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THE TEMPERATURE OF THIN FOILS IN ION BEAMS

J. O. Liljenzin

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

June 1973
 ABSTRACT

The effect of beam-shape, pulsed operation and ion type on the
temperature of thin foils in ion beams is discussed for cases where the
cooiing is by heat radiation, heat conduction, or convection in an external
medium. Analytic solutions are given for various combinations of beém
shape and cooling conditions. ’Nomographs are given for the estimation of
the maximum temperature of thin circular foils when the cooling is either
by radiation to the ‘surroundings or by conduction to the edge of the foil.

A program is described which can be used to calculate the temperature
distribution at equilibrium conditions or as a function of time for arbitrarily
shaped non-isotropic and non-homogeneous bodies heated internally and
cooled by any combination of radiation, conduction, or convection of heat

in an external gaseous medium. The heat conductivity, heat capacity,

heat generation, and grayness can vary within the body; the heat conductivity
and heat capacity can vary with temperature; and the heat-generation can

be pulsed. Cooling by a liquid streaming on the backside of the foil is gen-
erally most effective. Radiative cooling is also dominant for very thin
foils, and conduction cooling is dominant for thick foils. At a given diam-
eter, this leads to a maximum temperature for foils with a thickness a little

below the range of the ions.
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THE TEMPERATURE OF THIN FOILS IN ION BEAMS

J. O. Liljenzin

Lawrence Berkeley Laboratory
University of California
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June 41973

Thin foils are used in ion beams for stripping of the ions, degradation
of beam energy, as vacuum seals, and as beam-transparent targets. Homo-
genous foils, made from a single substanc.e, are used for all of the men-
tioned purposes. Targets are, however, often made in two layers, a back-
ing which gives mechanical strength and impermeability for gases and a lay-
er of the target substance which can be much thinner than the backing and
lack mechanical strength.

' When the beam passes through the foil it loses part of its energy by
interaction with the atoms in the foil. The major part of the énergy trans-
ferred from the beam to the foil occurs as heat,. which must be removed to .

_prevent the target from melting or evaporating (éee Fig. 12).

1. CALCULATION OF THE TOTAL AMOUNT OF
BEAM ENERGY LOST IN A FOIL

For sufficiently thin foils the electronic stopping power,1 -dE/dl, can
be assumed constant, The energy transferred to the foil per unit time, Ptot’

can then be calculated from the relation,

Piot ® “'%—) I/Zeff’ (1)
where £ is the foil thickness, I the electric beam current and Zeff the mean
electric charge of the ions. -

The electronic stopping power is no longer constant for thicker foils.
The energy transferred to the foil must then be calculated from the range
variation with energy. 1 Let E0 and R(Eo) be the energy and range in the

foil material of the incident ions, E  and R(El) the energy and range of the

£



ions after passing a layer of foil material of thickness f. The residual

range, R(El)is computed from

R(E)) = R(Eo) - 4, - (2)
which gives E,, and then P, . can be calculated from .
Piot = (Eo -E,) - 1/ Z ¢ (3)

where I/Zeéf is the '"particle current."
Equation (2) is most conveniently solved in a graph of R vs E, where
El then can be read off on the energy scale.

2. COOLING METHODS

The heat evolved in the target can be removed by many different mech-
anisms, some of which are probably without interest in practical applications,
i.e., removal by vaporization of the foil material, or by melting of the foil.
The most useful cooling methods are cooling by heat radiation, cooling by

heat conduction, and cooling by convection in an external fluid medium.

2.1. Radiation Cooling

When the foil surface is at a temperature, Tsurf’ which is higher than
the surroundings (which are at a temperature Tsur ), the foil will radiate

away heat with a rate per unit surface area, PLaa’ given by Stefan's law.

_ : 4 4 »
Prad = 80(Tgurs = Tour)s (4)
where T and T __ are in degrees K, 6 has the value 5.70 XiO_iz(W e 2
surf sur

degree‘4) and g is the grayness factor as compared to a black body (0< g< 1).

The grayness factors for some common materials are listed in Table I.

2.2. Conduction Cooling

When an internal volume element of the foil is at a different temper -
ature than its surroundings, heat will flow in a direction as to eliminate the.

temperature differences.
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| ar, dT dT
A0 ) ANG) d(n 5 Ldv, (5)
Peond 7| - dx dy ds ] '

where Pcond is the heat conduction rate; )\x, )\y and )\1 are the heat con-
ductivities in the x, y, and { direction respectively; dV is the volume el-
ement dx dydf. Constant values for the héat conductivities (X ) can onlybe
used in a small temperature range. Ior larger temperature ranges an ap-

proximation with the following equation can be used:
\,=a,-b, + THc, - T °. " (6)

Fortunately most materials are iéotropiq ‘i.e., Kx = )\Y = )\1. Values of a,

b, and ¢ in Eq. 6 are given in Tab_le II for some common materials.

2.3. Convection Cooling

The effect of convection cooling is highly dependent on the heat trans-
fer between the foil and the cooling medium. This is usually expressed as

a film-transfer coefficient h defined by

P = h(T (7)

conv surf Tfluid)’ '
where Peonv is the heat transfer rate per unit surface (wall area), h is the
film transfer coefficient, Tsurf is the foil surface temperature,. and Tfluid
is the fluid phase (gas or liquid) bulk temperature.

The calculation of the heat removed by convection cooling is now trans-
formed to a problem to calculate the film-transfer coefficient (h). This is
usually solved by the application of dimensional theory to relate the actual
problem to another we_li-investigated case for which an empirical equation
is available.

The dimensionless numbers of interest when scaling and comparing
film-transfer coefficients are: Reynolds number (Re), Nus selt.s number (Nu),
and Grashofs number (Gr). 2 For large streaming velocitiés (Re > 2100) with
turbulent flow the value of Gr is no longer importént for calculating the film-
transfer coefficient. : |

The main problem is to find the comparable case. As a rough approx-
imation, the foil can be thought of aé a part of the wall in a circular tube.

. Then the following equation can be used2 at low velocities and laminar flow



(Re < 2100):

: 3 '3 3 -
. : 4wC , o '
Nu = 1.62"\/p/p, (1 +0.01 5\/—;‘) —E (8) e
£ . TN, . .D ‘
: _ fluid . ~ , ‘.
Wherev Nu and Gr are _ ‘ , ' . s
Nu = h+ D/ Ay iqo (8a)
Gr = D"p Bg (Tsurf N Tfluid)’ (8b)

where p' is Ehe vi_scoéity of fluid at the bulk temperature, oy is the viscosity
of the fluid at the film mean temperature, and w is the flow rate (mass per
time). D is a characteristic length (the diameter), )\ﬂuid is the heat conduc-
tivity of the fluid, p is the density of the fluid, B is the volume expansion -
coefficient, g the gravity constant, and Cé is the heat capa;ity_ of the fluid.
The Grashof number reflects the increased flow due to the heating of the.
fluid at the surface.

For water str,edming upwards, the simpler equation

3 - _4 -
h=(2.685T _,  +50.620\/T _-T_ . "+10 (9)

can be used instead of (8),2 Here T is in degrees centrigrade and h is in
W/crn2 °C. .
When the streaming velocity of the fluid is so high that turbulent flow

occurs, Re > 10000, the following equation is valid for all fluids streaming

upwards in a pipe:

Nu = 0.023 (Re)?-®. (Pr)0-%, (10)
For liquids with p < 2 cP and for gases with w > 600 pz/3 (where p is in
atm), Eq. (10) can be used almost down to Re = 24100; w should be calcu- i
lated as kg/hour. In case of a downward flow, the corresponding empirical B
equation is? | S A Q\

Nu = 0.023 (Re)?® . (Pr)0-3, (11)

where Pr = Cp /.



of heat loss by cooling, P,

2.4. Combined Cooling

In practice, the cooling method used is some combination of radiation
cooling, conduction cooling, and convection cooling. Sometimes, depending
on geometry, surface area, gas pressure, and foil temperature, one of these

processes may dominate over the others. To be able to treat realistic cases,

“all the mentioned cooling processeé must be included in the final differential

equation. Assuming that heat radiation is only lost in the { direction and
that the eventual surrounding fluid passes by the foil in an x-y plane, therate

, can be written
ool .

dT dT dT
4 4 d()\xa; A5 d()\ld_l nh

= ngd - ydy_ nh . ,
Peool dVLf T -Towr) *=ax "oy *Tar tag TTaud |- (12

‘Some of the '"constants' (i.e., X\ 's and h) are in turn functions of T and some

(n and g) may be functions of x,y, and 4.

3. BEAM SHAPE AND TIME FUNCTION

- The shape of the beam, i.e., the variation in beam intensity with x and
y on the foil, is of great importance for the temperature distribution over
the foil and thus for the maximum temperature that will occur at a given
total beam current. The variation of beam current with time is also impor-
tant when the cooling time-constant is less than or compara.ble to the fre-
quency of the beam-current variations. Of the many possible variations of
beam current with time, only two will be discussed: continuous beam and
pulsed beam with fixed frequency. All beams will be assumed to be circular

symmetric,

3.1. Uniform Beam Shape

The beam is hitting the foil with the same intensity at all points of the

surface. The power released on an area dA (= dxdy) is then

Pheam = Frot 9A7/A, | (13)
where A is the total exposed areca of the foil. f
When the beam is pulsed with a frequency f and a duty cycle of C

percent,



t

on 0.01 C/f, (14)

t

1]

off (1-0.01C)/f,‘ | (15)

where ton is the ontime and toff is the off time of each cycle. ‘
‘The current during t,, Must now be larger than in the stationary case

- to give the same mean current, I:

I, = 100 I/C, : . (16a)
Ioff = 0.0. - ' (16Db)
.Thus in a pulsed beam,
pbeam, on 100 Ptol: da/(AC), (17a)
= 0.0. (17a)

pbeam, off

Tilting the foil against the beam will increase the total area A with a
factor 1/sin(¢), where ¢ is the angle between the foil and the beam, and

thus decrease Ppeam®

3.2, Gaussian Beam Shape

The beam is hitting the foil with an intensity distribution (current dis-

tribution)

p(r) = k. e /87 - (18)

where r is the distance from the center of the beam, k is a proportionality:
constant and s is a shape factor: larger s, more diffuse beam; smaller s,
more focused beam. '

The total power dissipated within a radius R is P(R)

AL 2 R/s)? |
P(R)=27k S‘ r e (¥/8) g - wks” [1 -_e—( 8) 1, (19)
r=0 o ' '

where k is a proportionality constant between surface and power. The total

power of the beam must be dissipated for R =, thus .



P(w) =P, =mks" S (20)

and hence

o2
PR) = P, , [1-e (RIS (21)

tot

When a fraction, a, of the total beam is known to hit the foil within a

certain radius, Ra’ 82 can be obtained from the equation

2 Raz '
8 = - Tn oo (1-a) . : (22)

Thus the Gaussian beam is defined bjr its total energy, P ot’ and a

t
fraction, a, of Ptot hitting within a radius Ra'

The proportionality constant k is then

P In{(1- a)
tot . a . (23)-

TR
a

o

The beam hitting a unit surface area is now

Ptofln(i_a) -rz'\/'-'ln(i-q)/RQZ

(r) = - 2 € . . (24)

pbea,m '
T Ro,

In the case of a pulsed beam defined by Eqs. (16a) and (16b) we obtain

_ 100P_In(1-q) e_rlz Ta/R 2

p(r) = - (25a)
beam, on . #CR 2‘
| (r) '
P beam, off = 0.0. (25b)
When the beam passing through the foil, P is used instead of P the

tr’ tot’
term -Ptot In (1-a) should be replaced by -P‘:r In(1-a)/a in all equations

where it occurs.



-3.3. Double-Gaussian Beam Shape

The beam is hitting the foil with an intensity distribution (current dis-

tribution)

p(r) =k-e _ (26)

where k is a proportionality constant as before and R is the radius at which

the beam intensity is highest.

The total power dissipated within a radius R is P(R):

s eh

P(R) = 27k S' re

' 2 = 2
R : R-R
-(=) -( )
= 'rrksz l:e 8 e ® J
+ 1r3/2ks_ﬁ [erf (%) + erf(Rs_-R{l , (27)

where erf is the error function. As before, the total power of the beam

must be dissipated for R = », thus

Ple) =Py

and thus

P
P(R) = tot

wks

-(=)

s.e ° +~/-F[¢rf(_R-g)+1]

e

[-(%) B
g8je . -e

}+ '\/F R [grf (?)-erf(g—s_é?]

R

-& [ |
s /2 1R l:erf(§) + 1} (28)

2 2

R-R
S

(29)

is obtained with
P .
Kk = i v ) (30) -
2 45) 3/2 = R | |
s e + 7 sR[erf(—s) +1]



With this value for k the beam shape is

‘p(r)beam = 5 e . (31)

sR [erf(SEH- 1]

To determine ; and R, two further values of P(R) must be given, but
R will probably be defined by other conditions and hence already be known.
The spread s can then be obtained from any other known condition, e.g., P(0)
known or P(R) known. Transcendental equations.are generally obtained of
such a form that they must be solved by numerical methods.

As before, the beam at pulsed operation is given by the two states:

, = 2
| 100P, | -(r;R)
P(r_)beam,‘ on 2 e _ ’ (32a)
-6 =ioe R

C ns(se °~ N R[erf(;)+1)]

P(Ppeam, off = 0-0- (32b)
4, THE FOIL TEMPERATURE
The foil temperé.ture is given by the differential equation
- a1
Pheam - Pcool = P 9V" Cp dt ’ : (33)

where Pheam is given by any suitable beam shape and time function, and
Pcool is given by Eq. (12).

No general solution to Eq. (33) is known, but for some combination of

beam shape and cooling type special solutmns can be obtained.

4.1, Radiation Cooling Dominates

Introducing polar coordinates, we obtain the equation

I')beam

: ' dT
=n.5g[1zr‘ft)-'r4]=dzpcp—-(§—flﬁ. (34)

sur
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4.4.4. Uniform beam shape
In this case Eq‘s. (34) and (13) give

P - | | -
tot 4 4 dT(z,t)
“-Rz - n6ég T(r,t) + nég Tsur = 44 p. Cp ————A e (35)
The steady-state solutionis obtained when dT(r, t)/dt = 0, -
/\7 4 Piot R L '
tee) SV T G

nég mR

where n is the number of radiatihg surfaces. As éan be seen,‘v'll'(r,oo) in Eq
(36) is indepéndent of r, so the surface will have the same ‘temperaturte all
over. o . o

When the beam is pu‘lsed,‘ however, the heat capacity of the foil will de-
crease the maximum temperature and increase the minimum temperature.

The two differential equations valid during heating (ton) and cooling (toff) are

100 P

_tot | s TF - nbg T(r,t)* = darp c E{E:B) (37a)
2 -Tsur p dt
CwR ,
for —fn-l—StS _r?n_ +t where m =0,1, 2,3, etc.
on
and _
nég T - nég T(r,t)" = dlp CpéTT(th‘) T (37D
for M, <tg 2L
£ on f

As ’Cp is a function of T very similar to Eq. (6), .

C, = a +bT + % | - (38)
The exact solutions of Eqs. (37a) and (37b) are quite éomplicatea functions of
T. However, the third term in Eq. (38) is only important at very low temper-
atures where the radiation cooling is negligible in comparison with conduction

and convection, Thus a linear dependence of C_ on T is sufficient. The solu-

tion is independent of r and can be written as follows:



-4141-

[B+T(t)][B T(t,)] - B[ T(t) - T(ty)]
b -ty = — 7 (A InrEs T((:)][B+T(to)] + 24 arc tan T T(t(:) j
0 4B 0 | 0
[ 82+ (03[ B2- Tt )Y
+ DIn— > 5 > (39)
[B™-T®) ][ B+ T(ty)"]
| 4160 Pt . .
where ~B= — + TSur with Ptot =0 for
CTrR nég ‘
-lf;n— tty, St< -I%ﬂ , A = dl‘pa/(nﬁg), and

=depb/(nég).. F1gure 1 shows the temperature calculated for a frequency
of 40 Hz and a typical fo11 Similar results are given in Refs. 3 and 4, which

however, consider Cp as a constant independent of T.

4.4.2. Gaussian l;eam shape

Equations (34) and (24) give

r N Tl -}
. R S
P In(1-a) R
St e % g T(r, 0 tineg T2 -arp ¢ LB
=R ) sur jo) t »

Obviously the temperature in the center of the beam will determine the be-
havior of the foil. A specialization of Eq. (40) to the hottest spot on the tar-

get gives for a continuous beam

P 1n(i-a) :
_ _tot > _ n6gT4
v max
TR

a

4 . '
+ nég Tsur = 0. (41)

The solution of'Eq. (41) can be written as follows:

P 1n(1-a)
T = \[-_tot L, r% | (42)

2
nRa n 6g.
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A comparison with Eq. (36), valid for uniform beam shape, shows that
'Tmax for the -qussia.n beam shape is higher. When Ts‘flr is negligible,
Tmax/T(r,oo) sz is obtained. So, the smaller the utilized part of the
Gaussian beam is, the cooler is the foil, approaching T(r,~) as a goes to
zei-o. - Figure 2 shows the variation of’ Tmax/T(r,oo) with a at equal trans-
mitted beam intensities.

When a pulsed beam is used, the equation for the highest temperature
T(0,t) is | |

100P, , In(1-q) . - ' '
. tot -negT(0,0f+negT? =dsp c, ario.n (43)

2
CnRa

- Equation (39) is a solution to Eq. 43 with

4 . , | -
100 P, ,1In(1-q) )
B;\/— ' tot +T4 for %Sts%-+t ,

. CvRaz nég suf' on
' 7 m m+i :
B=0 for F 4t <t< ——, A =dfpa/(nsg) and

D =d4pb/nég . About the same shapes as shown in Fig. 1 are thué_ob(:ained.
Some deviation occur at beam intensities where T:ur is important in the cal-

culation of B.

4.1.3. Double—'Gaussian beam shape »
The differerntial equation for radiation cooling at a double-Gaussian

beam shape is obtained from Eqs. (34) and (31).

~

r-R2

-(ERy

tot e : ' - '
. 4 4 5 _ dT(r,t)
— n6g[T(r, t) _Tsul‘] =di{ pCpT—. (44) -

' -(=)
wsze .s +'rr3/2

sﬁ[erf (_%) +1]

The steady-state solution to Eq. (44) is
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> ' : o (49)

. _(.&) -
.n6g(1rsze S 4 1r3/zs§(erf(-lsi) +1))

In this case the highest temperature will occur at r = R,

— y 4 : \
TR =\ [ T, + — — - (46)
' R

«{=) .
nag(-n-sze 5 1r3/2s§[‘erf(%)+i)]

Numerical calculations showed that Tmax< T(R, =) < T(0,») holds for
all investigated cases, as can.intuitively be understood from the fact that the
maximal intensity for a given beam is less for a double-Gaussian shape than

for a'Gaussian shape, but larger than for a uniform beam.
4.1.4. Calculation of the maximum temperature

Determination of the maximum temperature when radiation cooling domi-
nated is a worst-case calculation, as there always will be some conduction
cooling and often even some convection cooling. The result is presented as a
_ nofnogram, see Fig. 3, from which Tma.x can be estimated for various foil-
thicknesses, ions, foil materials, foil diameters, beam shapes, beam current,
and duty-cycles, with the assumption of 7.5 MeV/amu initial beam energy and
a 40-Hz repetition rate. It should be observed that the evaporation rate at re-
duced pressure, rather than the melting point, limits the highest temperature
at which the foils can be operated in vacuum. As the variation of Tmax with
the duty cycle is moderate, only 0.63% and 100% duty-cycle is shown in Fig. 3,
and all other values fall in between these limits. '

4.2. Conduction Cooling Dominates

" The equation for heat conduction in a thin circular disc is, expressed
5 .

in polar coordinates with constant A,

2. pC_dT(r,t) p, . .
d ' T(r,t) , 4 dT(r,t) P beam
2 tr Tar % at t Txar Y ' (47)

dr

where d{ is the thickness of the foil and Pheam is any beam-shape function.
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4.2.1. Uniform beam shape

The introduction of the uniform beam shape, as given by Eq.(13), into

Eq. (47) gives

a®T(r,b0), 1 dT(r,t) p p dT(r,H) , Ftot

er T dr A dt RZ)\df

=0, (48)

The steady-state solution, T(r, <), is obtained by setting the time de-
rivative to zero and solving the resulting differential equation with the bound-

ary conditions dT(0,w)/dr =0 and T(a, =) = T

. Assuming \ to be constant,
sur’

the solﬁtion is then

‘ Ptot r,2 ' :
oy s T(r,90) = Tsur + - [ 1- (E) 1, , (49)
U 4w hdy4
where R IS the radius of the foil and Tsur is the temperature at the cooled
edge. It is evident from Eq. (49) that the temperarure of a foil of given thick-
ness is not dependent on the size of the foil. This is easily understood as the
nearest distance from a point on the foil to the edge increases linearly with R
and at the same time the cross sec_:f:ion increases linearly with R, These two
effects compensate each other, which makes the temperature independent of

the absolute size.

As often high and low temperatures occur on the same foil, the heat con- -

ductivity cannot be assumed to be constant, The most common approximation
for N (T) is Eq. (6), where a,b, and ¢ are constants obtained by fitting Eq.
(6) to experimental data.

When the heat conductivity varies it must be included in the second de-

rivative of T. This gives Eq. (48) the following form: >
1 @ aT(r t) aT(r t) Ptot |
pollin AN T(r, t)]r —=—= > = 0. (50)
mR™d4 : .

Introduction of Eq. (6) into Eq. (50) and taking the partial derivatives
as indicated yields ‘

2
9 T(r,t)+_'1_ o0 T(r,t) _ b+2 cT(r t) [ST r, t)]
2 .
dr r ar a-bT(r,t)+cT(r, t) (51)
P
_ Pcp 8£(tr,t) + tgt - 0.
wRd/{
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The solution at 100% duty cycle and long times ‘»?is obtained by setting
the time derivative to zero in Eq. (51). The resulting differential equation
was solved with a fourth-order Runge-Kutta method. The result is shown in
Fig., 4as a nonﬁograph for Al, Be, and C foils. As can be expected from
Eq. (49), the temperature in the center of the foil is independent of the ra-
dius of the foil. This was teéted by integrating Eq. (51) to various radii.
The results showed that the temperature at the center was independent of R.

When a pulsed beam is used the solution to Eq. (48) during the first

beam pulse_' is , : an N |
100 2 2002 & REpc. T(%.6)
T(r,t) =T +____'?&t_[1_(f_)]_____§_°_t °*p . ._O._Ii_‘i&._ (52)
77 Tgur 4widiCh R 4ndeC

3 -
n=1 pn J1([3n)

where JO and J1 are Bessel functions and Bn are the roots of the equation
Jo(pn) = 0. The highest tempefature will as usual occur at the center of the

foil, Equation (52) can then be somewhat simplified as some r terms disap-

pear:
B2\
R S
00 2 “on
oo 100P - 200F, . R%C, . 53
max_sur 4m\diC mdf C 3J 6 )

Equation (53) shows that the time constant for the heating cycle is determined
by )\/(Rzp Cp). Thus -a smaller foil tends to follow the variations in the beam
to a larger extent than a bigger foil. Taking only the first term in the sum in

Eq. (53) into account and using C/100f for t,,» We obtain

5,783 \C
- 100P, rR%p C,100¢
Tmax ~ Tsur » 47NdiC 1-e » T (54)

When 100 fRzp Cp/)\ is smaller than 1.25 times C, the foil will already reach

its final maximum temperature during the first cycle. This condition has been
used to obtain the worst-case temperatures for pulsed beam given in Fig, 4.
For larger diameters the value of T will approach T for C =1009%.

: max max
When the beam intensity varies with time only, the following solution to Eq.

(47) is obtained, using Laplace transforms and the ''faltung" theorems’ 6
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N 2(t - 7)
t I —
. 2\ , pCp . TTO(r Py ' o
T(r,t)= T, .+ SC. R S.Q('r) 2 e m dr, (55)
: P 7 n=1 .

where Q(7) is the beam intensity as a function of time and ﬁn are the roots
to the Eq. Jo(ﬁn.) = 0.

When the beam is pulsed [ Eqgs. (17a) and (17b)] the integrand is zero
during the '"off'" part of the beam cycle and Q(7) is constant during the '"on"
part of the beam cycle. Thus the integral in Eq. (55) can be replaced by a
sum giving the solution _ _

. —ﬁnz)\t g o B, “\m

200P, < J,(G8) oC R [ 100pc iR’ \& ocr?.
T(r,t)=T_ + . 20 Z—————— e P le P Z.e P

ur wCAd{ 3 ,
n=1 5nJ.1(Bn) m=0
) o
p’n A M+1
- 5 (- =)
pC_R
+ 6] 1-e P , (56)

where Bn is the solutions to the equation Jo(ﬁn) = 0, M is the intéger number
of complete beam cycles contained within t- (C/100f), § is a delta function
which has the value 0 when t corresponds to the beam-off part and the value
1 when t corresponds to the beam-on part of the beam cycle. Equation (56)
transforms to Eq. (53) for the first beam pulse (M =0, §=0) and to Eq. (49)
for C =100. _ ' '

It is seen from Eq. (56) that the cooling-off time constants are
ﬁnz N p CpR2 and the same as t‘he heating time constants. Figure 5 shows the
central temperature as a function of time for some values of C when the time
constant is comparable to the frequency. It is obvious that the large increase
“in N\ obtained by cooling the edge to low temperatures will result in more
rapid (and larger) temperature fluctuations. The increase in A can to some
degree be compensated by increasing the foil diameter, but this leads easiiy
to such large diameters that the beam shape no longer is uniform. The in-
crease in A can also be compensated by using a higher frequency. The effect

of foil diameter on the center temperature is shown in Fig. 6.
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4.2.2. Gaussian beam shape
When the beam has any non-uniform shape, Pheam in Eq. (47) will be

dependent on r. In the case of a Gaussian beam shape we obtain
2
()" V-In(T-a)
a

P, 1In(1-q)
tot e =0. (57)

PT(r,0) 4 dT(r, 1) _ PCh aT(r,b)
er r dr N dt TTRaz xdJ

The steady-state solution, T(r,«), is obtained by setting the time deriv-
ative to zero and solving the resulting differential equation with the boundary

conditions dT(0,«)/dr = 0 and T(R,®) = Tsur' Assuming N\ to be constant,

the solution is

’ (58)

n-n!

Ptot / -In(1-aq) = n-1 [ -In(1-q)] n/2[1_(%)]
T(ryo) =Tt — 4wv as Z (-1)
n=1

where a is the fraction of the total beam current hitting the foil and Ptot is
the total power released by the beam. As usual, the highest temperature will

occur at the center of the foil (r = 0). By introducing r = 0 in Eq. (58) we ob-

tain the equation for T ,
. max

P - In(i-a) n/2
tot i" (c1)"-1 [—lr;l(.irzc!z)] . (59

rI‘ma.x - Tsur 4m\df
n=1

which is very similar to Eq. (49) with r = 0. Figure 7 shows the shape fac-

tor y(a) as a function of the transmission factor a.
% n/2
n-1 [-ln(1-q)]
y(a) =N -1n(1-a) z (-1) S nT . (60)
n=1

Using {, equation (59) can be written as

Ptot

T = T + In Ndl Y(a) . (61)

If the transmitted beam power is used instead of the total beam power,

Eq. (61) changes to

Tir Wa) (62)

max sur 4ntndl " a

The function {(a)/a vs a is shown in Fig. 8. A comparison of Figs. 2 and

8 shows that the temperature rises more rapidly with a for conduction cooling

than for radiation cooling.
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The complete time-dependent solution of Eq. (57) was not obtained be-
cause of difficulties with the solution of the new differential eélua'tibn obtained
after Laplace transformation of:Eq. (57). An analytical solution for a pulsed
Gaussian beam was not obtained for the same reasons. A numerical solution

is shown in Fig. 10.

4.2.3. Favorable beam shapes

The uniform beam can be regarded as one in a series of simple r- -

dependent beam shapes of the general type

pbeam = k-rn, (63)

where the uniform beam corresponds to n =0. The total beam power is then

given by

R v ,

_ . nH o

P, - Sznkr dr, (64
0

from which k can be determined:

(n+2) P, _
k = ——tot | - (65)

2 Rn+2

The steady-state solution of the heat-conduction equation is then

Ptot 2+n

T(r,=) = To + smizyexar L1-® 10 (66)

0 +
where n =0, 41, 2, 3 etc. _

It can be seen from Eq. (66) that the maximum temperature decreases
as n increases. When TO can be neglected, the following relations are ob-

tained between the temperatures:

2
Tmax(n) = > Tmax (eveg-begm). (67)

 And thus lower temperature can be obtained by choosing a beam shape
which corresponds to a higher value of n in Eq. (63), i.e., by concentrating

the beam to a small area near the rim.
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.4,3. Convection-Cooling Dominates

When convection cooling dominates over radiation cooling and conduc-
tion cooling, the amount of heat generated by the beam is equal to the amount
of heat carried away by convection from any point on the foil. Thus we ob-

tain the relation (one-sided cooling)

dT(r, t)

e (68)

Pheam ~ h_[ T(r,t) - 'Tﬂuid:I te CPdl

where h is a function of T(r,t), T iq» W» etc., as given by Eqgs. (8), (9),

v flu
(10), or (11). The resistance to heat flow through the thin foil is neglected.
Tﬂuid can be calculated with sufficient aoccura.cy from Ptot’ w, (Cp). fluid’ and
the entrance temperature of the fluid, T_ . .: ‘
: . fluid
P
: 0 tot '
T, ..~ T ., + , (69)
fl uid fluid w (Cp) fluid e

where P, ., is the total beam power released in the foil and fluid. Analytic

tot
~solutions to Eq. (68) can usually not be obtained because h is often given
~ by a function containing fractional powers of T(r,t). The stationary state

at constant beam can, however, be expressed analytically in some cases.

4.3.1. Water cooling '
| In the case of laminar flow of water, h is given by Eq. (9). For a uni-

form beam shape the temperature is almost constant on the foil and is given

3 , -
| P, - 10 V4
T(r,») = 5 +TW, (70)
nR(2.685 T_ +51.62 '

where Tw is the water mean temperature. At sufficiently large flow rates

T
w

seen from Eq. (70), the foil temperature is independent of r. The temper-

by the equation

124

TW, where T“? is the temperature of the incoming water. As can be

ature increases roughly with the 1.33 power of Pto and decreases roughly
with the 2.66 power of R.

When the beam shape is Gaussian the temperature is given instead by

t
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-1n(1 -a) Y

4
, ‘ -R(1 » - 1n(1 a) 104 4 . » | - ,
T(r,o) =e - , TW - g
| | LrR (2.685 T +51.62)) - © = B

- br . .
and T(r w0} varies w1th radius like a-e + ¢, i.e., in the same manner as

[z}
U)

the beam shape
The water cooling is very effective in compar1son with radiation coolmg

or conduct1on cooling. At a mean water temperature of 300°K /1-rR ~ 3.8
(k W/cm ) is needed to increase the foil temperature to 373°K. In compar -
ison, a fo11 temperature of 373°K at pure radiation-cooling is reached for

tot/ 'n'R <£0.13 W/cm ). Conduction cooling is more difficult to compare
with, as it varies with Ptot/df.lnstead of tot/’n‘R , but it is usually interme-
diate in efficiency. At a water temperature of 20°C and a surface temper-
ature of 100°C the heat resistance at the metal-water interface corresponds

to 84 cm copper.

'4.3,2. Gas cooling

- The heat-carrying capacity of gases is less than for water. Hence 1t
is necessary to use large flow rates to obtain a good coolmg w1th gases ‘
When turbulent flow exists, Eq. (10) can be used to calculate the film coeffi- i

cient, h. Then the foil temperature at uniform beam shape is given by

0.8 -0.4 . . v
P +P P DV C) p
_ 0 tot " g tot D . pg < P E
Tlr=) =T, + wecy. t .2 "0.023% ( m ./ (72)
p'g ™R g g
where subscript g refers to the gas, V is the linear gas velocity (cm/sec), - J =

D is the diameter of the gas channel, and w is the gas flow rate (g/sec). It
can be seen that the foil temperature is very nearly inversely proportional
to the gas flow rate. The term Pg accounts for the heat generated in the gas

during passage of the cooling channel.
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5. NUMERICAL SOLUTION OF THE GENERAL CASE

In practice, the observed beam functions and foil arrangemeﬁts often
deviate from the simple shapes and forms discussed above . It is then neces-
sary to solve Eq. (33) numerically for arbitrary beam shapes, foil geom-
etries, and cooling arrangements. At the same time it is necessary to use
temperature—dépendent heat conductivities and heat capacities to make a -
realistié calculation.

A prog_ram was thus developed where the only assurhptions are: beam-
powe‘r is independent of temperature, radiation can only escape in the £-
direction, convection cooling is only possible in the x-y plane, the grayness
factors are temperature-independent, and A and C_ values can be expressed
with sufficient accuracy as second-degree polynomials in T.

A mesh system is set up in the x-y plane which is then reproduced as
layers in the ¢ direction. At each mesh-point, the beam power, starting
temperature, grayness factor, geometrical connection to adjacent points in
. the positive coordinate directions, type of polynomials for X and C_, and
type of point-i.e., internal or boundary-is specified. The mesh width is
prescribed for each coordinate separately. ,

Starting at a corner and proceeding through the whole mesh system,
excluding boundary points, . the temperature-heat conductivity product is in-
terpolated from the surrounding mesh points by using a second-degree inter-
polation formula. This results in almost as many linear equations as there
are mesh-points. The large number of mesh-points desirable makes normal
- solution by 'matrix-inversiori impractical, Therefore the Gauss-Siedel iter-
ation method was employed, as then only one equation had to be evaluated at
a time. The coefficients were recalculated every time, thus avoiding the
storage of large sparse matrices, of the size of about 250000 elements. The
Gauss-Siedel iteration is convergent, as the main diagonal elements are
larger than the other elements in each row and the matrix is positive def-
inite.

The power lost by radiation and convection is calculated from the new _.
set of temperatures in the mesh-points and subtracted from .the power re-
leased from the beam. Then the whole iteration cycle is repeated until a new

iteration changes all temperatures with less than a prescribed value.
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The calculation can be performed to obtain a steady-state solution by
setting all Cp values to zero or to obtain snapshots at given time interyals ’
with a continuous or pulsed beam.

'Symmetry, axes can be used freely to reduce the problem as long as the
A vva.luels, Cp values, and grayness factors for mesh-points at a symmetry
‘cut are divided by the appropriate number of used symmetry axes passing
through the mesh-point. Values beyond a symmetry axis will then be mirror
images of the values before the axis. .

Fbr very thin foils, the heat conduction in the ¢ direction is much larger
than in the x and yv directions. This may cause numerical difficulties which -
can give a premature halt in the calculations. The simplest cure is'to treat
such foils as 2-dimensional structufes, which is equivalent to neglecting the
resistance to heat flow in the £ direction as compared to the resistances in
the x -y plane. The heat conductivity and heat capacity are automatically
multiplied by the actual thickness in a 2-dimensional treatment and by the
product of thickness and length in a 1-dimensional case. '

For cases where the beam power is small compared to the heat-capac-
ity, it may be necessary to decrease the value of the allowed difference be-
tween two successive iterations. On the other hand, high values for the
grayness factors seems to increase the convergence rate.

A complete listing of the program is given in Appendix 2. Appendix 3 gives
a sample of input data and results. The organization and format of the input
data is shown in Appendix 1. The algorithm is slightly modified, as the num-
ber of subscripts must be limited to three to be able to use the Fortran com-
pilers available for the CDC-6600 and CDC-7600 computers. This is the rea-
son for the split of the temperé.ture array into two arrays (T and TG) and of

the coupling-constant array into three arrays (CX, CY, and CZ) etc.

5.1. Combined Radiation and Conduction Cooling

The variation of temperature with radius and time can be obtained for
any given foil, foil-material, ion, beam-shape, frequency, duty-cycle, and A _
mean current with the aid of the. program given in Appendix 2. To illus-
trate the effect of beam-pulsing and beam shapé on foil temperature, a half-
mil-thick gold foil of 1 crn diameter was chosen. The edge of the foil is
clamped to 20°C and the surroundings are assﬁmed to be at 20°C. The foil
40 r13+ of

is surrounded on both sides by vacuum. The ion chosen was A
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7.2 MeV/amu, which is typical for an Ar beam from the Berkeley SuperHILAC.
These ions will release 10.9 W/uA (40Ar13+) during their passage through a
half-mil gold foil.

Figure 9 shows the variation of temperature with radius and time for
an incident beam with a uniform shape. The steep increase of temperature
near the edge of the foil is typical for the uniform beam shape. Figure 10
shows the variation of temperature with radius and time for a Gaussianbeam
shape. Here the temperature increases more rapidly towards the center,
leading to higher maximum temperature, Figure 11 shows the effect of a
double—Gaussian beam shape. Typical for this case is the delayed heating
of the central part of the foil, leading to a lower maximum temperature than
for a simple Gaﬁssian beam shape.

When the foil thickness is decreased, the.differential energy-loss
(dE/d{) of the beam becomes constant. For very thin foils the equilibrium
temperature is determined by the radiation cooling, and the foil temperature
falls approximately with the fourth root of the thickness, £, [ see Eq. (36)],
as Ptot is a linear function of 4. For thicker foils, where dE/d{ still is
constant, the temperature becomes independent of the foil thickness, as the
cooling is mainljr by conduction. In this case both the beam power and the
conduction area vary linearly with the thickness [ see Eq. (47)].. When the
foil thickness approaches the range of the ions in the foil material, dE/d4
increases, which leads to an increase in the foil temperature with thickness.
When the foil is thicker than the range of the ions, the temperature drops
again with increasing thickness—almost linearly at first, as long as the
thickness .is small compared to the diameter, and then the temperature lev-
els off to a constant value, determined by conduction in the £ direction.

This temperature is mainly independent of the type of ion and depends almost

only on the energy per charge unit, the beam current, and the foil diameter.
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Appendix 1.

Input data for HEAT v4m1
(Always punch the decimal point!)

1. HEADING-CARD (15A4)

Column 1 to 60: Alphanumeric text, which will be used as a heading on printout.

2. BEAM-CARD (8F10.0)

(A blank BEAM-CARD defines END-OF-DATA.)

2,1 Beam-Current in pA. Normally as mean particle current.

2.2 Beam-Energy-loss in MeV/Grid-unit. (See Grid-point cards!)

2.3 Beam-pulse on-time in seconds. (Only for pulsed beam, else 1.0)
2.4 Beam-pulse off-time in seconds. (Only for pulsed beam, else 0.0)
2.5 Melting temperature in °C. (Default is 10000 °C. Melted material is

removed)

2.6 Temperature offset in °C. (The offset is added to all grid-point-

temperatures before calculation).

2.7 Surrounding radiation temperature in °C. (Default is -273.16 °C)
2.8 Grayness factor (Default is 1.0) '

3. GRID-DIMENSION-CARD (8F10.0)

3.1 Grid—épacing,-X-direction, in cm.

3.2 Grid-spacing, Y-direction, in cm.

3.3 Grid-spacing, Z -direction, in cm. (Z is parallel to the beam)

3.4 Grid-spacing, time-direction, in seconds. (Zero implies a steady-

state condition)

3.5 Time before full printout, in se.conds. (Neglected for steady state)

3.6 Time wheri calculation stops, in seconds. (Neglected for steady state)

"4, COOLING-TYPE-CARD (I5)

: 0=VACUUM ON BOTH SIDES IN x-y plane
4.1 COOLING TYPE {1=GAS FLOWS ON ONE SIDE, PARALLEL
' TO THE x-y plane.
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5. GAS-DATA-CARDS (8F10.0)

(Only when'cool'ing-type is 1)

5.1 Hydraulic diameter of cooling channel, in cm.

5.2 Heat conductivity of gas expressed as a Sutherland approximation
| Ngg=aT NT/(b+T), with T in °K), in W/cm degree. '
5.2.1 a.
5.2.2 b,

5.3 Viscosity of.gas expressed as a Sutherland approximation.
[“gas ='aT.'\/_f/(b+T)I, with T in °K], in poise. |
5.3.1 a. |
5.3.2 b.

5.4 Heat capacity of gas expressed as a polynominal

(C =a+bT+c TZ, with FT in °K), in J/g, degree.

Pgas
5.4.1 a.
5.4.2 b

5.4.3 c.

5.5 Volume expansion coefficient of gas.
5.6 Flow-rate of gas, in g/sec.

5.7 Entering temperature of gas, in °C.

5.8 Gas pressure in atm.

5.9 Molecular weight of gas.

(The gas-cooling utilizes several similarity rules and rough approxima-

tions, hence the result should not be regarded as very accurate!)

6. A\4-NUMBER CARD (i5)

6.1 Number of heat-conductivities. (<10, 21)
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7. A4-FUNCTION-CARDS (3F10.0)

One card for each heat-conductivity type. The heat conductivity is ex-

: 2 s s e .

pressed as )\x =a+bT+c/T", where T is in °K and )\x in W/cm degree.
7.1 a.

7.2 b.

7.3 c.

The first card will be type 1, the 2nd type 2, etc. See 15.

8. 'Ay-NUMBER CARD (I5)

8.1 Number of heat conductivities. (<10, 21)

For a one-dimensional case, only one dummy )\y is needed.

9. A,-FUNCTION CARDS (3F10.0)

Same as 7, but fdr conduction in y-direction.

10. Az-NUMBER CARD (I5)

10.1 Number of heat-conductivities. (<10, =21)."

For a one- or two-dimensional case, only one dummy )\z is needed.

11. A\z-FUNCTION CARDS (3F10.0)

Same as 7, but_ for conduction in z direction.

12. Cp-NUMBER CARD (I5)

12.1 Number of Cy-types (=1, <10).



13.

14.

15.
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Cp-FUNCTION CARD (3F10.0)

One card for each Cp type. First card will be type 1, second typev 2, etc
Cp'isﬂ expressed as a polynominal Cp= a+bT+ c/Tz, where T is in °K
and Cp in J/ml degree. (OBS! not J/g degree) |

13.1 a.

13.2 b.

13.3 c.

GRID-NUMBER CARD (315)

14.1 Number of grid lines crossing x coordinate (=1, < 10)

14.2 Number of grid lines crossing y coordinate ( 21, < 10) ,

14.3 Number of grid lines crossing z coordinate (=1, <5)

' GRID-POINT CARDS (613, 2X, 6F10.0)

Grid-point cards are needed to specify points deviating from the default

assumption: outside beam area, clamped at 0°C and without connection
to surrounding points. (A point is the crossing‘of three‘grid lines). One
card per grid point. | |
15.1 Number of grid lines from origin along x axis. (0. <10)

15.2 Number of gr.id lines from origin along y axis. (> 0. < 10)

15.3 Number of grid lines from origin along z axis. (20. <5)

A card with 0 griddines from origin terminates the reading of grid-point

cards. Normally grid-line no. 1 goes through origin.

-15.4 Cp-function type for this point (=1, < 10)

"15.5 A -function type for this.point (=1, <10) -

The type selected is common for )\x’ )\y, and )\z. The )\x is considered
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to be for conduction between this point and the next along the x axis. The
‘same holds for )\y and )\z.

15.6 Gas contact. (0 = no gas contact, 1 = gas contact. )

15.7 Temperature in degrees centigrade. (Starting value includes temp.
offset. ) -

15.8 Fraction of beam power released’at the point. (Beam power-loss

: fnust_be nofmalized to this value.)

15.9 Point type. 1.0 means that temperature is clamped to its initial
value. 0.0 means that no radiatiQn is ldst from this point. When
heat radiation éan'escape iﬁ the z direction, -G is specified, where
G is the surface grayﬁess fac.tor 0< G< 1.0. For 2-dimensional
foils. G is.the sum of the grayness factors for both surfaces.

:15.10 Fractional area coupling to next point in x direction.

15.,11 Fractional area coupling to next point in y direction.

15.12 Fractional area coupling to next pointvin z direction.

The fractionalareas are especially usefgl wheﬁ symmetry properties are

used to reduce the size of a problem.

The test 'example supplied with the program is for 1 quadrant of an ap-
proximately circular foil with no radiation or gas cooling. It shows that
the coupling areas (15.410 - 15.42) are not reduced along the symmetry
axes, but how instead three different N and Cp sets are used and the
fractional beam (15.8) is used to adjust the coﬁditions along the symme-
try lines. Thﬁs functions and coupling areas can be traded against each

other to simplify a problem.
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Arrangement of data-deck for HEAT v4mi

BEAM-CARD - ~—+—Blank if

end-of-data.
HEADING-CARD
(CASE 2) :

]
!

/GRID -POINT-CARDS.

GRID-NUMBER-CARD

Cp ~FUNCTION-CARDS
Cp -NUMBER-CARD ]
Al

NJIE
IJ

A - FUNCTION-CARDS
Xz - NUMBER- CARD

even for { and 2-
dimensional cases

} Must be present

Ay -FUNCTION -CARDS ‘7‘ Must be present
xy “NUMBER - CARD - even for 1-
dimensional cases
>\ “FUNCTION- CARDS
Ay -NUMBER-CARD ]
[GAS - DATA-CARDS] - Only when
COOLING-TYPE- CARD cooling-type 1

GRID- DIMENSION -CARD
BEAM-CARD

HEADING- CARD
((cAsE 1)

FIRST CARD

XBL736-32i8
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APPENDIX 2. Program HEAT v4ml L

i e e s |

PROGRAM HEAT{INPUT,OUTPUT ,TAPES=INPUT,TAPEG=0UTPUT)

PROGRAM FOR SULVING DYNAMIC AND STATIC 3-D HEAT-TRANSFER WITH

PUWER-SOURCESy RADIATION COOLING, HEAT-CONDUCTION IN NONISOTROPIC
CASES. RADIATIUN SOURCES ARE TREATED AS BLACK BODIES. HEAT-TRANS

- FER COEFFICIENTS ANO HEAT-CAPACITIES CAN BE LINERA OEPENDENT ON
TEMPERATURE. THE. PUWER SOURCES MAY BE IN TWwO STATES FOR GIVEN

TIME lNTERVALS.

JeOo LILJ&NZIN 29.9.1972

VERSION 4 USES POLYNIMIALS A+R*T+C/T*%2 FOR HEAT-CONDUCTIVITIES
TO ALLOW A LARGER TEMPERATURE RANGE TO BE COVERED

WHEN THIS 1S NOT NECESSARY, USE V3MO WHICH IS FASTER.

UA=BEAM CURRENT IN UAIDC)
PA=BEAM-POWER L3ST IN MEV/POINT

TON=T[ME INTERVAL WITH BEAM ON
TOFF=TIME-INTERVAL WITH BEAM OFF

UA.LELOs STOPS PROGRAM
DX=CM/GRID-UNIT IN X-DIRECTION

DY=CM/GRID-UNIT IN Y-DIRECTION
DZ=CM/GRID-UNIT IN Z-DIRECTION

OT=TIME-STEP IN SECONDS
IF DT=0, THE STEADY-STATE 1S CALCULATED

CTMAX=TIME-LIMIT. IN SECONDS (STOPS THE PRESENT CASE)
TMIN IS THE RUN-IN TIME BEFORE FIRST COMPLETE PRINT-0UT

‘MX=TOTAL NO. OF RX-FUNCTIONS
“AX{I) AND BX{I) ARE THE COEFFICIENTS IN THE EXPRESSION

RX{AT 9 JsKI=CXLT 2o KIE(AXIL)+BXILI*TI{I s J9K)IEXMI WHERE L=NR{I,JyK})
THE AX{I).S ARE IN W/CM DEG. AT 0O DEG.K (NOT DEG C)

THE BX IS IN W/CMIDEG)*%2
MY, AY(I) AND BY(I) ARE THE SAME FOR RY

MZy, AZ(1) AND BZ{I) ARE THE SAME FOR RZ
MC, AC(I) AND BC{I) ARE THE CORRESPINDING DATA FOR THE HEAT-

CAPACITY. AC{I).S IN J/MLDEG AT O DEG. K
BCeS IN J/ML(DEG)**2 -

IM=NUMBER OF GRID-POINTS IN X-DIRECTION
JM=NUMBER OF PUINTS IN Y-DIRECTION

KM=NUMBER CF PDINTS IN Z-DIRECTION
LM=DIMENSIONALITY OF ACTUAL CASE

I=N0O. O DX TGO A POINT -1
J=NO. OF DY TO A POINT -1

K=NOQ. UOF DZ TO A POINT-1
T{I,JsK)I=TEMPERATURE IN DEG.C AT POINT I,J,K AND TIME

QUI,J,KI=FRACTION OF PUWER AT POINT I,J,K
F(IsJsK)=1le MEANS T{(1,J,K)=CONSTANT (BORDER)

=0+ MEANS T(Il,JsK)=VARIABLE
==V. MEANS T(I,J,K)=VARIABLE AND RADIATION FROM Vv

SURFACES IN THtE X-Y-PLANE (EACH AREA 1S DY*DX)
CX{I9JyK)=COUPLING—-CONSTANT BETWEEN I AND I+]

CY(I4J,K)=DITO FUR J AND J+1
CZ(I4J9K)=DITO FUR K AND K+1

NR{I yJ4K) SELECTS THE APPROPRIATE RX-4 RY—, AND RZ-FUNCTIONS
NC{IyJyK) SELECTS THE APPROPRIATE C-FUNCTION

ITER IS LOOP-COUNTER
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SUM IS CONVERGENCE-TEST AGAINST RKT

UBSERVE THE POSSIBILITY TO UTILIZFE SYMMETRIES TO REDUCE A GIVEN

PROBLEM.
WHEN SYMMETRY IS USED THE Q, C AND V.S FOR A POINT MUST BE.

DIVIDED BY THE NUMBER OF USED SYMMETRY AXES PASSING THRU THIS
POINT,.

OBSERVE ALSO THAT THE RZ-S OF A HIGHER LAYER (LARGER K) QFFECTS
THE RZ~S OF THE NEXT LOWER LAYER., THIS IS ALSO TRUE FOR MATERIAL .

CHANGES IN THE X-— AND Z-OIRECTIONS.
TSUR IS SURROUNDING TEMPERATURE TQ BE USED FOR CALC OF RAD COOL

FOR CYCLIC PHENUMENA IT IS ADVISED TO START BY OBTAINING.YOUR

STEADY-STATE CONDITIONS AT THE MEAN-POWER USED AND THEN USE THIS
AS THE STARTING PUOINT FOR THE T{(X,YsZyT) CALCULATIONS.

TADD IS ADDED TO ALL POINT-TEMPERATURES

VERSTION 3 ALLCWS GAS-COOLING ON RADIATING SURFACES

ITYPE=0 FOR NO GAS-COOLING (=VACUUM)
1 FOR GAS-CUILING

CD IS CHARACTERISTIC DIAMETER (CM)

CK=GAS HEAT CONDUCTIVITY (W/CM.DEG)

CKA AND CKB ARE CUONSTANTS IN CK= CKA*T**I 5/(T+CKB) -

GMU IS GAS BULK VISCOSITY

GMUF IS GAS VISCQOSITY IN BOUNCARY LAYER

CMA AND CMB ARE CUNSTANTS IN MU=CMA®T**1.5/(T+CMB)

CP IS GAS HEAT CAPACITY (J/G DEG.)

CPA,CPB AND CPC ARE COEFFICIENTS IN CP= CPA+CPB*T+CPC/T**2

CB IS VOLUME EXPANSION COEFFICIENT (/DEG.)

CW IS GAS MASS FLOW (G/S) '
" CTC IS GAS TEMPERATURE AT INLET (DEG. C) ' i

CPRES IS GAS PRESSURE AT TARGET SURFACE (ATA)

CMV IS THE MOLECULAR WEIGHT QOF THE GAS

.CR IS GAS DENSITY (G/ML) FROM THE GAS LAW

“CONA AND CONB ARE CUNSTANTS FOR GIVEN GAS, BULK TEWP AND PRESSURE
GT IS CALCULATED MEAN TEMPERATURE OF GAS (DEG.K)

NG(Is+JseK) IS 1 IF GAS IS IN CONTACT WITH THIS POINT
0 IF NO GAS—CONTACTY

QTG TS TOTAL HEAT TRANSFERRED TO GAS-PHASE

ﬁﬁﬁﬂﬁﬁ!ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬂﬂﬁﬁﬁﬁﬁﬁ(”ﬁﬁﬁ

DIMENSION F(10710)5’QT(10f1015,1TG(10y1075)'Q(1091095)’AX(10,|
18X(10),AY(10),8Y(10),AZ{10),B82{(10),AC(10),8C{10),PR(10),PT(15),

2CX{10+10+5),CY(10+10,5),C2010,10,5),DC{10),EX{LO)EY(L10)+EZ(10),
3NR(10910y5)4NC(10,1095)yNG(1041045)

STATEMENT FUNCTIONS

SUD EVALUATES SUTHERLAND EQN AND POL POLYNOMIAL
SUD{AyB,C)=A%C¥*¥]1.5/(B+C)
POL{A,B,C,D)=A+B*D+C/D%%¥2

OO O

IVERS=4
30 MODIF=1
31 1000 TIME=0.
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HEAT . .
32 [TER=-1
33 . RKT=0.
34 DO 1 I= 1910
35 DO 1 J=1,10
36 DO 1 K=1,5
50 F([,J)K"—'-lo
51 T(IyJsK)=0,
51 TGl 9dsK}=0,
52 CX{lsJeK)=00
53 CY{I4J9K)=0.
53 CZ({I 4J9K)=0.
54 NR{IyJyK)=0
54 NC(1,4J,K)=0 -
55 NG(IyJyK)=0
55 1 Q{l,J4K)=0.
C .
63 READ(5,4)({PT{1),1I=1,415)
4 FORMAT{15A4)
70 WRITE{6+5){PT{1)s1=1915), IVERS,MUDIF
5 FORMAT(1H1715A4v9HHEAT VERS:I3.5H MOD,13) )
C h
102 READ(5+2)UA,PA, TON:TDFF,TMLT,TADD +TSUR,,GSIGE
2 FORMAT(8F10.,0)
126 IF{UALLE.O.) STCGP ..
132 IF({TMLT4LE-Qe)} TMLT=10000,
135 IF{TSURL.EQ«De) TSUR=-2T73,16
137 READ(5,2)DX3sDY,DZ DT, TMAX, TMIN
157 IF{DT)200,200,201
C SET CONDITIONS FOR A STEADY-STATE CASE:
161 200 TON=1.
162 TOFF=0.
163 TMAX=0.
164 201 CONTINUE
164 WRITE(6,3)UA,PA, TON,TOFF, TMLT
) FORMAT(6HOBEAM=,y F10.3,10HUA, POWER=yE10.3,9HMEV/POINT,5H TON
1F10.4,8HS, TOFF=,F10.4914HS, MELTS AT T“yFlO-Z’
202 TMTT=TMLT+273,.16
C
204 HRITE(616)DX.DY,DZQDT,TMAX,TMIN
6 FORMAT{4HODX=3F10e5yTHCM, DY=,F10.5sTHCMy DZ=yF10.547THCM, DT=,
1F10e5910HSEC, TMAX=9F1l045,10HSECy, TMIN=,F10. bv3HSEC)
224 IF{TMINL.GE s TMAX. ANDo DT.NEL.O.} GO TO 1000
234 WRITE(6,444)TSUR
444 FORMAT{6HOTSUR=4,F10.2,3HDEG)
241 TSUR=TSUR+2T73.16
C
243 SIG=5.TOE~12%DX%DY
246 READ(5,300)ITYPE
300 FORMAT(1I5)
253 IF(ITYPE.LE.U) GO TO 301 } .
C 08S NEXT STATEMENT READS TWO CARDS .
255 READ(5,2)CDyCKA,CKByCMA, EMB,CPA,EPE'EPC EB éﬂpCiC,CFﬁEg MV
312 WRITE(6,302)ITYPE,
) 1 CD, CKA:CKBoCMA:CMB'CPAgCPB,CPC,CB CW,CTC, CPRES,CMY

302 FORMAT{6HOTYPE=,12,12H GAS-COOLING/
16H DIAM=49X¢F 10424 2HCM/
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212H HEAT COND .=y 8X92E1043,9HW/CMLDEG./ e
311H VISCOSITY=,9X,2E10.3,4HP0IS/
44H CP=416X93E104318HI/GeDEGe/15H VOLLEXPJCOEF.=95XsE10: 3/
511H FLOW—RATE=49X,E10.3,5HG/SEC/ :
615H ENTERING TEMP=,F10.2¢5HDEG.C/
7104 PRESSURE=,TXsF10.493HATA/
812H MOL JWEIGHT=44X,F10.3) - 3 e
353 CTC=CTC+273.16
354 GT=CTC
355 GO TO 303
356 301 WRITE(6,3C4)ITYPE
304 FORMAT(6HOTYPE=,12,TH VACUUM)
364 303 CONTINUE
C
364 READ(S5s7IMX o (AX( L) 4BX{I)9EX(I)yI=1,MX)
7 FORMAT(I5/(3F10.0))
410 WRITE(648) (I, AX{I)BX{L)EX{I),I=14MX) e
8 FORMAT(BHORX=FUNC/{1X+sI13,2F10.59F11.2))
C
434 READA{S, TIMY, (AY{I) BY(I),EY(]),I=1,MY)
460 WRITE(69) (T AY(T)BYLL)oEY(I)yI=1,MY)
9 FORMAT (BHORY-FUNC/(1X,13,2F10.54F11.2))
C .
504 READ(S5,TIMLy(AL(T)4BZLUT)EL(L)yI=1,M2)
530 WRITE{65 L0 (T 4AZ(I)8ZII)HEZ(L)I=1,M2) — .
10 FORMAT(BHORZ-FUNC/(1X41352F10.5,F11.2))
C . o
554 READ(S, TOIMC, (AC(1)8C(T)}4DC(I)yI=1,4MC) N
70 FORMAT(IS5/{3F10.0)) .
600 WRITE(6,L1)(14AC(11,8CIT1)4DC(I)},4I=1,MC)
11 FORMAT(8HO C-FUNC/(1X313,2F10.5,F11.2)) . . -
C
624 READ(5,12) IM,y, JMy, KM
12 FORMAT(315)
636 LM=3
637 L IF{KMJEQel) LM=LM-1
642 [F{UJM.EQel) LM=LM-1
645 [F(IM.,EQel) LM=LM-1
650 WRITE(6,13)IMyJMaKM,L 4
L3 FORMAT(1HO,2(I3,2H X)41342H —leylZH DIMENSIONAL’
664 - XM=DY*DZ/DX
666 YM=DX*DZ/0Y
667 IM=DX%DY/DZ
670 VM=0.,
671 IF(DT aGT+40s) VM=DX%DY%DZ/DT
676 TIME=0.
677 POINTS=0,
700 14 READ(5,15) 1,J4K, NC[JK,NR[JKvaIJKrTIJKyQIJKQF[JK'CXIJKvCYIJK'C 1K
15 FORMAT(613+2X,6F10.0)
135 IF{I.LE.Q) GO TO lb6 o
136 IF(1.GT.IM) GO TO 14
T41 IF{J.GT.JM) GO TO 14
T44 - IF({KeGTKM) GO TO 14
753 POINTS=POINTS+QI JK
755 TIJK=TIJK+TADD
757 T(1,J,K)=TIJIK
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157  TGUIpJeK)=TIJK
760 Q(Il,J4+4K)=QTIJIK
761 F{I,JyK)=FIJK
763 CX(IyJyK)=CXTJK
7164 CY{I,JyK)=CYIJK
T66 CZ(1,4,K)=CZIJK
767 NC(I,JsK)=NCIJK
771 NR{I p Je K)=NRIJK
172 NG{IsJsK)I=NGTIJIK
174 G0 TO 14

715 16 WRITE(6417)
17 - FORMAT{S5HODATA/2H T/2H Q/ZH F/3H CT/3H RT/3H CX/3H CY/3H CZ)

1¢01 " IF{ITYPE.EGQ.1l) WRITE(65170)
170 FORMAT(3H NG)-
1007 WRITE(6,753)1POINTS
753 FORMAT(1HO,F12.5,7H POINTS])
C
1015 DO 18 K=1,KM
1017 WRITE(6,5){(PT(I)4I=1415),1VERS,MODIF
1030 WRITE{6419)K, TIME,ITER
19 FORMAT(6HOLAYER, 13438H AT TIME,FlO.S,3HSEC:I5,4HITER)
1042 WRITE(6,20)0(1,1=1,1M)
20 FORMAT(3HOX=493X,10110)
1055 DO 18 J=1,JM ' .
1057 WRITE(6921)Jds(T{I4JdeK)sI=1,TM)"
21 FORMAT (3HQY=,13, 10F10.2)
1073 WRITE(64+22)1QUI,JsK) 1= lyIM)
22 FORMAT(6Xs10F1042) :
1106 [F(GSIGE.EQ.0.0) GO TO 5433
1107 . DD 5432 I=1,1IM '
1111 o "IF(F(IyJ:K))5431,543215432 .

1117 5431 F(i,J4K)=F(1,JyKI*GSIGE
1125 5432 CONTINUE
1130 5433 CONTINUE

1130 WRITE(6+22)(F{T,J4K)1=1,IM)
1143 WRITE(6923){NCIIyJsK)sI=1,1IM)
23 FORMAT(4X,10110)
1156 WRITE{6423){NR(I,JsK),0I=1,41IM)
1171 WRITE(6222)(CX{T,dsK)y[=1+1M)
1204 WRITE(6,22) (CY(1,J,K),yI=1,1IM)
1217 ARITE(S422)(CZ{T1J9K) 2 I=1,1M)
1232 IF(ITYPELEWQ.L1) WRITE(6+23)(NG(I,JsK),I=1, IM)
1247 DO 120 I=1,IM
1251 IF(F(I,J4K))121,121,120

1257 121 ITFINC(IsJsK)oLTel) WRITE{6,150)1,4d,K
150 FORMAT(3HONC,315//)

1277 ITFINRTT,J KV LT.1) WRITE(6,151071, J:K
151 - FORMAT{3HONR,315//)
1317 TTTRKT=RKT+#0.0001
1321 120  CONTINUE
1372% DO 24 T=171H
c RECALCULATE CURRENT IN PULSE FROM PULSE-TIME AND MEAN-CURRENT
1340 QUT, JHKY=Q(T,J,KI*¥UARPA* (TOFF+#TON)/TON 77
1344 . T{IyJeK)=T(L,J,K)+273. 16

1346 24 7 TGUI4J4K)=T(1,JyK)
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1350 18 CONTINUE
1355 ION=1
1355 TSW=TON
1357 25 [TER=-1
1360 TSUR4=T SUR**4
1362 26 CONTINUE
C GAUSS—-SIEDEL ITERATION CYCLE STARTS
1362 IFUITYPELEQ.O0) GO TD 3100
1363 QTG=0.
1364 CK=SUDI{CKA,CKB,GT)
1366 GHMU=SUD{CMA,CMB,GT)
1371 CR=CMV*CPRES/ {82.054%GT)
1375 CP=POL{CPA,CPB,CPC,GT) -
1401 - CONA=CKXDX#DY%1,62%(1,273%CW*CP/{CK*CD) ) *¥%0,33333
1413 CONB=3,375E-6%CO*3%CR¥*¥2%CB*980. 665
1420 3100 CONTINUE
1420 ITER=ITER+]
1422 . SUM=0.
1423 DO 30 [=1,1IM
1424 DO 30 J=1,JM
1425 DO 30 K=1,KM
1426 "DTA=0.
1427 ONA=0.
1427 IF(F(I,J,K)131,32,30
1436 31 DTA= DTA+S[b*F(I:J,K)*(T(IgJ,K)**4-TSUR4)
1454  IF({ITYPE)32,32,3006
1456 306 TFING(I,J,K))32,32,307
1464 307 GMUF=SUD(CMA,CMB0.5%(GT+T(I,J,K)}))
1504 QCG=CONA* { GMU/GMUF ) ¥%0. 3333
1510 ch-4c0*11 +{CONBX{T(14J,K)=GT)/GMU*%2) %¥0, 33333;
C LIMIT THE GAS-COOLING TO MAX 1 SURFACE
1520 QCG=QCO*(T{I1,JsK)-GT)I*F(I,J,K)%¥0.5
1524 RATG=QTG+QCG
1526 DTA=DTA+QCG
1527 32 L=NC(IyJyK)
1534 CC=VM*POLTACTL) y BCILY s DC(L)Y ,T{1+d, K))
1544 IF(CCaLTL.U.) CC=0,
1547 DTA=DTA+TG(1,J,K)*CC
1556 IF{IONLEQ.L) DTA=DTA+Q{[4J,K)
1573 DNA=CC ’
1574 L=NR{I,JyK) B
1575 IF(LM.EQ.D) GO TO 74
1577 GO TO{41942443) 1M
C TREAT Z=COORDINATE
1605 43 CC=ZIM%CZ(1,J, K)*PUL(AZ(L),BZ(L),EZ(L);T(IvJ,K))
1624 TF({CC.LT.04) CC=0o
1627 DNA=DNA+CC
1631 IF(K.EQ.1) GO TU 51
1633 M=NR(I,J9K°1)
1640 IF(M.EQ.0) GO TO 5L T
1641 COM=ZMERCZ(14J9K=1)%POLIAZ(M) yBZ(M)yEZ(M),T(150,K=-1))
1657 IF(CCM.LT.0.) CCM=0,
1667 DTA=DIA+COMXT( T3 JyK-1) -
1671 ONA=DNA+CCH
1673 GO TO 52
1700 51 DTA=DTA+CC*T(1,J,K)
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1703 DNA=DNA+CC

1704 52 1F{K.EQ.KM) GO TO 53

1706 DTA=DTA+CC*T(1,J,K+1)

1715 GU TO 42 ‘ ‘

1715 53 DTA=DTA+CC*T(1,4,4K)
C TREAT Y-CUORDINATE

1724 42 CC=YMERCY ([ yJoyK)®POLUAY{L)BY(L),EY{L) T{I,JyK))

1743 IF(CC.LT.0.) CC=0. R

1746 DNA=DNA+CC

1750 IF{J.EQal) GO TO 61

1752 M=NR(I;-J-11K‘)

1750 IF{M.EQ.0) GO TO 61

1760 COM=YMHCY (1 9J-1,KI¥POL(AY{M)sBY(M)EY(M)yT(IyJ=1yK))

1775 IF(CCM.LTL.0.) CCM=0,

2005 DTA=DTA+CCM%T{I, J=-1,K)

2007 DNA=DNA+CCM

2011 GO TO 62

2016 61 DTA=DTA+CC*T(I5J,4K)

2021 ONA=DNA+CC .

2022 62 IF{J.EQ-JM) GO TO 63

2024 DTA=DTA+CC*T ([, +1,K)

2033 . GO TO 41

2033 63 DTA=DTA+CC*T([,Jd4K)
C TREAT X-COORDINATE , .

2042 41 CC=XMECX( 2144 KI*POLIAX(L) ¢ BXIL) yEXIL) yT{IyJyK)})

2056 IF{CC.LTL0,.) CC=0.

2061 ONA=DNA+CC

2063 IF{l.EQ-L1l) GO TO 71

2065 - M=NR({I-1+J,+K)

2072 IF(M.,EQ.0) GO TO 71 v

2074 COM=XMRCX(T=1 9JyKIXPOL{AX(M) yBX(M) yEX{M)yT{I-19J,K))

2110 IF{CCM.LT.0.) CCM=0Q.

2120 DTA=DTA+CCM*T(I~-1,4J,K)}

2122 ONA=DNA+CCM

2124 GO TO 72

2131 71 DTA=DTA+CCRT{ I44,4K)

2134 DNA=DNA+CC

2135 12 IF(T.EQ.IM) GO TO 73

2137 DTA=DTA+CC*T{I+1,J,K)

2146 LU TO 74

2146 73 OTA=DTA+CC*T (1,4 J,K)

2155 74 SU=-T{T4J,K)

2162 [IF(ONAGEQeOe ORe DTALGTLLE+100) WRITE{6975) [y JeKy[TER,DNA,UTA
75 FORMAT{3HO*%,415,2E15.4)

2217 T{Il,JsK)=DTA/DNA

2221 SU=sSU+T (1, J,K)

2223 SUM=SUM+ABS(SU)

2225 IF(T{I,J,K)eGT.TMTT) GO Ti) 400

2235 30 CONTINUE . : :
: C T . N : .
C CALCULATE NEW GAS MEAN-TEMPERATURE

2245 [F{ITYPELEQ.L)Y GT=CTC-QTG/(CWXCP)

2252 IF(ITER.GE.1000) GO TO 1001

2255 TF(SUM.OTLRKT) GO TO 26
C

2260 1001 TIME=TIME+DT
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2262 D0 80 K=1,KM
2264 [FITIME.LT.TMINIGO TO 2000
2266 WRITE(6,5) (PT(I)s1=1,15),1VERS,MODIF
2300 WRITE (6330 UA,PA, TON, TOFF 5 TMLT
AAAAAAAAA 2316 IF(DT.LELO.) WRITE(6,90)K,ITER
2330 [F(DT<GT.0.) WRITE(6,19)K, TIME, ITER
90 FORMAT(6HOLAYER, 13,12HSTEADY—-STATE ,I15,4HITER)
2343 2000  CONTINUE | ‘
2343 | WRITE(6,404)
404  FORMAT(LH )
2347 IF(ION) 101,101,102

2351 101 WRITE(6,4105)

105 FORMAT(9H+BEAM OFF)
2355 GO TO 103
2356 102 WRITE(65106)

106 FORMAT (B8H+BEAM ON)
2362 103 CONTINUE

2362 IF(TIMEL.LTLTMINIGD TO 2001
2365 WRITE(64404) _
2370 : WRITE(6420)(1,41=1,1IM)
2403 2001 CONTINUE
2403 TMN=-1000,
2405 DI 80 J=1,J4M
2406 DO 82 [=1y1IM
2407 IF(F{I,J,K)eGTo0.) GO TD 82
- 2416 IF(T{I,J,K).LT.TMN) GO TO 82
2427 TMN=T(1yJyK)
2430 1H=1
2430 JH=J
2431 KH=K
2433 82 PROII=T{I4J,K)-273,16
2444 [FITIMEL.LT.TMINIGO TO 2002
2447 WRITE(642L)J9 (PRIT)I=1y1IM)
2457 2002 CONT INUE
2457 DO 81 I=1,1M
2461 PRUT)==STG*F(T,JsKIXT(1,4JyK)*%k4
2474 PRUIN=PR(I)%1000. )
2476 [F{rF{l,J4K))B1,81,83 v
2503 83 PR(1)=0.
2505 81 TG (I sy K)I=T(T4J4K)
2520 IFITIMEL.LT.TMIN) GO TO 8O
2522 CWRITE(6,221{PR{I) ,I=1,1M)
2531 IF(ITYPE) 80,800,315
2533 315 DO 310 T=1,1M
2535 IF(F{I4J9K))311,312,312

2543 311 IFING(I,J,K)) 312,312,313
2551 313 GMUF=SUDICMA, CMB 3 0+5%{GT+T(1,J,K)))

2571 QCG=CONA* ( GMU/GMUF ) %*0.33333

2575 QCG=QCG*{ 1. +{CONB*(T{I,JsK)=GT)/GMUE*2)*%0,3333)
2605 CG=QCO*{T (1, JyK)-GTI*F{1+J,K)¥0.5

2611 PR{I)=-QCG

2613 GO 70 310

2614 312 PR{I)=0.
2616 310 CONT INUE
2621 WRITE(6422)(PR{I),1=141[M)
26217 80 CONTINUE
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2634 IF(TIME.GE.TMIN) WRITE(6+404)
12643 "TFUITYPEL.EQ.OY GO TO 321 '
2644 GTT=6T-273.16 .
2646 WRITE(6,320)GTT
320 FORMAT{1H+,60Xy,15H GAS MEAN-TEMP=,Fl0+2y5HDEG.C)
2654 321 CONT INUE
2654 TMN=TMN-273,16
2656 WRITE(642005)TIME ¢y TMNyIHs JHoKH,ITER
2005 FORMAT({11Xs7TH T=MAX=9F10.5yF1l0e2:413)
2676 IF{DT.LE.O.) GO TO 1000
2700 IF(TIMELLTLTSW) GO TQ 100
2702 IF{IONLEQs1l) TSU=TSW+TOFF
2706 IF(IONoNEsLl) TSW=TSW+TON
2711 [ON=-10N
2712 100 CONTINUE
2112 IF{(TIME.LT.TMAX) GO TO 25
2715 GO TO 1900
C AN ELEMENT IS SU HOT THATY IT MFLTS AWAY
2715 400 WRITE(64401)1 3J,K,ITER '
401 FORMAT (13H *¥MELTING AT,413,2H%xX)
2736 FllydsK)=1,
2737 T(IsdyK)=2T73.16
2741 CX(14JyK)=0.
2742 CZ({1,4JyK)=0.
2743 ITF(IaGTal)CX(I-1yJ,yK)=0
2152 IF(J.6Tel) CY(1,U-1,K)=0,
2761 IF(KeGTol) CZ(T1,JeK-13=0,
2170 GO TO 25
27171 END



-40 -

APPENDIX 3. Example of the printout from program HEAT v4mi

1/72MIL 1CM DIAM AU-FOIL IN DOUBLE GAUSSIAN AT 1W/UA

HEAT VERS & #MOD 1

4.000UA, POWER= 2,526E-03MEV/POINT TON=

«0200S, MELTS AT T= l_bDDOo 00

BEAM= «0050S, TOFF=
OX=  .06250CH, DY= .06250CH, DZ= .00127CM, DT=  ,00100SEC, TMAX= 2260 0SEC, TMIN=  ,20000SEC
TSUR= 20.90DEG T I
TYPE= 0 VAGUUM '
RX~ FUNC
1T 3.29400 =-00057  &4183,00
2 1.64700 -,00028  2092.00
3 -0.00000 -0.00080 <0.00
—RY=FUNC
1 3,29400 -,00057  4183.00
23.29400 =.00057  %183.00
3 1.64700 -.00028  2092,00
RZ- FUNC
=0, 00000 =5.00000 =0.00
2 -0.00000 =-0.00000 -0,00
30, 00000 =0,00000 <000
C=FUNC
1 2.31800 000051 -‘G.UD
2 1.15900 «00025 -0.,80 ! *
3 .57950 L00013 -0,00
9 X 9 X 1= 2 DIMENSIONAL
DAT A
T
Q
F
cT
RT
cx
TY
cz

98,95750 POINTS




1/2MIL 1CM OIAM AU-FOIL IN DOUBLE GAUSSIAN AT 1W/UA

HEAT VERS &4 MOD 1

LAYER 1 AT TIME  0.00000SEC  -iITER

X= 1 2 3 4 5 ) 7 8 9
Y= 20,00 20,00 20,00 20.00 20,00 20,00 20,00 20,00 20,00 T(°C)
D 00 ‘. 39 .97 1.66 2.00 1.66 097 « 39 «06 P(points)
1, 00 ~o02 - 02 -e02 -4 02 -e02 - 02 =s 02 ~-«01 F
2 2 2 2 2 2 2 2 3 Cp-type
2 2 2 2 2 2 2 2 3 A-type
1. 00 1,00 1,00 1. 00 "1.00 1,00 1.00 1. 00 1.00 o
1. 00 1.00 1.00 1.00 1.00 1.00 1,080 1. 00 1.00 Cy
1,00 - 1.080 1,00 -1+ 00. 1.00 1.00 1.00 1. 08 1.00 ¢,
= ¢00 00 20.00 20,00 20,00 20.00 20.00 20,00 20. 00 20.00
0. 00 o7l 1.82 3.22 3.98 3.52 2+28 1.23 «39
1,00 o0k ' ',0’0 -o0b - 04 -, 0% -0k - 04 - 02
1 i i 1 i 1 1 1 2
-1 1 1 1 1 i i 1 3
1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 1.08
1. 00 1.00 1,00 1.00 1.00 1.00 1.00 1. 00 1.00
1.00 1.00 1.00 1.00 1.00 1,00 1.08 1. 00 1.00 o
Y= 0.00 20.00 20,00 20,00 20,00 20,00 20,00 20. 00 20,00
0+ 00 3.00 1.52 2482 3.82 3.89 3,12 24 28 97
1. 00 1.00 -e 0 -0k -o 04 =04 o0& - D& -+ 02
M i 1 1 1 1 1 1 H
) 1 1 1 1 1 1 1 3
0. 00 1,00 1. 00 1.00 1,00 1.00 1.00 1, 00 1.00
0,00 1.00 1.00 1.00 ~1.00 1.00 1.00 1. 00 1.00
0. 00 1,00 1.00 1.00 ,,1_._0_0 1.00 1,00 1. 00 1,00
Y= 0.00 20,00 20,00 20,00 20.00 20.00 20.00 20,00 20,00
0. 00 06.00 1.08 2.18 Jo30 3.95 3.89 30 52 "1.66
1. 00 [+ 00 Y1 -e 04 - 04 -. 04 -0k - 04 ~.02
0 1 1 1 1 1 1 1 2
g 1 1 } 8 1 I S 1 1 3
0.00 1.00 1400 1.0 1.00 1.00 1,00 1.00 1.00
0. 00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 1.00
0. 00 1.00 1.00 1,00 1.00 1.00 100 1. 00 1.00
Y= 0.00 0,00 20,00 20.00 20.00 20,00 20,00 20. 00 20.00 )
0. 00 0.00 0,00 1.43 2.46 3368 3.98 .00 T T
1. 00 1,00 1.00 -o 04 =04 “s04 =04 -o 04 -e02
0 ) 1 i 1 1 1 1 2
3 0 1 1 1 1 1 1 3
0. 00 .00 71,00 1,00 1700 1. 00 b P31 A V1| B TS 1
0. 00 Q.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .
0.00 0,00 1.00° 55 Y 1 A Y | AR Y ] I T4 F B T | R B 1 R
YE 0. 00 0.00 20, 00 20,00 20.00 20.00 20,00 20,00 20. 00
0. 00 0.00 0.00 oTh 1.43 2.18 2.82 3. 22 1.66
1.00 1,090 100 -, 06 T=e 0% =04 T T = 0T TR0 e g
0 0 -1 1 1 1 i 1 2
- - 0 T —3 g o g T — -3
0. 00 0.00 1.00 1.00 1.00 1,00 1400 1. 00 1.00
0 00 0.00 1.00 1.00 1.00 1.00 1.00 1. 00 L1.U0
0.00 6.00 1.00 1.00 1,00 1.00 1.00 1. 00 1.080




Y=g 000 000 0007 20500 204 0020500~ 205 08— 2000~ 20,08
- 0. 00 0,00 0 0.00 0% 00 1,08 . 1.52°  1.82 .97
= 1,00 1,00 1,00 1,00 TS0k T T T e U T T e T T 2,02
0 0 1 1. 1 1. 1 2
] T i i 1 i 1 3
e . Be00 0.00 1.00 1,00 1,80+ 1,00 = 1400 1,00
B 0200 0,00 1.00 1,00 1.00 1,007 1,00 1,00
o 0400 ° 000 1,00 1.00 1.00 1,00 1,00 1.00
Y= 0. 00 0,00 0. 00 0.00 0,00 20.00° 20,00 20. 00 20,00
0. 00~ 0,00 0,00 0.00 .00 .00 0.00 e .39
1408 1,00 1,00 100 1,00 1.00 1.90 =e Ok -.02
0 0 0 0 O} i 1 1 2
e - 9 L LI I S S I 3
0,700 0. 00" 9. 00 .00 8.00 1,00 1,00 1,00 i.00
0,00 0,00 0. 00 0,00 0.00 1,00 1,00 1. 00 1,00
1, 00 0,00 .00 0,00 .00 1.00° 1,00 1..00 1.00
¥= 9. 00 0200 PS [ ¥ 0. 090 0,00 0,00 0,00 20, 00 20.00
0. 00 0,00 0400 0.00 0,00 8,00 0,00 0. 00 0,00
1.00 1.00 1,700 1,00 1,00 1,00 1.00 1,00 1,00
0 0 0 0 8 0 0 1 2
0 0 0 ) ) ) ] 1 3
0. 00 0,00 0. 00 0.00 0.00 0.00 0.00 1. 00 1.00
0. 00 0,00 0,00 0500 0,00 0400 0,00 1.700 1.00
0,00 0.00 0400 0.00 0.00 D.00 0.00 1. 00 1.00
BEAM ON TeMAX= « 00108 35.03 9 S5 1 13
BEAM ON T~ MAX= +00290 48,89 9 5 1 13 _
BEAM ON ., T-MAX= 00300 61,79 9 5 1 13 -
BEAM ON T-MAX= » 00400 73.87 9 5 1 13
BEAM ON T-MAX= +00500 85.43 7 & 1 13
BEAM OFF  T=MAX= « 00600 81.82 7 & 1 11
BEAM OFF  T-MAX= . 00708 78.67 7 & 1 10
BEAN OFF  T-MAX= .00800 76.13 8 & 1 10
BEAM OFF  T-MAX= . 00900 74,25 9 4 1 10
BEAM OFF  T-MAX= .01300 7261 9 4 1 11
BEAM OFF  T-MAX= 01100 71,25 8 3 1 11
BEAM OFF  T-MAX= .01200 70,45 9 3 1 11
BEAM OFF  T-MAX= .01300 69,80 8 2 1 11
BEAM OFF  T=-MAX= +01400 69,46 9 2 1 11
BEAM OFF  T-MAX= 01500 69.20 3 1 1 11
BEAM OFF  T-MAX= < 01600 68.75 9 1 1 11
BEAM OFF T-MAX=  .01700 68,16 9 1 1 11




“1/2ZMILTICH DIAM AUSFOIL "IN DCUBLE GAUSSIAN AT TW/UA HEATVERS 47 "MOD 1

BEAM= 4+ 000UA; POWER= 2.526E-03MEV/POINT TON= »0050S, TOFF= = .,0206S, MELTS AT T= 10000.00

LAYER 1 AT TIME . .28100SEC 11ITER

BEAW OFF
X= i 3 3 i 5 7 7 ) CR
v=""1 20,00 29,60 %1.95 55,33 68+ 07 78,95 87.17 92, 24 §3.96 T(°C)
0.00 .00 .00 01 .01 01 .01 .01 00 Ppogiated (MW)
Y= 2 20,00  27.67 40,18 53,68 66,42 77.28 85,47 90, 54 92,25
0. 00 .01 L01 .01 .01 JB1 N R 7 KL
V=3 0,80 20,00 35,13 59,03 51267 72,36 80,45 85. 48 37,18
0.00 ) 0.00 .01 001 001 001 001 001 001
Y= 4 0,00 - 20,00 29.65 42.38 54,32 64.55 72.38 77.30  78.98
0. 00 . 0.00 . 01 .o 01 «01 «01 «01 o« 04 Y
V=8 5.00  0.00 20,00 34,00 5%.86 54,32 61,68 66,45 56,10
0.88 . 0,00 .00 ’ « 01 «01 «01 . «01 « 01 i 001
Y= 6 0. 00 0,00 20,00 27.21 34,01 42,38 49,04 53.69 55,34
’ 0,00 0,00 0,00 L01 NF J01 01 S 01 N T
Y=7 5,00 0.00 0. 00 29,00 ~Z0700 79,64 35714 50,18 51,95
D. 00 N 0.00 0.00 0.00 0.00 oﬂi 001 o« 01 ’ 000
Y= 8 000  0.00 8.00  0.08 0.00 20.00 2000 27.65 29.58 .
0. 00 0,00 0.00 0. 00 0.00 0.00 0,00 01 J00
Y=g 0. 00 8500 .00 9.00 " 0.00 .00 .00 270, 00 20,00

0. 00 8.00 0.00 0.00 6.00 0.80 0.00 8. 00 D.00

T=MAX= «20100 93.96 9 1 1 11
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Table I. Approximate grayness factors (g) for some common materials (data from Ref., 7).
O = oxidized, U =unoxidized. :
Material Surface 25°C 100°C 200°C 500°C 600°C 1000°C 1200°C 1500°C
Aluminum U 0.022 0.028 0.060
o] 0.14 0.19
Bismuth ‘U 0.048 0.061
Brass u 0.035 0.035
. O 0.61 0.59
Carbon U 0.81 0.81 0.79
Chromium U 0.08 .
Cobalt U 0.13 0.23
Niobium U 0.49
Copper U 0.02
O 0.6 0.6
Gold U 0.02 0.03
Iron U 0.05 '
o 0.74 0.84 0.89
Lead 19) 0.05
O 0.63
Monel. (o] '0.43 0.43
Mercury U 0.10 0.12
Molybdenum U 0.13 0.19
Nickel U 0.045 0.06 0.12 0.19
o) . 0.37 10.85
Platinum U 0.037 0.047 0.096 0.152 0.191
Silica Amorph. 0.80  0.85
Silver U 0.02 0.035 "
Steel 0.08
O 0.80 ©0.79 0.79
Tantalum 19} 0.21
Tin 16) 0,043 0.05
Tungsten .U 0.024  0.032. 0.071 0.15 0.23
Zinc U 0.05 ¥
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Table-II. -Coefficients in:ithe polynomial approximation of thesheat conductivity, A=a+bT +C/T2, with T
in °K and X\ in W/cm degree, .

Material | ‘a . b c Range Max. deviation
' (°K) (%)
Aluminum C , 2.501 -4.184.40°% 114410 15-920 +30/-15
Beryllium ) 1.893 -9.897.40°%  1.316.10%  20-1250 +72/-18
Bismuth 0.03162 1.091.407% 4.308.10° 70-1070 +22/-26
Cadmium " 1.495 -1.537.107>  -2.368.10° 86-673 +16/-10
Chromium 1.116 ~4.421.40°% 2,192,103 20-1200 +39/-14
Cobalt 2.098 -4.883.107° 1.909.10> 25-293 +10.7/-6.4
Copper - 4.416 -9._729.10',4 9.236.103 20-1280 +32/-9
Germanium, single cryst. 0.8568 -1.1,35.10'.3‘_ . 7.142.10° 30-370 +4.1/-5.8
Gold B ‘ 3.294 -5.697.10°%  4.183.10° 30-1300 +3.5/ -3.5
Graphite - 0.1405 . 4.557.407°  2.163.10° | 293-2273 +1.5/-1.6
Iridium o 0.8179. 1.232.407°  9.477.10° 24-500 +13/-8
Iron o 0.9106 -6.042:10"% 3,934,107 20-1040 +32/-18
Lead o 0.1079 5.539.407°. 2.025.10%  293-1073 +28/-20
Magnesium ' 1.891 -8.682.10°%  4.285.10°  19-1073 +28/-13
Manganese . . ’ -1.143 9.842.103 . 1.975.103 56-273 S
Mercury : 0.02104 1.224.107% 3.360.10° 83-1070 +53/-21.
Molybdenum _ 1.467 -3.465.107% 2.435.10° 33-1910 +5.8/-17.6
Nickel ' 0.5272 4.078.107° 2.401.10° 33-1620 +38/-24
Niobium - 0.4277 1.347.10°%  5.718.10° 30-1900 +10/-6
Palladium ) 0.1035 1.837.1073 . 2.390.10° 30-373 +9.9/-7.1
Platinum - 0.6327 1.307.10°%  1.327.10° 12-2000 +6.0/-4.0
Rhenium v 0.4242 5.748.107°  2.347.10° 30-500 +12/-10
Rhodium . B 1.903 1.410.4073  1.879.10% 10-500 +2.1/-3.4
Selenium, single cryst. 0.02174 -2.714.4077  1.658.10° 25-400 +13/-14
Silicon, single cryst. . 0.9443 -5.277.10°%  8.166.10° 23-1400 . +72/-43
Silver | 5.334 -2.454.1072  6.717.10° 15-800 +14/-5.5
Tantalum i 0.4709  6.250.407°  1.878.10°  30-2500. +18/-8
Thorium - 0.2298  2.227.40°%  -3.261.10°  300-580
Tin - 0.2287 | 3.867.407°  3.478.410%  293-773 +22/-10
Titanium | , 0.2934 -1.245.40"%  -2.398.10° 10-800 +22/-17
Tungsten o 1.453 -1.804.10°%  7.139.103 30-3500 +17/-9
Uranium ‘ | 0.1884 2.433.10"%  -3.047.10° 20-1070 +7.5/-6.2
Vanadium S 0.2870 9.620.107°  -9.041.10" 20-1173 +2.0/-1.3
Zinc |  1.256 —4'509'10-?1 -2.037.10; . 73-673 +0.5/-0.3

Zirconium . 0.3256 -1.364.10 2.143.10 36-600 . +1.3/-1.9
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Table III, Coefficients in the polynomial approximation of the heat capacity, Cp=a+bT+ c/TZ,
with T in °K and Cp in J/ml degree. Values recalculated from Ref. 8.

Material a b c Range (°K)
Aluminum 2.061 1.235.10°°> 298-932
Antimony 1.266 4.000.10°4 .- 298-903
Arsenic, metallic 1.67 7.09.10" 4 --- 298-1100
Beryllium 2.902 2.475.1073 --- 298-1300
Bismuth 0.884 1.059.1073 ——- 298-544
Cadmium 1.707 9.45.107% .- 298-594
Calcium 0.8478 5.50.10"% --- 298-673
Chromium 0.3336 1.348.10°3 -5.026.10% 298-1823
Cobalt 2.949 2.686.10°°> 298-718
Copper 3.181 8.82.10" % - 2981357
Germanium, cryst. 1.837 3.519.10°4 —-- 298-1213
Gold 2.318 5.075.10"% - 298-1336
Graphite 3,219 8.007.107% -1.649.10° 298-2300
Iridium 2.702 6,905,104 - 2984223
Iron ©1.985 4.181.1073 2.53.10% 298-1033
Lead 1.332 4.354.10°% —-- 298-600
Magnesium 1.837 4.49.107% -2.33.10% 298-923
Manganese 3,126 1.854.10°> -2.03.10% 298-1000
Mercury 1.868 --- --- 298-634
Molybdenum 2.438 5.78.10" % - 298-1800
Nickel 2.576 4.467.1073 - 298-633
Niobium 2.183 3.703,10°% - 298-1900
Palladium 2.604 6.194.107% - 2981828
Platinum 2.629 6.13.10"% - 2981800
Rhenium 2.833 -— --- 298
Rhodium 2.768 1,039.10°3 - 298-1900
Selenium, cryst. 1.55 --- - 298
Silicon, cryst. 2.071 2.016.10" % -3.912.10% 2981200
Silver 2.073 8.31.10°% 1.47.10% 2981234
Tantalum 2.234 2.988.107% 298-1900
Thorium 1,292 6.182.107% 7.05.10> 2984500
Tin 1.139 1.624.1073 - 298-505
Titanium 2.064 9.904.10°4 - 2981150
Tungsten 2.52 3.34.10°% ——- 298-2000
Uraniam 1.115 2.635.10" % 2.3.10% 298-935
Vanadium 2.598 9.622.40 % - 2984900
Zinc, metallic 2.445 1.097.10'3 --- 298-692
Zirconium 1.276 1.240.1073 1.678.10% 298-900
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'Fig. 1. Pure radiation cooling at different duty cycles [Eq. (39)]; % mil
(~1.4 mg/cmz) carbon foil at 51 W/cmz. '
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Fig. 2. The temperature ratio between Gaussian and uniform beams as a
function of the fraction, «, of the’beam which is focused on the foil.
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PARTICLE CURRENT

FOIL DIAMETER
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'RADIATION COOLING
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Fig. 3. Nomograph for evaluation of foil temperatures at 7.5 MeV/amu’
incident beam energy and pure radiation cooling. The nomograph is
constructed for beryllium, aluminum, and carbon foils, and it consists
of four quadrants. In the first quadrant the total dissipated power per
current unit is evaluated from foil thickness, ion beam, and material.
In the second quadrant the maximal power load per surface and current
unit is evaluated from the total power, the foil diametei‘, and the fraction,
«, of a Gaussian beam hittihg the foil. The correction for o should be
omitted for a uniform beam. In the third quadrant the maximal power
per surface unit is eval‘uatedv from the beam current (particle current),
and in the fourth quadrant the foil temperature is evaluated from the

material and duty cycle (in percent).
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Fig. 4. Nomograph for the evaluation of foil temperatures at 7.5 MeV/amu

incident beam energy, uniform beam shape, and pure conduction cooling.
A first-order correction for Gaussian beam shape can be made as fol-
lows. First obtain the correction factor /o from Fig. 8, then read
off the temperature for uniform beam shape, subtract 'Tsur’ multiply the
remainder by y/a and add Tgur @gain. The nomograph.is constructed
for beryllium, aluminum, and carbon foils and it consists of four quad-
rants. In the first quadrant the power per unit thickness'and current is
evaluated from the foil thickness, ion beand, and foil material. This. is
converted in the second quadrant to power per unit thickness by multi-
plication with the beaAmA current. The third quadrant involves mainly a .
change of scale from logarithmic to linear but it also corrects for the
duty cycle. The curves are to be used for foils where the foil diameter
(cm) is smaller than N0.05 c\/fp Cp
N\ is the heat conductivity (W/cm degree) f is the beam pulse frequency

» where. ¢ is the duty cycle (percent),

(Hz), p is the density (g/cm ) and Cp is the heat capamty (J /cm degree)

In the fourth quadrant the maximum temperature is evaluated from the

edge temperature and material.
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 Fig. 5. Pure conduction cooling at different duty cycles [Eq. (56)]; 3-mil,

0.71-mm diameter aluminum foil at 3.48 W/cmz.
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Fig. 6. Variation of the center temperature with time for 3-mil circular

aluminum foils of 2, 1.4, 1.0, 0.71 and 0.5 cm diameter at a frequency

of 50 Hz and a duty cycle of 10%.
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Fig. 7. The multiplier, §, for Gaussian beam shape and conduction-cooled
foils as a function of the fraction, @, of the beam focused on the foil
[see Eq. (61)].
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Fig. 8. The mu1t1p11er v/ a for Gaussian beam shape and conduction - cooled

foils as a function of the beam fraction, «, focused on the foil [see Eq

(62)].
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Fig. 9. 1-mil, 1-cm-diameter gold foil in a pulsed uniform beam and a total

dissipated power of 4W at a frequency of 40Hz and a duty cycie of 20%.
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Fig. 10. 3-mil, 1-cm-diameter gold foil in a pulsed Gaussian beam at a total

dissipated power of 4W, a frequency of 40Hz and a duty cycle of 20%.
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£y Fig. 14. Z-mil, 1-cm-diameter gold foil in a pulsed double-Gaussian beam

at a total dissipated power of 4W, a frequency of 40Hz and a duty cycle
of 20%. '
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Fig. 12.° Temp'erafure limits for material as a function of pressure. At h{gh
- pressure thé limit is set by the melting point and at low pressure by the
vapor pressure.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United-States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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