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RESEARCH ARTICLE
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Abstract

Cytochromes P450 metabolize arachidonic acid (AA) into two vasoactive oxylipins with

opposing biologic effects: epoxyeicosatrienoic acids (EETs) and omega-(ω)-terminal hydro-

xyeicosatetraenoic acids (HETEs). EETs have numerous beneficial physiological effects,

including vasodilation and protection against ischemia/reperfusion injury, whereasω-terminal

HETEs induce vasoconstriction and vascular dysfunction. We evaluated the effect of these

oxylipins on post-ischemic vasodilation known as coronary reactive hyperemia (CRH). CRH

prevents the potential harm associated with transient ischemia. The beneficial effects of

EETs are reduced after their hydrolysis to dihydroxyeicosatrienoic acids (DHETs) by soluble

epoxide hydrolase (sEH). ω-terminal HETEs are formed byω-hydroxylase family members.

The relationship among endothelial over-expression of sEH (Tie2-sEH Tr), the changes in

oxylipins it may produce, the pharmacologic inhibition ofω-hydroxylases, activation of

PPARγ, and CRH response to a brief ischemia is not known. We hypothesized that CRH is

attenuated in isolated mouse hearts with endothelial sEH over-expression through modula-

tion of oxylipin profiles, whereas both inhibition ofω-hydroxylases and activation of PPARγ
enhance CRH. Compared to WT mice, Tie2-sEH Tr mice had decreased CRH, including

repayment volume, repayment duration, and repayment/debt ratio (P < 0.05), whereas inhibi-

tion ofω-hydroxylases increased these same CRH parameters in Tie2-sEH Tr mice. Inhibi-

tion of sEH with t-AUCB reversed the decreased CRH in Tie2-sEH Tr mice. Endothelial over-

expression of sEH significantly changed oxylipin profiles, including decreases in DHETs,

mid-chain HETEs, and prostaglandins (P < 0.05). Treatment with rosiglitazone, PPARγ-ago-

nist, enhanced CRH (P < 0.05) in both Tie2-sEH Tr and wild type (WT) mice. These data

demonstrate that endothelial over-expression of sEH (through changing the oxylipin profiles)

attenuates CRH, whereas inhibition ofω-hydroxylases and activation of PPARγ enhance it.
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Introduction

Cytochromes P450 (CYPs) metabolize arachidonic acid (AA) through two pathways to pro-

duce vasoactive oxylipins: CYP epoxygenases catalyze the epoxidation of AA to form epoxyei-

cosatrienoic acids (EETs) while CYP ω-hydroxylases hydroxylate AA to form ω-terminal

HETEs. EETs are produced in endothelial cells, and have numerous biological functions,

including hyperpolarization and relaxation of vascular smooth muscle cells by activating

large conductance Ca2+-activated K+ channels (BKCa) [1, 2]. EETs are short-lived [3], due to

rapid hydration by soluble epoxide hydrolase (sEH) to form dihydroxyeicosatrienoic acids

(DHETs). DHETs have been reported to have less, more, or equipotent vasodilatory effects to

EETs [4, 5]. While sEH is the main pathway of EET metabolism [6], some EETs, such as 5,6-

and 8,9-EET, are substrates for the cyclooxygenase (COX) pathway [7]. Different approaches

of targeting sEH to study the effects of EETs have been utilized, including genetic deletion [8–

11], endothelial expression [12, 13], and pharmacologic inhibition of sEH [11, 14] or CYP

epoxygenases [15]. Increased EET generation in mouse cardiomyocytes was shown to exert

cardioprotective effects against ischemia/reperfusion injury [8]. CYP4A is one of the ω-hyrox-

ylases involved in metabolizing AA to ω-terminal HETEs, including the potent vasoconstrictor

20-HETE (hydroxyeicosatetraenoic acid) [16]. In addition to regulating EET levels, sEH

expression also impacts CYP ω-hydroxylase pathway; as reported by Yadav et al., CYP4A level

was increased in the mesenteric arteries of mice with endothelial expression of sEH (Tie2-sEH

Tr mice) [12]. sEH activity also affects the levels of other arachidonic- and linoleic- acids

derived oxylipins, such as mid-chain hydroxyeicosatetraenoic acids (HETEs), prostaglandins

(PGs), epoxyoctadecaenoic acids (EpOMEs), and hydroxyoctadecadienoic acids (HODEs) [11,

17–20]. sEH inhibition was associated with an increased EET/DHET ratio and enhanced coro-

nary reactive hyperemia [11], whereas endothelial over-expression of sEH decreased EET/

DHET ratio and impaired endothelium-dependent vasodilation in the cerebral circulation in

mice [13]. Genetic variants, such as the human K55R variant allele, have increased sEH activity

and are associated with significantly higher risk of coronary heart disease in Caucasians [21].

EpOMEs, at physiological levels, are protective against hypoxia injury [22, 23]. Pretreatment

with 12,13-EpOME protected primary cultures of rabbit renal proximal tubular cells against

hypoxia/reoxygenation injury, whereas its metabolite 12,13-DiHOME failed to produce the

same protective effect [24]. DiHOMEs may have deleterious effects in the heart: at high con-

centrations, DiHOMEs are cytotoxic to cells in tissue culture [25]; at more physiological con-

centrations, DiHOMEs can be vasoconstrictive and cardiodepressive [9].

The heart responds to ischemia by temporarily increasing coronary blood flow [26], known

as reactive hyperemia (RH) or coronary RH (CRH). The increased blood flow associated with

CRH is protective, as it prevents injury or damage due to ischemia by increasing blood, nutri-

ents and oxygen supply to the deprived heart muscle [11]. Compromised CRH is observed in

several pathologic conditions affecting the coronary circulation, such as cardiac hypertrophy

[27], metabolic syndrome [28], unstable angina, myocardial infarction, and congestive heart

failure [29]. In addition to adenosine [27, 30, 31], nitric oxide (NO) [27], KATP channels [27]

and hydrogen peroxide (H2O2) [27], oxylipins, such as EETs, DHETs, EpOMEs, DiHOMEs,

mid-chain HETEs, prostanoids, and HODEs, may mediate CRH [11].

The vasoactive effects of oxylipins in CRH are not well studied. The actions of EETs may

be, at least in part, mediated by peroxisome proliferator-activated receptor-gamma (PPARγ)

[11, 32–35]. For example, EET-induced aortic relaxation in mice was mediated by PPARγ [10,

33]. The effects of sEH–over-expression, the associated changes in oxylipin profiles, and

the pharmacologic inhibition of ω-hydroxylases on CRH in response to short ischemia have

not been investigated. We hypothesized that sEH over-expression attenuates CRH through

Soluble Epoxide Hydrolase Attenuates Coronary Reactive Hyperemia

PLOS ONE | DOI:10.1371/journal.pone.0169584 January 5, 2017 2 / 21



modulation in oxylipin profiles, whereas inhibition of ω-hydroxylases and activation of

PPARγ enhance CRH in isolated mouse hearts.

Materials and Methods

Animals

The generation of transgenic mice expressing Tie2-driven human sEH in endothelial cells on a

C57BL/6 genetic background (Tie2-sEH Tr) was described by Edin et al. [9]. Tie2-sEH Tr and

wild type (WT) mice were of the C57BL/6 genetic background, and were generously provided

by Dr. Darryl Zeldin, National Institute of Environmental Health Sciences/National Institutes

of Health (NIH). All animal care and experimentation protocols were approved and carried

out in accordance with the West Virginia University Institutional Animal Care and Use Com-

mittee and were in accordance with the principles and guidelines of the NIH’s Guide for the
Care and Use of Laboratory Animals. Both male and female mice (14–16 wks old) in equal ratio

were used in our study. Mice were maintained in cages with a 12:12 h light-dark cycle and free

access to standard chow (Cat #2018, Envigo, Indianapolis, IN) and water. Diet 2018 contains

6.2% fat by weight, including 0.7% palmitic, 0.2% stearic, 1.2% oleic %, 3.1% linoleic, and 0.3%

linolenic Acids.

Langendorff-Perfused Heart Preparation

We used the constant pressure mode of the Langendorff isolated heart perfusion as previously

described [11]. Tie2-sEH Tr and wild-type mice (14–16 wks.) were euthanized with sodium

pentobarbital (100 mg/kg body weight intra-peritoneally). Hearts were excised and immedi-

ately placed into heparinized (5 U/mL) ice-cold Krebs-Henseleit buffer containing (in mM)

119.0 NaCl, 11.0 glucose, 22.0 NaHCO3, 4.7 KCl, 1.2 KH2PO4, 1.2 MgSO4, 2.5 CaCl2, 2.0 pyru-

vate, and 0.5 EDTA. After removal of the lungs and tissue surrounding the heart, the aorta was

rapidly cannulated with a 20-gauge, blunt-ended needle and continuously perfused with 37˚C

buffer continuously bubbled with [95% O2]–[5% CO2] at a constant perfusion pressure of

80 mmHg. The left atrium was excised, and a water-filled balloon made of plastic wrap was

inserted into the left ventricle through the mitral valve. The balloon was connected to a pres-

sure transducer for continuous measurement of left ventricular developed pressure (LVDP)

and heart rate (HR). The heart was then immersed in a water-jacketed perfusate bath (37˚ C)

and left to beat spontaneously. Left ventricular diastolic pressure was adjusted to 2–5 mmHg.

A flow transducer was installed above the cannulated aorta for continuous measurement of

CF with an ultrasonic flow probe (Transonic Systems, Ithaca, NY). A Power–Lab Chart data

acquisition system (AD Instruments, Colorado Springs, CO) was used for data acquisition.

Heart function was allowed to stabilize for 30–40 min before initiation of CRH. Only hearts

whose CF increased by more than two fold after a 15-second total occlusion were included in

the analysis. This was to include only properly functioning hearts that were not damaged dur-

ing cannulation and baseline perfusion. Hearts with persistent arrhythmias or LVDP <80

mmHg were excluded.

Coronary Reactive Hyperemic Response

After stabilization for 30–40 minutes, baseline CF, HR, and LVDP were recorded. Hearts were

subjected to 15 seconds of total occlusion by closing the valve directly above the cannulated

heart to bring forth CRH. After CF returned to pre-CRH baseline levels, post-CRH baseline

CF, CF tracing, peak hyperemic flow (PHF), HR, LVDP, repayment volume (RV), and repay-

ment duration (RD) recordings were analyzed for each isolated heart. Investigational drugs
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were infused into the aortic perfusion line using a microinjection pump (Harvard Apparatus,

Holliston, MA) for 15 minutes, after which another CRH was induced and the same parame-

ters analyzed again. Drugs were infused at a rate equivalent to 1% of CF. The final concentra-

tions, after standardization of dose (0.01, 0.1, 1, & 10 μM) response for the various drugs used

in this study were 10 μM for rosiglitazone (PPARγ-agonist), t-AUCB (trans-4-[4-(3-adaman-

tan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (a selective sEH-inhibitor, University of Califor-

nia, Davis) [36], and 1 μM DDMS (dibromo-dodecenyl-methylsulfimide, CYP4A-blocker).

These concentrations are equal or lower than used in previous studies: rosiglitazone, 10 μM;

[11, 37], t-AUCB, 10 μM; [11, 35], DDMS, 1 μM [38].

Effect of t-AUCB on CRH Response

Isolated Tie2-sEH Tr and WT mouse hearts were subjected to 15 sec of total occlusion.

Recordings of the first CRH (baseline CF, CF tracing, LVDP, HR, RV, PHF, and RD) were

analyzed for each heart and averaged. t-AUCB was infused at a final concentration of 10 μM

and 1% of CF rate for 15 min, after which another CRH was induced and the same parameters

recorded again and analyzed.

LC–MS/MS Oxylipin Analysis

Levels of oxylipins (5,6-, 8,9-, 11,12- and 14,15-EET, 5,6-, 8,9-, 11,12- and 14,15-DHET, 5-,

8-, 9-, 11-, 12- and 15-HETE, 9,10- and 12,13-EpOME, 9,10- and 12,13-DiHOME, 9- and

13-HODE, 6-keto prostaglandin-F1α [6K-PG-F1α], PG-F2α, thromboxane B2 [TxB2], PGD2,

and PGE2) were quantified in pre- and post-CRH heart perfusates of Tie2-sEH Tr and WT

mice through liquid chromatography, tandem mass spectroscopy (LC-MS/MS) as described

previously [39]. Heart perfusates were collected for 2.5 min after the first 30 min of stabiliza-

tion and immediately after reperfusion. Hearts were immersed in 5 mL of warm (37˚C) Krebs-

Henseleit buffer with 5 μL of 10 μM t-AUCB to block further EET breakdown by sEH. Heart

perfusates were collected two times before ischemia (baseline) and pooled together as one sam-

ple and two times after ischemia and pooled together as another sample for LC-MS/MS analy-

sis. Samples were stored at –80˚C until processing. Samples were spiked with 30 ng PGE2-d4,

10,11- DiHN, and 10,11-EpHep (Cayman) as internal standards, mixed with 0.1 vol of 1% ace-

tic acid in 50% methanol, and extracted by serial passage through Oasis HLB C18 3mL col-

umns (Waters, Milford, MA, USA). Columns were washed twice with 0.1% acetic acid in 5%

methanol and eluted with methanol into glass tubes containing 6 μL of 30% glycerol in metha-

nol. The methanol was then evaporated under a stream of nitrogen gas, and the dried tubes

were frozen and stored at –80˚C until analysis. Online liquid chromatography of extracted

samples was performed with an Agilent 1200 Series capillary HPLC (Agilent Technologies,

Santa Clara, CA, USA). Separations were achieved using a Halo C18 column (2.7 mm, 10062.1

mm; MAC-MOD Analytical, Chadds Ford, PA), which was held at 50˚C. Mobile phase A was

85:15:0.1 water: acetonitrile: acetic acid. Mobile phase B was 70:30:0.1 acetonitrile: methanol:

acetic acid. Flow rate was 400 μL/min; Gradient elution was used. Mobile phase percentage B

and flow rate were varied as follows: 20% B at 0 min, ramp from 0 to 5 min to 40% B, ramp

from 5 to 7 min to 55% B, ramp from 7 to 13 min to 64% B. From 13 to 19 min the column

was flushed with 100% B at a flow rate of 550 μL/min. Samples were solvated in 50 μl of 30%

ethanol. The injection volume was 10 μL. Samples were analyzed in triplicate. Analyses were

performed on an MDS Sciex API 3000 equipped with a TurboIonSpray source (Applied Bio-

systems). Turbo desolvation gas was heated to 425˚C at a flow rate of 6 L/min. Negative ion

electrospray ionization tandem mass spectrometry with multiple reaction monitoring was

used for detection. Analyte quantification was performed using Analyst 1.5.1 software (AB
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Sciex, Ontario, Canada). Relative response ratios of analytes and respective internal standards

were compared to a standard curve of response ratios for each analyte. Lipid standards, which

are sensitive to oxidative degradation, were stored in 100% ethanol under argon and used

within 1 year of purchase from Cayman Chemical (Detroit, MI).

Effect of DDMS (ω-hydroxylases-inhibitor) on CRH Response

Isolated Tie2-sEH Tr and WT mice hearts were stabilized for 30–40 min, followed by 15 sec of

total occlusion. Recordings of the first CRH (baseline CF, CF tracing, LVDP, HR, RV, PHF

and RD) were analyzed for each heart and averaged. DDMS was infused at a final concentra-

tion of 1.0 μM for 15 minutes, after which the second CRH was induced. CRHs before and

after DDMS infusion were analyzed and compared.

Effect of Rosiglitazone on CRH Response

After stabilization, WT mouse hearts were subjected to 15 sec of total occlusion. As described

above, baseline CRH was induced in each mouse heart. Rosiglitazone (Cayman Chemical) was

infused at a final concentration of 10 μM for 15 min, followed by another CRH. CRHs before

and after rosiglitazone infusion were analyzed and compared.

Statistical and Data Analyses

Flow debt (baseline flow rate multiplied by occlusion duration) and RV (the integral of hyper-

emic area above the baseline flow) were calculated using “the integral relative to baseline”

function in the data pad of Lab-Chart 7.0 software. Since absolute coronary flow rates change

proportionally with heart mass, the RV and flow debt are presented as ml/g wet heart weight,

and baseline and peak flow rate data are presented as (mL.min–1.g wet heart weight–1). Values

are means ± standard error; n represents the number of animals. For data analysis, two-tailed

unpaired t-test was used for unpaired data analysis, and two-way ANOVA was used to com-

pare data between groups. Differences were considered statistically significant when P< 0.05.

Results

CRH Response

Effect of sEH endothelial expression on CRH response. Endothelial expression of sEH

attenuated CRH in Tie2-sEH Tr compared to WT mice. Compared to WT mice, Tie2-sEH Tr

mice had decreased repayment volume (10.7 ± 0.5 and 8.2 ± 0.6 mL/g, respectively; P< 0.05,

Fig 1A), decreased repayment duration (3.2 ± 0.2 and 2.4 ± 0.2 min, respectively; P< 0.05; Fig

1B), and decreased repayment/debt ratio (2.5 ± 0.2 and 1.9 ± 0.2, respectively; P< 0.05; Fig

1C). There was no statistically significant difference in body weight, heart weight, baseline CF,

LVPD, and HR between the two groups (P> 0.05; Fig 1D–1F). Table 1 lists the statistical

mean values and the standard error of the mean (SEM) for these parameters for the two groups

of mice. Time-matched control experiments with WT mouse hearts, employing three consecu-

tive inductions of CRH, showed no change in the CRH response and no difference in baseline

heart functions, including CF, LVDP, and HR (data not shown).

Effect of t-AUCB on CRH response in Tie2-sEH Tr and WT mice. The sEH-inhibitor,

t-AUCB, enhanced CRH in both Tie2-sEH Tr and WT mice. Repayment volume was

increased by 23% in WT mice (from 8.5 ± 0.7 to 10.5 ± 0.7 mL/g; P< 0.05) compared to 36%

in Tie2-sEH Tr mice (from 6.2 ± 0.6 to 8.5 ± 0.7 mL/g; P< 0.05, Fig 2A). Repayment duration

was increased by 43% in WT mice (from 2.2 ± 0.2 to 3.2 ± 0.3 min; P< 0.05) compared to 72%

in Tie2-sEH Tr mice (from 1.7 ± 0.2 to 3.0 ± 0.4 min; P< 0.05, Fig 2B). Also, repayment/debt
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ratio was increased by 23% in WT mice (from 2.5 ± 0.4 to 3.1 ± 0.4; P< 0.05) compared to

37% in Tie2-sEH Tr mice (from 1.9 ± 0.2 to 2.6 ± 0.2; P< 0.05, Fig 2C). There was no signifi-

cant difference between t-AUCB–treated WT and t-AUCB–treated Tie2-sEH Tr mice in the

above mentioned parameters based on the 2-way ANOVA analyses of interaction between the

2 variables: mouse strain and drug (t-AUCB). Baseline CF, LVPD, and HR were not different

between and within the two groups (P> 0.05; Fig 2D–2F).

Fig 1. Comparison of coronary reactive hyperemia (CRH) between Tie2-sEH Tr and WT. Repayment volume (A), repayment duration (B), and

repayment/debt ratio (C), were increased in Tie2-sEH Tr compared to WT mice (P < 0.05). Baseline CF (D), LVPD (E), and HR (F) were not different between

the two groups. * P < 0.05 versus WT. n = 12 per group.

doi:10.1371/journal.pone.0169584.g001

Table 1. Baseline functional data and coronary reactive hyperemia (CRH) parameters for sEH-over-

expressed (Tie2-sEH Tr) and wild type (WT) isolated mouse heart.

WT Tie2-sEH Tr

Age, weeks 16.8 ± 0.3 16.4 ± 0.1

Body weight, g 24.7 ± 1.3 23.6 ± 1.8

Heart weight, mg 103 ± 4.9 108 ± 5.6

Repayment volume, mL.g-1 10.7 ± 0.5 8.2 ± 0.6 *

Repayment duration, min 3.2 ± 0.2 2.4 ± 0.2 *

Baseline CF, ml.min-1.g-1 16.5 ± 0.8 16.9 ± 0.5

Debt volume, mL.g-1 4.3 ± 0.2 4.3 ± 0.1

Repayment / debt ratio 2.5 ± 0.2 1.9 ± 0.2 *

LVDP, mmHg 145 ± 10 161 ± 13

Heart rate, beat.min-1 394 ± 8 387 ± 17

* P < 0.05 versus WT. Values are means ± standard error. n = 12 per group.

doi:10.1371/journal.pone.0169584.t001
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Oxylipin Analysis of Heart Perfusate in WT and Tie2-sEH Tr Mice

Heart perfusate oxylipin levels were determined by LC–MS/MS. Perfusate samples were col-

lected at baseline after stabilization and after ischemia in WT and Tie2-sEH Tr mice. This

technique detected 3 out of the 4 EET regioisomers (8,9-, 11,12-, and 14,15-EETs), and their

corresponding metabolites (8,9-, 11,12-, and 14,15-DHETs). The measured EETs (8,9-, 11,12-,

and 14,15-EETs) were not significantly different between WT and Tie2-sEH Tr mice, (P>
0.05; Fig 3A–3C). Moreover, these EETs did not significantly change in response to ischemia

in either mouse strain (P> 0.05; Fig 3A–3C). For DHETs, a decreasing trend was noticed in

Tie2-sEH Tr compared to WT mice, which was significant in 8,9-, and 14,15-DHETs (P<
0.05; Fig 3D–3F). Ischemia had a decreasing effect on DHETs, which was significant only in

14,15-DHET in WT mice (P< 0.05; Fig 3F).

Linoleic acid (LA) epoxides (9,10- and 12,13-EpOMEs) were similar between WT and

Tie2-sEH Tr mice, (P> 0.05; Fig 4A). However, in both strains, these epoxides decreased in

response to ischemia (P< 0.05; Fig 4A). The corresponding 12, 13-DiHOME level was lower

in Tie2-sEH Tr compared to WT mice (P< 0.05; Fig 4B), and was decreased in response to

ischemia in both mouse groups (P< 0.05; Fig 4B). The other DiHOME (9,10-DiHOME) did

not change due to ischemia or to sEH endothelial expression (P> 0.05; Fig 4B).

Mid-chain HETEs (5-, 8-, 11-, 12-, and 15-HETEs) were detected in WT and Tie2-sEH

Tr mouse heart perfusates before and after ischemia. In Tie2-sEH Tr mice, the levels of 5-, 8-,

11-, 12-, and 15-HETE were significantly decreased compared to WT mice at baseline and

Fig 2. Effect of the sEH-inhibitor (t-AUCB, 10 μM) on coronary reactive hyperemia (CRH) in Tie2-sEH Tr and WT mice. The sEH-inhibitor, t-AUCB,

enhanced CRH in both Tie2-sEH Tr and WT mice. Repayment volume (A), repayment duration (B), and repayment/debt ratio (C) were increased in both

strains. Repayment volume was decreased more in Tie2-sEH Tr compared to WT mice. Baseline CF (D), LVPD (E), and HR (F) were not different between

the two groups. * P < 0.05 versus WT. # P < 0.05 versus t-AUCB–treated WT. n = 8 per group.

doi:10.1371/journal.pone.0169584.g002
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post-ischemia (P< 0.05; Fig 5A–5E). Post-ischemic levels of 5-, and 15-HETEs were not sig-

nificantly decreased in Tie2-sEH Tr compared to WT mice (P> 0.05; Fig 5A and 5E). Ische-

mia also had a decreasing effect on mid-chain HETEs in WT (reaching significant levels for 5-,

11-, 12-, and 15-HETEs) and Tie2-sEH Tr mice (reaching significant levels for 5-, 11-, 12-, and

15-HETEs) (P< 0.05; Fig 5A–5E).

Other LA hydroxylated metabolites, 9- and 13-HODEs, were not significantly different

between WT and Tie2-sEH Tr mice at baseline or post-ischemia (P> 0.05; Fig 6). However,

in both WT and Tie2-sEH Tr, 9- and 13-HODEs decreased in response to ischemia (P< 0.05;

Fig 6).

The levels of 6K-PG-F1α, PG-F2α, PG-D2, and PG-E2 were also detected by our LC–MS/MS

(Fig 7). For these PGs, a decreasing trend in their level was noticed in Tie2-sEH Tr compared

to WT mice, which was significant at baseline in PG-E2 (P< 0.05; Fig 7D), and post-ischemia

in PG-F2α, and PG-E2 (P< 0.05; Fig 7C and 7D). Also, ischemia decreased the level of these

Fig 3. LC–MS/MS analysis for EETs (8, 9–, 11, 12–, and 14, 15–) and DHETs (8, 9–, 11, 12–, and 14, 15–) levels in WT and Tie2-sEH Tr mouse heart

perfusates at baseline and post-ischemia. 8,9-EET (A), 11,12-EET (B), and 14,15-EET (C) were not significantly different between WT and Tie2-sEH Tr

mice. Also, the levels of EETs were not affected in response to ischemia in either mouse strain (P > 0.05). 8,9-DHET (D), and 14,15-DHET (F) were

decreased in Tie2-sEH Tr compared to WT mice (P < 0.05), whereas 11,12-DHET (E) was not significantly different between the two groups (P > 0.05). Also,

14,15-DHET (F) was decreased in response to ischemia in Tie2-sEH Tr (P < 0.05). * P < 0.05 versus baseline WT. # P < 0.05 versus WT post-ischemia.

n = 12 WT and 14 Tie2-sEH Tr.

doi:10.1371/journal.pone.0169584.g003
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PGs in both strains, but was significant in PG-F203B0031, and PG-E2 (P< 0.05; Fig 7C and

7D)

Effect of DDMS (ω-hydroxylases-inhibitor) on CRH Response

DDMS enhanced CRH in both Tie2-sEH Tr and WT mice. Repayment volume was increased

by 33% in WT mice (from 8.6 ± 0.2 to 11.4 ± 1.5 mL/g; P< 0.05) compared to 63% in Tie2-

sEH Tr mice (from 6.1 ± 0.2 to 9.9 ± 0.8 mL/g; P< 0.05, Fig 8A). Repayment duration was

increased by 80% in WT mice (from 2.6 ± 0.2 to 4.6 ± 0.7 min; P< 0.05) compared to 62% in

Tie2-sEH Tr mice (from 1.9 ± 0.2 to 3.1 ± 0.4 min; P< 0.05, Fig 8B). Also, repayment/debt

ratio was increased by 48% in WT mice (from 2.9 ± 0.4 to 4.3 ± 0.6; P< 0.05) compared to

69% in Tie2-sEH Tr mice (from 2.5 ± 0.3 to 4.1 ± 0.7; P< 0.05, Fig 8C). There was no signifi-

cant difference between DDMS–treated WT and DDMS–treated Tie2-sEH Tr mice in the

above mentioned parameters based on the 2-way ANOVA analyses of interaction between the

2 variables: mouse strain and drug (DDMS). Baseline CF, LVPD, and HR were not different

between and within the two groups (P> 0.05; Fig 8D–8F).

Effect of rosiglitazone (PPARγ agonist) on CRH Response

Rosiglitazone enhanced CRH in both Tie2-sEH Tr and WT mice. Repayment volume was

increased by 19% in WT mice (from 9.8 ± 0.3 to 11.7 ± 0.6 mL/g; P< 0.05) compared to 20%

in Tie2-sEH Tr mice (from 8.6 ± 0.4 to 10.3 ± 0.6 mL/g; P< 0.05, Fig 9A). Repayment dura-

tion was increased by 21% in WT mice (from 3.1 ± 0.4 to 3.7 ± 0.6 min; P< 0.05), but not in

Tie2-sEH Tr mice (P> 0.05, Fig 9B). Repayment/debt ratio, baseline CF, LVPD, and HR were

not different between and within the two groups (P> 0.05; Fig 9C–9F).

Discussion

Endothelial-specific over-expression of human sEH (Tie2-sEH Tr) in C57BL/6 mice decreased

CRH in an isolated heart model in response to brief ischemia. Endothelial over-expression of

Fig 4. LC–MS/MS analysis of EpOME and DiHOME levels in WT and Tie2-sEH Tr mouse heart perfusates at baseline and post-ischemia. 9,10- and

12,13-EpOMEs (A) were decreased in response to ischemia in both WT and Tie2-sEH Tr mice (P < 0.05), but were not different between the two groups

(P > 0.05). 12, 13-DiHOME (B) level was decreased in Tie2-sEH Tr compared to WT mice (P < 0.05), and was decreased in response to ischemia in both

mouse groups (P < 0.05). 9,10-DiHOME level (B) did not change due to ischemia or to sEH endothelial expression (P > 0.05). * P < 0.05 versus baseline WT.

# P < 0.05 versus WT post-ischemia. n = 12 WT and 14 Tie2-sEH Tr.

doi:10.1371/journal.pone.0169584.g004
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sEH was also associated with changes in arachidonic and linoleic acids-derived oxylipin pro-

files. The relationship among sEH over-expression, subsequent oxylipin changes, and modula-

tion of CRH in isolated mouse hearts is not known. Therefore, we designed this study to

investigate the role of sEH over-expression and the associated oxylipin changes in the modula-

tion of CRH using isolated WT and Tie2-sEH Tr mouse hearts. Our data demonstrated that:

1) Endothelial over-expression of sEH decreased CRH; 2) Inhibition of sEH by t-AUCB

reversed the decrease in CRH associated with sEH–over-expression in Tie2-sEH Tr mice; 3)

Endothelial over-expression of sEH was associated with changes in some oxylipin profiles,

including decrease in DHETs, EpOMEs, DiHOMEs, and mid-chain HETEs; 4) Inhibition of

ω-hydroxylases (by DDMS) enhanced CRH in WT and Tie2-sEH Tr mice; 5) The PPARγ ago-

nist rosiglitazone enhanced CRH in WT and Tie2-sEH Tr mice.

Endothelial over-expression of human sEH decreased CRH after brief ischemia in Tie2-

sEH Tr mice compared to WT mice. Brief ischemia in the heart is followed by CRH [26], which

protects the heart against the potential ischemia damage [11]. The significance of CRH was

confirmed by several studies which linked compromised CRH with different cardiovascular

Fig 5. LC–MS/MS analysis of 5-, 8-, 11-, 12- and 15-HETE levels in WT and Tie2-sEH Tr mouse heart perfusates at baseline and post-ischemia. In

Tie2-sEH Tr mice, the levels of 5-HETE (A), 8-HETE (B), 11-HETE (C), 12-HETE (D), 15-HETE (E), were decreased compared to WT mice at baseline and

post-ischemia (P < 0.05). In both WT and Tie2-sEH Tr mice, post-ischemic levels of 5-, 11-, 12-, and 15-HETEs were decreased compared to baseline levels

(P < 0.05). * P < 0.05 versus baseline WT. # P < 0.05 versus WT post-ischemia.ФP < 0.05 versus baseline Tie2-sEH Tr. n = 12 WT and 14 Tie2-sEH Tr.

doi:10.1371/journal.pone.0169584.g005
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pathologies [27, 28]. EETs were suggested, among other oxylipins, to mediate CRH in mice in

response to brief ischemia [11]. Hydration by sEH is the main metabolic pathway responsible

for converting EETs to their primary metabolites, the DHETs [40]. Endothelial over-expression

of human sEH, which was associated with increased conversion of EETs to DHETs, impaired

endothelium-dependent vasodilation in the cerebral circulation in mice [13]. Lee et al. reported

that Caucasian carriers of the K55R variant, with higher sEH activity in vivo, had significantly

higher risk of incident coronary heart disease [21]. These reports reiterate the well-established

beneficial cardiovascular effects of EETs [10, 25, 40–42], including vasodilation in the kidney

preglomerular vasculature [43], intestines [44], and brain [45], and protection against ischemia/

reperfusion injury [8]. Although DHETs are generally viewed as less active compared to EETs,

some studies have reported equal or even more potent vasodilatory effect for DHETs compared

to EETs [4, 5, 46]. For example, 11,12- and 14,15-DHETs were shown to cause vasodilation in

isolated human coronary arteries [5] and bovine coronary arteries [4] respectively. The relative

potency of these EETs and DHETs was also compared, with 11,12-DHET being equipotent

to 11,12-EET [5], and 14,15-DHET being fivefold less potent than 14,15-EET [4]. We have

Fig 6. LC–MS/MS analysis of HODEs in WT and Tie2-sEH Tr mouse heart perfusates at baseline and post-ischemia. In both WT and Tie2-sEH Tr, 9-

and 13-HODEs decreased in response to ischemia (P < 0.05). However, they were not significantly different between the two groups at baseline or post-

ischemia (P > 0.05). * P < 0.05 versus baseline WT. # P < 0.05 versus WT post-ischemia. n = 12 WT and 14 Tie2-sEH Tr.

doi:10.1371/journal.pone.0169584.g006
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previously shown that targeting sEH, through pharmacologic inhibition [11] or genetic deletion

[11], was associated with enhanced CRH. In this study, pharmacologic inhibition of sEH, by

t-AUCB, not only enhanced CRH as previously shown, it also reversed the decrease in CRH

observed in Tie2-sEH Tr mice, and increased it to a level comparable to that in WT mice. This

approach of targeting EETs pathway from different angles strongly supports previous [11] as

Fig 7. LC–MS/MS analysis of 6-keto-PG-F1α, PG-F2α, PG-D2, and PG-E2 in WT and Tie2-sEH Tr mouse heart perfusates at baseline and post-

ischemia. The levels of PG-D2 (A) and 6-Keto-PG-F1α (B) were not significantly changed due to ischemia or between Tie2-sEH Tr and WT mice (P > 0.05).

In both Tie2-sEH Tr and WT mice, PG-F2α (C) was decreased post-ischemia (P < 0.05). PG-E2 (D) was decreased at baseline and post-ischemia in Tie2-sEH

Tr compared to WT mice (P < 0.05), and it was also decreased in response to ischemia in Tie2-sEH Tr mice (P < 0.05). * P < 0.05 versus baseline WT.

# P < 0.05 versus WT post-ischemia.Ф P < 0.05 versus baseline Tie2-sEH Tr. n = 12 WT and 14 Tie2-sEH Tr.

doi:10.1371/journal.pone.0169584.g007
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well as current findings of sEH involvement in CRH, where inhibiting or deleting sEH [11]

enhances CRH, and over-expressing it attenuates CRH.

Our functional data in this study agree with our previously published data [11] in terms of

the effect of sEH on CRH. However, the oxylipin data are not as congruent. In the current

study, endothelial-specific over-expression of sEH (Tie2-sEH Tr) was, unexpectedly, associ-

ated with decreased levels of DHETs compared to WT mice. DHETs are metabolic products of

EETs’ hydrolysis by sEH. Our lab has reported that global deletion of sEH (sEH–/–mice) [11]

and pharmacologic inhibition by t-AUCB [11] resulted in decreased DHETs. In contrast to

our findings in this study, over-expressing sEH in Tie2-sEH Tr mice resulted in decreased

plasma level of 11,12- and 14,15-DHETs compared to WT [13]. Possible explanations for these

different results are the different source of the samples: Zhang et al. used plasma samples,

whereas we used heart perfusate samples. Another likely possibility is that increasing sEH only

in endothelial cells has merely a small effect on total cardiac EET hydrolysis. Cardiomoyctes,

which highly express both CYP epoxygenases and sEH [47] comprise 60% of all heart cells

[48]. While endothelial cells (ECs) from Tie2-sEH Tr mice have increased endothelial sEH

expression and EET hydrolysis [9, 49] (they represent less than 10% of all heart cells [48].

Thus, the effect of endothelial sEH overexpression on total EET and DHET levels in the heart

may be minor in the context of hearts with otherwise WT sEH expression. While not altering

global cardiac levels of EETs or DHETs, increased sEH in endothelial cells of Tie2-sEH Tr

hearts may increase the hydrolysis of EETs in endothelial cells and reduce their paracrine,

vasodilatory effects on smooth muscle. We previously reported that global deletion of sEH

Fig 8. Effect of the CYP4A-blocker (DDMS, 1 μM) on coronary reactive hyperemia (CRH) in Tie2-sEH Tr and WT mice. The CYP4A-blocker, DDMS,

enhanced CRH in both Tie2-sEH Tr and WT mice. Repayment volume (A), repayment duration (B), and repayment/debt ratio (C) were increased in both

strains. Repayment volume was decreased more in Tie2-sEH Tr compared to WT mice. Baseline CF (D), LVPD (E), and HR (F) were not different between

the two groups. * P < 0.05 versus WT. # P < 0.05 versus DDMS–treated WT. n = 8 per group.

doi:10.1371/journal.pone.0169584.g008

Soluble Epoxide Hydrolase Attenuates Coronary Reactive Hyperemia

PLOS ONE | DOI:10.1371/journal.pone.0169584 January 5, 2017 13 / 21



(sEH–/–mice) increased 14,15-EET in heart perfusate samples [11], whereas in this study no

difference was found in EET levels between hearts from WT and Tie2-sEH Tr mice. Addition-

ally, the short half-life of EETs [3], and the limited over-expression of sEH to the endothelium

in Tie2-sEH Tr mice may explain the lack of change in EET levels in our study. Therefore, the

decreased levels of DHETs in our data, which indicates reduced DHET-mediated vasodilation

as reported previously [4, 5], may explain the decreased CRH in Tie2-sEH Tr compared to

WT mice.

In early studies, the role of sEH in cardiovascular biology was primarily linked to its role in

EET hydrolysis; however, sEH also plays a central role in the metabolism and actions of other

arachidonic-, linoleic- and omega-3-derived oxylipins [24]. Accordingly, we have expanded

oxylipin analyses to include more oxylipins besides EETs and DHETs. The other oxylipins we

examined are EpOMEs, which are hydrolyzed to DiHOMEs by sEH. EpOMEs and DiHOMEs

are found in abundance in mouse tissues and plasma since their parental fatty acid, linoleic

acid, comprises 50% of all fatty acids in our mouse diets. We expected either increase or no-

change in DiHOMEs in our Tie2-sEH Tr mice; however, we found no change in 9,10-DiHOME

and a decrease in 12,13-DiHOME in Tie2-sEH Tr versus WT mice. In addition, EpOME levels

were not different between the two mouse strains. In contrast, we previously found that global

deletion of sEH (sEH–/–mice) [11] and pharmacologic inhibition of sEH by t-AUCB [11]

increased EpOME, decreased DiHOMEs, and increased EpOME/DiHOME ratio. In these stud-

ies, the altered EpOME/DiHOME ratio may have contributed to the enhancement of CRH [11].

On the other hand, decreased EpOME/DiHOME ratio in the plasma of Tie2-sEH Tr mice was

associated with impaired endothelium-dependent vasodilation in the cerebral circulation [13].

Fig 9. Effect of the PPARγ-agonist (rosiglitazone, 10 μM) on coronary reactive hyperemia (CRH) in Tie2-sEH Tr and WT mice. The PPARγ-agonist,

rosiglitazone, enhanced CRH in both Tie2-sEH Tr and WT mice. Repayment volume (A), and repayment/debt ratio (C) were increased in both strains.

Repayment duration (B) was increased in WT mice, but not in Tie2-sEH Tr mice. Repayment volume was decreased more in Tie2-sEH Tr compared to WT

mice. Baseline CF (D), LVPD (E), and HR (F) were not different between the two groups. * P < 0.05 versus WT. # P < 0.05 versus rosiglitazone–treated WT.

n = 8 per group.

doi:10.1371/journal.pone.0169584.g009
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These data suggest that a high EpOME/DiHOME ratio may have a positive role in mediating

vasodilation, whether the ratio is increased due to elevated EpOMEs [11] and / or decreased

DiHOMEs [11, 13]. Compared to EETs, the functions of EpOMEs and DiHOMEs are less well-

defined [17]; however, a few studies suggest that EpOMEs, at physiological levels, protected

against hypoxia/reoxygenation injury [22, 23]. Konkel et al. demonstrated that pretreatment

with 12,13-EpOME protected primary cultures of rabbit renal proximal tubular cells against

hypoxia/reoxygenation injury, whereas its metabolite 12,13-DiHOME failed to produce the

same protective effect [24]. In contrast, the hydrated metabolites, DiHOMEs, have shown dele-

terious effects, including cytotoxic, vasoconstrictive and cardiodepressive properties [9, 25]. In

our study, the unchanged level of EpOMEs and the modest decrease in 12,13-DiHOME in

Tie2-sEH Tr may suggest that they did not contribute much to the decreased CRH in Tie2-sEH

Tr compared to WT mice.

Mid-chain (5-, 8-, 11-, 12- and 15-) HETE levels were decreased in Tie2-sEH Tr compared

to WT mice and in response to ischemia. Mid-chain HETEs are produced from AA by allylic

oxidation by lipoxygenase [24] and by bis-allylic oxidation by CYP1B1 [50]. They were shown

to have vasoconstrictive and pro-inflammatory effects [50, 51]. Also, the increased formation

of mid-chain HETEs was involved in cardiovascular dysfunction [52–55]. Our finding that

mid-chain HETEs were decreased in both mouse strains post-ischemia is in agreement with

our previously published data [11]. However, our finding that CRH was decreased in Tie2-sEH

Tr mice is not supported by the decreased levels of the vasoconstrictive mid-chain HETEs in

the same mice. This surprising result also contrasts with previous findings from our lab in

which sEH inhibition was accompanied by decreased mid-chain HETEs in the heart perfusate

of WT mice [11]. However, to the best of our knowledge, the level of mid-chain HETEs in

Tie2-sEH Tr mice has not been evaluated in any tissue or fluid, including the heart perfusate.

Changes in the level of AA metabolites in response to genetic manipulation of relevant

enzymes have been reported [11, 18]. This unexpected finding could be reconciled with our

functional finding of decreased CRH in Tie2-sEH Tr mice if we consider another important

finding: the level of CYP4A. CYP4A is an ω-hyroxylase involved in metabolizing AA to the

potent vasoconstrictor 20-HETE [16]. Yadav et al. has recently reported that CYP4A level was

increased in the mesenteric arteries of Tie2-sEH Tr mice [12]. These data suggest that while

the decrease in mid-chain HETEs observed in the heart perfusates of Tie2-sEH Tr mice should

have enhanced CRH, the reported increased expression of CYP4A in the same mice may have

overridden the effect of decreased mid-chain HETEs and caused a net effect of decreased

CRH.

In addition to EpOMEs, HODEs are the other oxylipins derived from linoleic acid (LA)

through hydroxylation by CYP epoxygenases or lipoxygenases [24]. The detected two HODE

isomers, 9-, and 13-HODE, were similar in Tie2-sEH Tr and WT. The physiologic functions

of HODEs are not widely investigated [24], though 9-, and 13-HODE appear to have some

opposing effects [56]. 13-HODE has been suggested to have an anti-inflammatory role [57–

61], while 9-HODE was described as pro-inflammatory [62, 63]. Similar to our findings,

Luria et al. reported no change in mouse urinary samples of 9– and 13–HODE when sEH

was deleted [17]. However, heart perfusate samples from the same strain (sEH–/–mice) had

increased level of 13–HODE compared to WT [11]. Since endothelial over-expression of sEH

in Tie2-sEH Tr mice did not change the level of HODEs, we do not expect that changes in

HODEs played any role in the decreased CRH noticed in Tie2-sEH Tr compared to WT mice.

Endothelial over-expression of sEH in Tie2-sEH Tr mice resulted in significant changes in

prostanoid levels, including PG-E2, and PG-F2α. Although PG-F1α, and PG-D2, had a decreas-

ing trend in Tie2-sEH Tr mice, the difference was not significant. PGs have generally been

described as pro-inflammatory [64], still, recent reports indicate that some, such as PG-D2 and
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PG-E2, are anti-inflammatory by up-regulating cAMP and inducing secretion of the anti-

inflammatory IL-10 [64, 65]. 6-keto-PG-F1α is the non-active metabolite of prostacyclin

(PG-I2) [64]. Similar to these findings, published reports by our lab and others have demon-

strated that pharmacologic inhibition or genetic deletion of sEH were accompanied by

decreased prostanoids [11, 19, 20]. Hellmann et al. suggested that prostaglandins are not

involved in post-occlusive reactive hyperemia in the skin [66]. Despite the observed decrease

in the level of some PGs in Tie2-sEH Tr mice, the lack of evidence for the involvement of PGs

in reactive hyperemia and their variable effects on inflammation suggest that PG changes did

not likely contribute to the decrease in CRH in Tie2-sEH Tr mice.

As mentioned earlier, ω-terminal HETEs are generated from AA by CYP ω-hydroxylases,

primarily CYP4A and CYP4F subfamilies, with 20-HETE being the primary product [16].

20-HETE is involved with the renin-angiotensin system to promote hypertension, vasocon-

striction, and vascular dysfunction [67, 68]. Weldmann et al. suggested that 20-HETE contrib-

utes to postmenopausal hypertension in spontaneously hypertensive rats (SHR) [69]. Blocking

20-HETE synthesis by 1-aminobenzotriazole inhibited renal production of 20-HETE, and

reduced mean arterial pressure in old female SHR [69]. The changes in the renal production of

20-HETE was consistent with the expression level of CYP4A protein [70]. In this study, inhib-

iting ω-hydroxylases by DDMS enhanced CRH in Tie2-sEH Tr and WT mice, however, the

percent increase in CRH in Tie2-sEH Tr mice (63%) was higher than that in WT mice (33%),

which suggests a possible increased activity of ω-hydroxylases in Tie2-sEH Tr compared to

WT mice. This in turn could lead to higher levels of 20-HETE. This possibility is supported by

the finding that CYP4A’s expression was increased in the mesenteric arteries of Tie2-sEH Tr

mice [12]. The levels of 20-HETE were too low to be detected in heart perfusates from WT or

Tie2-sEH Tr mice. Upregulation of CYP4A [12], may contribute to reduced CRH in Tie2-sEH

Tr compared to WT mice. As mentioned earlier, the temporary pharmacological inhibition of

sEH could not completely restore CRH in Tie2-sEH Tr to that in WT mice. This suggests that

other mechanisms or mediators, besides sEH, could be involved in decreasing CRH. One such

mechanism is the upregulation of CYP4A reported in Tie2-sEH Tr mice and the possible

increase in 20-HETE. Improved techniques for detection of the level of 20-HETE in mice are

required to better characterize the role it may play in CRH in WT or Tie2-sEH Tr hearts. Nev-

ertheless, our data suggest that dual inhibition of sEH and omega hydroxylases may have a syn-

ergistic effect to enhance CRH.

This study also showed that CRH was increased by rosiglitazone, a PPARγ-agonist. PPAR

agonists are well known inducers of both sEH [71] and omega hydroxylases [72]. Due to the

short treatment periods, and that such induction would likely reduce CRH, we believe induc-

tion of these enzymes by rosiglitazone was minimal. Previously, we suggested that PPARγ may

mediate CRH downstream of the CYP epoxygenase-EET pathway [11]. Other studies indi-

cated that PPARγ receptors could mediate EETs’ effects [32–35]. Liu et al. suggested that selec-

tive sEH inhibition, which increases the retention of EETs, potentiates the anti-inflammatory

effect in endothelial cells by PPARγ activation [32]. Although our results suggest that PPARγ
receptors are involved in modulating CRH in both Tie2-sEH Tr and WT mice, they also show

that the role these nuclear receptors play in CRH is comparable between the two mouse strains,

and that endothelial expression of sEH does not impact their role compared to that in WT

mice.

In summary, the findings of this study suggest that endothelial over-expression of sEH

decreases CRH possibly through attenuating the CYP epoxygenase pathway and augmenting

the CYP ω-hydroxylase pathway, as reflected by the changes in AA–derived oxylipins

(decreased DHETs, decreased mid-chain HETEs, and decreased PGs) and LA–derived oxyli-

pins (decreased 12,13-DiHOME, and no change in HODEs). The effects of sEH–over-
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expression on these pathways might have collectively accounted for the observed decrease in

CRH. Changes in CRH are partially mediated by PPARγ activation in the two studied mouse

strains, as demonstrated by the enhanced CRH after PPARγ-agonist treatment. Therefore, we

conclude that sEH–over-expression attenuates, whereas ω-hydroxylases–inhibition and activa-

tion of PPARγ enhance CRH.
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