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ABSTRACT OF THE THESIS

Hardware Acceleration of Polynomial Multiplication using Pipelined FFT

By

Neil Thanawala

Master of Science in Computer Engineering

University of California, Irvine, 2021

Professor Nikil Dutt, Chair

The evolution of quantum algorithms threatens to break public key cryptography in polynomial

time. The development of quantum-resistant algorithms for the post-quantum era has seen a sig-

nificant growth in a field called post quantum cryptography (PQC). Polynomial multiplication is

the core of Ring Learning with Error (RLWE) lattice based cryptography (LBC) which is one of

the most promising PQC candidates. In this work, we design Number Theoretic Transform (NTT)

based polynomial multipliers and synthesize on a Field Programmable Gate Array (FPGA). NTT

is performed using the pipelined R2SDF and R22SDF Fast Fourier Transform (FFT) architectures.

In addition, we propose an energy efficient modified architecture (Modr2). The NTT-based de-

signed polynomial multipliers employs the Modr2 architecture that achieve on average 2× better

performance over the R2SDF FFT and 2.4× over the R22SDF FFT with similar levels of energy

consumption. Polynomial multiplication using the Modr2 architecture developed in this thesis

shows 12.5× energy efficiency over the state-of-the-art convolution-based polynomial multiplier

and 4× speedup over the systolic array NTT based polynomial multiplier for polynomial degrees

of 1024, demonstrating its potential for practical deployment in future designs.

ix



Chapter 1

Introduction

Public-key encryption schemes such as RSA heavily rely on the fact that classical computers are

incredibly slow, since they take exponential time to find prime factors (p,q) of a very large number

n = p× q. However, Shor’s Algorithm[31] showed that quantum computers can perform prime

factorization in polynomial time. This threat of quantum computers being able to break public-

key encryption has led to a new field of research known as post-quantum cryptography (PQC)

which deals with quantum-resistant schemes that can be performed on classical computers [18].

Lattice-based Cryptography (LBC) has proven to be the most popular scheme in PQC algorithms.

The National Institute of Standards and Technology (NIST) started an initiative in 2017 to en-

courage research on PQC [19]. Looking at the submissions to NIST, lattice based cryptography is

most common. Lattice-based cryptosystems are promising PQC candidates because some of them

combine strong security guarantees in the form of a worst-to-average case reduction with high

efficiency and small key and ciphertext/signature sizes. Examples of lattice-based cryptosystems

include encryption, key exchange, and signature schemes built on the hardness of the Learning

With Errors (LWE) problem and its ring variant, the RLWE problem[14]. An attractive property of

the LWE problem shown by Regev [28] is that to solve the average-case LWE problem is at least as

hard as to (quantumly) solve some worst-case hard lattice problems[12]. Ring Learning with Error
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(RLWE) is one of the most promising encryption scheme in LBC [9]. The most computationally-

intensive kernel of RLWE is polynomial multiplication. In this work, we accelerate polynomial

multiplication using Number Theoretic Transform (NTT). NTT is Fast Fourier Transform (FFT)

over a finite field. We use Pipelined FFT processors to develop polynomial multipliers on FPGA

[11].

1.1 Trends and Challenges

The modern trend to develop sensitive software both at the datacenter level and on the edge has

urged the need to make the software secure. This requires the implementation of cryptographic

algorithms on such devices. Modern day datacenters demand high performance of applications.

Developing a low-power secure encryption engine for internet of things (IoT) edge devices is a key

challenge. This calls for the need to develop programmable hardware accelerators which achieve

a high performance and energy efficiency while also capable of being reconfigurable. Developing

the newest standards of cryptography on the spectrum of devices along with their constraints poses

a huge challenge [19].

1.2 Previous Works

Previous research has made an effort to accelerate RLWE on other platforms such as CPU and

GPU. Nejatollahi et. al [23] have implemented NTT based polynomial multipliers on an GPU.

Their approach involves accelerating NTT and inverse NTT operations on GPU while the point-

wise multiplication and bit-reversal operations run on a CPU with four ARM cortex A-57 cores.

Saarinen [30] introduces HILA5, a RLWE based exchange scheme tested on Intel i7-6700 CPU.

Optimized polynomial multiplication and error sampling are performed by employing the Cooley-
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Tukey [7] method and binomial distribution.

Previous works for accelerating polynomial multiplication for LBC on FPGA have mainly focused

on the performance of the accelerators while ignoring the energy efficiency [29][27][5]. However,

some efforts have evaluated the energy as well as the area and performance of NTT accelerators

[20][2][17]. Nejatollahi et. al [22, 23] explore NTT and convolution polynomial multiplication

using systolic array architecture. To the best of our knowledge, there has not been any notable

work in the literature on synthesizing NTT cores using pipelined FFT architectures to accelerate

polynomial multiplication while considering energy and evaluating its tradeoffs with performance.

1.3 Thesis Contributions

In this work we focus on the design of programmable hardware accelerators on FPGA for polyno-

mial multiplication. We implement NTT-based polynomial multipliers using pipelined-FFT archi-

tectures - R2SDF and R22SDF for the NTT cores and evaluate the performance, area and energy

efficiency. Modr2, a new, modified architecture for the NTT core is proposed and evaluated. Given

the availability of resources, the Modr2 pipelined FFT architectures can easily be synthesized for

higher polynomial sizes such as N = 2k,4k, ...32k with little effort simply by adding one stage in

the pipeline.

3



Chapter 2

Background Work

The learning with error problem requires to find a secret key s ∈ Zn
q from a given sequence of

random linear equations with an error e [28]. The difficulty of solving ring learning with error

problem even on a quantum computer has made RLWE based cryptography a popular choice for

post quantum cryptography. Lyubashevsky [15] later showed that applications of LWE can be

made more efficient through the use of ring-LWE. RLWE is the LWE problem specialized to

polynomial rings over a finite field.

The RLWE problem deals with the arithmetic of polynomials with coefficients from a finite field.

Let the ring of polynomials be R ≡ Zq[x]/〈xn + 1〉, where n is a power of 2 and q is a relatively

large prime number such that q = 1 mod 2n. Polynomial multiplication becomes the most compute

intensive operation in this problem.

Let two polynomials of length n be a(x) and b(x) and their product c(x) such that

c(x) =
n−1

∑
j=0

n−1

∑
i=0

ai ·b jxi+ j

This simplest way to compute this product is using the Schoolbook method in time complexity
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O(n2). Fast Fourier Transform (FFT) however, computes the product in O(nlog(n)). In this work,

we implement polynomial multipliers using FFT architectures on FPGA.

2.1 Convolution based Polynomial Multipliers

The Schoolbook method of polynomial multiplication computes the product in a time complexity

of O(n2). Nejatollahi et al. [22] have used a systolic array architecture to perform convolution in

O(n) where a convolution based multiplier as described in Algorithm 1 is seen as a discrete feed-

forward finite impulse response (FIR) over the polynomials in R ≡ Zq[x]/〈xn + 1〉. The speedup

is obtained by cascading n multiply-accumulators (MACs) in the systolic architecture. This comes

at the cost of higher area and energy which is discussed later.

Algorithm 1 Convolution (Schoolbook)-based Polynomial Multiplier [22]

1: Initialization: Let a = {a0,a1,a2, ...,an−1} and b = {b0,b1,b2, ...,bn−1} ∈ Zq[x]/< f (x)> be
two polynomials with the length of n, where f (x) = xn+1 is an irreducible polynomial with n
a power of 2, and q ≡ 1mod 2n is a large prime number.

2: c←− 0
3: for i = 0 to n−1 do
4: for j = 0 to n−1 do
5: sign←− (−1)b(i+ j)/nc

6: index←− (i+ j) mod n
7: coe f f ←− aibi mod q
8: cindex←− integer(cindex + sign∗ coe f f ) mod q
9: end for

10: end for
11: Return c

2.2 Number Theoretic Transform

Number theoretic transform (NTT) is discrete Fourier transform performed over a ring. Let n be

a power of 2, q is a prime such that q ≡ 1 mod 2n, ω is a primitive n-th root of unity such that

5



ωn ≡ 1modq and a(x) be polynomials of degree n whose coefficients ∈ Zn
q then the NTT of a is

defined as:

Ai = NT T (a) =
n−1

∑
j=0

a jω
i j mod q

where i = 0,1, ...n− 1. To compute the inverse NTT, ω is replaced by ω−1 and n is replaced by

n−1 such that n−1 = 1 mod q. NTT can be computed using FFT [25].

2.3 Modular Reduction

Addition of two numbers each of bit width N generates a sum of bit width (N + 1) whereas their

multiplication generates a product of bit width 2N. To maintain a fixed bit width of N without

changing the algorithm, a modulo operation is performed after each addition and multiplication.

The modulo operation calculates the remainder which involves a division operation which is quite

expensive in terms of latency on hardware. We use Barrett Reduction [3] and Montgomery Re-

duction [16] to perform the modulo operation. In NTT, given a polynomial length, the modulo

factor q is fixed. For example, for n = 256 and lesser, q = 7681 [1] and for n = 512 and n = 1024,

q = 12289 [26].

2.4 NTT based Polynomial Multipliers

NTT based polynomial multiplication is described in Algorithm 2. NTT reduces the time com-

plexity of polynomial multiplication to O(nlog(n)) as compared to O(n2) for DFT and School-

book methods. The two polynomials a(x) = a0 +a1x+ ...anxn and b = b0 +b1x+ ...bnxn are first

converted to their NTT representation and their multiplication is performed point wise. After the
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point wise multiplication, an inverse NTT operation is performed to get the desired product of the

two polynomials.

c = INT T (NT T (a) ·NT T (b))

Algorithm 2 NTT-based Polynomial Multiplier

1: Initialization: Let a = {a0,a1,a2, ...,an−1} and b = {b0,b1,b2, ...,bn−1} ∈ Zq[x]/< f (x)> be
two polynomials with length of n, where f (x) = xn + 1 is an irreducible polynomial with n a
power of 2, and q ≡ 1mod 2n is a large prime number. w is the n-th root of unity and φ is
the 2n-th root of unity (φ 2 = w mod q); w−1 and φ−1 are the inverse of w modq and φ modq,
respectively.

2: Precompute: {wi,w−i,φ i,φ−i} for i ∈ [0,n−1]
3: for i = 0 to n−1 do
4: āi ←− aiφ

i

5: b̄i ←− biφ
i

6: end for
7: Ā←− NT T n

w (ā)
8: B̄←− NT T n

w (b̄)
9: C̄ = Ā.B̄

10: c̄←− iNT T n
w (C̄)

11: for i = 0 to n−1 do
12: ci ←− c̄iφ

−i

13: end for
14: Return C

7



Chapter 3

Fast Fourier Transform

Fast Fourier Transform (FFT) is a faster way to compute the discrete Fourier transform (DFT) [4].

A N-point Fourier transform takes a time complexity of O(n2) using the direct method DFT and

O(nlogn) using FFT. A Fourier transform is important in the context of digital signal processing

as it is used to convert a signal from the time domain to frequency domain. The Fourier transform

is heavily used in computer vision, image processing and audio processing. For example, in image

processing, eliminating low frequencies renders the edges of the image, where as filtering the

higher frequencies blurs the image [8].

3.1 Algorithm

FFT is an efficient method to compute the DFT [6]. The DFT problem is defined by

Xk =
N−1

∑
n=0

xne−2π jnk/N ;n = 0,1, ...N−1 (3.1)

8



where xn is the nth sample of the input polynomial and Xk is kth coefficient of DFT. j =
√
−1. The

equation can be rewritten as

Xk =
N−1

∑
k=0

xnω
nk

where ω is the nth square root of unity given by

ω = e−2π j/N

.

The FFT algorithm takes advantage of the cyclic nature of ω to efficiently compute the DFT. There

are two methods to compute FFT from the given DFT equation. The two methods are discussed

below.

3.1.1 Decimation in Time

The decimation in time algorithm splits the sum for Xk into even n = [0,2,4...] and odd n =

[1,3,5...] numbered indices given by:

Xk =
N−1

∑
n=0

xne− j2πnk/N

=

N
2−1

∑
n=0

x2ne− j2πk(2n)/N +

N
2−1

∑
n=0

x(2n+1)e
− j2πk(2n+1)/N

=

N
2−1

∑
n=0

x2ne− j2πkn/N
2 + e− j2πkn/N ·

N
2−1

∑
n=0

x(2n+1)e
− j2πkn/N

2

9



Figure 3.1: Recursive 8-point DIT FFT [13]

Figure 3.2: Signal flow graph from 8-point DIT FFT [13]

= DFTN
2
[xeven]+ω

k
NDFTN

2
[xodd] (3.2)

From Equation 3.2, it can be seen that the FFT equation is a recursive form of DFT. Figure 3.1

shows the recursive nature of the FFT. The even indexed samples are grouped together and the

odd indexed samples are indexed together to perform a N
2 point DFT of the samples followed by

multiplication with ωn
k also known as twiddle factors. The N

2 point DFT can be further split into

10



Figure 3.3: Butterfly operation

a N
4 point DFT which can be further split into N

8 point DFT and so on until there are only two

elements which can’t be further split. Figure 3.2 is the signal flow graph for a 8-point FFT that is

generated when the all the recursions are simplified.

Figure 3.3 illustrates the DFT between two inputs known as the butterfly operation. The result of

the butterfly is given in the equation below:

X [n] = x[n]+ x[n+N/2]

X [n+N/2] = ω
N/2
N · (x[n]− x[n+N/2])

An important observation in the DIT FFT is that the inputs are arranged bit reversed order while

the outputs are generated in their correct order.

3.1.2 Decimation in frequency

The decimation in frequency algorithm splits the sum for Xk into even k = [0,2,4...] and odd

k = [1,3,5...] numbered indices given by Xk = X2r +X2r+1 :

11



X2r =
N−1

∑
n=0

xnω
2rn
N

=

N
2−1

∑
n=0

xnω
2rn
N +

N
2−1

∑
n=0

x(n+N
2 )

ω
2r(n+N

2 )
N

=

N
2−1

∑
n=0

xnω
2rn
N +

N
2−1

∑
n=0

x(n+N
2 )

ω
2rn
N

=

N
2−1

∑
n=0

(xn + x(n+N
2 )
) ·ωrn

N
2

= DFTN
2
[xn + x(n+N

2 )
] (3.3)

X(2r+1) =
N−1

∑
n=0

xnω
(2r+1)n
N

=

N
2−1

∑
n=0

(xn + x(n+N
2 )
·ω

N
2

N ) ·ω(2r+1)n
N

=

N
2−1

∑
n=0

(
xn− x(n+N

2 )
·ωn

N
)
·ωrn

N
2

= DFTN
2
[(xn− x(n+N

2 )
) ·ωn

N ] (3.4)

Equations 3.3 and 3.4 prove that similar to the DIT FFT, the DIF FFT takes advantage of the

12



Figure 3.4: Recursive 8-point DIF FFT [13]

Figure 3.5: Signal flow graph from 8-point DIF FFT [13]

13



recursive nature of the twiddle factors and is seen in Figure 3.4. Figure 3.5 shows the signal flow

graph of a 8 point DIF FFT. The key difference in this case is that the inputs are in order while the

outputs generated are in bit-reversed order.

In the sections below we explore two architectures that perform radix-2 FFT namely radix-2 single

delay feedback (R2SDF) and radix-22 single delay feedback (R22SDF)

3.2 R2SDF FFT

The radix-2 single delay feedback FFT architecture uses a pipeline of processing units to compute

the FFT [24]. This architecture implements the radix-2 DIF FFT algorithm explained above. Inputs

are in order while the outputs are in bit-reversed order. At the end, a bit-reversal operation is

necessary to rearrange the outputs.

Algorithm 3 describes the pipelined FFT algorithm for each Stage s in the pipeline. An important

note is that the loop iterations for the outer loop of j and inner loop k varies in each stage depending

on the value of s. However, the total number of loop iterations j× k remains the same for each

stage.

R2SDF uses log2N stages to compute the Fast Fourier Transform of a signal of length N [24]. Each

stage contains a butterfly unit and a FIFO. The microarchitecture of the ‘ith stage’ is described in

Figure 3.6:

In each stage, the initial N
2 i inputs are serially stored in the FIFO. A butterfly operation consists of

a multiplication and addition. The butterfly operation is performed between the N
2 i data stored and

the next N
2 i inputs and the results computed are stored back into the FIFO. The next step involves

multiplication of the butterfly output with the twiddle factors stored in the twiddle ROM. After the

first N
2 i data points are processed, the next N

2 i data points enter the FIFO and thus all points in the

14



Algorithm 3 FFT using R2SDF architecture

1: Initialization: Let a = {a0,a1,a2, ...,an−1} ∈ Zq[x]/< f (x)> be the input signal of length n,
with n a power of 2, and q ≡ 1mod 2n is a large prime number. ω is the n-th root of unity.

2: Precompute: {ω i} for i ∈ [0,n−1]
3: Output: A
4: Stage=s
5: depth = 1024

2s

6: num iterations = (2s−1)
7: for j = 0 to j = num iterations do
8: for k = 0 to k = depth do
9: fifo.write(ai)

10: end for
11: for k = 0 to depth do
12: Ak ←−(a(k+depth) + fifo.read(ak)) mod q
13: fifo.write(fifo.read(ak) - a(k+depth))
14: end for
15: for k = 0 to depth do
16: A(k+depth) ←−(ωi × fifo.read(ak)) mod q
17: end for
18: end for
19: for i = 0 to n−1 do
20: Ai ←−bit reverse(Ai)
21: end for
22: Return A

signal are processed. The 4 stages of a 16 point R2SDF FFT are pipelined as shown in the Figure

3.7. When N=16, log2N = 4. Stage 1 has a FIFO of depth 16
2 = 8. Similarly, stage 2 has a FIFO

depth of 16
22 = 4 and so on.

3.3 R22SDF FFT

The R22SDF FFT has the same butterfly structure as a radix-2 FFT and the same number of mul-

tiplications as radix-4 FFT. Compared to the R2SDF architecture, the R22SDF architecture tries to

improve performance by reducing the number of non-trivial multiplications [11]. The signal flow

graph for a 16 point R22SDF FFT algorithm is shown in the Figure 3.8. In the signal flow graph

above describing the 16 point R22SDF algorithm, it can be seen that the non-trivial multiplications

15



Figure 3.6: Processing element of R2SDF FFT. The input data is din and the output is dout .ω or
twiddle factors are the nth roots of unity. Butterfly operation consists of addition and subtraction
of the two inputs followed by multiplication with the twiddle factors.

Figure 3.7: Dataflow of a 16-point FFT performed with a 4-stage pipelined R2SDF architecture.
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Figure 3.8: Signal flow graph for a 16 point R22SDF FFT

with the twiddle factors ω occur only in stage 2 and stage 4; in every alternate stage. In stage 1

and stage 3, the multiplications are trivial and require smaller multipliers.

3.4 Modified R2SDF FFT (Modr2)

Taking a close look at the R2SDF architecture, it can be seen that there are three main tasks being

performed - (i) store the inputs into the FIFO, (ii) perform the butterfly, (iii) multiply the twiddle

factors. The three tasks utilize the same FIFO. This restricts parallelism and forces the three tasks

to perform serially creating a major bottleneck. We propose the Modr2 architdecture that increases

task level parallelism and gets a higher throughput by modifying the existing R2SDF architecture.

It is observed that in each stage of the FFT, a butterfly operation is performed between two inputs.

Hence, we split the input array into two such that the ith element of the first FIFO performs a

butterfly with the ith element of the second FIFO and each FIFO is of size N
2 as shown in Figure

17



Figure 3.9: Processing element of each stage ’i’ in the Modr2 architecture

Figure 3.10: Dataflow of a N-point FFT performed with a logN-stage pipelined Modr2 architecture

3.9.

Another observation that is made is that in each stage ‘i’, the butterfly operation is performed

between the nth and the [n+ N
2 i]th input. Hence, it becomes essential that the output of stage ‘i′ is

stored in the two FIFO’s in an order such that the nth element of the first FIFO performs a butterfly

with the nth element of the second FIFO in stage i+ 1. This can be easily achieved due to the

recursive nature of the FFT. The dataflow for the Modr2 architecture is shown in Figure 3.10.
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Chapter 4

Evaluation

The evaluation of different schemes was performed by synthesizing the algorithms on the Artix-

7 FPGA platform using Vivado HLS 2018.2. The key metrics we used to evaluate the results

are resource utilization - (BRAM, LUT, DSP, FF), frequency, post implementation energy. The

microarchitecture of the FFT designs were described using high-level synthesis. The Vivado HLS

tool compiles and synthesizes the HLS files to generate the RTL.

Table 4.1 illustrates the results obtained to perform NTT for different polynomial lengths using

R2SDF, R22SDF and the newly proposed Modr2 Modified R2SDF FFT architecture.

Taking a look at N = 1024, the highly parallel modified R2SDF architecture gives a slightly better

than 2× performance to compute NTT than the R2SDF and R22SDF architectures in terms of

latency and clock cycles at a better frequency. This comes at the cost of higher resource utilization

resulting in a larger area. The comparison of performance is described in Figure 4.1.

Energy consumption is another important factor in the design space. Figure 4.2 illustrates the plot

between energy and log2N, obtained from the t. For N = 64,128,256,512, the Modr2 architecture

and R2SDF have an almost identical energy consumption, R2SDF being slightly better. The lower
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Figure 4.1: Plot of latency vs log2N for R2SDF, R22SDF, Modr2 architectures

Figure 4.2: Plot of energy vs log2N for R2SDF, R22SDF, Modr2 architectures
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Table 4.1: Table describing the post implementation results of the R2SDF, R22SDF and the Modr2
FFTs simulated on Vivado HLS 2018.2 for N=64,128,256,512,1024.

Design N Cycles Latency Energy BRAM CLB DSP FF LUT Freq.
(µS) (µJ) (MHz.)

64 347 2.53 0.16 15 1024 35 1024 2820 136.96
128 673 5.10 0.36 17 1132 40 2206 3110 131.87

R2SDF 256 1318 10.14 0.81 19 1336 45 2585 3572 129.98
512 2603 19.43 1.75 21 1509 50 2969 4086 133.95
1024 5168 38.63 3.59 23 1583 55 3095 4508 133.77
64 329 3.61 0.24 15 1111 41 1784 3001 91.12
128 772 6.57 0.60 32 1196 44 2834 3316 117.5

R22SDF 256 1260 11.28 1.25 36 1449 57 3408 4014 111.69
512 2992 25.32 3.09 42 1750 60 4074 4732 118.19
1024 4920 41.26 5.57 44 1910 66 4396 5160 119.23
64 212 1.54 0.13 4 1840 35 3389 4440 137.93
128 401 2.62 0.44 41 2027 40 5650 4861 152.93

Modr2 256 731 4.75 0.91 46 2315 45 6586 5771 154.04
512 1381 9.49 1.95 52 2713 54 7559 6789 145.48
1024 2671 17.89 4.58 57 3069 55 8566 7760 149.34

energy for R2SDF can be accounted for by the low resource utilization.

We further analyze the performance and energy consumption of the Modr2 architecture at different

frequencies. A frequency sweep was performed on the design. A frequency sweep synthesizes the

HLS design using different resources to meet the timing constraints. We perform the frequency

sweep starting with a target clock period of 1ns upto a clock period of 20ns. The results obtained

can be categorized into three buckets: high target frequency, medium target frequency and low

target frequency. The results are summarized in the Table 4.2:

According to Table 4.2, as the frequency increases from 110MHz to 200MHz, the clock cycles

also increase. For instance when N = 256, the low frequency implementation requires 709 clock

cycles while the high frequency implementation takes 825 clock cycles which is 16% higher. This

can be justified by the fact that in a pipelined architecture, each stage of the pipeline takes more

clock cycles due to the combinational delay of processing elements as frequency increases and

clock period decreases. Another observation from the results is that, with increasing frequency a
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Table 4.2: Table describing the post implementation results of the frequcy sweep performed on the
Modr2 FFT architecture categorized into high, medium and low frequency simulated on Vivado
HLS 2018.2 for N=64, 128, 256, 512, 1024.

Target N Cycles Latency Energy BRAM CLB DSP FF LUT Freq.
Freq. (µS) (µJ) (MHz.)

64 292 1.42 0.26 4 1987 35 4564 4583 206.31
128 488 2.36 0.87 41 2235 40 6996 5126 206.78

High 256 825 3.83 1.53 46 2552 45 8101 6067 215.38
512 1482 7.25 4.13 52 2885 50 9244 6933 204.33
1024 2779 13.36 8.06 58 3211 55 10233 7810 208.03
64 212 1.54 0.13 4 1840 35 3389 4440 137.93
128 401 2.62 0.44 41 2027 40 5650 4861 152.93

Medium 256 731 4.75 0.91 46 2315 45 6586 5771 154.04
512 1381 9.49 1.95 52 2713 54 7559 6789 145.48
1024 2671 17.89 4.58 57 3069 55 8566 7760 149.34
64 194 2.13 0.13 2 1971 35 2977 5080 91
128 381 3.23 0.41 38 2249 40 5169 5505 117.87

Low 256 709 6.18 0.83 43 2457 45 6036 6418 114.77
512 1357 11.88 1.98 48 2815 50 6940 7445 114.23
1024 2645 22.87 4.14 53 3239 55 7878 8414 115.66

higher number of flip flops are used.

For N = 64, 128, 2× energy is consumed at higher target frequencies as compared to the medium

and low frequencies. For all values of N, the medium and low frequency implementation have

identical energy requirements. For N = 512, the higher frequency design takes 2.24µs, 23%less

than the medium frequency but at a cost of 53% higher energy.
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Chapter 5

Polynomial Multiplication

As seen from Algorithm 2, polynomial multiplication consists of three major steps: (i) forward

NTT of the 2 polynomials (ii) element wise multiplication of the computed NTT (iii) inverse

NTT.

A NTT Multiplier requires 2 forward NTT blocks and 1 inverse NTT block. The two task level

pipelines are shown in Figures 5.1 and 5.2.

In Figure 5.1, the forward NTT blocks for the two polynomials are executed in parallel while be-

ing pipelined with the element wise multiply and inverse NTT blocks. Two forward NTT blocks

are required for this case. While in Figure 5.2, the forward NTT of the two polynomials is serial,

enabling the reuse of the forward NTT block for the second polynomial. Hence only one forward

NTT block is required. This implementation would be useful in energy and area constrained ap-

plications. Table 5.1 compares the two implementations of the NTT based polynomial multiplier

simulated on Xilinx Artix 7 FPGA using Vivado HLS 2018.2. The Modr2 architecture is used for

the NTT blocks.

Looking at the results, for example, when N=256, the parallel implementation takes a lower num-
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Figure 5.1: Pipeline for polynomial multiplication using two parallel NTT blocks.

Figure 5.2: Pipeline for polynomial multiplication using one NTT block.
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Table 5.1: Table describing the post implementation results of the serial and parallel polyno-
mial multiplier using the Modr2 architecture for NTT core simulated on Vivado HLS 2018.2 for
N=64,128,256,512,1024.

Impl. N Cycles Latency Energy Freq.
(µS) (µJ) (MHz.)

64 636 4.61 0.4 137.93
128 1203 7.87 1.33 152.93

Serial 256 2193 14.24 2.72 154.04
512 4143 28.48 5.87 145.48
1024 8013 53.66 13.74 149.34
64 354 2.51 0.66 141.3
128 656 4.42 1.69 148.43

Parallel 256 1184 8.54 3.89 138.6
512 2224 15.62 9.61 142.37
1024 4288 29.13 20.22 147.19

ber of clock cycles and has a latency improvement of 46% at the cost of 1.98 µJ energy which is

about 34% higher than the serial implementation.

5.1 Comparison with existing implementations

The existing implementations to accelerate polynomial multiplication focus mainly on the latency

while not considering the energy consumption. Figure 5.3 and Figure 5.4 compare the results of

serial and parallel Modr2 based polynomial multiplication from this work to existing implementa-

tions on FPGA.

Implementations [27][10][5] have only highlighted the performance metrics of their designs with-

out any mention of power or energy consumption. Of these implementations, the design of Chen

et. al has an average 3× less latency than Poppleman et. al [27] and 2.5× better performance than

Du et. al [10]. The convolution based multiplier using systolic architectures proposed by Nejatol-

lahi et. al [22] performs the best in terms of latency bettering the parallel Modr2 architecture by

1.5×.
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Figure 5.3: Bar graph comparing the latency of different implementations of polynomial multipli-
cation for N = 256,512,1024 with Modr2-S being the serial Modr2 and Modr2-P being the parallel
Modr2. Conv, SA NTT, CryptoPIM and GPU are implementations of Nejatollahi et. al [23]
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Figure 5.4: Bar graph comparing the energy of different implementations of polynomial multipli-
cation for N = 256,512,1024 with Modr2-S being the serial Modr2 and Modr2-P being the parallel
Modr2. Conv, SA NTT, CryptoPIM and GPU are implementations of Nejatollahi et. al [23]
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Although the convolution implementation outperforms the parallel Modr2 architecture, it con-

sumes significantly higher energy which might not be suitable in energy constrained devices. The

Modr2 architecture consumes 2.32× for N = 256, 6.65× for N = 512, 12.71× for N = 1024 less

energy. This difference is considerable compared to the performance and an infavorable tradeoff in

most circumstances. The parallel Modr2 FFT consumes approximately 1.8×more energy than the

CrytoPIM [21] and the systolic array SA NTT [22] implementation however having a significantly

better performance.

In the design space of latency, area and energy it becomes essential to pick the right implementation

given the constraints of the system. In low-powered IoT devices which work on real time data, high

performance at a low energy cost is required for which the Modr2 implementation can be ideal. In

datacenters, the high frequency implementation of the Modr2 architecture is suitable given that the

server farms can afford higher energy consumption at the cost of high frequency and a very low

latency.
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Chapter 6

Conclusion and Future Work

In a few years we expect to have built a quantum computer that breaks public key cryptography and

threatens to make our secure data public. We need to be prepared with new algorithms of public

key cryptography, and the LBC family of algorithms seem to be the most promising.

In this thesis we explored the implementation of polynomial multiplication on programmable hard-

ware accelerators, the most compute intensive operation in RLWE LBC. Apart from improving

performance, we have taken into account the energy dimension in the design space which hasn’t

been considered often in previous literature. In fact, our work for the first time evaluates the

tradeoffs between energy and latency in the design pipelined NTT processors for polynomial mul-

tiplication. The results have been promising, showing that our Modr2 architecture achieves 12.5×

better energy efficiency over the state-of-the-art implementations.

Future work involves diving deeper into the Modr2 architecture and improving its energy efficiency

and performance. Performance of an accelerator increases with higher number of resources. In the

future, the dimension of resource utilization can be focused on in the design space. The main

question that needs to be addressed is if we achieve a similar performance with lower and more

efficient resource utilization.
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