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Efficient Algorithms for Multi-File Caching

Ekow J. Otoo1, Doron Rotem1, and Sridhar Seshadri2

1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
University of California, Berkeley, California 94720

2 Leonard N. Stern School of Business, New York University,
44 W. 4th St., 7-60 New York, 10012-1126

Abstract. Multi-File Caching issues arise in applications where a set
of jobs are processed and each job requests one or more input files. A
given job can only be started if all its input files are preloaded into a
disk cache. Examples of applications where Multi-File caching may be
required are scientific data mining, bit-sliced indexes, and analysis of
sets of vertically partitioned files. The difference between this type of
caching and traditional file caching systems is that in this environment,
caching and replacement decisions are made based on “combinations of
files (file bundles),” rather than single files. In this work we propose
new algorithms for Multi-File caching and analyze their performance.
Extensive simulations are presented to establish the effectiveness of the
Multi-File caching algorithm in terms of job response time and job queue
length.

1 Introduction

1.1 Overview

Caching techniques are widely used to improve the performance of comput-
ing systems whenever computations require frequent transfers of data between
storage hierarchies that have different access speeds and/or network bandwidth
characteristics. Given a sequence of requests for files from some slow or remote
storage media, one may use a cache of a small relative size on a faster storage
media that holds the most frequently used files. Retrieval to the slow or distant
memory is needed only in the case that the file requested is not found in the
cache. This results in improved efficiency and reduced costs even with relatively
small cache sizes. When a requested file is not found in the cache the system
incurs a ”fault”. The costs associated with a ”fault” consists of costs of resources
needed to read the file from slow memory and then transferring the file across
the network. Efficient caching algorithms choose which current files in the cache
must be replaced with new ones in order to maintain a set of files in the cache
that minimizes the expected cost of ”faults”.

There are many papers [1, 3, 6, 8, 9, 11] describing and analyzing caching and
replacement policies. These works distinguish between online and off-line algo-
rithms. In both cases, a sequence of requests for files arrive at a queue and must
be served on a First Come First Served (FCFS) basis. A replacement decision



must be made whenever a ”fault” occurs. Online algorithms make a replace-
ment decision based only on the current request and previous requests but do
not have any information about future requests. On the other hand, off-line al-
gorithms make replacement decisions based on the complete sequence of both
past and future requests. Off-line algorithms are not practical and are mainly
used for establishing bounds and gaining insights on the performance of online
algorithms.

In addition, caching algorithms can be classified based on their sensitivity to
file sizes and ”fault” costs. The following cases are considered in the literature:

Paging: Sizes of all files and their ”fault” costs are equal
Fault Model: File sizes are arbitrary while ”fault” costs are the same for all

files
Weighted caching: All files sizes are the same but ”fault” costs may be arbi-

trary
Bit Model: Files may have arbitrary sizes, ”fault” costs are proportional to file

size
General Model: Both ”fault” costs and file sizes may be arbitrary

This work is motivated by file caching problems arising in scientific and other
data management applications that involve multi-dimensional data [6, 7, 10]. The
caching environment for such applications is different than the works described
above in two main aspects:

Number of files associated with a request: As explained below due to the
nature of the applications a request may need multiple files simultaneously.
A request cannot be serviced until all the files it needs are in the cache.

Order of request service: In case several requests are waiting in the queue,
they may be served in any order and not necessarily in First Come First
Serve order (FCFS). Policies that determine the order in which requests
are served (admission policies), become important and sometimes must be
considered in combination with cache replacement policies [6].

1.2 Motivating examples of applications

Scientific applications typically deal with objects that have multiple attributes
and often use vertical partitioning to store attribute values in separate files.
For example, a simulation program in climate modeling may produce multiple
time steps where each time step may have many attributes such as temperature,
humidity, three components of wind velocity etc. For each attribute, its values
across all time steps are stored in a separate file. Subsequent analysis and vi-
sualization of this data requires matching, merging and correlating of attribute
values from multiple files. Another example of simultaneous retrieval of multiple
files comes from the area of bit-sliced indices for querying high dimensional data
[10]. In this case, a collection of N objects (such as physics events) each having
multiple attributes is represented using bit maps in the following way. The range
of values of each attribute is divided into sub-ranges. A bitmap is constructed for



each sub-range with a ′0′ or ′1′ bit indicating whether an attribute value is in the
required sub-range. The bitmaps (each consisting of N bits before compression)
are stored in multiple files, one file for each sub-range of an attribute. Range
queries are then answered by performing Boolean operations among these files.
Again, in this case all files containing bit slices relevant to the query must be
read simultaneously to answer the query.

1.3 Problem description

Our approach for caching multiple files consists of two steps that are applied
at each decision point of the algorithm. Given a cache of some fixed size and a
collection of requests currently waiting in the admission queue for service:

Step-1, File removal: We first remove from the cache a set of ”irrelevant”
files. Files become ”irrelevant” if they are not used by any current request
and fall below some threshold in terms of their ”desirability” according to
some known eviction policy such as ”least recently used” or ”greedy-dual”.

Step-2, Admission of requests: After the removal step, we load files into
the available space in the cache such that the number of requests in the
admission queue that can be serviced is maximized. In the weighted version
of the problem, each request may have some value reflecting its popularity or
priority and the goal in that case is to maximize the total value of serviced
requests.

From these two steps, the more interesting for us is Step-2 since Step-1 can
be performed based on any known efficient algorithm for file replacement in the
cache. The problem presented by Step-2 is called the Multi-File Caching (MFC)
problem and is described more precisely in Section 2. We will next illustrate the
problem with a small example.

1.4 Example

As a small example of the non-weighted version of this problem, consider the
bipartite graph shown in Fig. 1. The top set of nodes represents requests and
the bottom set of nodes represents files. Each request is connected by an edge
to each of the files it needs. Assuming all files are of the same size, each request
has value 1, and the cache has available space to hold at most 3 files, it can be
shown that the optimal solution of value 3 is achieved by loading the files a, c
and e into the cache and servicing the three requests 1,3, and 5. Loading a, b
and c has a value of 1 as only request 2 can be served whereas loading b, c and
e has a value of 2 as it allows us to serve requests 2 and 5.

1.5 Main Results

The main results of this paper are:
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Fig. 1. A bipartite graph depiction of a set of jobs and their file requests.

1. Identification of a new caching problem that arises frequently in applications
that deal with vertically partitioned files.

2. Derivation of heuristic algorithms that are simple to implement and take
into account the dependencies among the files.

3. Analysis of the heuristics and derivation of tight bounds from the optimal
solution

4. Extensive simulation results comparing the new algorithm with the tradi-
tional first come first serve.

The rest of the paper is organized as follows. In Section 2 we formally describe
the MFC problem and discuss its complexity. In Section 3 a heuristic greedy al-
gorithm, called Greedy Request Value (GRV) is proposed and its bounds from
the optimal solution are shown using Linear Programming (or LP) relaxation. In
Section 4 a variation on the GRV algorithm is proposed with improved bounds.
In Section 5, we present a simulation framework for evaluating the performance
of the proposed GRV algorithm. Results of the simulation studies, i.e., work-
load characterization and measurements of performance metrics are presented
in Section 6. Conclusions and future work are presented in Section 7.

2 Related Problems and Approximation Complexity

The Multi-File Caching (MFC) problem is defined as follows: Given a collec-
tion of requests R = {r1, r2, . . . , rn}, each with associated value v(ri), defined
over a set of files F = {F1, F2, . . . , Fm}, each with size s(Fi) and a constant M ,
a bound on the maximum total values, find a subset R′ of the requests, R′ ⊆ R,
of maximum total value such that the total size of the files needed by R′ is at
most M . It is easy to show that in the special case that each file is needed by
exactly one request the MFC problem is equivalent to the knapsack problem.
The MFC problem is NP-hard even if each request has exactly 2 files. This is
done by reduction from the Dense k−subgraph (DKS) problem [2]. An instance
of the DKS problem is defined as follows: Given a graph G = (V, E) and a pos-
itive integer k, find a subset V ′ ⊆ V with |V ′| = k that maximizes the total



number of edges in the subgraph induced by V ′. Given an instance of a DKS
problem, the reduction to an instance of MFC is done by making each vertex
v ∈ V correspond to a file f(v) of size 1. Each edge (x, y) in E corresponds to
a request for two files f(x) and f(y). A solution to the MFC instance with a
cache of size k corresponds to a solution to the instance of the DKS where the
k files loaded into the cache correspond to vertices of the subgraph V ′ in the
solution of the DKS instance. We also note that any approximation algorithm
for the MFC problem can be used to approximate a DKS problem with the same
bound from optimality. Currently the best-known approximation for the DKS
problem [2] is within a factor of O(|V |1/3−ǫ) from optimum for some ǫ > 0. It
is also conjectured in [2] that an approximation to DKS with a factor of (1 + ǫ)
is NP-hard. It is also interesting to note that in case each request can start its
service when at least one of its files is in the cache (but not necessarily all),
the problem becomes equivalent to the Budgeted Maximum Coverage Problem
(BMC ) [4, 5]. Using the above terminology, in the BMC problem we are given
a budget L (cache size) and the goal is to select a subset of the files F ′ ⊆ F
whose total size is at most L such that the total value of the requests using files
from F ′ is maximized. It turns out that BMC is easier to approximate. In [4], an
approximation algorithm is given for the BMC with a factor of (1 − 1/e) from
optimal.

3 A Greedy Algorithm and Bounds from Optimality

Next, we will describe a simple greedy algorithm called Algorithm GRV (Greedy
Request Value) and later prove the relationship between the request value pro-
duced by this algorithm and the optimal one. First we need some definitions. For
a file fi, let s(fi) denote its size and let d(fi) represent the number of requests
served by it. The adjusted size of a file fi, denoted by s′(fi), is defined as its
size divided by the number of requests it serves, i.e., s′(fi) = s(fi)/d(fi). For a
request ri, let v(ri) denote its value and F (ri) represent the set of files requested
by it. The adjusted relative value of a request, or simply its relative value, v′(rj),
is its value divided by the sum of adjusted sizes of the files it requests, i.e.

v′(rj) =
v(rj)

∑

fi∈F (rj)
s′(fi)

Algorithm GRV below attempts to service requests in decreasing order of their
adjusted relative values. It skips requests that cannot be serviced due to in-
sufficient space in the cache for their associated files. The final solution is the
maximum between the value of requests loaded and the maximum value of any
single request.

3.1 Linear Programming Relaxation

We now proceed to analyze the quality of the solution produced by this algo-
rithm. The MFC problem can be modeled as a mixed-integer program as follows.



input : A set of n requests R = {r1, . . . rn}, their values v(rj , a set of
n files F , the sets F (ri), a cache C of size s(C) and the sizes
s(fi) of all files in F.

output : The solution - a subset of the requests in R whose files must
be loaded into the cache.

Step 0: /* Initialize */
Solution ← φ; //set of requests selected
s(C′)← φ ; // s(C′) keeps track of unused cache size
Step 1: Sort the requests in R in decreasing order of their relative values
and renumber from r1, . . . , rn based on the this order
Step 2:

for i← 1 to n do

if s(C′) ≥ s(F (ri)) then

Load the files in F (ri) to the cache
s(C′)← s(C′)− s(F (ri)) ; // update unused cache size
Solution ← Solution ∪ ri ; // add request ri to the solution

end
end

Step 2: Compare the total value of requests in Solution and the highest
value of any single request and choose the maximum

Algorithm 1: GRV

Let

zi =

{

1 if the filefi is in cache
0 otherwise

and let

yj =

{

1 if all files used by rj are in cache
0 otherwise

Then the mixed integer formulation,P , of MFC can be stated as:

P : max

n
∑

j=1

v(rj)yj

subject to
yj − zi ≤ 0, ∀i ∈ F (rj), and∀j

m
∑

i=1

s(fi)zi ≤ s(C), zi ∈ {0, 1}

The linear relaxation of this problem,P∞, and its associated dual problem,
D, are not only easier to analyze but also provide a useful bound for a heuristic
solution procedure.

P∞ : max
n

∑

j=1

v(rj)yj



subject to
yj − zi ≤ 0, ∀i ∈ F (rj), and∀j

m
∑

i=1

s(fi)zi ≤ s(C), 0 ≤ zi ≤ 1.

D : min s(C)λ +

m
∑

i=1

λi

subject to
∑

i∈F (rj)

λji = v(rj) for j = 1, 2, . . . , n (1)

λs(fi) + λi −
∑

j:fi∈F (rj)

λji ≥ 0, for i = 1, 2, . . . , m, λ, λi, λji ≥ 0, (2)

where λji are the dual variables corresponding to the first set of primal
constraints, λ is the dual variable corresponding to the cache size constraint,
and the λi’s correspond to the last set of constraints bounding the z’s to be less
than one.

To avoid trivialities, we assume that for each request j :
∑

i∈F (rj)

s(fi) ≤ s(C),

that is, each request can be addressed from the cache, otherwise we can eliminate
such requests in the problem formulation.

3.2 Primal dual bound from optimal

We shall use the linear programming relaxation to bound the solution produced
by GRV. This will be done in two steps. First we shall bound the solution to P1,
by bounding the solution to D and producing a feasible solution to the primal
that can be compared to this bound. Then we will bound GRV. Consider an
approximation algorithm GRV(LP) for solving P1 that is similar to GRV except
that it allows partial loading of files. It comprises of ranking the requests in
descending order of the v′(rj)’s and loading them greedily until the cache is
full. Assume that if all the files for a request cannot be fully loaded, they are
loaded partially until the cache is full. Let’s assume that the collection of requests
serviced from the cache without loss of generality are denoted as r1, r2, . . . , rp.
Now, we exhibit the feasible dual solution. Let

λji =
v(rj)s(fi)/d(fi)

∑

t∈F (rj)
s(ft)/d(ft)

This assignment to the λji’s satisfies the constraints (1). Let

λ =
v(rp)

∑

t∈F (rp) s(ft)/d(ft)
= v′(rp).



Set λj to 0 for files not used by the p requests as well as the files used to
address only the pth request. Then for this assignment of dual variable values,
the left hand side of (2) evaluates to

λs(fi) + λi −
∑

j:fi∈F (rj)

λji

= s(fi)
v(rp)

∑

t∈F (rp) s(ft)/d(ft)
− s(fi)

∑

j:fi∈F (rj)

v(rj)/d(fi)
∑

t∈F (rj)
s(ft)/d(ft)

≥ s(fi)

(

v′(rp) − max
j≥p

v′(rj)

)

≥ 0,

Thus equation 2 is satisfied for such files. Finally, for files used to address the
p − 1 requests, let

λi = max
j<p,i∈F (rj)

{s(fi) (v′(rj) − v′(rp))} .

A similar substitution as above reveals that

λs(fi) + λi −
∑

j:fi∈F (rj)

λji = s(fi)
v(rp)

∑

t∈F (rp) s(ft)/d(ft)

+ max
j<p,i∈F (rj)

{s(fi) (v′(rj) − v′(rp))} − s(fi)
∑

j:fi∈F (rj)

v(rj)/d(fi)
∑

t∈F (rj)
s(ft)/d(ft)

≥ s(fi)

(

v′(rp) − max
j<p

v′(rj)

)

+ max
j<p,i∈F (rj)

{s(fi) (v′(rj) − v′(rp))}

= 0

Finally, the dual objective function value equals

s(C)v′(rp) +
∑

i∈∪j<pF (rj)

max
j<p,i∈F (rj)

{s(fi) (v′(rj) − v′(rp))}

≤



s(C) −
∑

i∈∪j<pF (rj)

s(fi)



 v′(rp) +
∑

i∈∪j<pF (rj)

max
j<p,i∈F (rj)

{s(fi)}

≤



s(C) −
∑

i∈∪j<pF (rj)

s(fi)



 v′(rp) +
∑

j<p

v′(rj)
∑

i∈F (rj)

s(fi)

≤ max
i

d(fi)





∑

j<p

v(rj) +

(

s(C) −
∑

i∈∪j<pF (rj)
s(fi)

)

∑

i∈F (rj)
s(fi)



 . (3)

In the second inequality we have used the fact that the maximum of a sum of
positive values is less than their sum. The final expression equals the value of the
solution produced by the approximation algorithm times the maximum number



of requests that need the same file. However, the objective function value of any
feasible solution to the dual is greater than the value of the optimal solution to
primal.

Theorem 1. Let VGRV represent the value produced by Algorithm GRV and let
VOPT be the optimal value. Let d∗ denote the maximum degree of a file, i.e.,
d∗ = maxi d(fi) then

VOPt

VGR
≤ 2d∗

Proof Outline: Modify the algorithm GRV (LP ) such that it stops with the
last request that can only be accommodated partially (or not at all). It then
also compares the solution produced to the value of the last request that
could not be accommodated and outputs the larger of the two solutions. As
one of the two terms within the parentheses on the right hand side of equation
3 is larger than the other the integral solution produced by the modified
GRV (LP ) is at least 1/2d∗ times the optimal solution. Algorithm GRV can
be adapted to produce equivalent or a better solution then GRV (LP )�

3.3 A construction of a case with bound 1.5d
∗

The worst performance ratio of GRV algorithm to the optimal one that we are
able to show is 1.5d* as shown below.

3

f1 f2 f3

r4

f4

1−9ε 1−9ε 1−9ε 1

1/3−ε 1/3−ε 1/3−ε 1/3+2ε

rrr1 2

Fig. 2. An Example of a case with bound 1.5d∗

Consider the requests shown in Figure 2. For some small ǫ, 0 < ǫ ≤ 1/3,
assume a cache size of 1−3ǫ (measured in some units). The value of each request
and the size of each file is shown next to the respective node. The request with the
highest relative value is r4 with a value of 3/(1+ 6ǫ). Each of the other requests
has a relative value of 3(1− 9ǫ)/(1− 3ǫ) which can be shown to be smaller than
that of r4. The GRV (Greedy Relative Value) algorithm will therefore choose
to serve r4 and load f4 into the cache using 1/3 + 2ǫ of the cache capacity. It is
then not possible to serve any other requests as each of the remaining requests
needs an additional pair of files with space requirements of 2/3 − 2ǫ exceeding
the available cache size of 1−3ǫ. The total value of this solution is 1 (the value of



r4). On the other hand, the optimal algorithm can load files f1, f2, f3 and serve
requests r1, r2 and r3 for a total value of 3 − 27ǫ. Therefore the ratio between
the value of the optimal solution to that of the GRV algorithm approaches 3.
In this case d∗ = 2 so the ratio approaches 1.5d∗.

4 An Improved Algorithm

Next, we describe an algorithm called GRV − k that improves on the solution
of GRV but comes with a computational cost that is larger by a factor of O(nk)
for a set of n requests. We choose some fixed k integer, and then for each j
such that j ≤ k, we select an initial set of j requests, these requests and their
associated files (assuming feasibility) are then removed from the problem and
the GRV algorithm is applied to the remaining subproblem consisting of n −
j requests and with a cache size reduced by the total size of files needed by
the selected j requests. The solution consists of the j initial requests and the
requests subsequently selected by the GRV algorithm applied to the remaining
subproblem. The output of the GRV − k algorithm is the best solution over all
possible choices of j initial requests. (Note that the GRV algorithm can also be
called GRV − 0 using this notation).

4.1 Bounds from Optimality

We now show that the bound on GRV − k is d∗ for k > 1. First of all, notice
that in the GRV algorithm instead of addressing the last set partially (as in
GRV (LP )), we skip that set and select the next set. Notice that if we discard a
set that is not in the optimal solution then no harm is done. In other words, we
could restate the original problem without this set and still obtain the optimal
solution. If we never have to discard a set from the optimal solution then all
sets in the optimal solution are in the solution produced by the approximation
algorithm. Thus, it is sufficient to consider the case when the approximation
algorithm discards (due to cache restrictions) for the first time a set that is in
the optimal solution.

With these observations, we develop the bound using a technique explained
in [4]. Clearly, if the optimal solution (OPT ) addresses only a subset of requests
that has cardinality less than or equal to k, we have found the optimal solution.
Thus, assume that the subset of requests in OPT has a cardinality greater than
k. As before, the value of the optimal solution is denoted by VOPT . Order the
requests in OPT in descending order of their value, i.e, v(rj). Without loss of
generality assume that these are the requests, {1, 2, . . . , l}, where l > k. Consider
the solution produced by the modified algorithm when it is started with the
requests, 1, 2, . . . , k. Let the requests added fully by the approximation be j =
k+1, k+2, . . . , p−1. Let the first time a request from OPT can not be added to
the solution be when the tth request in OPT is considered. Let the approximate
solution produced comprising only of requests that could be fully addressed from
the cache be Vapprox. By the bound developed so far it is clear that



Vapprox ≥

(

VOPT −
∑k

j=1 v(rj)
)

d∗
− v(rt)

Thus,

k
∑

j=1

v(rj) + Vapprox ≥
VOPT

d∗
+

d∗ − 1

d∗

k
∑

j=1

v(rj) − v(rt) (4)

Theorem 2. If d∗ > 1 as well as k = 2, then, vGRV −k, the value produced by
the GRV − k algorithm satisfies VOPT /VGRV −k ≤ d∗.

Proof:

Observe that v(rt) is not larger than v(rj) for j less than or equal to k. Thus,
equation (4) provides the result. square

In fact we can construct an example showing that the GRV − k algorithm may
produce a solution which is a factor of 2 from optimal for a system in which
d∗ = 2 showing that this bound is tight.

5 The Simulation Framework for Multi-File Caching

5.1 The Model of the Disk Cache

To evaluate various alternative algorithms for scheduling jobs in a Multi-File
caching environment, we setup an appropriate machinery for file caching and
cache replacement policies. More specifically, the machinery compares GRV and
FCFS job admissions in combination with the least recently used (LRU) replace-
ment policy. Although cache replacement policies have been studied extensively
in the literature these have only dealt with transfers between computing system’s
memory hierarchy, database buffer management and in web-caching where the
model for cache replacement assumes instantaneous replacements. That is that
the request to cache an object is always serviced immediately and once the object
is cached, the service on the object is carried out instantaneous. As a result the
literature gives us very simplistic simulation models for the comparative studies
of cache replacement policies. Such models are inappropriate in the practical
scenarios for MFC. For instance, once a job is selected for service, all its files
must be read into the cache and this involves very long delays

We develop and implement an appropriate simulation model that takes into
account the inherent delays in locating the file, transferring the file into the cache
and holding the file in the cache while it is processed. The sizes of the files we
deal with impose these long delays. We capture these in the general setup of our
simulation machinery. The machinery considers the files to exist in various states
and undergo state transitions, from state to state, conditionally when they are
subjected to certain events.



5.2 The States of a File in a Disk Cache

Each file object associated with the cache is assumed to be in some state. The
file may not have been referenced at all in which case it is assumed to be in
state S0. When a reference is made to the file (an event which we characterize
subsequently), the file makes a transition to state S1. A file in state S1 implies
that it as been referenced with at least one pending task waiting to use it but
has neither been cached nor in the process of being cached.

A file is in state S2 if it has been previously referenced but not cached and
there are no pending tasks for the file. A file is in state S3 if it has been cached
but not pinned and in state S4 if space reservation has been made for the file,
and is in the process of being cached. A file is in state S5 if it is cached and
pinned. Each of these states is characterized by a set of conditions given by the
file status, number of waiting tasks, the last time the file was cached, the job
identifier that initiated the caching of the file, and the setting of a cache index.

At some intermittent stages, all files in state S2 that have not be used for
a specified time period are flushed from memory. At this stage all accumulated
information, such as the number of reference counts accumulated since its first
reference, is lost. The file is said to be set back into state S0. For our simulation
runs all files in state S2 that have not been referenced in the last five days are
cleared.

Any subsequent reference to the file would initiate a new accumulation of
historical information on the references made to the file. The various states of a
file is summarized as follows:

S0: Not in memory and not-referenced.
S1: Referenced, not cached but has pending tasks.
S2: Referenced, not cached and has no pending tasks.
S3: Cached but not pinned.
S4: Space reserved but not Cached. Caching in progress.
S5: Cached and pinned.

5.3 The Event Activities of the Disk Cache

A file that is referenced, cached, processed and eventually evicted from the cache
is considered to undergo some state changes. The possible events that force the
files to undergo state changes are now described. The events affecting the state
changes of the files are caused by the actions of the tasks that are invoked by
the jobs and related system actions. Figure 3 illustrates some of the details of
the simulation framework used in processing jobs. Jobs that arrive at a host are
maintained in the search structure T1. The search structure T1 is either a simple
queue or a balanced search tree depending on the algorithm for processing the
jobs. For FCFS job scheduling, T1 is represented as queue and for the GRV
algorithm, T1 is represented as binary search tree. A significant addition to the
nodes of T1 is that each job retains a list of file requests to be processed. The
files requested by the jobs are maintained in a search structure T2, and each
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Fig. 3. A Simulation Framework for Evaluating the Performance of MFC Algorithms

node of T2 corresponds to a unique file and also maintains a list of all the jobs
that have requested it.

A job scheduling policy is used to select the job whose files are to be cached
next. For FCFS, the job in front of the queue T1 is selected next. In the GRV
algorithm, we evaluate the selection criterion for all waiting jobs and select the
recommended one based on the potential available cache space. When a job is
selected, all its files are then scheduled to be brought into the disk cache. For each
such file of a job a task event is initiated by creating a task token that is inserted
into the event queue T3. Each task token is uniquely identified by the pair of
values of the job and file identifiers. A task token is subjected to five distinct
events at different times. These events are: Admit-File (E0) Start-Caching (E1),
End-Caching (E2), Start-Processing (E3) and End-Processing (E4). Two other
events are the Cache-Eviction (E5) and the Clear-Aged-file (E6). The special
event, Clear-Aged-file (E5), when it occurs, causes the all the information (e.g.,
history of references to a file) for files that have been dormant for a stipulated
period to be deleted. The entire activities within this framework are executed as
a discrete event simulation. The activities of the simulation may be summarized
by the finite state machine, with conditional transitions. This is depicted as a
state transition diagram of Figure 4. The simulation is event driven and the
three different file processing orders are modeled accordingly with the order of
insertions and deletions of files in the data structure T4.

5.4 File Processing in MFC with Delays

The event selected next is an admission if the arrival time of the next job is
earlier than the time of the earliest event in T3. If a job arrival is earliest, it is
inserted into the admission structure T1. The corresponding files being requested
are then inserted into the structure T2. Note that the job also maintains its list
of files as well. On the other hand if the top event of the event queue T3 is earlier,
it is removed and processed accordingly.

The processing of the event may reinsert an event token into the event queue
unless the event is the completion of a task. Each time a job completes, we
determine the potential available free cache space and schedule the next job to
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be processed. In GRV, the potential available cache space is used in the algorithm
and not the actual free space. The potential available free cache space is the sum
of unoccupied space and total size of all unpinned files.

We evaluate the jobs admission policy and the cache replacement policy
separately but not independently. In evaluating GRV, a file in cache is assigned
a zero file size and in evaluating a replacement policy, all files that appear in the
batch of files to be cached are first pinned there by restricting them from being
candidates for eviction.

6 Experimental Setup

We conducted experiments using the simulation framework described above to
compare the GRV algorithm with a naive FCFS job scheduling of the Multi-file
Caching problem when the cache replacement algorithm is LRU. Two perfor-
mance metrics were used: the average response time of a job and the average
queue length jobs with workloads of varying jobs arrival rates. Our implementa-
tion is a straight forward translation of the Finite State Machine (FSM), with
conditional transitions, to a C++ code. When all the files of a job are cached the
tasks associated with the jobs, process the files at a steady rate of 10 MBytes
per second. This implies that the processing time of a job is the time to process
the file with the largest size.

6.1 Workload Characteristics and Simulation Runs

We subjected the simulation model to workloads in our experiments where the
job inter-arrival times are exponentially distributed with mean inter-arrival times
are 40, 60 and 120 seconds. Each job makes a request for n files where n is a
uniform number between 1 and 25. The file sizes are also uniformly distributed
between 500 Kbyte to 4 Gbytes.

The simulation runs were carried out on a Redhat Linux machine with 512
MBytes of memory. We evaluated the performance metrics of the average re-
sponse time per job and the average queue length when the cache replacement



policy is LRU. For each configuration and for each workload, a number of runs
were done with cache sizes varying from 70 to 130 gigabytes. For each run and
for each cache size, we applied a variance reduction method by averaging the
statistics that we compute independently for 5 segments of the workload.

6.2 Discussion of Results

Figures 5a, 5b and 5c show the graphs of the response times for the synthetic
workloads for the respective mean inter-arrival times of 40, 60 and 120 seconds.
These graphs indicate that the GRV clearly gives a better response time than
a simply FCFS job scheduling. GRV performs even better for higher arrival
rates. The higher the arrival rate of jobs GRV used to base its selection on and
consequently give even better performance. However as disk cache sizes increase,
the performance of the two algorithms converge.

The graphs of the average queue length shown in the Figures 6a, 6b and 6c
demonstrate similar trends as the graphs of the average response times. This
was expected since the average queue length is strongly correlated with the
response time for a fixed arrival rate. FCFS admission policy cannot be discarded
entirely. As Figures 5c and 6c illustrate, for sufficiently low rate of arrivals and
siginificantly large disk cache size, FCFS job scheduling can perform better than
GRV. Using different cache replacement policies, e.g., greedy dual size, the same
relative results are likely to be achieved. This is left for future work.

7 Conclusions and Future Work

We have identified a new type of caching problem that appears whenever de-
pendencies exist among files that must be cached. This problem arises in various
scientific and commercial applications that use vertically partitioned attributes
in different files. Traditional caching techniques that make caching decisions one
file at a time do not apply here as requests can only proceed if all files requested
are cached. Since the problem of optimally loading the cache to maximize the
value of satisfied requests is NP hard, we settled on approximation algorithms
that were shown analytically to produce solutions bounded from the optimal
one. The MFC problem is also of theoretical interest in its own right because
of its connection to the well known dense k-subgraph and the fact that any ap-
proximation to MFC can be used to approximate the latter problem with the
same bounds from optimality.

Our simulation studies show that our new algorithms compare very favorably
with file caching based on first come first serve (FCFS) scheduling of requests.
The results indicate that system throughput using schedules based on Algorithm
GRV are consistently higher than the FCFS based schedules and the queue
length is shorter. Future work in this area involves conducting further detailed
simulations with both synthetic workloads and real workloads derived from file
caching activities of data intensive applications. We also intend to pursue these
studies under file replacement policies that replace combinations of files rather
than the more traditional algorithms that replace one file at a time.
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Fig. 5. Job Response Times of GRV vs FCFS Multi-File Caching Algorithm
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Fig. 6. Average Queue Length of GRV vs FCFS Multi-File Caching




