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be considered. Even though some of the considerations developed here 

can apply to HCP crystals and NaCl type ionic crystals, we will only 

discuss the case of FCC metals. 

2. General Remarks 

2. 1 Long Range Interactions: 

Suppose (Fig. 1) a perfect prismatic loop (P) cuts the glide plane 

(Q) of a moving dislocation L, in two points M and M'. 

If the distanced between the moving dislocation and the loop is 

large compared to the radius RL of the loop, the interaction between the 

two dislocations will be very small and the stress exerted by the loop 

on the moving dislocation will decrease as 1/ d 2• If the distance d is 

smaller than H. the loop will behave as two independent trees of opposite 

vector. (B) 

The same considerations apply to a .Frank sessile loop. 

The long range interaction with a helix is somewhat different 

· (11"'ig •. 2a and b). First. at a distance large with respect to RH! the 

stress exerted by the helix on the moving dislocation is equal to the 

stress exerted by a straight dislocation and decreases as 1/d. Suppose 

now the moving dislocation gets Closer to the heli~ in the wa Ydescribed 

(Fig. 2a and b (d <R) ),. we see that two cases must be considered: 

a) The glide plane of the moving d:!.docatio~1 does not contain the 11 

Burgers vector (Fig. 2a) of the helix; in this case the interaction will be 

like that with a straight intersecting dislocation.(9.-lO) 

b) The glide plane of the moving dislocation contains the Burgers 

vector (Fig. 2b) of the helix; it will then be equivalent to two rows of 

intersecting dislccations. the first r?vv being all of one sign and the 

second row all of the opposite sign. 
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V/e must now consider the cases \';here the glide ~jb .. n.::: c·f t:.::= 

moving dislocSi.tion is not cut by the quenchej-in dislocation. If the 

latter is a helical dh~location parallel to the glide plane, it t-vill belm•n:l 

as a.straight segrnent of dislocation; if it is a Frank sessile loop, or a 

perfect loop, it will behave :as an obstacle only if th0 dist;;;mce h;:;t\v~;;·ea 

the loop and the glide plat"'le ~f, the moving dislocation ia sn:w.ller thc-~.q 

the radius of the loop. 

\1'\'hen a moving dislocation passes close to a loop there are three 

processes that may bring the two into con.tact: 

a) cross slip of the movi11g dislocation 

b) conservative climb of the loop as observed by Kroupa and 

Price(la) 

c) glide of a perfect loop parallel to its Burgers vecto~ 

For srnall loops, less than a few hundred angstr01ns in diameter, it 

seems likely that the two will be brought into contact by one of' these 

processes if the distance between the nearest part of the loop and the 

moving dislocation is less than the radius of the loop. 

2. 2 Contact Interaction of Dislocations with Opposite Burgers 

Vedor 

When a dislocation of Burgers vector b cuts a helix of Burgers 

vector -b, the helix is broken (J) into loops by the mechanism described 

1n F'ig. 3. 

When a dislocation of Burgers vector b cuts a loop of Burgers 

vector -6 (Fig. 4) the dislocation acquires a segment lV[, M • that does 

not lie in the glide plane (Fig~ 4). If the jogs associated with this S*?.g­

ment can glide away parallel to the Burgers vector, then the size of the 

loop is decreased after the intersection. 
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2. 3 Junction Reaction (7, 14) 

When two dislocations lying in their glide plane and whose Burgers 

vectors 61 and 62 have a negative scaler product cut each other, it is 

well known that the quadruple node at the intersection is unstable and 

splits into two triple nodes connected by a junction dislocation lying at 

the intersection of the glide planes and whose Burgers vector bj is such 

that: 

- - -b1 + b2 + bj = 0 (1) 

This reaction will be referred to as the junction reaction (Fig. 5). 

It has been shown elsewhere that this reaction, which occurs in FCC 

metals and ionic crystals.- plays an important role in workhardening.<S-S,ll .. l 2) 

Therefore, it is worthwhile to study in some detail the case of the inter-

action of a dislocation moving in its glide plane and a dislocation loop 

which is only able to glide on its glide cylinder. In this case, it is obvious 

that the junction dislocation will lie at the intersection of the two glide 
I 

surfaces. It can be either a straight line, if the glide plane of the moving 

dislocation contains the Burgers vector of the prismatic loop or of the 

helix. or an ellipse lying at the intersection of the two surfaces. 

2. 4 Creation of Jogs by Cutting of Pl'ismatic Loops 

V.Jhen a dislocation moving in its glide plane cuts another disloca­

(15) tion both get jogged. · The jog on the moving dislocation may either v 

glide or climb. In the second case, it must create defects which can be 

either vacancies or interstitials. (16) 

In the case of the intersection with prismatic dislocation loops. 

jogs of opposite sense will always be formed in pairs. If these can glide 

together at the cusp formed by the loop. then the average number of point 

defects created is proportional to the radius of the loops. 
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In the next section. these interactions will be considered in 

detail with particular emphasis on face centered cubic crystals. 

3. Interaction of a 1\·Ioving Dislocation with a Frank Sessile Loop 

Let us consider a Frank sessile loop cut by a moving dislocation. 

Silcox and Hirsch(2) have described the mechanism of the intersection 

as shown in Fig. 6. First: The two partials of the moving dislocation 

recombine to give a perfect dislocation that then splits in the plane or 
the stacking fault to give a Frank sessile and a Shockley partial. Second: 

The Shockley partial sweeps out the stacki11g fault and combines with the 

Frank sessile dislocation at the loop boundary to form new lengths of 

perfect dislocation. 

As a. result, the moving dislocation gets a. large segment that 

does not lie on its original glide plane while the Frank sessile loop that 

is left behind has been reduced in size.· 

This process needs first an energy W 1 for the recombination of 

the moving dislocation. W 1 must be of the order of the cross slip 

energy. (G) 

Second, an energy W 2 is necessary for the sweeping of the 

stacking fault. This energy is the difference between the increase of 

the line tension energy of the Shockley partial and the stacking fault 

energy of the area swept out. This energy can be estimated for a tri-

angular stacking fault loop. To simplify the calculation, it will be 

assumed that the Shockley partial has the shape shown in Fig. 6. 

The energy W 2 for the processes is: 

W 
2 

(x) = xTs ( 1 - L + ~ ) 
. Yo 2yo 

(2) 
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where 

T
8 

is the line tension of the Shockley parti~l . 

Y is ..., 2Ts 
0 "/ 

'Y is the stacking fault energy 

Based on Forn1ula 2, two cases must be considered: 

a) y ~Yo 

W2 can be represented as in Fig. 7a. The energy for the process is: 

AWa 111 Wa;(y) .. W(o) =y T. ( 1 - _x_) . . s . 2yo 
(3) 

Which varies withy as indicated in Fig. 7b,; until a maximum value .6-Wam: 

(4) 

dW The maximum value of Fa "-afl is F 1 (y) 

Fa (y) = Ts 

b) Y ~Yo 

W2 can be represented as 1n Fig. 7c. The total ·energy AW2 for the 

process is tl).en: 

tJ.W a == W(y) - W(y- Yo) .a 'f~ :Yo c: .6-Wa m 

. . · dW 
The maximum value of F 2 is still -~ 

The potential barriers in both cases can be represented as in 

Fig. 8a and 8b. 

Numerical values 

2 
Taking T = ~bs 1f bs is the length of the Burgers vector of a s 2 

Shockley dislocation, b 8 = ~S . For metals with low stacking fault 

C:-tb energies, 'Y ~ 300 which means y0 =::30b. 
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We can thus calculate b.\V2 111 =:- 8 e-( 

,ab 
F .. (y) = "'--., 12 

\Ve see from this that the energies involved, and therefore the 

stresses necessary for the process if the loop is large enough, are very 

high. 

For the process pictured ·in Fig. 9, which must occur when the 

sign of the cutting dislocation is changed, we get fo1· the energy: 

W = xT 9 [ 3 - L - x ] 
Yo 2yo 

(6) 

The same sort of reasoning leads to the following conclusions: 

For y< 3y0 , the cutting process needs an activation energy AWl 

For y > 3y0 , the cutting process does not need any energy, except 

for the constriction. 

As a consequence, loops whose size is .smaller that 3y0 will be 

strong obstacles to moving dislocationso Loops with a larger size will 

be easily cut at a distance larger than 3y0 from any point of the triangle 

and thus will become shortened to the critical value. 

This calculation gives only a rough estimate of the energy neces­

sary to achieve the cutting process but it suggests that it is quite high 

even for loops of a oize smaller than that which can be seen by trans-

mission electron microscopy. 

The creation of a jog on a stacking fault. as previously described 

by Thompson, (1 7) should require an energy of the same order of magni-

tude. This type of barrier may be important in work hardened and 

electron irradiated crystals as well as in quenched metals. 
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4. Interaction of a Moving Dislocation with a Helical Dislocation 

Consider a dislocation gliding in a plane parallel to the Burgers 

-vector bH of a helical dislocation and let us assume that the Burgers 

-vector bM of the moving dislocation is such that: 

(7) 

At each point of intersection of· the heliX with the dislocation (see sequence 

of Fig. 10), the quadruple node will split into two triple nodes, due to the 

junction reaction. From the argument which was developed for a row of 

parallel, identical dislocations, (g) it can be seen that the nodes wiLl 

split until the dislocation is broken into loops having no interaction with 

the straight dislocation. This reaction generalizes previous results by 

Amelinckx,Bontinck and Seitz(S) and can occur quite frequently in FCC 

alloys or Na.Cl type ionic crystals. 

If the glide plane of the moving dislocation is not paralleL to the 

Burgers vector of the helix~ the latter will behave like a stra:f.ght 

dislocation. 

5. Interaction of a Moving Dislocation with Perfect Prismatic Loops 

In a FCC metal perfect prismatic loops can have any of the six 

possible Burgers vectors which we will describe with the help of 

Thompson's(l?) notation (Fig. 11). They have been shown to lie either 

in tllOJ or (111) planes.(lS) 

Let us consider a prismatic loop of Burgers vector AD. The axis 
....... 

of its glide cylinder is also in the direction of AD. It is easy to see that 

this loop has the same energy whether it lies in a plane such as a or d 

(Fig. 12). Suppose now the plane of the loop is rotating around BC from 

"' 
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from a to d. The total length of dislocation would decrease until the -plane of the loop is perpendicular to AD, and then increase. 'I he posi-

tion of the plane corresponding to the minimum length of the loop is the 

i 11 oJ position. In the ( 11 0) plane, the loop is about 20~(; shorter than in 

a (111) plane. But in the former case, the loop is pure edge and in the 

latter, it is mixed. Moreover~ the core energy must be larger in the 

first case than in the second case. Thus, it is reasonable to think that 

the energy of the loop does not vary significantly when the loop lies in 

any plane containing BC and within the angle between the planes a and d. 

We will assume a moving dislocation glides in the plane a and - ' ' ' has BC as its Burgers vector. Interactions with prismatic loops having 

each of the six possible Burgers vectors will be studied. 

First, we have shown in paragraph 2 that there existed with all 

the loops some long range interaction which could be reduced to the long 

range interactions calculated in the forest theory. (S~ lO) The corres­

ponding internal stress will be given by: 

where 

./< is the elastic modulus 

b is the length of the Burgers vector 

..J! 1 is the distance between loops giving this interaction 

}3
1 

is a coefficient of the order of 10 

(8) 

- id il (9.10,12) 1 his interaction has been stud e in some deta elsewhere 

and we will just su1:omarize the results: 

a) Close to the fixed dislocation. the intersection can be either 

an attraction or a repulsion depending on the relative orientation of the 

two dislocations and of their Burgers vectors. 
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b) Unless the two trees are very close, one can consider that 

they are passed independently. 

c) The stress. required for cutting is temperature independent. 

It must be noted that the present analysis applies even if the loop is of 

the Frank sessile type. 

\Ve will now consider, with the same assurnptions, the reactions 

which occur at the contact of the moving dislocation and of the prismatic 

loops: 

- -a) The prismatic dislocation has AD (or DA) as its Burgers 

vector o Then no recombination can occu~ because. the Burgers vectors 

oi the fixed and of the moving dislocation are at ninety degrees. There 

exist only the long range interactions which have been previously 

described. 

b) 'fhe moving dislocation has :Be or CB as its Burgers vector. 

The result of the intersection is depicted in the sequence of Fig. 4. After 

the cutting, the loop is smaller and the moving dislocation acquires some 

large jogs MM.'. If the moving dislocation is not purely screw, these 

jogs will probably be able to glide and follow it. Therefore,. this inter-

action will C:3.use a progressive destruction of the substructure. If they 

do not glide, the arms NIL and 1V.I.'L1 of the moving dislocation will develop 

in spiral, meet and annihilate without· destroying the loop. Provided there 

zre <'Jqual numbers of loops for each of the possible ~ < 110 > Burgers 

vectors,. a given dislocation will interact in this way with one loop out of 

.-.:-,. rT''nei~efor·e J:>,l),. • 1 • 1 

of strain is: 

the number of these events associated with an increment 

dna NR de 
3b (9) 



where 

11 

de is the amount of strain 

N is the number of loops per unit volume 

R is the average radius of the loops 

UGH..L-.,10213 

If it is assumed that the moving dislocations are not nearly 
' 

screw, i.e.,; each time a loop is cut the jogged segment MM' is always 

able to glide away conservatively in the direction of its Burgers vector. 

then we can predict that a uniformly distributed shear of 10% will make 

one loop out of six smaller than lOb in diameter. If shear takes place . 

simultan'eously· in all of the six glide systems, then all the loops will be 

swept away.' The experimentally observed disappearance· of prismatic 

loops in quenched aluminum deformed by rolling(lg) probably occurs by 

this mechanism •. 

If the moving dislocation is nearly screw, the jogged segment wUl 

not be able to glide. There will then be immobile points along the dis­

location. line. Continued motion will require bowing out between these 

points which can occur only if the stress is greater than: 

where 

0'2 = . Gb 
. 132 ..R2 

(10) 

fJ 2 ·~ 2 and ~ is the distance between loops giving this sort of 

interaction. In this case, the loops may be left unchanged. 

c) Suppose now that the prismatic dislocation has BD or DC (or 

their opposite) Burgers vector and lie in a plane cutting the plane a .. 

In Fig. 13a the glide cylinder of the loop, P. is cut by the glide 

plane b of the dislocation, G, along two straight linea. Let M be the 

point where the configuration of the· dislocation lines and their Burgers 
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vectors is such as to allow the junction reaction to occur. Then the 

resul~a:fltdi~loca,tion M 1M 2 mus_t lie atong the intersection of the two 

glide surfaces as depicted in ~ig •. 13b. :· 

. Assume first,that the pr,ismatic loop Plies in the plane·(lll). 

The inc,rease. in :length .and .the· gain in energy cannot ·be evaluated with 

high precj.sion ... but the ·reaction· should occur.. If the con:figura.t1on is as 
. ' ' . ' 

depicted: on Fig .• , l3b., there. will exist a ~endency for: the loop to rotate · 

toward the plane ,(110) •. In that case• it can; be. seen that no .junction· , 

reaction can occur" because it shoald· then cause too much increase in . 

the total'length of dislocation. 

If, however- the repulsive stress is large enough to allow the 

loop to turn to the plane~ ~- then a new type of reaction, will occur which 

we will describe in part d. 

' ·-· _. d) If the prismatic loop has AB .or AC or, their opposites as 

Burgers vector, the interse.ction of the glide planeof the moving dis-
. ' . . . 

location with the g~ide cylinder of the loop is an ellipse. lt can,.~e seen 

fro~ Fig 14 that the junction reaction. can occur • 

• It also seems likely that in some cases when the prismatic loop 

lias in plane C, it can be pushed by the moving dislocation and .rotate to 

p~ane.a. , 

If the· lopp is in a plane parallel to th~ glide plane or the moving 

disloca~ion ?r on the same plane _as the moving dislocation, then conser;­

vative climb might occur if .there is repulsion, or the reaction shovm in 

Fig. 15 if there is attraction. The result in the latter case is a change 

in the Burgers vector of the loop~ It can be seen that the energy gained 

. b 2R by this proces~ can be very large~ of the order of ./£ 3 , if R is the 

radius of the loop., 
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Friedel (S) has analyzed in some detail the way in which a moving 

dislocation behaves by zig-zaging through randomlydistributed loops 

(Fig. 16). The stress required to move the dislocation is glven by a 

. formula of the type: 

a a £:lL 
3 ~ 

where 

133 ~- 2 and ~ is the distance. between such loops along the zig-zags. 

6. ~pplication to the Quench Hardening of FCC Metals 

6. 1 Case of Aluminum 

In aluminum; the. quenched substructure is made of large Frank 

. sessile. loops lying in the < 111 >planes and of perfect prismatic loops. (20) 

As shown in another public~tion (2l) there probably does not exist a simple 

way to transform one into the other and thus it is not sure whether or not 

both types of loops come from the same origin. 

Consider first the case of~ Frank sessile loops. It has been 

shown in Section 3 that they were not strong obstacles to the motion of 

dislocations. But they will be more or less gradually swept out. When 

they become small enough they will act as strong barriers. Therefore, 

the regions where there are Frank sessile loops may be difficult to deform. 

If we consider now the case of a dislocation moving through ran­

domly distributed perfect prismatic loops, we can say that it will sweep 

out about 1 loop out of 6 by the reaction described in paragraph 5, have 

short range interactions with 4 loops out of 6, and long range interactions 

with all of them. 
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Friedel's considerations(S) apply to this case and ibis then pos­

sible to calculate the stress due to a loop substructure as: (S) 

with f3 of the order of 4. This stress will be temperature independen,t. 

A temperature dependent str~ss arises from the creation of jogs 

and we expect the total flow stress to vary in the same way as for work­

hardening. 'l'hese two facts are in good agreement with the ex·perimental 

results of Maddin and Cottrell (S) and Tanner and Maddin~ <22) 

Let us assume that we deform. in tension, a single crystal 

oriented in such a way as to glide on one system only. It should have • 

yield stress higher than the yield stress of a siowly cooled crystal 

(Fig. 17). It will harden in a somewhat similar way until glide on a sec-

system will destroy some additional loops which were obstacl0s for the 

moving dislocations. This will result in a softening of the crystal which 

has been observed by Tanner and 1viaddin. <22) 

It is also possible to predict that a quenched single crystal deformed 

in tension along < 111 > should exhibit a somewhat higher yield strength 

than a slowly cooled crystal but should have an initial period of low work· 

hardening rate due to the sweeping away of aU the loops by moving dis-

locations on the six active slip systems. Expected stress strain curves 

are shown in Fig. 17b. 

6~ 2 Case of othe:c PCC metals 

All other quenched FCC metals which have been investigated 

mcperimentally, contain stacking fault tetrahedra. (2) For these metals, 

our analysis is thus not complete. However, some general remarks can 

be made: 

.. 
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a) Stacking fault loops are very strong barriers, 

b) Tetrahedra will probably act as stronger barriers than 

stacking fault loops. 

c) Perfect loops act as barriers in a somewhat complicated way. 

But the stress due to the loops is smaller than that due to stacking fault 

loops. 

We can, thus, as a very rough estimate, determine the stress 

due to defects randomly distri.buted at. a distance f apart: 

(13) 

If there are N defects per unit volume and it their radius is R, 

the previous f.ormula becomes: 

Cl a ,!.(b (NR) +1 J 2 

fi 
For quenched gold, this should give a ~5 x 10-~ From the results of 

rl.'lehi1 and Kauffman we get C1 ~10 -~. 

· Interstitials may also cluster into small Frank sessile loops 

which can be small enough not to be resolved by the electron microscope 

but have a large effect. These interstitials could be created by irradia­

tion or even by work-hardening. 

Finally, we would like to remark that the triple nodes formed 

during the intersection of a loop can climb with a moving dislocation 

only short range diffusion of atoms giving loops of the configuration 

shown in Fig. 18. Loops having this shape have been observed in quenched 

alumintnn. 
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MU -27 500 

Long range interaction between a prismatic loop and a glisaile 
loop. 
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MU-27501 

Long range interaction between a helical dislocation and a 
glissile dislocation. 

a) The glide plane of the moving dislocation does not contain 
the Burgers vector of the helical dislocation. 

b) The glide plane of the moving dislocation contains the Burgers 
vector of the helical dislocation. 
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(a) (b) 

(c) 
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MU-27502 

Intersection of a helical dislocation and a stra18bt dtslocaJ'on 
with opposite Burgers vectors. (Following Amellnck et al I)) 
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(c) 

MU-27503 

Intersection of a prismatic dislocation with a movin1 dialocaUon 
of opposite Bur1ers vectors. 
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MU-27504 

Junction reaction for two dialocati011a movtna In their aUde plane. 
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( al 

(b) 
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MU-27505 

Interaction of a movina dislQ9"tioo with a Frank sessile loop. 
(Followinl Silcox and Hirscb(3)) 
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(a) (c) 
Wa w1 

MU-27506 

Energies for the interaction of a moving dislocation with a Frank 
sessile loop. 

a) Variation of W 2 with x for y ~ 2~ 8 
• y 0 • 

b) Variation of the energy L>.W 2 with y. 

c) Variation of W 2 with y for y ~ 2
:{8 

• y 0 • 
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Potential barriers for the interaction of a aUasile dislocatiOD 
with a Frank sessile dislocatioa. 
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Fig. 9 
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Junction reactiOD between a dislocation movinl in ita &lide plane 
and a helical dislocation. 
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Fil. 11 Thompson tetrahedron. (1
7
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Fig. 12 
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Junction reaction at the intersection of a dislocation movin1 in 
ita JUde plane and a perfect prismatic dialocat1ao. 
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Ft1. 1s Chance In the Buraera vector of a prismatic loop. 
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FlJ. 16 Zta zagina dislocation (Followlaa Frledel(B)) 
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Stress strain curves of quenched and alowly cooled cryatala. 
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Fig .. 18 



This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee. or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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