings used here are based upon the settings recommended by the IEEE-1547 2018 

standard for Category A, except for the reactive power absorption limit was increased from 44% 

to 60% to improve voltage compensation capacity. The settings used are shown in Table 7.3 

We assumed the inverters operate in Q- priority, that is, active power is curtailed in favor of 

accommodating the necessary reactive power compensation, that is: 𝑃𝑖𝑛𝑣 =  √𝑆𝑖𝑛𝑣
2 − 𝑄𝑖𝑛𝑣

2 . This 

behavior is modeled by the inequality constraint on equation (93) and the equality constraint of 

equations (95) and (105). Nonetheless, as recommended by IEEE-1547, the maximum 

compensation an inverter will produce can only go up to 44% of its capacity (0.44 per-unit). 

Equation (104) calculates the curve fixed (pre-defined) slope.  

 

 
Figure 7.3 – Volt-Var droop control curve.  The curve is defined by four points, or v-q pairs, that define the reactive power 

output𝑞𝑎𝑛𝑐  as a function of the voltage 𝑣 at the inverter terminals  
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Table 7.3 – Volt-Var inverter settings 

Volt-Var 

droop-control 

parameter  

Value (p.u.) 

𝑣1 0.90 

𝑣2 0.97 

𝑣3 1.03 

𝑣4 1.1 

𝑞1 0.60 

𝑞2 0 

𝑞3 0 

𝑞4 -0.60 

 

𝑞𝑎𝑛𝑐 = 

𝑞1                         , 𝑖𝑓 𝑣 < 𝑣1 

(103) 

𝑚𝑐𝑎𝑝(𝑣 − 𝑣2)     , 𝑖𝑓 𝑣1 < 𝑣 < 𝑣2 

0                           𝑖𝑓 𝑣2 < 𝑣 < 𝑣3 

𝑚𝑖𝑛𝑑(𝑣 − 𝑣3)      𝑖𝑓 𝑣3 < 𝑣 < 𝑣4 

𝑞4                          𝑖𝑓 𝑣 > 𝑣4 

 

𝑚𝑐𝑎𝑝 =
𝑞2 − 𝑞1

𝑣2 − 𝑣1
, 𝑚𝑖𝑛𝑑 =

𝑞4 − 𝑞3

𝑣4 − 𝑣3
 

(104) 

𝑄𝑎𝑛𝑐 = −𝑞𝑎𝑛𝑐𝑆�̅�𝑛𝑣 (105) 

𝑓𝑎(𝑞𝑎𝑛𝑐 , 𝑆�̅�𝑛𝑣,) (106) 

Equation (105) is, however, non-linear when both 𝑞𝑎𝑛𝑐 and 𝑆�̅�𝑛𝑣 are decision variables, i.e., when 

we are interested in sizing the inverter. The challenge of modeling Volt-Var behavior in a MILP 

model requires a novel approach to linearize this relationship. We then devise a method that 

takes advantage of the linearity of the feasible region. Thus, we model equation (105) as a 

piecewise-linear approximation of a surface, which is a function of two variables, i.e., 

𝑓𝑎(𝑞𝑎𝑛𝑐 , 𝑆�̅�𝑛𝑣), Figure 7.4 illustrates the piece-wise linear surface. We then calculate the inverter 

reactive power 𝑄𝑎𝑛𝑐  by interpolating between points in the feasible surface. We use the solver’s 

built-in linear interpolation function, which creates SOS2 sets. This linearization could have been 
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modeled directly, using binary variables and appropriate auxiliary SOS constraints. We chose to 

use the built-in function since it produces a model with pure SOS2 sets, which the branch-and-

cut algorithm can process and solve more efficiently and faster as opposed to processing binary 

sets. Also, the surface in Figure 7.4 has a high number of breakpoints (fine mesh grid) for 

illustrational purposes, in reality, to minimize problem scale, the surface is implemented using a 

much sparse mesh grid that only uses  the inverter settings voltage points, i.e., 𝑣𝑖 =

[𝑣1, 𝑣2, 𝑣3, 𝑣4] and two inverter size limits 𝑠𝑖  = [0, 𝑆�̅�𝑛𝑣𝑚𝑎𝑥
 ] where 𝑆�̅�𝑛𝑣𝑚𝑎𝑥

 is assumed based 

upon the order of magnitude of the maximum PV adoption in the Baseline scenario. Nonetheless, 

the solver function also performs linear extrapolation when necessary.  

 

 
Figure 7.4 – Piece-wise linearization of a function of tow variables, 𝑄𝑎𝑛𝑐 = −𝑞𝑎𝑛𝑐𝑆�̅�𝑛𝑣 . As the inverter size increases, so 

does the ability of the inverter to provide more reactive compensation (𝑄𝑎𝑛𝑐 ).  

7.3.6. Inverter PQ control  

In this inverter control mode, the per-unit active and reactive power injection/absorption 

(𝑃𝑖𝑛𝑣, 𝑄𝑖𝑛𝑣) vary freely (unconstrained). The inverter capacity 𝑆𝑖𝑛𝑣 is determined according to 

Equations (99) and (100)  
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7.3.7. MILP Formulation 

7.3.8. Objective Function 

The objective function used here 𝐺(𝑥)adds to the already defined cost function 𝐽(𝑥), defined in 

Chapter 5, Equation (47), which captures the costs associated with purchase and sale of energy, 

the cost associated with demand charges, and the cost associated with purchasing and operating 

the adopted DER. We add to the existing objective function e cost of purchasing the interfacing 

DER inverter. Therefore, the model will drive inverter adoption the minimum necessary to meet 

system constraints. The voltage deviation penalty parameter Δ𝑣aims to drive system voltages 

closer to 1 p.u. and it is described below 

𝐺(𝑥)= 𝐽(𝑥) +  𝐶cap
inv𝑆𝑖𝑛𝑣𝑏

+ Δ𝑣 (107) 

The voltage deviation penalty term Δ𝑣 aims to capture the sum (of the absolute values) of all 

hourly voltage deviations (from 1 p.u.) across all system nodes, i.e., |1 − 𝒗|, where the boldface 

vector 𝒗 𝝐 ℝ𝑺𝒙𝑇 collects all nodal voltages for the optimization timeframe. However, since the 

absolute value is a non-linear function: |1 − 𝑣| =  √(1 − 𝑣)2, We cannot directly implement it 

into the MILP. Hence, a mathematical artifice, namely the decision variable 𝜹 𝝐 ℝ𝑺𝒙𝑇 is used to 

linearize the absolute voltage deviation as follows: two constraints described by equations (108) 

and (109) are added to the model formulation and Equation (110), which describes the sum of all 

individual 𝜹 terms (Δ𝑣) is added to the objective function preceded with a weight 𝜔. Therefore, 

the minimzation of Δ𝑣 (and consequently) will drive the individual nodal voltages 𝑣 towards 1 

p.u. The weight 𝜔 assumed for PQ control is 1 and for Volt-Var control, 1,000 in order to drive 

adequate voltage regulation. 

𝜹 ≥   1 − 𝒗 (108) 

𝜹 ≥  −(1 − 𝒗) (109) 

Δ𝑣 =  𝜔 ∑ ∑ 𝜹

𝑇

𝑡=1

S

𝑖=1

 

(110) 
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The objective function is thus minimized subject to a set of equality and inequality constraints, 

and also integer constraints, lower 𝑙 and upper 𝑢 bounds, which limit strictly positive variables 

and Big M limits. 

The MILP optimization problem is given by the following functions and constraints: Where 

𝐺(𝑥) is the objective function and A and B are the respective coefficient variables for 

𝑥 continuous decision variables and 𝑦 integer decision variables. The problem is subjected to 

linear equality and inequality constraints, 𝑙 and 𝑢 upper and lower bounds, and integer 

constraints on 𝑦. 

𝐦𝐢𝐧 
𝒔. 𝒕.  

𝐺(𝑥)  

𝐴𝑥 + 𝐵𝑦 ≤ 𝑏  
𝑙 ≤ 𝑥 ≤ 𝑢 

𝑦 𝜖 ℤ𝑛 

𝑦 ≥ 0 

(107) 

(76),(77),(86),(91)-(97), (99)- (103),(105),(106) 

*specific to each variable 

(111) 

7.4. Test Case and Assumptions 

We use the test case introduced in Chapters 5 and 6, the Oak View microgrid. All assumptions 

for circuit topology, technology cost, electrical demand, and PV resources are the same. Inverter 

cost is assumed to be $150/kW based on current market research for inverters up to 6 kVA. 

 

To pursue a tractable optimization, we perform a worst-case type analysis, where we only 

simulate the day (24-hours) in the year flagged with the worst (maximum) RPF. Therefore, our 

design results indicate the inverter size that can provide support to the worst RPF event in the 

year. The worst-case RPF day was identified by scaling up the normalized PV annual generation 

profile to just above the local peak load (3111.6 kW), calculating the net-load (load minus 

generation), and identifying the hour with the most negative net-load. For our test system, the 

worst-case RPF happens on a Sunday in March, a sunny, clear day in spring with mild 

temperatures and low load.  

A detailed list of all building load maximum demand, total energy demand, the associated 

transformer, and its power rating, and building power factor is presented in Chapter 6. We also 

assume smart-inverters are adopted in 7 out of the 31 building nodes. The other inverters are 

assumed to be standard inverters, with no reactive power output. Figure 5.5 shows a schematics 
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of the circuit topology. We represent loads as triangles, building numbers in red, primary node 

numbers in black and secondary node numbers in blue. 

 

 

Figure 7.5 – Meshed benchmark case based on a real-world power system  (left) and modeled as 115 nodes, 31 of which 

are transformers that serve clusters of industrial, commercial, and residential loads. We represent loads as triangles, building 

numbers in red, primary node numbers in black and secondary node numbers in blue. Node 1 is the PCC with the wide-area 

grid. (right) The primary voltage is 12.47 kV, and secondary voltages are 480 V or 208 V, depending upon customer type. Each 

transformer is modeled as a series impedance (𝑍𝑋𝐹𝑀𝑅) with the secondary line drop equivalent impedance (𝑍𝑠𝑒𝑐𝑒𝑞 ), which 

represents five customers aggregated in parallel in a load cluster. 

7.4.1. Scenarios 

The goal of this chapter is to use our MILP optimization to determine the optimal inverter size 

(kVA) for pre-defined smart-inverter locations within the test-case under two different smart 

inverter control strategies. We are interested in analyzing the challenging cases of large PV 

deployments. Therefore, for all simulations, the test case is constrained to be Zero-Net-Energy, 

defined as able to produce as much electricity as demand over one day, or 24 hours. 

In the Baseline scenario, the DER allocation problem is simulated to meet ZNE constraints with 

conventional inverters, i.e., inverters without smart-inverter features. There are no other 

constraints limiting voltage magnitudes or power flows through transformers, nodes, or feeders; 

in other words, the system power quality is not actively controlled.  

In the Optimal PQ scenario, solar PV smart-inverters will be optimally sized to provide over-

voltage support to the Baseline scenario. All inverters can produce and absorb P and Q freely. 

In the Volt-Var scenario, we simulate the Baseline solar PV allocation, and we apply a droop-

control Volt-Var function to seven pre-defined inverter locations. The locations chosen are the 
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seven buildings with higher overvoltages recorded over the optimization timeframe. The other 

inverters are assumed to be standard inverters. 

A summary of all scenarios is given below: 

 Baseline: Solar PV allocation problem for a ZNE test case with standard inverters (no 

local reactive power control) 

 Optimal PQ: Baseline solar PV allocation. All inverters inject/absorb an 

unconstrained amount of active (P) and reactive (Q) power. 

 Droop control (Volt-Var): Baseline solar PV allocation. Reactive power output is a 

function of voltage, following a droop-control function at seven pre-defined locations 

at buildings 1, 10, 11, 12, 14, 16, and 17. Remaining inverters are standard inverters. 

The optimization algorithm is implemented in MATLAB R2015a (The MathWorks Inc., n.d.) 

using the YALMIP R20181012 toolbox (Lofberg, 2005; Löfberg, 2019) and CPLEX v.12.8 

(IBM, 2017) for the MILP solver. The worst-case analysis reduces our dataset to 24 hourly 

intervals. The hardware used for the optimization is an Intel Xenon CPU E5-2680 v2 @2.80 

GHz server with 20 cores, 40 threads, and 32 GB of RAM. Simulation times are no longer than 

30 seconds. 

7.5. Results and Discussion 

7.5.1. Baseline 

The Baseline scenario adopts 5,090 kW of solar PV and a total inverter capacity of 4,227 kVA 

(i.e., AC/DC ratio <1). Figure 7.6a. shows the resulting post-processed true AC voltage profiles. 

Each curve represents the voltage profile at a given hour over the optimization timeframe (24 

hours). The markers indicate the worst-case under voltage and over voltage recorded. The dotted 

black lines highlight the voltage profile at 1 PM and 8 PM. The Baseline voltages range between 

0.94 - 1.07 p.u.  These extreme values occur at building 11 (located at the secondary node 88), 

which hosts a large 404 kW PV system. The lowest voltage occurs at 8 PM, and the highest 

voltage occurs at 2 PM. Similarly to the results of other DER interconnection modeling efforts 

(Mead et al., 2015; NREL & SolarCity, 2016), the worst voltages here occur at the secondary 

nodes. Our results show the expected outcome of poor power quality when large PV systems are 
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deployed into the existing grid infrastructure. We aim to overcome with both optimal PQ and 

Volt-Var droop control. 

7.5.2. Optimal PQ control and Volt-Var droop-control 

In the Optimal PQ scenario, all inverters are allowed to perform PQ control locally. In these 

inverter nodes, unconstrained active and reactive power injections will regulate voltage. In the 

Volt-Var scenario, smart inverters are installed in seven pre-defined building nodes (11, 14, 1, 

17, 12, 10, 16). To drive voltage regulation, a penalty for voltage deviation from 1 p.u., as 

described in section 5.2.2, is introduced in the objective function. Figure 7.6.b shows the 

resulting post-processed true AC voltage profiles for the Optimal PQ and Volt-Var control 

scenarios. The min/max voltage values occur at buildings 11 and 14 (at secondary nodes 88 and 

87, respectively). Building 14 hosts 336 kW of solar PV. For both controls, the min/max per unit 

voltages are the same, 0.94 /1.05 per unit. However, the average standard deviation for PQ 

control is the lowest (�̅� = 0.0039) followerd by Volt-Var (�̅� = 0.0048). Therefore, on the 

voltage controlled methods, there is less voltage dispersion compared to Baseline (�̅� = 0.0052), 

in other words, the voltages are overall closer to 1 per-unit. 

Compared to the Baseline, the maximum overvoltage is now compliant with the ANSI C.84 1.05 

p.u. limit. The minimum voltage 0.94 is still below the recommended ANSI C84 limit of 0.95 

p.u. — inverter controls did not assist with under voltages. That happens because the worst under 

voltages occur at 8 PM, which is outside the PV generation window. At this time, the inverter is 

idle because there is no PV generation (DC voltage). An alternative to regulating evening under-

voltages would be to co-locate DC-coupled battery energy storage. Nonetheless, as under 

voltages are not usually the limiting factor for PV deployments, the reactive power control 

efforts here will target overvoltages during the PV generation window. 
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�̅� = 0.0052 �̅� = 0.0039 

(a) (b) 

 
�̅� = 0.0048 

(c) 
Figure 7.6 – a) Baseline scenario. b) PQ control scenario. c) Volt-Var scenario Markers indicate the worst case under and 

overvoltages. Solid and dotted black lines highlight the voltage profile at 1 PM and 8 PM. 

 

Figure 7.7 compares the inverter dynamics at buildings 11 and 14 for the Baseline, PQ, and Volt-

Var droop control. The dynamics include the inductive reactive power absorption, 𝑄ind, and 

capacitive reactive power injection, 𝑄cap, both shown as positive bars. The inverter net active 
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and reactive power flows are also shown by 𝑃inv and 𝑄inv, respectively, those can assume 

positive or negative values, with the positive sign convention indicating power absorbed by the 

inverter and negative indicating power injected by the inverter. 𝑆inv is the absolute value of the 

inverter apparent power throughput, and its maximum value dictates the inverter capacity, in 

kVA. 𝑄invbldg
 is the building inductive reactive power demand that is supplied by the inverter. 

𝑄import is the building inductive reactive power demand that is supplied by the grid. The solar 

PV (DC) production indicates solar PV power generated (DC voltage present) at the inverter. 

The per-unit voltage hourly variation is shown in the secondary axis. 

At both buildings, for the Baseline case, voltages rise during the PV generation window, and sag 

otherwise during the evening and morning due to the building load demand, in an “inverse duck 

curve” trend. In both PQ and Volt-Var control, there is a clear correlation between solar PV 

production, voltage rise, and inverter 𝑄ind regulation. Similarly, there is a correlation between 

lower morning/evening voltage sags (due to the building load power demand) and inverter 𝑄cap 

regulation. Also, none of the inverter controls use active power curtailment as a voltage 

regulation strategy. This happens because of the ZNE constraints, which make active power 

generation to be prioritized in order to meet ZNE. 

At Building 14, the AC/DC ratio is < 1. Therefore, there is not much room to absorb inductive 

reactive power during peak PV generation hours. Thus, there is a clear drop-in 𝑄ind proportional 

to solar PV active power generation, (notice the “V shape” of the 𝑄ind bars) to give priority to 

PV active power output by the inverter. At building 11, since the AC/DC ratio is >1, this is not a 

problem. We will discuss the optimal AC/DC ration and inverter sizing in the following section. 
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Baseline PQ Control Volt-Var droop-control 

  
 

   
Figure 7.7 – Inverter dynamics at buildings 11 and 14. Baseline versus PQ control and Volt-Var Sinv, Pinv, and Qinv are the 

net apparent, active, and reactive power flow through the inverter. Qelec is the reactive power used by the building; Qind and 
Qcap are inverter induction (absorption) and capacitive (injection) controls. Qimport is the reactive power imported from the 

grid. PV is the DC solar generation. Inverter kVA is the inverter capacity. Voltage in per-unit is plot on the secondary axis to the 
left.  

7.5.3. Inverter sizing and optimal AC/DC ratio 

Here we compare the optimal inverter sizing, or AC/DC ratio, for each scenario and attempt to 

find a correlation between the maximum Baseline over-voltage value at a given inverter location 

and the optimal inverter AC/DC ratio. The inverter AC/DC ratio is simply the inverter capacity, 

in kVA, divided by the solar PV system DC rating, in kW. Inverter AC/DC ratios were 

calculated for all inverters for the different scenarios; we provide these data in   
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Table 3, in the Appendix.  

For the Baseline, the same optimal AC/DC ratio of 0.83 is used for all inverters, and this occurs 

because of the assumed solar PV generation profiles used for all buildings. In this profile, the PV 

system does not generate 100% of the DC nameplate power due to expected generation losses. 

Therefore, the Baseline inverter is sized to be just large enough to accommodate the solar PV 

generation output. For the PQ control scenario, we observe that only two buildings (11 and 14) 

require an inverter AC/DC ratio beyond the Baseline. The inverter at building 11 adopts an 

optimal AC/DC ratio of 1.53, and the inverter at building 14, 0.87. All other inverters did not 

require a kVA capacity beyond Baseline because the voltages at those locations did not extend 

far from 1 per unit in order to drive regulation. For Volt-Var control, on the other hand, 5 out of 7 

inverter locations (building 1, 11, 12, 14, and 17) adopted an inverter AC/DC ratio beyond 

Baseline. This happens because, in droop-control, any voltage deviation will drive voltage 

regulation. However, we note that the AC/DC oversize is less on a droop-control model, and will 

be dictated by the Volt-Var curve limit points and slope.  

We want to find a correlation between the inverter AC/DC ratio and a local variable,  such as 

voltage. We use MATLAB’s corrcoef()function to calculate the R values between variable 

pairs, and we find a reasonable linear correlation between AC/DC ratio and maximum nodal 

overvoltages (R = 0.649 for PQ control and R = 0.7351 for Volt-Var control). For Volt-Var, we 

only use 7 data points, corresponding to the nodes of the seven pre-defined inverter locations. 

We then attempt to find a curve fit, using MATLAB’s fit() function and choosing the power2 

as the fit model, which assumes the equation of the form 𝑌 = 𝑎𝑥𝑏 + 𝑐. Where 𝑎, 𝑏, and 𝑐 are the 

fitness coefficients. The resulting fitted curve, goodness of fit, and model are shown in Figure 

7.8, where 𝑌 is the inverter AC/DC ratio (for their PQ control or Volt-Var control), and 𝑥 is the 

node’s maximum over voltage at Baseline. 𝑅2 is the determination coefficient, 𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟 is the 

root mean squared error (standard error), and. coefficients are calculated with (with 95% 

confidence bounds) 
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Curve fit model: 𝑌 = 𝑎𝑥𝑏 + 𝑐 

  
𝑎 = 2.641e − 06   

𝑏 = 175.3 

𝑐 =  0.8303   
𝑅2 =  0.99939 

𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟= 0.003188 

𝑎 = 2.02e − 05   
𝑏 = 136.5  
𝑐 =  0.844   

𝑅2 =  0.98872 

𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟 = 0.01629 

Figure 7.8 – Optimal AC/DC ratio vs. maximum nodal over voltage curve fit for PQ control and Volt-Var using the power2 
MATLAB curve fit model.  

7.6. Summary  

In this chapter, a new approach to model inverter Volt-Var droop-control and PQ control within 

a MILP for optimal DER allocation and dispatch to minimize cost and minimize voltage 

deviation was developed. We provide a comparison of the optimal inverter sizes for inverters 

with Volt-Var droop control and optimal PQ control.  

Our results show that: 

 Volt-Var droop-control and optimal PQ control are effective strategies to 

regulate the voltage to be within the compliant upper level of 1.05 p.u of a ZNE 

microgrid. Especially when active power curtailment is not feasible since the system 

needs to meet ZNE (and therefore export a lot of solar PV generation). Because 

voltage control only occurs during the PV generation window (when DC voltage is 

present), the control methods were not able to eliminate under-voltages that occur in 

the evening. 
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 If there are no voltage regulation needs, the optimal AC/DC ratio will be <1. 

Optimal PQ recommends a larger inverter size than Volt-Var droop control for 

the same node. The maximum oversize needed to be 1.53 for optimal PQ and 1.18 

for Volt-Var droop control. Optimal PQ control will recommend a larger inverter size 

than droop control for the same node because reactive power output is only limited by 

inverter capacity and to minimize voltage deviations, it will maximize reactive power 

control. 

 The optimal inverter AC/DC ratio is location-dependent and is correlated to the 

maximum Baseline overvoltage (without regulation) at that inverter location.  

From our optimization model solution, we derived an approximated practical model 

for inverter sizing when operating either with at Volt-Var droop control or optimal 

PQ. choosing the power2 as the fit model, which assumes the equation of the form 

𝑌 = 𝑎𝑥𝑏 + 𝑐, where Y is the inverter oversizing and x, is the maximum baseline 

overvoltage.  
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8 Conclusions 

The main takeaways from this work, separated by chapter are as follows: 

Chapter 3, demonstrated the ability of an inverter-connected baseload DER to locally reduce 

line losses and provide local voltage support in a real-world transmission (500/230/66 kV) power 

system that is generation-constrained. It showed that: 

 The best DER placement is at the weakest point in the system, at the end of the 

circuit, at the lowest voltage bus. 

 In systems with long lines, reactive power injection is, in fact, more effective to 

raise voltage profiles than active power injection. The combined active/reactive 

power injection scenario is found to be most attractive for voltage regulation; thus, 

the 0.7 leading PF case shows an overall better voltage regulation for the entire 

system. Operating at a 0.7 leading power factor also improved system voltage 

stability 

 

Chapter 4 developed an urban microgrid test case that is representative of a real-world 

power system. It also identified potential challenges associated with grid integration of large-

scale PV deployments into that existing system: 

 There are locations in the feeder more prone to challenges in hosting DER: 

impacts on the 66 kV level are negligible while on the lower voltage 480, 277 V, 208 

V or 120, 240 V level, at secondary buses, transformer and cable overloads occurred 

as well as over voltages. These impacts are extremely locational: over voltages are 

exacerbated as PV is deployed further away from the substation. Line overloads are 

more likely to happen at the head of the feeder 

 The challenging approach of judiciously siting and sizing of battery storage 

points to the lack of an integrated tool to optimize all DER allocation 

simultaneously while considering system dynamic (time-series) operation and the 
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resultant power flows, voltages, and branch currents at the electric grid network. 

Ideally, the optimization suite would simultaneously account for all constraints and 

compute a unique final solution. These results drove the development of such an 

optimization model, a MILP for DER optimal allocation, namely DERopt. 

 Utility distribution transformer overloads are a significant negative impact of 

large deployments of solar PV. These results drove the development of novel 

transformer constraints to limit the reverse power flow at the transformer level 

(limiting the total apparent power injection at that node). These novel constraints 

were discussed in Chapter 5 

 Over voltage excursions during midday are another major limiting factor to 

large PV deployments, point to the need for a linearized power flow formulation that 

is also suitable for meshed networks to accurately describe (and limit) the impact of 

these deployments. This results drove the development of a linearized decoupled 

power flow formulation that can be integrated into a MILP, as described in Chapter 6 

Chapter 5 proposed a Mixed Integer Linear Program optimization to decide the best 

DER portfolio, allocation, and dispatch, for an AEC microgrid that achieves ZNE and islanding 

while respecting electrical grid operational constraints, with a focus on distribution transformer 

overloads. It used the same real-world test case of Chapter 4, with time-series loads modeled in 

EnergyPlus, to accurately represent the community aggregated load stock of residential, 

commercial, and industrial utility customers. It modeled operation goals typically desired for 

district systems such as Zero-Net-Energy and islanding as a microgrid during unplanned grid 

outages. A novel polygon relaxation was used as a practical linearization approach for transformer 

power flow constraints; using polygon relaxations to capture the non-linear relationship between active 

and reactive power flows at the transformer showed adequate accuracy (errors below 1%), and 

computation tractability, as well as superior computational performance. When compared to comparable 

linearization methods such as piecewise linearization or linear interpolation, polygon relaxation run time 

is about six times faster Polygon relaxations are a versatile tool can also be used to limit branch 

kVA flows to their allowed thermal limit. 

 



 

177 

 

 Effective strategies to avoid transformer overloads are careful sizing and siting 

of battery energy storage behind those transformers and also optimally re-

distributing PV throughout the community, which increased the ability of the electric 

infrastructure to support a PV deployment that is 1.7 times larger than the existing 

transformer capacity without the need for infrastructure upgrades.  

 The use of transformer constraints within DER investment planning, associated 

with the right battery storage allocation and dispatch, increases PV penetration 

as opposed to the use of practical rules, such as the “15%” rule. Taking the ZNE, 

area-constrained scenario as an example, the total PV installed capacity over the 

entire community is 11,211 kW which is 1.7 times greater than the total installed 

transformer capacity of 6,500 kVA, which shows an excellent potential for PV 

hosting capacity maximization beyond conservative rules of thumb. 

 ZNE can be accomplished at a community level in urban district systems, large 

utility customers in the C&I sector most likely cannot entirely deploy enough PV to 

meet local electricity demand since they typically have high demand and there is a 

limited amount of space available for rooftop PV deployment at those sites. 

Therefore, to accomplish ZNE, the available area for PV installation in the residential 

sector needs to be leveraged to support the community energy goals. 

Chapter 6 described and validated a new approach to model the linearized AC power 

flow in a MILP. The approach used the Decoupled Linearized Power Flow (J. Yang et al., 2016). 

DLPF demonstrated the advantage of being suitable for meshed networks, while the majority of 

current models use LinDistFlow, which is only suitable for radial networks. The DLPF voltage 

magnitude and branch power (in kVA) solutions were validated against LinDistFlow and the true 

AC power flow (ACPF) solution for a meshed benchmark network, a 33-node system. Then, we 

integrated the DLPF formulation into our MILP. Both DLPF and LinDistFlow were used to 

model constraints on the electric power network infrastructure that limits voltages to ANSI C84 

standard limits.  

The main takeaways were: 

 For radial circuits, LinDistFlow is the most accurate linearization method, while 

for meshed networks, DLPF is the most accurate linearization method Overall, 



 

178 

 

all linearization methods evaluated performed a good linearization at radial circuits 

(voltage errors lied within 1% of the true value and branch kVA flows errors lied 

within 5% of the true value). However, at the loops, LinDistFlow underestimates true 

voltage values. Bolognani et al. approximation errors had the same order of 

magnitude, but slightly higher. 

 The use of LinDistFlow within a DER optimization for a meshed network with 

voltage constraints may lead to undersized optimal PV and battery systems. The 

LinDistFlow solution underestimated both overvoltage and undervoltage. Thus, it is 

not able to fully capture the magnitude of over and under voltages, and as a result, 

recommending undersized PV and battery systems.  

 The DLPF solution was effective for limiting overvoltages, but would not capture 

under voltages. The DLPF solution slightly overestimated overvoltages 

(conservative) and underestimated under voltages (not strict enough). 

 Both DLPF and LinDistFlow underestimate branch kVA power flows by up to 2 

MW. Both solutions were found not to be able to capture the true branch kVA flow 

due to the underlying assumption of lossless lines, which may lead to line overloading 

for practical systems. It is suggested that a safety margin should be included, reducing 

the quantity of power that can flow through individual power lines. 

Chapter 7 developed a new approach to model inverter Volt-Var droop-control and 

optimal PQ control within a MILP, then applied these models into an optimal DER investment 

planning to optimally size inverters that can provide voltage support for a microgrid with high 

PV penetration. Inverters were solely capable of removing all over voltage issues by controlling 

local reactive power. Controlling reactive power is preferred since active power curtailment 

would compromise the meeting of ZNE operation, where solar PV exports a highly necessary. 

Inverter oversizing proved to be location-dependent and control-mode dependent. A correlation 

between inverter AC/DC ratio and maximum nodal over-voltage was fond. A curve fit model for 

optimal inverter sizing was then provided for each control strategy Volt-Var droop control and 

optimal PQ control. We used the power2 as the fit model unction in MATLAB, which assumes 

the equation of the form 𝑌 = 𝑎𝑥𝑏 + 𝑐 where Y is the inverter oversizing and x is the maximum. 

baseline overvoltage. 
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Overall, the current aggressive (and much needed) global decarbonization agenda and the 

current incentive-driven favorable techno-economic feasibility of renewable solar PV coupled 

with battery storage will drive an ever-increasing adoption of such systems. These ambitious 

deployment levels will require DER to be integrated within the current urban space, likely at the 

distribution level feeders. The challenges of this integration are many and will require careful 

consideration of the existing power system infrastructure equipment and local power quality. In 

parallel, the cost-effectiveness of such deployments is still the main focus of project owners and 

stakeholders. Optimal DER investment planning optimization tools, especially MILPs to 

minimize overall project cost, are becoming gradually popular for achieving feasible microgrid 

design at the least-cost. This research work was entirely motivated by the identification of 

existing gaps in the current sate-of-the art optimization tools: no previous tool was able to 

simultaneously optimize DER allocation while considering distribution power transformer 

infrastructure, for instance. No tools also employed a suitable AC power flow solver for meshed 

microgrid networks. Moreover, smart-inverter inverter technology was often not leveraged to 

provide local voltage control and increase PV hosting capacity. This work addresses these gaps 

by proposing novel approaches such as polygon relaxations, the integration of the novel linear 

DLPF AC power flow, and the linearization of smart-inverter functions. The resulting tool 

optimizes DER allocation for a 115-node microgrid that achieves ZNE over one year period. 

Future work points to the need for even more detailed power system modeling, such as 

individual phasing, transformer automatic TAP changers, and existing power system protection 

equipment, for instance, while keeping the model tractable and feasible for an increased number 

of nodes and meshes. By taking some of these aspects into account, there is still a great potential 

in increasing the optimality of such designs. 
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APPENDIX 

 
Table 1 – Comparison of existing literature on the topic of DER optimal allocation, with a MILP considering power system 

constraints 
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Table 2 – Building DER allocation for all scenarios 

  

# ZNE ZNE+TC ZNE+area ZNE+area+TC Island+area Island+area+TC 

BDG PV EES REES PV EES REES PV EES REES PV EES REES PV EES REES PV EES REES 

1 1152 0 0 1523 0 0 1296 0 0 1296 0 0 1296 2328 2445 1296 2250 2758 

2 58 0 0 61 0 0 101 0 0 175 0 354 221 79 428 221 92 211 

3 253 0 0 245 0 0 18 0 0 18 0 0 18 528 55 18 528 55 

4 45 0 0 43 0 0 73 0 0 120 0 241 210 54 298 210 72 302 

5 11 0 0 442 0 0 227 0 0 227 0 0 227 784 883 227 780 857 

6 894 0 0 2766 0 0 489 0 0 489 0 0 489 6191 1077 489 5774 1258 

7 5 0 0 7 0 0 13 0 0 58 0 46 58 13 62 58 15 73 

8 60 0 0 54 13 0 142 0 0 198 0 0 198 109 528 198 86 591 

9 54 0 0 55 0 0 88 0 0 168 13 319 251 66 360 251 87 299 

10 478 0 0 230 169 0 482 0 0 573 321 1268 0 0 0 301 67 835 

11 2222 0 0 1096 656 198 1552 0 0 1552 424 1907 1422 302 3736 1503 324 3892 

12 582 0 0 299 148 0 588 0 0 647 390 1064 647 159 1837 451 104 1343 

13 350 0 0 172 114 13 306 0 0 306 192 422 306 76 885 225 53 706 

14 917 0 0 453 312 15 925 0 0 1011 646 1914 942 188 2562 601 132 1556 

15 36 0 0 36 0 0 9 0 0 9 0 0 0 0 0 9 0 0 

16 901 0 0 446 292 15 801 0 0 801 499 1078 83 15 199 601 118 1327 

17 625 0 0 316 178 0 613 0 0 613 387 864 613 128 1612 451 105 1359 

18 66 0 0 39 0 0 58 0 0 58 29 28 58 16 192 58 13 139 

19 502 0 0 236 169 13 446 0 0 446 297 688 420 88 1109 301 72 840 

20 17 0 0 56 0 0 149 0 0 149 0 270 149 0 0 149 13 197 

21 29 0 0 33 0 0 37 0 0 37 0 0 37 13 109 37 13 117 

22 10 0 0 12 0 0 15 0 0 15 0 0 15 13 27 15 13 33 

23 49 0 0 52 0 0 45 0 0 45 0 0 45 40 177 45 38 185 

24 31 0 0 37 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

25 89 0 0 104 0 0 111 0 0 111 0 0 111 37 359 111 35 382 

26 29 0 0 36 0 0 41 0 0 41 0 0 41 0 0 41 0 0 

27 90 0 0 118 0 0 142 0 0 142 0 0 142 51 388 142 49 396 

28 124 0 0 159 0 0 251 0 0 341 0 329 341 89 372 341 101 446 

29 876 424 0 1515 476 0 1436 261 0 1436 20 0 1436 0 0 1436 0 0 

30 10 0 0 12 0 0 15 0 0 15 0 0 15 0 0 15 0 0 

31 17 0 0 34 0 0 59 0 0 62 0 51 62 34 176 62 41 125 
Total 10585 424 0 10686 2528 254 10580 261 0 11211 3220 10844 9902 11402 19875 9914 10976 20280 
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Table 3 – Inverter capacity comparison, at each building, for all scenarios.  
Highlighted rows indicate the even  inverter locations for Volt-Var droop control 

BLDG 

# 

Solar 

PV 

Installed 

(kW) 

Inverter 

capacity 

Baseline 

(kVA) 

Inverter 

capacity 

PQ 

control 

(kVA) 

Inverter 

capacity  

 Droop-

control 

 (kVA) 

1 1,846 0.83 0.83 0.86 

2 22 0.83 0.83  

3 97 0.83 0.83  

4 18 0.83 0.83  

5 155 0.83 0.83  

6 385 0.83 0.83  

7 4 0.83 0.83  

8 86 0.83 0.83  

9 21 0.83 0.83  

10 176 0.83 0.83 0.83 

11 405 0.83 1.53 1.18 

12 212 0.83 0.83 0.86 

13 128 0.83 0.83  

14 336 0.83 0.87 0.87 

15 7 0.83 0.83  

16 329 0.83 0.83 0.83 

17 228 0.83 0.83 0.87 

18 24 0.83 0.83  

19 183 0.83 0.83  

20 16 0.83 0.83  

21 11 0.83 0.83  

22 3 0.83 0.83  

23 2 0.83 0.83  

24 6 0.83 0.83  

25 26 0.83 0.83  

26 19 0.83 0.83  

27 44 0.83 0.83  

28 20 0.83 0.83  

29 257 0.83 0.83  

30 3 0.83 0.83  

31 20 0.83 0.83  
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