UC Davis

Public Health Sciences

Title

Statins to mitigate cardiotoxicity in breast cancer patients treated with anthracyclines and/or trastuzumab: A systematic review and meta-analysis

Permalink

https://escholarship.org/uc/item/1bc89071

Authors

Obasi, Mary Abovich, Arielle Vo, Jacqueline B. et al.

Publication Date

2020

Data Availability

The data associated with this publication are not available for this reason: N/A

Statins to mitigate cardiotoxicity in breast cancer patients treated with anthracyclines and/or trastuzumab: A systematic review and meta-analysis

UCDAVIS
HEALTH
HARVARD
T.H. CHAN

Mary Obasi, MPH^{1,2}; Arielle Abovich, MPH^{2,3}; Jacqueline B. Vo, PhD, RN, MPH^{2,4}; Yawen Gao, SM²; Anju Nohria, MD^{5,6}; Aarti Asnani, MD⁷; Ann H. Partridge, MD, MPH^{5,6}

Affiliations: ¹University of California Davis, ²Harvard T.H. Chan School of Public Health; ³University of Alabama at Birmingham; ⁴National Cancer Institute;

⁵Brigham and Women's Hospital; ⁶Dana Farber Cancer Institute; ⁷Beth Israel Deaconess Medical Center, Harvard Medical School

Background

- Due to advances in treatment and early detection, nearly 90% of women with breast cancer are living at least 5 years following their diagnosis
 - Living longer, there is increased risk for the development of longterm, late effects of cancer treatment
 - Cardiotoxicity may arise either during or after breast cancer treatments such as anthracyclines and/or trastuzumab
- Recent evidence has suggested the potential for statin use, a lipidlowering drug, during treatment to mitigate the risk of cardiotoxicity in patients receiving cardiotoxic chemotherapy
- Research Question: Does statin use lower the risk of cardiotoxicity among breast cancer patients who receive treatment with anthracyclines and/or trastuzumab?

Methods

- Systematic review of the literature was conducted using PubMed, Embase, Web of Science, ClinicalTrials.gov, and Cochrane Central
- <u>Inclusion criteria</u>: samples with breast cancer patients, treated with anthracyclines and/or trastuzumab, and statins used during cancer therapy
- <u>Exclusion criteria</u>: case reports, reviews, guidelines, editorials, letters, and non-human research.
- Two reviewers independently performed study selection and data extraction
- Random-effects model using inverse variance weighting:
- Exposure: Statin use among breast cancer patients treated with anthracyclines and/or trastuzumab
- Primary outcome: Pooled relative risk of cardiotoxicity defined as

 incidence of symptomatic heart failure or 2) having a reduction in left ventricular ejection fraction of >10% from baseline to an absolute value of <50%
- Secondary outcome: Weighted mean differences of the mean change in left ventricular ejection fraction from baseline (before statin use) to the time of collected outcome

Results

Table 1. Characteristics of included studies Study design **Cancer type** Cardiotoxic First Author Sample size **Matching criteria** chemotherapy (exposed/unexposed) (Year) |#exposed/ **Primary Outcome: Incidence of cardiotoxicity (n = 4)** Calvillo-Matched on age and Retrospective study 43/86 Trastuzumab therapy Arguelles (2019) anthracycline exposure status (1:2)38/39 Anthracycline-based Randomized on 1:1 ratio Randomized trial chemotherapy Retrospective study 67/134 Matched on propensity score Seicean (2012) Breast cancer Anthracycline-based (1:2)chemotherapy Tase (2013) Retrospective study 144/288 Matched on propensity score Anthracycline-based Breast cancer chemotherapy (1:2)and gastric cancer **Secondary Outcome: Mean change in left ventricular ejection fraction (n = 3)** Matched on age and Calvillo-Retrospective 43/86 Trastuzumab therapy Arguelles (2019) cohort study anthracycline exposure status 38/39 Randomized trial Anthracycline-based Randomized on 1:1 ratio chemotherapy Chotenimitkhun Prospective cohort 14/37 Anthracycline-based (2015)study chemotherapy leukemia, and lymphoma

Conclusions

- Statins are associated with decreased overall risk of cardiotoxicity
- May mitigate development of cardiomyopathy among cancer patients treated with anthracyclines and/or trastuzumab
- Limitations: small sample sizes, included mostly retrospective designs, pooling results from randomized and non-randomized studies
- Further research is warranted to understand if statin use can be safely used to prevent or mitigate cardiotoxicity from breast cancer treatment

Acknowledgements

- We thank Stefania Papatheodorou, MD, PhD for her methodological expertise.
- J.V. is a Cancer Prevention Fellow at the National Cancer Institute.

Table 2. Random effects model for incidence of cardiotoxicity

76] 35]	27.68	
35]	16 15	
	16.15	
65]	21.72	
11]	34.45	
92]	100.00	
)%		
IV pooled RR 0.492 [0.306, 0.792] test for heterogeneity: χ^2 =0.79, df=3, p=0.85, I^2 =0% test for overall effect: z=2.92, p=0.003		

Table 3. Random effects model for weighted mean difference (WMD) of left ventricular ejection fraction change

Studies	WMD	95% CI	Random effect MD	% Weight
Calvillo-Arguelles (2019)	4.100	[0.969, 7.231]		28.91
Nabati (2019)	7.600	[6.155, 9.045]		39.67
Chotenimitkhun (2015)	3.650	[0.906, 6.394]		31.42
IV pooled WMD	5.347	[2.480, 8.214]		100.00
test for heterogeneity: χ^2 =8.58, df=2, p=0.014, I^2 =76.6%				
test for overall effect: z=3.66, p<0.001			<u> </u>	
			0 3 5 7 9	