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Frictional Stability of Heterogeneous Surfaces in Contact 

John Kemeny and Neville G. W. Cook 

Department of Materials Science and Mineral Engineering 
University of California, Ber1<eley 

Abstract 
Utilizing the principles of elastic-brittle fracture 
mechanics, stress-displacement relationships are 
derived for an elastic solid containing a slip plane 
consisting of various configurations of collinear arrays 
of cracks. These models take into account the 
heterogeneous nature of slip planes as observed in 
the lab and in the field, and are relevant to the 
behavior of rock containing faults, joints, bedding 
planes, and fractures. All of our models exhibit slip 
weakening behavior, and show regimes of both stable 
(aseismic) and unstable (seismic) deformation. For 
given configurations of cracks and applied boundary 
conditions, our results show explicit ly the energy 
released through unstable crack growth. For instance, 
it is found that two equal length cracks growing 
together release more seismic energy than, say, a 
large crack growing into a small crack. Also, by 
allowing cracks to coalesce, our models show multiple 
stick-slip events without crack healing or other 
geochemical means. 

I ntrodyctjo n 
In this paper, constituthte relationships are 

developed for the shear response of an elastic solid 
containing a slip plane comprised of displacement 
discontinuities. This is relevant to the behavior of rock 
containing faults, joints, bedding planes, and fractures. 
Analytical models for friction between the surfaces of 
rock have developed along several different lines. 
Many of the models utilize Hertzian contact theory, see 
for example Archard(1957), Greenwood and 
Williamson (1966), and Swan(1983). Other theories 
involve the brittle failure of wedged shaped asperities 
as given by Byerlee(1967), or the plastic yielding of 
asperities as analysed by Bowden and Tabor(1954). 
Patton(1966) and Ladanyi and Archambault( 1970) 
consider the movement along, as well as the brittle 
failure of, wedged shaped asperities, in order to 
account for the normal dilatation associated with 
shearing in rock. Empirical models for friction have 
also been successful, see Barton and Choubey(1977). 

In all of the above models for friction, slip is assumed 
to occur simultaneously over the whole slip plane. 
Recent experimental work (e.g., Okubo and 
Dietrich, 1984, and Mogi, 1985) indicates that slip does 
not usually occur in this fashion; instead, the slip plane 
at a given instant of time under an applied shear load 
can consist of patches of slipped material surrounded 
by locked material (barrier model, see Aki, 1984 ), or 
patches of locked material surrounded by slipped 
material (asperity model, see Aki, 1984). A slip event 
consists of the propagation of the slipped zones into 
the locked zones, and can be stable or unstable 
depending on the imposed boundary conditions and 
the stress-displacement relationship for the given 
geometry of slipped and locked regions. Observations 
of friction in stiff testing machines show that often the 
stress necessary to initiate slip degrades with ongoing 
slip, termed slip weakening (Okubo and Dieterich, 
1984), and also regular periodic oscillations between 
stable and unstable behavior occur, termed stick-slip 
(Cook, 1981 ). Neither of these observations can be 
modelled with the homogeneous friction models 
described above. The above mentioned phenomena 
are very relevant to the mechanics of earthquake 
rupture and global plate motions, as reviewed in the 
papers by Rudnicki (1981 ), Rice(1983), and 
Kanamori(1986). The occurrences of foreshocks and 
aftershocks, and the use of gap theory to predict large 
earthquakes, all support the view that the surfaces of 
faults are very heterogeneous, as discussed by Mogi 
(1985). Also frictional stability is important in slip 
motion along joints or faults caused by changes in 
stress produced by underground excavations and 
thermal changes, such as in nuclear waste 
repositories or mining. 

In this paper, frictional slip surfaces are assumed to 
be comprised of heterogeneous distributions of 
displacement discontinuities, so that under a given 
applied shear stress, some portions of the surface will 
have slipped while other portions remain locked. 
Along the slipped portions we assume Amonton's law, 



i.e., tf = j.LG, where t 1 is the frictional stress, a the 

applied normal stress, and 11 is the coefficient of 
friction. Stress concentrations will form at the 
boundaries of the slipped portions and, as the applied 
stress is increased, the slipped portions will 
propagate in a cracklike manner at an appropriate 
value of the critical energy release rate, extending the 
slipped zones into the locked zones. The basic 
assumptions for the analysis in this paper are those of 
elastic-brittle fracture mechanics (e.g., Rice, 1980) 
and, utilizing these assumptions, stress-displacement 
constitutive relationships for various geometries of 
slipped and locked regions are derived. The 
derivations in this paper follow the analyses of 
Kemeny and Cook (1986a) for strain softening due to 
random distributions of cracks, and extend the 
analyses of Kemeny and Cook (1986b) for slip 
weakening due to faults consisting of equidistant 
collinear and coplanar arrays of cracks. The fault 
models of Kemeny and Cook(1986b) investigate 
several important phenomena, such as the effects of 
crack geometry and crack interaction on the shape of 
the stress displacement curves, and the criteria for the 
instability of a slip weakening material. Crack 
interaction is found to be responsible for the stress 
strain curves looping back towards the origin, resulting 
in instability even for infinitely· stiff boundary 
conditions. Also, in three dimensions: coplanar 
noninteracting cracks and asperities are found to 
propagate in the shape of ellipses, where the ratio of 
the major to minor axes of the crack or ellipse is 
1 /(1-v), where v is Poisson's ratio. Both of the above 
findings have important implications in predicting the 
occurrence and magnitude of major earthquakes 
(Kanamori, 1986, and Mogi, -1985), as well as the 
fundamentals of rock friction. 

Here, we consider slip or fault planes consisting of 
collinear, but non-equidistant, arrays of cracks. These 
include collinear arrays of cracks with unequal 
lengths and unequal spacings between cracks. 
Owing to the added complexity in the non-equidistant 
case, only two dimensional arrays of cracks are 
consisered in this analysis. Calculated stress strain 
curves for the non-equidistant models reveal several 
important results. First of all, the non-equidistant 
models exhibit multiple sequences of stable to 
unstable movement (stick-slip), whereas the previous 
equidistant models exhibited only one sequence of 
stick-slip. This has important implications for the 
occunv~ce and magnitude of foreshocks and 
aftershocks. Also, it is found that the largest amount of 
seismic energy is released when nearly equal length 
cracks grow together, rather than, say, a large crack 
growing into a smaller one. 
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Figure 1. Two dimensional elastic solid containing a 
slip plane consisting of various configurations of 
collinear cracks: a) single crack, b) row of equal length 
cracks, c) two unequal length cracks, d) repitition of 
two unequal length cracks. 
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Crack Models 
In this section, stress displacement relationships are 

calculated for a two dimensional (plane strain) 'shear 
box' type of configuration, where, along the slip plane, 
various configurations of cracks are placed. Figure 1 
shows the boundary conditions, and the specific 
geometries for slip planes considered in this paper. A 
fixed shear displacement is applied at a distance h 
from the discontinuity, which would, in the absence of 

the discontinuity, result in a uniform shear stress, 't- , 
throughout the sample. Also, by Amoton's law, the 

crack faces subjected to a normal stress a can sustain 

a frictional stress, t 1 = ~a. Under these conditions, 
the crack faces are subjected to only mode II loading, 
and the crack tip stress intensity factors are 

proportional to 't, where 't= 't- • 'tf . Four different 
crack configurations for slip planes are considered, as 
shown in Figure 1. The first two, a single crack of 
length 21, and a row of cracks each of length 21 and 
spacing 2b, are taken from Kemeny and Cook 
(1986b). Newly considered geometries are two 
unequal cracks of lengths 211 and 212 and spacing 
2b 1, and a periodic repitition of the two unequal 

length cracks with period 2b2. As material containing 

one of these cracks configurations is sheared, at 
some point the cracks will begin to propagate, 
producing non-linear stress displacment curves. It is 
assumed that the cracks will propagate, in the plane of 
the existing cracks, when the energy release rate, G, 
given by: 

G: 
2 

(1· v ) ~ 
E II 

attains a critical value, G c, where E is Young's 

modulus and Ku is the mode II stress intensity factor. 
The assumption of straight crack growth seems 
reasonable for shear along pre-existing planes, and 
results in crack coalescence as the cracks grow 
together. In this analysis, only the displacements due 
to the cracks are considered, i.e., the elastic 
displacements due to the surrounding material are 
removed. Stress-displacement relationships for the 
configurations in Figure 1 are derived by utilizing a 
relationship between the average shear displacement 
of the body due to the discontinuities, l and the crack 
tip stress intensity factors for the configurations, as 
derived in Kemeny and Cook(1986b) using Betti's 
reciprocal theorem. For all the configurations, 
analytical solutions for the stress intensity factors are 
used (e.g., Rooke and Cartwright, 1976); however, for 
the last two configurations, numerical integration is 
required to calculate the average crack 
displacements. 
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Figure 2. Unear loading lines and slip weakening 
curves for slip planes consisting of a single crack and 
a row c:if equal length cracks. (assumed v = 0.2) 

Previoys Resylts 
For slip planes consisting of 1) a single crack and 2) 

a row of equal length cracks, the following closed form 
stress-displacement relationships have been derived 
by Kemeny and Cook(1986b), respectively: 

- G
2 

E c (1) 

2 G E 
V )lncos r;an •1 

2 
c :1 

L 't 2b(1· v2 )J 
(2) 

The dimensionless form of eqllitions {1) and (2) Is 
plotted in figure 2. The single crack and row of crack 
results are plotted together by letting W=b in the single 
crack equation. Thus the single crack results are 
actually for a row of cracks with no interaction effects. 
The curves in Figure 2 represent the loci of points in 
stress displacement space where crack extension will 
start to occur, similar to a yield surface in plasticity 
theory. The curves are referred to as slip weakening 
curves, since they show strength degr-.::tation with 
increasing slip. Assuming some initial crack density, 
the theory predicts that linear behavior will occur up to 
the point where the initial cracks start to propagate, 
and as the cracks propagate, the deformation follows 
the slip weakening curve. The linear loading lines are 
also drawn in Figure 2, and are given by the following 



formula. taken from Kemeny and Cook (1986b): 

0= 

0= 
s-c b (1- v2

) · 1 
----- Incas( "ff;-) 

1tE 

(3) 

(4) 

for the single crack and the row of cracks models, 
respectively. 

Finally, the stability of a slip weakening material is 
governed by the unloading stiffness of the material 
surrounding the fault plane. The unloading stiffness 
for the boundary conditions assumed in this analysis, 
i.e., a fixed shear displacement at a distance h from 
the fault plane, is plotted in Figure 2 and is given by 
the following formula (Stewart, 1981): 

- h(1+ v> -c 
E 

(5) 

The unloading stiffness is independent of the details of 
the system producing motion across the plane, and 
instability in- this system occurs when the slope of the 
slip weakening curve for the fault exceeds the 
unloading stiffness. In general, then, the deformation 
sequence for these models consists of an initial linear 
loading up to the slip weake'ting curve, deformation 
along the slip weakening curve as the cracks 
propagate, and instability when the slope of the slip 
weakening curve exceeds the slope of the unloading 
stiffness of the surrounding material. The normalized 
results in figure 2 show that the linear loading lines 
are proportional to the initial crack density, 10/b, where 

10 is the initial crack length, and the unloading 

stiffness is proportional to h/b. The main points in 
figure 2 are that 1) slip weakening behavior is 
exhibited by both the single crack and the row of 
cracks models, 2) the row of cracks model posseses a 
vertical tangent, which defines an instability point 
even for a very stiff (nearly vertical) unloading 
stiffness, and, 3) the slope of the slip weakening curve 
goes to zero past the vertical tangent, as the stiffness 

of the joint is reduced to zero. Further results are 
given in Kemeny and Cook (1986b). 
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New Resylts 
The above behavior is now contrasted with the 

behavior of a fault plane consisting of non-equidistant 
arrays of cracks. Unlike the results shown in 
equations (1) and (2), closed form solutions for the slip 
weakening curves cannot be derived easily for the 
case of non-equidistant cracks. Rather, solutions are 
in the form of two simultaneous equations, as given 
below for the case of a fault plane consisting of two 
unequal length cracks: 

(6) 

(7) 

The functions F1 and F2 are given in the appendix 

and are easily derived from the crack tip stress 
intensity factors for this configuration (Rooke and 
Cartwright, 1976) and formulas in Kemeny and Cook 
(1986b). Equation (6) represents, for given values of 
11 ,12, and b1, the critical stress at which point one of 

the crack tips will begin to propagate (the inner tip of 
the largest crack in this case). Equation (7) gives the 
average crack displacements for this value of critical 
stress and crack geometry. Together they give the 
stress displacement behavior for the fault plane 
consisting of two unequal length cracks. 

2.0 l!'l.r----r--......,r-----r----r-----, 
' ~ illo weekening curves 

t 
---1.2 

J¥0.8 
0.4 

0.3 0.6 0.9 1.2 1.5 

8/~ 
Figure 3. Normalized slip weakening curves for slip 
planes consisting of two equal length cracks and for a 
single larger crack derived from the two cracks. 

(assumed v = 0.2) 



Case of Two Equal Length Cracks . . 
We first consider the case of a fault plane cons1st1ng 

of two equal length cracks (1 1 =l2 in equations 6 and 
7), which represents a case where the crack spacing 
is non-equidistant. It is found that two equal length 
cracks will grow from the inside, rather than from the 
outside or from both sides, due to the higher stress 
intensity factor on the inside cracks, and also because 
the strength of the system degrades with increasing 
slip, so that the strength is continually exceeded first at 
the inner tips. Normalized results for the case of two 
equal length cracks from equations (6) and (7} are 
plotted in Figure 3. Eventually the two cracks will grow 
together to form a single crack, and so also plotted in 
Figure 3 are the loading line and the slip weakening 
curve for the single crack that results from this 
coalescence (from equations 1 and 3). Several 
important features can be noted in Figure 3. The 
stress displacement curve for the two growing cracks 
exhibits slip weakening behavior, and posseses a 
vertical tangent, as in the model with a row of equal 
length cracks. However, now the slope of the curve 
past the vertical tangent approaches the stiffness of 
the single large crack made from the two cracks, rather 
than zero as in the row of cracks model. If we assume 
a stiff system where the unloading stiffness is nearly 
vertical, then instability will occur for the two crack 
system near the point of vertical tangency. During 
instability, the stress will drop, with little increase in 
displacement, until it intersects the linear loading line 
for the single larger crack system. The energy 
released by the instability is shown by the shaded 
region in Figure 3. The stress on the resulting single 
crack may be well below that necessary to cause this 
crack to propagate. Upon further loading, the system 
will follow the linear loading for the single large crack 
until it intersects the slip weakening curve for the 
single crack, at which point the outer tips will now start 
to propagate. 

The above solution is now extended to a fault plane 
consisting of a periodic repitition of two equal length 
cracks with period b2. as in the fourth configuration in 

figure 1 (with 11·12). An exact solution for this 
configuration is not available, however, an 
approximate solution can be constructed if the pairs of 
cracks are initially well separated (b1 «b2• see figure 
1 ). For this assumption, use is made initially of 
equations (6) and (7} for a single pair of cracks, and, 
when each pair of cracks have grown into single 
cracks, the solution for a row of equal length cracks is 
used (equation 2), rather than the solution for a single 
crack (equation 1 }. 

Results for the above mentioned case are presented 
in figure 4, and show several interesting features. The 
curves in Figure 4 are similar to those in Figure 3, 
except now two instabilities occur, the first instability 
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due to each of the pairs of cracks joining to form a row 
of equal length cracks, and the second instability as 
the row of equal length cracks interact with each other, 
as in Figure 2. Thus, multiple stick-slip events are 
produced, not by crack healing, stress corrosion 
cracking, or other geochemical methods, but by the 
heterogeneity of the fault surface alone. Also 
important to note are the relative magnitudes of the 
energy releases between the first and second 
instabilities. If the first instability releases more 
energy, then it can be considered a main event, with 
the second instability an aftershock. If the second 
instability produces more energy, then the first 
instabilty is a foreshock, followed by the main event. 
For the curves shown in Figure 4, the two instabilities 
have energy releases of roughly equal orders of 
magnitude. However, as will be shown in the next 
section, for two unequal length cracks, rather than 
pairs of equal length cracks, far less energy may be 
released. Also, it was assumed in the shaded areas of 
Figure 4 that the surrounding ground is very stiff, so 
that the unloading stiffness is nearly vertical, which 
may not be the case. 
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Figure 4. Normalized slip weakening curves for slip 
planes consisting of a periodic repitition of two equal 
length cracks, and a row of single cracks derived from 
the first configuration. (assumed v = 0.2) 

Case of Two Unegyal Length Cracks 
We now consider the case of a slip plane consisting of 
two unequal length cracks. It is found that for two 
cracks of unequal length, the stress intensity factor will 
always be largest on the inner tip of the largest crack, 
and therefore this tip will start to propagate first, and 
will continue to propagate until it engulfs the smaller 
crack. Since slipped zones on fault surfaces will 
never be exactly the same size, it is important to 
investigate the consequences, in terms of the amount 



of energy released, of the above scenario. We start 
with two almost equal length cracks and calculate the 
slip weakening curve as the larger crack extends 
towards and coalesces with the smaller crack. The 
important parameter in this analysis is the ratio, I •. of 
the length of the two almost equal length cracks, with 
the length of. the final single crack after coalescence. 
we plot slip weakening curves for I=0.1,0.3, and 0.5 
in figure 5. I= 0.5 represents the slip weakening 
curve for two equal length cracks as in figure 3. The 
energy released due to unstable crack growth 
(assuming stiff boundary conditions ) for each case 
are shown by shaded regions in Figure 5. Figure 5 
shows that the highest energy is released when two 
equal length cracks grow together (I= 0.5), and very 
small amounts of energy are released when a large 
crack grows into a small crack (small Il· · 
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Figure 5. Normalized slip weakening curves for fault 
planes containing two unequal length cracks, with 
different ratios of I (ratio of length of non-propagating 
segment to length after coalescence). (assumed v = 
0.2) 

Djscyssion 
In this paper, we try to quantify, using analytical 

models, some of the effects of heterogeneity in 
frictional response that we know exist from lab 
experiments and seismological data. The fact that 
fault heterogeniety is important is now well accepted. 
Its effects are often understated, however. 
Non-uniform response due to heterogeniety is found 
even in carefully ground and polished samples under 
shear (Mogi, 1985). Also. Kanamori (1986) shows a 
relationship between contact area and velocity for 
subducting lithospheric plates, which indicates that the 
velocity dependence on stress drop during stick-slip, 
that is observed in laboratory tests, may also be due 
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to changes in the geometry of surface contact. 

All of our models exhibit slip weakening behavior. 
and show regimes of both stable (aseismic} and 
unstable (seismic) deformation. Thus all of the strain 
energy expended in crack growth does not 
necessarily contribute to seismic energy, and methods 
to promote stable crack propagation could aid in 
reducing the severity of earthquakes. For given 
configurations of cracks and applied boundary 
conditions, our results show explicit ly the energy 
released through unstable crack growth. For instance. 
it is found that two equal length cracks growing 
together release more seismic energy than, say, a 
large crack growing into a small crack. Also. by 
allowing cracks to coalesce, our models show multiple 
stick-slip events without crack healing or other 
geochemical means. 

Our results seem to shed some new light on the 
correlation between the energy released in the 
unstable propagation of slipped zones, and the 
seismic moment, as calculated from far field relative 
displacements. In particular, for stress controlled 
boundary conditions (horizontal unloading stiffness}. 
our results correlate with those of Rudnicki et al. 
(1984) for the seismic moment due to the propagation 
of slipped zones that interact with each other. At the 
other extreme, however, for very stiff boundary 
conditions (vertical unloading stiffness), our results 
indicate that seismic energy can be released due to 
the unstable propagation of slipped zones with no 
seismic moment, and for boundary conditions in 
between, the magnitude of the seismic moment does 
not necessarily correlate with the total energy 
released. 

In this analysis, it was assumed that the fracture 
strength, Gc• did not vary with position. A crack length 

dependent Gc was used in some of the models in 

Kemeny and Cook (1986b), and it was found that for 

strength variations less than a factor of three, the 
effects of a variable G c are not significant. Other 

phenomena that could be incorporated in future 
models include time dependent behavior, and the 
effects of non collinear arrays of cracks. The 
increased understanding of earthquake events from 
theoretical models sould impro.ve earthquake 
prediction capabilities, and improve methods to 
ruduce the severity of earthquake events. 
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Appendix 
The functions F 1 and F2 in equations (6) and (7) are 

given by the following formulas: 

·1 

c1. 
( XA- "!)) K(lc)- 2 XA fl (n,k)+ 2Xp fl(m,k)+( XA+ Xp ).6J 

K(k) - n (n,lc)-

C2 • ~~,[ XAK(k)-( lCA+ lCp)n(n,k)] 

• K(~) [ x!K(k)-2 XA( XA+ Xp)n (n,k)+( lCA+ x0 f J (n,k)] 

.6J • J (n,lc)- J(m,k) 

where K(k)ie 1he eomptete elliptic integal of the 1st kind 
n(m,k) and n (n,lc) are eompletrelliptic integ-alsof the 
thi'd kind. and the tuncUon J Ia defined. for t• n a m by 

"~'2 d. 
J (t.k). I 2 2 

o (1•t sin • > V1 • .;ain2• 

also, 
n • < xo-xc) 

( xA+ xc > 
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