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Noah: Low-cost file access prediction through pairs

Ahmed Amer and Darrell D. E. Long
�

Computer Science Department
Jack Baskin School of Engineering

University of California
Santa Cruz, CA 95064

Abstract

Prediction is a powerful tool for performance and us-
ability. It can reduce access latency for I/O systems, and
can improve usability for mobile computing systems by
automating the file hoarding process. We present recent
research that has resulted in a file successor predictor
that matches the performance of state-of-the-art context-
modeling predictors, while requiring a small fraction of
their space requirements. Noah is an on-line algorithm for
predicting successor file access events, effectively identify-
ing strong pairings (successor relationships) among files.
Noah can accurately predict approximately ��� % of all file
access events, while tracking only two candidate successors
of which only one requires regular dynamic updates.

1. Introduction

We describe recent work that has resulted in an effective
pair-wise access predictor – Noah – that demonstrates ac-
curacy results comparable to, and in some cases better than,
state-of-the-art dedicated predictive caching algorithms that
require significantly more state. Among Noah’s most no-
table features are: its usefulness for a variety of systems
and data management problems, and its ability to perform
with exceptionally low system overheads.

Latency is an ever-increasing component of data access
costs, which in turn are usually the bottleneck for modern
high performance systems. The ability to predict future data
accesses is an important approach to addressing this grow-
ing problem. For this reason, accurate access predictors are
very desirable for data storage systems. Another form of
increased latency can be seen in mobile computing environ-
ments, where a disconnection is a potentially unbounded
data access latency. If the requested data is not available

�
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locally, an unavoidable wait for the next available network
connection (in the case of wireless networks this could be a
weak and unreliable link), or the physical shipping of me-
dia, is incurred. Even if high-speed network connectivity is
continuously available, traveling to a geographically distant
location could impose significant latency. Even with the
fastest networks, and best compression algorithms, a signif-
icant latency can be encountered by mobile users.

The ability to hoard data on a mobile computer’s local
storage goes a long way towards freeing the user from de-
pendence on the (possibly non-existent) network connec-
tion. An important step in developing fully automated file
hoarding algorithms is the ability to automatically iden-
tify strong relationships between files. The accurate pre-
diction of the successor relationship between files is one
such mechanism for identifying strong inter-file relation-
ships. Prior works on mobile file hoarding such as Coda
[4] and Seer [7] have made significant strides in automat-
ing the process of file hoarding, yet sufficient automation
remains an elusive goal.

With systems handling much greater numbers of files
and a growing volume of data, it is becoming more and
more important to automate as many system tasks as pos-
sible. An algorithm that requires no manual parameter ad-
justments for “performance tweaking” is highly desirable.
Noah addresses these issues by providing an algorithm that
can accurately predict file access successors, using very lim-
ited state-space for each file, and requiring no manually ad-
justed operating parameters.

2. Successor Predictors

Our goal is to develop an accurate successor predictor
that maintains strictly limited per-file state information. In
Noah this involves tracking the last successor, and remem-
bering a current prediction. No other information is used
to make the prediction. Before discussing Noah, it is im-
portant to introduce some simple single-successor models,
which maintain only one successor. We start by introducing



the distinction between dynamic and static predictors.

2.1. Dynamic and Static Predictors

In prior work we have observed that files can be divided
into two categories, those that have a strong successor re-
lationship to a fixed successor file, and those whose suc-
cessor varies considerably for each file access. This fact
was captured using two simple successor predictors, each
of which only maintained one successor per file. The dy-
namic last-successor predictor, and the static first-successor
model. The dynamic/last-successor model [6, 8] is updated
with every access to a file to represent the dynamically ob-
served last successor.

A static predictor, as its name implies, is not updated
with observed file access events. The most important of
these is the first-successor predictor, which maintains the
first observed successor for a file as its unchanging succes-
sor prediction. In the same manner a second-successor pre-
dictor maintains the second unique file observed to succeed
the current file as its unchanging predictor.

It might seem useful to track multiple static successors
and somehow aggregate their performance to compare to
the dynamic last-successor model, but through a tool we call
the rank-difference plot it can be shown that second, third
or fourth successors never outperform the first successor for
any files accessed over the observation period.

Rank-Difference Plots. A rank-difference plot represents
a performance difference between two successor-predictors,
plotted against instances of files ordered according to access
frequency (increasing in the direction of the increasing � -
axis). The � -axis on these graphs represents the difference
between the accuracy (%) of two predictors, for the specific
file at that point on the � -axis.

An important feature of the rank-difference plot is that
the highest-frequency files are at the right of the graph,
meaning that observed differences at higher � ranges are
more significant than differences at the lower � ranges.
When considering these plots it should be noted that all
file traces examined showed a tremendous skew in file ac-
cess frequencies. These traces included multiple comput-
ers ranging from personal workstations to file servers, and
were tested for trace periods varying up to several months
and over a year.

Figure 1 shows the rank difference plots for a single
system over a duration of approximately one month. Fig-
ure 1(a) compares the accuracy of the last-successor model
to the static first-successor model on a per-file basis. Differ-
ences for the lower-frequency files are often non-existent.
This is an artifact of the access-frequency distribution. Any
improvement in predictions can only happen if a file is ac-
cessed more than once. If a file is accessed very few times,
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Figure 1. Rank-difference plots for the single-
successor models.

then any improvement in performance is subsequently lim-
ited.

Common intuition regarding file access behavior might
suggest that, over extended periods of time, a static pre-
diction can only compete on infrequently accessed files.
Subsequently this assumption would conclude that a last-
successor model would naturally perform better for all fre-
quently accessed files. This assumption is invalid for every
trace we have studied. In fact, there is a great variation be-
tween the accuracy of a single “first-guess” and a continu-
ously updated guess. This suggests the existence of enough
noise, in an access stream, to confuse a last-successor for a
substantial number of file accesses that are best predicted as
the first observed successor.

Figure 1(b) compares the accuracy of the first-successor



Current
File Successor

Predicted

Selector (perfect selection)never updated
static per-file per-file per-access

dynamically updated

Dynamic/

Pairing
Optimal

Last-Successor
Static/
First-Successor

Figure 2. Conceptual View of the Optimal Pair-
ing Algorithm

model to the second-successor model. The second-
successor model associates each file with the second file ob-
served as its successor. In other words, for the sequence A
B A C, the second successor for A is C. The figure clearly
demonstrates that the second successor is never found to be
a better choice than the first successor, for any file over the
trace period, Figure 1(b) is limited to only those files that
have been accessed at least twice (otherwise they would not
have a second successor), and that is the reason for the wider
range of � values (file instances) that are observed to have
performance differences. Ideally, an optimal predictor that
maintained a first and last successor prediction could pro-
duce a rank-difference plot like Figure 1(a) but with only
positive performance values. We use such an algorithm
for comparison against Noah. This “Optimal Pairing” al-
gorithm is the subject of the following section.

2.2. Optimal Pairing

A conceptual view of an adaptive successor predictor
that optimally combines both the last and first-successor
models is given in Figure 2. In principle, any predictor that
could maintain these two predictions per-file would have an
upper bound on its accuracy dependent on the ability of the
selector to choose between the two models. A perfect selec-
tor which always made the better choice would be equiva-
lent to an on-line algorithm that could instantly adapt to the
currently correct configuration.

It is reasonable to consider the application of machine
learning algorithms such as the weighted majority algo-
rithm [9] to select between these two models. In practice it
was found that the simple filtered form of Noah, described
in the following section, could almost match the perfor-
mance of this optimal model. With very lengthy trace pe-
riods (over a year), it is sometimes possible for Noah to
out-perform this two-expert model, thanks to its more adap-

tive nature. Implementing the optimal pairing algorithm is
a simple matter of considering its prediction to be accurate
if either of its experts is accurate (this models perfect selec-
tion/adaptation). This algorithm represents a higher goal
than simply matching the correct predictor to the appro-
priate files, it is an optimal adaptive choice, which can be
changed dynamically as new file access events are observed.

2.3. Noah

Figure 3(a) shows a simple conceptual view of Noah’s
operation, and Figure 3(b) illustrates Noah’s update mecha-
nism, indicating static elements, and those that require per-
file-access updates. For each unique file Noah tracks the
following information:

� Current Prediction – The current prediction. This is
simply the first item observed to follow the current file.
It is updated to match the candidate prediction (last-
successor) if the candidate satisfies a stability condi-
tion.

� Dynamic/Last-Successor – The candidate prediction.
This candidate is equivalent to the last successor model
[6, 8], and is continuously updated with every access
to a file to represent the dynamically observed last suc-
cessor.

The main innovation of Noah is the extension of the ba-
sic last-successor predictor to filter out noise in the observed
access stream. This is based on the intuition that noise is
detrimental to the quality of any deductions made from dy-
namic observations. This filtered model effectively filters
out observations that vary too rapidly, effectively acting as
a low-pass filter for observations.

As with the last-successor model, this predictor main-
tains a record of the last file to be a successor to the current
file. In addition to this, Noah maintains a current successor
prediction, which is updated to become the last-successor,
only if the last successor is observed to have remained con-
sistently valid for a pre-determined stability count. While
the last-successor updates its prediction with every access to
a file, and the first successor never updates its initial predic-
tion, Noah will update a file’s successor if a new successor
is observed consistently for a number of accesses.

The number of accesses in which a new successor must
be observed to be correct, before the current successor is up-
dated, is called the “stability” period. In this manner, files
with successors that change rapidly, i.e. have no stable ob-
served successor, do not update their successor predictions
to the new observations, as they are most likely noise.

Longer stability periods imply a more stringent low-pass
filter. As it turns out, anything more stringent than a simple
single-event stability filter is detrimental to overall perfor-
mance. We demonstrate in the experimental results section
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Figure 3. Conceptual Views of Noah

below by testing against trace data for varying stability peri-
ods. We refer to selecting a successor as the new prediction
the second consecutive time it is observed, i.e. with stabil-
ity

�
, as “first-pass filtering.” First-pass filtering, along with

the maintenance of per-file metadata is the main reason for
Noah’s accuracy in successor predictions.

In this manner, the total metadata that Noah must main-
tain per file is as little as two file pointers (typically a long
integer) and even the stability counter described in Fig-
ure 3(b) can be discarded as we selected simple first-pass
filtering. It is therefore possible to maintain any decision
information within the metadata of the current file, and with
an efficient implementation overheads are minimal.

This is a small fraction of the space overhead and up-
date requirement that would be required by state-of-the-art
predictive caching algorithms with comparable prediction
accuracy, such as the Finite Multi-Order Context (FMOC)
[6] model, or graph-based models as described by Griffioen
and Appleton [2].

3. Experimental Results

To evaluate Noah, the algorithm was tested on file sys-
tem traces gathered using Carnegie Mellon Univeristy’s DF-
STrace system [10]. These traces included two main work-
loads, barber a file server, and mozart a personal worksta-
tion. These traces provide information at the system-call
level, and represent the original stream of access events, not
filtered through a cache. The main performance metric used
was prediction accuracy. If a successor to a particular file
is observed to be consistent with what Noah predicted then
this is considered to be a successful prediction. The aver-
age number of successful predictions for the duration of the
trace provides a measure of accuracy which can be consid-
ered on a per-file basis, or for summary purpose is averaged
over the entire file space.

Averages for both individual file predictor performance,
and overall average were calculated, but for our definition
of accuracy the overall average is more relevant. This pro-
vides a greater weight for more frequently accessed files.
This is consistent with the fact that poor predictions on fre-
quent events are more detrimental than poor predictions for
infrequent (possibly transient) events. For the two main
workloads we consider a trace period of approximately one
month, and a longer trace period of a little over a year. Our
results are consistent at both time scales and are discussed
in more detail below where we compare the performance of
Noah against competing models.

3.1. Noah and Optimal Pairings

The ability of Noah to reduce detrimental noise in suc-
cessor predictions can be seen in the rank-difference plot
of Figure 4. This graph is equivalent to Figure 1(a) pre-
sented above, with the last-successor model being replaced
with Noah. Noah eliminates most instances of the static
first-successor model being a better selection. The rank-
difference plots for longer periods, and different workloads
are very similar.

Figure 5(a) compares the performance of Noah to the
last and first successor models. Without resorting to selec-
tion between the two models, Noah can consistently outper-
form both models. These results are for a time period of
approximately one moth, but are consistent over trace pe-
riods exceeding a full year. Figure 5(b) compares Noah to
the optimal pairing algorithm, and in spite of the few nega-
tive points in Figure 4, the overall performance of Noah is
within

�
to � % of this optimal selection model.

Figure 4 represented the trace described here as barber
(month), which is for file access events on the server barber
over a period of approximately one month. The results for
all other month-long trace periods are consistent, but it is
interesting to observe that Noah slightly exceeds the perfor-
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Figure 4. Rank-difference plot for Noah vs. the
first successor model tested over a period of
approximately one month.

mance of the optimal pairing algorithm for some of the year-
long trace periods. The reason for this lies in a reduction of
the optimal pairing algorithm’s accuracy for lengthier peri-
ods of time. Although we have seen that static successor
predictions remain valid for extended periods of time, it is
only to be expected for their validity to lessen as lengthier
time periods are involved, and more high-level shifts in file
access behavior occur. Another reason for Noah’s excellent
performance in this context is its ability to maintain true
static pairings. Noah will update a successor prediction if
it is observed to remain unchanged for two access events.
But should a pairing be strong enough to remain valid for
periods exceeding a year, it is highly likely that such a pair-
ing is a strict successor relationship, rarely changing, and
therefore rarely requiring updates to Noah’s prediction.

3.2. Noah, FMOC, and PCM

Earlier works on file access prediction include the Fi-
nite Multi-Order Context (FMOC) model, and its deriva-
tives the Partitioned Context Model (PCM) and Enhanced
PCM (EPCM) [6, 5], which predict based on a context mod-
eling principle inspired from the data compression domain
[13]. FMOC was found to generally outperform an earlier
technique for file access prediction based on the construc-
tion of weighted relationship graphs built from a window of
observed successors, first proposed by Griffioen and Apple-
ton [2]. Figure 6(a) compares Noah to the context modeling
(FMOC) predictor, and Figure 6(b) compares Noah to PCM
with varying amounts of state-space.

An FMOC- � model predicts using a context model of or-
der � , and subsequently requires

�������	�
state space, where�

is the number of unique files observed. PCM ��
� models
a partitioned context model, of order � with state-space lim-
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Figure 5. Noah compared to the two single-
state successor predictors (dynamic/first-
successor and static/last-successor), and an
optimal adaptive selection between the two.

ited to a partition size of � for each file. To beat Noah’s per-
formance the space-restricted context model (PCM) needs
to track up to 16 nodes per file (each with a pointer to an-
other file, and an access count). Although the higher-order
FMOC models outperform Noah, they require state space
that is polynomial in the number of unique files observed.
The simple filtered model of Noah is capable of outperform-
ing PCM models that track the same number of nodes (two),
and Noah is capable of matching the performance of models
with more than eight times the requirement in state space.

Noah only needs to maintain two predictions with only
the dynamic (last-successor) prediction requiring update
with each access to a file, as the static prediction remains
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Figure 6. Noah performance compared to
dedicated prediction algorithms. Noah is
compared to the Partitioned Context Model
(PCM), with varying order and partition sizes,
and to second and fourth-order Finite Multi-
Order Context (FMOC) models (with unlimited
state space).

unchanged until a replacement is required.

4. Related Work

With increasing network speeds, latency becomes a
greater issue than bandwidth for network performance, as
the reduction of the problem is limited by the speed of light.
The same trends have been observed in disk storage, in the
form of seek times being a greater burden despite increases
in disk capacity and bandwidth. We predict similar trends

in vast storage systems.
To overcome latency problems without some form of

prefetching would not appear to be possible, hence the in-
creased interest in prefetching and predictive caching in
such applications as web-proxies [11] and file caches. The
graph-based model for predictive prefetching was first pro-
posed by Griffioen and Appleton [2], and has been used in
a range of applications. FMOC was presented in an accu-
racy comparison with the graph-based model and the last-
successor model [6, 8]. It has been used to produce the PCM
and Extended PCM prefetching algorithms [5]. The FMOC
prediction model is based on context modeling techniques
drawn from the data compression domain. The first to sug-
gest the application of techniques from data compression
to predictive caching were Curewitz, Krishnan, and Vitter
[1, 13].

Similar concepts of detecting and prefetching “working
sets” of data were also used to cache enough data on a mo-
bile system to allow disconnected operation [4, 7]. File
hoarding within the Coda project [4] utilized a fairly elab-
orate derivation of LRU, and yet suffered from excessive
dependence on user intervention and setup effort. Among
the most successful hoarding algorithms developed to date
is that of the SEER system [7]. SEER introduced the con-
cept of “semantic distance” and achieved a high level of
automation.

SEER was also based on identifying groups of related
files. It used “semantic distance” to evaluate how “near”
one file was to another. This was combined with cluster-
ing based on a thresholded number of “shared near neigh-
bors.” This was effectively an efficient version of the Jarvis
and Patrick clustering algorithm [3], utilizing semantic dis-
tance as a nearness metric. Unfortunately, the automation of
SEER involved a substantial research effort to find param-
eters that provided good performance. Whether the actual
hoarding process requires extensive user input, or whether
parameter selection was based on extensive experimental
tuning, we feel that the major obstacle to general adoption
of file hoarding has been an insufficient level of automation.

Predicting based on a choice between two alternatives is
a common and well established scenario in the domain of
processor branch prediction [12]. In branch prediction you
are attempting to predict whether a branch will be taken or
not. This is critical for effective pipelining and processor
hardware utilization, in a similar manner to data access pre-
diction’s usefulness for improving the performance of the
storage subsystem. More recent work on branch prediction
[14] maintained dynamic information on a per-branch ba-
sis, similar to Noah’s per-file metadata. Furthermore they
employed a more complex two-level scheme to deal with
higher-level workload shifts. Branch prediction differs from
our application in that it is a domain that is limited to only
two possibilities: a branch is taken or not. Noah assumes



that either the current prediction or a newly established sta-
ble successor will be chosen, but in reality the observed suc-
cessor could potentially be any file in the file system space.
The fact that Noah works so well in spite of this observation
is indicative of the inherent relatedness in file access events.

5. Conclusions and Future Work

Noah is capable of providing reliable file access predic-
tions utilizing a constant state space, which is a small frac-
tion of more complex prediction algorithms. Noah requires
no user-adjustment of operating parameters, and automat-
ically adapts to variations in the observed access patterns
of specific files. This can be seen in Noah’s usefulness
and consistent performance regardless of the time-scale in-
volved. In short Noah is self-tuning, adaptive, accurate,
minimal, persistent (per-file information is simple to main-
tain thanks to the low overheads), and tolerant of noisy or
missing observation data (an inability to update the suc-
cessor predictions will, at worst, reduce Noah to a first-
successor model).

The comparison of Noah and predictive caching algo-
rithms should be taken within the context of this paper. It
must be realized that as predictors for predicting far into the
future, the FMOC and graph-based models are probably su-
perior to the plain Noah implementation. However, Noah
makes no attempt to predict far into the future. And yet
its consistent accuracy, across multiple files suggests that it
can indeed do so, or at least supply useful relationship in-
formation for higher-level applications such as file prefetch-
ers and hoarding algorithms. We do not claim Noah to be
the most accurate predictor available, but we do propose
Noah as a flexible mechanism for establishing highly accu-
rate successor predictions robustly and with incredibly lit-
tle system overheads. Future work on Noah includes the
testing of models that predict multiple successors, as well
as applications of these algorithms to data placement and
hoarding problems.
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