Lawrence Berkeley National Laboratory Recent Work

Title
BEVATRON BEAM INJECTION PROGRAMS: INJECT, PHASE, HINJ. A User's Guide ? Volume I
Permalink
https://escholarship.org/uc/item/1bf0m2gr

Author

Close, E.
Publication Date
1972-02-01

BEVATRON BEAM INJECTION PROGRAMS:

INJECT, PHASE, HINT
A User's Guide - - Volume I
E. Close, P. Germain, B. Holley

February 18, 1972

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not nccessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA

Lawrence Berkeley Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

BEVATRON BEAM INJECTION PROGRAMS: INJEC T, PHASE, HINJ

Volume I

A User's Guide

E. Close, P. Germain, B. Holley

VOLUME I

TABLE OF CONTENTS
Page
0. Introduction 1

1. Rf Trapping of the Injected Beam 2
1.1 Rf Trapping 3
1.2 Accepted Beam 7
1.3 Accepted Pulse 10
1.4 Parameter Variation 14
1.4.1 Accepted Pulse Parameters 14
1.4.2 Accepted Beam Parameters 15
1.4.3 Rf Trapping Parameters 15
1.5 Summary of Injection Calculations 15
2. Program INJECT 17
2.1 Data Input 17
2.2 Control Cards 19
2.3 Data Examples 21
2.4 Description of INJECT Output 22
3. Program PHASE 27
3.1 Data Input 27
3.2 Control Cards 30
3.3 Data for Examples 31
3.4 Description of PHASE Output 34
4. Program HINJ 38
4.1 Data Input 38
4.2 Control Cards : 40
4.3 Data for Examples 41
4.4 Description of HINJ Output 46
5. Program TWRITE Data Input 55
Appendix A Sample Control Cards/Input/Output 57
Al Program INJECT 58
A2 Program PHASE 65
A3 Program HINJ 75
Appendix B Program Data Input Table 86
Table I INJECT 87
Table II PHASE 92
Table III HINJ 102
Table IV TWITEI 107
Appendix C Field Free Data 108

○. INTRODUCIIION

This report is divided into two volumes. Volume I deals mainly with the use of the programs. Volume II presents details of the calculations and of the programs that are necessary for understanding the program source listings. Those who are interested mainly in running the programs and obtaining results will find the necessary information in Volume I. Should further detailed knowledge be required for program modification, then Volume II can be consulted.

A general description of how we treat the bevatron injection problem is found in Section 1. In Sections 2, 3, 4, and 5 details are given pertaining to the running of the injection programs INJECT, PHASE, HINJ, and of a data storage program TWRITE. These sections describe the data input structure, the necessary control cards, and the output that the programs generate. The Appendices A1, A2, and A3 contain sample control card checks, input data cases, and selected program output.

1. RF TRAPPING OF THE INJECTED BEAM

We wish to study the process of injecting beam into the LBL Bevatron. To be more precise, we assume that a pulse of beam is delivered to the bevatron inflector and we wish to find out what fraction of this pulse survives the rf trapping; that is, what fraction of this pulse is trapped when the rf is turned on. We wish to study this trap- ' ping process as various injection parameters are varied. For example, we can vary the length of the injected pulse, the time of injection, the emittance of the injected beam, the momentum spread of the injected beam, the time at which the rf is turned on, the characteristics of the rf voltage buildup such as its time constant or shape, the rate of rise of the magnetic field during the injection trapping process. The programs INJECT, PHASE, and HINJ, when used in the manner described below, allow us to calculate the accepted beam as these parameters are systematically varied.

In order to effectively carry out these calculatinns, the process of injection has been separated into three separate parts and each part is separately calculated by one of the programs. Briefly, we call these acceptance, $r f$ trapping, and accepted pulse. In the acceptance calculation, we determine what beam can be accepted into the machine as coasting beam. This is done by the program INJECT. The rf trapping calculation, PHASE, tells us what beam will be trapped as the rf voltage is turned on. The accepted pulse calculation, HINJ, uses the results of these two previous calculations to find out what fraction of an injected pulse survives the injection, rf trapping process. We describe below the rf trapping
calculation, the accepted beam calculations, the manner in which these are used to calculate the accepted pulse, the parameters that can sensibly be varied, and conclude with a short summary of how the programs are to be employed.

1.1 RF Trapping

We assume, for these calculations, that the azimuthal and radial distribution of the coasting beam is known at the time that the rf voltage is turned on. The manner in which this is calculated is described in Sections 1.2 and 1.3. Essentially, the beam fills the aperture radially and for all practical purposes we can assume a uniform azimuthal distribution. Our calculations are limited to the radial plane; the vertical motion is not considered here. The coasting beam at rf turn on time is defined to be the totality of the injected beam that has survived at this time. Thus, it is the beam that has not, for whatever reason, hit the inflector, or the chamber walls, etc. One way of characterizing this beam distribution is to note that for every particle there corresponds an equilibrium orbit radius r that can be determined from the particle energy and the magnetic field at the time of injection of the particle, and that each particle oscillates about i.ts equilibrium orbit radius with a maximum betatron amplitude \mathbf{x}_{β}. Since the time taken to inject into one full turn is small, we can assume a uniform beam distribution around the machine and we can think of beam filaments instead of particles. That is, we have a filament of beam that has equilibrium orbit r and betatron amplitude x_{β}. Therefore, the points in the ($\left.r, x_{\beta}, \theta\right)$ space can be thought of as beam density points and we simply ask the question: Given a known beam density $I=I\left(r, x_{\beta}, \theta\right)$, what fraction of this beam survives
the rf turn on; that is, what fraction is trapped, and if it is trapped, what is its maximum radial excursion during the trapping process?

To answer this question, we make some simplifying assumptions. We assume that during the rf trapping process x_{β} is fixed and we consider the radial synchrotron oscillations to be independent from the betatron oscillations. With these assumptions, we can proceed as follows:

We choose a reference particle that is assumed to have an equilibrium orbit radius r_{S}, a rotational rate $\omega_{S}=\theta$, and a total energy E_{S}. See Figure 1.

Figure 1

This particle may possibly not exist as a real physical particle, but that does not matter. We simply say that if such a particle existed in the machine, no matter how it got there, it would be such that it would forever travel around the orbit of constant radius r_{S} with rotational rate ω_{S}. This, then, fixes its energy gain rate to be such that it stays at a constant radius. We now define

$$
\begin{align*}
\Delta E & =E-E_{\dot{S}} \\
\psi & =\phi-\phi_{S} \tag{1}\\
\omega_{1} & =\omega_{r f}-h \omega_{S}
\end{align*}
$$

where ϕ is the $r f$ phase of a particle of energy E, ϕ_{S} is the rf phase of the reference (synchronous) particle, ω_{1} measures the error in the rf frequency $\omega_{r f}$ where we have chosen the rotational rate of the reference particle as the standard, and ψ is the rf phase of the particle of energy E as measured from the synchronous phase of the reference particle. We can then use the standard phase equations to study the rf trapping process. For our case, the se can be written as

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} \tau} \frac{\Delta E}{\omega \mathrm{~S}}=\frac{\mathrm{q}}{2 \pi \Omega}\left[\mathrm{~V}(\tau) \operatorname{Sin} \phi-\Delta \mathrm{T}_{\mathrm{S}}\right] \\
& \frac{\mathrm{d}}{\mathrm{~d} \tau} \psi=\frac{1}{\Omega}\left[\omega_{1}+\frac{h \omega_{\mathrm{S}}^{2} \Gamma}{E_{S}} \frac{\Delta E}{\omega_{S}}\right] . \tag{2}
\end{align*}
$$

For more details about the quantities in Equation (2), the reader may refer to Volume II, Section 2 of this report.

For each particle (beam filament) of equilibrium orbit radius r, we can find $\Delta r=r-r_{S}$ and thus $\Delta \mathrm{E} / \omega_{\mathrm{S}}$. We can then integrate (a) for various initial conditions and find what fraction of any beam filament is accepted. With this in mind, we look at the $\Delta r, \psi$ plane, Figure 2.

Figure 2

For a given Δr, we integrate for the initial values

$$
-\pi<\psi_{i} \leqq \pi, i=1,2, \ldots, \mathbb{N}
$$

and find whether the particle is trapped. If the particle $\left(\Delta r, \psi_{i}\right)$ is trapped, then we assume that $1 / N$ of the total beam at $\left(\Delta r, x_{\beta}\right)$ was accepted for that $\left(\Delta r, \psi_{i}\right)$. This corresponds to having a uniform azimuthal distribution of the beam. See Figure 3.

Figure 3

Extensions to other distributions are, in principle, not difficult should that be desirable.

If the beam is trapped by the rf for a given ($\Delta r, \psi_{i}$), we then proceed to superimpose the maximum betatron amplitude x_{β} onto $\Delta r, x_{\max }=\Delta r+x_{\beta}$, and we ask whether this will physically remain within the chamber. If $x_{\max }>\frac{\text { chamber width }}{2}$, then the beam, while theoretically trapped by the rf , will not, in fact, survive the rf trapping process since it will be lost on the walls. If it is, however, trapped, then we have that for a given
$\left(\Delta r, x_{\beta}, \psi_{i}\right)$ the quantity $1 / N$ of the beam existing at $\left(\Delta r, x_{\beta}\right)$ has been trapped. We scan the $\left(\Delta r, x_{\beta}\right)$ plane and accumulate for a given ($\Delta r, x_{\beta}$) the fraction of the total beam that is accepted for each point in this space.

Figure 4

Therefore, if at time $t=0$, the rf turn on time, we know the beam density distribution in the ($\Delta r, x_{\beta}$) plane, we can easily calculate the accepted beam by multiplying the values of the trapped beam $\mathrm{RF}_{\mathrm{t}_{\mathrm{f}}}\left(\Delta r, x_{\beta}\right)$ times the values of the distribution array $R F_{t_{0}}\left(\Delta r, x_{\beta}\right)$.

To summarize, the rf trapping process has been decoupled from the rest of the problem by calculating a discrete set of values in the ($\Delta r, x_{\beta}$) plane. These values, $\operatorname{Rf}_{r f}\left(\Delta r_{i}, x_{\beta_{i}}\right)$ represent the fraction trapped, during the $r f$ trapping process, of the total beam that had the values ($\Delta r_{i} ;{ }_{x_{\beta_{1}}}$) at rf turn on time. This means that we can, for a given set of rf trapping parameters, calculate the rf trapping array $\mathrm{RF}_{\mathrm{tf}}$ and save it for future use.

1.2 Accepted Beam

In this calculation, we wish to determine whether the beam injected into the inflector is accepted as coasting beam. At the inflector, we have a beam that occupies some known area in the radial (x, x^{\prime}) space and this beam has some known momentum distribution about a central momentum and is injected into the bevatron at some given time; will it be accepted in
the machine or will it be lost by, for example; hitting the inflector? To answer this question, we consider a particle, or equivalently, a single turn filament, to be injected with a given equilibrium orbit r and a given radial phase space position (x, x^{\prime}). The equilibrium orbit r is determined both by the particle energy and the time of injection, since we are injecting into a rising field. We measure the equilibrium orbit as x_{9} which is the distance of the equilibrium orbit from the outer radius of the inner wall of the inflector. See Figure 5 .

Figure 5

The particle is characterized by the value of (x, x^{\top}, x_{9}). Given a three-dimensional space of these variables, we can, for any point in the space, ask whether the particle was accepted as coasting beam. We are principally interested in whether the particles clear the inflector. Since the field rise B is positive during the injection, the equilibrium orbit moves in (x_{9} increases), and particles with the right (x, x^{\prime}, x_{9}) values will clear the inflector and be accepted as coasting beam. Figure 6 shows a particle injected at a time t>0. We have arbitrarily chosen the time origin at $x_{9}=0$.

Figure 6

In order to calculate which $\left(x, x^{\prime}, x_{9}\right)$ points are accepted, we trace the orbit paths of the particles for the first few turns. Once the equilibrium orbit has shrunk to a small enough value so that $r+x_{\beta}$, where x_{β} is the appropriate betatron amplitude, is less than the inflector radius, the particle is assumed to be accepted as coasting beam. During this calculation, we check that the particle stays within the available physical aperture.

The equations of motion used to describe the particle motion are given in Volume II, Section 1, of this report. We assume that the vertical and radial motion are independent and deal only with the radial motion of the beam. Because of the sensitivity of the particle to the field index value in clearing the inflector, we solve this orbit problem discretely at a number of steps around the circumference and use a measured average n value corresponding to the radius of the particle. The time dependence of the magnetic field is simulated by discretely shrinking the equilibrium orbit with an appropriate pitch.

Our calculations thus tell us what points are accepted in the $\left(x, x^{\prime}, x_{9}\right)$ space and what betatron amplitude the accepted particles have.

Once the beam has been accepted, the beam can be linearly translated to the inside south faraday cup using a pitch that is determined by the fleld rise. This calculation in effect assumes that there is little change in betatron amplitude while moving in. The turn number that corresponds to this hitting of the south faraday cup is saved for future use in calculating beam intensities.

The calculations, as they are presentiy carried out, assume that the rf voltage is off while we are determining whether the beam is accepted as coasting beam.

1.3 Accepted Pulse

We wish now to use our previous results to determine what function of an injected pulse of beam is trapped in the machine. Briefly, what we must do is map the injected pulse into the (x, x^{\prime}, x_{9}) space, then the accepted beam can be translated into the machine until rf turn on time at which point in time we need to know the beam distribution in the ($\Delta r, x_{\beta}$) space. We then have our results since we know from the PHASE calculation what fraction of the beam in this space survives the rf trap ping process.

We shall first consider a short pulse of beam injected into the machine at an arbitrary time t_{i}. At any instant of time, the beam has a known distribution in the (x, x^{\prime}) plane and a known momentum distribution about some central momentum p_{i}. By known, we mean that we are expected to supply these distributions either as actual measured values or as reasonable approximations to the physical characteristics of the beam. Our beam is completely specified at time t_{i} by its distribution in the (x, x^{\prime}, p) space.

Along the momentum axis, we consider the beam to have a central momentum p_{i} and a distribution about this value. Since changes in momentum are equivalent to changes in equilibrium orbit radius, we can consider this distribution to be a function of x_{9}. See Figure 7 .

Figure 7
Similarly, since a change in time is equivalent to a change in magnetic field which is also equivalent to a change in equilibrium orbit radius, we can consider time to be measured by values of x_{9}.

We can establish a time origin by taking $t=0$ to be the time at Which a beam with central momentum p_{0} injected tangent to the inflector remains on the tangent circle. See Figure 8.

Thus $x_{9}=0$ for $p_{0}=$ central momentum at $t=0$.

Beam injected earlier will see a lower field since $\dot{B}>0$ and will thus have equilibriwn orbits of larger radii. Beam injected later will have equilibrium orbits of smaller radii. It is immediately obvious (Figure 9) that we are not limited to the same p_{i} for each t_{i}.

For each p_{i}, t_{i} we have a distributuion in the (x, x^{\prime}) plane. The distribution can, in principle, be oriented in any desired manner by a beam transport system. In practice, it will be near the inflector wall. We can thus map a short pulse at time t_{i} into the $\left(x, x^{\prime}, x_{9}\right)$ space. See Figure 10.

Figure 10
When our distributions are properly normalized, a point in this space represents the fraction of the total beam in the short pulse that is at the given coordinates. We now use the previous accepted beam calculation to determine whether this beam is accepted or rejected. If it is accepted,

$$
0.3 .047 \quad 1 \% 3
$$

we know its maximum betatron oscillation amplitude and we can use the pitch determined by $\dot{\mathrm{B}}$ to translate this beam into the machine to a time $t_{r f}$ which represents the rf turn on time.

Figure 11
If the beam remains within the available radial aperture during this translation, this being determined by adding its betatron amplitude on to its equilibrium orbit radius, then we can accumulate this fraction of beam at the point $\left(\Delta r, x_{\beta}\right)$ in the rf trapping plane. We do this over a discrete set of values in the $\left(x, x^{\prime}, x_{9}\right)$ plane to obtain in the ($\Delta r, x_{\beta}$) plane a discrete distribution at time $t_{r f}$ of the short pulse injected at time t_{i} with central momentum p_{i}.

We now repeat this process for a series of discrete pulses which represent a long pulse and thus construct in the ($\Delta r, x_{\beta}$) plane the beam distribution of a pulse injected over a finite time. See Figure 12.

Figure 12

We can proceed to calculate the fraction of trapped beam, since for every point in the $\left(\Delta r, x_{\beta}\right)$ space, we know what fraction of any beam that exists there is trapped.

It is, of course, assumed here that the distributions are properly normalized to the total injected beam. These and other details pertaining to this calculation can be found in Volume II, Section 3.1.

1.4 Parameter Variation

Corresponding to each of the basic calculations discussed above is a set of parameters that may be varied to determine what effect they have on the trapping of the injected beam. We deal first with those connected with the accepted pulse (HINJ) calculations, then the accepted beam (INJECT), and finally the rf' trapping (PHASE).

1.4.1 Accepted pulse parameters.

For the accepted pulse calculation, we have available to us the timing and the distributions. That is; we can adjust the time at which the pulse is injected (the start of injection) and the length of the pulse (the end of the injection). We can also vary the central momentum p_{i} as a function of time and the distribution around that momentum. Likewise, we can vary the orientation, shape and size of the x, x^{\prime} phase space distribution and, in principle, this distribution could be a function of time and momentum.

The approach that was taken in calculations reported in [1] was to consider each pulse to have the same momentum and x, x^{\prime} distribution and to concentrate on the effects of timing (within physically obtainable limits) and to investigate the effects of the injected beam emittance, by using uniform and Gaussian distributions with different orientations,
and the effects of momentum spread using Gaussian distributions.

1.4.2 Accepted Weam parameters

The principal parameter available to us here is the magnetic field. Since the rf voltage is considered to be off during these calculations, we have no voltage parameters. The field rise \dot{B} can be varied along with the field index values $n=n(r)$. We can also modify the field locally; 1.e., a field bump can be introduced. We, of course, have the particle energy and charge; they must, however, be compatible with those used in both PHASE and HINJ. In general, we consider that we have chosen some particle and some injection energy and wish to investigate the effect of othar parameters. We also assume here that the (x, x^{\prime}, x_{9}) space covers that needed for HINJ and that the physical aperture of the machine is not really a parameter in our sense.
1.4.3 rf trapping parameters

For the rf trapping process, we deal essentially with the rf voltage characteristics. We can thus introduce frequency errors versus time and such things as voltage buildup versus time and rise time constants to determine their effect on the beam. Other things such as reference particle energy, aperture widths, average field index are more in the nature of problem constants.

1.5 Summary of Injection Calculations

In order to effectively carry out these calculations, we establish all necessary problem constants such as particle energy, machine dimensions, etc., choose a reasonable set of values for the available parameters and proceed to run the programs. We must use INJECT to calculate an acceptance arsay $A\left(x, x^{\prime}, x_{9}\right)$ that establishes what beam is accepted as coasting beam.

We use PHASE to calculate a trapping array $R P\left(\Delta r, x_{\beta}\right)$ to find out what fraction of available beam is trapped by the rf. These arrays are saved and can be used in HINJ as long as their basic parameters are not changed. We then use HINJ to calculate what fraction of the total beam survives the combined injection, rf trapping process. In short, we can obtain I the beam intensity of the trapped beam as the number of particles of trapped beam per milliamp of injected beam. $I=I(a, b, c, \ldots)$ is a function of all the problem parameters a, b, c, \ldots and by systematically varying these parameters a profile of the injected beam can be constructed and an optimum choice of parameters can be made. Results of calculations of this type are presented in [1].

4, atar 370

2. PROGRAM INJECTI

This program is used primarily to determine whether injected particles are accepted or rejected. It is an orbit tracing program so it can also be used to trace individual particles in the bevatron. When determining the accepted beam, parameters are input that determine the machine characteristics, the particle injection energy, and the injection phase space. Particles in this phase space are traced through the machine turn-by-turn until they are either lost or accepted. Acceptances arrays A, N are generated and written out on disk for later use. The program is built so that it can handle many different cases in any one run. The data input and program output for simple examples are described in the following sections. The general manner in which INJECT solves the problem vas given in Section l.2. A detailed description of the program is given in Volume 2 of this report. In Appendix B, Table I is a detailed table describing the data input to this program.

The data saving program TWRITE can be considered as a "black box" program. It is adequately described in [3]. We have, for convenience, given a description of its use and data input record. Efficient use of the library tape that HINJ uses to fetch its data records will require that the actual reference be consulted.

2.1 Data Input

INJECT which calculates the accepted beam arrays $A A$ and NT is built in small modular sections.

```
program inject(input,out,tape 3, tape 4)
begin
L1: ID:= read; if ID= -1 then go to end;
    if ID=... then
    begin do whatever the value of ID indicates;
        go to L1
    end;
end: end of program
end
```

The first and last values read are the value of ID. The allowable values of $I D$ are given in the data input table of Appendix B. All data is read from the file -input-. All program output is written on the file -out-. All stored arrays reside on file -tape 4-. Many values are preset in program data statements. The preset values are given in the data input table. All input is field free [2]. See also Appendix C.

All data values are, by convention, assumed to be real numbers unless explicitly typed as integer, also denoted by 1. The quantity IC is of type integer.

If the generated acceptance arrays AA, NT are to be later used by program HINJ, then it is necessary that the grid used to generate them agree exactly with that used in HINJ. This means that in the IC $=4$ section, we must have the values

XXMJN	.025 [inch]
XXMAX	.575 [inch]
DXX	.05 [inch]

XXPMLN	$-002875[\mathrm{r}]$	
XXPMAX	$.002875[\mathrm{r}]$	
DXXP	$.00025,[r]$	
XX9MIN	-0.5	[inch]
XX9MAX	18.5	[inch]
DXX9	1.0	[inch]
HINJ	$72 / 01 / 18$	
date		

where the program version of HINJ is indicated by the date. It is also necessary that the arrays be saved by executing an $I C=5$ section after generation with an $I C=100$ section.

Generated arrays for as many cases as desired can be stored during any one run. Those that are saved will reside on file tape 4 as one file of data in standard data format suitable for input into program TWRITE l, [3], which is used to append them to the library. They can then be later fetched from this library by program HINJ.

If the preset values are used for the program parameters, then very little data need be input to generate the arrays. The preset values are for the LBL Bevatron and are taken from the report [1] for the 19.3 MeV injection case.

Typical examples of data input are given in Appendix A1. The output generated by this program when generating full ($12 \times 24 \times 20$) arrays is copious and it has proved convenient to raute the file -out- to microfiche.

2.2 Control Cards

Two control card decks for running INJECT on the LBL CDC 7600 are shown in Tables I and II of Appendix A1. The cards shown in Table I are suitable
for running an example such as Example 2 when all output is routed to the file output. A completerrun for generating and saving acceptance arrays for use in program HINJ is shown in Táble II. The comments to the right of the control cards are self-explanatory. These control cards will no doubt be outdated as the LBL system changes. However, they serve as examples on how to go about executing the program.

We shall guide the reader through that of Table II.
After the job card and the routing information, we have three cards pertaining to the fetching and updating of the program. The program INJECT is usually stored in the LBL data cell as a CDC UPDATE Library. It is fetched from the data cell and updated. If there are no program modifications, the update data record is empty and this update serves to produce a source compile file. : Presently, the source program now on IN is preprocessed by a program called BASTRIC to ensure that there are no blank lines. The RUN compiler does not like blank lines: The source deck then resides on file Cl. The RUN compiler is called and then the object deck is on BINJECT and the compiler output on COUT. The next three cards fetch the field free routines, compile them and place them on the user library file RULIB. The routines fetched are source decks usable on either the 7600 or 6600 .

The program INJECT is now executed. All of its program output goes onto file OUT, all of its card input is read from INPUT. A source listing is appended to the output from the program. This is quite useful in that it identifies which version of input generated the output. This output is then routèd to microfiche. All arrays to be saved reside on TAPE4. This
file is transferred to file DATA which is the default data input file to program TWRITEl. The file was cataloged to make sure it contained data in case of a later error exit. The program TWRITE1 is fetched from the data cell, compiled, and the object deck resides in BTWI. The library tape to which we wish to append the data is fetched as file LIB. The program TWRITE1 is executed; appends the data records to file LIB and places an updated director on file DIREC. This new directory on file DIREC is merged with the data records on file LIB. The file LIB contains the new, updated, library which should be saved. This is saved on tape 9804. If the run looks O.K., this library will be copied from tape 9804 back onto tape 10308 which is the LBL tape we presently used as the library. If the run is not O.K., appropriate corrections can be made and the job rerun.

The data records are as indicated. A data record for the UPDATE program, a data record for INJECT, a data record for IWRITE1, and a data record for the TAPE program.

2.3 Data Examples

Data for some examples are given in Table III. The */text/* are comments that the input routines ignore. We shall guide the reader through one example, Example 2. Table I, Appendix B1 should also be referred to.

The first number read is 2 ; thus, the IC $=2$ section is executed. We wish to use the internally set values, so we read 0 values. Next IC $=3$. We read one item which is TEMP(4) = FALSE. We have thus set the variable FULOUT to FALSE. Then comes IC $=4$ and we read in nine values that specify the grid $\left(x, x^{\prime} ; x_{9}\right)$ over which we wish to generate the AA, NT acceptance arrays. The $I C=6$ section sets the kinetic energy to 19.3 , skips the rest mass so it has its preset value, sets the fieldrise to 7.58 and the average
field index to .67. The arrays are then generated, $I C=100$ and the generated arrays are saved, $I C=5$, on TAPE4 and also output on file OUT. Since only one generation case is desired, the program is shut off, $I C=-1$. The output generated by such a mun is copious. A selected sample of output is given in Table IV and described below.

We have given in Table I of Appendix B a description of the various data parameters for INJECT. Most of the parameters are preset and those values are indicated there. The preset values correspond to 19.3 MeV injected beam as described in [1]. Most of the data items are adequately described in Table I. Remember, the program operates in a loop as indicated in Section 2.1. For each value of IC, there is a section in Table I and the program does what is indicated in that section. 2.4 Description of INJECT Output

This example is produced by the data set, Example 2 , given in Table II, Appendix A1. We have here a case where a 19.3 MeV particle has been injected at an x^{9} equilibrium orbit radius of $8.5^{\prime \prime}$. We have looked at all particles in the $\left(x, x^{\prime}\right)$ aspace for which .025 [inch] $\leqq x \leqq .575$ [inch], -2.875 [mr]] $\mathbf{x}^{\prime}: \leq 2.875[\mathrm{mr}]$ and the mesh spacing is .05 [inch] by .25 [mr]. We have used internally set fiedd index values: $n=n(r)$. We have generated the poceptanae grrayelements corresponding to the chosen grid points and printed out the arrays $A A(I, J, K)=A A\left(x, x^{\prime}, x_{9}\right)$ and $N T(I, J, K)=N T\left(x, x^{\prime}, x_{9}\right)$. We shall guide the reader through the selected output.

The first line of output is a program output identification line used to lable microfiche or printed program output: The ID is the

$$
\text { YY/DD/MM: HH.MM.SS. }=72 / 08 / 22 \cdot 17 \cdot 03 \cdot 35
$$

This appears in the array data lable, on the next page, and helps us locate
the fiche that contains the output for a given generation run.
The rest of the output on this first page is generated as we go through the various data input sections of INJECT. In general, it simply outputs the input value, or present values, that exist at the time the program passes through that data input section. It then verifies that the variables are actually set. For example, the field index values are listed, program variables such as the maximum number of allowable turns (here 30) the shrinkage factor of the equilibrium orbit, etc. The reader should refer to the data input table, Appendix B, to see what these quantities are.

The next page contains in a readable format all the problem parameter values that were actually used in this generation of the acceptance arrays. The first section is called the full lable. It contains all the parameters and their values. The second section, the line of output called the short lable, is a summary of the pertinent quantities in the full lable. The array ID plus the first 15 items in the full lable are listed here. When the IC=5 section of inject'is executed these two lables along with the two arrays AA, NT are saved on TAPE4 for future use. When the arrays are later used, for example in HINJ, these lables furnish the values of the parameters used to generate the arrays. The ID furnished as the first line of the full lable and the first two words of the short lable is used to fetch these arrays when they are later used. This is the ID that must be furnished to program HINJ.

The next few lines of data define some of the quantities appearirg in the lable. They also furnish the code values stored in the AA array when the particle is not trapped as a coasting beam. Most of the items appearing in the long lable are self explanatory and perusal of the data input table for INJECT should help to identify these quantities.

The code numbers stored in AA tell what happened to particles that were not accepted. The particles can be lost by going out of the defined field range at a large radius, -4 , at a small radius, -5 , or it can hit the inflector wall, -3. Particles that we say have hit the south faraday cup will, in reality, not be stopped in that way in the machine since this is retracted under normal operating conditions. We thus record the hitting of the south faraday cup; but track the particles further to determine if they will eventually collide with the inflector, -1 , or go out of range, -3 .

The AA array contains either a positive number, the maximum betaturn amplitude, or one of these codes. The NT array tells when this happened. If the $A A$ value is positive, the corresponding NT item tells when that particle will hit the south faraday cup. If the $A A$ value is negative, then the NT array item tells on what turn the south faraday cup was hit (if it was hit) or on what turn the particle hit the inflector or went out of range. We shall describe these arrays in more detail shortly.

We then have for each element in the $\left(x, x^{\prime}, x_{9}\right)$ grid a line of output telling what happened to the particle. We have shown here only a few such lines. We have the turn number $N Q$ the stating value of the particle $X 0, X P 0, X 90$, the final condition of the particle (on turn
$N Q) X, X P$, the value of the array elements $A A(I A, J A, K A)$ and
$N T(I A, J A, K \dot{A})$, the indices of the elements that have these values IA, JA, $K A$, the particle radius $R X$, the equilibrium orbit radius, $R 0$, the maximum displacement from the reference arc ZMAX, the current shrinkage per turn factor $S 2$ that has been calculated by the program for radius RO. For example we note that the first particle in the grid hit the inflector on turn 8, but the next eight particles were accepted. The turn number for accepted particles is the turn on which the program determined that there was no further possibility of colliding with the inflector.

The generated arrays are written out and we can by looking at them see what beam was accepted and what beam rejected. We have shown here the $X_{9}=8.5$ inch elements for the $A A$ and NT arrays. The rest of the array elements for this example are zero since this is the only value in the X_{9} grid. We have indicated on the output that the columns correspond to various x values for a given x^{\prime} value and that the \mathbf{x} value increases from left to right. The first item (upper left corner) corresponds to the point $\left(x, x^{\prime}\right)=(.025$ inch, $-2.875 \mathrm{mr})$ and the last point (lower right corner) corresponds to $\left(x, x^{\prime}\right)=(.575$ inch; 2.875 mr$)$. The grid spacing is as indicated in the long lable. $\Delta x=.050$ inch, $\Delta x^{\prime}=.25 \mathrm{mr}$. We have outlined the accepted beam in both arrays. As an example we have that point $\left(x, x^{\prime}\right)=(I A, J A)=(1,2)=(.025$ inch, 2.625 mr$)$ is accepted, has a maximum betatron amplitude of 9.322 inch and will hit the south faraday cup or turn $274.861=274$. All particles with large negative divergences that hit, the inflector did so on turn 8 , those with large positive divergences that hit the inflector did so on turn 5 . The output from the generation of a full $\left(x, x^{\prime}, x_{9}\right)$ grid is sub-
stantially the same as we have shown. There is a lot more of it since each case generated goes through $12 \times 24 \times 20=5760$ points. The generation of these arrays is the most time consuming part of our calculation. Full details on how the program works can be found in Volume II of this report in the section devoted to INJECT.

3. PROGRAM PHASE

Phase can be used to calculate orbits in the $(\Delta r, \psi)$ phase where Δr is the displacement of the particle equilibrium orbit from the reference orbit and ψ is the $r f$ phase of the particle as measured from the reference particle phase. It can also calculate orbits in the $(\overline{\mathrm{p}}, \psi)$ phase where $\overline{\mathrm{p}}$ is the canonical momentum associated with ψ. In this canonical space small displacements lead to nearly circular orbits. The orbits that are calculated can be plotted on a Cal. Comp. plotter. This program also can be used to generated rf trapping arrays and it can save those arrays for future use in program:INJECT. The accepted beam can be plotted. A description of the necessary data input to accomplish this is given below. Examples are given in Appendix A2. A general description of the PHASE całculation was given in section 1.1.

3.1 Data Input

The program operates in a loop of the following type.
program phase 1 (tape 99 , input, out, tape 4).

begin

Ll: \quad ic: $=$ read; if ic $=-1$ goto end;
comment do what ever is indicated in the section dealing with the value of ic;
goto LI;
end: comment end of program
end

Table II of Appendix B gives the allowable value of IC and the action that the program takes for that value. Most of the values cause
parameter data to be input. Most program parameters are preset in data statements to values suitable for the bevatron at 19.3 MeV injector energy. [1] The preset values are indicated. By convention all input numbers are real numbers unless specified as type integer which we indicate as i . . Note IC is of type integer. The first and last numbers read by PHASE are the value of IC. All data is input from file -inputusing field free routines described in [2]. See Appendix C.

For example if our data for PHASE consists of the numbers

$$
2,600.0, .67,-1,
$$

then we have read in the values of IC as 2, 600.0'' for the reference radius and .67 for the field index and then terminated execution by setting IC to -l. A rather short run! Below we describe a more reasonable example in detail. Note that if the parameters are not changed by reading them in, then the preset values will be used. For example, if the input/output length unit of [inch] is suitable there is no need to execute the section with $I C=0$.

When generating of trapping arrays that are to be saved for future use in program HINJ, it is necessary that the grid over which this generation takes place be identical to the one used in HINJ. This means that in the $I C=11$ section we must have set the following values.

HINJ date	$72 / 01 / 18$	
NCENT	21	line corresponding to the reference particle radius
DDR	1.0 [inch]	delta r grid spacing DABETA
1.0 [inch]	X_{β} grid spacing	

This will properly match the (20×30) grid of the generated trapping array DF1 with the (20×30) accepted beam distribution array DF in HINJ the version of which is indicated above. This array is then saved on filetape 4- by executing an IC $=12$ section.

All generated rf trapping arrays that have been saved (IC = 12) will reside on tape 4 as one file of data records in standard data format suitable for input into program TWRITE1. All plots reside on tape 99. This file is an LBL Calcomp plot file. All program output will reside on file -out-.

When generated rf trapping arrays ($I C=11$), or just tracking phase plane orbits ($I C=100$), it is desirable to print out intermediate steps. The output generated can at times be copious and routing the file out to microfiche may be desirable.

Examples of program data input can be found in Appendix A2, Table III. An example of the output from phase is also presented in Appendix A2.

3.2 Control Cards

Two control card decks for running PHASE on the LBL CDC 7600 are shown in Table I and II of Appendix A2. The cards in Table I are suitable for running on the data given in examples 1 and 2 of Table III in that Appendix. The cards shown in Table II are suitable for a complete RF trapping array generation run where it is desired to generate the array, save it for future use on a library tape, and route all output of the run to microfiche. The comments listed beside the control cards are selfexplanatory.

For the simpler case given by the cards in Table I we basically proceeed as follows. We fetch from the IBM data cell the program which has been stored as a CDC UPDATE library. We update the source program. The output from this update is source code to be compiled. During the update the source program can be modified if that should be necessary. We compile the program PHASE. We fetch the integration routine ZAM and compile it. We then fetch the field free input routine. These routines are presently fetched as source decks set up for the $\operatorname{CDC} 6600 / 7600$, hence the cumbersome fetching process. This may be modified in the near future. Since source decks are available, they could easily be incorporated into PHASE. We then execute PHASE on the given data set in the program data record. The output of such a run using the data of examples 1 and 2 of Table III is described in Section 3.4.

The control card example of Table II is similar in structure to that of Table I: miehtwe have just described. There are, however, a number of cards added that enable us to save the generated rf trapping arrays and to route the listable output to the microfiche. After executing
the program we copy the compiler listable output (source listings) onto the file OUT. This file then contains all program generated output plus the source listings of the code that was executed and it is saved on microfiche. We then transfer the $r f$ trapping arrays that were written on TAPE 4 to the file DATA which is the default data input file for program IWRITEl. Program TWRITEI is fetched from the data cell and compiled. The data library tape is fetched and written onto file LIB which is the default library file for program TWRITEl. Program TWRITE1 is then executed and appends the data records to LIB and writes a new directory on DIREC. These two file are then merged to form a new library on file NLIB. This file which contains the old library plus the data generated by PHASE during this run is our new updated library and it is saved using the TAPE program. The system program KATALOG is used to determine how full the tape is and also to obtain check sums that could prove useful later in case of suspected tape failure. Because of the manner in which the CDC 7600 stages tapes, a separate short job is later run to insure that the tape is readable. If it looks as if the process was executed successfully, then tape 9804 is copied back onto tape 1308 and the new library is ready for using in program HINJ. Although this process looks a bit cumbersome and redundent, it has in practice worked well and the generated arrays are automatically stored with little chance of losing the library.

3.3 Data For Examples

We give in Table III of Appendix A2 two simple illustrative examples. The reader should also refer to Table II, Appendix B when following these examples.

Example 1 calculates and plots the separatrix orbit for the 19.3 MeV injected particles. Since the internal data statements are set to values corresponding to the 19.3 MeV case, it is not necessary to input many of the parameters.

The first 3 cards are comments as is anything written as
/text/. The input routine ignores this. Referring to Table IV we see that $I C=0,2,3$ sections are not executed; hence the present values are used. The reference radius is $600^{\prime \prime}$; the field index n is . 67 and the energy is 19.3 MeV . The fourth card executes the $I C=4$ section. We thus integrate from 0.0 to 17.0 with the internally set maximum step size of $4 \pi / 100$. This latter value because we skipped setting the step size by furnishing an empty field of data. We next set the voltage rise time to 0 which in effect causes a constant rf voltage to be used. We then set the print interval to 25 causing every 25th maximum integration step to be printed. Since our step size is $4 \pi / 100$ and 2π is about one synchrotron oscillation we are printing every $1 / 2$ revolution. We then set the field rise to $7.58 \mathrm{Kg} / \mathrm{sec}$ and the rf parameters, to 25.5 KV maximum double gap voltage with an effective length of 137 inches.

The next set of cards sets plot parameters, IC $=10$. We turn on the plot and furnish three plot lable cards. We then furnish a list of plot parameter values starting with OPTION = 2 and ending with SCALE $=1.0$. These are explained in the $I C=10$ section of table $I_{\text {, }}$, Appendix B.

We then define the grid of initial values over which the integration will take place. Each initial value corresponds to tracing one orbit. By using $I C=l$ we have choosen to define these initial values, and to
print out the orbit results, in the (R, Ψ) plane. We could have just as easily used $I C=9$ to define and print these in the cononical space.

We then execute the program integration section using the above set value of the parameters. This execution causes the orbits to be integrated over all our specified initial values and, since we have the plot option on, they will also be plotted. After this is done the program reads an $I C=-1$ and terminates. If this card were not present, then the data from Example 2 could be read and that example executed. This is actually what was done when obtaining the sample output described in the next section and presented in Table IV of Appendix A2.

The second example generates an RF array and plots the points that were accepted. It is quite similar to the first example and we shall simply note some of the differences. We see that the time constant has been changed to 270μ in the $I C=5$ section. Also the plot parameters have been changed. We have a FALSE for the value of JOIN since we do not want the pen down between plotted points. We have furnished a value 45 for SYMBOL since we wish to plot using crosses. We then execute the $I C=I l$ section to generate the rf trapping array. In this section the number of time constants is left unchanged, we have 36 phase axis intervals thus we use 10° increments, the $600^{\prime \prime}$ reference radius is placed on line 28 of this rfarray. The grid spacing is left at the present values of $1^{\prime \prime} \mathrm{X} 1^{\prime \prime}$ but the chamber width is increased to $30^{\prime \prime}$. If it were desired to save this array on file TAPE4 for future use, we would next execute an $I C=12$ section, but in this example we instead terminate execution with an $I C=-1$. It should be noted that since we moved the reference orbit radius in relation to the rf trapping array, we went from 21 to 28 ,
this array is not suitable as input to program HINJ since that program assumes line 21 is $600^{\prime \prime}$. We could, however move the reference radius to 593° at the same time and then we have a suitable array for INJECT. In our example we simply wanted to move the array grid further out in radius so the $30 \Delta r$ values would sample farther out in radius. This is why the chamber width was increased to $30^{\prime \prime}$.

Sample output from these two runs is given in Table IV of Appendix A2 and described below. Further details on program calculations can be found in Volume II of this work in the section dealing with programs PHASE and HINJ.

3.4 Description of PHASE Output

We give here a description of selected portions of the results output from PHASE when run on the data presented in Table III. The output appears in Table IV of Appendix A2.

If the reader will refer to the data of Example 1 , Table III, he will see that the first page of output is merely the input data as it is encountered. Each section of PHASE that reads data also writes out the values used in order that they may be verified as being correct. The definition of the quantities is as given in the appropriate section of Table IV.

When the $I C=100$ section is executed the program begins to integrate for orbits and this is indicated by issuing a message to this effect. At that time, the input parameter values that define the input data are printed. This lable serves to establish just what the values of the parameters were when the orbits were integrated. The first line is an ID that is used to lable this particular case. We next output the
charge, restmass, synchronous (reference) particle kinetic energy, main field rise, average field index, maximum double gap voltage, effective length, harmonic number, frequency error, time constant, reference radius, integration grid, delta r grid, phase grid, cononical momentum grid, straight section length, plot option, and an ID which is used to identify the output. We see on the first page of Table IV that this appeas as the first line of output and is used to identify the microfiche output.

The next half page of output is printed while integrating for the orbits. Each orbit is defined by initial conditicn and at the start of the integration process a line is printed establishing the values of parameters that are calculated from the data and the initial values. Some of this is redundent. When compared with the lable we see that we could eliminate some values; however, we choose to print it out again.

This line of data contains the reference orbit radius, the average n value, the straight section length factor, the momentum compaction (some authors have $1 / A$), the time scaling factor which is also the frequer y of the small amplitude synchrotron oscillation, the double gap maximum voltage, the single gap maximum voltage, the energy gain per turn of the reference particle, the stable phase of the reference particle, the field rise, the value of the Hamiltonian for the system (only when we have a constant voltage case, i.e., $\left.t_{c}=0\right), \sigma_{p r}$ which is $(d p / p) /(d r / r)=1-n$.

After these initial values are printed, PHASE begins the orbit integration and prints out one line of data every 25 steps since we set the print interval to 25. The initial values are on line $N=0$ and the final values appear as labled on the last line. We print here the line
count, integration variable, time, orbit displacement in inches, phase value, as measured from the stable phase, the cononical momentum, the maximum orbit excursion, the current kinetic energy of the reference particle, γ of the synchronous particle (Es/EO), rotation frequency of the reference particle, $\Delta E / E$ the relative difference between the particle energy and the reference particle energy, $\Delta p / p$ the relative momentum error, $\Delta w / w$ the relative frequency error (all these in percent), the change in the Hamiltonian (valid only for the constant voltage case), a measure of the correctness of assuming that the constant voltage Hamiltonian is correct, $\sigma_{E R}=(d E / E) /(d r / r), \sigma_{w r}=(d w / w) /(d r / r)$. these last two quantities both are measured with respect to the synchronoụ particle.

This output of initial values and current values is repeated for every initial condition specified in the $\Delta r, \Delta \psi$ grid.

In Example 2 we generated an rf trapping array. The output from this generation is similar to that obtained from the first example and we have not shown that part of the output. The trapping array was printed. When it is saved, a lable and the array values are printed. These are what we have shown. This lable serves to define the array data. The first line is an id which is used to fetch the array once it has been stored. We actually print and save two lables, the full lable and a one line lable consisting of the first part of the full lable. These lables and the array are later used by the program HiNJ.

The trapping array contains the fraction of the beam trapped by the rf for a given initial value $\Delta \mathrm{r}$ and a given betatron amplitude x_{β}. The print cut starts with the (l, l) element in the upper left hand
corner. In our case we see from the lable on the preceeding page that the minimum x_{β} is $.5^{\prime \prime}$ and the grid size $1^{\prime \prime}$. Thus x_{β} reads from left to right $.5,1.5, \ldots, 19.5^{\prime \prime}$. The Δr grid starts at $627^{\prime \prime}$ and has a grid spacing of $I^{\prime \prime}$. The center line is at line 28 that is at $600^{\prime \prime}$.

The orbits of example 1 are plotted as they are generated. This plot is shown in Figure 1 of Appendix A2. In Example 2 we plot the initial values of the particles that are trapped by the rf. This plot is shown in Figure 2 of Appendix A2. Remember that for illustrative purposes the walls have been moved out to 30 inches. Ordinarily 20 inches is used and particles outside this are lost by hitting the outside wall.

It is of some interest to compare the plot of the trapped particles with the trapping array. At $\Delta r=-2$ inches one initial value is shown astrapped. Thus out of 360° we have $\frac{10}{360}=2.8$ percent of the beam trapped. The value is given in the bottom line of the rf trapping array and we see that it is trapped for all betaturn amplitudes. $5 \leq x_{\beta} \leq 19.5$. A similar type of reasoning can be applied to the other points in the plot of the trapped beam to obtain a correspondence with the rf trapping array.

4. Program HINJ

This program calculates the accepted pulse and the trapped pulse. It assumes that appropriate acceptance and rf trapping arrays have been generated by the programs INJECT and PHASE. It reads these arrays from a data library tape, it reads data that defines the beam distribution and the necessary parameters to define the beam pulse width, timing and the rf turn on time. It then calculates the beam that is accepted as coasting beam and that which is trapped by the rf. These results are printed out in terms of particle accepted per milliamp of injected beam and particle trapped per milliamp of injected beam. Many cases can be run on a single computer run thus allowing the user to obtain the behavior of the injection process as the parameters are systematically varied.

4.1 Data Input

The data input structure is best described in terms of a short Algol routine given below. The data input is formated. The data items are described and the formats are given in Table III of Appendix B.

In that table are given the values of the lable, the variables read for that section of code, a description of what is read, the format that is to be used. The lable values correspond to those given below in the short schematic input program. In section 4.3 below we describe in detail the data input for a specific example.
program hinj (input,output, tape4, tape3);
begin comment schematic input for program HINJ;
Ll: AID: =read; call acpt; comment fetch acceptance array;
L2: \quad RID: =read; call trap; comment fetch rf trapping array;
L3: comment set up the beam density function; call dinj;
L4: comment define the pulse parameters;
if $D X>0$ then
begin calculate the accepted pulse; go to L4 end;
print summary page
if $D X=-1.0$ go to L 3 ;
if $\mathbf{H X}=-2.0$ go to $\mathrm{LI} ;$
if $D X=3.0$ go to L2;
end: comment end of program
end

All data cards are read from file -input- . All program output is on file -output- . Summaries are on file -tape 3-. A data library in standard library format [3] is expected to be furnished on file -tape 4- .

The program is rather easy to run. The ID values AID and RID are read so that the correct acceptance and rf trapping arrays are fetched. A beam density function is calculated from given input parameters. The beam pulse position and width are specified along with an rf turn on time and then that particular case is executed. The process can be repeated as indicated above in the schematic data input listing. Summaries of the cases run are kept on tape 3; complete output from these cases resides
on file -output-.

4.2 Control Cards

The control cards necessary for running HINJ are given in Table I and II of Appendix A3. These cards are for executing on the LBL CDC 7600. In Table I we illustrate a run in which all output is printed on line. In Table II is illustrated a case where only the summaries are printed on line while the general output is routed to microfiche. The comments to the right of the control cards are self-explanatory. We shall guide the reader through the first example of Table I.

The first three eards consist of a job card and two routing cards. We see that although HINJ is a relatively fast program it does take up some space, 134000 , since it is necessary to store both acceptance arrays and the rf trapping array. Each acceptance array is $12 \times 24 \times 20$ and the rf trapping array is 20×30.

We fetch the update library off of the IBM data cell. We then update the source deck, if necessary. Once updated it is compiled and the object deck resides on file BHINJ. The update program requires a data record. If no source modifications are necessary, this record may be empty. In our example we actually have six data cards. The data statement changes from the present source version of 50 MeV to a 19.3 MeV injection energy. The microfiche lable and routing information has been changed to agree with the current user. The update routine is the CDC UPDAIE program and a users manual [4] is available which describes the data structure for that program. File HINJ1 which we fetched from the data cell is an UPDATE library.

We next request our data library tape. This tape contains the acceptance and rf arrays that will be used by HINJ. The program object code is then loaded and executed. This requires a program data record. All generated output goes onto the standard output file. Upon completion of the run the summaries are appended to that file.

The next three cards are error exit cards which give a core dump and insure that the summaries are transfered to the standard print file.

The example given in Table II looks much the same. The significant change is that the program generated output has been sent to file -out- . Only the compiler listable output and the summaries have been sent to the standard print file. Upon completion of the run the program generated output has been routed to microfiche.

The program data record has in it data that has been used to generate an example, selected parts of which appear in Table III of Appendix A3. Both the data record cards and the resultant output are described below.

4.3 Data For Examples

We give in the program data records on Tables I and II, Appendix A3 data for a simple example. The output generated by that example is discussed in the next section. We shall guide the reader through this example by explaining each card. In this discussion reference will be made to Table III of Appendix B.

The first two cards read are the AID and RID identification. These id lables which are used to fetch the acceptance and rf arrays
are explained in section L1, L2 of Table III. The program reads these and automatically fetches the corresponding arrays.

The next card read is under the L3 section. These parameters define the momentum distribution. It is helpful here to refer to Figure 1. of Section 1.3. As we indicated in the discussion of section l, a momentum spread in the injected beam corresponds to a radical spread of equilibrium orbits along the x_{9} axis. We assume this distribution to be Gaussian with a given standard deviation σ_{E} which in our case was input as $S E=3.0$ [inch]. We have that given a energy spread ΔT corresponding to half height at full maximum we can obtain Δr the corresponding radical spread from

$$
\frac{\Delta I}{\Delta r}=\frac{(p c)^{2}}{E} \frac{(1-n)}{r}
$$

and the appropriate standard deviation from

$$
\Delta r=2.36 \sigma_{\mathrm{E}}
$$

The details pertaining to these calculations can be found in Volume II of this work, section 3.1 where we discuss the program INJECT.

We can also inject the beam with an injection energy that is a function of time. For each time slice, there are up to 30 of them, we can represent a shift in central momentum by shifting the central momentum along the X_{y} axis by so many inches. Thus we read in here 30 values of NTIM the units of which are inches. The relation between Δr and ΔT. is given above. In the example given here there is no bias on the momentum position and thus all time slices have the same central momentum.

The next card read establishes the $x, x^{\prime \prime}$ beam distribution. We assume in the program that the emittance of the injected beam can be adequately represented by an ellipse and that the distribution of the beam in this ellipse is Gaussian along the major and minor axis.

To establish this beam distribution ellipse we furnish the center of the ellipse as measured from the inflector, and we supply the standard

deviations $\sigma_{A}=S A, \sigma_{B}=S B$ along the major and minor axis. These are measured in inches. The angle of rotation is also furnished. In our example the ellipse center is displace. 18 [in] from the inflector, sits on the $X^{\prime}=0[\mathrm{mr}]$ axis and is not rotated. The standard deviation along the A, here x, axis is $.12[i n]$ and along the B, here x^{\prime}, axis is . 80 [mr].

Physically we know the half axis of an ellipse that contains some percentage of the beam, say 90%. If a, b represent these half axes, then we calculate the appropriate σ_{x}, σ_{z} from

$$
\begin{aligned}
& a=2.15 \sigma_{x}=k \sigma_{x} \\
& b=2.150_{z}=k \sigma_{z}
\end{aligned}
$$

If some other percentage is used, then the factor 2.15 must be changed. In general if we are working with an ellipse the contour of which represents d per cent of the central values, then we will have within this contour 100-d percent of the beam and we can obtain the factor k from $e^{-\frac{k^{2}}{2}}=d \times 10^{-2}$.

Further details of this calculation can be found in Volume II section 3.1. In our particular case, the $d=10 \%$ was used. Thus the values a, b obtained with $k=2.15$ give an ellipse within which 90% of the beam is obtained.

We have now arrived at the $L 4$ section. Three items are read here and this section will be repeated until the second item is less than or equal to zero. The action of the program for these latter values is given in Table III.

We input here the start of the pulse XA, the length of the beam pulse DX, and the rf turn on time TF. In our example, the first case has a pulse that starts at -2 [in], i.e., outside the inflector by 2 inches, and has a duration of 17 [in]. The $r f$ is turned on at 14 [in]. We thus have a pulse that lasts right up until rit turn on time. Because of the manner in which the pulse is discretized we have one more unit in our pulse than the time span. Or to put it another way, $X A=14, D X=1$,
$\mathrm{XF}=14$ gives a one inch pulse injected right at rf turn on time. Because of basic assumptions built into the program the rf should not be turned on inside the pulse. The example run here shows a pulse that is as long as it can be starting at -2 [in].

We should comment that the axis along which we measure the pulse is the X_{9} axis, Figure 11 Section 1 of this report. We consider $X_{9}=$ $0=t$ to be at the inflector. This is a relative time scale and we have arbitrarily chosen the origin to be such that a particle injected at $t=0$ has momentum such that the equilibrium orbit is tangent to the inflector; equivalently it has a zero betatron ampilitude. For the example run, $19.3 \mathrm{MeV}, \mathrm{I}$ [in] $=27[\mu \mathrm{~s}]$. For 50 MeV we have that $I[i n]=44$ [$\mu \mathrm{s}]$. The precise value is not really needed since the program will furnish this number as output from a given run. Further details about this shrinkage per turn can be found in Volume II, Section 1.

The next six cases are examples of short pulses. In each case we have used 1 [in] pulses. These are the shortest available. The rf turn on time has been left at 14 [in] and we inject at $-2,4,6,10$, 14 [in] to see what these short pulses do. These are essentially time slices of the long pulse. We could work with short pulses and construct results that tell what happens to a long pulse. It is usually easier to work with various long pulses and let the program construct these results. However, if the acceptance arrays are time dependent it is possible to use short pulses and obtain results. This is rather tedious and if any amount of work were to be done the program should be modified to do it. The last card indicates a pulse length of - 10 [in]. Physically this is ridiculous. We see from Table III that this is simply a way of shutting off the program. Had we wished to use different acceptance
arrays we could have instead put -1.0. As we see from the previously discussed schematic data input program, Section 4.1, the section L l through L4 are sequential. From L4 we can enter L1, L2, L3 or repeat L4, but once we enter one of these sections all the remaining are executed.

4.4 Description of Hinj Output

The output that we describe was generated when HINJ was run on the data just previously discussed in Section 4.3 and which appears in the program data record of Table I. The output which is presented in Table III of Appendix A3 has been edited. The full output can be voluminous; all we need for our description is some representative excerpts.

Upon execution Hinj prints out some array constants and some problem constants. The first four quantities are IM the number of points in the x grid, JM the number of points in the s ' grid, KM the number of points in the x_{9} grid, NM the number of points in the momentum grid, KFMX the number of points in the x_{9} grid for the final beam distribution (i.e., the number of Δr grid points at $r f$ turn on time), DMIN the minimum density value (all densities less than this are effecting zero), XMX the chamber width in inches.

The first five values 12, 24, 20, 31, 30 are essentially array sizes and inch limits and are not readily changed.

We then have some problem constants. BDOT is the magnetic field rise rate which for this example is $7.58 \mathrm{Kg} / \mathrm{s}$. This effectively establishes the shrinkage per turn of the orbits. The factor FSPI converts to seconds per inch. We have that the second per inch of orbit shrinkage is FSPI/BDOT. The number given here as 204.66 is for an energy of 19.3 MeV
and a set of field index values corresponding to the bevatron. Since the shrinkage per turn, or pitch, of the orbit depends on not only \dot{B} but on the field index and the energy, this factor furnished here in the program is an average value that was determined by separately calculating this quantity for a number of values of r and then determining a suitable average value.

The quantity PPMAS is the number of particles per milliamps per second. We assume a singly charged particle. The quantity SPI gives us the micro seconds per inch. This depends on FSPI and so is an average value.

The last quantity PPMAI gives us the particles per milliamp per inch of injected beam. As we have previously noted it is convenient for us to measure the injected pulse in inches instead of microseconds. This constant allows us to find out how many particles are in the pulse.

Whenever HINJ fetches an acceptance or trapping array it prints the lable that defines the parameters that generated that array. These lables were stored with the arrays when they were generated by programs INJECT and PHASE. These lables are described in the sections of this report dealing with those two programs. We shall not describe these lables again here.

After the rf trapping array lable comes a print out of the rf trapping array. This array is printed in such a manner that it immediately shows the accepted beam in the $\left(\Delta r, X_{9}\right)$ space. The Δr axis is vertical with the machine center $600^{\prime \prime}$ indicated by an asterisk. The larger radii in l inch intervals proceed upward and the smaller values downward. The columns going from left to right are the associated betatron amplitude.

The first column is for .5 inch and the increment is 1 inch. The entries in this array show what percentage of the beam with these values of $\left(\Delta r, x_{\beta}\right)$ will be trapped. If we know the beam density distribution in this space at rf turn on time, then we need simply multiply those densities by these percentages to find out what beam survives the rf trapping process. This is of course what HINJ does for us.

The next page of output pertains to the beam distributions. The parameters necessary to define this distribution were input in the L 3 section of the data input table previously discussed in section 4.3 The parameters that have been input are output here. The 90% area is the x, x^{\prime} phase space area that contains 90% of the beam as calculated using the Gaussian distributions. If our distributions have a real physical meaning they should show some agreement with an actual emittance measurement.

All of the distributions are normalized to unity. In HINJ integrals are approximated by simple Riemann sums. This has been satisfactory for the calculation so far performed. We, however, print out these normalization sums to insure that our grid is not too comrse. If we take the standard deviations $S A, S B$ or $S E$ too small, this will in effect make the grid too large and our sums will not be correct. Similarly if the deviations are too large the beam will be outside the grid limits. The values used here have given satisfactory results and correspond to reasonable approximations to the bevatron 19.3 MeV injected beam.

Following these normalization sums is a line of calculated values. S and C are the $\operatorname{Sin}(\phi)$ and $\operatorname{Cos}(\Phi)$ of the x, x^{\prime} phase space rotation angle. EMORM and ABMORM are the normalization factors used in the Gaussian
energy and x, x^{\prime} space distributions. Remember that these integrals have been replaced by Riemann sums and the grid spacing appears in the normalization factor. Further detail regarding this normalization can be found in Volume II, Section 4.1 of this report. PE, PA, PB are the exponent constant factors in the energy, (x, x^{\prime}) distribution. 'They are $\frac{1}{2 \sigma^{2}}$ where σ is the appropriate standard deviation.

The final quantity FDT is a factor used to normalize the beam distribution function to unit beam in the acceptance grid. If we should, for example, run cases where half of the injected beam landed outside the acceptance grid, then FDT would be 2 . We haven't used this feature in this run. We see from PRISM $=.934237$ that most of our beam is within the grid. Presently use of this feature requires a set of update cards to modify the source code.

The next page of output shows us the energy, (x, x^{\prime}) distributions. There are 31 values of the energy distribution and these are printed out starting at $\frac{+\Delta p}{p}$ with the central momentum p located at the 16 th value. The x, x^{\prime} distribution lies in a grid that is identical to that used by INJECT to generate the acceptance arrays. Given a point (x, x^{\prime}) in that grid, INJECT tells HINJ whether or not that point was accepted. If it was accepted then the (x, x^{\prime}) beam distribution at that point tells how much beam was accepted. This grid is, then, only defined as a space of points; what points they are is defined by the INJECT run. In our particular example we have that

$$
\begin{aligned}
x & =.025, .575(.05) \quad \text { [inch }] \\
x^{\prime} & =-2.875,2.875(2.5)[\mathrm{mr}]
\end{aligned}
$$

These values can be found in the acceptance array lable which is printed when HINJ fetches these arrays using an AID card.

The next three pages are output generated by injecting a particular pulse of beam with given timing conditions. We have here a pulse extending from -2 inches for a length of 17 inches. The'rf voltage is turn on at 14 inches. This is the maximum pulse that can be calculated correctly since we inject up until the rf turn on time.

As we have noted earlier, the one inch descrepency between the pulse length and the rf turn on time is because of the way the program discretizes the pulse. The quantities of LA, LM, LB, LF are the internal index values used by the program for this pulse.

At $r f$ turn on time, $t_{f}=14^{\prime \prime}$, HINJ calculates the fraction of the total beam accepted. This is printed as DTOT. In this case 71% of the beam injected was accepted at rf turn on time. This means that we have circulating in the machine at rf turn on time 71% of all the beam injected
in this 17 inch pulse.
The next quantity, DTUN, is an intermediate quantity. If we know the factor (PPMAI) particles per milliamp per inch of injected beam, then the length of the pulse times this gives us the particles per milliamp of injected beam and then we need to multiply by DTOT to obtain the particles accepted per milliamp of injected beam. (PAC). Thus PAC = PPMAI X DTUN. The factor PPMAI is furnished by HINJ on the first page of output.

We next obtain two lines of output that tell us which pulse time slices contribute to the accepted beam. For each linch time slice from -2 inches to 14 inches we print the fraction of the total beam in that pulse that was accepted. If each pulse contributed 50% of its beam to the total accepted beam, then our total accepted intensity would be 50% of the total pulse. We see that in the example the pulse at -2 inch contributes only 18% of its total beam while the one at 12 inches contributes 91%. of its beam. Thus if we could compress the whole pulse and inject it at 12 inches we would have a higher accepted beam. This is, of course unrealistic; however, we see that extending the pulse to less than -2 inches will contribute little beam.

The next few lines give the signal that would appear on a faraday cup located in the south straight section if we were to monitor the beam as it is injected and not turn on the rf but instead simply let the beam spiral in as the main field rises. The first value is -2 inches and the intervals are in 1 inch $(27 \mu \mathrm{sec})$. This calculated signal could be compared with an oscilliscope pick up of the south faraday cup signal.

On the next page we give the beam distribution at rf turn on time, $t_{f}=14$ inches in this example. The grid is identical to the rf trapping
array grid previously discussed. The beam distribution is normalized to 1 , hence the numbers printed here are in tenths of a percent. It tells us what percent of the total beam is accepted at each point in the $\left(\Delta r, X_{9}\right)$ grid. For example, the line with the aserisk corresponds to a particle whose equilibrium orbit radius is 600 inches and we see that only 1.1% of the injected beam had this equilibrium orbit radius and a betatron amplitude of 3.5 inches at rf turn on time while $.54 \%$ of the injected beam had an equilibrium orbit radius of 603 inches and a betatron amplitude of 9.5 inches at $r f$ turn on time. The sum of all these accepted fractions should give us the total fraction of the beam accepted DTOT which is 71\% in this case. It should be noted that the rf trapping process will be calculáted by multiplying this array times the rf trapping array discussed above. Thus placing the outline of the accepted beam on top of the rf trapping array will show us in a qualitative manner how we must adjust the pulse timing to effect the best coupling of the accepted beam and trapping arrays.

The line below the accepted beam array is a one line summary of the INJECT parameters used to generated the acceptance arrays A, N used in calculating this accepted beam distribution. The values here are taken from the array lable shown previously. The next three lines are summaries of the HINJ beam distribution parameters; these were described above. Then we have the pulse timing. We see here the actual time in microseconds corresponding to the pulse specified in inches. The start of the pulse is at $-54 \mu \mathrm{sec}$ and the pulse lasts for $459 \mu \mathrm{sec}$. The rf is turned on at 405μ seconds. Our time origin is not absolute since we are unable to measure the main field of the bevatron to sufficient accuracy to
obtain a precise absolute reference. However, the results can always be translated in time and the curve shapes obtained should be correct.

We see that for this pulse 71% of the total pulse was accepted and that this corresponds to 2.03×10^{12} particles per milliamp of injected beam. The last line is an output id that allows us to find the program output should that be necessary. It consists of the data and the time of the run. This is used to lable the microfiche output.

The next page of output looks quite similar to the one we have just described. It is, however, for the trapped beam. The distribution given here is taken at time $t_{f}=14^{\prime \prime}$, the $r f$ turn on time. But it shows us what beam is trapped by the rf after full voltage has been obtained. : It is the distribution of the beam that will be trapped when the rf turns on. The calculation of the beam distribution after the trapping process takes place is tedious and time consuming and we have not attempted to do that.

There is a new summary line added here, it is the lable summary of the parameters generating the rf trapping array that was used to obtain this trapped density distribution. This rf trapping lable is fetched along with the $r f$ trapping array and was described above.

We see that although 71% of the beam is accepted as coasting beam only 35% is trapped, the rest having been lost during the rf trapping process.

In order to demonstrate how the program works on short pulses we look at 1 inch pulses injected at $-2,4,6,10,14$ inches. These are effectively slices of the original long pulse. The output.pages, three per pulse, are the same as just described. We show one such
case here corresponding to -2 inches. Note, however, that the normalization is to unit injected beam, so the numbers look different than before. However, the value D'TOT will be the same as in the long pulse for each individual 1 inch pulse. This working with short pulse can sometime be useful since any long pulse is an accumulation of short pulses. For example, this is one way that a time dependent acceptance array can be handled. The example we have given here is one of the optimum 19.3 MeV cases.

5. Program IWRITE1

This program is used to save the generated arrays that the programs INJECT and PHASE write on file tape 4. For our purposes it will be considered to be a black box data saving program. We have
program twrite 1 (lib, data, direc, input, output);
comment The data records on file-data- are appended to file -lib-. The updated directory resides on file -direc- . It is assumed that files lib and data are in standard library and data format respectively. [3]. A new library tape is made by merging the file direc with the data records on file lib. This can be done using a COPY routine. The exact manner in which this is to be done is printed when twritel is executed.

Output is written on file -output- . Input is read
from file -input-. The data on file input is in field
free format [2], Appendix C of this report.

For our purposes we have that file tape 4 as output from programs INJECT and PHASE is to be used as the file -data- when saving the generated arrays. We assume that the library tape is given and that tape is used as file -lib-. The actual use of this program is illustrated in Appendix A. 1 and A.2, Tables II.

In these examples the generated arrays are saved on a new library tape on the same run that generated them. This is not necessary. The file tape 4- on these INJECT, PHASE runs could be saved and a separate
run could be made later to append to the library using TWRITE1. This latter method has the advantage of allowing us to delete some of the cases on a multiple case run should be have accidentally generated unwanted cases, i.e., incorrect input data, etc.

The data input to program TWRITEI that appears on file input is illustrated in these examples. It consists of the tape number of the library tape upon which the updated library will reside. The output from TWRITE 1 consists of information pertaining to the new library. A tape and directory summary are printed. A summary of the data records appended is given. A summary of the new library is given. This output is described and illustrated in [3]. We shall not describe these here. For our present purposes we simply note that all the ID's necessary to fetch the data arrays back off of the tape are furnished by TWRITE1 when the tape is updated.

$$
-57-\quad \text { LBL-727 }
$$

Appendix A Sample Control Cards/Input/Output
We present in Appendix A some sample control card packages to run on the LBL. 7600 , some data examples and selected output from these examples. Appendix A is subdivided into A1 INJECT, A2 PHASE, A3 HINJ. The tables presented here are described in the corresponding program sections.

A1 Program INJECT

TABLE I
INJECT 7600 CONTROL CARDS

```
INJECT,12,3R,70005.490501,CLOSE
JOB CARD
*760
FLOOR(3)
LIBCCPY(ERCBEV,LIB,INJECT3) FETCH INJECT UPDATE LIBRARY
UPDATE(P=LIB ,C=IN,F) UPDATE INJECT
LIBCOPY(ERCLIB,BASTRIC,BASTRIC) FETCH BASTRIC SOURCE DECK
RUT\S,,,BASTRIC,NULL,ASTRIC,IOCZJU) COMPILE BASTRIC
LINK(F=ASTRIC,B=XEQL) LOAD BASTRIC OBJECT CODE
XEQIIIN,CII EXECUTE BASTRIC, ELMMINITAES BLANK LINES
RUNSS,,,C1,,BINJECT,3ECRC\) COMPILE INJECT SOURCE COUE
RETURN(LIB,BASTRIC,ASTRIC,XEQI,CI,IN) RELEASE FILES
LIBCOPY(ERCLIB,IO/BR,/F,SIN,SFORIO) FETCH FIELD FREE ROUTINES 1
RUN(S,T=T0,B=ULIB,1]=NULL)
LIBGEN(F=ULIB,P=RULIB)
LUACL(BIMJECT,RULIB) LOAD INJECT AND FIELD FREE OBJECT CODE
EXECUTE. EXECUTE PROGRAM:INJECT
COPY(OUT/RUK,GUTPUT) INJECT UUTPUT IS PLACEO ON OUTPUT
EXIT.
ERRJR EXIT
DMP17,T%)
COPYIOUT/RPR,OUTPUTI
\begin{tabular}{ll}
789 & UPDATE DATA RECORD \\
789 & INJECT DATA RECORD
\end{tabular}
6789
```

```
UPDATE DATA RECORD
```

UPDATE DATA RECORD
INJECT DATA RECORD
INJECT DATA RECORD
END OF JUB

```
END OF JUB
```

TABIE II
INJECT 7600 CONTROL CARDS

INJECT，1，12त，70020．496501，CLOSE
JOB CARD
＊ 76 ． 3
FLOOR（3）
LIBCOPY（ERCBEV，LIB，INJECT3）FETCH PROGRAM UPDATE LIBRARY
UPDATE $P=L I B, C=I N, F) \quad$ UPDATE PROGRAM IF NECESSARY
LIBCOPY（ERCLIB，BASTRIC，BASTRIC）
FETCH BASTRIC SOURCE
RUN（S，I＇BASTRIC，IUULGASTKIC，ICOTORI COMPILE BASTRIC
LINK（F＝ASTRIC，B＝XEQL）LOAD OBJECT DECK OF BASTRIC
XEQI（IN，C1）
EXECUTE BASTRIC．CHANGES BLANK LINES TO COL 1 ＊
RUN（S，，C1，CNUT ，BINJECT，3ก（OOQ）COMPILE INJECT
COPYSBF（COUT，OUTPUT）COMPILEP LISTING ON OUTPUT
RETURN（LIB，BASTRIC，ASTRIC，XEQI，C1，IN）RELEASE FILES
LIBCOPY（ERCLIB，IU／BR，／R，SIN，SFORIOS FETCH FIELD FREE ROUTINES
RUN $S, I=I O, B=U L I B, O=N U L L)$
LIBGEN（F＝JLIG，P＝RULIB） 3
LOADL（BIVJECT，RULIB）
EXECUTE．
COPY（CCUT／RB，OUT／BR）
DISPISSE（IUUT＝MF）
LOAD INJECT AND FIELD FREE ROUTINES

REWIND（TAPE4）
EXECUTE INJECT

KAT ALOG（TAPE4，$N=1$ ）
COPY（TAPE4／REU，DATA／RBR）TRANSFER TO FILE DATA
LIBCOPY（ERCLIB，TWI，TWRITEI）FETCH TWRITEI SOURCE
RFL（7nのず）
RUNTS；，．TWI，CUTPUT，BTWI，ICOOTOJ COMPILE TINITEI
RETURN（TH1，BINJECT，NULL）• RELEASE FILES
REQUEST（LIE，HI，X，R）IC3O8 ERCXXX．FETCH LIBRARY TAPE TO SAVE ARRAYS ON FILE DATA
LOADL（BTWI，RULIB）LDAD TWKITEI AND IO ROUTINES
EXECUTE．
EXECUTE TWRITEL．THIS APPENOS TO LIB
COPY（LIB／RB， 2 IIR，NULL／RBR）SKIP DIRECTORY ON THE LIBARAY TAPE
COPY（DIREC／RBR，IFM，LIB／BR，IF，NULL，IF，NLIB／RBR）SAVE NEW LIBRARY ON NLIB
KATALOG（NLIB，N＝1）
TAPE（NLIB，HI，$X, W) 98.4$ ERCBEA
WRITE NLIB ONTO A TAPE．THIS IS
THE NEW LIBRARY CONTAINING THE ARKAYS

EXIT．
DMP（7 TTD
COPY（CDUT／R3，OUT／RB，OUTPUT）
789
789
789
183～8，
789
＊WR ITE
＊WEOF
＊REWINO
＊UNLOAD
6789

ERROR EXIT

COMPILER LISTING TO OUTPUT
UPDATE DATA CARDS TU UPDATE INJECT
INJECT DATA RECORD
TWRITE DATA RECORD
＊／TAPE NU：ABER UF LIbRARY TAPE／＊
TAPE PACKET CATA RECORD

```
*/ EXAMPLE 1/*
*/ PROGRAM DATA 19.3(MEV) /*
*/2, NUY,(I,N(I),I=1,NUM), FIELD INOEX VALUES/*
2.17,
*/ 17 N YALUES READ/*
1,.958,2,.765,3,.753,4,.782,5,.743,6,.743,7,.73,8,.761,9,.733,
1c,.734,11,.731,12,.751,13,.785,14,.869,15,.773,16,.777,17,1.397,
*/3, VARIABLE PARAMETERSARE SELECITVFLY INPUT/*
3, 1,4,FALSE
*/4, XTIN, XMAX,OX,XPAIN,XPMAX,OPX,X9MIN,X9MAX,DX9/*
4. */ SFT UP GRID FOR USE IN PRIGRAM HINJ/*
0.025,.575,.65, -.0.2875,.0%2875,.C0625,-.50.18.5,1.0,
    */ 6, KIVETIC ENERGY(MEV), REST MASS(MEV), DBDT(KG/SEC), FIELD INDEX
            \AVERAGE VALUEI/*
6, 19.3,,7.58,.67, */ REST MASS NOT CHANGED/*
*/ 1OJ. EXECUTE PROBLEM, GENERATE ACCEPTANCE ARRAYS/%
10%:
*T 5, WRITE AA AND NT ON TAPE, SAVED FOR FUTURE USE IN HINJ/%
5,
*/ NEW CASE CN SAME RUN/*
*/ 2, NUM,(I,N(I),I=1,NUM), FIELD INDEX VALUES/*
2,17, $/17 N VALUES INPUT/*
1,.778,2,.625,3,.613,4,.642,5,.663,6,.663,7,.59, ,8,.621,9,.593,
15,.594,11,.591,12,.612,13,.645,14,.669,15,.633,16,.637,17,.997,
10^,5, #/ GENERATE ARRAYS AND SAVE ON TAPE/*
#/ -1 STOP PROGRAMT*
-1,
*/ EXAMPLE 2/*
*/ PROGRAM UATA 19.3(MEV) 7 *
*/2, \(\quad\) NUM, \((I, N(I), I=1, N U M) / *\)
2, \(n\), 7 USE INTERNALLY SET FTELD INDEX VALUEST*
*/3, VARIABLE PARAMETERS/*
\(3,1,4, F A L S E\) \#/ DU NOT WANT FULL CUTPUT \(7 *\)
*/4, XiAIN, XMAX, DX, XPMIN, XFMAX, DPX, X9MIN, X9MAX, DX9/*
4; \(7 /\) SET UP X, XPRIME, X9 GRID FUR USE IN PROGGA: HINJT*
```



```
*/ 6, KINETIC ENERGY(MEV), REST MASS (NEV), FIELD RISEIRGISECI.
FIELD INDEX(AVERAGE VALUE)/*
6, \(19.3,7.53, .67, \quad\), 7 SKIP INTERNALLY SET VALUE OF REST MASS \(\%\)
*/ 10O, EXECUTE PROBLEM, GENERATE ACCEPTANCE ARRAYS/*
100,
*/ 5, WRITE AA AND NT ON TAPE/*
5 ,
-1 */ STCP PROGRAM/*
```

/ EXAMPLE 3/
! PROGRAM DATA FOR $19.3(\mathrm{MEV}$) INHECTION CASE/
2. ©, \quad / USE INTERNAL FIELD INUEX VALUES $/ *$
*/ TRACE ONLY ONE PARTICLE STARTING AT $X=1.0(I N C H), X P R I M E=C$.C(RAD).
$X S=19.5($ INCH $) / *$

/ FIELD RISE SET TO ZERO,I.E. A CDNSTANT FIELD/
6, 19.3, ,.,0́7,
/ SET VARIAble input parameters, 3 Items are changed, the maximumNUMBER UF TURNS IS 1MO, THE NUMBER UF STEPS/9U DEG. 158 ,SUPRESS FULL CNTPUT. THEN EXECUTE THE PROBLEM, I.E. TRACETHE CRBIT STARTING AT THE POSITICN SET ABOVE WITHIC=4/
3, 3, 1, 10: $3,8,3$, FALSE, 10°,
/ WRITE THE OUTPUT ARRAYS ON TAPE 4/
/ IF YOU LOOK AT THESE ARRY ELEMENTS, ONLY GNE ITEM IS GENERATED FOREAC:I ARRAY. THESE ARE STORED IN AA (I, 1, I) ANO NT (I, 1,1). THISARRAY CAN NDT BE USED IN PKOGRAM HINJ/
-1, */ STUP THE PROGRAM/*
/ EXAMPLE 4/
/ PROGRAM DATA 50.)(MEV) /
/2, NUM, (I, N(I), I =1, NUM; SET THE FIELD INDEX VALUES/
2, \because, */ USE THE INTERNALLY SET VALUES/*
3, 2, 1.107, 4,FALSE, */5) MEV NEEDS AROUNO 1On TURNS TO BE SURE THAT THE INFLECTOR IS CLEARED/*
/4, XMIN, XMAX, DX,XPMIN,XPMAX,DPX,X9MIN,X9MAX,DX9/
4, SET UP ACCEPTANCE ARRAY GRID FUR USE IN PROGRA
$0.725, .575, .15, ~$
*/ 100, EXECUTE PRUBLEM/ +
100 ,

\#

/ 1 STOP PROGRAM/

```
N'2708/22. 17.03.35.INJECT,CLOSE,FLOOR(3)
\begin{tabular}{llllllll} 
& .863 & .695 & .683 & .712 & .673 & .673 & .660 \\
.663 & .654 & .651 & .682 & .715 & .739 & .703 & .707
\end{tabular}
    NQ,S?(INCH),K2,FULOUT,ORIFTL(INGH),R9(INCH),DG(INCH),ROHIN(INCH), SCUP(INCH)
    39 .075 & F 120.000 629.375 .040 575.375 583.265
XMIN,XMAX,OXZ .025 .575 .050
MPMIN,XPMAX,XP= 
```

KE (MEV), MO (MEV), D30T(KG/SECI, RON (AVERAGE)
19.300 .938 .232 .7 .580 . 770

72/03/22. 17.03.35.
IN.JECT ACCEPTANCE ARRAY DATA
$Q(E+)=\quad 1.000$

KE (MEV) =
OB/OT=
N(2VE) =
$\because \quad .670$
INF. RO(INCH) = .619.375
INJ. WIDTH(INCH) =
ROMIN(INCH) =
SCUP (INEH)
XMIN(INCH) $=$
XMAX(INEH) =
XPMIN(RAD) $=$
XPMAX(RAD) $=$
X9MIN(INGH) $=$
OX9(INCH) =
$\times 9 \mathrm{Max}(\mathrm{INCH})=$
DX(INCH) =
OXP(RAD) $=$
MAX.NO. TURNS:090250
NO. SIEPS/MAG. \quad. 30.000
ORIFT L(INSH) = 8.000
N VALUES EVERY 3 INCHES FROM 575.357 INCH
$\begin{array}{lllll}.858 & .695 & .683 & .712 & .673 \\ .673 & .650 & .691 & .663 & .664\end{array}$

.673	.650	.691	.663	.664
.661	.682	.715	.739	.703

HEST. 7071.197
BEST FIELO BUMP
BITD(KG) =
OBIOT(KG/SEC) =

```
\(-0.000\)
- 0.000
\(\cdots \quad 0.000\)
```

OUTPUT ID= 72/Cs/22." 17.03 .35
72/08/22. $17.03 .35 .11 / 938 / 19.3 / 7.58 / .67 / 619 / 43 / 5751583 /$. 0351 . $575 /-2.08 / 2.88 / 8.50 / 1.00 /$

NUMBER OF TUPNS TRACED= 30
SHRINKAGE/TURNIINCHIX . 0750
STEPS/QUADRANT
STRAIGHP SECTION/2.0\% 120.000
INFLECTOR RADIUS(INCH) $=519.375$
INFLECTOR HIDTH(INCH) $=0.040$
SOUTH
SOUTH CUP RADIUS(INCH) $=583.26$
OELTX CDDE
HIT SFC.A.INFLFCTOR=-1
HIT SFC.A.OUT OF RANGE $=~$
HIT INFLECTOR $=-3$
HIT INFLECTOR=-3
RO TOD SMALL RANEE -5
$N Q, X J, X P O, X 9 \Omega, X, X P, A A, N T, I A, J A, K A, R X, R O, Z H A X, S 2, B I N$

A2 Program Phase

table 1
LBL CDC 7600 CONTROL GARDS FOR PROGRAM PHASE

TABLE 2
LBL CDC 7600 CONTROL CARDS FOR PROGRAM PHASE

PHASE, 12,500,70000.490501, CLOSE

* 7600

FLOOR(3)
LIBCOPY(ERCBEV,LIB;PHASE2)
UPDATE (P=LIB,C=IN,F)
LIBCOPY(ERCLIB, BASTRIC,BASTRIC)
RUN(S, , BASTRIC, NULL, ASTRIC, 100000)
LINK ($F=A S T R I C, B=X E Q 1$)
XEQ1 (IN, PHASE)
RUN(S, , PHASE, COUT ,BPHASE,300000)
LIBCOPY (SOURCE, SZAM/BR,ZAM)
RUN (S, , SZAM, COUT ,BPHASE)
COPY (COUT/RBR, OUTPUT)
LIBCOPY (ERCLIB, IO/BR,/R,SIN,SFORIO)
RUN(S, $I=I O, B=U L I B, O=N U L L)$
LIBGEN (F=ULIB, $P=R U L I B$)
RETURN (XEQ1, PHASE, SZAM, IO, NULL)
RETURN (LIB, IN, BASTRIC,ASTRIC,ULI3)
LOADL (BPHASE, RULIB)
EXECUTE PPHASE1, PLOT)
COPY (COUT/RB, OUT/BR)
OISPOSE (OUT = MF)
COPY (TAPE4/RBU, DATA/RBR)
LIBCOPY(ERCLIB,TH1,TWRITE1)
RFL (70000)
RUN(S, , TW1, NULL, BTH1,100000)
REQUEST(LIB,HI, X; R) 10308 ERCXXX
LOADL (BTW1,RULI日)
EXECUTE.
COPY(LIB/RR,201R,NULL/RBR)
GOPY(OIREG/RBR,IFM,LIB/BR,1F,NLIB/RBR)
KATALOG (NLIB, $N=1$)
TAPE(NLIB,HI,X,H) 9804 ERCBEA
EXIT.
COPY (COUT/RB, OUT/RB, OUTPUT)
7.89

789
789
10308,
789
*WRITE
*WEOF

* REW IND
*UNLOAD
5789

JOB CARD

FETCH PHASE UPOATE LIBRARY UPDATE PHASE
FETCH PROGRAM BASTRIC
COMPILE BASTRIC
LOAD BASTRIC
EXECUTE BASTRIC
COMPILE PHASE FETCH ZAM INTEGRATOR COMPILE ZAM PRINT COMPILER OUTPUT FETCH FIELD FREE ROUTINES 1 1
2 2 3
RETURN UNUSED FILES
LOAD PHASE AND I/O ROUTINES EXECUTE PHASE
APPENO COMPILER OUTPUT TO PHASE OUTPUT WRITE ALL OUTPUT ON MICROFICHE
OPEN FILE DATA. FOR THRITEI
FETCH PROGRAM THRITEI
SET THE FIELO LENGTH COMPILE PROGRAM TWRITE1
FETCH DATA LIBRARY
LOAO TWRITE1 AND I/O ROUTINES
EXECUTE TWRITEI.
SKIP OLD LIBRARY DIRECTORY
HAKE NEW DATA LIBRARY
GATALOG THE NEH LIBRARY
SAVE THE NEH LIBRARY
ERROR EXIT
PRINT COMPILER AND PHASE OUTPUT
UPDATE DATA RECORD
PHASE DATA RECORD
TWRITEI DATA RECORO
TAPE DATA RECORD

END OF JOB CARD

TABLE 3
PHASE EXAMPLE DATA

```
*/ EXAMPLE 1/*
*/ PLOT THE SEPARATRIX /*
*/ PROGRAM DATA 19.3 MEV/*
4,0.0,17.0,.
4, 3.0,17.0,, */ INTEGRATION RANGE/*
5, 0.0,
6, 25,
7, 7.58,
8, 25.5,137.0,
*/ PLOT PARAMETERS, LAYOUT GRIO/*
10, TRUE,
DELTA PHI(DEG)
DELTA R(INCH)
19.3(MEV) SEPARATRIX
2,1,5.0,8.0,40.0,2.U,TRUE,1,0,1.0
*/ END OF. PLOT PARAMETER/*
1, 0.0,0.0,1.0, -145.0,936.0,360.0, */ SEPARATRIX/*
100,
-1,
*/ INTEGRATE PHASE ORBITS/*
*/ STOP THE PROGRAM/*
*/ TIME CONSTANT/*
*/ PRINT INTERVAL/*
*/ FIELD RISE/*
*/ RF VOLTAGE AND GAP/*
*/ INTEGRATE PHASE ORBITS/*
*/ STOP THE PROGRAM/*
*/ SET THE TIME CONSTANT/*
*/ PRINT INTERVAL/*
*/ FIELD RISE/*
*/ RF VOLTAGE AND GAP/*
*/ GENERATE RF ARRAY/*
*/ STOP PROGRAM/*
```

/ EXAMPLE 2/

```
*/ EXAMPLE 2/*
```

/ EXAMPLE 2/
/ GENERATE THE RF TRAPPING ARRAY AND PLOT THE TRAPPED PARTICLES/
/ GENERATE THE RF TRAPPING ARRAY AND PLOT THE TRAPPED PARTICLES/
/ GENERATE THE RF TRAPPING ARRAY AND PLOT THE TRAPPED PARTICLES/
/ PROGRAM DATA 19.3 MEV/
/ PROGRAM DATA 19.3 MEV/
/ PROGRAM DATA 19.3 MEV/
5, 270.0,
5, 270.0,
5, 270.0,
6, 25,
6, 25,
6, 25,
7, 7.58,
7, 7.58,
7, 7.58,
8, 25.5,137.0,
8, 25.5,137.0,
8, 25.5,137.0,
/ PLOT PARAMETERS, LAYOUT GRID/
/ PLOT PARAMETERS, LAYOUT GRID/
/ PLOT PARAMETERS, LAYOUT GRID/
10, TRUE,
10, TRUE,
10, TRUE,
DELTA PHI (OEG)
DELTA PHI (OEG)
DELTA PHI (OEG)
DELTA R(INCH)
DELTA R(INCH)
DELTA R(INCH)
19.3(MEV) RF TRAP
19.3(MEV) RF TRAP
19.3(MEV) RF TRAP
2,1,5.0,8.0,40.0,2.0,FALSE,1,45,1.0,
2,1,5.0,8.0,40.0,2.0,FALSE,1,45,1.0,
2,1,5.0,8.0,40.0,2.0,FALSE,1,45,1.0,
/ END OF PLOT PARAMETER/
/ END OF PLOT PARAMETER/
/ END OF PLOT PARAMETER/
11,,36,28,,,30.0,
11,,36,28,,,30.0,
11,,36,28,,,30.0,
-1,

```
```

-1,

```
```

-1,

```
```

TABLE 4
PHASE OUTPUT

```
T 72/08/30. 20.24.59.PHASE1,CLOSE,FLOCR(3)
IC= 4
INFut talmin,taumax,DELTA TAU
    0.0000 17.0000 .1257
IC= E
INPUT TIME CONSTANT(MICROSEC)
    O.COOC
IC= E
INFUT FEINT INTERVAL
    2E
IC= 7
DES/DT(KC/SEC)
    7.50CC
IC= 8
VMfX(KEV), RF LENGTH(INCH), IN THE DCUELE GAP
    25.50CC 137.0000
IC= 10
celTa fri(cEG)
DELTA F(INCH)
1C.3(NEV) SEFAFATRIX
OFTION,XYVAR,XCENT,YCENT,OFLX,OELY,JCIN,DELS,SYMEOL,SCALE
IC= 1
INFUT RNIN,RMAX,CR,PHIMIN,FHIMAX,DFHI,(INCH,DEG)
    O.00CC 0.0000 1.0C00-145.0000 936.0000 360.0000
IC= 100
EEEIN IATEGRATICN
```


RS(INCH), K, K, A, CMEGA(KG), OGVM(KV), SGUM(KV), DEL ES (KEV/TURN), PHIS(DEG), CESDT(KGG/SEC), FO(CDEG/RAC) $42, S F R$ $606.000 .67001 .255 \quad .4140 \quad 2.583 \quad 25.500 \quad 4.641 \quad 1.3881 \in 2.599 \quad 7.580 \quad 3958.351 .339$

72100/30. 20.25.00.

RF. TRAFFING ARFAY GENERATICN DATA
O(E+)
EO(MEV) $=\ldots \ldots 1.0 C 0$
ESEAR (TEV) $=\quad 938.232$

N(fVE) =
VHAX,SG, (KV)
RFL(INCt)=
$\mathrm{H}=$
$\mathrm{H} 1 /$ OMEGA $=$
H1/OMEGA=
TC(SEC $)=$
TC(SEC $)=$
RO(INCH) $=$
RO(INCH) =
NCEAT =
RMAX(INCH)=
OCF (INCH)
XENIN(1ACL)=
DAPETA(INCH)
AHIOTH(IACr) =
OPFI(OEG)=
RF(XBETA,F) $=$
(IINCH) =
PLCT=
.670
25.500
137.000
1.060
1.00
1.0c0
$00027 c 0$ 600.000 28.060 E27.OCO

1. OCO
. 560 1.060
30.000 10.060
$10.0 C 0$ 10.000
$120,30)$ 243.0c0 OLIFUT IL $=72 / 08 / 30$. 20.24.59.
fF ACCEPTANCE ARRAY (PERCENT)

IC: - 1

EAC OF ELN

A3 Program Hinj

TABLE 1
LBL CDC 7600 CONTROL CARDS

TABLE 2
LBL CDC 7600 CONTROL CARDS

```
HINJ,12.100.1140000490501,CLOSE NOM CARD
*7600
FLOOR(3)
LIRCOPY(ERCBEV,LIE,HINJI) FETCH LIHN UPDATE LIBRARY
UPOATE(P=LIB%C=HINJ%FT
RUN(S,O,HINJ,COUT ,BHINJ,3000000)
REQUEST(TAPE4GHI|X,9804)
LINK (F=BHINJ,G=XEQJ)
XEQI (INPUT,OUT)
COPY(TAPE3/RBR,IF,COUT/RER,IF,OUT/BR)
*
OISPOSE(OUT=MF)
COPY (COUT/BRU.TAPE3/RBUSOUTPUT)
+
EXIT.
DMP(70000)
COPY (COUT/RBUTOUF/RBUVFAPE3HRBUOOUFPUFI PRINF LISFABLE OUFPUF
78
*IDENT ígMEV
D HINJ.30
    DATA BDOT,FSPI.PPMAMS/7.58.204.66.0.624E10/
* IDENT ERCID
*D HINJ.39
    98 FORMAT(*T*,2A100* HINJ,CLOSE,FLOOR 3*)
789 PROGRAM DATA RECORD
    71/09/13.10.04.14.
    71/11/15.16.23.41.
    3.0
    0.18 0.0 0.12 0.00 0.0
    -2.0 17.0 14.0
    -2.0 1.0 14.0
    4.00 1.0 14.0
    6.00 1.0 14.0
    10.0 1.0 14.0
    1400 100 1400
    -10.0
6 7 8 9
\begin{tabular}{|c|c|}
\hline IM \(=\) & 12 \\
\hline \(J \mathrm{H}=\) & 24 \\
\hline KM
NH= & +20 \\
\hline kFMX= & 36 \\
\hline CHIN= & . 100901 \\
\hline & \\
\hline \({ }_{\text {fSPI }}^{\text {Poor }}=\) & 7.5880
204.6630 \\
\hline Pprams \(=\) & 6.240900E+09 \\
\hline & 27.0300 \\
\hline PPMAI \(=\) & \(1.684860 \mathrm{E}+\) \\
\hline
\end{tabular}

\section*{71/29/13. 10.04.14.}

INJECT ACCEPTANCE ARRAY DATA
Q (E+) = 1.0.C
EC(MEV) \(\quad 938.2 こ 2\)
\(K E(\) HEV \()=\quad 19.3(0\)
UB/OT=
N(AVE) =
IHF. RAC(INCH) =
INF. HICTH(INCH)=
RONIN(INCH) =
\(\operatorname{SCUP}(I N C H)=\)
XMIN(INCH) \(=\)
\(X M A X(I N C H)=\)
XPRIN(RAC) =
\(X P\) PAX (RAC) \(=\)
\(X G M I N(I N C H)=\)
OX9(INCH) =
\(\times\) Prax (INCH) \(=\)
DX(INCH) =
DXF(RAD)
MAX.NO. TURNS \(=\)
MAX. NO. TURNS =
NO. STEPS/MAG. \(=\)
NORIFT STEPSMAG.
ORIFTL(INCHI) 24 Ü.iCC
N VALUES EVERY 3 INCHES FRCM 575.357 INCH
.868
\(.673 \quad .665 \quad .683\)
.661 . 682
. 739 .7.13
71/C9/13. 16.i4.14./ 1/938/19.3/7.53/.67/619/40/575/583/.625/.575/-2.88/2.88/-.5i/1.03/
DATA OQTAINED FROM LRL TAPE \(=\) IL 388

71/11/15. 1E. \(23.41 .11 / 938 / 19.3 / 7.58 / .67 / 25.5 / 137.0 / 1 / 0.0 / 270 / 600.0 / 21 / \epsilon 20.0 / 2.0 / .5 / 1.4 / 20 /\)

FERCENTAGE OF INJECTED IRTENSITY TRAPPED EY PF TRF \(x i j o\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0.0 & C.io & 0.8 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 4.0 & 0.0 & 0.0 & \(0 . i\) & 0.0 & 4.0 & 3.0 & J.i & 3.10 & 0.6 \\
\hline 11.1 & 0.0 & 0.0 & 4.0 & 0.0 & 0.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 0.0 & i. 0 & 0.0. & 0.0 & 0.0 & 3.4 & 0.0 & V.C \\
\hline 11.1 & 11.1 & 0.0 & 0.6 & U. 0 & 6.0 & 0.0 & 0.0 & 0.0 & C. 0 & 3.3 & 0.6 & 0.0 & 0.0 & 6.0 & t. 0 & 0.0 & & 0.0 & l. 6 \\
\hline 11.1 & 11.1 & 11.1 & 0.0 & 0.0 & 6.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.0 & 0.0 & 0.0 & U.i & 0.0 & C.0 \\
\hline 22.2 & \(2 \mathrm{2z}\). & 22.2 & 22.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & E. \({ }^{\text {d }}\) & C. & 0.0 & - \({ }^{\text {u }}\) & J.U & 4.0 \\
\hline 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 0.0 & 0.0 & ¢. \({ }^{\text {d }}\) & 0.0 & 0.0 & 0.0 & 1.6 & 0.0 & C. 0 & 6.0 & -0. & C.is & J.6 & 0.0 & i. 0 \\
\hline 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 3.4 & 0.0 & 0.0 & 0.0 & 4.0 & C.0 & 0.4 & 0.0 & ¢. 0 \\
\hline 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 0.0 & 4.0 & 4.0 & J.i & 0.0 & - 4 \\
\hline 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 0.0 & 0.0 & 3.3 & J. & 0.0 & 0.6 & 0.0 & 0.0 & 0.0 & j. 5 & 3.0 & - \\
\hline 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 22.2 & 4.0 & 0.0 & 3.0 & 0.3 & 0.6 & 0.0 & - & 5.0 & J. \({ }^{\text {J }}\) & u & 4.0 \\
\hline 38.9 & 38.9 & 38.9 & 38.9 & 33.9 & 3.8 .9 & 38.9 & 35.9 & 38.9 & 38.9 & 0.0 & 1.0 & 0.0 & 0.0 & 6.0 & C. 0 & 0. & j.t & 0.4 & \(i .0\) \\
\hline 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 51.1 & 61.1 & -1. 1 & 61.1 & 61.1 & 61.1 & 1.0 & 0.1 & 0.0 & U. \({ }^{\text {d }}\) & 0.0 & 0.6 & 」.6 & 0.6 & -. 0 \\
\hline E6. 7 & EE. 7 & 66.7 & 66.7 & 66.7 & 66.7 & 66.7 & 66.7 & 66.7 & 66.7 & 66.7 & 55.6 & 0.0 & 0.0 & 4.0 & 4.0 & 0.0 & j. & J.is. & - 0 \\
\hline 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 55. & 0.0 & c. 0 & 0.0 & 6.0 & J.u & 0.6 & . 0 \\
\hline 61.1 & E1. 1 & 61.1 & - 1.1 & 61.1 & D1.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & -1.1 & 55.8 & 50.0 & 6.0 & U.U & J.U & J.C & 4, is & cis \\
\hline E1. 1 & \(\in 1.1\) & 61.1 & 61.1 & 61.: & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 55.1 & 50.0 & 44.4 & C. & 3.0 & J.c & U & j. 0 \\
\hline 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & 61.1 & -1.1 & 61.1 & 61.1 & 55.6 & 55.6 & 50.4 & 44.4 & 33.3 & 0.0 & J. & 3.0 & j. 0 \\
\hline 55.6 & 55.6 & 55.6 & 55.6 & 55.6 & 55.5 & 55.6 & 55.6 & 55.6 & 55.6 & 55.6 & 55.E & 50.1 & 44.4 & 38.9 & 33.3 & 22.2 & j. 0 & J.0 & . 0 \\
\hline 55.6 & 55.6 & 55.6 & 55.6 & 55.6 & 55.6 & 55.6 & 55.6 & 55.5 & 55.6 & 55.6 & 5 L .6 & 50, 1 & 38.9. & 38.9 & 27.8 & 16.7 & 15.7 & 3.0 & 3.6 \\
\hline 50.0 & 50.0 & 50.6 & 50.0 & 50.0 & 5 E ¢ 4 & 56.0 & 5í. 6 & 52.6 & 55.0 & 5.. 3 & 44.4 & 44.6 & 33.3 & 33.3 & 22.2 & 11.1 & J. \({ }^{4}\) & 3.6 & 3.0 \\
\hline 44.4 & 44.4 & 44.4 & 44.4 & 44.4 & 44.4 & 44.4 & 44.4 & 44.4 & 44.4 & 44.4 & 38.9 & \(33 . \%\) & 27.8. & 16.7 & 6.0 & 0.0 & J. 4 & 3.0 & 4.0 \\
\hline 27.3 & 27.8 & 27.8 & 27.8 & 27.8 & 27.8 & 27.0 & 27.8 & 27.8 & 27.8 & 27.8 & 27.8 & 22.: & 5.6 & 4. 0 & ن. \({ }^{\text {U }}\) & 0.0 & 3.6 & 0.6 & 0.0 \\
\hline 0.0 & C. 0 & 0.0 & U. 3 & 3.0 & 4.0 & 0.3 & 0.5 & 0.0 & U. 0 & 0.0 & U. 0 & \(3 . i\) & O.C & C. 3 & 0.0 & 0.0 & J.i & 0.6 & 0.0 \\
\hline 0.0 & 1.0 & 4.3 & 3. 0 & 3.0 & C.C & 0.0 & C. 0 & J.0 & [. 3 & 0.0 & 3.0 & 0.1 & 0.0 & C.J & 0.0 & 0.0 & J. 0 & 3.6 & - 0 \\
\hline 0.0 & 0.0 & 0.0 & - 6 & 3.6 & c.0 & 0.0 & C. 0 & 0.0 & U. 3 & 3. 0 & J. & 0.1 & 6.1 & C. 0 & 4.0 & 3.0 & J.i & 0.0 & 4.0 \\
\hline 6.0 & C. 0 & 4.3 & \(0 \cdot\) ¢ & j.0 & 6.0 & C.Lis & 0.6 & 0.0 & C. 0 & 0.0 & 0.4 & 0.1 & 0.0 & \(0 \cdot 0\) & C.O & 3.0 & J.i & 0.0 & -0.0 \\
\hline 0.0 & c. 0 & 3.3 & 0.0 & J.0 & 0.0 & C. 0 & \(0 \cdot 1\) & 0.0 & ( 0 . i & 0.0 & U. \({ }^{0}\) & 0.1 & 0.6 & F. 0 & 6.0 & \(0 . i\) & J. 0 & J. 0 & i. 0 \\
\hline 6.0 & C. 9 & 9.0 & O.E & 3.0 & 0.0 & 0.0 & C.C & 0.0 & 0.0 & 0.0 & j. 0 & 0.1 & U.C & 0.0 & 0.0 & 4.0 & J.l & j.U & \(i .0\) \\
\hline 0.0 & c. 0 & 3.0 & B.L & 0.0 & C. 0 & 0.0 & G. 0 & 0.0 & 0.0 & 0.3 & 3.6 & 0.1 & 0.0 & 6.0 & C. 0 & U. 0 & J.i & 0.6 & 3.6 \\
\hline 0.0 & C. 0 & 4. & 0.0 & 1.6 & c. 0 & 0.6 & 2.6 & 0.6 & U. \({ }^{\text {d }}\) & 0.0 & J.6 & \(0 . i\) & 0.6 & 6.0 & 6.0 & 4.0 & J.u & 3.0. & 8.0 \\
\hline
\end{tabular}


DINJ ... GAUSSIAN CISTRIEUTIONS IN ENERGY, \(X\), AND X-PRIME.



FINAL ACCEPTED DISTRIGUTION OF \(\times 1300\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0.0 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.c \\
\hline 0.0 & c. 0 & 0.0 & 4.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 3.0 & 0.0 & 0.0 & C. 0 & 0.0 & 6.00 & 0.0 & 0.0 & U.0 \\
\hline 0.0 & C.0.0 & 0.0 & 0.0 & 3.0 & c. 0 & 0.0 & U. 6 & 0.0 & 0.0 & 0.0 & J. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 \\
\hline 0.0 & C. 0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & J. 0 & 0.0 & 0. 0 \\
\hline - 0 & . 0 & . 0 & . 0 & . 0 & 0.0 & 0.0 & O.E & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & U.0 & 3.0 & 0.0 & 0.0 \\
\hline - 0 & . 0 & - 0 & - 0 & - 0 & . 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & U.0 & 0.0 & 0.4 & 0.0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 \\
\hline - 0 & -1 & - 1 & . 1 & . 1 & . 1 & . 2 & 5.0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 9.0 & 0.0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.C \\
\hline - 1 & -1 & -1 & . 2 & . 2 & . 2 & . 2 & - 4 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0. C & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & U.0 \\
\hline . 2 & . 3 & . 3 & . 4 & . 5 & . 4 & . 4 & . 4 & . 1 & 0.0 & 3.3 & 3.0 & 0.0 & 0.0 & 0.0 & j. 0 & ن..J & U.C & 0.0 & 0.0 \\
\hline . 3 & . 6 & . 7 & - 8 & . 9 & .9 & .9 & . 9 & .9 & . 3 & 0.0 & 0.0 & 0.0 & 0.0 & 6. 0 & C. 0 & 0.4 & J. \({ }^{\text {u }}\) & 0.0 & c. 0 \\
\hline . 6 & 1.2 & 1.3 & 1.5 & 1.7 & 1.7 & 1.6 & 1.7 & 1.6 & 1.7 & . 7 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & J.us & J.0 & U. 0 \\
\hline 1.1 & 1.9 & 2.1 & 2.5 & 2.8 & 2.7 & 2.6 & 2.7 & 2.7 & 2.8 & 2.8 & 1.4 & 0.0 & 0.0 & 0.0 & [.3 & 4.0 & 0.0 & 0.0 & 0.0 \\
\hline 1.6 & 2.8 & 3.1 & 3.7 & 4.2 & 4.0 & 3.8 & 4.0 & 4.0 & 4.1 & 4.1 & 3.9 & 2.6 & 0.0 & c. 0 & 0.0 & 0.6 & 0.0 & 0.0 & U. 0 \\
\hline 2.1 & 3.7 & 4.0 & 4.9 & 5.5 & 5.3 & 5.0 & 5.3 & 5.2 & 5.4 & 5.4 & 5.2 & 5.4 & 3.8 & c. 0 & 4.0 & 0.0 & J.U & 0.0 & U. 0 \\
\hline 2.4 & 4.4 & 4.8 & 5.8 & 6.5 & 6.3 & 6.0 & 6.3 & 6.2 & 6.4 & 6.4 & 6.1 & 6.4 & 6.4 & 5.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2.6 & 4.6 & 5.0 & 6.1 & 6.9 & 6.6 & 6.3 & 6.6 & 6.6 & 6.8 & 6.7 & 6.5 & 6.8 & 6.7 & 6.3 & 6.3 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2.4 & 4.4 & 4.8 & 5.8 & 6.5 & 6.3 & 6.0 & 6.3 & 6.2 & 6.4 & 6.4 & 6.1 & 6.4 & 6.4 & 6.3 & 6.7 & 6.2 & 0.0 & 0.0 & 0.0 \\
\hline 2.1 & 3.7 & 4.0 & 4.9 & 5.5 & 5.3 & 5.0 & 5.3 & 5.2 & 5.4 & 5.4 & 5.2 & 5.4 & 5.4 & 5.0 & 5.7 & 5.9 & 5.2 & 0.0 & 4.0 \\
\hline 0.0 & 2.8 & 3.1 & 3.7 & 4.2 & 4.6 & 3.8 & 4.0 & 4.0 & 4.1 & 4.1 & 3.9 & 4.1 & 4.1 & 3.8 & 4.3 & 4.4 & 4.5 & 3.9 & 0.0 \\
\hline 0.0 & 0.0 & 2.0 & 2.5 & 2.8 & 2.7 & 2.6 & 2.7 & 2.7 & 2.8 & 2.8 & 2.7 & 2.8 & 2.8 & 2.6 & 4.9 & 3.4 & 3.1 & 3.1 & 2.6 \\
\hline 0.0 & O.C & 0.0 & 1.1 & 1.7 & 1.7 & 1.6 & 1.7 & 1.6 & 1.7 & 1.7 & 1.6 & 1.7 & 1.7 & 1.6 & 1.8 & 1.8 & 1.9 & 1.9 & 1.6 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & . 7 & . 9 & . 9 & . 9 & . 9 & - 9 & . 9 & . 9 & . 9 & . 9 & . 9 & 1.0 & 1.0 & 1.0 & 1.0 & . 8 \\
\hline 0.0 & \(0 \cdot 0\) & 0.0 & 0.0 & 0.0 & . 4 & . 4 & . 4 & . 4 & . 4 & . 4 & . 4 & . 4 & . 4 & . 4 & . 5 & . 5 & . 5 & . 4 & J.0 \\
\hline 0.0 & 0.05 & 0.0 & U. 0 & 0.6 & 4.0 & . 1 & - 2 & . 2 & . 2 & . 2 & - 2 & . 2 & . 2 & . 2 & .2 & . 2 & . 2 & 0.4 & 0.0 \\
\hline 0.0 & 0.6 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & . 1 & -1 & . 1 & .\(_{1}\) & . 1 & . 1 & -1 & . 1 & .1 & . 1 & 3.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.3 & 0.0 & J. 0 & 5.0 & c. 0 & 0.0 & - 0 & . 0 & . 0 & - 0 & - 0 & . 0 & . 0 & .0 & 0.0 & 3.0 & c. 0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & . 0 & .0 & . 0 & . 0 & . 0 & . & C.J & 0.6 & 0.0 & 0.0 & \(0 \cdot 0\) \\
\hline U. 0 & C. 3 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 & 4.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & \(i .0\) & 0.0 & 3.6 & 0.0 & 0.6 \\
\hline C. 0 & c. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 6.0 & 0.0 & 0.6 & J. 0 & 0.0 & C. \({ }^{0}\) \\
\hline 0.13 & C. 0 & 0.0 & 0.0 & 0.15 & 0.0 & 0.0 & \(0 \cdot 0\) & 0.0 & 0.0 & 0.0 & U.ti & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 & J. 0 & 0.0 & U. 0 \\
\hline
\end{tabular}

71/09/13. \(10.04 .14 .1 / 1 / 938 / 19.3 / 7.58 / .67 / 619 / 40 / 575 / 583 /\).0251.575/-2.88/.2.88/-.54/1.03/



\begin{tabular}{llll}
\(X A=-2.0\) & \(O X=17.0\) & \(Y F=14.0\) & (INCHES) \\
\(T A=-54 . U\) & \(O T=459.0\) & \(I F=405.0\) & (HICROSECONDS)
\end{tabular}

TOTAL FRACYION ACCEPTEU CTOT = .71L4 PARTICLES ACCEP"EO PER MA INJECTEO FAC= \(2.634663 E+12\) 72108/29. 15.01.17.

FINAL TRAPPED (ACCELERATEO) DENSITY OISTRIBUTION DTRF \(\times 1\) USO 0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & c. 0 & 0.0 & 3. \({ }^{\text {e }}\) & 0.0 & 0.1 & 0.0 & 0.0 & 0.0 & J.6 & 0.0 & 0.0 \\
\hline 0.0 & C. 0 & 0.0 & 0.0 & 0.0 & 0.03 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & J.6 & 0.6 & 0.0 \\
\hline 0.0 & C. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -. C & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & J. 0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & J. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.1 & i. 0 & 4.0 & C. 0 & j.c & 0.4 & 0.0 \\
\hline - 0 & . 0 & - 0 & . 0 & 0.0 & c. 0. & 0.0 & 0.0 & ن. 0 & 0.0 & \(0 . J\) & 0.0 & 0.0 & 0.0 & 9.0 & C. 0 & 0.6 & 3.0 & U. 0 & U. 0 \\
\hline - 0 & . 0 & - 1 & . 0 & - 0 & 0.0 & 0.0 & 0.0 & ù. 0 & 0.5 & 0.0 & 3.6 & 0.0 & 0.0 & 0.0 & C. 0 & 0.6 & J. 0 & 0.6 & 4.0 \\
\hline - 0 & - 0 & - 0 & - 0 & . 0 & . 0 & 0.0 & 0.1 & 0.0 & 0.3 & 0.0 & 0.0 & 0.0 & 0.1 & 6.0 & C. 0 & d. 0 & J. 0 & 0.4 & 0.0 \\
\hline - 0 & . 0 & - 0 & . 0 & - 0 & - 0 & . 0 & 0.0 & 3.0 & C.us & 0.0 & 0.6 & 0.0 & 0.0 & 6.0 & 0.0 & U. 0 & 4.0 & 0.8 & 0.0 \\
\hline - 0 & . 1 & - 1 & . 1 & - 1 & . 1 & . 1 & -1 & 0.0 & C.J & 0.0 & 0.6 & 0.0 & 0.6 & 0.0 & 0.0 & U.U & J.0 & 0.0 & 0.0 \\
\hline -1 & . 1 & - 2 & . 2 & . 2 & . 2 & . 2 & . 2 & . 2 & C. \({ }^{\text {c }}\) & 0.0 & 0.0 & 0.0 & U. 0 & 0.0 & C. 0 & 0.0 & J.C & 0.0 & 0.0 \\
\hline - 3 & . 4 & . 5 & . 6 & .7 & . 6 & . \({ }^{\text {a }}\) & . 6 & . 6 & . 7 & 3.0 & 0.0 & 0.6 & C. 0 & ¢. 0 & 4.0 & J.6 & J. 6 & 0.0 & C. 0 \\
\hline . 6 & 1.2 & 1.3 & 1.5 & 1.7 & 1.7 & 1.6 & 1.7 & 1.6 & 1.7 & 1.7 & 0.6 & 0.0 & 0.0 & 4.3 & C. \({ }^{\text {c }}\) & 0.0 & 3.0 & 0.0 & 0.0 \\
\hline 1.0 & 1.9
2.3 & 2.0 & 2.5 & 2.8 & 2.7 & 2.5 & 2.7 & 2.7 & 2.7 & 2.7 & 2.2 & 3.0 & 0.0 & 0.0. & 0.6 & c.i & J.0 & 1.0 & 0.0 \\
\hline 1.3 & 2.3 & 2.5 & 3.0 & 3.4 & 3.2 & 3.1 & 3.2 & 3.2 & 3.3 & 3.3 & 3.2 & 3.0 & 0.0 & 0.0 &  & 0. & C & - & 0.0 \\
\hline 1.5 & 2.7 & 2.9 & 3.5 & 4.0 & 3.8 & 3.6 & 3.8 & 3.8 & 3.9 & 3.9 & 3.7 & 3.6 & 3.2 & 6.0 & U.i & 0.0 & N. 0 & 0.0 & 0.0 \\
\hline 1.6 & 2.8 & 3.1 & 3.7 & 4.2 & 4.0 & 3.9 & 4.1 & 4.0 & 4.1 & 4.1 & 4.5 & 3.8 & 3.4 & 2.8 & C. 0 & U. 0 & J. 0 & 0.0 & 4.0 \\
\hline 1.5 & 2.7 & 2.9 & 3.5 & 4.3 & 3.8 & 3.6 & 3.8 & 3.8 & 3.9 & 3.9 & 3.4 & 3.6 & 3.2 & 2.6 & 2.2 & 0.0 & J.C & j.i & U. 0 \\
\hline 1.1 & 2.1 & 2.2 & 2.7 & 3.1 & 2.9 & 2.8 & 2.9 & 2.9 & 3.4 & 3.0 & 2.9 & 2.7 & 2.4 & 2.0 & 1.9 & 1.3 & J.C & 3.4 & 0.0 \\
\hline 0.0 & 1.6 & 1.7 & 2.1 & 2.3 & 2.2 & 2.1 & 2.2 & 2.2 & 2.3 & 2.3 & 2.0 & 2.1 & 1.6 & 1.5 & 1.2 & . 7 & . 8 & 0.0 & 0.0 \\
\hline 6.0 & 0.0 & 1.0 & 1.3 & 1.4 & 1.4 & 1.3 & 1.4 & 1.3 & 1.4 & 1.4 & 1.2 & 1.2 & 1.6
.9 & 1.5
.9 & 1.2
.6 & .3 & J.し & 0.0 & 4.0 \\
\hline 0.0 & C. 0 & 0.0 & . 5 & - 8 & . 7 & . 7 & - 7 & . 7 & - 8 & .1 & - 6 & . 6 & . 5 & . 3 & 0.0 & 0.0 & J. \({ }^{\text {J }}\) & U.s & 0.6 \\
\hline 0.0 & 0.0 & 0.0 & J.0 & . 2 & . 2 & . 2 & . 2 & .2 & . 3 & . 3 & .2 & . 2 & . 1 & 0.0 & l. 0 & 0.0 & J.U & 6.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & J. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & U.0 & 3.0 & 0.0 & 0.0 & c. 0 & 4.0 & U. 4 & 0.4 & 3.0 & 0.0 \\
\hline 0.0 & C. 0 & 0.0 & 0.6 & 4.0 & c. 0 & 4.0 & 0.0 & J. 0 & U. 0 & 0.0 & J.i & 0.0 & 0.0 & C. 0 & L. 0 & 0.0 & j. & 0.0 & Ci. 0 \\
\hline 0.0
6.0 & 0.0
0.0 & 4.0i & 4.0 & 3.0 & C.0 & 1.0 & 0.6 & 0.0 & 0.0 & 0.0. & 0.0 & 0.0 & 4.4 & C. 0 & 4.0 & U. 0 & 0.0 & 3.0 & 0.0 \\
\hline \[
\begin{aligned}
& 6.0 \\
& 0.0
\end{aligned}
\] & 0.0 & 0.0 & 0.0 & 0.0 & 0.6 & 0.0 & ن. 0 & 0.0 & 0.0 & 3.J & 3.1 & 0.0 & 0.0 & C.U & 6.0 & U.0 & 1.0 & 0.0 & 0.15 \\
\hline 0.0
0.0 & 0.0
0.0 & 0.0
0.0 & 0.0
0.5 & 4.0
3.0 & 0.0 & 0.0
0.0 & 0.6
0.6 & 0.0
3.0 & 0.0
0.0 & 3.0 & J. \({ }^{\text {J }}\) & 0.0 & 0.0 & 1. 0 & 0.0 & U.U & J. \({ }^{\text {d }}\) & 0.4 & J. 0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & c. 0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0
0.0 & 0.0
0.0 & C. 0 & 4.0
6.0 & 0.0
0.0 & 3.0
1.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & C. 0 & U. 0 & J. 0 & c. 0 & 0.0 & C. 0 & 0.0 & 6.5 & ن. 0 & U.is & 0.0 & 0.6 & C. \({ }^{\text {d }}\) & C. 0 & 6.0 & 1. 0 & 0.6 & Ci.ù \\
\hline
\end{tabular}


71/49/13. 10.j4.14.1 1/ 938/19.3/7.58/.67/619/40/575/583/.025/.575/-2.83/ 2.89/-.56/1.00/ 71/11/15. 16.23.41./ 1/ 938/19.3/7.58/.67/25.5/137.0/1/0.0/ :270/600.0/21/E2J.0/1.1/.571.5/20/

 9G PER CENT AREA= \(1.13 * P I\) CMFMR



\section*{FINAL ACCEPTEO DISTRIGUTIOA DF \(\times 1300\)}


\section*{}

71/09/13. 10.04.14.1 1/ 938/19.3/7.58/ .67/619/ 40/575/583/ .025/ .575/-2.88/ 2.88/-.50/1.00/

 90 PER CENT AREA \(=1.13+P 1\) CMFMR

\title{
\(\begin{array}{llll}X A=-2.0 & O X= & 1.6 & X F=14.2 \\ T A=-54.0 & O Y=27.6 & \text { (INCHES) }\end{array}\) \\ SA.0 OY= \(27 . l \quad 1 F=465 . \mathrm{l}\) (HICROSECONOS)
}

TOTAL FRACTION ACCEPTEO DTOT= .1829
PARTICLES ACCEPTED PER MA INJECTEO PAC= \(3 . C B 1769 E+10\)
72/08/29. 15.31.17.

\section*{Appendix B Program Data Input Tables}

This appendix contains tables that show how to input the data to the programs INJECT, PHASE, HINJ, TWRITEI. The use of these tables is described in the main text in the respective program descriptions under the section dealing with data input.


TABLE I

TABIE OF DATA INPUT FOR INJECT
\[
71 / 01 / 13
\]
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { Value } \\
\text { IC }
\end{gathered}
\] & comment \\
\hline -1 & stop program execution with a program STOP \\
\hline 2 & \begin{tabular}{l}
Set the field index values as a function of radius \(R\) in the field index array N. There are 17 values here which are preset in a data statement. They cover the range indicated in Figure 4, Sec. 21, voI.II. The value \(N(1)=n(R O M I N)=n(575.375)\) and the grid spacing is \(3^{\prime \prime}\) intervals. \\
The preset values are:
\[
\begin{aligned}
& .868, .695, .683, .712, .673, .673, .660, .691, .663, \\
& .664, .661, .682, .715, .739, .703, .707,1.197
\end{aligned}
\]
\end{tabular} \\
\hline 3 & Program parameters are set here. Only those parameters that have values different than the preset values need be changed. \\
\hline
\end{tabular}


0 b \(0 \leq 70 \Rightarrow-63\)


inflictor

The arrays are dimensioned \((12,24,20)=\left(x, x^{\prime}, x_{9}\right)\). There are available \(12 \times 24 \times 20\) points. We have that
\[
\begin{aligned}
& (1,1,1) \rightarrow(X X M I N, X X P M I N, X X 9 M I N) \\
& (2,2,2) \rightarrow(X X M I N N+D X X, X X P M I N+D X X P, X X 9 M I N+D X X 9)
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline Value IC & comment \\
\hline & \begin{tabular}{l}
The variables are specified in ([inch],[rad],[inch]). While the grid spacing and limits are arbitrary for this program, they must match HINJ when the generated arrays are used in input to that program \\
XXMIN, KXMAX, DXX, XXXPMIN, XXPMAX,DXXP \\
XX9MIN, XX9MAX, DXX9
\end{tabular} \\
\hline 5 & write the last generated acceptance arrays AA, NT on TAPE 4 and on file OUT. This is how we save these arrays for future use. Upon exit from the program TAPE4, consists of 1 file of data in standard data format suitable for use as input to program TWRITE \(\mathbb{1}\), [3]. \\
\hline 6 & \begin{tabular}{l}
Set the kinetic energy [MeV], rest mass [MeV], field rise [ \(\mathrm{kg} / \mathrm{sec}\), average field index for the calculation of the shrinkage per inch factor S2. Our present values are respectively (19.3 , \(938.232,7.58, .67\) ) \\
KE, MO, DBDT, RON
\end{tabular} \\
\hline 7 & Parameters to define West field bump are input \\
\hline
\end{tabular}

DTi [ \(\mu \mathrm{sec}]\) the time \(\delta t\) at which this calculation
starts as measured from \(t=0\). These
 three quantities establish the field bump value at time \(t+\delta t\) which is used as the field at turn zero.

When the field bump is nonzero, then the acceptance arrays are time dependent as measured from \(t=0\). This must be taken into account when the arrays \(A A\) and \(N T\) are used in inject. The preset values are all zero

BlTO, DBlTO, DTl

Use the current program parameter values to generate the acceptance arrays AA, NT by ray tracing through not more than NO turns. Note the array elements calculated are starting at \(A A(1,1,1)\) and \(\operatorname{NT}(1,1,1)\). The amount of the arrays filled depends on the values input in \(I C=4\). We have that
( \(1,1,1\) ) (XXMIN, XXPMIN , XXYMIN \()\)
\((2,2,2) \quad(X X M I N+D X X, X X P M I N+D X X P, X X 9 M I N+D X X 9)\)

TABLE II

Table of Data Input for PHASE
71/01/13
\begin{tabular}{|c|c|}
\hline IC & comment \\
\hline -1 & terminate execution with a program STOP \\
\hline 0 & \begin{tabular}{l}
Set the unit conversion factor. The intermal units are MKS. \\
Units to convert the input data to MKS units. \\
Length (.0254), B field (.1), Voltage (1000.), energy (1.60207E-13), charge (1.60207E-19), angle (.017453 \\
29251994), where the input quantities have dimension. L [inch], \(\mathrm{B}[\mathrm{kg}], \mathrm{V}[\mathrm{kV}], \mathrm{E}[\mathrm{MeV}]\), Angle[deg], \\
Q [signed. \# of changes]
\end{tabular} \\
\hline & \begin{tabular}{l}
\(L, B, V, E, Q, A\) \\
Units to convert the internal results to the required output units. \\
Length (.0254), B field (.1), Voltage (1000.), energy (1.60207E-13), charge (1.60207E-19), angle (.01745329251994), where the output quantities have dimensions \\
L [inch], \(B[k g], V[k v], E[M e V], A n g l e ~[d e g], ~\) \\
Q [signed \# of charges].
\end{tabular} \\
\hline & L, B, V, E, Q, A \\
\hline
\end{tabular}


Specify the grid over which the phase equations will be integrated. Those are the initial values corresponding to \(\mathrm{t}=\mathrm{\tau}=0\).


This grid is used to integrate for orbits in the ( \(r, \psi\) ) plane

MIN, MAX, DR, MIN, MAX, DP

2 Set the reference orbit radius \(\mathrm{RO}\left(6000.0^{\prime \prime}\right)\) and the average
field index value \(N(.67)\). The reference (synchronous)
particle is assumed to move on a circular orbit with this
radius in the magnetic field.
ROAN

Set the injection energy (19. 3Mev), starting energy of the reference particle at \(t=\tau=0\), and the \(r f\) harmonic number \(H(1.0)\)
ESBAR, H

\(0+60.60 \% 39\)

\begin{tabular}{l|ll} 
IC & OPTION \(=2\) & y \\
\hline 10 & \begin{tabular}{l}
25 cm \\
\hline
\end{tabular} \begin{tabular}{l} 
Standard \\
centimeter \\
plot
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|ccc} 
XYVAR & x & y & \begin{tabular}{l} 
ploted as a function \\
of \(\tau\). Chooses which \\
variable on plotter \\
and along which
\end{tabular} \\
\hline 1 & \(\psi\) & \(\Delta r\) & axis \\
2 & \(\psi\) & \(\bar{p}\) & \\
4 & \(\Delta \mathrm{r}\) & \(\psi\) & \\
5 & \(\bar{p}\) & \(\psi\) & \begin{tabular}{l} 
世incremented by \(360^{\circ}\) \\
every dels plot \\
points
\end{tabular}
\end{tabular}

XCENT, YCENT, DELX, DELY

locate the origin with respect to the plot. Establish the grid values per cm for the plot. Note the units are those established by setting UPINCH. See IC \(=13\) Section.

JOIN \(=\) TRUE . pen down between symbols
FALSE pen up between symbols
DETS plot a symbol every DELS print lines
SYMBOL standard LBL Calcomp plot symbols

\begin{tabular}{|c|c|}
\hline IC & comment \\
\hline 10 & \begin{tabular}{l}
```

SCALE scale graph by this factor. Preset to (1)
Note do not change, results unpredictable
71/01/13.

``` \\
```

A new grid is set up and all plots are put on that grid until this section is again executed, either to shut off the plot or to layout a new grid.

```
\end{tabular} \\
\hline 11 & \begin{tabular}{l}
Set \(r f\) acceptance parameters and generate the rf acceptance array \\
TCNUM The minimum number of time constants (4.0) over which the integration will take place starting with \(\tau=0\). The value of the time constant must have been set in the \(I C=5\) section. \\
NUMPHI The number of intervals (18) into which the phase axis \(-\pi<\psi \leq \pi\) is divided. The value 18 corresponds to 20 degree steps. \\
NCENT The index (21) in the rf acceptance array \(\operatorname{DFl}\left(\mathrm{x}_{\beta}, \Delta \mathrm{r}\right)\) corresponding to \(\Delta r=0\).
\end{tabular} \\
\hline
\end{tabular}

bevatron radius. \(r_{0}\) is the radius of the reference particle.
DDR \(\quad \Delta r\) grid spacing (1.0")
DABETA \(\quad X_{\beta}\) grid spacing (1.0")
AWIDTH chamber acceptance \(1 / 2\) width (20 \()\) in the \(\Delta r\) plane. We always assume the chamber extends \(\pm\) AWIDTH from \(\Delta r=0\)

TCNUM, NUMPHI, NCENT, DDR, DABETA, AWIDTH
i i

Write the last generated rf acceptance array DFI on file TAPE4
in standard data format suitable for use with program TWRITE1
[3]. This is how we save a previously generated array for
use in program INJECT. Note an array must have been generated
in an \(I C=11\) section
\begin{tabular}{l|l} 
IC & \\
\hline 13 & \begin{tabular}{l} 
Change the paper size and plot layout parameters. This must \\
be followed by an IC \(=10\) section.
\end{tabular}
\end{tabular}

UPINCH (2.54)
BOT (1.5)
WIDTH (25.0)
LFFT (5.0)
RTI (18.0)
RT2 (38.0)


INTXI (9)
\[
\begin{array}{ll}
\text { RT1 } & \text { OPTION }=1 \\
\text { RT2 } & \text { OPTION }=2
\end{array}
\]

INTXI (9)
INTX2 (18) \# of subdivisions
INTY (5)

The units of BOT, WIDTH, LFT, RT1, RT2 are those established by UPINCH. The value 2.54 makes these units centimeters.

The units associated with \(I C=10\) section are those established
by UPINCH. The plots are set in data statements for
standard centimeter paper. Note that the values RTI \(=18\) and
INIXI \(=9\) give tick marks every two units, i.e., every 2 cm .
when UPINCH \(=2.54\). Similarly for JNTX2 and RT2.

UPINCH, BOT, WIDTH, LFT, RTI, RT2, INIX1, INIX2, INTY
\[
0,03 y+6+2
\]

1
\begin{tabular}{|c|c|}
\hline IC & \\
\hline 14 & \begin{tabular}{l}
Set the frequency error parameter \(\omega_{1} \because\) See section 1.1 , equation (1) and Section 3.1, equation (1). We actually input here the value \(F R E Q E R=\omega_{1} / \Omega\). (0.0) \\
FREQER
\end{tabular} \\
\hline 100 & ```
Execute the integration section. The synchronotron phase
equations are integrated from TMIN to TMAX for all initial
conditions. The initial conditions are
    RMIN \leqR\leqRMAX
    PMIN \leq 
or
    CPMIN }\leq\overline{\textrm{p}}\leq\mathrm{ CPMAX
    PMIN }\leq\psi\leq\mathrm{ PMAX
as set in IC=1 or IC = 9. Note, the most recently set values
are used.
``` \\
\hline
\end{tabular}

TABIE III

Program HinN Data Table
71/01/18
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { VALUE OF } \\
\text { LI }
\end{gathered}
\] & Variables Read & Comments & Format \\
\hline LI & AID & This is a two word 10 character identifier of the form YY/MM/DD.L HH.SS.MM. that is used to fetch the acceptance arrays. It must be exactly as an output by INJECT at the time these arrays were generated. It is expected that tape 4 contains a library in standard library format [3] and that this identifier exists in the library. Identifier errors will cause a program stop. The two arrays A, NSF that correspond to this identifier will be fetched by the call to ACPT. & (2A10) \\
\hline L2 & RID : & \begin{tabular}{l}
Exactly the same as the description \\
for AID except this identifier corresponds to an rf trapping array generated by PHASE. The
\end{tabular} & (2A10) \\
\hline
\end{tabular}
\[
\text { y } 5 \text { a } 6 \gamma 0 / 0 y 3
\]

\begin{tabular}{|c|c|c|c|}
\hline Value of ID & Variables Read & Comments & Format \\
\hline & & \begin{tabular}{l}
\(N(i)>0\) implies \(P_{i}>P_{0}\). In the above figure \(P_{o}\) is the position at time \(t\) of the central momentum of the momentum distribution. \(P_{i}\) is the beam slice at time \(t_{i}\), and it has a higher momentum than \(P_{o}\) since its displacement \(N(i)>0\). N(1) time slice 1 \\
N(30) time slice 30 \\
The units in Figure a along the \(\mathrm{x}_{9}\) axis are inches. The relation between momentum and radius is given in by equation (2) section 3.1, Volume II. Note both \(n=n(r)\) and \(r\) enter into this calculation.
\end{tabular} & , \\
\hline L3 & & \((\mathrm{SE},(\operatorname{NTIM}(\mathrm{I}), \mathrm{I}=1,30))\) & (F10.4,3012) \\
\hline L3 & \begin{tabular}{l}
XC \\
YC \\
SA \\
SB
\end{tabular} & \begin{tabular}{l}
Center of beam ellipse [inches] \\
Center of beam ellipse [mr] \\
\(\sigma_{A}\) standard deviation [inch] \\
\(\sigma_{B}\) standard deviation [mr] see \\
Figure 9, section 3.1, VOI II and the \\
discussion there about how the \\
standard deviation are related
\end{tabular} & \\
\hline
\end{tabular}
-105: LBL-727
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Value of } \\
I D \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Variables } \\
& \text { Read }
\end{aligned}
\] & Comments & Format \\
\hline & \begin{tabular}{l}
THETA \\
XDSP \\
YDSP
\end{tabular} & \begin{tabular}{l}
to measured quantities. \\
Angle with respect to \(X\) axis of beam phase ellipse. \\
The momentum dispersion of the beam as measured from the central momentum. \(\mathrm{XDSP}(\mathrm{YDSP}\)) is the shift in \(X\left(X^{\prime}\right)\) center in inches (mr) for a one standard deviation shift from the injected beam central momentum. The central momentum (\(\mathrm{N}=16\)) has center XC, YC. The other momenta have a center determined by
\[
\begin{aligned}
& X P=X C+(N-16) \times X D S P / S E \\
& Y P=Y C+(N-16) \times Y D S P / S E \\
& (X C, Y C, S A, S B, T H E T A, X D S P, Y D S P)
\end{aligned}
\]
\end{tabular} & (8F10.4) \\
\hline L4 & \begin{tabular}{l}
XA \\
DX \\
XF
\end{tabular} & \begin{tabular}{l}
Start of pulse [inch] \\
Pulse length [inch] \\
rf turn on time [inch] \\
See Figure 1, section 3.1, Vol II and the discussion there. The rf turn on time must be after the pulse. \(X F \geqslant X A+D X+1.0\). These are the values along the \(x_{9}\) axis.
\[
x_{9}=0=t .
\]
\end{tabular} & \\
\hline
\end{tabular}

\section*{TABLE IV}

TWRITEl DATA TABLE
\begin{tabular}{l|l|l}
File Name & \multicolumn{2}{|c|}{\begin{tabular}{l}
Data \\
type item
\end{tabular}} \\
\hline INPUT & í NTAPE & \begin{tabular}{l}
Nem library LBL tape number
\end{tabular} \\
\hline LIB & & \begin{tabular}{l}
lile in standard library format. \\
This is the old library to which data \\
is appended.
\end{tabular} \\
\hline DATA & & \begin{tabular}{l}
I file in standard data format pertaining \\
the data to be appended. TAPE4 of \\
programs PHASE, INJECT is suitable.
\end{tabular}
\end{tabular}

\section*{Appendix C Field Free Data}

Some of the programs use field free data routines described in [2]. These routines can be used as black box input routines. We give below an explanation of what constitutes valid data.

Integers are of the form \(\pm\) NN... \(N\) where \(N\) are decimal digits. A real number is of the form \(\pm\) NN...N.N...N or else \(\pm\) NN....N.N...NE \(\pm\) NNN. Logical values are specified by \(T, F\) or TRUE, FALSE. Any number can be followed by RNN...N where \(N\) are decimal digits. This causes the number to be read NN...N times. Comments can be injected anywhere as */text/* and are ignored. Items to be input are separated by deliminators. This is either a traling comma or else 2 or more blanks. Empty fields are skipped. Quantities are read as incountered, as many on any one card as is convenient. Below are some samples of valid input data
+5.2, T, TRUE, 6.5E3R5, */EXAMPLE/*

Refferences
[1] E. Close, P. Germain, W. Holley, Trapping in The Bevatron at Injection, Bev-2057, Jan. 27, 1972, LBL Berkeley, Calif.
[2] E. Close, An Extended Set of Fortran Input/Output Routines, UCRL-19463, Feb. 16, 1972, LBL Berkeley, Calif.
[3] E. Close, A Collection of Programs and Subroutines for Variable Format Data Storage, LBL-728, LBL Berkeley, Calif.
[4] Control Data 6000/7000 Update Reference Manual, \(9 / 15 / 71\), Computer Library, LBL Berkeley, Calif.

\section*{LEGAL NOTICE}

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720```

