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MULTIDIMENSIONAL ALMOST-PERIODIC SCHRÖDINGER

OPERATORS WITH CANTOR SPECTRUM

DAVID DAMANIK, JAKE FILLMAN, AND ANTON GORODETSKI

Abstract. We construct multidimensional almost-periodic Schrödinger oper-
ators whose spectrum has zero lower box counting dimension. In particular,
the spectrum in these cases is a generalized Cantor set of zero Lebesgue mea-
sure.

MSC2010 Subject Class: 34L40

1. Introduction

A Schrödinger operator in R
d is a self-adjoint operator of the form

LV φ = −∆φ+ V φ

in L2(Rd), where V : Rd → R is a bounded, continuous function, known as the
potential. One says that V is periodic if there are linearly independent u1, . . . , ud ∈
R

d with V (x) = V (x+ uj) for all x and j, (uniformly) almost-periodic if
{
V (· − y) : y ∈ R

d
}

is precompact in C(Rd) with the uniform topology, and limit-periodic (denoted
V ∈ LP(Rd)) if there are periodic V (1), V (2), . . . in C(Rd) with V (n) → V uniformly.
It is not hard to check that every limit-periodic potential is also almost-periodic.

It is well known that in the one-dimensional case, d = 1, the spectrum of LV

has a tendency to be a Cantor set when V ∈ LP(R); compare for example, [2,
4, 8, 18, 19, 21, 22]. Moreover, these Cantor sets can be quite thin, in the sense
that they may have zero Lebesgue measure; using ideas from Avila’s work in [1],
Damanik, Fillman, and Lukic constructed examples of V ∈ LP(R) so that σ(LV )
is a zero-measure Cantor set [4]. More precisely, the zero-measure phenomenon is
generic in LP(R), whereas for a dense set of V ∈ LP(R), σ(LV ) is even of zero
Hausdorff dimension [4].

When one of the authors of [3] and [4] presented the results from those papers
at the ICMP 2018 in Montréal, the following question was asked at the end of the
talk: is this a purely one-dimensional phenomenon or is there any hope to construct
examples of this kind in higher dimensions as well?

The natural inclination is to expect that this is indeed a one-dimensional phe-
nomenon that has no counterpart in higher dimensions. The main reason is given
by the work done on the Bethe-Sommerfeld conjecture. If d = 1 and, for example,
V (x) = cosx, then it is known that σ(LV ) is a disjoint union of infinitely many
compact intervals [24, pp. 298–299]. In other words, the spectrum has infinitely
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many gaps at arbitrarily high energies. This topological structure is known to be
generic among all one-dimensional periodic potentials [25]. On the other hand, the
Bethe–Sommerfeld conjecture posits that σ(LV ) contains a half line whenever V
is periodic and d ≥ 2. This conjecture inspired intense study, with contributions
from many authors, including (but not limited to) [11, 12, 23, 26, 27, 28, 29], and
culminating in the paper of Parnovski [20]. For a more detailed discussion see also
[16] and references therein. In recent years, there has been renewed interest in the
Bethe–Sommerfeld conjecture for other types of operators, including operators on
quantum graphs [6] and discrete Schrödinger operators. Following a partial result
in [15], a discrete version of the Bethe–Sommerfeld conjecture was proved on Z

2

[5], on Z
d for general d ≥ 2 [10], and on other lattices [7].

This shows that periodic spectra exhibit a marked difference in their topological
structure as one passes from d = 1 to d ≥ 2. It also suggests that for almost
periodic potentials, and especially limit-periodic potentials, in dimensions at least
two, one should not necessarily expect to find gaps in the spectrum at arbitrarily
high energies. On the one hand, this is not a formal consequence of the known
results in the periodic case as the bottom of the half line in the spectrum may run
off to infinity as one moves through a sequence of periodic approximations to a
limit-periodic/almost periodic V . On the other hand, there actually has been work
on aperiodic almost-periodic potentials V for which it could be shown that the
spectrum contains a half line [13, 14]. That is, a version of the Bethe–Sommerfeld
conjecture has been established in the almost-periodic context, beyond the periodic
case. Moreover, no example of a multi-dimensional almost periodic potential V is
known for which σ(LV ) does not contain a half line.

This discussion prompts one to expect that the answer to the question above is
that the results from [4] likely do not have a multi-dimensional counterpart, and
in particular there are likely no multi-dimensional almost periodic potentials V for
which σ(LV ) has zero Lebesgue measure, let alone zero Hausdorff dimension.

Alas, the correct answer to the question is that the results from [4] do have
higher-dimensional counterparts. We show in this short note how to use the exam-
ples of [4] to construct V ∈ LP(Rd) for d ≥ 2 so that σ(LV ) has zero lower box
counting dimension. As a consequence, for these V , σ(LV ) is a set of zero Haus-
dorff dimension, and in particular it is a generalized Cantor set (closed, with empty
interior, and without any isolated points) of zero Lebesgue measure. Thus, when
one transitions from the periodic to the almost-periodic setting, the property set
forth in the Bethe–Sommerfeld conjecture may fail in the most spectacular fashion:
not only does the spectrum have infinitely many gaps, but these gaps are dense and
have full Lebesgue measure.

Let us emphasize that, to the best of our knowledge, these are the first examples
of Schrödinger operators in L2(Rd) with d ≥ 2 (with any potential, not just an
almost periodic potential) that have a generalized Cantor set as spectrum. The
additional statements about this Cantor set being very thin in the sense of standard
fractal dimensions are an added bonus.

Let us recall how one defines the box-counting dimensions (also called the
Minkowski dimensions or the Minkowski-Bouligand dimensions) of a bounded1 set
S ⊆ R. Given ε > 0, let N(ε) = N(ε;S) denote the minimal number of intervals

1Boundedness is necessary to ensure that S may be covered by finitely many ε-boxes.
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of length ε needed to cover S. The upper and lower box-counting dimensions of S
are then defined by

dim+
B(S) = lim sup

ε↓0

logN(ε;S)

log(ε−1)
, dim−

B(S) = lim inf
ε↓0

logN(ε;S)

log(ε−1)
.

We will say that (a potentially unbounded set) S ⊆ R has zero lower box counting
dimension if

dim−
B(S ∩ [−a, a]) = 0

for all a > 0.
It is well known that any S ⊆ R with zero lower box counting dimension must

have zero Hausdorff dimension and hence zero Lebesgue measure.

Theorem 1.1. There are multi-dimensional limit-periodic V such that σ(LV ) is a
generalized Cantor set of zero Lebesgue measure. In fact, there is a dense subset

B ⊆ LP(R) with the property that σ(LV ) is a generalized Cantor set of zero lower

box counting dimension whenever V is of the form

(1.1) V (x1, . . . , xd) =
d∑

j=1

W (xj)

with W ∈ B.2

The key technical result we prove here, however, is a one-dimensional result:

Theorem 1.2. There is a dense subset B ⊆ LP(R) such that, for every V ∈ B,
σ(LV ) has zero lower box counting dimension.

Indeed, Theorem 1.2 quickly implies Theorem 1.1:

Proof of Theorem 1.1. For separable potentials V as in (1.1), one can express σ(LV )
as a Minkowski sum of the 1D spectra:

σ(LV ) = σ(LW ) + · · ·+ σ(LW ) =





d∑

j=1

yj : yj ∈ σ(LW ) for each j



 .

Thus, the conclusion of the theorem follows from Theorem 1.2 and standard argu-
ments about Minkowski sums of fractal sets, e.g. Corollary A.2. �

Remark 1.3. Let us make a few comments on Theorem 1.1.

(1) The analysis of [4] supplies the key input. Since Damanik–Fillman–Lukic
were able to incorporate a coupling constant into their construction, one
can also incorporate coupling constants into the present work. That is to
say, there is a dense family B so that σ(LV ) is a Cantor set of zero Hausdorff
dimension whenever

V (x1, . . . , xd) =

d∑

j=1

λjW (xj)

with W ∈ B and λ1, . . . , λd > 0. Notice that this statement does not follow
from the fact that dim−

B(σ(LλW )) = 0 for all λ > 0 automatically, since
in general sum of sets of zero lower box counting dimension does not have
to have zero lower box counting dimension. Nevertheless, one can extract

2Clearly, if W ∈ LP(R), then V ∈ LP(Rd).
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from [4] that the set B can be constructed in such a way that for any
W ∈ B and any λ1, . . . , λd > 0 there exists a sequence εn → 0 such that

limn→∞

logN(εn;σ(LλjW
))

log(ε−1

n )
= 0 for each j = 1, . . . , d. And this is sufficient to

show that the set

σ(Lλ1W ) + · · ·+ σ(LλdW )

has zero lower box counting dimension.
(2) Our proof will address the dimensional statements, which in turn imply that

the spectrum has empty interior. Since we claim that it is a generalized
Cantor set, let us mention that the spectrum is always closed and the one-
dimensional spectra (and hence their Minkowski sums) have no isolated
points, both by well-known general principles.

(3) It is not hard to construct V ’s in Theorem 1.2 which are also Gordon
potentials in the sense of [9]. Thus, it is possible to produce examples
in Theorem 1.1 and 1.2 which have purely singular continuous spectrum.
The absence of absolutely continuous spectrum is immediate from the zero
Lebesgue measure property, and the absence of point spectrum follows from
the Gordon lemma [9]. More specifically, the Gordon lemma yields the
absence of eigenvalues, and hence the continuity of all spectral measures
for the one-dimensional operators. From there, the spectral measure of any
element of L2(Rd) of the form φ(x) = φ1(x1) · · ·φd(xd) (with φj ∈ L2(R))
is the convolution of continuous measures, hence continuous. Since linear
combinations of such functions are dense in L2(Rd), it follows that LV has
purely continuous spectrum.

(4) By substituting the analysis of [1] for [4], one can follow the outline of this
paper and produce multidimensional limit-periodic discrete Schrödinger op-
erators having spectra of zero lower box dimension (and hence zero Haus-
dorff dimension and zero Lebesgue measure). We focus on the continuum
case here, but the changes to pass to the discrete setting are cosmetic.

(5) It is interesting to compare Theorem 1.1 to the results of [13] in dimension
two. From the construction in the proof of Theorem 1.1, one can choose
W to be of the form

W (x) =

∞∑

j=1

Wj(x),

where Wj(x) is 2
j−1-periodic, and one may then write

V (x1, x2) =

∞∑

j=1

Wj(x1) +Wj(x2)︸ ︷︷ ︸
≡Vj(x1,x2)

.

Clearly then, our examples must fail to satisfy the decay estimate

‖Vj‖∞ ≤ Ĉe−2ηj

, η > η0 > 0

from [13]. However, it is unclear what the optimal decay rate in Theorem 1.1
is. To be more specific, the optimal rate of decay of ‖Vj‖∞ depends on the
optimal quantitative dependence of N0 on ε in Lemma 2.2, and the proof
of Lemma 2.2 from [4] does not yield useful quantitative bounds on N0.
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The remainder of the paper is concerned with proving Theorem 1.2. For the
reader’s convenience, we also attach an appendix explaining how to derive the
dimension result alluded to in the previous proof.

2. Preparatory Work: The Spectrum in Finite Energy Windows

We will need the following elementary estimate on the number of bands that one
may observe in a finite energy window. This follows from standard asymptotics for
the bands of periodic Schrödinger operators; for a detailed proof, see [4].

Lemma 2.1. If V is continuous and T -periodic and a > 0, then the interval [−a, a]
intersects no more than

T

π

√
a+ ‖V ‖∞ + 1

bands of σ(LV ).

We will also use the following lemma from [4].

Lemma 2.2. Suppose V ∈ C(R) is T -periodic, ε > 0, and a > 0. There exists

N0 = N0(a, V, ε) ∈ Z+ such that the following holds true. For any integer N ≥ N0,

setting T̃ := NT , there is an T̃ -periodic potential Ṽ such that ‖V − Ṽ ‖∞ < ε, and
one has the measure estimate

Leb
(
σ(LṼ ) ∩ [−a, a]

)
≤ exp

(
−T̃ 1/2

)
,

where Leb denotes Lebesgue measure.

3. Zero Lower Box Dimension

Proof of Theorem 1.2. Fix a T0-periodic potential V0 ∈ C(R), and let ε0 > 0 be
given. We will construct a sequence (Vn)

∞
n=1 consisting of periodic potentials

so that V∞ = limn Vn satisfies ‖V0 − V∞‖∞ < ε0 and σ(LV∞
) has zero lower

box counting dimension. For the sake of notation, define Ln = −∆ + Vn and
Σn = σ(Ln) for 1 ≤ n ≤ ∞.

Denote an = 2n, and take ε1 = ε0/2. By Lemma 2.2, there exists a potential V1

of period T1, which is a multiple of T0, such that ‖V0 − V1‖∞ < ε1 and

δ1 := Leb(Σ1 ∩ [−a1, a1]) < exp
(
−T

1/2
1

)
.

Inductively, having constructed Vn−1, δn−1, and εn−1, define

(3.1) εn = min

(
εn−1

2
,
δn−1

4

)
.

By Lemma 2.2, we may construct a multiple Tn of Tn−1 and a Tn-periodic potential
Vn with ‖Vn − Vn−1‖∞ < εn such that

(3.2) δn := Leb(Σn ∩ [−an, an]) < exp
(
−T 1/2

n

)
.

By completeness, V∞ = limn→∞ Vn exists. By definition, V∞ is limit-periodic. By
(3.1), we have

‖V0 − V∞‖∞ <

∞∑

j=1

εj ≤
∞∑

j=1

2−jε0 = ε0.
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Thus, it remains to show that the spectrum has lower box dimension zero. Notice
that (3.1) yields

(3.3) ‖Vn − V∞‖∞ ≤
∞∑

j=n+1

εj <

∞∑

k=2

2−kδn = δn/2

for all n ∈ Z+. We claim that

(3.4) dim−
B(Σ∞ ∩ [−aj, aj ]) = 0 for every j ∈ Z+.

To see this, let n ∈ Z+ with n ≥ j be given. Then, by (3.3), the δn/2-
neighborhood of Σn ∩ [−aj , aj] together with the intervals [−aj,−aj + 2δn] and
[aj − 2δn, aj ] comprises a cover of Σ∞∩ [−aj , aj ] by intervals of length at most 2δn.
By (3.2) and Lemma 2.1, we have

logN(2δn;σ(LV∞
) ∩ [−aj , aj ])

log((2δn)−1)
.

log
(

1
πTn

√
‖V0‖∞ + ε0 + aj + 3

)

√
Tn

,

which clearly goes to zero as n → ∞, proving (3.4). Having proved (3.4), we are
done. �
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Appendix A. Minkowski Self-Sums of a Set with Lower Box

Dimension Zero

Proposition A.1. Let C be a bounded set, and, for d ≥ 1, denote

C(d) = C + · · ·+ C︸ ︷︷ ︸
d copies of C

.

If dim−
B(C) = 0, then dim−

B(C
(d)) = 0 for all d ≥ 1. In particular, C(d) has zero

Hausdorff dimension and hence zero Lebesgue measure.

Proof. Let εj ↓ 0 be such that logN(εj ;C)/ log(ε−1
j ) → 0, and let δ > 0 be given.

Then, for large j, C may be covered by fewer than ε−δ
j intervals of length at most

εj. Consequently, C(d) may be covered by fewer than ε−δd
j intervals of length at

most dεj . We then have

logN(dεj ;C
(d))

log((dεj)−1)
≤

δd log(ε−1
j )

log(1/d) + log(ε−1
j )

.

Sending j → ∞, we get dim−
B(C

(d)) ≤ δd. Sending δ ↓ 0 concludes the argument.
�

Corollary A.2. If C ⊆ R is bounded from below and has lower box dimension zero,

then C(d) has lower box dimension zero for all d ≥ 1.

Proof. This follows immediately from Proposition A.1 and the following observa-
tion: if C is bounded from below by −γ ≤ 0, then, for any d ≥ 1 and a > 0, one
has

C(d) ∩ [−a, a] ⊆ (C ∩ [−γ, a+ (d− 1)γ])
(d)

.

�
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Notice that the assumption that C is bounded below is crucial. To see this, let
α be irrational and consider

C = Z+ ∪ (−αZ+).

Clearly, C has box dimension zero, but C + C does not.
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