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OPEN

ORIGINAL ARTICLE

Psychiatric gene discoveries shape evidence on ADHD’s
biology
A Thapar1, J Martin1, E Mick2,3, A Arias Vásquez4,5, K Langley1,6, SW Scherer7, R Schachar8, J Crosbie8, N Williams1, B Franke4, J Elia9,10,11,
J Glessner12, H Hakonarson13, IMAGE 2 Consortium16, MJ Owen1, SV Faraone14,15, MC O'Donovan1 and P Holmans1

A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although
attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk,
little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control
CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for
enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism
as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental
disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual
genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P= 5.4 × 10− 4) and
targets of the Fragile X mental retardation protein (P= 0.0018). No enrichment was observed for activity-regulated cytoskeleton-
associated protein (P= 0.23) or N-methyl-D-aspartate receptor (P= 0.74) post-synaptic signalling gene sets previously implicated in
schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P= 0.019 for non-synonymous SNV
genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological
pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity
analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful
gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders.

Molecular Psychiatry (2016) 21, 1202–1207; doi:10.1038/mp.2015.163; published online 17 November 2015

INTRODUCTION
Attention-deficit hyperactivity disorder (ADHD), a childhood-onset
neurodevelopmental disorder,1 is highly heritable.2,3 Despite this
strongly consistent finding, some remain sceptical about the
diagnosis of ADHD, the biological validity of such a construct, and
its neurodevelopmental origins.4 Public misunderstanding is
further fuelled by the relative scarcity of knowledge regarding
its pathophysiology. The knowledge gap on pathophysiology is
not straightforward to address given practical limitations to
directly assess biological and molecular systems in those who
are affected. Genetic findings offer one non-invasive approach to
providing clues about the biology and pathogenesis of neuro-
psychiatric disorders.5–7

In the last 5 years, one class of genetic variant (large, rare
chromosomal deletions and duplications (copy number
variants; CNVs)) has been found to contribute to ADHD risk across
multiple studies.8–12 Common genetic variants also contribute to
ADHD when considered ‘en masse’ as a composite risk.13–19 One

important observation from the original ADHD CNV studies was that
the CNVs spanned chromosomal and gene regions that overlapped
with schizophrenia and autism CNV loci.9,11 Since then, exome-
sequencing investigations of schizophrenia and autism have been
published and have highlighted additional novel genomic regions
that harbour neurodevelopmental disorder risk variants (single-
nucleotide variants; SNVs).20–23 Exome-sequencing results for ADHD
are awaited. Unlike CNVs, which generally span multiple genes,
SNVs are located in individual genes and thus offer improved
resolution for testing cross-disorder pathogenic mechanisms.
Schizophrenia and autism genetic findings have also indicated

specific biological mechanisms; these involve targets of the Fragile
X Mental Retardation protein (FMRP) in schizophrenia and
autism20–24 and in schizophrenia, genes involved in glutamatergic
post-synaptic processes: ARC (activity-regulated cytoskeleton-
associated protein) and NMDAR (N-methyl-D-aspartate receptor)
complexes.20,21,25 Additional pathways have been reported to be
enriched for SNVs (for example, calcium channel complexes in
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schizophrenia21), but such findings are not yet replicated across
multiple studies and research designs.
In the current study, we assemble five ADHD and control CNV

data sets from the United Kingdom, Ireland, Northern Europe,
United States of America and Canada.10 Our aim was to test the
hypothesis that ADHD-associated CNVs show enrichment for gene
sets that have been: (a) implicated by SNVs in the most recent,
largest schizophrenia and autism de novo exome-sequencing
studies20–23 and (b) selected for function involving ARC, NMDAR
and FMRP targets. We also undertook a hypothesis-free meta-
analysis of all biological pathways across the five ADHD data sets.

MATERIALS AND METHODS
Participant and control data sets
The recruitment, assessment processes and clinical description of ADHD
case subjects and controls have been described in detail previously.10

Case–-control CNV data sets were provided by the CNV lead for each study
(SS, NW, JG, BF, EM). The five data sets came from: (a) Canada,11 (b) Cardiff,
UK,9,17 (c) the Children's Hospital of Philadelphia, USA (CHOP),8 (d) the
International Multi-Center ADHD Genetics (IMAGE) 2 Project10,16 and
(e) the Pfizer-funded study from UCLA, Washington University and
Massachusetts General Hospital (PUWMa).26 All affected subjects from
each of the five studies were children aged 5–18 years, had an IQ⩾ 70,
were of European descent, free of psychosis, epilepsy, serious neurological
impairment and met Diagnostic and Statistical Manual of Mental Disorders
(DSM)-III-R or DSM-IV criteria for ADHD as confirmed by semi-structured
research diagnostic interviews. Collection and analysis of case–control data
had been approved at each site by each Institutional Review Board or
ethics committee. Case data were collected with informed consent from
parents and assent from children.
After quality control exclusions (see later), the Canadian study included

247 DSM-IV ADHD cases and 2357 comparison subjects genotyped on the
Affymetrix 6.0 array (Affymetrix, Santa Clara, CA, USA). The UK Cardiff study
(excluding those that were included in IMAGE 2) included 603 DSM-IV
ADHD cases genotyped on Illumina Human 660Q-Quad Beadchip (Illumina,
San Diego, CA, USA) and 1047 comparison subjects genotyped on
HumanHap550Beadchip. The CHOP study included 1013 participants with
DSM-IV ADHD and 4105 comparison children genotyped on the Illumina
Infinium HumanHap550K Beadchip. IMAGE 2 included data from 732
affected children collected in the United Kingdom, Ireland, Germany,
Switzerland, the Netherlands and the United States. Control data came
from 2010 subjects collected for a genome-wide association study of
schizophrenia, described elsewhere.27 A total of 692 ADHD cases from
PUWMa and 1101 controls were genotyped on the Illumina 1M BeadChip.
Quality control and procedures for CNV calling are described in each of the

original manuscripts (see Williams et al.10 for a summary). CNVs were filtered
for frequency (o1%), and also for overlapping (450% length) sites of known
common CNVs defined by the Genome Structural Variation Consortium
(http://projects.tcag.ca/variation/ng42m_cnv.php) or segmental duplications
present in the March, 2006, human reference sequence (National Center for
Biotechnology Information reference build 36.1, hg18). To allow for differ-
ences in CNV detection between the arrays, we used controls genotyped on
platforms that matched the platforms used for the cases. The primary analyses
used all CNVs 4500 kb as these are the most reliably called across different
genotyping platforms, have consistently been found to show increased
burden in ADHD cases vs controls and have withstood experimental
validation.10 Pathways highlighted by the primary analysis were also tested
for enrichment with all CNVs 4100 kb (results available from last author).

Statistical method for enrichment testing
The method is adapted from that proposed by Raychaudhuri et al.28 and
has been successfully applied to de novo schizophrenia CNVs.25 Briefly,
each CNV was labelled ‘case/control’ according to whether it occurs in a
case or a control. A ‘study’ covariate for each data set was included as this
corrects for variation in the genotyping assays and CNV estimation
algorithms used across the different studies.
The following two logistic regression models were fitted to the sample

of CNVs:

(1) Case–control study+CNV length+number of genes hit outside pathway
(2) Case–control study+CNV length+number of genes hit outside pathway

+hit gene in pathway (yes/no)

and the deviances of the two models compared. If there is no enrichment
of case CNV hits on pathway genes, then the difference in deviances
should be distributed asymptotically as a χ2 on one degree of freedom.29

CNV length was fitted in the model because long CNVs are more likely to
hit any set of genes than small ones, and CNV length may differ
systematically between cases and controls. The ‘number of genes hit
outside pathway’ was fitted to allow for case CNVs influencing disease
status by hitting genes other than those in the pathway being tested. A
binary variable (yes/no) is used for whether a CNV ‘hits gene(s) in a
pathway’ rather than the number of genes in the pathway hit by the CNV
(which is also a possibility) to allow for some pathways having several
genes that are physically close together (thus, likely to be hit by the same
CNV). The same analysis method was used to determine gene-specific
enrichments, by defining the ‘pathway’ as the gene.
For all analyses, we tested pathways showing significant enrichment in

the combined data set of five studies and then undertook tests of
sensitivity by examining each of the five data sets separately and
rerunning analysis after excluding the most significant single sample.
Additional analyses were stratified by CNV type (deletions and duplica-
tions). As the number of duplications was greater than the number of
deletions,10 we tested for differential strengths of enrichment by
comparing case duplications to case deletions in the logistic regression
framework described above.

Specific gene sets
Genes selected by location. Four sets of genes were defined: (a) non-
synonymous and (b) loss-of-function de novo SNVs in schizophrenia were
taken from the most recent published de novo exome-sequencing study of
schizophrenia, which also catalogued and annotated all SNVs in previous
studies in a consistent way.20 There were a total of 611 genes containing at
least one non-synonymous de novo SNV, with 87 of these containing a de
novo loss-of-function SNV. We also took sets of genes containing: (c) non-
synonymous and (d) loss-of-function de novo SNVs from the two largest,
recent exome-sequencing studies of autism.22,23 Combining the autism
SNV sets from these studies, there were 2726 unique genes containing at
least one non-synonymous de novo SNV, of which 538 contained a loss-of-
function de novo SNV.

Genes selected by function: FMRP targets, ARC and NMDAR. Next, we
examined a further three gene sets by function, selecting those implicated
in schizophrenia and autism by CNV and more recent exome-sequencing
studies. These were genes involved in FMRP targets (840 genes) as defined
previously30 and the ARC (28 genes) and NMDAR (61 genes) complexes, as
defined by Kirov et al.25 Bonferroni corrections were used to adjust for
testing seven gene sets.

Hypothesis-free analysis of all pathways. This final analysis was undertaken
using a large, unbiased, general set of pathways comprising:

(a) Gene Ontology31 (http://www.geneontology.org/, accessed on July 2013)
(b) KEGG32 (http://www.genome.jp/kegg/, accessed on June 2013)
(c) PANTHER pathways version 3.1 (http://www.pantherdb.org/pathway/)
(d) Mouse Genome Informatics database33 (http://www.informatics.jax.

org/, accessed on August 2013)
(e) BioCarta (http://www.biocarta.com, accessed on June 2013)
(f) Reactome34 (http://www.reactome.org, accessed on June 2013)
(g) NCI35 (http://pid.nci.nih.gov, accessed on June 2013)

Pathways containing between 3 and 1500 genes were used in the
analysis (15 111 in total). To increase the accuracy of the asymptotic
P-values described above and to reduce the chance of a small pathway
being falsely declared to be enriched based on a few gene hits, analysis
was restricted to pathways with at least 10 gene hits in the total sample
(7034 in total). Correction for multiple testing of pathways was performed
by calculating q-values.36

RESULTS
Table 1 shows the number of large, rare CNVs (4500 kb) for
each of the previously published five case control samples
and the total number of deletions and duplications. The rate
and burden of CNVs for each sample have been published
previously.9–11,26,37
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Gene sets selected by location of schizophrenia and autism
de novo SNVs
The genes containing non-synonymous schizophrenia de novo
SNVs20 were significantly enriched for case ADHD CNV hits
(P= 5.4 × 10− 4 for CNVs 4500 kb, see Table 2), which is significant
after Bonferroni correction. Findings remained significant even
after the most significant single sample was removed from the
analysis (Table 2). The significant enrichment was observed for
duplications (P= 5.6 × 10− 4) but not for deletions (P= 0.37).
However, there was no significant difference between ADHD
duplication and deletions in terms of the rate of hits for genes
previously found to carry non-synonymous schizophrenia SNVs
(P= 0.142). For sample-specific enrichments, see Supplementary
Table 1, and see Supplementary Table 2 for gene-wide P-values.
Restricting analysis to genes hit by loss-of-function de novo
schizophrenia SNVs showed no significant enrichment for case
CNV hits.
Table 2 shows a nominally significant enrichment of CNVs

among autism de novo SNV genes (non-synonymous or loss-of-
function), although these do not survive Bonferroni correction.

Gene sets selected by function
There was significant enrichment of ADHD case CNVs in FMRP
targets (P= 0.0018), which remained significant after Bonferroni
correction (see Table 3 for details). The enrichments also remained
significant when the most significant single sample was removed.
Significant enrichment was observed for duplications (P= 0.005)
but not for deletions (P= 0.18), although there was no significant
difference between the rate of case duplication and deletion hits
for FMRP target genes (P= 0.247). See Supplementary Table 3 for
sample-specific enrichments and Supplementary Table 4 for FMRP
target genes that showed significant enrichment. There was no
evidence of enrichment of ARC complex or NMDAR gene sets.

Hypothesis-free analysis of all pathways
The most significantly enriched pathways are shown in Table 4,
with those remaining significant in the sensitivity analysis high-
lighted in bold. As can be seen from the q-values, many of these
were highly significant even after correction for multiple testing
of pathways. Much of the enrichment appeared to come from
duplications, with the exception of the ion channel pathways
where enrichment was observed in both deletions and duplica-
tions but the strength of enrichment did not differ significantly for
duplications and deletions (see Supplementary Table 5 for details).
Ion channel pathways (ligand gated ion channel activity and ion

gated channel activity), transmembrane transport and organoni-
trogen compound catabolic process were robust to sensitivity
analysis (see Supplementary Table 6 for enrichment effect sizes
and the number of gene hits for pathways listed in Table 4; see
Supplementary Tables 7-9 for most significant ion channel path-
way genes, organonitrogen compound catabolic process and
carbohydrate derivative catabolic process genes and transmem-
brane transport genes).

Table 1. Burden and type of CNVs 4500 kb in cases and controls from each study

CNV sample CNVs Number of CNVs Number of deletions Number of duplications

ADHD cases Controls Ratio P ADHD cases Controls Ratio P ADHD cases Controls Ratio P

Canada11 N 22 217 0.97 0.88 4 52 0.73 0.55 18 165 1.04 0.87
Rate 0.089 0.092 0.016 0.022 0.073 0.070

Cardiff9,17 N 65 78 1.45 0.021 13 13 1.74 0.15 52 65 1.39 0.066
Rate 0.108 0.074 0.022 0.012 0.086 0.062

CHOP8 N 220 382 2.33 4.7 × 10− 28 28 80 1.42 0.11 192 302 2.58 4.4 × 10−29

Rate 0.217 0.093 0.028 0.019 0.190 0.074
IMAGE 2 (refs 10,16) N 89 191 1.28 0.042 22 47 1.29 0.32 67 144 1.28 0.084

Rate 0.122 0.095 0.030 0.023 0.092 0.072
PUWMa26 N 59 86 1.09 0.59 25 28 1.42 0.19 34 58 0.93 0.74

Rate 0.085 0.078 0.036 0.025 0.049 0.053

Abbreviations: ADHD, attention-deficit hyperactivity disorder; CHOP, Children's Hospital of Philadelphia; CNV, copy number variant; IMAGE, International Multi-
Center ADHD Genetics; PUWMa, Pfizer-funded study from UCLA, Washington University and Massachusetts General Hospital. N: the number of CNVs observed
in the sample; rate: the average number of CNVs per person.

Table 2. Enrichment of ADHD case CNV hits in genes containing
schizophrenia and autism de novo SNVs (non-synonymous and loss-of-
function)

Gene set aGenes CNVs 4500 kb

P P (minus best)b P (del) P (dup)

SCZ (NS) 611 5.4 × 10− 4 0.015 0.37 5.6 × 10− 4

SCZ (LoF) 87 0.33 0.40 0.50 0.27
AUT (NS) 2726 0.019 0.054 0.31 0.024
AUT (LoF) 538 0.026 0.54 0.16 0.072

Abbreviations: ADHD, attention-deficit hyperactivity disorder; AUT, autism;
CNV, copy number variant; Del, deletion; Dup, duplication; LoF, loss of
function; NS, non-synonymous; SCZ, schizophrenia; SNV, single-nucleotide
variant. aNumber. bP-value for pathway enrichment after omitting the most
significant sample.

Table 3. Enrichment of FMRP, ARC and NMDAR gene sets for ADHD
case CNV hits

Gene set # Genes CNVs 4500 kb

P P (minus best)a P (del) P (dup)

FMRP 840 0.0018 0.032 0.18 0.0050
ARC 28 0.23 0.44 0.12 0.40
NMDAR 61 0.74 0.94 0.92 0.55

Abbreviations: ADHD, attention-deficit hyperactivity disorder; ARC, activity-
regulated cytoskeleton-associated protein; CNV, copy number variant; Del,
deletion; Dup, duplication; FMRP, Fragile X mental retardation protein;
NMDAR, N-methyl-D-aspartate receptor. aP-value for pathway enrichment
after omitting the most significant sample.

Gene discovery and ADHD biology
A Thapar et al

1204

Molecular Psychiatry (2016), 1202 – 1207



Secondary analyses of CNVs 4100 kb showed that observed
pathways were generally significantly enriched in these analysis
(results available from last author).

DISCUSSION
In these analyses of ADHD case–control CNV data, the largest to
date, we found highly significant enrichment of CNVs in many,
although not all, hypothesised neurodevelopmental gene sets.
Hypothesis-free testing revealed additional biological pathways
enriched for CNVs in those with ADHD. Genes spanned by the
ADHD CNVs were enriched for those that have recently been
found to harbour schizophrenia-associated de novo SNVs. Previous
work demonstrated overlap of ADHD CNVs with schizophrenia
and autism CNVs;9–11 however, because we were now able to
define our gene sets using SNVs, which impact on single genes
rather than chromosomal regions encompassing multiple genes,
the current findings more precisely suggest overlap at the level
of genes. These findings therefore extend, refine and are
independent of previous studies that suggest biological overlap
across these clinically very different disorders.
The clinical co-morbidity and co-heritability of ADHD is much

more strongly established with autism than with schizophrenia.38

Although previous studies, using some of the data sets in the
present paper, found ADHD and autism overlap at the level of
CNVs9–11 and CNV-associated biological pathways,39 we did not
observe this extended to autism de novo SNV genes.
Targets of the FMRP have been implicated previously in both

schizophrenia and autism.21–23 Complete expression failure of
FMRP itself, which characterises Fragile X syndrome, is known to
be associated with elevated rates of ADHD, autism and other
neurodevelopmental disorders.40 Indeed, the majority of males
with Fragile X syndrome show ADHD. Previous work has shown
that the protein FMRP regulates activity of 842 biological targets
and suggested that some of these likely underlie the manifesta-
tion of autistic features in Fragile X syndrome.30 Our findings show
that genes encoding FMRP targets are also enriched in ADHD
CNVs, which could help explain why children with Fragile X
syndrome show such high rates of ADHD. The results suggest that
FMRP-mediated biology may be relevant across multiple
neuropsychiatric disorders that include ADHD, as well as autism
and schizophrenia. Although a recent report suggests that what
has been considered as the specific contribution of FMRP targets
to the pathogenesis of autism might simply reflect involvement
of long, highly brain-expressed genes,41 here large gene size
is controlled for. Nevertheless, further work is needed to

understand how FMR1 is involved in the pathogenesis of different
neurodevelopmental phenotypes, that is, ADHD, autism and
schizophrenia, each of which has very different phenotype
features and treatments.
Although schizophrenia and autism genetic findings have all

strongly implicated the involvement of synaptic functions in
pathogenesis,20,21,23 we did not observe that to be the case for
ADHD. Nor did we replicate prior pathway analysis implicating
neurite outgrowth at synapses in ADHD, although previous
analyses have used SNP or candidate gene data or smaller data
sets.42–45 We cannot be certain if this is a genuine point of
difference or whether larger studies of ADHD, which consider
additional types of mutations, for example, through exome
sequencing, will yield a different pattern of findings.
The hypothesis-free analysis of all ADHD CNV pathways yielded

strongly significant enrichment for multiple biological pathways.
Many but not all of these were robust to analysis after excluding
the most significant study. As expected for this final, hypothesis-
free set of analyses, the significance of the enrichment was
reduced by the removal of the most significant study, even
when there was no significant difference in the strength of the
enrichment between that study and the remainder of the sample,
as was the case for most of the pathways highlighted here
(see Supplementary Tables 1 for details). Thus, this analysis should
be regarded as a sensitivity analysis testing the robustness of
the pathway enrichment, rather than a measure of its overall
significance. The fact that the enrichment strengths were not
significantly different for most of the pathways of interest gives
further evidence for consistency of enrichment across studies.
Ion channel pathways (ligand gated ion channel activity and ion

gated channel activity) and especially involvement of CHRNA7 and
associated pathways have been implicated in previous analyses of
a subset of the present pooled analysis.10,17,39 Although some
enrichment of immune-related pathways was also observed in the
current study, this finding was not robust to the sensitivity analysis
and thus requires cautious interpretation until more data become
available. Regardless, the present study demonstrates that most
findings were robust to sensitivity testing, whereby we excluded
the most significant sample, despite potential variation in case mix
severity and ascertainment across research centres and concerns
from some quarters about the validity of ADHD.
Although our study involves analysis of the largest ADHD CNV

data set to date, there are several limitations. First, analyses of this
type for any disorder are restricted by the quality of gene and
pathway annotations and the fact that the same genes belong to
multiple different functional gene sets. Second, genotyped ADHD

Table 4. Top pathways in pooled meta-analysis with most significant enrichment for ADHD case CNV hits among CNVs 4500 kb

Pathway name Pathway ID # Genes P q-value P (minus best)a

IL6-mediated signalling events NCI:62 82 1.33× 10− 11 9.17× 10− 8 0.256
TGF-β receptor signalling NCI:95 44 4.90× 10− 11 1.69× 10− 7 0.508
Defence response to virus GO:51607 147 7.02× 10− 8 1.62× 10− 4 0.31
Respiratory electron transport REACT:1019 81 1.98× 10−7 3.41× 10−4 0.02
Organonitrogen compound catabolic process GO:1901565 893 9.08× 10−7 1.05× 10−3 3.13 ×10−5

Transmembrane transporter activity GO:22857 902 9.10× 10−7 1.05× 10−3 8.85 ×10−4

Citric acid (TCA) cycle and respiratory electron transport REACT:1240 118 1.16× 10− 6 1.15× 10− 3 0.057
Carbohydrate derivative catabolic process GO:1901136 747 2.19× 10−6 1.61× 10−3 3.34 ×10−4

Ligand-gated ion channel activity GO:15276 136 2.33× 10−6 1.61× 10−3 3.41 ×10−4

Methyltransferase activity GO:8168 201 3.19× 10−6 2.00× 10−3 0.022
Small thymus MGI:706 199 4.15− 10− 6 2.39× 10− 3 0.488
Transmembrane transport GO:55085 1124 5.22× 10−6 2.44× 10−3 0.0028
Ion-gated channel activity GO:22839 300 5.29× 10−6 2.44× 10−3 4.18 ×10−4

Abbreviations: ADHD, attention-deficit hyperactivity disorder; CNV, copy number variant; GO, Gene Ontology; IL, interleukin; MGI, Mouse Genome
Informatics; TCA, tricarboxylic acid; TGF, transforming growth factor. Pathways that are robustly enriched (that is, those with P (minus best)o0.05) are shown
in bold. aP-value for pathway enrichment after omitting the most significant sample.
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sample sizes have markedly lagged behind those of many
other neurodevelopmental and psychiatric disorders and results
of exome sequencing are awaited. Third, ADHD-associated CNVs
do not capture all possible forms of genetic risk, or risk loci;
however, previous findings from smaller, individual studies do
suggest biological convergence of CNVs and common gene
variants.7,17,42,44,45 However, the biology and validity of ADHD
remain poorly understood and it is still widely considered to be
primarily a catecholaminergic disorder.43 Findings from the
present study highlight the consistent and robust neurodevelop-
mental nature of ADHD and provide novel insights about its
biological underpinnings.
In conclusion, in an international, cross-centre analysis of ADHD

CNV data, we find evidence of biological overlap with schizo-
phrenia at multiple levels; previous findings of overlap with
schizophrenia CNVs have now been extended to SNVs. Further-
more, FMRP target enrichment appears to characterise ADHD
as well as schizophrenia and autism. Ion channel pathway
involvement in ADHD was robust to type of CNV and across
samples. The findings reveal that CNVs in children with ADHD,
from across multiple centres, converge on biologically meaningful
gene clusters that are now robustly established as involved in
neurodevelopmental disorder risk.
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