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  Problem Description:Problem Description:  Algorithms originally developed for point samples rarely scale wellAlgorithms originally developed for point samples rarely scale well

  Proposed Solution: Proposed Solution: Bayesian regression with colored triangulation modelsBayesian regression with colored triangulation models

Challenges in Adaptive Path SamplingChallenges in Adaptive Path Sampling  withwith
Mobile SensorsMobile Sensors

Andrew Parker, Mark Hansen, Deborah Estrin
CENS Systems Lab - http://research.cens.ucla.edu/

  Introduction:Introduction:  Some applications naturally call for path samples rather than point samplesSome applications naturally call for path samples rather than point samples
Solar Light Radiation and NIMS-3D
• Solar light radiation can have high

spatio-temporal variability
– Often, the strategy for estimating solar light

radiation distributions is to find boundaries
or other structures

• NIMS-3D is mobile and capable of high
sampling rates

– The PAR sensor uses little energy and can
sample at about 10hz while the robot moves
at about 14 cm/s.

 Adaptive sampling: a two-part problem
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• Part A: Where to sample next given the current model?
– One way to approximate paths is to bring to zero the sensor dwell

time and energy requirements
– The result is that a very small step is made to explicitly sample the

next point, taking several minutes to traverse a few feet

• Part B: How to update the model based on current
samples?

– Often, features calculated from the history of point samples are
used to decide what to sample next

– Standard interpolation algorithms for random fields, such as k-
NN, bilinear interpolation, and kriging often result in large
running times and huge memory requirements

• Quickly update minimum distances between sampled
points and all other points

– Many algorithms trade off spatial coverage and feature coverage
– Using cumulative minimum distance overlays can speed up

spatial coverage calculations

• Faster simulations: Spatio-temporal partitioning of the
sample data

– In simulation and emulation, data samples from the environment
are usually drawn from a time-series of images

– An improvement is to spatially partition the sample data, and then
to stack the partitions into contiguous chunks of time

• Promotes paths to first-class citizens
– Represent samples as vertices and edges

in free space instead of pixels in a matrix
• Captures structuring elements in

the data
– Intermediate pattern analysis: edges,

junctions, and uniform regions
• Easy to consider things beyond just

interpolating the field
– Percentage of field in shadow
– Distribution of sun fleck sizes
– Distribution of sun fleck life-times

 Some techniques to help speed things up

Part A: Sample the model to identify 
regions of interest

Part B: Sample the 
environment

• Parameters could include:
– Mean number of triangles
– Distinct colored regions
– Number and spacing of colors

Part C: Update model 
parameters

• Regions of interest could include:
– Areas of high uncertainty
– Areas of high variance
– Features (edges, junctions, etc.)

• Sampling criteria could include:
– Favoring nearby areas
– Maintaining spatial coverage

Advantages of this approach

Challenges to this approach
• Unclear what the right model is

– Entirely different triangulation models
may be needed for different phenomena

• Design and implementation of the
sampler is tricky

– A fair amount of math is required to
prove correctness of the sampler

– Sampler must be efficient to minimize
autocovariance times
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