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Abstract 
 

Registration of Musculoskeletal Images for the 
Analysis of Bone Structure  

 
By 

Janet Helene Goldenstein 
 

The accurate and early diagnosis of osteoporosis and the assessment in response 

to therapy are critical for patient management but still remain a challenge for clinicians.  

There have been recent advancements in diagnostic imaging techniques to improve the 

assessment of bone quality.  There are several different imaging techniques which can be 

used for the assessment of bone quality both in vivo and in vitro including multi-detector 

Quantitative Computed Tomography (QCT), High Resolution peripheral Quantitative 

Computed Tomography (HR-pQCT), Micro Computed Tomography (µCT), Synchrotron 

Radiation Micro Computed Tomography(SRµCT), and Magnetic Resonance Imaging 

(MRI) which each have advantages and limitations.  The purpose of this thesis is to 

develop robust image registration techniques for CT and MR-based musculoskeletal 

images and determine if there is an improvement in the accuracy of longitudinal studies 

or an enhancement in the understanding of bone quality by combining images from 

different imaging techniques. 

An automatic inter-modal rigid registration method based on normalized mutual 

information was implemented to allow for the direct spatial comparison of tissue 

mineralization distributions of ex vivo bone tissue specimens in µCT and SRµCT images.  

The registration method successfully aligned images acquired using µCT and SRµCT in 

five specimens of the femoral head, four specimens of the vertebral body, and five 
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specimens of the proximal tibia.    This allowed the first direct comparison of tissue 

mineral density (TMD) between the two modalities. 

A normalized mutual information registration method was applied to a set of 49 

radius images and 51 tibia images of postmenopausal osteopenic women acquired on 

MRI and HR-pQCT.  The registration method successfully registered all images and the 

robustness of the method was established.   The amount of cortical porosity identified in 

the HR-pQCT images that contained bone marrow as visualized on the MR images was 

then quantified. 

Image registration methodologies to align MR images in longitudinal studies were 

also developed.  An automatic registration method based on a mutual information 

measure was implemented for the alignment of high-resolution MR images of trabecular 

bone in vivo.  The robustness and reproducibly of the registration method was established 

on MR images of the proximal femur of six normal healthy volunteers.  The 

improvement in measurement accuracy in a longitudinal study was demonstrated on MR 

images of the proximal femur of twenty-four postmenopausal osteopenic women who 

were scanned at 0 and 12 months.   

The automatic registration method was then extended to prospective registration 

that allowed follow-up images to be acquired in the same orientation as baseline images.  

The feasibility of prospective registration for MR images of trabecular bone was 

demonstrated on the distal tibia of five volunteers and the knee of one volunteer.  The 

prospective registration ensured that the same region was analyzed in both the baseline 

and follow-up images, saved post processing time, preserved the reproducibility of the 

trabecular bone parameters, and required no interpolation.   
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The results of this project suggest that the adoption of image registration into the 

analysis of musculoskeletal images of bone improves the accuracy, reproducibility, and 

precision of longitudinal and comparative studies. 
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Chapter 1 
 

Introduction 
 
 
 
1.1 Motivation 

Bone quality encompasses trabecular bone and cortical bone architecture, bone 

turnover, damage accumulation (micro-damage), and mineralization(1). It is an essential 

component in determining bone strength.  Therefore bone quality is an important 

parameter in the diagnosis of Osteoporosis, a metabolic disease characterized by low 

bone mass and structural deterioration of bone tissue resulting in bone fracture(2).  

Because the medical and financial toll of Osteoporosis is likely to increase over the next 

20 years as the population of the United States ages, noninvasive assessment of bone 

quality has recently received considerable attention.  By 2025, the number of fractures 

and the associated costs are predicted to rise by 48%, to more than 3 million fractures at a 

cost of $25.3 billion(3).  However, the advancement of diagnostic imaging techniques to 

assess bone quality will help with early diagnosis as well as the evaluation of the efficacy 

of treatment and preventative therapies. 

The evaluation and monitoring of bone quality is an important part of assessing 

fracture risk.  Patterns of change in trabecular and cortical bone can be indicative of 

disease state or progression.  Monitoring these patterns provides useful information to 

further the understanding of disease processes, to improve the accuracy of early 

diagnosis, and to assess the efficacy of disease treatment.   

Assessment of bone fracture risk and diagnosis of Osteoporosis is currently 

performed using areal bone mineral density (BMD) derived from Dual Energy X-ray 

Absorptiometry (DXA)(4).  However, BMD alone does not entirely predict bone fracture 



2 
 

and does not adequately explain the efficacy of new treatments(5,6). Several imaging 

methods exist for analyzing both in vivo and ex vivo bone quality beyond BMD, such as 

high-resolution Magnetic Resonance Imaging (MRI), micro–Computed Tomography 

(µCT), Synchrotron Radiation micro-Computed Tomography (SRμCT), and High-

Resolution peripheral Quantitative Computed Tomography (HR-pQCT).  Each of these 

imaging methods has unique advantages and limitations.  SRμCT and µCT are limited to 

ex vivo examinations while MRI and HR-pQCT are in vivo techniques.  SRμCT provides 

an ex vivo non-invasive method for determining bone tissue mineral density (TMD) but 

due to its cost and scarcity of these SR facilities, it is often inaccessible to researchers.  

µCT is a conventional desktop system that also allows for the ex vivo non-invasive 

assessment of TMD, but additional analysis is required to assess its robustness. HR-

pQCT is an emerging technique that allows for the direct visualization of bone at a very 

high resolution but cannot visualize soft-tissue and is restricted to peripheral skeletal 

sites.  MRI results in superior soft tissue contrast without ionizing radiation, but only has 

an indirect visualization of bone at a lower resolution.   

Image registration, the alignment of images, allows researchers to more accurately 

compare these different imaging modalities to establish accuracy, efficiency, and 

robustness of each.  In addition, image registration combines the unique information 

obtained from each imaging method to help enhance the understanding of disease 

processes.   

Image registration also improves the accuracy of longitudinal studies.  High 

resolution MR images of trabecular bone is an established non-invasive three 

dimensional technique(7-9). The ability to distinguish between osteoporotic and non-
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fracture population based on MR image derived trabecular bone parameters have been 

reported in literature for a large number of studies(7,10-12).  To achieve efficient 

longitudinal monitoring of trabecular bone changes due to disease progression or 

treatment, it is often desirable to accurately measure small amounts of structural change 

with short inter-scan intervals (typically months or years).  This requires accurate and 

reliable methods of measuring small trabecular bone structural changes under conditions 

of anatomical variation, such as the inherent trabecular heterogeneity within an 

anatomical site.  Image registration can improve the accuracy of longitudinal studies 

involving MR images of trabecular bone by ensuring that the same anatomical region is 

analyzed at different time points. 

 
1.2 Thesis Aims and Contributions 

  

The purpose of this thesis is to develop robust image registration methodologies 

for musculoskeletal images and determine if there is an improvement in the accuracy of 

longitudinal studies or an enhancement in the understanding of bone quality by 

combining images from different imaging techniques. 

 
The primary contributions of the thesis include:  

1) To demonstrate the application of image registration for the direct comparison 

of  ex vivo µCT and SRμCT tissue mineral density (TMD) values  

2) To develop a method of combining HR-pQCT and MR images using image 

registration to identify cortical porosity containing bone marrow in the tibia 

and radius of a clinical study group of osteopenic women 
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3)  To implement and optimize an automatic registration method that provides an 

accurate image registration solution for the alignment of serial high-resolution 

trabecular bone images 

4) To demonstrate the improvement in the accuracy of trabecular bone changes 

in the proximal femur using a clinical study group of osteopenic women 

5) To develop a prospective registration methodology to acquire follow-up 

musculoskeletal MR images in the same orientation as baseline images  

 
1.3 Chapter Organization 
 

The remainder of the thesis is organized as follows: 

Chapter 2 provides background on osteoporosis and bone strength, methods for 

imaging bone anatomy, and image registration. 

Chapter 3 presents the alignment of ex vivo µCT and SRµCT images for a direct 

voxel to voxel comparison of TMD measurements. 

Chapter 4 presents a new analysis for cortical porosity by using image 

registration to combine HR-pQCT and MR images of the distal tibia and distal 

radius in a clinical study group of osteopenic women. 

Chapter 5 presents the implementation of three dimensional image registration 

for the alignment of high-resolution in vivo trabecular bone MR images of the 

proximal femur.  Robustness of the algorithm and effects of interpolation on 

trabecular bone parameters are assessed. 

Chapter 6 applies image registration method presented in chapter five to a 

longitudinal clinical study assessing the efficacy of drug treatment and 

demonstrates an improvement in measurement accuracy. 
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Chapter 7 proposes an automated prospective registration methodology to 

acquire follow-up tibia MR images of trabecular bone in the same orientation as 

baseline images.  

Chapter 8 extends the prospective registration algorithm presented in chapter 

seven to sagittal and coronal imaging planes.  

Chapter 9 summarizes the work presented in Chapters 3-8 and discusses the 

advantages, limitations and scope of future improvement. 
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Chapter 2 
 

  Background 
 
 
2.1 Bone 

Bone is organized into cortical bone and trabecular bone.  Cortical bone consists 

of dense bone tissue and forms the outer shell of the bone as well as much of the 

diaphysis, the shaft-like portion of long bones.  In contrast, trabecular bone is relatively 

porous with bony spicules called trabeculae spanning pores.  Trabecular bone is found in 

skeletal sites such as the vertebrae and the proximal and distal parts of the appendicular 

skeleton.  

Bone consists of living cells widely scattered within a nonliving material called 

the matrix. The bone matrix is composed of 40% organic substrate consisting mainly of 

type I collagen, 45% mineral crystals of non-stoichiometric calcium hydroxyapatite and 

%15 water.  It is formed by osteoblasts, cells that are constantly renewed in the bone. 

Osteoblasts make and secrete the protein collagen type I, which makes bones elastic, and 

mineral crystals salts, which impart the bone’s hardness. As bone tissue matures, 

osteoblasts transform into osteocytes, mature bone cells that carry out daily cellular 

activities. An osteoclast is a type of bone cell that removes bone tissue by removing its 

mineralized matrix and breaking up the organic bone.  Remodeling or bone turnover is 

the process of osteoclast resorption followed by osteoblast replacement of bone. 

Osteoblasts and osteoclasts, coupled together via paracrine cell signaling, are referred to 

as Bone Remodeling Units.   

 
2.2 Osteoporosis and Bone Strength 
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Osteoporosis is a disorder that results in bone with decreased mechanical strength 

and increased fracture risk.  Approximately one in two white women and one in five men 

are affected by osteoporosis in their lifetime(1,2). Osteoporosis is responsible for millions 

of fractures annually involving mostly vertebral bodies, the proximal femur, and the 

distal radius. The direct financial cost attributable to osteoporotic fracture in the United 

States is $14 billion and is expected to increase 3-to-8 fold over the next 50 years(13). 

Treatments, such as bisphosphonates, are available that have shown significant reduction 

of fracture incidence(14,15). Early diagnosis is paramount for intervention, yet signs of 

the disease cannot be routinely and reliably detected until a fragility fracture occurs. For 

this reason there exists intense interest within the medical community for developing 

accurate early diagnostic techniques. 

Bone fracture risk and bone strength are influenced by many complex factors 

including architecture, turnover, damage accumulation, and mineralization. Assessment 

of bone fracture risk is currently performed using areal bone mineral density (BMD) 

derived from Dual Energy X-ray Absorptiometry (DXA).  In 1994, the World Health 

Organization developed criteria for osteoporotic status based on T score values as 

determined by (DXA)(4).  However, BMD does not entirely predict bone 

fracture(5,16,17) or adequately asses therapeutic intervention(6) and there exists 

considerable overlap of BMD measurements for patients with and without fragility 

fractures(18).  BMD has been found to explain less than half of the effect of drug therapy 

on fracture rates(16,17). 

BMD does not characterize the changes that occur in both cortical and trabecular 

bone with Osteoporosis. Trabecular bone micro-architecture is of particular importance to 
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bone strength(19) and cortical bone has a complex structure that also plays an important 

role in bone strength(20). Since trabecular bone has a higher metabolic activity and is 

highly responsive to hormonal changes, substantial efforts have focused on diagnosing 

early trabecular bone loss(21). Changes in the trabecular bone are characterized by both 

thinning and loss of structure(22). Structure and mechanical properties of cortical bone 

have been reported to change due to age(23,24), gender(25), and osteoporotic status(26).  

Additionally, the improvement in cortical thickness and cortical porosity due to anti-

resorptive therapies highlights the importance of cortical bone in overall bone quality 

maintenance(27,28). 

The degree of mineralization in trabecular bone or tissue mineral density (TMD) 

may play a role in bone strength that cannot be accounted for by bone mineral density 

(BMD) or bone micro-architecture alone. TMD has been shown to influence tissue-level 

mechanical properties(29).  Increased mineralization has been linked to greater amounts 

of tissue damage(30) and hyper-mineralized sites may lead to crack initiation(31). 

Additionally the distribution of TMD within the bone tissue may also have an effect on 

tissue properties(32,33).   

 
2.3 Imaging Bone 

Many different imaging techniques exist to visualize measure bone structure. 

Dual X-ray Absorptiometry is a two dimensional method that measures BMD, the current 

gold standard in assessing osteoporotic status.  However, many three dimensional 

methods exist including Micro Computed Tomography (µCT), Synchrotron Radiation 

Micro Computed Tomography(SRµCT), multi-detector Quantitative Computed 

Tomography (QCT), High Resolution peripheral Quantitative Computed Tomography 
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(HR-pQCT), and Magnetic Resonance Imaging (MRI).  The three dimensional analysis 

provides additional information about bone allows for a three dimensional quantification 

of bone parameters.  In this next section, a review of these different modalities with the 

advantages and limitations of each will be provided. 

2.3.1 Micro Computed Tomography  

Micro Computed Tomography (μCT), is a miniaturized 

version QCT which is able to achieve resolution of up to 

resolutions up to 6μm isotropic.  It can therefore be used to 

visualize fine trabecular structure in ex vivo specimens. Structure 

parameters obtained from μCT correlate well with those from 

traditional histology(34,35) and therefore μCT is often used as a 

gold standard of reference.  Researchers are currently using mineral phantoms and beam 

hardening corrected reconstruction algorithms in μCT systems to produce tissue 

mineralization data.  μCT techniques are limited to imaging biopsies and small animals; 

bore sizes are too small and radiation doses too high for human use. 

2.3.2 Synchrotron Radiation Micro Computed Tomography  

Synchrotron Radiation Micro Computed Tomography 

(SRμCT) is a mono-chromatic x-ray based imaging technique 

that requires a high photon flux in a small area.  It is able to 

achieve resolution up to 6μm with very high signal to noise 

(SNR).  Non-invasive high resolution three dimensional 

Figure 2.1.: Ex vivo 
μCT image of a vertebral 
body specimen. 

Figure 2.2.: Ex vivo 
SRμCT image of a 
vertebral body specimen.
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assessment of tissue mineral density (TMD) can be performed using SRμCT(36,37). 

However, synchrotron radiation sources can only be found at a synchrotron radiation 

(SR) facility. This limitation causes SRμCT to be inaccessible to most researchers due to 

the scarcity of these SR facilities.  Similar to μCT systems, SRμCT is also limited to 

imaging biopsies and cannot be used for in vivo human scanning. 

2.3.3 Dual X-ray Absorptiometry 

 Clinically BMD is currently measured using a 

projection imaging technique called Dual x-ray Absorptiometry 

(DXA).  In DXA, X-ray beams of two different peak energies are 

produced to optimize the separation of mineralized bone and soft tissue 

components of the area analyzed.   A low energy and a high energy x 

ray beam are created by rapidly switching the voltage from 70 to 140 

kpV. Since DXA is a projection technique, it only measures areal BMD.  The advantages 

of DXA include low radiation dose, low cost, ease of use, and rapidity of measurement.  

However, limitations are inherent to DXA measurements. This two-dimensional 

technique cannot distinguish between cortical and trabecular bone, and cannot 

discriminate changes due to bone geometry (e.g., increases in the third dimension) from 

those purely due to increased bone density (within a fixed volume of bone). 

2.3.4 Quantitative Computed Tomography  

In Quantitative Computed Tomography (QCT), x-ray attenuation measurements 

through an object at different positions and different projection angles are made. A 

radiation source produces X-rays that pass through the object of interest to a detector on 

Figure 2.3.:  In 
vivo DXA image 
of  the proximal 
femur. 
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the opposite side. The source and detector rotate about the 

imaged object, and the attenuated X-rays are obtained as a set of 

projections which are used to produce a three-dimensional data 

set of the spatial variation in X-ray attenuation within the object. 

Calibration phantoms are used to convert attenuation to mineral 

density, yielding volumetric BMD (g/cm3).  In QCT the 

phantom, which contains five different amounts of calcium hydroxyapatite, is placed 

below the object of interest. A linear relationship exists between the x-ray attenuation and 

the amount of calcium hydroxyapatite so that attenuations can then be mapped back to 

density of calcium hydroxyapatite and volumetric BMD.  The important advantage of 

QCT over DXA is the three-dimensional spatial resolution, which provides the ability to 

assess both volumetric BMD and macro-architecture.  However, Clinical QCT scanners 

have a high radiation dose and do not have sufficient resolution to image individual 

trabeculae. 

2.3.5 High Resolution peripheral Quantitative Computed Tomography (HR-pQCT) 

A recent development in QCT technology is the 

availability of High Resolution peripheral QCT (HR-pQCT) 

scanners which can achieve an isotropic nominal resolution of 

82μm.  These scanners produce three-dimensional 

mineralization data in appendicular sites, commonly the distal 

radius and distal tibia.  As with traditional clinical QCT, 

trabecular and cortical compartments can be isolated and 

studied individually. However, because of the high resolution, individual trabeculae can 

Figure 2.4.: In vivo QCT 
image of  the distal radius.

Figure 2.5.: In vivo HR-
pQCT image of  the distal 
radius. 
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also be depicted.  From HR-pQCT images, a three dimensional technique can quantify 

structural measures synonymous with histomorphometric measures such as trabecular 

bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), 

and trabecular number (Tb.N)(38,39).  Peripheral scanners make QCT technology less 

expensive, easier to use, and more accessible than traditional whole-body QCT scanners. 

Additionally, pQCT scans present a lower radiation dose to the central body. The greatest 

advantage of these machines, however, is the ability to image at a resolution that allows 

for trabecular visualization. A disadvantage of the technique is that it is confined to 

peripheral sites, and thus is not capable of providing images or direct measures within the 

spine or proximal femur. 

 

2.3.6 Magnetic Resonance Imaging 

Magnetic Resonance (MR) imaging is the only 

imaging method without ionizing radiation to access in 

vivo, non-invasively, three dimensional trabecular bone 

structure.  Hydrogen, a proton present in water, is the most 

frequently studied component in MR imaging.  However, 

bone tissue has a very low water content (~15%). 

Additionally, the protons within bone tissue water have a very short T2 relaxation time 

(250 microseconds) (40).  As a result bone has a relatively low MR-detectable 

magnetization and gives no signal in standard MR images. Bone is instead revealed 

indirectly through bone marrow visualization, which has a high water and fat content.  In 

high resolution MR images bone tissue appears black while bone marrow, due to its 

Figure 2.6.: In vivo MR
image of the distal tibia. 
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sufficient amounts of water and fat, produces a high signal.  Figure 2.6 shows an MR 

image of the trabecular bone structure of the distal tibia where the dark intensity network 

represents the trabecular bone network and the high intensity represent bone marrow in 

the trabecular spaces. 

The ability to visualize and quantify the trabecular bone structure depends on the 

MR pulse sequence implemented.  The pulse sequence needs to allow for high resolution 

which will ensure the voxel size is on the order of the trabecular structure (80-150µm) 

and allow for an artifact free image with high Signal to Noise (SNR).  It needs to allow 

for scanning of a large volume while keeping scan time within the limits of the patient’s 

tolerance (10 to 15 minutes). Pulse sequences which meet these needs and are used for 

imaging trabecular bone are variants of the basic gradient-echo sequence, Gradient-

Recalled Acquisition in Steady State (GRASS) and spoiled GRASS (SPGR), a spin-echo-

based Fast Large-Angle Spin-Echo (FLASE)(41) sequence, and a balanced Steady-State 

Free Precession (SSFP) sequence(42).  There are trade-offs with all of these pulse 

sequences in terms of time, SNR, signal distortions which may effect the quantification 

of trabecular bone(42-44). 

In order to quantify trabecular bone structure, first each pixel pertaining to bone 

or to bone marrow needs to be identified.  This binarization step becomes problematic in 

the presence of partial volume blurring.  The spatial resolution of the image, especially in 

the slice direction is greater than the dimension of the trabecular bone, causes each pixel 

in the volume of interest (VOI) to contain a varying mixture of bone and marrow, not just 

one type of tissue (partial volume effects).  Initially, a histogram of the distribution of 

signal intensities in the VOI is plotted. Due to the partial volume effects, the histogram 
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does not have two distinct peaks corresponding to bone and marrow, but rather a single 

peak and an asymmetric tail. Therefore it is difficult to select an intensity to binarize the 

VOI into trabecular bone and marrow. The two main methods developed were a 

histogram deconvolution algorithm (HDA)(45) and standardized histogram intensity 

based method(7).  

Many techniques have been developed to evaluate and quantify trabecular bone 

structure using MRI.  Most MR studies investigating trabecular bone structure have used 

MR-derived trabecular bone parameters analogous to those using in bone 

histomorphometry.  Majumdar et al.(8) successfully adapted histomorphometric methods 

to MRI.  For each slice in the VOI the total number of pixels contributing to the bone 

phase, Pp, are normalized to the total number of pixels.  The total number of trabecular 

bone marrow boundaries that cross a set of parallel rays at a given angle, , through the 

image are counted to obtain PL().  The mean intercept length (MIL), an index of 

trabecular width, at a given angle, , is then computed as the ratio between the total area 

of trabecular bone and half the number of edges between bone and bone marrow that 

intersect the set f parallel rays passing through the image at that angle. 

MIL() = 2 Pp/PL()      (2.1) 

The mean value of the MIL for all angles provides a measurement of trabecular 

width, Tb.Th, such that Tb.Th =     ½ average value of MIL().  From the measurements 

of Pp and Tb.Th, other histomorphometry measurements such as trabecular number, 

Tb.N. = Area fraction of bone/Tb.Th and trabecular spacing, Tb.Sp = (1/Tb.N)-Tb.Th can 

be calculated.  High spatial resolution MR images of trabecular bone have voxel sizes on 

the order of trabecular thickness, thus partial volume, when each voxel in the image could 
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represent more than one tissue type, effects MR-based trabecular structure assessment. 

MR images may not depict very thin trabeculae or may represent an average or projection 

of a few trabeculae. For this reason, MR-derived trabecular bone parameters are 

commonly termed “apparent” measures.  A study conducted by Majumdar et al.(8) 

demonstrated the feasibility of using this technique to MR images to quantify trabecular 

structure.   

 
2.4 Image Registration 

2.4.1 Introduction 

Image registration is the process of aligning two images.  The goal is to find a 

transformation that aligns or matches the anatomical regions of the two images.  It is 

useful for comparing images of the same modality that are taken at different time points 

and to allow the fusion of comparison of two images acquired with different imaging 

modalities.  Image registration has many clinical and research applications(46-49). 

There are two main categories of image registration: feature-based and intensity 

based.  In feature-based methods salient features are either manually or automatically 

extracted from the images and are then aligned.  In contrast, in intensity-based methods 

all the voxel intensity values in the image help to determine alignment of the images.  

Because segmentation of bone images is difficult due to their shape or vague boundaries, 

especially in MR images, an intensity-based approach is most reasonable.  Intensity-

based methods require three steps: specify the type of transformation, select a similarity 

measure, and determine the optimal method to search for the transformation which results 

in the best similarity measure.  Each of these steps will be described in the following 

sections. 
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2.4.2 Transformations 

In order to change the position, orientation, or shape of anatomical structures in 

an image, a spatial transformation is applied.  Mathematically a spatial transformation is 

expressed as a set of equations relating the original image coordinates to the new ones.  

These equations are often restricted to limit the possible deformations in the image.  The 

transformation is often described by its Degrees of Freedom (DOF), which is the number 

of independent ways that the transformation can be changed.  Increasing the number of 

degrees of freedom allows the transformation greater scope to make one image match 

another.  The three most common transformations are rigid (6 DOF), non-rigid (12 DOF) 

and deformable (>12 DOF).  In a rigid transformation only rotations and translations are 

allowed.  A non-rigid transformation allows skew and scaling in addition to rotation and 

translation.  A deformable transformation defines a free-form mapping from one image to 

another and can require a constraint to preserve topology of the mapping. 

One of the most commonly used affine transformation methods in medical 

imaging is the 3D similarity transform, also known as Helmert transformation or 7-

paramter transformation(50).  When it is applied to an image, it has the effect of rotating, 

translating, and scaling points with respect to the Cartesian coordinate axes. 
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Figure 2.7.: Three dimensional similarity transform, also known as Herlmert transformation or 7-paramter 
transformation. 
 

Two data sets of three dimensional coordinates defined in two different 

coordinate systems X1 and X2  (Figure 2.7) can be related to each other using a 3D 

similarity transform: 
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),,(   denotes the three rotation angles around the x, y, and z axis respectively 

which are also referred to as three Euler angles; 
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  denotes the scale factor; 

R  denotes the total rotation matrix with is the product of the three individual 

rotation matrices: 

)()()(),,( 321  RRRRR    (2.3) 
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A transformation with the scale factor is the same in all directions (x, y, and z) is 

called a similarity transform.  When the scale factor is unity the transformation is called 

an orthogonal or rigid transformation.  Due to the rigid nature of bone, this thesis focuses 

on rigid transforms in which the scale factor, µ, in equation 2.2  is equal to unity. 

2.4.3 Interpolation 

When a transform is applied to an image, resampling is required because the new 

coordinate points may not line up with the old coordinate points.  Image resampling 

determines pixel values for the new coordinate points by generating a continuous 

function from a discrete one using an interpolation function and then sampling the 

continuous signal at a new set of positions(51,52). Exact resampling is only possible if 

the interpolation function is an ideal low pass filter (a rect function in the frequency 

domain).  An ideal low pass filter is equivalent to convolving a sinc function which has 

infinite extent in the spatial domain (figure 2.7).  However, a sinc function is not 
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physically realizable.  Therefore, finite impulse response filters must be used as the 

interpolation function(53). 

 

Figure 2.8.: Ideal Interpolation. (a) Kernel plotted for |x|<3. (b) Magnitude of the Fourier Transform.  
Taken from (53). 

 

Nearest-Neighbor: The simplest interpolation function is nearest-neighbor, in which 

each interpolated output voxel is assigned the intensity of the nearest voxel in the input 

image.  Therefore only one supporting point is required. Nearest-neighbor interpolation 

can be achieved by convolving the input image with a rect function in the spatial domain 

and is therefore equivalent to multiplying by a sinc function in the frequency domain 

(figure 2.9).   Mathematically, the nearest neighbor expression is given by 
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Figure 2.9.: Nearest Neighbor Interpolation. (a) Kernel. (b) Magnitude of the Fourier Transform.  Taken 
from (53). 

 

Linear Interpolation: Linear interpolation the simplest interpolator that builds a 

continuous function out of a sequence of discrete samples.  It is made from the 

convolution of a square pulse with itself, which yields a triangle, sometimes also named a 

hat or a tent function (figure 2.10).  The output voxel intensity is assigned a value that is 

weighted by the values of the direct neighbors.  In 2D, also called bilinear interpolation, 

its implementation requires four samples, and in 3D, where it is called trilinear 

interpolation, it requires six samples (eight in the non-separable case). Trilinear 

interpolation (54) is the extension of linear interpolation to three dimensional spaces.  

Trilinear interpolation computes inter-slice voxel values as a distance-weighted average 

of the voxel values assigned to the eight nearest neighbors. The expression for 1D linear 

interpolation: 
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Figure 2.10.: Linear Interpolation. (a) Kernel. (b) Magnitude of the Fourier Transform.  Taken from (53). 
 

B-Spline Approximation: B-splines have also been proposed for an interpolation 

function.  B-splines use low-degree polynomials in each of the intervals, and select the 

polynomial pieces such that they fit smoothly together. A B-spline function of degree n is 

derived through n convolutions of the box filter.  Since, the B-spline function is an 

approximating function that passes near the points but not necessarily through them, the 

data will still be modified if the image is resampled to the same grid.  The B-spline 

function is therefore often called B-spline approximation and is expressed: 
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Figure 2.11.: Cubic B-spline Approximation. (a) Kernel. (b) Magnitude of the Fourier Transform.  Taken 
from (53). 

 

Often the precise value of the intensity at a point in the image is important and the 

choice of interpolation can be significant.  However, for many registration algorithms it is 

sufficient that the interpolated intensity is similar to the surrounding tissue and the choice 

of interpolation method is not critical as long as it is smooth or continuous.  Therefore, 

trilinear interpolation is most commonly used, due to its simplicity and speed, during the 

main registration calculations and then a more accurate interpolation method is applied 

when creating the final image.  

2.4.4 Similarity Functions 

Within the registration algorithm framework, the similarity function component is 

perhaps the most critical.  The similarity function quantitatively measures how similar or 

aligned images are after a spatial transformation has been applied where better-aligned 

images are given a larger similarity value.  Given a similarity function, an alignment 

between two images is achieved by systematically trying different transformations to find 

out which transformation results in the maximum similarity value.  The selection of 

similarity function is highly dependent on the target images – some similarly functions 

are only suitable for mono-modality registration or cannot handle the presence of 
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intensity gradients in the images. While there are many similarity functions, in this 

section several of the more popularly used similarity functions are reviewed. 

Mean Squares: The mean squares similarity function computes the mean squared pixel-

wise difference in intensity between two images.  
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Ai = the i-th pixel of Image A 
Bi = the i-th pixel of Image B 
N is the number of pixels  
 

The optimal value of the means squares similarity function is zero and poor alignment 

between images results in a large value. The means squares similarity function is simple 

to compute but relies on the assumption that intensity representing the same homologous 

point is the same in both images. Hence, its use is restricted to images of the same 

modality. Additionally, any linear changes in the intensity result in a poor alignment. 

Normalized Cross Correlation: The normalized cross correlation similarity function 

computes pixel-wise cross correlation between two images and normalizes it by the 

square root of the autocorrelation of each image. 
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Because of the -1 factor in the computation, the similarity function is optimal when its 

minimum is reached, when two images are identical the measure equals -1 and 

misalignments between the two images result in small measure values. The use of this 

similarity function is limited to images of the same imaging modality and it is insensitive 



24 
 

to multiplicative factors between the two images. However, it has a relatively small 

capture radius. 

Mutual Information Metric: The mutual information is computed from the joint 

probability distribution of the images’ intensity.  When two images are aligned, they 

should provide maximal information about each other and the joint probability 

distribution results in a high mutual information value.  The information contributed by 

each of the two images, denoted image A and image B, is entropy which measures the 

dispersion of a probability distribution.  The entropy measure of an image is defined as 

                                      (2.13) 

Here, pA is the marginal probability distribution, the likelihood of finding pixels of a 

given intensity throughout the imaging volume.  The joint entropy of the two imaging 

volumes A and B is defined as 

.                                               (2.14) 

The mutual information of two images can be defined as the degree of dependence 

between image A and image B given by the distance between the joint distribution, 

p(a,b), and the distribution associated with the case of complete independence, 

pA(a)·pB(b) 
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The advantage of using a mutual information similarity function is that the actual form of 

dependency between the two random variables does not have to be specified so that 
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complex mappings between two images can be modeled.  Therefore, the mutual 

information similarity is very robust and well suited for multi-modality registration. 

Typically, direct access to the marginal and joint probability densities of an 

image’s intensities is not available and the densities need to be estimated from the image 

data.  Parzen windowing, also known as kernel density estimation, can be used to 

estimate the densities by randomly sampling from the image to form a set S (55).  A 

density function is then constructed by super-positioning a kernel function, K(s), centered 

on the elements of S along the intensity of grey-level axis.  Mathematically the density 

estimate is given by: 
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Ns = the number of samples 
S = the set  
K = the kernel 
 

A number of functions can be used as the kernel, K, as long as they satisfy the 

requirements that they are symmetric, have zero mean, and integrate to one.  Gaussian, 

box and B-spline functions all meet these criteria and can be used as the kernel.  A 

smoothing parameter can also be used to scale the kernel function where the larger the 

smoothing parameter, the wider the kernel function and the smoother the density 

estimate.  Using the density estimate, P*, the entropy integral can be approximated by 

evaluating at discrete positions or bins uniformly spread within the dynamic range of the 

images.  The entropy is then approximated by summing over the bins.  

Normalized Mutual Information Metric:  Studholme et al. (56,57) proposed a 

normalized measure of mutual information to address some of the limitations of the 

mutual information metric due to the size of the overlapping part of the images to be 
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registered.  Studholme et al. demonstrated that with increasing mis-registration, the 

mutual information may actually increase when the relative areas of the object and 

background even out and the sum of the marginal entropies increases faster than the joint 

entropy.  The normalized measure of mutual information, which is less sensitive to 

changes in overlap is calculated by: 
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2.4.5 Optimization 

Due to the complexity of similarity functions, there is usually no direct calculable 

analytical solution available and so the best transform which aligns the two images but be 

found by searching or optimization.  In a registration algorithm, choosing an appropriate 

optimization is crucial because it is the most time-consuming part of the registration 

process and if the optimization gives inaccurate results then the overall alignment will be 

poor regardless of the similarity function or the transformation.  The optimization needs 

to be fast and robust to local maxima or minima.  While there are many optimizers, in 

this section will review on more popularly used optimizers.  For more details on 

optimizers, there are various resources (58,59) on optimization. 

Powell’s Direction Set Method: Powell’s direction set method optimizes each 

transformation parameter in turn and the result depends on the order of parameters being 

optimized.  It does not require the gradient of the similarity function to be computed but 

it is fairly sensitive to local minimum. 
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Downhill Simplex Method: The downhill simplex method only requires similarity 

function evaluations and does not require derivatives, but because it considers all degrees 

of freedom simultaneously, it is not very fast. 

Gradient Decent Optimizer: Starting from an initial guess for the transformation 

parameters, gradient decent is an iterative procedure that uses the partial derivatives of 

the similarity function, F(p), to construct and improve an estimate for the transformation. 

With each iteration, each transformation parameter (p) is updated by  

                                                            (2.18) 

 

λ is the learning rate which must be carefully chosen.  If too small p might take a long 

time to approach a maximum.  If chosen correctly p will converge toward the maximum 

relatively rapidly. Gradient decent optimization does not use a lot of storage and good for 

multidimensional problems.   

2.4.6 Summary 

Image registration algorithms require a transformation, a similarity function, and 

an optimization method.  In order to choose a successful registration algorithm, it is 

important to select the appropriate transformation, similarity function, and optimization 

method given the images to be aligned.  The transformation model selected must suit the 

registration problem.  If an exact match between two images is required, but the anatomy 

is different in the two images, then a high DOF transform is required.  However, if the 

images have the exact same anatomy then a rigid transform can be used because it 

enforces the correct constraints.  In general lower DOF transforms are less sensitive to 

image quality and are therefore more robust.  The selection of similarity function 
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determines the complexity of mapping between intensities. Some similarity functions 

only allow change in global brightness and contrast while others allow arbitrary intensity 

relationships.  The optimization method is the final component in a registration algorithm 

and primarily determines not only the speed and robustness of the algorithm, but also 

effects the alignment accuracy.  While state of the art registration algorithms are fairly 

robust, there is always the possibility that the resulting transformation is incorrect.  No 

registration algorithm can guarantee to find the best transformation every time and may 

occasionally find a local maximum instead of the global maximum.  Therefore, it is 

always advisable to visually check the registration results. 
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Chapter 3 
 

Three-dimensional rigid body registration of synchrotron radiation 
micro-computed tomography and micro-computed tomography 

trabecular bone images 
 
 
 
3.1 Introduction 

Bone fracture risk and bone strength are influenced by many complex factors 

including architecture, turnover, damage accumulation, and mineralization. Assessment 

of bone fracture risk is currently performed using areal bone mineral density (BMD) 

derived from Dual Energy X-ray Absorptiometry (DXA).  But BMD does not entirely 

predict bone fracture or adequately asses therapeutic interventions. The degree of 

mineralization in trabecular bone or tissue mineral density (TMD) may play a role in 

bone strength which cannot be accounted for by bone mineral density (BMD) or bone 

micro-architecture alone. TMD has been shown to influence tissue-level mechanical 

properties(29).  Increased mineralization has been linked to greater amounts of tissue 

damage(30) and hyper-mineralized sites may lead to crack initiation(31). Additionally the 

distribution of TMD within the bone tissue may also have an effect on tissue 

properties(32,33).   

    

               
Figure 3.1:  Proximal tibia specimen imaged with SRμCT (left) and  μCT (right). 
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Unfortunately most common techniques for evaluating TMD do not provide three 

dimensional information and are destructive.  These techniques include nanoindentation, 

Fourier-transform infrared spectroscopy, ashing, backscattered electron microsopy, and 

microradiography.  Non-invasive high resolution three dimensional assessment of TMD 

can be performed using synchrotron radiation microcumputed tomography 

(SRμCT)(36,37) (Figure 3.1).  However, SRμCT requires a high photon flux in a small 

area which can only be found at a synchrotron radiation (SR) facility. This limitation 

causes SRμCT to be inaccessible to most researchers due to the scarcity of these SR 

facilities.  Conventional desktop micro computed tomography (μCT) (Figure 3.1) are 

widely available and may be a promising alternative to SRμCT.  Several studies have 

begun to compare measures of bone micro-architecture(60) and TMD(61-63) between 

SRμCT and μCT. However more work is necessary to determine the appropriate 

mineralization calibrations and beam hardening correction algorithms as well as 

characterize volume-fraction dependent errors.  

In order to accurately compare TMD measurements and distribution between 

SRμCT and μCT, image registration between these two modalities is required.  

Registration of two different imaging modalities is called inter-modal image registration 

for which the normalized mutual information measure(64,65) was specifically developed.   

Accompanying the choice of a registration similarity measure is the choice of a method to 

interpolate the 3D data into different spatial positions. Interpolators have important 

implications on the registration accuracy and efficiency, and three commonly used 

interpolators, in the order of increasing complexity, include nearest neighbor, linear and 

b-spline interpolation. There are many possible combinations of registration measures 
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and interpolators, and none of these techniques were specifically designed for SRμCT 

and μCT data where the high periodicity of the trabecular micro-structure could result in 

mis-registration.  Furthermore, large data sets (i.e., >1GB data) will require efficient 

registration techniques, such as multi-resolution registration, and effective pre-

processing.  

The normalized mutual information similarity measure is a well-established 

method that is versatile for both intra- and inter-modal registration. Thus, it was 

hypothesized that the normalized mutual information measure in combination with a 

bspline interpolator for the final transform will provide accurate and efficient 3D image 

registration for high-resolution SRμCT to μCT trabecular bone images.  The purpose of 

this study was three-fold:  

1) To evaluate an established rigid registration approach (56,66) for aligning 3D 

SRμCT to μCT  images of bone micro-architecture and determine which 

interpolator best preserves trabecular bone edges.  

2) To evaluate TMD measurements between SRμCT and μCT using aligned 

images which allows for the direct comparison of TMD distributions. 

3) To examine smoothing of the μCT images and how it affects the TMD 

compared to SRμCT values. 

 
3.2 Methods 

3.2.1 Specimens 

Cylinders of trabecular bone (8mm diameter, 4mm length) were machined from 

specimens of the femoral head, vertebral body, and proximal tibia.  The 5 femoral head 

specimens were surgically excised during hip arthroplasty procedures at UCSF. The four 
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tibia specimens and five vertebral body specimens were harvested from human cadavers 

(National Disease Research Interchange, Philadelphia, PA).  

3.2.2 Image Acquisition 

Each specimen was imaged on a conventional polychromatic μCT system (μCT 

40 Scanco Medical AG., Buttisellen, Switzerland) and on beamline X2B of the National 

Synchrotron Light Source (Brookhaven National Laboratory, Upton, NY).  The μCT 

images were scanned at an  isotropic voxel size of 8μm  with a source potential of 70 kV 

and tube current of 114 μA.  The SRμCT images were scanned at an isotropic voxel size 

of 7.5 μm  with a 26 KeV beam. Phantoms were also scanned with both modalities for 

beam hardening correction and tissue mineral density (TMD) calibration. 

3.2.3 Registration and Interpolation 

Both the μCT and the SRμCT images were imported as signed 16 bit data files 

and the SRμCT images were resampled to a voxel size of 8μm.  Due to the size of the 

images (>1GB), the images were cropped to the diameter of the specimen (8mm) and the 

middle 100 slices (0.8mm).  The cropped SRμCT images were registered to the cropped 

μCT with Rview (56,66) registration program.  Rview performed the 3D rigid registration 

using a normalized mutual information metric, tri-linear interpolation, and a multi-

resolution hill climbing optimizer(56). The final transform, consisting of 6 transformation 

parameters (Δx, Δy, Δz, α, β, γ) which aligned the SRμCT image to the corresponding 

μCT image, was saved.  Here, Δx, Δy, Δz represent the required translational 

displacements in μm along the x-axis, y-axis, and z-axis respectively, while α, β, γ 

represent the required rotation angles in degrees around the x-axis, y-axis, and z-axis 
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respectively.  To evaluate the effect of the interpolators the final transform was applied to 

one of the SRμCT images the with three different interopolators; nearest neighbor 

interpolation, linear interpolation, and b-spline approximation.  The final transform was 

also applied to all of the SRμCT images with b-spline approximation.  Registration and 

interpolation were performed on a Sun workstation (Sun Ultra 40, AMD Opteron Dual 

Core processor, 2.4 Ghz, 8 GB RAM, Sun Microsystems, CA). 

A Gaussian filter (σ = 1, 3x3 kernel) was applied to the μCT, SRμCT, and the 

registered SRμCT to remove high frequency noise.  Fixed global threshesholds for each 

image were determined manually and verified through visual comparison to the original 

grayscale image.  Finally, all images were binarized in order to calculation the amount of 

voxel overlap between the μCT and SRμCT images.  Voxel overlap is defined as 

Noverlap/Ntotal where Noverlap and Ntotal represent the number of μCT voxels that overlap 

SRμCT voxels and the total number of SRμCT present in the 3D volume respectively.  

The voxel overlap was calculated between the μCT images and the orginal SRμCT as 

well as the registered SRμCT images.   

3.2.4 Evaluation of Tissue Mineral Density 

Images were transformed to TMD maps using linear regression determined by the 

phantom calibrations(63).  The μCT TMD maps are more affected by noise and imaging 

artifactsion, and have generally lower TMD concentrations.  In order to compare 

differences in image equality and evaluate the effect of smoother of the μCT images, the 

trabecular bone images of both modalities were normalized to zero mean and unit 

variance.  The μCT images were smoothed using a Gaussian(67) of increasing scales (σ = 

1,2,3,4, and 5).  The mean squared error (MSE) between the images was computed as a 
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function of smoothing over the region defined by the union of bone locations from the 

μCT and registered SRμCT images. 

 
3.3 Results 

The total time to register a μCT and SRμCT image and save the transformation, 

including uploading the images, is approximately 5 minutes. The parameters of the 

transforms that resulted from the registration algorithm are shown in Table 3.1. Rotations 

ranged from -67.1o to 203.37o and translations ranged from -879.1μm to 570μm. 

 

Table 3.1: The output of the registration algorithm, a transform with three translations and three rotations 
for all 14 specimens. 

  
Specimen 
Number 

ΔX  
(μm) 

ΔY  
(μm) 

ΔZ  
(μm) 

α 
(o) 

β  
(o) 

γ  
(o) 

Proximal Femurs 1 418.0 572.0 124.0 0.48 1.91 24.10 
  2 43.6 17.0 164.0 1.91 179.05 80.95 
  3 -11.3 5.7 -862.4 0.00 -0.34 203.37 
  4 0.0 -45.3 -879.1 -1.43 -0.48 87.61 
  5 -24.0 0.0 352.0 -1.91 0.95 -58.09 
Proximal Tibiae 6 -36.0 36.0 -400.0 0.49 180.00 -39.27 
  7 -80.0 -24.0 108.0 2.39 182.39 -67.14 
  8 8.0 12.0 476.0 -0.48 1.91 -22.14 
  9 -36.0 0.0 72.0 -0.95 184.30 25.43 
Vertebral Bodies 10 -32.0 -60.0 244.0 0.48 -0.95 15.52 
  11 -36.0 68.0 52.0 0.67 178.65 145.95 
  12 -276.0 -100.0 -340.0 -5.25 -1.43 -0.95 
  13 20.0 -64.0 -280.0 0.48 0.00 100.43 
  14 -88.0 -20.0 -408.0 1.35 180.00 49.33 

 average -9.3 28.4 -112.7 -0.13 77.57 38.94 
 st.dev 144.6 162.4 423.5 1.9 92.7 78.2 

 
 
 

The computation time for nearest neighbor interpolation and linear interpolation 

was less than 60 seconds, while for b-spline approximation the computation time was on 

average 30 minutes. In Figure 3.2 the effects of the interpolation can be assessed visually.  

The linear interpolator appears to smooth the pixel intensities the most and the nearest 

neighbor interpolator exaggerates the edges of the trabeculae.  The Bspline approximator 



35 
 

is able to preserve the distribution of pixel intensities with little smoothing and maintain 

the integrity of the trabeculae edges. Table 3.2. shows the mean and standard deviations 

of a slice selected at random for each of the interpolators and the SRμCT original image.    

 
Table 3.2: Average pixel grey values for a single slice 

Interpolation Method 
Average 
Pixel 
Value 

Standard 
Deviation 

Original SRμCT image 652.5 32 
Nearest Neighbor 
Interpolation 

651.6 36 

Linear Interpolation 653.1 33.6 
Bspline Approximation 652.7 34.1 

 
 
 

Figure 3.2:  The effects of the gray-level interpolation can be assessed visually with a colormap. 
Registered SRμCT images with linear interpolation, nearest-neighbor interpolation, and b-spline 
approximation for the final transform are shown. 
  
 

The success of the registration was evaluated both qualitatively and 

quantitatively.  Visual examination of registration results showed improved voxel overlap 

between the μCT and SRμCT images. Figure 3.3 is an example of the close alignment of 

between the μCT and SRμCT image of one specimen.  The improved image alignment 

was also assessed quantitatively by calculating the improvement in voxel overlap.  Figure 
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3.4 shows the considerable improvement in the percentage of voxels that overlap between 

the μCT and SRμCT with registration.  With registration there was a 49% - 70% 

improvement in the percentage of voxels that overlap. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3:.  An example mid-slice from μCT (blue) and  SRμCT (red) before (left) and after (right) 
registration overlaid onto each other with green representing the regions of μCT and SRμCT overlap. 
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Figure 3.4: Comparison of voxel overlap before and after 
image registration for the fourteen 3D trabecular bone 
specimen images. 
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The MSE between SRμCT and μCT images reaches a minimum at σ = 2 (figure 

3.5). The MSE of the normalized images has a mean of 0.38, the MSE of the normalized 

images when the CT image has been smoothed with a Gaussian with σ = 2 is 0.22. 

 

Figure 3.5: Mean MSE between normalized images as a function of μCT smoothing for the 14 specimens. 
 

Smoothing with σ = 2 was then applied to the TMD maps (figure 3.6) and the 

improvement in TMD correlation between μCT and SRμCT was determined (figure 3.7). 

 

Figure 3.6: Example image where the region within the box is examined in greater detail Top left: part of 
SR image, top right: same part of CT image. Bottom left: SR image smoothed with a Gaussian (σ = 2), 
bottom right: CT image smoothed the same way.  Note how after smoothing similar patterns can be 
visualized in both images. 
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Figure 3.7: TMD correlation between SRμCT and μCT with and without Gaussian smoothing  (σ = 
2).***p<0.001 
 

Figure 3.8 shows TMD topography maps for one slice of one of the specimens for 

the registered SRμCT and μCT images.  The μCT was Gaussian smoothed (σ = 2) and 

then adjusted according to the linear regression established in figure 3.7. By visually 

inspecting the images in Figure 3.8, the μCT images with Gaussian smoothing and 

adjusted values appear more similar than μCT images without linear regression.   

 

Figure 3.8: The registered SRμCT (left), the μCT (middle) TMD topography maps for one slices of 
corresponding structures.  Each color corresponds to a level of TMD in mgHA/cm3 specified.  The μCT 
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TMD topography map after smoothing and adjusting the values according to the linear regression 
established in figure 3.7 (right).   
 
 
3.4 Discussion and Conclusion 

The degree distribution of trabecular bone tissue mineralization (TMD) has been 

recently linked to bone mechanical strength and fracture risk(29-33).  μCT and SRμCT 

are both imaging methods which allow for the three dimensional evaluation of TMD.  

However, more work is necessary determine the accuracy and reliability of TMD 

measurements. In order to accurately compare TMD measurements and distribution 

between SRμCT and μCT, it is crucial to match the 3D volume analyzed.  Any mismatch 

between the volumes may result in large variations in mineralization measures due to the 

heterogeneity of bone tissue mineral.  In this work, we have demonstrated the feasibility 

and efficiency of the first fast multi-modal registration of 3D trabecular bone images.  

The alignment of these SRμCT and μCT images will ensure accurate TMD comparisons 

between the modalities. 

In mineralization studies, the grayscale value of the trabecular bone in an image is 

mapped to a mineralization value.  A calibration phantom containing different 

concentrations of K2HPO4 is imaged under identical experimental conditions and is used 

to convert the grayscale values to mineralization (hydroxyapatite concentration in 

gm/cm3). It is important to ensure that the different interpolation methods during image 

transformation do not severely effect grayscale values.  In this study, we demonstrated 

that b-spline approximation is best able to preserve grayscale values.  Linear interpolation 

smoothed the grayscale values and Nearest Neighbor created edge effects.  While b-

spline approximation may still smooth the grayscale values slightly, mineralization 

studies typically smooth images with a median filter(36) or Gaussian filter(63) prior to 
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mineralization quantification to reduce image noise.  The disadvantage of using a b-

spline approximation remains processing speed.  In our studies, we are able to 

compromise speed, but if more samples need to be processed within the same about of 

time, it may be better to use a linear interpolator.   

 The image registration algorithm proposed in this study was able to 

successfully align SRμCT and μCT images.  Voxel overlap measures and visual 

inspection both demonstrated the successful alignment.  Although greatly improved, 

percentage voxel overlap between the registered SRμCT and μCT was still less than 

100%.  This is due to specimen non-rigid deformation between scans during handling and 

transport.  Additionally bean hardening artifacts cause geometric non-uniformity. 

The SRμCT and μCT images seem to convey similar TMD information although 

the μCT images are noisier. Applying Gaussian smoothing on a scale σ = 2 reduces the 

noise in the μCT images while still preserving sufficient image information so that 

correlation between SRμCT and μCT can be improved. The correlation between mean 

SRμCT and μCT TMD values was highly improved with smoothing of the μCT images (r 

= 0:85; p < 0.0002) compared to without smoothing (r = 0:45; p < 0.2).  Additionally, by 

applying the Gaussian smoothing and applying a TMD value adjustment according to the 

linear regression, the TMD values and distribution of the μCT image visually appeared 

more similar to the SRμCT image.  The results suggest that noise removal applied to μCT 

images can contribute to increased reliability of TMD estimates. Future work is needed to 

further evaluate TMD calibration methods and different beam hardening corrections for 

μCT images. 
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Registration is able to ensure accurate image alignment and therefore eliminate 

sources of error associated with the imprecision of unmatched volumes. This work 

demonstrated the feasibility of using a normalized mutual information based method to 

automatically register μCT and SRμCT image of trabecular bone.  Additionally a direct 

comparison between SRμCT and μCT trabecular bone images from 14 specimens was 

performed and a smoothing strategy was established. 
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Chapter 4 
 

In vivo Evaluation of the Presence of Bone Marrow in Cortical Porosity 
in Postmenopausal Osteopenic Women 

 
 
4.1 Introduction 

Cortical bone has a complex structure that plays an important role in bone 

strength(20).  Structure and mechanical properties of cortical bone have been reported to 

change due to age(23,24), gender(25), and osteoporotic status(26).  Additionally, the 

improvement in cortical thickness and cortical porosity due to anti-resorptive therapies 

highlights the importance of cortical bone in overall bone quality maintenance(27,28). 

Recently studies have focused on porosity of the cortical bone(68-71). Macro-

porosity has been defined as porosity with a diameter greater than 0.385 mm and is 

reported to increase with age(69).  While the exact mechanism behind the formation of 

cortical macro-porosity is unknown, the existence of large cortical pores has been 

attributed to resorption spaces, merging of haversional canals, reduction in the rate of 

closure of haversion canals, and a clustering of osteons(68,72-75).  

 Cortical porosity has a significant impact on mechanical properties of cortical 

bone(76-79).  Yeni et al. reported that femoral and tibial cortical bone toughness 

decreases with increasing cortical porosity (76).  Additionally Young’s modulus, a 

measure of stiffness, and the ultimate stress of cortical bone have both been shown to 

decrease with increasing porosity(77-79).  Therefore, characterizing cortical porosity and 

enhancing our understanding of the formation of cortical porosity will contribute to the 

ability to estimate bone strength and predict fracture risk. 

Hydraulic strengthening (HS) of bone refers to the theory that pressure due to 

bone fluids found in the cavities of bone might hydraulically strengthen bone by reducing 
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bone stresses during dynamic loading.  If bone cavity fluid pressures are substantial, they 

may increase the load bearing capacity of bone.  Several studies have estimated the fluid 

flow contribution or HS effect on trabecular bone mechanical properties (80-82) and 

cortical bone apparent modulus(83).  However, the precise nature (viscosity and 

compressibility) of bone fluid present in cortical porosity is unknown(84) and accuracy of 

HS models depend greatly on defining appropriate bone pore fluid properties(83,85).  

The nature of the bone fluid may affect the bone’s ability to withstand dynamic loading, 

therefore a more precise characterization of cortical bone fluid may help improve the 

accuracy of HS models. 

High-resolution peripheral computed tomography (HR-pQCT) is an emerging 

imaging technique which achieves an isotropic nominal resolution of 82μm, allowing for 

visualization of cortical macro-porosity in vivo at peripheral sites such as the tibia and 

radius(86,87).  Magnetic Resonance (MR) imaging is an imaging technique that allows 

visualization of soft tissues such as bone marrow.  It is our hypothesis that by combining 

these two imaging techniques, visualization of bone marrow within cortical porosity is 

possible.  Our goal is to observe the amount of cortical porosity that contains bone 

marrow in post-menopausal osteopenic women and determine if there is a relationship 

between pore size and the existence of bone marrow. 

 
4.2 Methods 

4.2.1 Subjects 

The subjects in this study were 52 postmenopausal women (age 56+3.7) who 

were recruited for a double-blind study investigating the longitudinal effects of 

alendronate versus placebo on bone microarchitecture.  Only women between the ages of 
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45 and 65 yr that had been postmenopausal for at least 1 year but not more than six years 

were included.  They were required to be defined as osteopenic by the WHO criteria(88) 

and had no history of disease or treatment known to affect bone metabolism.  The study 

protocol was approved by the UCSF Committee on Human Research and all women 

provided written informed consent.  

Images in this study were taken from the baseline time-point prior to alendronate 

treatment. Imaging using both HR-pQCT and MR was attempted on all 52 subjects.  

However, three of the subjects could not tolerate the prone position required for the MR 

radius scan and one tibia MR image was excluded from the study due to motion artifact 

and poor image quality.  Therefore this study analyzed radius images of 49 subjects and 

the tibia images of 51 subjects.  

4.2.2 MR Imaging 

MR images were acquired on a 3T (GE Signa) MR scanner.  Images of the distal 

radius were acquired with the subject in a prone position using a transmit receive 

quadrature wrist coil (Mayo Foundation for Medical Education and Research) and images 

of the distal tibia were acquired with the subject in a supine position using a four channel 

dual paddle coil (Nova Medical).  Images were obtained with a balanced steady state free 

precession (bSSFP) pulse sequence(42).  Pulse sequence parameters were 512x384 

matrix, 60o flip angle, 122 Hz/pixel BW, 8cm FOV. The tibia images had a 16.8-17.8/6.5 

ms TR/TE and scan time of 15 minutes and the radius images had a 14.4-15.21/3.3-3.9 

ms TR/TE and scan time of 10 minutes.  The image acquisition resulted in an image 

resolution of 156x156x500μm.  Images were originally acquired with optimal scanning 
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parameters for trabecular bone quantification.  However the bSSFP sequence also has 

superior signal-to-noise ratio and maximizes bone marrow signal(42,44).   

4.2.3 HR-pQCT Imaging 

HR-pQCT images of the tibia and radius were acquired on an XtremeCT in vivo 

scanner (Scanco Medical AG) with a 60 kVp source potential, 900μA tube current, and 

100ms integration time.  An image with 110 slices, beginning 22.5 mm and 9.5mm 

proximal to the endplate for the tibia and radius respectively, and with an isotropic 

nominal resolution of 82μm resulted from the 3 minute image acquisition.  Immediately 

after image acquisition, the images were visually evaluated for motion artifacts and scans 

with obvious motion artifacts were repeated.   

 

 

Figure 4.1:  Representative tibia (A-C) and (D-F) radius images.  A,D) HR-pQCT image B,E)Registered 
MR image C,F) Overlay between HR-pQCT (green) and MR image with cortical porosity containing bone 
marrow highlighted with red arrows.  
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4.2.4 MR and HR-pQCT  Image Alignment 

Visualization of bone marrow in cortical porosity identified in the HR-pQCT 

requires precise image alignment between the MR and HR-pQCT image.  Image 

registration is the process of finding a transformation that aligns the anatomical regions 

of two images.  Because bone is a rigid structure, a global rigid transform applied to the 

MR image aligning it to HR-pQCT image is desired.   A registration algorithm based on 

mutual information has been shown to efficiently determine accurate transformations 

between different imaging modalities based on the joint probability distribution of their 

intensities(89,90).  For each of the image pairs, Rview(66), a robust registration 

algorithm based on a normalized mutual information measure, was used to determine a 

rigid transformation consisting of three Euler angles and a translation vector.  This rigid 

transformation was then applied to the MR image, using b-spline approximation for 

interpolation, to align and resample the MR image to the HR-pQCT image.  

Transformation and interpolation was not performed on the HR-pQCT image to ensure 

accurate measurement of cortical bone pore sizes.  The registration and transformation 

was performed on a Sun workstation (Sun Ultra 40, AMD Opteron Dual Core processor, 

2.4 Ghz, 8 GB RAM, Sun Microsystems, CA).  The computation time for the registration 

was approximately one minute and for the application of the transformation was 

approximately 5 minutes. 

The robustness of the registration was assessed using a technique similar to that 

presented by Studholme et al.(91) using one of the tibia and one of the radius image sets.  

We defined a series of 30 mis-alignments corresponding to a translation of 5mm and a 

rotation of 5o to simulate different starting values.  Each of the 30 mis-alignments was 
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determined by randomly selecting a point on the surface of spheres in translational and 

rotational parameter space.  Each mis-alignment was selected as the initial starting guess 

for the registration.  The resulting 30 transforms were recorded and applied to each pixel 

to calculate the root mean square error for each pixel in the volume. 

4.2.5 Cortical Porosity Analysis 

The HR-pQCT data were segmented and the periosteal surface was identified 

using evaluation routines provided by the manufacturer.  A semi-automated edge-

defining algorithm was applied to the original grayscale image to identify the periosteal 

surface. Then a previously described post processing protocol (92,93) was performed in 

which a low-pass guassian filter (σ = 2.0, support =3) and then a fixed global threshold 

was applied to identify the cortical compartment and segment the bone from background.    

Code developed using MATLAB identified the cortical porosity in the HR-pQCT 

image and determined the existence of bone marrow in the aligned MR image.  The 

process is depicted in Figure 4.2.    To locate cortical porosity a two-dimensional 

mathematical morphologic hole filling algorithm(94) identified groups of connected 

components within the cortex.  The area of each connected component (each cortical 

pore) was determined and the percent of cortical porosity for each slice was calculated by 

dividing the total area of the connected components by the entire cortical area (area of the 

cortical bone plus area of cortical porosity).  The total number of cortical pores, the area 

of each cortical pore, and the average cortical pore area for each subject was recorded.  

MR images were segmented to identify bone marrow using a histogram thresholding 

technique(95) generally implemented to identify bone marrow in the trabecular region.  

Segmented HR-pQCT images with cortical porosity identified were then subtracted from 
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the segmented and aligned MR images to highlight cortical porosity filled with marrow.  

The number of cortical pores with marrow, the size of area cortical pore with marrow, 

and the average cortical pore area with marrow was recorded for each subject.  The 

percent of cortical porosity filled with marrow was calculated by dividing the number of 

cortical pores with marrow by the total number of cortical pores for each subject.   

 

 

Figure 4.2:  Diagram demonstrating image processing steps.  The HR-pQCT image is smoothed and 
thresholded to identify the cortical compartment. The bone marrow in the MR image is segmented using 
histogram thresholding.  The segmented MR image and the cortical region of the segmented HR-pQCT 
image are then combined. 
 

4.2.6 Statistical Analysis 

The Shapiro-Wilk W test was used to test the normality of the data and  

nonparametric methods were employed for all analyses of measurements that were not 

normally distributed.  The significance of differences in the measurements between tibia 

and radius were determined using Wilcoxon signed rank test with significance set at p< 

0.05.  To examine relationships between measurements, linear regression analyses were 

performed and Spearman’s coefficient, r, was obtained for the correlation. The changes in 
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measurements along the length of images regions was determined using Pearsons 

correlations and paired Student’s t-tests or Wilcoxon signed rank tests where appropriate. 

 

 
4.3 Results  

By visual assessment registration of the MR image to the HR-pQCT image was 

successful for all of the tibia and radius image datasets. See Figure 4.1 for a 

representative tibia and radius example.  For the tibia, mean translations in x,y,z were 

0.10mm+1.61, -2.75mm+2.83, 3.06mm+2.92 and mean rotations in x,y,z were 

5.16o+3.55, -1.32o+2.57, -2.60o+6.49.  For the radius, mean translations in x,y,z were 

5.00mm+4.92, -4.09mm+4.47, -2.13mm+2.91 and mean rotations in x,y,z were -

4.79o+5.35, 174.57o+3.80, 77.97o+8.93.  The large rotations in y and z for the radius are 

due to the different positioning required between HR-pQCT and MR scans.  Therefore all 

registrations for the radius were initialized with at least 180o in y and 80o in z.  The 

results from the assessment of the robustness of the registration showed that the RMS 

error for initial misalignments of 5mm and 5o ranged from 0.029mm to 1.892mm (mean 

0.420mm+0.912) with the larger RMS errors at the periphery of the image volume.  

Therefore, as long as the initial mis-alignment was within 5mm and 5o the registration 

was successful within approximately 0.420mm.  However, ten of the tibia sets and 

twenty-one of the radius sets had initial mis-alignments beyond 5mm and 5o and 

registration was repeated with manual starting estimates to ensure an initial mis-

alignment within the acceptable range for successful registration. 

Cortical porosity was evident in all of the HR-pQCT images.  The histograms for 

all subjects’ percent cortical porosity, total number of cortical pores, and average cortical 
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pore area are shown in figure 4. The total number of cortical pores detected within each 

subject for the tibia ranged from 2805 to 13272 with a mean of 8027+2567 and the radius 

ranged from 397 to 4110 with a mean of 1615+783.  The average percent of cortical 

porosity for all subjects for the tibia was 4.36%+1.6 and for the radius was 1.6%+0.8.  

The average cortical pore area for each subject is shown in figure 4.3 and the distribution 

for all  cortical pores areas observed are shown in figure 4.4.  The average area of the 

cortical pores for the tibia was  0.0585mm2+0.08 and for the radius was 

0.0487mm2+0.06.  

 

 
Figure 4.3:  Histograms for percent cortical porosity, total number of cortical pores for each subject, and 
average cortical pore area for all tibiae (top row) and radii (bottom row).  All measurements are 
significantly different in the tibia than the radius (p<0.001).   
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Figure 4.4:  Histograms of the area for all of the cortical pores identified and all cortical pores with 
marrow for all tibiae (top row) and radii (bottom row).  
 
 

Cortical porosity was observed both containing and not containing bone marrow 

in each subject in both the tibia and radius.  Figure 4.5 shows histograms for all subjects’ 

percent cortical porosity containing marrow, the number of cortical pores containing bone 

marrow, and the average area of cortical pores containing marrow. The number of 

cortical pores containing marrow for the tibia ranged from 152 to 2145 with a mean of 

841+734 and for the radius ranged from 122 to 699 with a mean 266+108.  The average 

percent cortical porosity containing marrow for all subjects for the tibia was 10.0%+6.3 

and for the radius was 19.1%+8.9. The distribution of the areas of all cortical pores 

containing marrow observed are shown in figure 4.4 and the average cortical pore area 

for each subject is shown in figure 4.5.  The average area of cortical pores containing 

marrow for the tibia was 0.155 mm2+0.1 and for the radius was 0.093 mm2+0.1. 
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Figure 4.5: Histograms for percent cortical porosity containing marrow, total number of cortical pores 
containing marrow, and average cortical pore area containing marrow for all tibiae (top row) and radii 
(bottom row).  All measurements are significantly different in the tibia than the radius (p<0.001).  
 
  
 

The mean area of cortical pores containing marrow was significantly higher than 

the mean area of all the cortical pores (p<0.001) for both the radius and tibia.  The mean 

area of all cortical pores within a subject ranged from 0.039mm2 to 0.119 mm2 in the tibia 

and from 0.032 mm2 to 0.080 mm2 in the radius  while the mean area of cortical pores 

containing marrow ranged from 0.057mm2 to 0.314mm2 in the tibia and from 0.027mm2 

to 0.238mm2 in the radius. However there was no relationship between the percent of 

cortical porosity and the percent cortical pores that contained marrow (p>0.05) nor the 

average cortical pore area and the percent of cortical pores containing marrow (p>0.05). 

In figure 4.6 the average number of cortical pores and the average number of 

cortical pores with marrow are plotted to show variations as a function of distance from 
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the joint line (from distal to proximal).  There was an increase in both the number of 

cortical pores and the number of cortical pores containing marrow with distance along the 

shaft for the tibia (p<0.001) but no relationship was determined for the radius. Figure 4.7 

visually demonstrates the variations in cortical porosity in one subject in which there are 

fewer cortical pores in the most distal slice than in the most proximal slice.  Additionally 

there was no significant increasing or decreasing trend for cortical pore area variations in 

the radius or the tibia (p>0.005).  

 
Figure 4.6:  Plots of the average number of cortical pores  with and without marrow with distance from the 
joint line (distal to proximal) for the radius and tibia.  There was an increasing trend determined for the 
tibia (p<0.001) and no trend found for the radius(p>0.05). 
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Figure 4.7:  Axial images starting with the most distal slice through the most proximal slice in the analysis 
region for one subject.  The MR images depict cortical and travecular bone as signal void and marrow as 
higher in intensity, while the HR-pQCT depict bone as higher in intensity.  The cortical porosity map 
shows cortical bone in red, cortical pores without marrow in yellow, and cortical pores with marrow in 
blue. 

 

 
4.4 Discussion and Conclusion 

In this study, we examined cortical porosity using images of both HR-pQCT and 

MR of the distal tibia and distal radius of postmenopausal osteopenic women.  All HR-

pQCT images contained cortical porosity in both the tibia and the radius.  By combining 

the HR-pQCT and MR images, the data revealed that all subjects had cortical pores 

which both contained and did not contain bone marrow.  The data suggest that cortical 

pore spaces may contain different components. This implies that there may be more than 

one mechanism for the development of cortical porosity and more than one type of bone 

fluid present in cortical pores.       

While most previous studies have focused on ex vivo examinations of the cortical 

porosity of the femoral shaft (68,69,72), this study is the first study to examine cortical 
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porosity of the tibia and radius using two complimentary in vivo imaging techniques.  

Jordan et al. (72) found an average percent cortical porosity of 10.72%+4.2 in femoral 

shaft biopsies using histology sections. Similarly Cooper et al.(68) reported an average 

percent cortical porosity of 9.82%+9.19 in femoral shaft specimens from females using 

micro-CT imaging and morphological analysis.  The percent cortical porosity in this 

study is lower, 4.36%+1.6 for the tibia and 1.6%+0.8 for the radius.  The reason for the 

difference is likely due to the difference in imaging and analysis methods, anatomical 

region analyzed, or fracture status.  Histology sections have a much higher resolution 

than HR-pQCT and can therefore visualize smaller cortical pores, which accounts for the 

higher porosity measurement using histology sections. The smallest pore area that can be 

measured on the HR-pQCT is 0.0067 mm2 due to resolution constraints, while cortical 

porosity at the scale of lacunae and canaliculi can have diameters as small as 10 µm and 

0.5µm respectively(96,97).  Additionally, the femur, the tibia, and the radius have 

different mechanical environment and may therefore have different metabolic activities 

which may illustrate why the radius has a lower percent of cortical porosity.  Cortical 

porosity in this study was determined from in vivo images of postmenopausal women 

who had not sustained a fracture while previous studies determined cortical porosity from 

fractured femoral neck biopsies of women or femoral midshaft specimens of male 

cadavers.  This difference in fracture status or gender may impact the percent of cortical 

porosity observed. 

Alendronate and risedronate are second and third-generation bisphosphonates that 

have been shown to reduce hip fractures in postmenopausal women(16,98,99).  Studies 

have demonstrated that alendronate inhibits osteoclastic bone resporption, reduces bone 
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turnover, increases hip BMD, produces more uniform mineralization in cortical bone, and 

decreases cortical porosity(16,28,98,100).  Roschger et al.(28) observed a 46% reduction 

in cortical porosity in an alendronate-treated group compared with a placebo-treated 

group which highlights the importance of cortical porosity in overall bone quality 

maintenance. Similarly Borah et al.(101) recently reported a 18 to 25% reduction in 

cortical porosity in a risedronate-treated group compared with no reduction in a placebo-

treated group.  Determining how cortical porosity changes in response to aldendronate 

treatment is important in assessing drug efficacy.  However, the images in this study were 

acquired prior to alendronate treatment and longitudinal changes in the amount of cortical 

porosity and the visualization of bone marrow within cortical pores will be assessed after 

follow-up analysis is performed.  

Cortical porosity was visualized with and without bone marrow in every subject 

in this study.  There was a large range in the percent of cortical porosity with bone 

marrow across subjects.  While the amount of cortical porosity ranged from 2.1% to 9.2% 

in the tibia and 0.4% to 5.0% in the radius across all subjects, the range of percent of 

porosity containing marrow was much higher, 1.6% to 21.0% in the tibia and 4.96% to 

41.75% in the radius.  This suggests that while the amount of cortical porosity did not 

vary greatly between subjects, the type of cortical pore, containing bone marrow versus 

not containing bone marrow, varied highly between subjects.  Additionally, the number 

of cortical pores containing bone marrow did not depend on the percent of cortical 

porosity and pores for all visible cortical pore areas (>0.0067 mm2) were observed with 

and without bone marrow (figure 4.4).   The regional variation in tibia cortical porosity 

observed in this study (figure 4.6) may have considerable impact when assessing cortical 
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porosity using a single slice technique and also demonstrates the importance of consistent 

analysis regions in longitudinal or cross-sectional studies investigating cortical porosity.    

Bone fluids within the bone cavities of the cortical bone have been assumed to be 

homogeneous across all cavities(84).  Although the viscosity and compressibility of the 

bone fluid has never been measured, it is assumed to behave like salt water(83,84,102).  

However, this study suggests there may exist variability in bone fluid composition.  Since 

the viscosity and compressibility of the bone fluid impact the hydrostatic strengthening 

(HS) of cortical bone(83,85), knowledge of bone fluid composition and distribution may 

help improve the accuracy of HS models and further help predict bone strength. 

Bone marrow consists of both hematopoietic (red) and fatty (yellow) components.  

Red marrow consists of approximately 40% water, 40% fat and 20% protein while yellow 

marrow consists of approximately 15% water, 80% fat, and 5% protein(103).  Normal 

physiological conversion to the adult pattern, conversion from red to yellow marrow, 

completes by the age of 25 at which time red marrow is predominantly concentrated in 

the axial skeleton and yellow marrow is predominately concentrated in peripheral regions 

such as the tibia and radius(104,105).  When imaging bone marrow using MR, fat is the 

predominate contributor due to its short T1 relaxation time compared with the longer T1 

relaxation time of water(106).  Due to this difference, yellow marrow appears much 

brighter on an MR image with T1 weighting(107).  The assumption for peripheral 

regions, such as the tibia and radius, is that all marrow present is yellow marrow.  

However, the possibility that red marrow may be present cannot be eliminated and exact 

percentage of fat within the marrow is unknown, as well as the amount of saturated, 

monounsaturated, and polyunsaturated triglycerides.  Proton MR spectroscopy is a 
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promising tool for determining the composition of bone marrow(108,109) and Ultrashort 

TE (UTE) pulse sequences have been shown to visualize tissues with a very short T2 

relaxation component(110,111) which may be helpful in future studies to determine the 

exact constituents of the bone marrow fluid in cortical pores.  In this study, cortical pores 

visualized without bone marrow may be likely to contain bone fluid with a high water 

content and therefore a longer T1 which results in a loss of MR signal. However, further 

studies are warranted to fully explain the loss of MR signal observed in many of the 

cortical pores. 

Cortical pores containing bone marrow are not likely to be large haversion canals 

with blood vessels but rather resorption spaces that been infiltrated by bone marrow. 

Most likely these are resorption spaces in the cortex that have broken the endosteal 

boundary allowing the infiltration of bone marrow.  While this study evaluated cortical 

porosity using two dimensional techniques, a three dimensional analysis of the cortical 

porosity may clarify whether cortical pores containing marrow connect to the trabecular 

bone marrow compartment. Additionally, a previous study has shown that cortical bone 

loss may vary spatially(112).  A future direction may be to assess the primary location of 

cortical porosity and the spatial distribution of cortical pores containing marrow versus 

cortical pores not containing bone marrow.  Previous studies have demonstrated that age 

is highly correlated with increased cortical porosity(68,113-115), therefore an additional 

future direction may be to assess the relationship between age and the percent of cortical 

pores containing marrow.   

There were several limitations in this study related to imaging and post-

processing restrictions.  Davis et al. (93) describe inaccuracies of the cortical bone 
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segmentation which is highly dependent on the gaussian blurring step to smooth the finer 

trabecular bone structure.  This dilution may cause thin segments of the cortex and highly 

porous regions of cortical bone to be identified as trabecular bone. Therefore, cortical 

pores in this study that were located inside thin segments of the cortex, within highly 

porous regions, or closer to the endosteal surface may have been excluded and this study 

may underestimate the actual amount of cortical porosity.   Additionally, MR images are 

acquired at a lower resolution than the HR-pQCT images and then resampled to match 

the HR-pQCT image resolution.  Therefore due to partial volume effects, marrow in 

some pores may not have been visualized while marrow in cortical pore sizes less than 

0.024 mm2 (the resolution of the original MR image) may be exaggerated.  However, we 

propose that our technique is able to successfully visualize the presence of bone marrow 

in the majority of cortical pores and within these cortical pores, estimate the number and 

size of cortical pores containing bone marrow.  

This promising first study observes cortical porosity in vivo in postmenopausal 

osteopenic women and combines data from two different imaging modalities, HR-pQCT 

and MRI to further study the nature of cortical porosity.  Data suggest that cortical 

porosity in the distal tibia and distal radius is prevalent in this population and that the 

constituents of cortical pore fluid may vary.  The number of cortical pores containing 

bone marrow varies between subjects but is not dependent on the amount of cortical 

porosity.  Future investigation will be required to fully examine and interpret the 

observations in this study and to determine whether the spatial distribution of bone 

marrow in cortical porosity has an impact on bone strength. 



60 
 

Chapter 5 
 

 Three-dimensional image registration of MR proximal femur images 
for the analysis of trabecular bone parameters 

 
 

 
5.1 Introduction 
 

The proximal femur is the most important site for osteoporotic fractures.  After 

six months 85% of osteoporotic hip fracture patients need assistance with walking 

(cannot walk across a room without help) and 20% of patients die within one year(116).  

Assessment of osteoporosis at the proximal femur is typically performed using areal bone 

mineral density derived from dual energy x-ray absorptiometry (DXA); this technique 

measures the combined mineral density of both cortical and trabecular bone(117). To 

better characterize early bone loss and increased fracture risk a noninvasive technique to 

assess trabecular architecture would be desirable. However, until recently there existed 

no method without ionizing radiation to access in vivo, non-invasively, three dimensional 

trabecular bone structure of the proximal femur.  Previously, high-spatial resolution MR 

imaging of trabecular bone was restricted to peripheral sites, and deep-seated regions of 

the skeleton such as the proximal femur were limited by signal to noise ratio.  Due to 

advances in MR pulse sequence development and higher magnetic field strength (3 

Tesla), recent studies have been conducted which investigated the feasibility of using 

high-spatial resolution MRI to evaluate trabecular bone structure of the proximal femur 

and promising results were found(118),(119).  If bone loss or response to therapy is 

monitored in a longitudinal study, consistent positioning between baseline and follow-up 

proximal femur scans is required but it is very difficult due to the complex femoral shape. 

Primary sources of error for MR-derived trabecular bone parameter reproducibility were 
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previously identified in the distal radius and the distal tibia as involuntary patient motion 

and failure to accurately match the analysis volumes(120).  Despite the complex femoral 

shape, the same region must be consistently scanned and analyzed between baseline and 

follow-up image acquisitions.   

Image registration may be able to ensure correct volume of interest (VOI) 

selection for analysis.  Techniques for image registration of MR musculoskeletal images 

have been reported in recent scientific literature(121,122), however they are not fully 

automatic since they involve image segmentation. The considerable amount of textural 

information and limited contrast inherent in high-spatial resolution trabecular bone 

images makes segmentation time consuming and difficult making the registration 

technique prone to fail. Investigators have implemented a mutual information registration 

technique(89,90) which requires no segmentation for the registration of brain MR 

images(123).  This same technique was first adapted to make automatic registration 

possible for trabecular bone images of the distal tibia(124) and later successfully 

modified to incorporate a cross correlation metric(125).   

Image registration involves transforming an image, which requires interpolation 

of the voxel intensities to produce a new image.  Since gray-value errors are commonly 

introduced by interpolation, it is also necessary to evaluate the effects of interpolation on 

the measurement of trabecular bone parameters.   

Thus the purpose of this investigation was fourfold:  

(i) to evaluate the feasibility of proximal femur automatic image registration in 

short-term and long-term studies  

(ii) to compare the effects of three methods of gray-level interpolation on MR-
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derived trabecular bone parameters 

(iii) to determine the effect of misalignment of VOIs between repeat scans on 

MR-derived trabecular bone parameters 

 (iv) to assess the difference in the coefficient of variation (CV) between MR-

derived trabecular bone parameters determined from follow-up images with 

and without automatic image registration in a short term study 

 
5.2 Methods 

5.2.1 MR Imaging   

Coronal MR scans of the right proximal 

femur were obtained with a 3 Tesla Signa system 

(General Electric, Milwaukee, WI, USA) using a 

four-element phased array coil and a multi-

acquisition balanced steady state free precession (b-

SSFP) sequence.  Image acquisition and 

reconstruction were performed using a modified 

version of generalized autocalibrating partially 

parallel acquisition (GRAPPA), with an acceleration 

factor of two(126).  Scans were acquired with a 

512x384 matrix, 12cm FOV, 60º flip angle, TR/TE 

10.3/3.6 ms, 1 mm slice thickness, a total of 74 slices and a scan time of approximately 

10 minutes.  Image voxel size was 0.234 x 0.234 x 1 mm3. Figure 5.1 shows a 

representative high-spatial resolution MR image of the proximal femur.  Because the 

orientation of the femur can vary dramatically based on the rotation of the foot, a color-

Figure 5.1.:  Representative high-
spatial resolution (0.234 x 0.234 x 
1mm3) image of the proximal femur.  A 
rectangular parallelepiped masked the 
baseline image for the calculation of 
entropy (shown in orange).  It was 
created by selecting a point on the first 
slice in which the greater trochanter 
appeared and last slice before the 
greater trochanter was no longer in 
view. The analysis region is outlined in 
red. 
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coded coil holder and foam foot wedge were used to provide limit the variation in coil 

and limb positioning during scanning to +10mm and +10 degrees (figure 5.2).  

 

Six healthy volunteers (age 26 + 4 years) participated in a short-term study in 

which the baseline and follow-up images were acquired on the same day after 

repositioning.  After baseline image was acquired the volunteer was removed from the 

scanner, allowed to rest for 15 minutes, and then repositioned for the follow-up scan.  

One of the volunteers was scanned twice without repositioning in order to assess the 

robustness of the registration algorithm to the capture range 

.  Additionally 10 patients (age 55 + 4 years) were scanned for a long-term study 

in which the baseline and follow-up images were acquired one year apart in order to 

assess the feasibility of registration for a longitudinal time series. 

 

Figure 5.2.:  Schematic of the coil 
holder and foam foot wedge used to 
ensure limit coil and limb positioning 
to +10mm and +10 degrees. Figure 
courtesy of Dana Carpenter. 
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5.2.2 Registration Approach 

Image registration is the process of aligning two images.  The goal is to find a 

transformation that aligns or matches the anatomical regions of the two images.  A rigid 

transform with a rotation matrix, characterized by three Euler angles, and a translation 

vector composed of three translation parameters was used to align the proximal femur 

images.  The rotation matrix and the translation vector defined the movement of a point 

from one image to the other, and image registration was performed by adjusting their 

parameters. The parameters were adjusted until a mutual information measure function 

was optimized and the transformation therefore aligned the two images.  Mutual 

information registration with a conjugate gradient descent optimizer and a linear 

interpolator was performed using open-source image registration software (Insight 

Toolkit)(127).  Registration was applied off-line retrospectively to the high-spatial 

resolution follow-up images to align them to their corresponding baseline images.   

Registration was performed on the images from the six volunteers with a short term 

follow-up and on the ten patients whose follow-up exam was a year later. 

We assessed the robustness of the registration to the capture range using the same 

technique presented by Studholme et al.(91) using the image set with the follow-up image 

acquired without repositioning. We defined a series of 90 mis-alignments.  Thirty of 

these corresponded to a mis-alignment by translation of 5mm and a rotation of 5o, thirty 

by 10mm and 10o, and thirty by 10mm and 20o.  Each set of thirty mis-alignments was 

determined by randomly selecting a point on the surface of spheres in translational and 

rotational parameter space.  Each mis-alignment was selected as the initial starting guess 

for the registration.  The deviation from the expected output was recorded. 
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5.2.3 Interpolation Approach 

When a transform is applied to an image, resampling is required because the new 

coordinate points may not line up with the old coordinate points. In this study, all 

interpolation was performed using open-source image registration software (Insight 

Toolkit).  

The registration algorithm implemented in this study used linear interpolation.  

The goal of the registration algorithm was to align the shape of the femur in the baseline 

and follow-up images.  The texture information inherent to trabecular bone was not 

important for alignment and therefore the smoothing due to the linear interpolation is 

desired.  However, for quantifying the trabecular bone structure, preserving the texture 

information in the image is paramount.  Therefore a key step in aligning proximal femur 

images for trabecular bone structure analysis was the selection of the interpolation for the 

final transform.   

To examine the effect of registration on trabecular bone structure parameters the 

registration outputs from the six sets of images from the short-term study were used.  The 

output of the mutual information registration algorithm, three rotations and three 

translations, was applied to the follow-up image with different interpolators. Nearest-

neighbor interpolation, trilinear interpolation(54), the extension of linear interpolation to 

three dimensional spaces,  and a fifth order B-spline were compared. The same order of 

B-spline was used for each dimension and mirror boundary conditions were used(128). 

Registration and interpolation were performed on a Sun workstation (Sun Ultra 

40, AMD Opteron Dual Core processor, 2.4 Ghz, 8 GB RAM, Sun Microsystems, CA).  
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The three interpolation methods were compared by analyzing their effect on bone 

parameters and computational time. 

5.2.4 Trabecular Bone Analysis 

Proximal femur trabecular bone structure analysis was performed on the images 

using software developed at our institution implemented in IDL (Research Systems, Inc., 

Boulder, CO)(95). A VOI which included only trabecular bone and bone marrow 

contained between the epiphyseal line and the cortex of the greater trochanter (Figure 

5.1), consisted of ten slices and was manually defined using a graphics cursor on a slice 

by slice basis.  The same VOI was used on the baseline and registered follow-up images.  

The un-registered follow-up required a separate VOI definition. Due to the use of surface 

coils, a correction for the spatial variation in the coil detection sensitivity was required 

for accurate image analysis.  The VOIs were intensity-corrected using a low-pass-filter 

based coil sensitivity correction(95).  An image intensity histogram based thresholding 

technique was used to binarize the VOI into trabecular bone and marrow phases, and 

previously described methods(129) were then used to compute the apparent trabecular 

bone structural parameters: App.BV/TV, App.Tb.Sp, App.Tb.Th, and App.Tb.N.   

5.2.5 Error Simulations 

Error simulations were performed to demonstrate the influence of VOI location 

on MR-derived bone parameters and the importance of accurately aligning the VOI in 

baseline and follow-up images. The bone parameter variation associated with a shift in 

the analysis volume along the slice direction (anterior-posterior) was estimated. For one 

proximal femur image from the short term study, a VOI spanning 10 slices was shifted in 
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one-slice increments.  Bone parameters were calculated for the VOI at each increment 

and the percent variation in trabecular bone parameters from the initial VOI position was 

calculated.  To help explain why MR-derived bone parameters are affected by VOI 

location, regional variations in MR-derived trabecular bone parameters for the proximal 

femur were determined.  MR-bone parameters, App.BV/TV, App.Tb.Sp, App.Tb.Th, and 

App.Tb.N were measured over a region of 1.5 cm thickness for all of the baseline 

proximal femur images from the short term study.  The average percent variation in bone 

parameters was calculated.  

5.2.6 Statistical Analysis 

MR-derived apparent trabecular bone structural parameters determined for the 

short-term study with each of the three different gray-level interpolators were compared 

and analyzed using repeated measures of analysis of variance and the Bonferroni t-test.  

The coefficient of variation(130) was calculated between the baseline and follow-up 

images with and without image registration for the images in the short-term study.   

 
5.3 Results 
 

The total time to register a baseline and follow-up proximal femur image and save 

the transformation, including uploading the images and applying a mask, is 

approximately 5 minutes.  The parameters of the transforms that resulted from the 

registration algorithm in the short-term study are shown in Table 5.1 and the long-term 

study in Table 5.2.  Rotations and translations for both the short term and long term 

studies were in the same range.  Short term rotations ranged from -7.74 o to 16.83 o and 
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long term rotations ranged from -8.32 o to 19.65 o.  Short term translations ranged from -

9.9mm to 9.85mm and long term translations ranged from -8.3mm to 7.88mm.  

 

 
Table 5.1: The output of the registration algorithm, a transform with three translations and three rotations 
for the six subjects in the short-term study. The three planes are defined as Right/Left (R/L), 
Anterior/Posterior (A/P), and Inferior/Superior (I/S). 
 

 R/L 
Trans 
(mm) 

A/P 
Trans 
(mm) 

I/S 
Trans 
(mm) 

R/L 
Rot (o) 

A/P 
Rot (o) 

I/S  Rot 
(o) 

Subject 1 1.60 -3.33 -9.90 5.88 -2.69 14.19 
Subject 2 -3.26 2.58 -0.09 -3.79 1.66 2.45 
Subject 3 3.45 -1.62 1.77 2.58 -2.45 -5.70 
Subject 4 9.85 4.34 -1.95 4.65 -1.78 16.83 
Subject 5 3.59 -0.89 -4.55 -0.85 2.31 -7.74 
Subject 6 5.67 -5.39 2.58 -1.49 -0.59 8.98 
Average 3.48 -0.72 -2.02 1.16 -0.59 4.84 
Standard 
Deviation 

4.34 3.63 4.64 3.80 2.13 10.23 

 
 
 
Table 5.2: The output of the registration algorithm for the ten subjects in the long-term study. 
 

 R/L 
Trans 
(mm) 

A/P 
Trans 
(mm) 

I/S 
Trans 
(mm) 

R/L 
Rot (o) 

A/P 
Rot (o) 

I/S  Rot 
(o) 

Subject 1 2.59 -1.35 1.23 -0.82 -2.13 6.19 
Subject 2 -1.76 -0.86 -1.82 -3.51 -4.87 -2.96 
Subject 3 -8.3 -1.53 0.92 5.1 2.13 -4.6 
Subject 4 0.25 -1.64 5.4 19.65 1.85 -1.43 
Subject 5 -1.92 -1.06 0.68 -0.09 0.41 1.15 
Subject 6 -5.58 -4.78 -2.95 13.21 0.2 -2.24 
Subject 7 -3.13 0.66 5.97 -0.6 5.14 -0.7 
Subject 8 0.72 0.06 7.88 -6.35 -1.29 -8.32 
Subject 9 0.36 -3.29 -0.8 -7.6 1.04 1.33 
Subject 10 5.6 -2.3 5.85 0.1 -2.8 -2.8 
Average -1.12 -1.61 2.16 1.91 -0.03 -1.44 
Standard 
Deviation 

3.98 1.57 3.86 8.57 2.86 3.88 

 

 

Figure 5.3 shows the results of the registration with subtraction images and 

surface renderings from two femurs. Figure 5.3a-d show results for a femur from the 
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short term study and Figure 5.3e-h show results for a femur in the long term study. As 

can be assessed by simple image subtraction in Figure 5.3a and 5.3c, and by surface 

rendering of the proximal femurs in Figure 5.3b and 5.3d, the follow-up image is better 

aligned to the baseline scan after registration. In Figure 5.3a and 5.3e the edges of the 

cortical bone are misaligned with higher intensities in the difference image, and clear 

separation of the red and green femoral renderings in Figure 5.3b and 5.3f is visible. In 

Figure 5.3c and 5.3g, the high intensity differences within the femoral edges are reduced, 

and there is considerable more overlap in the red and green femoral renderings in Figure 

5.3d and 5.3h.   The results from the assessment of the robustness of the registration to 

the capture range are show in Table 5.3.  For the 30 mis-registrations of 5mm and 5o the 

root mean square error (RMSE) for translations and rotations in Right/Left (R/L), 

Anterior/Posterior (A/P), and Inferior/Superior (I/S) were within half a pixel and half a 

degree.  For the mis-registrations of 10mm and 10o and 10mm and 20o the RMSE for 

translations in R/L, A/P, and I/S were within one pixel, while the RMSE for rotations in 

R/L and A/P were within one degree and the rotations in I/S were within 1.75 degrees.  

Outside of a translation of 10mm and a rotation of 20o the registration algorithm fails and 

is not able to align the images.  
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Figure 5.3: Comparison of follow-up with registration versus follow-up without registration for the short 
term study (a-d) and the long term study (e-h). (a and e) Subtraction of baseline and follow-up without 
registration.  (b and f) 3D rendering of non-registered proximal femur surfaces (c and g) Subtraction of 
baseline and registered follow-up  (d and h) 3D rendering of registered proximal femur surfaces (green= 
baseline, red= follow-up) 
 

 
 
 
Table 5.3: The results from testing the robustness of the registration algorithm to the capture range.  The 
average, standard deviation (St.Dev), and the root mean square error (RMSE)  with respect to the expected 
output are shown.  Initial mis-alignments of 5mm and 5o, 10mm and 10o, and 10mm and 20o were used. 
 

  R/L 
Trans 
(mm) 

A/P 
Trans 
(mm) 

I/S Trans 
(mm) 

R/L Rot 
(o) 

A/P Rot 
(o) 

I/S Rot (o) 

5mm and 5o Average 0.08 -0.04 -0.06 0.22 0.15 0.02 
 St.Dev 0.07 0.27 0.11 0.30 0.14 0.32 
 RMSE 0.10 0.26 0.12 0.36 0.24 0.31 
10mm and 10o Average 0.10 -0.22 -0.08 0.29 0.09 0.35 
 St.Dev 0.14 1.02 0.18 0.43 0.22 1.40 
 RMSE 0.17 1.02 0.20 0.51 0.26 1.42 
10mm and 20o Average 0.04 0.29 -0.17 0.63 0.07 -0.30 
 St.Dev 0.22 1.28 0.12 0.80 0.19 1.74 
 RMSE 0.22 1.30 0.20 1.00 0.22 1.74 
 

 

The computation time for nearest neighbor interpolation and linear interpolation 

was less than 12 seconds, while for b-spline approximation the computation time was on 

average 9 minutes.  The effects of different gray-level interpolators on trabecular bone 

parameters in the short term study are shown in Figure 5.4 and Figure 5.5.  Trabecular 

bone structure parameters determined from follow-up images without and with automatic 

image registration using linear, nearest-neighbor, and b-spline kernels are shown in 
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Figure 5.4. Because no interpolation was performed when bone parameters were 

determined from baseline images, these images served as the reference value.  The 

difference from the reference value for each of the interpolators is shown in Figure 5.4.  

All bone parameters were significantly different from the reference (p<0.01) with linear 

interpolation. However, nearest-neighbor interpolation and b-spline approximation 

resulted in no significant difference from the reference (p>0.05).   

 

Figure 5.4:  Assessment of different interpolators on the four trabecular bone structure parameters 
analyzed for the six subjects of the short-term study.  Values determined from images with a linear 
interpolation were significantly different (p< 0.01), but b-spline approximation and nearest-neighbor 
interpolation did not change trabecular bone structure parameters significantly (p>0.05). 
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Additionally, in Figure 5.5 the effects of the gray-level interpolation can be 

assessed visually.  Figure 5.5 shows that nearest-neighbor interpolation blurs out some of 

the trabeculae in some areas and exaggerates the trabeculae in others, but overall, the 

same number of pixels are designated to be bone as the in reference image.  B-spline 

approximation maintains the most of the trabecular structure and therefore results in the 

same bone parameter measurements as the reference image.  Linear interpolation clearly 

blurs out portions the trabecular structure causing the spacing between the trabeculae to 

increase and the number of trabeculae to decrease. 

 

Figure 5.5:  The effects of the gray-level interpolation can be assessed visually.  One of the steps in the 
trabecular micro-architecture quantification process is thresholding to create a binary image. The top row 
displays the gray-scale image and the bottom row displays the same image after thresholding.  The baseline 
image, which served as the reference image, and registered follow-up images with linear interpolation, 
nearest-neighbor  interpolation, and b-spline approximation for the final transform are shown. 

 

Reproducibility of bone parameters between the repeat scans in the short term 

study is shown in Figure 5.6. The CV was slightly better for registered follow-up images 
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than for non-registered follow-up images.  The CV improved 0.48%-1.25% when the 

baseline images were compared to the registered follow-up images versus follow-up 

images without registration.  However, the improvement in CV was not statistically 

significant (p>0.05).   

 

Average errors from a slice offset in VOI placement were significant (Figure 

5.7a). The change in App.BV/TV, App.Tb.N, and  App.Tb.Th increased linearly with a 

shift in the VOI along the slice (A/P) direction, while the change in App.Tb.Sp decreased 

linearly.  The average percent change in bone parameters associated with a shift in the 

VOI along the slice direction was up to 6.37%.  App. BV/TV and App.Tb.Sp had a 

higher percent change (over 5.7%) than App. Tb.N and App.Tb.Th (less than 3.6%). 

Effects due to slice location within the proximal femur VOI were also significant 

(Figure 5.7b). App.BV/TV and App.Tb.N. increased, App.Tb.Sp. decreased, and 

Figure 5.6:  The improvement in coefficient of variation (CV) between baseline and follow-up due to 
registration (between 0.39% and 1.25%) was not statistically significant. 
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App.Tb.Th. remained fairly constant while moving anterior to posterior through the 

proximal femur image.  The average percent change in bone parameters was up to 

15.73% between the first and last slices.  

 

Figure 5.7:  Results of error simulations.  a) As the VOI was placed in shifted locations along the slice 
direction (a slice offset), the bone parameters changed up to 6.37%.  b) Within the same VOI, bone 
parameters have a dependence on the slice position demonstrating the trabecular structural heterogeneity in 
the proximal femur. The average percent change in bone parameters across a VOI is up to 15.73%. 
 
5.4 Discussion and Conclusion 
 

The study of the progression of metabolic bone diseases or the efficacy of a 

treatment requires the proper analysis of corresponding regions of interest in repeat MRI 

scans.  This study focused on the accuracy of VOI positioning for the evaluation of MR-

derived trabecular bone parameters of the proximal femur.  Errors due to VOI placement 

were assessed and quantified.  This work also demonstrated the application of 

registration, without prior segmentation, of the proximal femur, as well as the effect of 

gray-level interpolators on trabecular bone parameters.  Registration using the proper 

gray-level interpolator, such as b-spline approximation, to transform the final image may 

be used to avoid errors due to imprecise VOI placement.  

Several investigators have observed significant variations in bone mineral content, 

morphometric indices, and mechanical properties within the proximal femur(19,131-
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135).  Brown et al. were among the first to conclude that trabecular bone of the proximal 

femur is a heterogeneous, anisotropic material by mapping contours of elastic modulus 

and yield strength(131).  Morgan et al. attributed the observed variation in yield strain 

across anatomical sites, including the greater trochanter, to inter-site variations in 

trabecular structure(133).  In their structural analysis of the greater trochanter, Link et al. 

noted that the trabecular structure was irregular and anisotropic(135).  Similarly, this 

study found a variation in MR-derived trabecular bone parameters in the greater 

trochanter of the proximal femur.  The variation of trabecular bone parameters in the slice 

(A/P) direction suggests that there is a biologically inherent heterogeneity in trabecular 

bone structure in the proximal femur. This heterogeneity resulted in an average 2.01%-

15.73% variation in bone parameters between slices through a VOI 10mm long.  This 

heterogeneity in trabecular bone structure of the greater trochanter resulted in 

measurement errors 0.25%-6.37% when there was a slice offset in VOI placement.  This 

source of error demonstrates the importance of accurate VOI placement.  These results 

are in agreement with a study by Gomberg et al.(120) which found errors in trabecular 

bone parameters up to 7.6% in the distal radius due to a VOI mismatch along the z-axis 

(I/S) direction.  Additionally, Newitt et al.(95) determined that analysis region 

misalignment caused small but significant changes in some structural parameters. 

The mutual information image registration algorithm proposed for use in this 

application was able to successfully register images from both a short term study and a 

long term study.  The resulting transform parameters were within the same range for both 

studies.  When the robustness to the capture range of the registration was tested, 

registration was successful for mis-registrations less than 10mm and 20o which was 
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within the translations and rotations seen in both the long term and short term study.  The 

registration algorithm was able to align images in translation within 1 pixel and rotation 

of 1o in plane(R/L and A/P) and 1.75o out of plane (I/S).  For mis-registrations of 5mm 

and 5o, sub-pixel accuracy was achieved.  Therefore the registration algorithm will be 

successful for any likely initial mis-alignments in short term and long term studies. 

The interpolation method implemented when transforming the final image can 

dramatically impact the quantification of trabecular bone structure parameters. Results 

suggest that when applying a transform to musculoskeletal images acquired for trabecular 

bone quantification, nearest-neighbor interpolation and b-spline approximation will 

maintain the integrity of the trabecular bone parameters involved in this study. Nearest-

neighbor interpolation traditionally introduces aliasing to images, so interpolation results 

may appear surprising.  However, as part of the standard trabecular bone structure 

quantification femoral images are thresholded.  Therefore nearest-neighbor interpolation 

maintains the intensity values in a VOI and maintains the number of pixels thresholded.  

B-spline approximation performed as expected by maintaining the accuracy of the image 

information.  If computational time becomes an issue, then nearest-neighbor interpolation 

would be preferred for interpolation of registered MR musculoskeletal images for 

trabecular bone analysis.   

Carpenter et al.(119) performed a study investigating the short-term 

reproducibility of trabecular bone structure parameters in the proximal femur.  In the 

study inter-operator variability was small (3.8%) and they suggested that the CVs, 

ranging from 6.5% to 13.5%, may be partially due to patient repositioning and 

mismatched analysis volumes between baseline and follow-up images. Krug et al.(118) 
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found similar CVs between 2% and 10% for proximal femur trabecular bone structure 

parameters when volunteers were rescanned four times.  Registration is able to ensure 

accurate VOI placement and therefore eliminate sources of error associated with the 

imprecision of VOI placement.  In this work we have demonstrated the feasibility of 

using a mutual information based method to automatically register MR images of the 

proximal femur.  Although there was only a 0.48%-1.25% improvement in the CV 

between parameters determined from follow-up images with and without automatic 

registration, the registration ensures that the reproducibility error does not originate from 

inaccurate VOI placement.  The improvement in reproducibility and the systematic 

method of VOI placement with automatic registration is required to establish the 

adequacy of MRI techniques for longitudinal studies assessing proximal-femur trabecular 

bone structure.    
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Chapter 6 

  
Registration of MR trabecular bone images of the proximal femur in a 

longitudinal study 
 
 
6.1 Introduction 

The proximal femur is the most important site for osteoporotic fractures(116).  

Due to advances in MR pulse sequence and coil development as well as higher magnetic 

field strength (3 Tesla), recent studies have been conducted which investigate the 

feasibility of using high-spatial resolution MRI to evaluate trabecular bone structure of 

the proximal femur and have shown promising results(118). In reproducibility studies, 

primary sources of error for MR-derived trabecular bone parameters have previously 

identified as involuntary patient motion and failure to accurately match the analysis 

volumes(120).  In the proximal femur, consistent positioning between baseline and 

follow-up scans is challenging due to its complex shape. Additionally, the inherent 

regional variations within this anatomic site have an impact on trabecular bone structure 

quantification(136).  Despite the complex femoral shape, the same region must be 

consistently scanned and analyzed between baseline and follow-up image acquisition in 

repeat studies for improved trabecular bone structure measurement accuracy. Automatic 

image registration in the proximal femur has been shown to be accurate within 1 degree 

and 1 pixel and is able to ensure consistent volume of interest (VOI) selection for 

analysis baseline and follow-up images(136). This study demonstrates the feasibility of 

using the same automatic image registration technique to ensure accurate VOI placement 

in a longitudinal study investigating changes in trabecular bone structure in 

postmenopausal women.   
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Figure 6.1:  Representative high-spatial 
MR image of a postmenopausal osteopenic 
women.  Note how the difference in signal 
intensity between red and yellow marrow.  

 
6.2 Materials and methods 

6.2.1 Subjects 

The subjects in this study were a subset of  

53 postmenopausal women recruited for a 

double-blind study investigating the longitudinal 

effects of aldendronte versus placebo on 

trabecular bone micro-architecture.  Only women 

between the ages of 45 and 65 yr which had been 

postomenpausal for at least 1 year but not more 

than six years were included.  They were required 

to be defined as osteopenic by the WHO criteria 

and had no history of diseases or receiving medication known to affect bone metabolism.  

Of the 53 women recruited only 24 women were included in this study.  The study 

protocol was approved by the UCSF committee on Human Research and all women 

provided written informed consent. 

6.2.2 MR Imaging 

Coronal MR scans of the proximal femur were obtained with  a 3 Tesla Signa 

system (General Electric, Milwaukee, WI, USA).  The subject was scanned in the supine 

position using a using a four-element phased array coil (Nova Medical). A color-coded 

coil holder and foam foot wedge were used to provide consistent coil and limb 

positioning during scanning.   
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Figure 6.2:  Schematic of image processing performed in 
this study. 

A multi-acquisition balanced steady state free precession (b-SSFP) using a 

modified version of generalized autocalibrating partially parallel acquisition (GRAPPA), 

with an acceleration factor of two(126) image was obtained.   Scans were acquired with a 

512x384 matrix, 12cm FOV, 60º flip angle, TR/TE 10.3/3.6 ms, 1 mm slice thickness, a 

total of 74 slices and a scan time of approximately 10 minutes. Image voxel size was 

0.234 x 0.234 x 1 mm3. Figure 6.1 shows a representative high-spatial resolution MR 

image of the proximal femur from this study.  

6.2.3 Image Processing 

Proximal femur trabecular 

bone images where coil corrected, 

registered, and analyzed (Figure 6.2).  

The images were coiled-corrected 

using a fully automatic coil corrected 

by nonparametric non-uniform 

intensity normalization(137)  Image 

registration was performed using a 

mutual information registration 

algorithm (implemented with ITK) 

with a gradient decent optimizer and 

linear interpolator to determine the 

translation and rotation required to 

align the follow-up image to the baseline image(136). The transform which aligned the 

follow-up image to the baseline image was applied to the follow-up image with a Bspline 
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approximator. Bspline approximation was previously shown to maintain the integrity of 

the bone parameters(136). 

Trabecular bone structure analysis was then performed on the images using 

software developed at our institution implemented in IDL (Research Systems, Inc., 

Boulder, CO)(95). A VOI which included only trabecular bone and bone marrow 

contained between the epiphyseal line and the cortex of the greater trochanter (Figure 

6.1), consisted of ten slices and was manually defined using a graphics cursor on a slice 

by slice basis. The same VOI was used on the baseline and registered follow-up images.  

An image intensity histogram based thresholding technique was used to binarize the VOI 

into trabecular bone and marrow phases. Previously described methods(95) were then 

used to compute the apparent trabecular bone structural parameters: App.BV/TV, 

App.Tb.Sp, App.Tb.Th, and App.Tb.N. 

 
6.3 Results 

Twenty of the twenty-four sets of images successfully registered (Figure 6.3).  

The average outputs from the registration of the 20 femurs were: X rotation = 1.02 

+6.68o, Y rotation = -1.69 +3.55o, Z rotation = 0.25 +2.93o, X translation = -1.06+3.1mm, 

Y translation = -0.92+5.00mm, and Z translation = -0.98+1.65mm.  Four of the images 

sets failed to register due poor image quality.  
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Figure 6.3:  Comparison of follow-up with registration versus follow-up without registration.  The 
difference image is subtraction of baseline and follow-up and the surface difference image is a 3D 
rendering of registered and non-registered proximal femur surfaces (green= baseline, red= follow-up). 
 
 

 
 

 

Figure 6.4: (left) Graph demonstrating the improvement in Coefficient of Determination (R2) for Apparent 
bone Volume Fraction.  The registration has removed VOI misalignment as a source of error in the data. 
Table 6.1 (right) Improvements in the Coefficient of Determination were observed for all of the bone 
parameters.  
 

 

Bone parameters were successfully calculated for baseline and follow-up images 

using the same VOI.  Figure 6.4 shows the improved correlation between baseline and 

follow-up with registration.  If there are no changes between baseline and follow-up 
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occur we’d expect to see an R2 value of 1.  If there are changes between the two time 

points due to the treatment or disease progression, then the R2 will deviate from a value 

of 1.  However, if there are measurement errors such as biological variation or VOI 

misalignment the R2 will also deviate from a value of 1. Figure 6.4 demonstrates that 

because image registration removes measurement error and the R2 value App.BV/TV is 

improved.  This trend was consistent across all bone parameters (table 6.1) and we can 

conclude the registration improves the measurement precision.  

To further illustrate how the image registration improves the precision of 

trabecular bone measurements, one set of femurs was examined in detail.  Figure 6.5 

shows that without registration the difference between the baseline and follow-up 

App.BV/TV is 6.5% while the difference between the baseline and follow-up images 

with image registration is only 0.2%.  Figure 6 shows this same image set slice by slice 

moving from anterior to posterior and the follow-up with registration, the aligned follow-

up up image, results in App. BV/TV that follows the same trend as the baseline.  The 

difference between the red line, the follow-up without image registration and the green 

line, follow-up with registration demonstrates the measurement error that is removed in 

the data. 
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Figure  6.5: Difference in App. BV/TV  in baseline and follow-up with and without registration for one 
subject. 
 
 

 
Figure 6.6: (right)  Change in App. BV/TV, slice by slice moving from anterior to posterior.  The 
difference between the red line, the App. BV/TV without image registration and the green line, the App 
BV/TV with image registration represents the error removed due to an aligned VOI. 
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6.4 Discussion and Conclusion 
The study of the progression of a disease or the efficacy of a treatment based on 

proximal femur MRI requires the proper analysis of corresponding regions of interest in 

the baseline and follow-up images. This work is the first time that image registration has 

been implemented in a longitudinal study investigating changes in MR-derived trabecular 

bone structure.   

In this work we have demonstrated the feasibility of using a mutual information 

based method to accurately register longitudinal MR images of the proximal femur.   

Twenty of the twenty-four sets of images successfully registered as determined by visual 

inspection of difference images and surface renderings.  Four images failed to register 

due to poor image quality (low SNR) or motion artifacts (figure 6.7).  Poor image quality 

and motion artifacts are also typical exclusion criteria in clinical studies.  Therefore it is 

reasonable to conclude that the image registration is successful for all images of 

acceptable image quality.  

 

Figure 6.7: Example of a MR image of the proximal femur with (A)good image quality, (B) low SNR, and 
(C) motion. Poor image quality and motion artifacts similar to B and C are typical exclusion criteria in 
clinical studies and cause registration to fail. 

 

  Results suggest an improvement in the correlation and precision of trabecular 

bone structure parameters with image registration.  The coefficient of determination (R2) 

between baseline and follow-up measurements for all trabecular bone parameters 
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improved demonstrating the removal of error due to mis-aligned analysis regions.  By 

looking at the trabecular bone parameters slice by slice, the improvement in the precision 

becomes more evident as shown in figure 6.6 

Due to the complex shape of the femur repositing between scans at different time 

points is very difficult and inherent variations in the trabecular structure remain a 

significant source of error in longitudinal studies.  This study demonstrates the feasibility 

of image registration in a clinical study investigating trabecular bone changes of the 

proximal femur and qualifies the improvement in correlation and precision due to proper 

selection of analysis regions between time points.  Results suggest that the registration 

method is robust enough for longitudinal studies of the knee, wrist, and tibia. 
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Chapter 7 
 

Automatic prospective registration of high resolution trabecular bone 
images of the tibia 

 
 
7.1 Introduction 

MRI scans of the distal tibia for the assessment of 

trabecular bone are performed according to manual 

prescriptions by specially trained MR technologists.   The 

location, size, and orientation of the scanning volume 

requires input and adjustments by a MR technologist.  A 

typical scanning session begins with the acquisition of a 

localizer san which provides an overview of the major anatomical features of the distal 

tibia (See figure 7.1) such as the tibia, talus, and the tibiotalar joint. The technologist then 

uses this localizer scan to visually prescribe the location and ortienation of the subsequent 

series of high resolution scans.  This manual prescription is relatively time consuming 

taking several minutes, especially if the patient has an unusual position in the scanner. It 

also requires additional training for the MR technologist. Due to the nature of the 

localizer, technologists are not always able to fully explore all degrees of freedom, such 

as 3D rotations.  This manual scan prescription is not entirely reproducible because it 

suffers from both intra and inter-operator variability in defining the extent of anatomical 

coverage or the slice orientation.  Consequently MR scans of the distal dibia often yield 

scan orientations and coverage that vary from one patient to another.  Therefore, there is 

a need for an automated MR scan prescription which allows for faster and more 

reporducible scans of the same region at different points in time. 

Figure 7.1: Typical localizer 
scan that initiates a MR 
examination of the distal 
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Longitudinal MR studies conducted to assess changes in bone quality in the tibia 

impose strict requirements on the reproducibility of data acquired(95,120) and the same 

region must be consistently analyzed between baseline and follow-up image acquisition.  

Due to the imprecise manual prescription currently performed by technologists, 

additional registration is needed post acquisition by manually matching slices.  

Techniques to improve image registration precision by prospective registration, 

adjusting scanning parameters prior to image acquisition, have been reported recently in 

literature(138,139).  A prospective registration technique for proton magnetic resonance 

spectroscopy of brain longitudinal examinations to track disease progression(123) has 

been developed.  This technique utilizes a mutual information registration algorithm(89) 

to register images in a baseline and follow-up exam.  The output of the registration 

algorithm, three translations and three Euler angles, is used to redefine the region to be 

imaged and thus to acquire a follow-up oblique imaging volume identical to the baseline 

volume.  This pre-registration has provided improved region overlaps as well as generally 

decreased short-term measurement variability and improved workflow. Much work has 

been done to optimize and validate prospective registration in MR brain images(140-

142), including methods to prospectively register brain images to an atlas(143) and to 

register brain spectroscopy images.(123,139) However, no such techniques have been 

applied to musculoskeletal imaging.  All methods to register musculoskeletal images, 

such as the radius and tibia, for bone structure analysis have been performed post 

acquisition.(95,144)  

When imaging trabecular bone in osteoporosis, the regional variations in structure 

of bone are inherent and follow-up images registered to the baseline images would have 
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profound impact on the quantitative evaluation of trabecular bone architecture.  A study 

performed by Gomberg et al.(120) investigating the error sources in MRI-based 

trabecular bone structural parameters found the two main sources of variation to be 

patient motion and failure to match the ROI. They found that even if the ROI is offset by 

one slice, App. BV/TV can vary by a median error of 1%.   An implementation of 

prospective registration to musculoskeletal MRI longitudinal studies would be of 

significant importance for characterizing trabecular bone.  Prospective registration would 

reduce the need for an additional manual post-processing step that requires substantial 

expertise.  It would therefore reduce the post processing time and subjectivity while 

maintaining the precision of trabecular bone measurements such as apparent bone volume 

fraction (App.BV/TV), apparent trabecular separation (App.Tb.Sp), apparent trabecular 

thickness (App.Tb.Th) and apparent trabecular number (App.Tb.N). 

In this work, a software algorithm for the automatic prescription of a follow-up 

scan based on a baseline scan of the distal tibia is presented.  The method is an extension 

of existing algorithms for post acquisition image registration and orientation.  Rather than 

reorienting or matching slices after data acquisition to match scanned regions for 

analysis, the method presented here automatically provides a guide to the scanner to 

acquire a precise follow-up scan. 

 
7.2 Methods 

7.2.1 Registration Approach 

We used an extension of the technique as presented by Hancu et al.(123) by 

implementing a mutual information measure to rigidly register baseline and follow-up 

low resolution images prior to acquiring high resolution scans (figure 7.2).  The 
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transformation involves a rotation matrix, characterized by three Euler angles, and a 

translation vector composed of three translation parameters.  The rotation matrix and the 

translation vector define the movement of a point from the follow-up to the baseline 

image.  A conjugate gradient descent method(145) was implemented to search for the six 

parameters that define the rotation matrix and translation vector which optimize the 

mutual information measure.  The transformation is then input into the scanner and used 

to acquire subsequent high resolution scans of the distal tibia. 

7.2.2 MR Imaging 

The right distal tibia of five healthy volunteers (average age of 26+3 years old) 

were scanned with their informed consent in accordance with the regulations of the 

Committee of Human Research at the University of California, San Francisco.  All scans 

for each subject were performed on the same day.  Subjects were removed from the 

scanner and repositioned between baseline and follow-up scans.  To ensure a consistent 

clinical position between scans, a leg holder and pads were used in scanning which 

helped to limit rotation to small angles (<10o).  The longitudinal landmark line was 

aligned with the subject’s lower leg and the transverse landmark line was aligned at the 

medial malleolus of the tibia. 

All MR images were acquired axially on a 3-T Signa Scanner (GE Healthcare, 

Milwaukee, WI, USA) with a modified multi-acquisition SSFP sequence (Steady State 

Free Procession) applying a maximum intensity projection of two images (MI-

SSFP).(146)  A Nova Medical  (Wilmington, MA, USA) four-coil surface phased array 

receiver coil was used.  The scanning procedure is depicted in figure 7.2. After a three-

plane localizer, two baseline scans were obtained.  The first baseline scan was a low 
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spatial resolution scan in the axial plane with a 256x256 matrix, 8cm FOV, 0.5mm slice 

thickness, 64 slices, 60º flip angle, 17/6.5 ms TR/TE, and a scan time of approximately 4 

minutes.  The second baseline scan, intended for quantitative analysis and comparison, 

was a high spatial resolution with a 512x384 matrix, 8 cm FOV, 0.5 mm slice thickness, 

64 slices, 60º flip angle, 17/6.5 ms TR/TE, and approximately 16 minutes of scan time 

(figure 7.3).   

Baseline Follow-up
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Figure 7.2:  Diagram depicting the scanning procedure implemented in this study.  The high resolution 
baseline and follow-up scans were used for trabecular bone analysis. 
 
 
 

The volunteers were then removed from the 

scanner and repositioned for the follow up scans.  After a 

three plane localizer, four follow-up scans were obtained. 

The first two follow-up scans used the same protocols as 

the first two baseline scans, one low spatial resolution 

follow-up scan for registration (~4 minute scan time) 

and a high spatial resolution scan for quantitative Figure7.3:  Representative high 
spatial resolution (0.156 x 0.156 x 
0.5mm3) image of the distal tibia 
using a modified MI-SSFP 
sequence. 
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trabecular bone structure analysis and comparison (~16 minute scan time).  The low 

resolution axial baseline and follow-up scans were then registered using the mutual 

information based rigid registration scheme described previously.  The registration was 

performed while the patient remained in the scanner and took less than one minute, 

including the time to upload the baseline and follow-up volumes.   

The final two follow-up scans required a modification of the MI-SSFP sequence 

to allow for the input of the six registration parameters (three translations and three 

rotations) output by the mutual information registration algorithm.  Oblique scans were 

acquired with the same parameters as the first two follow-up scans except for input 

parameters from the registration.  The prescription of these oblique scans had the same 

tibia coverage and slice orientation as the baseline axial images.  

7.2.3 Modification of MI-SSFP Sequence 

In order to allow the MI-SSFP sequence to accept rotations set manually by a 

user, a modification is required.  Three new control variables (CVs) representation 

rotation in the x-axis, “myalpha”, the y-axis, “mybeta”, and the z-axis, “mygamma”, were 

created.  Additionally a control variable named “read_inputs” acting as a flag to read in 

the rotations from a text file was created.   Additional code was added to rotate the 

current scan prescription by the angles specified by myalpha, mybeta, and mygamma.  

Within the pulse sequence, rotation matrices for positive counterclockwise angles are 

about the positive coordinate axis for a right handed coordinate system.  When the pulse 

sequence is downloaded with the “read_inputs” flag set to “1”, the pulse sequence reads 

in the three Euler angles from a text file named “Reg_prescription.dat” located in 

/usr/g/mrsc/register/ and sets the values of myalpha, mybeta, and mygamma respectively.  
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Alternatively, myalpha, mybeta, and mygamma can be set manually using “display CVs” 

and keeping “read_inputs” set to “0”.  The rotation matrix for the acquisition is then 

additionally rotated by myalpha, mygamma, and my beta. 

 

7.2.4 Registration Algorithm Validation 

To validate the registration algorithm, the output of the registration algorithm was 

compared to known values.  One of the low-resolution images of one of the baseline 

scans was rotated and translated by a known amount selected with a random number 

generator.  The rotation was limited to + 8o and the translation was limited to + 10 mm.  

The baseline volume and the transformed volume were then registered and the 

registration error was computed as the difference between the known translation and the 

output of the registration algorithm.  This procedure was repeated 50 times. 

7.2.5 Registration Performance Evaluation 

Visual inspection of 3D surface renderings and subtraction images aided in 

evaluating the success of the prospective registration with tibial images.  Using an in-

house developed software based on MATLAB (The MathWorks, Inc., Natick, MA), the 

inner cortical shell of the tibiae were segmented semi-automatically with a Bezier-spline 

and edge detection based method on a slice by slice basis.  Segmented contours were then 

stacked to create a 3D surface.  This was performed on the baseline and follow-up low 

spatial resolution images which were then visualized together in a 3D surface rendering.  

Subtraction images were created by subtracting the low spatial resolution follow-up 

volumes from the low spatial resolution baseline volumes.  Subtraction images were 
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created for both follow-up image with the prospective registration and the follow-up 

image without registration.  To quantify the improvement in image alignment seen in the 

subtraction images, the sum of the squares was calculated for each slice in the volume 

and then averaged across the volume. 

 

7.2.6 Trabecular Bone Analysis 

Tibial trabecular bone structure analysis was performed using software developed 

at our institution using IDL (Interactive Data language, Research Systems, Inc., Boulder, 

CO). Due to the use of surface coils, a correction for the spatial variation in the coil 

detection sensitivity was required for accurate image analysis.  The images were coil-

corrected with a low-pass-filter based coil sensitivity correction.(95)  A volumetric region 

of interest (ROI) was manually defined using a graphics cursor.  Moving proximally from 

the slice where the growth plate ends (endplate), the volumetric ROI consisted of twenty 

axial slices of the volume and included only trabecular bone and bone marrow.  Each 

volumetric ROI requires between 10 and 20 minutes (30-60 seconds per slice) to 

accurately define. The ROI for the high resolution baseline image and follow-up image 

without registration were then registered manually by visually matching corresponding 

slices.  The same ROI was used on the follow-up with prospective registration as for the 

baseline image and did not require the additional ROI definition and manual ROI 

registration.  The resulting ROI was divided into two ten-slice thick regions due to 

inherent changes in trabecular bone structure with distance from the end plate.  After the 

ROI had been defined and aligned, an image intensity histogram based thresholding 

technique was used to binarize the ROI into trabecular bone and marrow phases.(95)  
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Previously described methods(129) were then used to compute the apparent trabecular 

structural parameters: App.BV/TV, App.Tb.Sp., App.Tb.Th., and App.Tb.N.  To 

determine the effects of using the prospective registration on trabecular parameters, the 

data was analyzed using a repeated-measures analysis of variance procedure.(147)  This 

statistical procedure was chosen to help distinguish between the variability between the 

experimental subjects, the variability due to different post-processing methods, and the 

variability of the measurements within the same subject.  The reproducibility of the 

technique was verified by calculating the short term coefficient of variation.(130)  

 
7.3 Results 

Table 7.1 presents the results of the registration validation by showing the 

registration errors (mean + standard deviation) as determined by subtracting known 

transformations from registration outputs.  The average error in rotations was ~0.2o and 

in translations was ~1.1 mm which are within reasonable accuracy for tibia registration.  

 

Table 7.1: Registration errors (mean + standard deviation) were determined by subtracting the registration 
output from the known transformation.  The errors are shown in translations (x, y, and z) and rotations 
(x, y, and z) as well as the average displacement ΔS3D=(x+y+z)/3 and average rotation angle 
Δθ=(x+y+z)/3. 

 
 
 
 

By image subtraction and 3D surface rendering of the segmented tibiae, the 

improvement in image alignment can be assessed. Figure 7.4 shows representative results 

of the prospective registration.  The improvement from the registration can be seen by 

looking at the subtraction images (figure 7.4c and 7.4f) and corresponding tibia 

segmentations (figure 7.4d and 7.4g).  Displayed next to the subtraction images are the 
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corresponding low resolution follow-up images without registration (figure 7.4b) and 

with prospective registration (figure 7.4e).  The baseline low resolution scan is also 

shown for comparison (figure 7.4a).  It can be seen in the results that the second follow 

up scan is more closely oriented with the baseline scans.  For example, in figure 7.4c the 

edges of the cortical bone are misaligned with higher intensity in the subtraction image, 

and clear separation of the red and green tibial renderings in figure 7.4d is visible.  In 

figure 7.4f, the high intensity differences within the tibial edge are reduced, and there is 

considerably more overlap in the red and green tibial renderings in figure 7.4g. 

 

               
Figure 7.4: Visual comparison of prospective registration versus follow-up without registration for low 
spatial resolution images (0.313 x 0.313 x 0.5mm3) of the tibia. (a) Axial slice of baseline image (b) Axial 
slice of follow-up image without registration (c) Subtraction of a and b (d) Rendering of non-registered 
tibiae (green=low resolution baseline, red=low resolution follow-up) (e) Axial slice of follow-up image 
with prospective registration (f) Subtraction of a and e (g) Rendering of prospectively registered tibiae 
(green=low resolution baseline, red=low resolution follow-up) 

  a b 

e f

c d

 e
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Figure 7.5: The sum of the squares of the subtraction images created from low resolution images was 
calculated for each slice and then averaged across all slices.  The sum of the squares was lower for the 

prospective registration subtraction images for each of the five tibiae. 
 

To quantify the dispersion seen in the subtraction images, the sum of the squares 

was calculated for each slice.  The graph in figure 7.5 shows the average of the sum of 

the squares across all slices for the volume for each of the five subjects.  Sum of the 

squares was lower for the follow up images with prospective registration by an average of 

19.37% + 0.07. 

Our study did not observe differences between the trabecular bone structure 

parameters calculated from the post-scan manual registration and the prospective 

registration images.  Figure 7.6 shows the trabecular bone parameters calculated for one 

of the tibiae.  There is very little variation in the parameters between images.  The results 

of a repeated-measures analysis of variance indicate there is no significant difference 

between the trabecular bone parameters calculated from the prospective registration 

images and those calculated from the post-scan manual registration (p>0.05).  



98 
 

Additionally, our study also found little difference in the coefficient of variation when 

evaluating the post-scan registration and the prospective registration for the four 

parameters in the two different bone regions.  All values were within a 2-4.5% (figure 

7.7) range, which are within values previously reported.(95)  
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Figure 7.6:  The raw data for the trabecular bone parameters for one of the tibiae in both regions is shown.  
Very little variation in the parameters was found between images which demonstrates that the trabecular 
bone parameters found with the prospective registration are just as accurate as those found using the 
manual post-scan registration technique. 
 

 
Figure 7.7: The coefficient of variation values were within a 2-4.5% range for all four trabecular bone 
parameters in the two bone regions. 
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7.4 Discussion and Conclusion 
In this work we have demonstrated the feasibility of using a mutual information 

based method to prospectively register longitudinal MR images of tibia scans.  We have 

developed a unique MI-SSFP sequence which allows for the input of the registration 

results to scan oblique registered high spatial resolution tibia images.  

The coefficient of variation of the trabecular bone structure parameters is within 

the same range for both registration types and the repeated-measures analysis of variance 

indicates that there is no significant difference in trabecular bone parameters between 

baseline and follow-up images for both registration types.  These findings demonstrate 

that the trabecular bone structure parameters found with the prospective registration are 

just as accurate as those found using the established post-scan manual registration 

technique.(95)     

The use of automatic prospective registration ensures that the ROI is placed on 

the same slice for both the baseline and follow-up.  Automatic prospective registration 

also has benefits by eliminating the need for subjectively finding the longitudinal 

reference location (endplate location) for all follow-up scans.  In addition, the use of 

prospective registration at clinical sites will ensure that the same region is scanned in the 

baseline and follow-up.  Often there is a discrepancy in the region scanned and the 

images cannot be utilized for quantitative comparison. 

 Automatic prospective registration allows for a time savings and an easy analysis 

of multiple ROIs, as the regions defined on the baseline scans can also be applied directly 

to the registered follow-up images.  Automatic prospective registration adds four minutes 

to the baseline scan time and five minutes (four minutes of scan time and one minute for 

the registration) to the follow-up scan time.  However it eliminates the need for an 
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additional ROI to be manually generated for the follow-up images, which allows for a 10 

to 20 minute savings in post-processing time.  For longitudinal studies, where hundreds 

of patients are being scanned and analyzed, the time savings in post-processing could be 

substantial. 

The prospective registration algorithm implemented in this study was the same 

algorithm utilized by Hancu et al.(123) It is optimized for magnetic resonance 

spectroscopy studies with a mutual information metric, a rigid body transformation, and a 

conjugate gradient descent optimizer. Although the results from implementing this 

prospective registration technique are just as accurate as the results from the current post-

scan manual registration technique, the algorithm may produce better results if optimized 

for musculoskeletal imaging. Since the registration is intra-modality, an intensity-based 

metric such as a normalized cross-correlation metric(148) or a mean squares metric(149) 

may be more appropriate.  Additionally, musculoskeletal images contain joints 

surrounded by soft tissue that deform depending on the subject position.  This deformable 

soft tissue makes rigid registration more challenging for musculoskeletal images 

compared to brain images.  The registration can be improved by cropping the image so 

that the entropy is only calculated in a region with minimal soft tissue.  This would 

minimize the effects of the non-rigid movement of the soft tissue on the registration of 

bone.  However, an automatic method for removing soft tissue for musculoskeletal 

images is not straightforward due to lack of defined edges and similar intensities for both 

hard and soft tissues. 

Automatic retrospective registration, registration after the images have been 

acquired, may be an alternative to prospective registration.  However, prospective 



101 
 

registration requires no interpolation of the data which is required in automatic 

retrospective registration.  All interpolation methods introduce artifacts to images to some 

degree and images with sharp-edge details, such as high-resolution trabecular bone 

images, are much more affected.(53)  Prospective registration also ensures that the 

correct region is being acquired at scan time.  Retrospective registration will fail if there 

is a large difference in the regions scanned and therefore little overlap between the 

baseline and follow-up images. 

Prospective registration may have a bigger impact on hip images since the 

reproducible positioning of the subjects is not as easy as when imaging the tibia. 

Carpenter et al.(150) performed a study investigating the reproducibility of bone structure 

parameters in the proximal femur.  They suggested that the high coefficients of variation, 

ranging from 6.5% to 13.5% may be partially due to patient repositioning.  Additionally, 

the images of the proximal femur were acquired with a slice thickness of 1mm, double 

the slice thickness in this study, which may contribute to additional partial volume 

effects.  Prospective registration may be able to ensure consistent partial volume effects 

between time points by allowing the selection of the same slice.  More experiments need 

to be conducted to investigate if prospective registration can minimize patient 

repositioning effects when imaging the proximal femur. 

This study proves that it is possible to implement prospective registration to a 

musculoskeletal application.  Prospective registration ensures that the same region is 

analyzed in both the baseline and follow-up images, saves post processing time, preserves 

the reproducibility of the trabecular bone parameters, and requires no interpolation.  The 
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results suggest that it may be robust enough to be used in different musculoskeletal 

imaging applications including the hip.   
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Chapter 8 
 

 Automatic prospective registration extension to Sagittal and Coronal 
Imaging Planes 

 
 
 
8.1 Introduction 

The automatic prospective registration in MR 

imaging for an axial patient orientation presented in 

Chapter 7 is fairly straight forward because the direction of 

the axes in the image coordinate system and the scanner 

coordinate system coincide. However prospective 

registration for alternative patient positions, such as sagittal 

and coronal, requires an additional mapping step (see figure 

8.1).   The patient orientation for MR images of trabecular 

bone depend on the anatomical site being imaged.  For example, while the distal tibia and 

distal radius typically require axial scans, trabecular bone imaging of the knee, the distal 

femur, and the hip, the proximal femur, requires a coronal scan.  Additionally, due to 

patient comfort or a desire to image the trabecular bone in an alternative orientation, 

these standard orientations are subject to change.  For example, sagittal imaging of the 

distal radius is required when the wrist is positioned horizontally in the scanner and 

sagittal imaging of the knee is frequently desired to minimize partial volume effects.  

Therefore, the ability to implement prospective registration in a variety of orientations is 

desired. In this chapter, the prospective registration methods for these alternative patient 

positions are outlined and described in detail. 

Run Registration

Translation
Rotation

Map Image Coordinates to 
Scanner Coordinate System

Determine Scanner Inputs:
Angles and New Image Center

Figure 8.1: Flow chart of 
prospective registration method
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 While solutions have been proposed for the brain(123,151-153), very little 

published data exists on the implementation and feasibility of automatic scan prescription 

of the knee.  The only method presented for the knee is based on active shape 

models(154,155).  In this method, 3D deformable models of the femur, tibia, and patella 

are used to automatically detect these bones in a T1-weighted gradient echo sequence.  

Points on the surface of these bones constitute a set of landmarks which are used to 

determine point to point correspondences between an initial mean shape model and the 

position locally adapted shape model.  These correspondences can then be used to 

determine the appropriate orientation of subsequent image acquisitions.  This method 

requires a training set of similar images in which landmarks and desired orientation of the 

subsequent acquisitions have been selected by a trained technologist.  Additionally the 

algorithm does not change the number of slices according to the size of the patient/knee 

which often limits the anatomical coverage in large knees.  The accuracy of the method in 

longitudinal studies assessing the progression of  disease such as Osteoarthritis in which 

large anatomical changes to the bone can occur, has not been established.  Due to large 

anatomical variation due to biological differences or disease, a universal method which 

determines the automatic alignment of follow-up images in a longitudinal study may not 

be possible.  Rather a method similar to that in Chapter 7 which prescribes the follow-up 

image based on the baseline image may be more robust.   

 
8.2 Methods 
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Figure 8.2: Image coordinate system.  
The direction of cosines in the dicom 
header indicates what x,y, and z 
correspond to in patient (anatomical) 
coordinates 

8.2.1 Image, Patient, and Scanner Coordinate Systems 

In order to accurately translate the rigid 

transformation output of the registration 

algorithm, three rotations and three translations, 

it is important to precisely describe how the 

image coordinates match up to the scanner 

coordinates.  There exist three different 

coordinate systems, the image coordinate 

system, the patient (anatomical) coordinate 

system, and the scanner coordinate system.   

 

Image Coordinate System 
The image coordinate system refers to the order of the pixels (figure 8.2) within 

the image.  Side-to-side is the x direction, up/down is the y direction and the slice order is 

the z direction.  The upper left corner of the first slice represents the origin of the image 

and has the coordinates (0,0,0) in the image coordinate system. 

 
Patient Coordinate System 

The patient coordinate system refers to the standard anatomical terms of location 

(Anterior/Posterior, Superior/Inferior, and Right/Left). All naming is based on positions 

relative to the body in a standing (standard anatomical) position with arms at the side and 

palms facing forwards (thumbs out). Posterior in medical anatomy refers to the "back" of 

the subject and Anterior refers to the “front” of the subject. The head end is referred to as 

the superior end, while the feet are referred to as the inferior end.  The left side and right 

side of a subject are the outermost points between the two "sides" of the subject.   
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Figure 8.3:  Drawing depicting directions of x, y, z in an axial MR image for a patient positioned supine 
head first.  Positive x,y,z  in an image corresponds to left, posterior, superior respectively in patient 
coordinates. 

 
Scanner Coordinate System 

The scanner coordinate system refers to the location of a point inside the scanner 

where x is positive toward the right side of the scanner, y is positive toward the top of the 

scanner, and z is positive towards the back of the scanner (figure 8.3).  The scanner 

coordinate system is often referred to as RAS because it corresponds to a patient placed 

in the scanner in a supine head-first position.  When a patient is placed in this position, 

the right hand of the patient corresponds to the positive x axis of the scanner, the anterior 

side of the patient corresponds to the positive y axis of the scanner, and the superior side 

of the patient corresponds to the positive z axis of the scanner. 

8.2.2 Mapping Image Coordinates to Patient Coordinates 

The direction of the x,y,z axes within the MR image is defined fully by the 

patient's orientation in the scanner.  If a patient lies in a supine head first position, the 

direction of the axes in the image coordinate system and the scanner coordinate system 

will coincide.   The direction cosines (the Image Orientation tag) in the image dicom 

header helps to map the image coordinate system to the patient coordinate system.  
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Mathematically, the direction cosines refers to the cosine of the angle between any two 

unit vectors (figure 8.4). 

 

Figure 8.4:  Direction Cosines: The components of a unit vector (a and b) are the cosines of the angles the 
vector makes with the basis directions. 

 

The Image Orientation tag is an orientation matrix with 2 rows and 3 columns.  

           (8.1) 

          

 The first row [a b c] corresponds to the x axis in an image and the second row [d e f] 

corresponds to the y axis in the image.  The first column of the matrix 
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 corresponds to the S/I direction.  To determine 

which anatomical direction corresponds to the x axis in the image, we will look at the 

first row of the orientation matrix.  If the image is an axial image (head first, supine) then 

orientation 
matrix =

a  b  c 
d  e  f 
g  h  i 
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the x axis in the image will correspond to the R/L anatomical direction and the first row 

of the orientation matrix will be [1 0 0].  Similarly the y axis will correspond to the A/P 

anatomical direction and the second row of the matrix will be [0 1 0]. The z axis will 

correspond to the S/I direction and the third row of the matris will be [0 0 1].    The 

Image Orientation coordinates are often referred to as LPS because increasing to the left, 

poserior, and superior are all positive.  Note that the directions are not the same as the 

scanner RAS coordinate system. 

 

For head first supine the orientation matrices will be: 
 
 
 
 

 
 
 
 
 

Each row can be thought of as a unit vector defining the anatomical orientation of 

the axis.  When the scan is oblique, the values in the vector (ex: [-0.174323  0  -

0.984688]) correspond to the unit vector which is -0.174323 in the R/L direction, 0 in the 

A/P direction, and -0.984688 in the S/I direction. 

8.2.3 Mapping Image Coordinates to Scanner Coordinates 

Image registration is performed in the image coordinate system where the output 

transformation results in a rotation and translation in x,y,z.  To implement the prospective 

registration, the transformation needs to be converted into scanner coordinates.  However, 

the scanner coordinate system remains constant (RAS) whenever the patient position (ie 

supine/prone or  head-first/feet first), the scan plane changes (axial, sagittal, or  coronal), 

Sagital 
orientation 

matrix 
=

Axial 
orientation 

matrix 
=

1  0  0 
0  1  0 
0  0  1 

Coronal 
orientation 

matrix 
=

0  0  1 
1  0  0 
0  1  0 

0  1  0 
0  0  1 
1  0  0 
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the gradient direction, or slice order switches, but the mapping of image coordinates to 

patient coordinates changes.  Therefore it is necessary to use the image orientation matrix 

to determine how the patient is oriented in the scanner, and how the transform maps to 

the scanner coordinates.   

Therefore in order to put the translation (T) and rotation (R) from image 

coordinates (the output of the registration algorithm) to scanner coordinates (T’ and R’) 

which are needed as inputs to the scanner we need to apply a matrix Mscanner :  


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denotes the 

translation (T’) in scanner coordinates; 

),,( R denotes the rotation (R)  in image coordinates and ),,( R ’denotes 

the rotation (R’) in scanner coordinates; 

scannerM denotes the mapping from image coordinates to scanner coordinates and 

depends on the patient position and scan plane. 

For supine, head first, axial positioning the mapping is very straight forward 

because the scanner coordinates coincide with the image coordinate system (X relates to 

R/L, Y relates to A/P, and Z relates to S/I). However, because the scanner is in RAS and 

the image coordinates is in LPS, the signs in X(R/L) and Y(A/P) need to be flipped. 

                        (8.3) Mscanner for supine, 
head first, axial 

= -1  0  0 
0  -1  0 
0  0  1 
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Mscanner for other orientations is not as straightforward.  For sagittal orientation X 

in image coordinates relates to A/P, Y relates to S/I, and Z relates to R/L.  Again, because 

the scanner is in RAS and the image coordinates is in LPS, the signs in X and Y need to 

be flipped. 

 

          (8.4) 

 

For coronal orientation X in image coordinates relates to S/I, Y relates to R/L, and 

Z relates to A/P.  Again, because the scanner is in RAS and the image coordinates is in 

LPS, the signs in X and Y need to be flipped. 

          (8.5) 

 

8.2.4 Formatting Scanner Inputs 

 Now that the transform has been mapped to scanner coordinates, it needs 

to be input into the scanner.  To adjust the translation for a scanned region, an operator 

adjusts the center location of the scan.  To adjust the rotation for a scanned region, an 

operator adjusts the angles for the gradients.  Therefore the input to the scanner is 

composed of three angles and a new image center. 

 In the scanner coordinate system, the transform that results from the registration 

algorithm can be given by: 

P’ = R’( P - C ) + ( C + T’ )    (8.6) 

Mscanner for supine, 
head first, saggital 

=
  0  0 1  
-1  0  0 
0  -1  0 

Mscanner for supine, 
head first, coronal 

=
-1  0  0    
 0  0  1 
0  -1  0 
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where C is the center of rotation, P  is the point to be transformed, P' is the transformed 

point, T’  is the translation, and R’ is the rotation matrix.  For the scanner, R’ is 

constructed when the operator inputs the three angles, C corresponds to the image center.  

This equation can be re-written as 

           P' =   R’P  +  [ C + T’ – R’C ]    (8.7) 

and we call Offset the expression 

         Offset = [ C + T’ – R’C ].     (8.8) 

The transformation is now 

          P'  =  R’P  + Offset     (8.9) 

and the relationship between Translation and offset is 

         Offset =  [ I – R’ ] C    +    T’    (8.10)   

To determine the new image center, P is set to the current image center and C is set to the 

scanner’s center of rotation, the isocenter where C = (0,0,0). The equation for the new 

image center can the be re-written as 

   P' = [ I – R’ ] P    +    T’     (8.11) 

and the resulting P’ can be used to input the new image center into the scanner. 

8.2.5 MR Imaging 

The right knee of two healthy volunteers was scanned with their informed consent 

in accordance with the regulations of the Committee of Human Research at the 

University of California, San Francisco.  The volunteers were removed from the scanner 

and repositioned between baseline and follow-up scans.  To ensure a consistent clinical 

position between scans, pads were used in scanning which helped to limit rotation to 

small angles (<10o).   
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MR images were acquired sagittally and coronally for the first and second 

volunteer respectively.  These images were acquired on a 3-T Signa Scanner (GE 

Healthcare, Milwaukee, WI, USA) with a transmit/receive quadrature knee coil (Clinical 

MR Solutions, Brookfield, WI).  After a three-plane localizer, two baseline scans were 

obtained.  The first baseline scan was a low spatial resolution scan with a 3D water 

excitation low-resolution spoiled gradient-echo (SPGR) pulse sequence (a 160x160 

matrix, 10cm FOV, 1mm slice thickness, 52 slices, 18º flip angle, 10/1.52 ms TR/TE, and 

a scan time of approximately 1 minute 30 sec).  The second baseline scan, intended for 

quantitative analysis and comparison, was a 3D water excitation high-resolution spoiled 

gradient-echo (SPGR) pulse sequence with asset parallel imaging (512x512 matrix, 10cm 

FOV, 1mm slice thickness, 52 slices, 18º flip angle, 20/6.28 ms TR/TE, and a scan time 

of approximately 6 minutes) which is commonly used in knee morphologic imaging.  The 

volunteer was then removed from the scanner and repositioned for the follow-up scans.  

After a three plan localizer, an image was acquired with a low spatial resolution scan with 

the same pulse sequence and parameters as the low spatial resolution baseline scan.  The 

low resolution baseline and follow-up scans were then registered using the mutual 

information based rigid registration scheme described previously.  The registration was 

performed while the patient remained in the scanner.  

The follow-up scan required a modification to the high resolution SPGR sequence 

to allow for the input of rotation angles and new image center which is determined from 

the output (translation and rotation) of the mutual information registration algorithm.  

Oblique scans were acquired with the same parameters as the high resolution baseline 
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scans except for rotation and new image center input parameters.  The prescription of the 

oblique scan had the same knee coverage and slice orientation as the baseline image. 

 

8.3 Results 
 The registration algorithm was able to successfully register both the low 

spatial resolution sagittal and coronal images and provide accurate inputs to the MR 

scanner.  The prospective registration and took less than two minutes, including the time 

to upload the baseline and follow-up volumes and inputting the new rotations and new 

center in the MR scanner.  

 For the sagittal image, the registration resulted in a translation of 11.2mm, 

5.66mm,-1.86mm and in a rotation of 0.76o, -0.84o, -0.24o in x, y, and z respectively.  

This resulted in a new image center of R76.5, A28.4, and S22.5.   For the coronal image, 

the registration resulted in a translation of -1.76mm, 0.42mm, and -3.46mm and in a 

rotation of 9.24o, -2.14o, 6.56o in x, y, and z respectively.  This resulted in a new image 

center of L54.7, A50.1, and S23.7.    

Difference images were created by subtraction follow-up from baseline images. 

Visual inspection of  the difference images between the non-registered low resolution 

images and the registered high resolution images clearly demonstrates an improvement in 

image alignment(figure 8.5 and figure 8.6).   
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Figure 8.5:  Visual results from sagittal prospective registration.  A follow-up low resolution sagittal 
image was registered to a baseline low resolution sagittal images and output of the registration was used to 
acquire a new oblique follow-up image.  The center images are difference images between the non-
registered low resolution images (top image) and the registered high resolution images (bottom image). 
 

 
Figure 8.6:  Visual results from coronal prospective registration displayed in the same fashion as the figure 
above..  The center images are difference images between the non-registered low resolution images (top 
image) and the registered high resolution images (bottom image). 
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In both figure 8.5 and 8.6 the difference image between the low resolution 

baseline and follow-up scans shows a clear separation in both the femur and tibia.  The 

higher intensities in the non-registered difference images represent regions where the 

bones do not over lap.  The difference images with registration do not have the high 

intensity regions because the bones over lap.   

 
8.4 Discussion and Conclusion 
 

Traditionally the orientation and position of MR images of the knee in 

longitudinal studies are prescribed manually by a trained technologist.  The quality and 

consistency of the positioning and orientation of follow-up images rely of the 

technologist’s skill and experience.  This process is often time-consuming and 

inconsistent.  Therefore automatic prescription of the orientation and position of follow-

up knee MR images is highly desired.  This chapter extended the prospective registration 

method presented in chapter 6 to sagittal and coronal orientations.  The technical details 

in the conversion of registration outputs to scanner inputs are outlined as well as a 

demonstration of the feasibility of the method in knee scans.   

The prospective registration method was demonstrated in both a sagittal and 

coronal acquisition of the knee. Visual inspection of difference images demonstrated the 

improved alignment in the registered follow-up images and that the same regions were 

scanned in both the baseline and follow-up images.   

The method presented here can be added to the beginning of any scanning 

protocol.  Once the registration has been performed and the registered follow-up image 

acquired, it can then be used to prescribe any pulse sequence.  For example, a high 
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resolution MI-SSFP acquisition which is required for trabecular bone analysis can then be 

acquired using the registered image to prescribe the desired scan region.   
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Chapter 9 

 
Conclusions 

 
 
9.1 Summary 
 

This thesis developed robust methods for the registration of musculoskeletal 

images to enhance the study and assessment of bone.  The primary contributions of this 

thesis include: 

 Direct comparison of tissue mineral density measurements between ex 

vivo µCT and SRμCT imaging methods using multi modality image 

registration 

 Development of a method to leverage multi modality automatic 

registration between high-resolution trabecular bone MR images and HR-

pQCT image to enhance the study of cortical porosity  

 Implementation and optimization of single modality automatic 

retrospective registration of high-resolution trabecular bone MR images 

 Evaluation of robustness, performance, and reproducibility of automatic 

retrospective registration of high-resolution trabecular bone MR images 

 Application of automatic retrospective registration to real clinical 

longitudinal datasets demonstrating an improvement in the measurement 

accuracy of trabecular structure changes 

 Development of prospective registration for trabecular bone imaging and 

extension to multiple imaging planes 
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This thesis demonstrates the impact of image registration in the analysis of 

musculoskeletal images of bone. Image registration has been shown to improve the 

accuracy, reproducibility, and precision of longitudinal and comparative bone studies.  In 

studies comparing tissue mineral density (TMD) measurements from SRµCT and µCT 

imaging techniques, image registration allows for the direction comparison of values 

which provides additional information for the development of an accurate TMD 

correction.  Image registration also allows for different image techniques such as MR and 

HR-pQCT to be combined, providing additional information about the nature of cortical 

porosity.  In longitudinal MR studies assessing the efficacy of treatment or monitoring 

disease progression, image registration ensures the same region is analyzed across time 

points and improves the accuracy of results.   

9.1.1 Registration of SRµCT  and µCT trabecular bone images 

Chapter 3 evaluates µCT TMD measurements by a comparison to synchrotron SR 

µCT. A inter-modal rigid registration method was developed and allowed for a direct 

spatial comparison of TMD distributions. The image registration methodology proposed 

in this study was able to successfully align SRμCT and μCT images.  Results suggested 

that b-spline approximation as a final interpolator is best able to preserve grayscale 

values.  Voxel overlap measures and visual inspection both demonstrated the successful 

alignment.  With registration there was a 49% - 70% improvement in the percentage of 

voxel overlap.  Gaussian smoothing on increasing scales was applied to the µCT images 

and its effects on TMD measurements compared to SRµCT values was evaluated. The 

correlation between SRµCT and µCT mean TMD values was highly improved with 

smoothing of the µCT images (r = 0:85; p < 0.0002) compared to without smoothing (r = 
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0:45; p < 0.2). This implies that noise removal can contribute to increased reliability of 

TMD estimates from µCT images. 

9.1.2 In vivo evaluation of the presence of bone marrow in cortical porosity  

Chapter 4 presents the first study examining cortical porosity in vivo in 

postmenopausal osteopenic women and to combine data from two different imaging 

modalities to further examine the nature of cortical porosity.  The radius of 49 and the 

tibia of 51 postmenopausal osteopenic women (age 56+3.7) were scanned using both HR-

pQCT and MR imaging.  A normalized mutual information registration algorithm was 

used to obtain a three dimensional rigid transform which aligned the MR image to the 

HR-pQCT image.   The aligned images allowed for the visualization of bone marrow in 

cortical pores. From the HR-pQCT image, the percent cortical porosity, the number of 

cortical pores, and the size of each cortical pore were determined.  By overlaying the 

aligned MR and HR-pQCT images, the percent of cortical pores containing marrow, the 

number of cortical pores containing marrow, and the size of each cortical pore containing 

marrow was measured.  The percent cortical porosity ranged from 2.1% to 9.2% in the 

tibia and 0.4% to 5.0% in the radius. The percent cortical pores containing marrow 

ranged from 1.6% to 21.0% in the tibia and 4.96% to 41.75% in the radius.  While the 

amount of cortical porosity did not vary greatly between subjects, the type of cortical 

pore, containing marrow versus not containing marrow, varied highly between subjects.  

Additionally, the number of cortical pores containing marrow did not depend on the 

amount of porosity and there was no relationship between cortical pore size and the 

presence of bone marrow.  The data suggest that cortical pore spaces contain components 
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of varying composition, and that there may be more than one mechanism for the 

development of cortical porosity. 

9.1.3 Image registration of MR images for the analysis of trabecular bone parameters 

Chapter 5 investigated feasibility of automatic image registration of MR high-

spatial resolution proximal femur trabecular bone images as well as the effects of gray-

level interpolation and volume of interest (VOI) misalignment on MR-derived trabecular 

bone structure parameters. For six subjects in a short-term study, a baseline scan and a 

follow-up scan of the proximal femur were acquired on the same day.  For 10 subjects in 

a long-term study, a follow-up scan of the proximal femur was acquired one year after the 

baseline.  An automatic image registration technique, based on mutual information, 

utilized a baseline and a follow-up scan to compute transform parameters that aligned the 

two images.  In the short-term study, these parameters were subsequently used to 

transform the follow-up image with three different gray-level interpolators.  Nearest-

neighbor interpolation and b-spline approximation did not significantly alter bone 

parameters, while linear interpolation significantly modified bone parameters (p<0.01). 

Improvement in image alignment due to the automatic registration for the long term and 

short term study was determined by inspecting difference images and 3D renderings.  

This work demonstrates the first application of automatic registration, without prior 

segmentation, of high-spatial resolution trabecular bone MR images of the proximal 

femur.  Additionally, inherent heterogeneity in trabecular bone structure and imprecise 

positioning of the VOI along the slice (anterior-posterior) direction resulted in significant 

changes in bone parameters (p<0.01). Results suggest that automatic mutual information 

registration using b-spline approximation or nearest-neighbor gray-level interpolation to 
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transform the final image ensures VOI alignment between baseline and follow-up images 

and does not compromise the integrity of MR-derived trabecular bone parameters.  

Chapter 6 extended the technique and methods developed in Chapter 5 to a longitudinal 

clinical study assessing the efficacy of drug treatment on trabecular bone of the proximal 

femur in postmenopausal osteopenic women.  The coefficient of determination (R2) 

between baseline and follow-up measurements for all trabecular bone parameters 

improved demonstrating the removal of error due to mis-aligned analysis regions. This 

work is the first time that image registration has been implemented in a longitudinal 

clinical study investigating changes in MR-derived trabecular bone structure.   

9.1.4 Prospective registration of MR images of trabecular bone 

Chapter 7 develops a method for automatic prospective algorithm for a MRI 

longitudinal study of trabecular bone of the tibia and compared it to a post-scan manual 

registration. Qualitatively, image alignment due to the prospective registration is shown 

in 2D subtraction images and 3D surface renderings.  Quantitatively, the registration 

performance is demonstrated by calculating the sum of the squares of the subtraction 

images.  Results show that the sum of the squares is lower for the follow up images with 

prospective registration by an average of 19.37% + 0.07 compared to follow up images 

with post-scan manual registration.  Our study found no significant difference between 

the trabecular bone structure parameters calculated from the post-scan manual 

registration and the prospective registration images (p>0.05).  All coefficient of variation 

values for all trabecular bone structure parameters were within a 2-4.5% range which are 

within values previously reported in the literature.  Results suggest that this algorithm is 

robust enough to be used routinely in different musculoskeletal imaging applications.  
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Chapter 8 extended the prospective registration method presented in chapter 7 to sagittal 

and coronal orientations.  The technical details in the conversion of registration outputs to 

scanner inputs are outlined as well as a demonstration of the feasibility of the method in 

knee scans.  The prospective registration method was demonstrated in both a sagittal and 

coronal acquisition of the knee. Visual inspection of difference images demonstrated the 

improved alignment in the registered follow-up images and that the same regions were 

scanned in both the baseline and follow-up images.   

 
9.2 Future Directions 

9.2.2 Extension of  registration techniques to additional musculoskeletal applications 

 Registration of high-resolution in vivo trabecular bone images of the tibia, 

radius, and proximal femur has been demonstrated in this thesis.  However, registration 

may also be useful in additional musculoskeletal applications beyond the quantification 

of trabecular bone structure.  MR image is frequently used to assess the progression of 

osteoarthritis, a disease which deteriorates the cartilage of the knee, hip and shoulder.  

Alignment of knee, hip, and shoulder images for the quantitative analysis of cartilage in 

studies assessing osteoarthritis disease progression may help improve the accuracy of 

clinical results.   

9.2.2 Atlas based prospective registration of musculoskeletal MR images 

Prospective registration is a useful tool to ensure consistent positioning between 

baseline and follow-up scans.  However, a method to scan each individual in the same 

orientation at single time point would help improve the accuracy of clinical 

measurements between subjects. One approach to this would be to register a low 
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resolution scan to an atlas, an image information database obtained using imaging of 

many subjects which were scanned in the desired orientation. The rigid portion of the 

transform resulting from the registration to an atlas could then be used to prescribe the 

remainder of an exam.   The difficulty in this approach is achieving an acceptable atlas 

and successful registration under the conditions of large anatomical variation present in 

the population.  In particular, for individuals with gross anatomical differences in the 

shape of their bones due to osteophytes or boney growths.  One option may be to select 

more than one atlas that represents different clinical groups. 

9.2.3 Quantifying trabecular bone changes using non-rigid registration 

While current longitudinal studies assessing trabecular structure average 

trabecular bone parameters within a particular region, it would be interesting to describe 

local trabecular structure changes.   A non-rigid registration that results in a non-linear 

transformation between time points would help describe the changes in local structure.  

Deformation fields which show the mapping of each voxel from one time point to another 

may provide a more descriptive evaluation of temporal trends. 
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