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Abstract

In an earlier work [1] we developed a holographic theory for the phase transition between bosonic 
symmetry-protected topological (SPT) states. This paper is a continuation of it. Here we present the holo-
graphic theory for fermionic SPT phase transitions. We show that in any dimension d, the critical states of 
fermionic SPT phase transitions has an emergent ZT

2 symmetry and can be realized on the boundary of a 
d + 1-dimensional bulk SPT with an extra ZT

2 symmetry.
Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Symmetry protected topological states (SPTs) are new quantum phases of matter. They are 
characterized by a fully gapped bulk but gapless boundary. Moreover, as long as the symmetry 
of these phases are unbroken, the gapless boundary excitations survive any perturbation. (For 
simplicity we assume no topological order develops at the boundary.)

SPTs fall into two broad classes: bosonic and fermionic SPTs. The Hamiltonian of bosonic 
SPTs consists of commuting local degrees of freedom. An example is the Haldane phase of the 
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spin-1 chain. In contrast, the Hamiltonian of fermionic SPTs consists of anti-commuting local 
degrees of freedom. They describe insulating or superconducting states of fermions.

For a fixed Hamiltonian symmetry, the bosonic and fermionic SPTs are classified into equiv-
alent classes. The transition between different classes requires a quantum phase transition, ac-
companied by the closing of the bulk energy gap. Unlike usual phase transitions, these phase 
transitions do not involve any symmetry change. Instead, what differentiate the two phases are 
the conformal field theories of their boundaries. Currently the classification theories of the SPTs 
phases are well-developed. However, the theory describing the SPT phase transitions is still in 
its infancy.

In Ref. [1] a holographic theory for the phase transitions between a wide class of bosonic 
SPTs is developed. In a nutshell, it is shown that the critical state of the phase transition from 
a non-trivial SPT to a trivial SPT can be described as the boundary state of a SPT living in one 
dimension higher. In addition, the higher dimensional SPT has an extra anti-unitary (ZT

2 ) sym-
metry. This higher dimensional SPT can be interpreted as a state whose ZT

2 domain walls are 
“decorated” [2] with the lower dimensional non-trivial SPT. The implication of this theory are 
(1) The excitations of the critical theory are the fluctuating boundaries between the two SPT 
phases. (2) The anti-unitary group ZT

2 acts as an emergent duality symmetry at the SPT phase 
transition. In this paper we emphasize another implication of the holographic correspondence, 
namely, (3) in the presence of (emergent) Lorentz symmetry, the conformal spectrum of the crit-
ical theory at the SPT phase transition is the same as the ground state entanglement spectrum 
of the holographic bulk SPT. This in turn implies the topological classification of the bulk SPT 
also classifies the conformal field theory for the SPT phase transition. In this paper we also an-
swer the important question, namely, whether there is an analogous holographic description for 
the fermionic SPT transitions. We develop such a theory for free and a specific type of inter-
acting fermion SPT transitions. We explicitly construct a higher dimensional bulk SPT whose 
gapless boundary describes the transition between a non-trivial SPT to a trivial SPT. The higher 
dimensional SPT has an extra ZT

2 symmetry and the ZT
2 domain walls are decorated with lower 

dimensional SPT. There are a number of works in the literature [3–6] on decorated domain wall 
construction of fermionic SPTs. However, to the best of our knowledge, there has not been a 
systematic study on the relationship between fermionic SPT critical phenomena and gapless 
boundaries of SPTs in general dimensions, which is the aim of this paper.

The outline of the paper is as follows. In section 2, we briefly review the classification results 
for free fermion SPT. In section 3 we present the holographic theory for free fermionic SPT phase 
transitions. In section 4 we show a 1D and a 2D example of the holographic correspondence 
established in section 3. In section 5 we consider a specific interacting version of the holographic 
bulk SPT under the proviso that the interaction term does not collapse the bulk gap. We show that 
such interacting bulk SPT can be viewed as containing condensed ZT

2 domain walls. In section 6
we show that, analogous to the bosonic holographic theory [1], each domain wall in section 5 is 
decorated with a lower dimension SPT. We demonstrate this by numerics using the 1D and 2D 
examples. The analytic proof of the statement is given in Appendix H. In section 7 we discuss the 
boundary of a specific kind of interacting bulk theory. In section 8 we discuss phase transitions 
between interacting SPT phases whose critical theory is the boundary theory in section 7. We 
argue that depending on whether the ZT

2 symmetry is spontaneously broken, such interacting 
boundary theories either describe continuous or first order SPT phase transitions. In section 9 we 
discuss the correspondence between the entanglement spectrum of the holographic bulk SPT and 
the conformal spectrum at the critical point of SPT phase transition.
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In addition to the main text outlined above there are ten appendices. Their contents are summa-
rized as follows. In Appendix A we present the rules for regularizing a continuum field theories 
of SPTs on a hyper-cubic lattice. In Appendix B we prove that the minimal models defined in 
the main text, which describes a pair of inequivalent SPTs, must have one allowed mass term 
only. Using continuum field theory, in Appendix C we prove the existence of gapless modes at 
the interface between the two inequivalent SPT phases in minimal models. In Appendix D we 
relate the interface gapless modes in Appendix C to the boundary gapless modes of regularized 
lattice theory of non-trivial SPTs. In Appendix E we summarize the topological classification for 
free fermion SPTs protected by the T �Q �C symmetries. In the same appendix we specify the 
dimension of the gamma and mass matrices in the minimal models. In Appendix F we prove that 
if a SPT transition is described by a minimal model, its holographic bulk must also be described 
by a minimal model. In Appendix H we show analytically that the holographic bulk SPT has a 
decorated-ZT

2 domain wall interpretation. Namely, if a domain wall is statically frozen, its asso-
ciated mode space Hamiltonian can be block-diagonalized with a sub-block describing localized 
degrees of freedom on the domain wall. The Hamiltonian in this sub-block is that of a non-trivial 
SPT. In Appendix I we present the lattice Hamiltonian used in the numerical studies of the ZT

2
domain walls in the main text. In the last appendix, Appendix J, we discuss the space-time ro-
tation necessary to establish the correspondence between the ground state wavefunction of the 
holographic bulk and the Boltzmann weight of the conformal field theory at the SPT critical 
point.

2. The free fermion classification

2.1. The low energy effective Hamiltonian

Free fermionic SPT may be classified [7–9] by looking at their low energy effective Hamilto-
nians. These Hamiltonians have the following form

H =
∫

ddx XT (x)

⎡⎣ D∑
j=1

−i�j ∂j + iλM

⎤⎦X(x). (1)

Here X(x) is a n-component Majorana field operator. We use the Majorana fermion representa-
tion so that it can describe the Bogoliubov excitations of a superconductor. Different components 
of X are labeled by the spin, orbital and the Majorana indices. The Majorana index labels the 
real and imaginary part of a complex fermion operator. If X has n components, the matrices �j

and M in equation (1) are all n ×n matrices. In the following we shall refer to the n dimensional 
internal space of the Majorana fermion as the “mode space”. The real-valued symmetric matrices 
�i obey the Clifford algebra {�j , �k} = 2δjkIn, where In is the n × n identity matrix. M is an 
n ×n antisymmetric real matrix satisfying {�j , M} = 0 for j = 1, ..., n. It causes the energy gap. 
We require M2 = −In so that the absolute value of λ (a real parameter) sets the size of the energy 
gap.

2.2. The symmetries

In this paper we focus on on-site symmetries, i.e., symmetries that acts on the degrees of 
freedom on each lattice site independently. Let G be such a symmetry group. The action of an 
element ĝ ∈ G on the Majorana fermion obeys
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Fig. 1. (Color online.) Schematic phase diagram of (2). For φ < 0 (φ > 0) the Hamiltonian describes a (non-)trivial SPT 
phase. Phase transition occurs at φ = 0 (depicted by red dot).

ĝXĝ−1 = gX,

where g is an n × n orthogonal matrix since it preserves the anti-commutation relations between 
Majorana operators {(gX)i, (gX)j } = {Xi, Xj } = 2δij Î . If ĝ is unitary, the associated g com-
mutes with �i and M . If ĝ is anti-unitary, it negates the i in front of the kinetic and the mass 
term, thus requiring g to anti-commute with �i and M .

2.3. The minimal model

Given a symmetry group G, we define n0 as the minimum value of n for which mass term(s) 
M satisfying all the above requirements exist. The corresponding model given in equation (1) is 
called the “minimal model”. The minimal models are the “atoms” in the SPT world. A minimal 
model can describe either (a) a trivial SPT or, (b) a pair of inequivalent SPTs. In the following 
we focus on the more interesting case, namely case (b).

For case (b) it can be shown that when n = n0 there is only one (n0 × n0) mass matrix m0
that satisfies {m0, γi} = 0 and is symmetric under G (see Appendix B for a proof). We denote 
the Hamiltonian of such a minimal model by

H =
∫

ddx χT (x)

⎡⎣ d∑
j=1

−iγj ∂j + iφ m0

⎤⎦χ(x). (2)

Note that we have switched to the lower case symbols. This is to emphasize it is a minimal 
model. In equation (2) the real scalar φ is the mass parameter and φ > 0 and φ < 0 corresponds 
to the two inequivalent SPT phases. The fact that equation (2) with opposite sign of φ describes 
inequivalent SPTs can be shown by considering a domain wall separating the spatial regions with 
φ > 0 and φ < 0. In Appendix C we show the existence of gapless fermion modes localizing on 
the wall. Such gapless fermion modes signify the topological inequivalence of the SPTs. By 
tuning φ to zero, the fermion gap vanishes hence it marks the phase transition between the two 
SPT phases (see Fig. 1).

2.4. The regularized topological non-trivial minimal models

So far we have been discussing continuum field theories. A non-trivial lattice SPT Hamilto-
nian is a regularized Hamiltonian which reduces to equation (2) in the low energy limit. When 
such a lattice Hamiltonian is subjected to the open boundary condition, it yields gapless bound-
ary modes. In Appendix A we give the rules for obtaining such a regularized Hamiltonian on the 
hypercubic lattice. Here we simply summarize the results. Upon Fourier transformation equa-
tion (2) becomes

H =
∑

χT (−k)

⎡⎣ d∑
kjγj + iφ m0

⎤⎦χ(k). (3)

k∈B(0) j=1
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Fig. 2. (Color online.) A general SPT can be regarded as the stacking of layers of minimal SPT’s(depicted in green), and 
turning on symmetry-respecting interactions across the layers (depicted by dotted lines).

Here B(0) denotes a small ball around k = 0, and χ(k) is the Fourier transform of the Majorana 
field χ(x). The regularized lattice Hamiltonian corresponding to equation (3) read

H =
∑
k∈BZ

χT (−k)

⎡⎣ d∑
j=1

sin kjγj + i(d −
d∑

j=1

coskj )m0 + i φ m0

⎤⎦χ(k). (4)

Here “BZ” stands for the Brillouin zone of the d-dimensional hypercubic lattice. (See Ap-
pendix A for how to obtain the real space version of equation (4).) When φ = 0 the second 
term removes the unwanted gapless nodes at all time-reversal invariant k points except k = 0. 
(A time-reversal invariant k point satisfies −k = k + G where G is a reciprocal lattice vector.) 
Equation (4) describes a non-trivial SPT when φ < 0. In Appendix D we prove that the bound-
ary gapless modes of equation (4) with φ < 0 is the same as those at the interface between two 
regions described by equation (2) with opposite φ.

2.5. Stacking the minimal models

The Hamiltonian describing general non-trivial SPT phases are constructed by “stacking” to-
gether the non-trivial minimum lattice models (Fig. 2). Stacking can be achieved by taking a 
direct sum of the mode space, and turning on any symmetry-allowed interaction (by “interac-
tion” here we mean two-fermion operators, acting across different layers, not to be confused 
by the “interacting systems” considered in sections 5 to 9, where it means the addition of four-
fermion(or higher order) operators.) between the degrees of freedom associated with the minimal 
models. Sometimes stacking can produce an infinite number of different topological phases. In 
which case the SPT in question is Z classified. Other times stacking produces at most two dif-
ferent phases. In this case the SPT in question is Z2 classified. In Appendix E we summarize the 
classification result of free fermions with on-site T � Q � C symmetries. The values of n0 for 
the minimal models are also given.

It can be shown that for any pair of non-minimal SPTs, the phase transition between the 
two can be deformed into subsequent phase transitions between minimal model SPTs. For the 
same reason understanding the phase transition between SPTs described by the minimal model 
constitutes a complete understanding of the SPT phase transitions.

3. The holographic theory

We begin this section by asking “is there a symmetry group which can protect the φ = 0
critical point of equation (3) or equation (4).” The answer is yes. The symmetry group can be 
constructed by adding the generator of a two-element anti-unitary group, ZT

2 , to G. Specifically, 
such generator sends χ to m0χ (recall that m0 is an n0 ×n0 matrix). Because m0 anti-commutes 
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with all γj ’s, it fulfills the requirement of being the representation of an anti-unitary symmetry. 
Moreover, this additional anti-unitary symmetry changes the sign of the only allowed mass term 
(i φ m0) (the sign reversal is caused by the complex conjugation) hence forbids it. In the re-
maining of the paper we shall denote the generator of the ZT

2 by T . However it is important to 
remember that this generator does not necessarily correspond to the usual time reversal transfor-
mation. With the extra ZT

2 symmetry the resulting enlarged symmetry group protects the gapless 
critical state described by equation (2)(or equation (3)) at φ = 0.

The above arguments suggest the possible existence of a SPT in one higher dimension 
which is protected by this enlarged symmetry group, and has the φ = 0 critical theory in equa-
tion (2) or equation (3) as its boundary theory. This boundary theory agrees with the lattice 
model in equation (4) at φ = 0 in the low-energy limit. The regularization term, namely, the 
i(d −∑d

j=1 coskj )m0 term, in equation (4) breaks the ZT
2 symmetry. Thus the critical theory of 

SPT transition necessarily has anomalies with respect to the emergent symmetry. This anomaly is 
unavoidable because the gapless boundary theory of an SPT is not regularizable in the boundary 
dimension [10].

For the sake of easy reference, in the rest of the paper we shall denote the enlarged symmetry 
group as G × ZT

2 . However, this notation is not meant to imply that the generator of the ZT
2

commutes with the original generators of G.
In the following we explicitly construct the Hamiltonian for the d + 1- dimensional SPT. 

This Hamiltonian must reduce to equation (3) (with φ = 0) at its boundary. Moreover, the ZT
2

symmetry must acts on the boundary fermion modes as χ → m0χ . The continuum field theory 
for such a d + 1 dimensional Hamiltonian is given by

H =
∑

k∈B(0)

XT (−k)

⎡⎣d+1∑
j=1

kj�j + iλM

⎤⎦X(k), (5)

or its real space version

H =
∫

dd+1xXT (x)

⎡⎣d+1∑
j=1

−i�j ∂j + iλM

⎤⎦X(x). (6)

Here the matrix dimension of �j and M are twice of that of γj and m0, i.e., 2n0 × 2n0. (One 
way to intuitively understand this doubling is the “coupled-wire” perspective.) As discussed in 
Appendix A the lattice regularized version of equation (5) is given by

H =
∑
k∈BZ

XT (−k)

⎡⎣d+1∑
j=1

sinkj�j + i(d + 1 −
d+1∑
j=1

coskj )M + i λ M

⎤⎦X(k), (7)

and we refer the readers to Appendix A for the real space version. In the “coupled-wire” per-
spective, the bulk is constructed by stacking d-dimensional layers of gapless edge states ((3)
with φ = 0) along the d + 1-th dimension. Each unit cell in the d + 1-th dimension contains two 
layers of gapless edge states, labeled by τz = ±1. �j for j = 1, . . . , d describe couplings within 
the same layer, and are diagonal in the τ space. On the other hand, �d+1 and M are off-diagonal 
in τ space. They describe couplings across different layers.

In Table 1 we summarize the relation between the d and d + 1 dimensional Hamiltonian, and 
the representation of the symmetry generators in the mode space.



L. Tsui et al. / Nuclear Physics B 949 (2019) 114799 7
Table 1
The d + 1-dimensional bulk theory whose boundary describes a d-dimensional SPT transition.

d-dimension boundary d + 1-dimension bulk

Fermion field χ(x) = PX(x)P X(x)

Hamiltonian equation (3) equation (5) or equation (7)
Matrix dimension n n0 2n0
Gamma matrices γ1, ...γd �j = γj ⊗ τz, �d+1 = In0 ⊗ τx
Mass matrix NA M = In0 ⊗ iτy

Symmetry group G for φ �= 0 and G × ZT
2 for φ = 0 G × ZT

2
Generator of ZT

2 (i.e. T ) m0 m0 ⊗ τz
Unitary symmetry generators uα Uα = uα ⊗ τ0
Anti-unitary symmetry generators aβ Aβ = aβ ⊗ τz

In the first row of Table 1 the projection operator P acts in the mode space it projects the 
fermion operator into the �d+1M = −1 sector. In the following we briefly explain Table 1 and 
refer the reader to Appendix D, Appendix C and Appendix F for details. In Appendix D we have 
shown that the Hamiltonian for the boundary gapless modes of equation (7) for λ < 0 is the same 
as that localized on the domain wall between the λ > 0 and λ < 0 phases of the continuum field 
theory in equation (6). As shown in Appendix C, the mode space of the interface is the �d+1M =
−1 subspace of the bulk theory. Since �d+1M = −In0 ⊗ τz, this restriction requires τz to be +1. 
Then it is immediate that such restriction reduces the bulk �i to γi for i = 1, . . . , d , and the bulk 
unitary/anti-unitary symmetries would also reduce to the corresponding symmetry generators for 
the d-dimensional theory. Note that the generator of the extra ZT

2 symmetry, when restricted to 
the �d+1M = −1 subspace, is represented by the matrix m0, the same as the d-dimensional mass 
matrix. It turns out that the bulk mass M in Table 1 is the only mass term capable of opening a gap 
while consistent with the bulk symmetries Uα, Aβ and ZT

2 . The proof is presented in Appendix F. 
This implies the bulk SPT constructed according to Table 1 is actually a minimal model.

In the following we provide two examples of the application of Table 1.

4. Two simple examples

We derive the ZT
2 symmetry and the bulk Hamiltonians for these two examples using Table 1. 

In the following we only present the bulk Hamiltonian in the continuum form. The lattice version 
of it can be obtained by following the regularization rules summarized in Appendix A.

4.1. An 1D example

The first example is a 1D topological insulator protected by charge conservation and the 
particle-hole symmetry C2 = +1. According to the table in Appendix E it has the Z2 classi-
fication and n0 = 4. Due to the charge conservation the Hamiltonian can be written in terms of a 
4-component Majorana fermion field, or, equivalently, a 2-component complex fermion field ψ
as

H1 =
∫

dx ψ†(x)
[−iσz∂x + φ m0

]
ψ(x) (8)

Here the kinetic term describes a non-chiral, helical, dispersion, and

m0 = σx.
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The charge U(1) symmetry transforms ψ → eiθψ , and the particle-hole symmetry transforms 
ψ → Cψ†, where C = σz. The two inequivalent SPT phases are associated with φ > 0 and 
φ < 0, respectively.

Note that if we fine tune φ to zero, equation (8) possesses an extra anti-unitary symmetry, 
namely the time reversal symmetry T = iσy . This symmetry requires φ = 0. The critical the-
ory at φ = 0 is the boundary theory of the 2D topological insulator described by the following 
Hamiltonian:

H2 =
∫

d2x �†(x)
[−iσzτz∂x − iσ0τx∂y + λσ0τy

]
�(x) (9)

In equation (9) the last term is the mass term (M = σ0τy ). For the 2D bulk, the time reversal and 
particle-hole symmetry are represented by T = iσyτz and C : ψB → σzτ0ψ

†
B , respectively. Thus 

the bulk symmetry is G ×ZT
2 where G = U(1) �C. In Appendix G we show that equation (9) is 

the complex fermion version of the Majorana fermion Hamiltonian derived directly from Table 1.
The 2D SPTs with G × ZT

2 symmetry has Z2 classification, and equation (9) is the com-
plex fermion version of the minimal model. When the bulk symmetries are respected, the lattice 
version of equation (9) (see Appendix A) with λ < 0 possesses gapless boundary modes (see 
Appendix D). The Hamiltonian for such gapless modes is exactly equation (8) at φ = 0, namely, 
the critical theory of the 1D SPT phase transition.

4.2. A 2D example

The second example is a 2D superconductor with no symmetry (i.e. G = ∅). According to 
Appendix E the minimal model has n0 = 2 and the classification is Z. In the Majorana fermion 
representation the Hamiltonian of this superconductor is given by

H2S =
∫

d2x χ(x)T
(−iσx∂x − iσz∂y + iφ iσy

)
χ(x). (10)

Here φ > 0 and φ < 0 are inequivalent superconducting phases. The subscript S stands for su-
perconductor. Tuning φ across zero induces a SPT phase transition. The critical point at φ = 0 is 
protected by an anti-unitary symmetry. The mode space representation of the generator of such 
symmetry is iσy . Following Table 1 we construct the Hamiltonian for a 3D bulk SPT so that its 
boundary theory is equation (10) with φ = 0:

H3S =
∫

d3x X(x)T
(−iσxτz∂x − iσzτz∂y − iσ0τx∂z + iλ iσ0τy

)
X(x). (11)

The symmetry group of equation (11) is ∅ × ZT
2 = ZT

2 . The bulk symmetry ZT
2 is generated by 

the mode space matrix T = iσyτz. The classification of SPTs in this symmetry class is Z, and 
equation (11) is the minimal model. Again, the lattice version of equation (11) (see Appendix A) 
with λ < 0 possesses gapless boundary modes (see Appendix D). These gapless boundary modes 
described by equation (10) at φ = 0, namely, the theory point of the 2D SPT phase transition.

In the next section we show that an interacting version of the holographic bulk can be viewed 
as a condensation of ZT

2 domain walls. This is exactly analogous to the bosonic version of the 
holographic theory in Ref. [1]. Moreover, it turns out that this connection allows us to establish 
the holographic theory for interacting fermion SPT phase transitions.
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Fig. 3. (Color online.) A snapshot of a fluctuating φ(x, t) configuration described by the action in equation (13). Here 
the dark blue regions have φ < 0 and the light blue regions have φ > 0. The illustration assumes D = 2.

5. The interacting holographic bulk theory and condensed ZT
2 domain walls

We start with the following interacting version of the holographic bulk theory

HBulk,int =
∫

dd+1x
{
XT (x)

[
∂t − i

d+1∑
j=1

�j∂j + iλM
]
X(x)

− u

2

∫
dd+1x

[
iXT (x)m0 ⊗ τzX(x)

]2
. (12)

Since the bulk is gapped, as long as the interaction term does not collapse the bulk gap (e.g. by 
considering a sufficiently weak u), it should not affect the topological properties of the bulk SPT.

By Hubbard-Stratonavich decoupling the interaction term we can write the following path 
integral representation of equation (12) as

Z =
∫

D[φ(x, t)] D[X(x, t)] e−Sint

Sint =
∫

dd+1x dt
{
XT (x, t)

[
∂t − i

d+1∑
j=1

�j∂j + iφ(x, t)m0 ⊗ τz + iλM
]
X(x, t)

+ 1

2u
φ(x, t)2

}
(13)

According to Table 1 m0 ⊗τz is the generator of the anti-unitary ZT
2 symmetry. Consequently the 

term iφ(x, t)m0 ⊗ τz induces a dynamic breaking of ZT
2 . Because φ(x, t) fluctuate randomly, 

at any instant of time there are positive and negative spatial regions as shown in Fig. 3. In other 
words the interacting bulk theory can be viewed as consisting of condensed ZT

2 domain walls. 
Since for sufficiently weak u the interaction term does not affect the bulk SPT qualitatively, this 
proves that we can view the holographic bulk as consisting of condensed ZT

2 domain walls.

6. The decorated domain walls

In this section we show that the ZT
2 domain walls discussed in the last section are decorated 

with a topological non-trivial d-dimensional SPT. Here we shall first present the numerics for the 
1D and 2D examples supporting this claim. We leave the general analytical theory to Appendix H.
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Fig. 4. (a) Geometry of the system studied in our numerical simulation in section 6.1. We study a 2D system with periodic 
boundary conditions in x and y. There are two domain walls running in the y direction. (b) Single body eigenvalue plot 
of (I.1). There are two in-gap bands, each is two-fold degenerate. The parameters used are λ = −0.8, mε = 0.3, nx = 40. 
(c) The sum of modulus square of the eigenfunctions of the in-gap bands at ky = 0. They are seen to be localized at the 
domain wall (x = 9.5 and x = 29.5).

For both the 1D (equation (19)) and 2D (equation (22)) path integrals a snapshot of the φ
configuration will have regions of positive φ surrounded by regions of negative φ. The question 
is what happens on the domain walls.

To answer the above question we consider the following bulk Hamiltonian describing a frozen 
φ configuration in the holographic bulk SPT

H2,φ =
∫

d2x �†(x)[−iσzτz∂x − iσ0τx∂y + λσ0τy + φ(x)σxτz]�(x) (14)

H3S,φ =
∫

d3x X(x)T
[
− iσxτz∂x − iσzτz∂y − iσ0τx∂z + iλ iσ0τy

+ iφ(x) iσyτz

]
X(x). (15)

Here |φ(x)| � |λ| and is frozen in time. The regions where φ(x) is positive/negative are 
T -breaking domains. It turns out that the domain walls, which have one lower dimension, are dec-
orated with the non-trivial lower dimensional SPTs described by equation (8) or equation (10). 
In the following we present numerical results supporting this claim.

6.1. The domain wall in the 2D holographic bulk theory

We study a lattice system with periodic boundary condition and two domain walls. The lattice 
model (presented in equation (I.1) in Appendix I) is constructed such that equation (14) is the 
low energy effective theory. We then freeze the φ values such that there are two φ domain walls 
running parallel to ŷ (see Fig. 4(a)). The energy eigenvalues as are plotted a function of ky in 
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Fig. 5. (a) Geometry of the system studied in our numerical simulation in section 6.1. We study a 2D system with open 
boundary conditions in x and y. There is one domain wall running in the y direction. (b) Eigenvalue plot of (I.1). n labels 
the eigenvalue number. There are two zero modes. The parameters used are nx = ny = 20, λ = −0.8, mε = 0.3. (c) The 
sum of modulus square of the eigenfunctions of the zero modes. Each eigenfunction is localized at a intersection of the 
domain wall and the boundary.

Fig. 4(b). We observe two degenerate in-gap bands each localized on a domain wall. These are 
the bands associated with the 1D SPT decorating each wall. We verify this by plotting the sum 
of modulus square of the in-gap energy eigenfunctions at ky = 0 as a function of x, and note that 
the result peaks at the locations of the domain wall. (See Fig. 4(c).)

To illustrate that the 1D domain wall is decorated with the non-trivial SPT described by equa-
tion (8), we subject the lattice model to open boundary condition in both x and y directions and 
with a single frozen domain wall (see Fig. 5(a)) running in the y direction. Diagonalization of 
the Hamiltonian on a finite lattice yields Fig. 5(b). There are two zero modes localized at the 
intersection of the domain wall and the boundary (Fig. 5(c)). These are the gapless modes at the 
end of the non-trivial 1D SPT. Since the 1D SPT is a topological insulator these are complex 
fermion zero modes.

6.2. The domain wall in the 3D holographic bulk theory

We first study a lattice under periodic boundary condition with two φ domain walls running 
parallel to the y-z planes. The lattice model presented in I.2 is constructed such that equation (15)
is the low energy effective theory. The energy eigenvalues as are plotted for ky = 0 as a function 
of kz in Fig. 6(a). We observe two degenerate in-gap bands, each localized on a domain wall. 
These are the bands associated with the 2D SPT decorating each wall. We verify this by plotting 
the sum of the modulus square of these in-gap energy eigenfunctions at ky = kz = 0 as a function 
of x, and note that it peaks near the locations of the domain walls. (See Fig. 6(b).)
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Fig. 6. (a) The single body eigenvalue plot of (I.3) discussed in section 6.2. We study a 3D system with periodic boundary 
conditions in x, y and z. There are two in-gap bands, each is two-fold degenerate. The parameters used are λ = −0.8, 
mε = 0.3, nx = 80 and kz = 0. (b) The sum of modulus square of the eigenfunctions of the in-gap bands at ky = kz = 0. 
They are seen to be localized at the domain wall (x = 19.5 and x = 59.5).

To illustrate that the 2D domain wall is itself a non-trivial 2D SPT (described by equation (10)) 
we subject the lattice model to open boundary conditions in both x and y but periodic in z. We 
freeze in a single domain wall running in the y-z direction (see Fig. 7(a)). Diagonalization of 
the Hamiltonian on finite lattice yields Fig. 7(b) which shows two non-degenerate gapless edge 
branches dispersing in the z direction. They are localized at the intersection of the domain wall 
and the boundary. This signifies the domain wall harbors a non-trivial 2D SPT. Since the 2D SPT 
is a chiral superconductor these edge modes are chiral Majorana in nature.

7. The boundary of the interacting bulk theory

Although the fluctuating scalar field in equation (13) does not affect the bulk properties, the 
same statement should not be made about the boundary hastily, because the latter is gapless. The 
boundary path integral is given by

Z =
∫

D[φ(x, t)] D[χ(x, t)] e−Sint

Sint =
∫

ddx dt
{
χT (x, t)

[
∂t − i

d∑
j=1

γj ∂j + iφ(x, t)m0

]
χ(x, t)

+ 1

2u
φ(x, t)2

}
. (16)

This path integral describes an interacting gapless fermion theory

Hint = H − u

2

∫
ddx

[
iχT (x)m0χ(x)

]2
. (17)

For weak u the interaction term in equation (17) can be viewed as a perturbation to the 
massless free fermion theory. Simple dimension counting shows that for d > 1 the interaction 
is irrelevant at low energies. Thus for d > 1 the boundary of the interacting bulk SPT (equa-
tion (12)) is asymptotically described by the same massless free fermion theory. However, for 
d = 1 the interaction term is marginal, and a more careful consideration is needed. We will do 
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Fig. 7. (a) Geometry of the system studied in our numerical simulation in section 6.2. The front and the back faces are 
meant to be identified. We study a 3D system with open boundary conditions in x and y but periodic boundary condition 
in z. There is one domain wall parallel to the y-z direction. (b) Eigenvalue plot of (I.3). There are two non-degenerate 
gapless bands. The parameters used are nx = ny = 20, λ = −0.8, mε = 0.3. (c) The sum of modulus square of the 
eigenfunctions of the gapless bands at kz = 0. Each eigenfunction is localized at a intersection of the domain wall and 
the boundary.

so in the 1D example below. In principle there could exist a range of u strong enough to cause 
spontaneous breaking of the ZT

2 symmetry on the boundary but weak enough not to affect the 
bulk insulator properties [11,12].

7.1. The interacting 1D boundary theory

As argued in the last subsection the boundary of the interacting bulk theory is described by 
the following Hamiltonian

H1,int = H1 − u

2

∫
dx
(
ψ†(x)σxψ(x)

)2
, (18)

or by the following path integral

Z1 =
∫

D[φ(x, t)]D[ψ(x, t),ψ(x, t)]e−S1,int

S1,int =
∫

dxdt
{
ψ(x, t)

[
∂t − iσz∂x + φ(x, t)σx

]
ψ(x, t)

+ 1
φ(x, t)2

}
. (19)
2u
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By bosonization we can map equation (18) to

H1,int =
∫

dx

{
1

2

[
�(x)2 +

(
1 + u

π

)
(∂xϕ(x))2

]
+ u

4π2a2 cos
√

16πϕ(x)

}
, (20)

where ϕ is a scalar (real) boson field, [ϕ(x), �(y)] = iδ(x − y), and a is a short-distance cutoff. 
Equation (20), the Sine-Gordon model, describes a gapless Luttinger liquid phase at u < uc

where 〈ψ†σxψ〉 ∼ 〈sin
√

4πϕ〉 = 0. In this phase the G × ZT
2 symmetry is preserved. For u >

uc the system enters a gapped phase with 〈ψ†σxψ〉 �= 0. In this phase the ZT
2 symmetry is 

spontaneously broken. At uc a Kosterlitz-Thouless phase transition occurs. The gapless Luttinger 
liquid is the interacting boundary theory of the bulk SPT. The modification of the boundary 
massless free fermion theory to a Luttinger liquid represents a non-perturbative effect of the 
interaction.

7.2. The 2D example

The boundary of the interacting bulk theory is described by the following Hamiltonian

H2S,int = H2S − u

2

∫
d2x

[
χ(x)T σyχ(x)

]2
, (21)

or by the following path integral

Z2S =
∫

D[φ(x, t)]D[χ(x, t)]e−S2S,int

S2S,int =
∫

d2xdt
{
χ(x, t)T

[
∂t − iσx∂x − iσz∂y + iφ(x, t) iσy

]
χ(x, t)

+ 1

2u
φ(x, t)2

}
(22)

Unlike the 1D case, the four fermion term in equation (21) is an irrelevant perturbation. Thus 
equation (21) describes an asymptotic massless free fermion phase. Again, in principle there 
could exist a range of u strong enough to cause the spontaneous breaking of the ZT

2 symmetry 
on the boundary but weak enough not to affect the bulk insulator properties.

8. The phase transitions between some specific interacting SPTs

So far we have discussed the free and interacting holographic bulk SPTs and their boundary 
theory. In this section we shall show that the interacting boundary theory serves as the critical 
theory for SPT transitions of interacting fermions. The only requirement we need to place on 
the strength of the interaction is that it does not close the energy gap of the bulk SPT.(We are 
also assuming the boundary SPTs in question remain inequivalent SPTs when interactions are 
allowed, and the bulk SPT remains non-trivial.) Under such conditions the interaction can either 
drive the boundary to spontaneously break the ZT

2 symmetry, or it leaves ZT
2 unbroken and the 

boundary remains gapless. In the latter case the boundary realizes the critical state of a continuous 
SPT transition. On the other hand, when the interaction causes the spontaneous breaking of the 
ZT

2 symmetry, the boundary realizes the critical state of a first order SPT phase transition. In 
the following we discuss these interacting fermion SPT phase transitions for the 1D and 2D 
examples.
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Fig. 8. (Color online.) Schematic phase diagram of (23). The line of h = 0 preserves G × ZT
2 and is protected from 

opening a gap. For u < uc the system is in a gapless Luttinger liquid phase. For u > uc the ZT
2 symmetry is spontaneously 

broken. The red dot marks the transition between the two, which is a Kosterlitz-Thouless phase transition. h is a relevent 
perturbation which opens a gap and leads to either the trivial or non-trivial SPT phase.

8.1. The SPT transition between the interacting 1D SPTs

To study the SPT phase transition of the interacting 1D topological insulator consider the 
following Hamiltonian

H ′
1,int = H1 − u

2

∫
dx
(
ψ†(x)σxψ(x)

)2 − h

∫
dx ψ†(x)σxψ(x), (23)

where h is the tuning parameter of the SPT transition. The bosonized form of equation (23) is

H ′
1,int =

∫
dx
{1

2

[
�(x)2 +

(
1 + u

π

)
(∂xϕ(x))2

]
+ u

4π2a2 cos
√

16πϕ(x)
}

+ h

πa

∫
dx sin

√
4πϕ(x). (24)

It can be shown that for u > 0 the added last term is always relevant. Thus an infinitesimal h
induces an energy gap. The phases associated with opposite signs of h correspond to inequivalent 
SPT phases. The gapless Luttinger liquid at h = 0 is the critical state. For u > uc spontaneous 
symmetry breaking sets in. In that case tuning h from negative to positive induces a first order 
phase transition between the two SPT phases. The phase diagram is shown in Fig. 8. The red 
dot marks the Kosterlitz-Thouless phase transition. It is a multi-critical point that requires fine 
tuning.

8.2. The SPT transition between the interacting 2D SPTs

To study the phase transition of the interacting 2D SPTs consider an Hamiltonian analogous 
to equation (23)

H ′
2S,int = H2S − u

2

∫
d2x

[
χ(x)T σyχ(x)

]2 − h

∫
d2x

[
χ(x)T σyχ(x)

]
. (25)

As discussed earlier at h = 0 the interaction term is irrelevant hence the interacting massless 
fermion theory is asymptotically equivalent to a free massless theory. Under such condition the 
added h term is a relevant perturbation and drives the system to gapped SPT phases. For suf-
ficiently large u spontaneous breaking of the ZT

2 sets in at h = 0. In that case tuning h from 
negative to positive induces a first order phase transition between the two SPT phases. The phase 
diagram is similar to that in Fig. 8. The only difference is that the red point no-longer describes 
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the Kosterlitz-Thouless phase transition. Instead it is the multi-critical point marked by the spon-
taneous breaking of the ZT

2 symmetry.
The SPT phase transitions under general conditions are qualitatively similar to those in the 

examples discussed above. Generically if the phase transition is continuous it is in the same uni-
versality class (except in 1D when the interaction is a marginal perturbation) as the free-fermion 
theory. Otherwise the phase transition is first order where the ZT

2 symmetry is spontaneously 
broken at criticality. The only exception is the phase transition cutting across the multi-critical 
point (the red point in Fig. 8). Here is the universality class can be very different from the free-
fermion critical point. In the literature a particularly simple case of this multi-critical point was 
studied where there is emergent super-symmetry [12,13].

9. Bulk-boundary correspondence

The discussions in this paper and in Ref. [1] make the case that the critical point of the SPT 
phase transitions is the boundary theory of a fully gapped bulk SPT. In this section we ask how 
does this bulk-boundary correspondence help us understand the critical phenomena of the SPT 
phase transition. The answer is that the conformal spectrum of the critical theory is the entangle-
ment spectrum associated with the ground state wavefunction of the holographic bulk SPT. The 
purpose of this section is to establish the above correspondence.

For free fermion systems the correspondence of between the entanglement spectrum and the 
boundary spectrum has been established for “spectral flattened” Hamiltonian in Ref. [14]. Here 
by flattened Hamiltonian we mean the Hamiltonian that has the same eigenfunctions as the orig-
inal Hamiltonian but its eigenvalues are flattened to ±1 depending on the sign of the original 
eigenvalues. By the holographic correspondence the boundary spectrum of the d + 1 dimen-
sional bulk SPT is the conformal spectrum of the d-dimensional critical theory. Thus we have a 
simple example of the correspondence mentioned above. In this section we address problems that 
have emerging Lorentz invariance, but we do not require either non-interacting nor the spectrum 
flattening. A detailed argument for d = 1 in the interacting case can be found in Ref. [15], and 
for Lorentz-invariant theories in general d in Ref. [16].

When the d +1-dimensional bulk (interacting) theory has Lorentz invariance, and is subjected 
to open boundary condition in, say, the x-direction, one may perform a space-time rotation on 
the regularized lattice theory so that x → t and t → −x. After doing so the space-time of its 
boundary is rotated into pure space (see Fig. 9). This predicts that the Boltzmann weight of the 
boundary theory, namely, the critical theory, is equal to the ground state wavefunction of the bulk 
SPT (see Appendix J):

exp(−SCFT [χ]) = �bulk[χ]
If we perform a bi-partition cut perpendicular to the original time direction in the boundary 
wavefunction, the entanglement spectrum corresponds to the eigenvalues of the time direction 
transfer matrix in the boundary critical theory. The latter encodes the conformal spectrum. Hence 
we have a correspondence:

Topological data ↔ conformal data.

From a more conceptual point of view the above holographic correspondence implies that the 
topological classification of the holographic bulk also classifies the conformal field theory of the 
SPT transition.
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Fig. 9. (Color online.) The upper figure shows a 2 + 1-D spacetime with an open boundary in the x-direction. The 
boundary action, exp(−SCFT ) is obtained by integrating over the bulk degrees of freedom in the bulk action. One may 
perform a space-time rotation in the x-t plane, and regard the original x-direction as the new time direction. This turns 
the original boundary action into the wavefunction of the groundstate wavefunction of a 2D Hamiltonian.
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Appendix A. The regularization rules

In this section we start from the continuum Hamiltonian in equation (1), namely,

H =
∫

dDx XT (x)

⎡⎣ D∑
j=1

−i�j ∂j + iλM

⎤⎦X(x), (A.1)

and try to regularize it on a lattice. The momentum space version of equation (A.1) is

H =
∑

k∈B(0)

XT (−k)

⎡⎣ D∑
j=1

kj�j + iλM

⎤⎦X(k). (A.2)

Here B(0) is a small ball center at k = 0. The regularized Hamiltonian on a hyper-cubic lattice 
is given by

H =
∑
k∈BZ

XT (−k)

⎡⎣ D∑
j=1

sin kj�j + i(D −
D∑

j=1

coskj )M + iλM

⎤⎦X(k). (A.3)

Here “BZ” stands for the Brillouin zone of a D-dimensional hyper-cubic lattice. When λ = 0 the 
second term removes the spurious gap nodes at all time-reversal invariant k points except k = 0. 
(A time-reversal invariant k point satisfies −k = k + G where G is a reciprocal lattice vector.) 
Equation (A.3) describes a non-trivial SPT when λ < 0.
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Fourier transform equation (A.3) back to the real space we obtain the following lattice Hamil-
tonian

H =
∑
x

D∑
j=1

[
XT (x + êj )

(−i�j − iM

2

)
X(x) + h.c.

]
+ i(D + λ)

∑
x

XT (x)MX(x), (A.4)

where êj is the unit lattice vector in the j th direction.
Whether equation (A.3) describes a topologically non-trivial SPT depends on the sign of the 

“low energy mass” λ relative to that of the “regularization mass”. The sign of the regularization 
mass is defined to be the (common) sign of (D−∑D

j=1 coskj ) at all k �= 0 time-reversal invariant 
k points. Clearly it is positive. When the sign of the low energy mass is opposite to that of the 
regularization mass, equation (A.3) and equation (A.4) describes a non-trivial SPT on a lattice. In 
Appendix D we show that the boundary of equation (A.4) is equivalent to the interface between 
two regions described by equation (A.1) but with opposite λ. If the low energy mass has the 
same sign as that of the regularization mass, the boundary of equation (A.4) is equivalent to the 
interface between two regions described by equation (A.1) but with the same λ sign. In that case 
there are no gapless boundary modes. Since the regularization mass is positive we conclude that 
when λ < 0 equation (A.3) or equation (A.4) describes a non-trivial SPT.

Appendix B. The unique mass matrix m0 at n = n0 there is only one

The K-theory classification of free fermionic SPTs [7–9] allows one to write down the form 
of allowed mass matrix M in (1) consistent with the constraints. Here we cite the result. There 
are five cases where a SPT is non-trivial. In the following capital letters S an A denote symmet-
ric and anti-symmetric matrices respectively. Lower case letters s and a denote symmetric and 
antisymmetric matrices which anti-commute with the gamma matrices of the minimal model. In 
addition, I denotes identity matrix of appropriate dimension.

1. The mass matrix is written as M = a1 ⊗ S where a2
1 = −I . The requirement M2 = −I

implies S2 = I .
2. The mass matrix is written as M = s1 ⊗ A + a1 ⊗ S, where s2

1 = −a2
1 = I and {s1, a1} = 0. 

The requirement M2 = −I implies [A, S] = 0 and S2 − A2 = I . Hence S + A forms an 
orthogonal matrix.

3. The mass matrix is written as M = s1 ⊗ A1, where s2
1 = I . The requirement M2 = −I

implies A2 = −I .
4. The mass matrix is written as M = a1 ⊗S + s1 ⊗A1 + s2 ⊗A2 + s3 ⊗A3, where −a2

1 = s2
1 =

s2
2 = s2

3 = I , [a1, si] = 0, {si, sj } = 2δij and a1s1s2s3 = −I , which implies a1si = 1
2εijksj sk . 

The requirement M2 = −I implies S2 −A2
1 −A2

2 −A2
3 = I and {S, Ai} + 1

2εijk[Aj , Ak] = 0. 
Hence H = S + iA1 + jA2 + kA3 forms a Hermitian quaternion matrix H † = ST − iAT

1 −
jAT

2 − kAT
3 = H which squares to I .

5. The mass matrix is written as M = s1 ⊗ A + a1 ⊗ S, where s2
1 = −a2

1 = I and [s1, a1] = 0. 
The requirement M2 = −I implies {A, S} = 0 and S2 − A2 = I . Hence S + iA forms a 
hermitian matrix which squares to I .
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In all the above cases with the exception of case 3, there is only one symmetric matrix S. At the 
smallest matrix dimension n = n0, only a single 1-by-1 matrix S = 1 is allowed. For case 3, at 
the smallest matrix dimension, only A = ε = iσy is allowed. Hence for all the non-trivial SPTs, 
there is only one mass matrix at n = n0.

Appendix C. The interface between two inequivalent minimal SPTs

In this section we show that in an SPT at n = n0, on a domain wall where φ changes sign, 
there exists gapless excitations. Take equation (2) and let φ(x) = φ(x1) be dependent on the first 
spatial coordinate only,

H =
∫

ddx χT (x)

⎡⎣ d∑
j=1

−iγj ∂j + iφ(x1) m0

⎤⎦χ(x), (C.1)

where

φ(x1) =
{

+φ0 if x1 > 0

−φ0 if x1 < 0

To find the one-body eigen-modes, we solve for the eigenvalue problem⎡⎣ d∑
j=1

−iγj ∂j + iφ(x1) m0

⎤⎦�(x) = E�(x) (C.2)

since equation (C.2) is translational invariant in the x2, x3, ...xd directions, we can expand �(x)

in momentum eigenstates: �(x) =∑k2,...,kd
�(x1, {kj })ei

∑d
j=2 kj xj , thus equation (C.2) decou-

ples into many independent 1D equations (one for each {k2, k3, ..., kd})⎡⎣ d∑
j=2

γj kj − iγ1∂1 + iφ(x1) m0

⎤⎦�(x1, {kj }) = E�(x1, {kj }). (C.3)

For k2 = k3 = ... = kd = 0 equation (C.3) has a zero mode (i.e. E = 0) solution satisfying[−iγ1∂1 + iφ(x1) m0
]
�0(x1) = 0. (C.4)

The solution of equation (C.4) has the form

�0(x1) = exp

⎡⎣ x1∫
0

φ(x1)γ1m0

⎤⎦�0(0).

A normalizable solution exists when

γ1m0�0(0) = −�0(0).

For non-zero {k2, ..., kd}, we can substitute �(x1, {kj }) = �0(x1)ψ̃({kj }) into equation (C.3), 
where ψ̃({kj }) is a scalar function. The result is an eigenvalue equation for ψ̃({kj }):⎡⎣ d∑

γj kj

⎤⎦ ψ̃({kj }) = Eψ̃({kj }). (C.5)

j=2
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From equation (C.5) we see the one-body energy spectrum is gapless and is given by

E = ±
√√√√ d∑

j=2

k2
j .

Appendix D. The boundary of regularized minimal lattice models

As discussed in Appendix A the momentum space of a regularized SPT Hamiltonian on a 
hyper-cubic lattice is given by

H =
∑
k∈BZ

XT (−k)

⎡⎣ D∑
j=1

sinkj�j + i(D −
D∑

j=1

coskj )M + iλM

⎤⎦X(k).

In the presence of open boundary in, say, the x1 direction and periodic boundary condition in 
x2, ..., xD , we can partially Fourier transform the above equation w.r.t. x1 to obtain the following 
mixed real-momentum space Hamiltonian

H =
∑
q

{∑
x

[
XT (x + 1,−q)

(−i�1 − iM

2

)
X(x,q) + h.c.

]

+
∑
x

XT (x,−q)
[ D∑

j=2

sin kj�j + i(D −
D∑

j=2

coskj )M + iλM
]
X(x,q)

}
. (D.1)

Here q = (k2, k3, ..., kD). Because q is a good quantum number equation (D.1) describes a col-
lection of independent 1D chains, one for each q.

In particular for q = 0 the eigen equation read(−i�1 − iM

2

)
�(x + 1,0) +

(
i�1 − iM

2

)
�(x − 1,0) + i(1 + λ)M�(x,0)

= E�(x,0). (D.2)

Multiply the above equation by i�1 we obtain(
I + �1M

2

)
�(x + 1,0) −

(
I − �1M

2

)
�(x − 1,0) − (1 + λ)�1M�(x,0)

= iE�1�(x,0). (D.3)

This equation has a E = 0 solution satisfying(
I + �1M

2

)
�(x + 1,0) −

(
I − �1M

2

)
�(x − 1,0)

= (1 + λ)�1M�(x,0). (D.4)

By opening up boundaries at x = 1 and x = L, the �(x + 1, 0) or �(x − 1, 0) term should be 
neglected (set to be 0) whenever the x + 1 or x − 1 is out of the region. We can solve the above 
equation by diagonalizing �1M .

In the �1M = +1 sector{
�+(x + 1,0) = (1 + λ)�+(x,0) for x �= L

0 = (1 + λ)�+(L,0) for x = L
(D.5)
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And in the �1M = −1 sector{
�−(x − 1,0) = (1 + λ)�−(x,0) for x �= 1

0 = (1 + λ)�−(1,0) for x = 1
(D.6)

For λ < 0 two normalizable solution exists, namely,

�+(x) = (1 − |λ|)x−1�+(1) and

�−(x) = (1 − |λ|)L−x�−(L). (D.7)

The upper solution localizes on the left boundary, while the lower solution localizes on the right 
boundary. These are exactly the localized zero modes at the interface between (λ > 0, λ < 0)

and (λ < 0, λ > 0), respectively since they live in the �1M = +1 and �1M = −1 sectors. Note 
that there is no localized zero mode for λ > 0 due to the boundary constraint 0 = �+(L, 0) and 
0 = �−(1, 0).

In the �1M = +1 sector

�+(x + 1,0) = (1 + λ)�+(x,0). (D.8)

And in the �1M = −1 sector

�−(x − 1,0) = (1 + λ)�−(x,0). (D.9)

Let x1 runs from 1 to L, for λ < 0 two normalizable solution exists, namely,

�+(x) = (1 − |λ|)x−1�+(1) and

�−(x) = (1 − |λ|)L−x�−(L). (D.10)

The upper solution localizes on the left boundary, while the lower solution localizes on the right 
boundary. These are exactly the localized zero modes at the interface between (λ < 0, λ > 0) and 
(λ > 0, λ < 0), respectively.

Appendix E. Summary of the classification result for SPT satisfying T � Q � C symmetry 
and the minimal model matrix dimension

In Tables E.2 and E.3 we summarize the classification result of free fermion SPT protected 
by, maximally, T �Q �C symmetries. Here C± and T± implies C2 = ±1 and T 2 = ±1. d is the 
spatial dimension. Each entry is a tuple representing (classification group, n0). Here 0 denotes 
the trivial group with only the identity element. Throughout the tables {T , Q} = {C, Q} = 0.

Appendix F. The uniqueness of M in Table 1

Here we present an argument that the proposed M = In0 ⊗ iτy is the only mass matrix in the 
d + 1-dimensional bulk consistent with the symmetries. We begin with the most general form of 
M :

M = K1 ⊗ τ0 + K2 ⊗ τx + K3 ⊗ τz + S ⊗ iτy

where Ki are antisymmetric and S is symmetric. To anti-commute with �d+1, K1 and K2 must 
be zero. So



22 L. Tsui et al. / Nuclear Physics B 949 (2019) 114799
Table E.2
Classification table for SPT protected by T and C but without Q symmetry.

d No sym. [T ,C] = 0 {T ,C} = 0

T only C only T+ T− T+ T−
T+ T− C+ C− C+ C− C+ C− C+ C− C+ C−

0 Z2,2 Z2,2 0,4 Z2,2 Z,2 Z2,2 0,4 0,4 0,4 Z2,4 Z,2 Z2,4 Z,4
1 Z2,2 Z,2 Z2,4 Z2,2 0,4 Z,2 Z,4 Z2,4 Z,4 Z2,4 0,4 Z2,4 0,8
2 Z,2 0,4 Z2,4 Z,2 Z,4 0,4 0,8 Z2,4 0,8 Z,4 0,8 Z,4 Z2,8
3 0,4 0,8 Z,4 0,4 0,8 0,8 Z,8 Z,4 Z,8 0,8 0,16 0,8 Z2,8
4 0,8 0,16 0,8 0,8 Z,8 0,16 0,16 0,8 0,16 0,16 Z,16 0,16 Z,8

Table E.3
Classification table for SPT protected by T and C with Q symmetry.

d No sym. [T ,C] = 0 {T ,C} = 0

T only C only T+ T− T+ T−
T+ T− C+ C− C+ C− C+ C− C+ C− C+ C−

0 Z,2 Z,2 Z,4 Z2,4 0,4 Z2,4 0,4 0,8 0,8 Z2,4 0,4 0,8 0,8
1 0,4 0,4 0,8 Z2,4 0,8 Z,4 0,8 Z2,8 Z,8 Z,4 0,8 Z2,8 Z,8
2 Z,4 0,8 Z2,8 Z,4 Z,8 0,8 0,16 Z2,8 0,16 0,8 0,16 Z2,8 0,16
3 0,8 0,16 Z2,8 0,8 0,16 0,16 Z,16 Z,8 Z2,16 0,16 Z,16 Z,8 Z2,16
4 Z,8 Z,16 Z,8 0,16 Z2,16 0,32 0,32 0,16 Z2,16 0,32 0,32 0,16 Z2,16

M = K3 ⊗ τz + S ⊗ iτy

If K3 were non-zero, then by commutation relationships of M with �i , Uα , Aβ and the generator 
of ZT

2 , it can be seen that K3 anticommutes with γi , commutes with uα , anticommutes with aβ

but anticommutes with m0. It means K3 is a valid mass matrix in d-dimensions not equal to m0, 
contradicting the assumption that the boundary is at the minimal dimension n0. So K3 = 0. So 
we are left with

M = S ⊗ iτy

Similar analysis as before shows S commutes with γi , uα , aβ and m0. Thus we can diagonalize 
S and H in (2) simultaneously. Also S2 = 1 so its eigenvalues are ±1. If S has both +1 and −1
sectors, then by projecting H to one of these sectors we would obtain a valid Hamiltonian with 
a smaller matrix dimension than n0, which contradicts our assumption for n0 being minimal. So 
S ∝ In0 and M is the unique mass term consistent with all the symmetries.

Appendix G. Deriving the bulk Hamiltonian (equation (9)) in section 4.1 from the recipe 
of Table 1

In Majorana fermions, equation (8) reads

H1 =
∫

dx χT (x)
[−iρ0σz∂x + φ ρyσx

]
χ(x) (G.1)

where the ρz = +1 and ρz = −1 component of the Majorana fermion field are the real and 
imaginary parts of the complex fermion field. There are two unitary symmetries. The charge 
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U(1) symetry is generated by Q = iρyσ0 and the charge conjugation transformation is generated 
by C = ρzσz.

Following the recipe of Table 1, we construct the following bulk (2D) Hamiltonian:

H2 =
∫

d2x XT (x)
[−iρ0σzτz∂x − iρ0σ0τx∂y + iλ iρ0σ0τy

]
X(x) (G.2)

which is equation (9) in terms of Majorana fermions. According to the recipe, in the bulk, U(1)

symmetry is generated by Q = iρyσ0τ0, charge conjugation is generated by C = ρzσzτ0, and 
the extra ZT

2 symmetry is generated by T = iρyσxτz. This would transform a complex creation 
operator into a complex annihilation operator. We may define another anti-unitary symmetry by 
combining the extra ZT

2 with the bulk charge conservation Q and charge conjugation C, giving 
QCT = ρziσyτz. This operator maps ψ → iσyτzψ in the complex fermion language, which is 
the T symmetry in the bulk in section 4.1.

Appendix H. Decorated domain wall interpretation of the bulk SPT

As discussed in the main text, the bulk Hamiltonian is given by

Hd+1 =
∫

dd+1x XT (x)(−i

d+1∑
j=1

�j∂j + iλM)X(x)

where

�j = γj ⊗ τz for j = 1 . . . d (H.1)

�d+1 = In0 ⊗ τx (H.2)

M = In0 ⊗ iτy (H.3)

with unitary symmetries Uα = uα ⊗ τ0, antiunitary symmetries Aβ = aβ ⊗ τz, and an extra anti-
unitary symmetry T = m0 ⊗ τz. Its boundary describes an SPT phase transition described by

Hd =
∫

ddx χT (x)(−i

d∑
j=1

γj ∂j + iφm0)χ(x) (H.4)

The boundary mass m0 has the corresponding bulk term, Mε = m0 ⊗ τz. This is so because 
by projecting Mε into the boundary, we recover m0. Also Mε anti-commutes with all �j ’s and 
breaks the ZT

2 symmetry in the bulk. In addition, Mε also anti-commutes with M . In the follow-
ing we will study the domain walls of the Mε mass (i.e., the coefficient of Mε changes sign) and 
show that they are decorated with the lower dimensional SPT.

Consider

H ′
d+1 =

∫
dd+1x XT (x)(−i

d+1∑
j=1

�j∂j + iε(x1)Mε + iλM)X(x)

Where x = (x1, . . . , xd+1), and ε(x1) is a domain wall configuration in x1 with

ε(x1) =
{

+mε if x1 > 0

−mε if x1 < 0
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To find the one-body eigen-modes, we solve for the eigenvalue problem⎡⎣−i

d+1∑
j=1

�j∂j + iε(x1)Mε + iλM

⎤⎦�(x) = E�(x) (H.5)

Again we exploit the translational symmetry in x2, x3, ..., xd+1 and go to the mixed real and 

momentum representation of �, namely, �(x) = ∑{kj } �(x1, {kj })ei
∑d+1

j=2 kj xj . In the mixed 
representation equation (H.5) becomes⎡⎣d+1∑

j=2

�jkj − i�1∂1 + iε(x1)Mε + iλM

⎤⎦�(x1, {kj }) = E�(x1, {kj }) (H.6)

We first note that the x1-dependent part of (H.6) has a zero mode solution satisfying

[−i�1∂1 + iε(x1)Mε]�0(x1) = 0.

The solution is

�0(x1) = exp

⎡⎣ x1∫
0

ε(x1)�1Mε

⎤⎦�0(0).

We see that in order for �0(x1) to be normalizable, �1(0) must satisfy

�1Mε�0(0) = −�0(0).

The solution of equation (H.6) localized near x1 = 0 is given by

�(x1, {kj }) = exp

⎡⎣ x1∫
0

ε(x1)�1Mε

⎤⎦ ψ̃({kj })

where

�1Mεψ̃({kj }) = −ψ̃({kj }).
Note that �2, ..., �d+1, M , Uα and Aβ all commute with �1Mε and hence are block-diagonalized 
in the −1 eigenspace of �1Mε . After projecting to this eigenspace, (H.6) becomes⎡⎣d+1∑

j=2

�′
j kj + iλM ′

⎤⎦ ψ̃ ′({kj }) = Eψ̃ ′({kj }) (H.7)

where the primed matrices/vectors are the projection of the original matrices/vectors. Equa-
tion (H.7) has the symmetries generated by the projected matrices U ′

α, A′
β .

We note that (H.7) has a gapped spectrum E = ±
√∑d+1

j=2 k2
j + λ2. The solution is localized 

on the Mε domain wall hence corresponds to a d-dimensional SPT protected by the same G
symmetry.

Appendix I. Real space lattice models

In this appendix we give the lattice models used for the numerical study in section 6.
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I.1. The 2D bulk

In momentum space, the lattice model which recovers equation (14) as the low energy theory 
is given by

H =
∑
k

�†(k)
[
σzτz sin kx + σ0τx sin ky + (λ + 2 − coskx − cosky)M + φMε

]
�(k),

where M = σ0τy , Mε = σxτz. Applying the regularization rules in Appendix A the lattice version 
of the above equation is

H = 1

2

∑
x

[
�†(x) (−iσzτz − M)�(x + x̂) + �†(x)(−iσ0τx − M)�(x + ŷ) + h.c.

]
+ �†(x) [(λ + 2)M + φ(x)Mε]�(x) (I.1)

where x labels the lattice sites. Setting φ(x) = mεsign(x − x0) would fix a single domain wall 
at x = x0.

I.2. The 3D bulk

In momentum space, the lattice model which recovers equation (15) as the low energy theory 
is given by

H =
∑
k

XT (−k)
[
σxτz sin kx + σzτz sin ky + σ0τx sin kz + i(λ + 3 − coskx

− cosky − coskz)M + iφMε

]
X(k) (I.2)

where M = iσ0τy , Mε = iσyτz. Applying the regularization rules in Appendix A we obtain the 
following lattice model

H = 1

2

∑
x

[
XT (x)(−iσxτz − iM)X(x + x̂) + XT (x)(−iσzτz − iM)X(x + ŷ)

+ XT (x)(−iσ0τx − iM)X(x + ẑ) + h.c.
]
+ XT (x)

[
i(λ + 3)M + iφ(x)Mε

]
X(x)

(I.3)

where x labels the lattice sites. Setting φ(x) = mεsign(x − x0) would fix a single domain wall 
at x = x0.

Appendix J. Regularized lattice theory on space time

In this section we write down a regularized lattice space time model for (1). The continuum 
action is given by

S =
∫

dD+1x XT (t,x)[∂0 +
D∑

j=1

−i�j ∂j + iλM]X(t,x) + Sint[X(t,x)]. (J.1)

Going from space-time continuum to space-time lattice, we replace the time derivative term 
by a regularized lattice term:
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∫
dx0X

T (t,x)∂0X(t,x) →
∑
ω

XT (−ω,x) [i sinω + i(1 − cosω)M]X(ω,x) (J.2)

The corresponding term in the space-time lattice is given by∑
t

[
XT (t + 1,x)

(
I − iM

2

)
X(t,x) + h.c.

]
+ i
∑

t

XT (t,x)MX(t,x). (J.3)

On the other hand, the regularized free-fermion part of the Hamiltonian is achieved by the 
following replacement:∫

dDx XT (t,x)

⎡⎣ D∑
j=1

−i�j ∂j + iλM

⎤⎦X(t,x) (J.4)

→
∑

k∈BZ

XT (t,−k)

⎧⎨⎩
D∑

j=1

[
sin kj�j + i(1 − coskj )M

]+ iλM

⎫⎬⎭X(t,k). (J.5)

And as discussed in Appendix A the corresponding space-time lattice version is given by∑
x

[
XT (t,x + êj )

(−i�j − iM

2

)
X(t,x) + h.c.

]
+ i(D + λ)

∑
x

XT (t,x)MX(t,x).

We assume the interaction part of the action is local in space-time and is Lorentz-invariant. In 
the following we shall determine transformed action after a space-time (Lorentz) transformation. 
Since the interaction part of the action is Lorentz-invariant we shall pay special attendion to the 
free fermion part in equation (J.2) and equation (J.5)

S0 =
∑

p∈BZ

XT (−p)
{
i sinω + i(1 − cosω)M +

D∑
j=1

[
sin kj�j + i(1 − coskj )M

]
+ iλM

}
X(p)

=
∑

p∈BZ

XT (−p)M
{

sinω(−iM) + i(1 − cosω)

+
D∑

j=1

[
sin kj (−M�j) + i(1 − coskj )

]
+ iλ

}
X(p)

=
∑

p∈BZ

XT (−p)M
{

sinωγ0 + i(1 − cosω) +
D∑

j=1

[
sin kjγj + i(1 − coskj )

]
+ iλ

}
X(p)

=
∑

p∈BZ

XT (−p)M
{

sinωγ0 + i(1 − cosω) +
D∑

j=1

[
sin kjγj + i(1 − coskj )

]
+ iλ

}
X(p)

=
∑

XT (−p)M
{ D∑[

sinpμγμ + i(1 − cospμ)
]
+ iλ

}
X(p). (J.6)
p∈BZ μ=0
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In equation (J.6) p = (ω, k) and “BZ” stands for the space-time Brillouin zone. In addition, 
we defined γ0 = −iM and γj = −M�j .

Substitute X(p) = ei π
4 �1X̃(p), X(−p)T = X̃T (−P )ei π

4 �1

S0 =
∑

p∈BZ

X̃T (−p)ei π
4 �1M

{ D∑
μ=0

[
sinpμγμ + i(1 − cospμ)

]
+ iλ

}
ei π

4 �1X̃(p)

=
∑

p∈BZ

X̃T (−p)Me−i π
4 �1
{ D∑

μ=0

[
sinpμγμ + i(1 − cospμ)

]
+ iλ

}
ei π

4 �1X̃(p)

=
∑

p∈BZ

X̃T (−p)M
{

sinω(−γ1) + sin k1γ0 +
D∑

j=2

sin kjγj

+
D∑

μ=0

i(1 − cospμ) + iλ}X̃(p)

If we treat x1 as the “time” direction, the above action corresponds to a free fermion Hamil-
tonian

H ′
0 =

∑
k′∈BZ′

X̃T (−k′)
{

sin k′
1(−�1) +

D∑
j=2

sin k′
j�j + i

[ D∑
j=1

(1 − cosk′
j )

+ λ
]
M
}
X̃(k′) (J.7)

Here we have defined k′ = (ω, k2, .., kD), and BZ′ stands for the Brillouin zone formed by k′.
Due to the Lorentz invariance and the space-time local nature of the Sint the Lorentz-rotated 

interacting Hamiltonian is given by

H̃ = H ′
0 + Hint (J.8)

where Hint is the Hamiltonian correspond to Sint. exp(−εH̃ ) is the transfer matrix of the equa-
tion (J.1) in the x-direction. The Feynman amplitude between an initial and final field config-
uration after a long-“time” propagation is the matrix elements of the projection operator to the
ground state wavefunction of H̃ . It is also the space-time Boltzmann weight of the gapless bound-
ary theory. The preceding discussion corresponds to the following calculation:

exp(−SCFT [χ(x = T )]) exp(−SCFT [χ(x = −T )])∗

=
∫

χ ′=χ on boundaries

D[χ ′
bulk] exp(−S0[{χ ′}])

= 〈{χ(x = T )}| exp(−2T H̃ )|{χ(x = −T )}〉
= exp(−2T E0)〈{χ(x = T )}|ψ0〉〈ψ0|{χ(x = −T )}〉
∝ �bulk[χ(x = T )]�∗

bulk[χ(x = −T )]
where T → ∞. |ψ0〉 and E0 are the ground state wavefunction and energy, respectively. So we 
have

�bulk[χ] = exp(−SCFT [χ]) (J.9)
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where we replaced the ∝ sign by equality sign by assuming that a suitable constant has been 
added to SCFT to normalize the RHS.

J.1. Ground state entanglement spectrum = boundary conformal spectrum

In this subsection we outline an argument for the equivalence between ground state entangle-
ment spectrum and the boundary conformal spectrum, a generalization of [14] which proved the 
non-interacting fermion case. We illustrate our argument for 1 + 1-D boundary CFT/2 + 1D bulk 
ground state but generalization to higher dimensions is straight-forward.

We study a ground state defined on a 2D infinite cylinder parameterized by (x, t), where 
the t direction is infinite. We assume the fields χ are defined on discrete sites on the cylinder. 
Consider a bi-partition cut at t = 0. We separate the fields into four regions: χ+ε denote the fields 
immediately above the cut (i.e. t = ε > 0), χ−ε denote the fields immediately below the cut (i.e.
t = −ε < 0), χ+ denote the fields above χ+ε , (i.e. t > ε), and χ− denote the fields below χ−ε , 
(i.e. t < −ε). See Fig. J.10 for illustration. Using equation (J.9) we write the bulk ground state 
wave function as

�bulk[χ+, χ+ε, χ−ε, χ−] = exp(−SCFT [χ+, χ+ε, χ−ε, χ−])
Since SCFT is a local Lagrangian, we assume it can be split into three separate terms, each term 
involving only neighboring degrees of freedom

SCFT [χ+, χ+ε, χ−ε, χ−] = S+
CFT [χ+, χ+ε] + Sε

CFT [χ+ε, χ−ε] + S−
CFT [χ−ε, χ−]

So

�bulk[χ+, χ+ε, χ−ε, χ−] = φ+[χ+, χ+ε]φε[χ+ε, χ−ε]φ−[χ−ε, χ−]
where we have defined φ±/ε[χ] := exp(−S

±/ε
CFT [χ]). By trading terms amongst S+

CFT , S−
CFT ,

Sε
CFT , they can be defined to be suitably normalized.∫

Dχ+|φ+[χ+, χ+ε]|2 = 1∫
Dχ−|φ−[χ−, χ−ε]|2 = 1∫
Dχ+εDχ−ε |φε[χ+ε, χ−ε]|2 = 1

The entanglement spectrum is defined to be the eigenvalues of

〈χ ′+, χ ′+ε |e−Hent |χ+, χ+ε〉
=
∫

Dχ−Dχ−ε �∗
bulk[χ ′+, χ ′+ε, χ−ε, χ−]�bulk[χ+, χ+ε, χ−ε, χ−]

=
∫

Dχ−Dχ−ε φ+∗[χ ′+, χ ′+ε]φε∗[χ ′+ε, χ−ε]φ−∗[χ−ε, χ−]
× φ+[χ+, χ+ε]φε[χ+ε, χ−ε]φ−[χ−ε, χ−]

= φ+∗[χ ′+, χ ′+ε]φ+[χ+, χ+ε]
∫

Dχ−ε φε∗[χ ′+ε, χ−ε]φε[χ+ε, χ−ε]



L. Tsui et al. / Nuclear Physics B 949 (2019) 114799 29
Fig. J.10. (Color online.) Illustration of infinite cylinder with entanglement cut perpendicular to t direction. The ground 
state living on the cylinder. The degrees of freedom are split into four regions χ± , χ±ε as shown in figure. The blue 
circle is the bipartition cut.

Note that

φε[χ+ε, χ−ε] = 〈χ+ε |e−2εHCFT |χ−ε〉
where HCFT is the boundary Hamiltonian corresponding to SCFT .

So

〈χ ′+, χ ′+ε |e−Hent |χ+, χ+ε〉
= φ+∗[χ ′+, χ ′+ε]φ+[χ+, χ+ε]

∫
Dχ−ε 〈χ+ε |e−2εHCFT |χ−ε〉〈χ−ε |e−2εHCFT |χ ′+ε〉

= φ+∗[χ ′+, χ ′+ε]φ+[χ+, χ+ε]〈χ+ε |e−4εHCFT |χ ′+ε〉
e−Hent = P †e−4εHT

CFT P

where 〈χ ′+ε |P |χ+, χ+ε〉 = δχ ′+ε ,χ+ε
φ+[χ+, χ+ε]. It satisfies PP † = I .

So for any eigenvector � of e−4εHCFT with eigenvalue e−4εE , P †� is an eigenvector of 
e−Hent with the same eigenvalue. So entanglement spectrum contains the boundary CFT spec-
trum. Moreover the rank of matrix e−Hent equals that of e−4εHT

CFT . So its other eigenvalues are 
zero. So the ground state entanglement spectrum is equal to the boundary CFT conformal spec-
trum.
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