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ABSTRACT OF THE DISSERTATION

The Hubble Constant and the ΛCDM Cosmology:

A Magnified View

using Strong Lensing

by

Anowar Jaman Shajib

Doctor of Philosophy in Astronomy and Astrophysics

University of California, Los Angeles, 2020

Professor Tommaso Treu, Chair

Recently, a significant tension has been reported between two measurements of the Hubble

constant (H0) from early-Universe (e.g., cosmic microwave background) and late-Universe

probes (e.g., cosmic distance ladder). If systematic errors are ruled out in these measure-

ments, then new physics extending the ΛCDM model will be required to resolve the tension.

Therefore, different independent probes of H0 – such as the strong-lensing time-delay – are

essential to confirm or resolve the tension. The measured time-delays between the lensed

images of a background quasar constrain H0, as they depend on the absolute physical dis-

tances in the lens configuration. I led a team from the STRong-lensing Insights into the Dark

Energy Survey (STRIDES) collaboration to analyze the lens DES J0408-5354. I modeled

the mass distribution of this lens using Hubble Space Telescope imaging, and combined it

with analyses from my collaborators to infer H0 = 74.2+2.7
−3.0 km s−1 Mpc−1 with the highest

precision (3.9 per cent) from a single lens to date. This measurement agrees well with both

the previous sample of six lenses from the H0LiCOW collaboration and other late-Universe

ii



probes, thus it increases the aforementioned tension. To confirm or resolve this tension at

the 5σ level – the gold standard of detecting new physics – we need to increase the sample

size and improve precision per system while keeping the systematics under control. The

large amount of required investigator time (∼1 year per lens) is currently the main bottle-

neck to increase the sample size. I present an automated lens-modeling framework that will

enable rapid increment of the sample size in the near future. I also show, through simula-

tion, that incorporating the spatially resolved kinematics of the lensing galaxy improves the

precision of H0 per system. Additionally, I develop the first general method to efficiently

compute the lensing properties of any given elliptical mass distribution. By allowing any

radial shape of mass profile, this method helps to avoid any systematic that may potentially

arise from adopting only a few specific parameterizations. I forecast that a sample of ∼40

lenses with spatially resolved kinematics will provide sub-per-cent precision in H0 within the

next decade.
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CHAPTER 1

Introduction

1.1 The Λ cold dark matter model of cosmology: concordance and

tensions

Our current understanding of the Universe is described by the Λ cold dark matter (ΛCDM)

cosmology. In this model, approximately 5 per cent of the Universe’s total energy budget

can be attributed to the baryonic matter and radiation (Planck Collaboration 2018). The

remaining 95 per cent of the energy budget is attributed to two components: dark matter

and dark energy. The dark matter is a form of matter that interacts with other massive

particles only through gravitation, but it does not interact with the electromagnetic wave.

It accounts for approximately 25 per cent of the Universe’s energy budget. The dark energy

– amounting to the remaining 70 per cent of the energy budget approximately – drives the

accelerated expansion of the Universe, which can be interpreted as a non-zero cosmological

constant Λ (Riess et al. 1998; Perlmutter et al. 1999).

The ΛCDM model is highly successful in predicting observations over a large range of

cosmological scales. On the largest scale up to the sound horizon at the recombination

epoch, the ΛCDM model explains the anisotropy in the temperature fluctuation of the cosmic

microwave background (CMB; e.g., Bennett et al. 2013; Planck Collaboration 2018). On the

smaller end of the scales, the ΛCDM model successfully explains galaxy clustering statistics

upto ∼1 Mpc (e.g., Dawson et al. 2013; Alam et al. 2017). Additionally, the existence of

the dark matter is evident from observations of galaxy rotation curves, strong and weak
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lensing by galaxies and galaxy clusters, galaxy clustering etc. (e.g., Treu & Koopmans 2004;

Clowe et al. 2004; de Blok et al. 2008; Heymans et al. 2013; Abbott et al. 2018b). The

existence of the dark energy is strongly demonstrated by cosmic distance ladder based on

the type Ia supernova, galaxy clustering, and the integrated Sachs–Wolfe effect (e.g., Boughn

& Crittenden 2004; Vikhlinin et al. 2009; Riess et al. 2009; Scolnic et al. 2018).

Despite the multitude of evidences in support of the ΛCDM model, some open questions

and observational disagreements still remain. The origin and physical properties of the dark

matter and dark energy are yet unknown. The cold dark matter paradigm faces observational

challenges on the sub-galactic scale, namely the missing satellite problem and the “too big

to fail” problem (e.g., Klypin et al. 1999; Boylan-Kolchin et al. 2011). More recently, several

observations have reported a significant tension (∼5σ) in the measured values of the Hubble

constant H0, a central parameter in cosmology. This tension is between two classes of

mesaurements: those that depend on the early-Universe physics and those that depend on

local or late-Universe probes of the Hubble constant.

The strongest early-Universe constraint H0 = 67.4 ± 1.2 km s−1 Mpc−1 is given by the

CMB observation, which requires extrapolating from H(z = 1100) to the current epoch

(z = 0) assuming the ΛCDM cosmology (Planck Collaboration 2018). Baryon acoustic

oscillation (BAO) is another probe that depends on the early-Universe physics. Combining

BAO with galaxy clustering, weak lensing measurements, and Big Bang nucleosynthesis

(BBN) provides H0 = 67.4± 1.2 km s−1 Mpc−1 (Abbott et al. 2018a).

Among the local measurements in contrast, the cosmic distance ladder – based on type Ia

supernova (SNIa) and calibrated using Cepheids – measures H0 = 74.0± 1.4 km s−1 Mpc−1

(Riess et al. 2019). Strong-lensing time delays provide another local measurement of the

Hubble constant at H0 = 73.3+1.7
−1.8 km s−1 Mpc−1 (Wong et al. 2017). As these two local

measurements are independent, a combination of them is in 5.3σ tension with the early-

Universe measurements. Several other local measurements of H0 are also consistent with

the SNIa+Cepheids measurement – for example, H0 = 73.9 ± 3.0 km s−1 Mpc−1 from the
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Megamaser Cosmology Project (Pesce et al. 2020), H0 = 69.6±1.9 km s−1 Mpc−1 from SNIa

luminosity distances calibrated with tip of the red giant branch stars (Freedman et al. 2019),

H0 = 73.3 ± 4.0 km s−1 Mpc−1 SNIa luminosity distances calibrated with Mira variables

(Huang et al. 2020).

This tension in H0 can be a result of unknown systematics in one or several of the mea-

surements mentioned above. However, if systematics can be ruled out in these measurements,

then the tension will point to new physics beyond the ΛCDM model. To identify potential

unknown systematics or the lack thereof, independent and precise (.1 per cent) probes of

H0 is essential. Among the aforementioned H0 probes, time-delay cosmography based on

strong-lensing time delays holds the promise to provide a third and precise perspective to

resolve the tension between the CMB-based and SNIa+Cepheids-based measurements. In

the next section, I provide a general overview of the time-delay cosmography.

1.2 Strong gravitational lensing time delays as a cosmological probe

Strong gravitational lensing is the phenomenon when multiple images of a background source

are produced by the gravitational lensing effect of a foreground deflector, typically a massive

galaxy or galaxy cluster. In the regime of thin-lens approximation, the mass distribution

of the foreground object is confined within the lens plane. This approximation is justified

because the line-of-sight thickness of the deflector’s mass distribution is negligible compared

to the large cosmological distances between the observer and the source. For the projected

surface density Σ(θ) of the foreground deflector at the lens plane, the deflection angle α̃ for

a photon penetrating the lens plane at the position θ is given by

α̃(θ) =
4G

c2

∫
(θ − θ′) Σ(θ′)

|θ − θ′|2
d2θ′ (1.1)
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(Blandford & Narayan 1986). The source position β and the image positions θ are related

by the lens equation

β = θ − Dds

Ds

α̃(θ) = θ −α(θ), (1.2)

where Dds is the angular diameter distance between the deflector and the source, Ds is the

angular diameter distance between the observer and the source, and α ≡ Dds

Ds
α̃ is the scaled

deflection angle.

The photons that are emitted at the same time from the source arrive at the observer

with a time delay, because they travel different cosmological distances and through different

gravitational potentials while going around different sides of the foreground deflector. As a

result, this time delay contains cosmological information. The time delay ∆tAB between two

images labelled as A and B are given by

∆tAB =
1 + zd

c

DdDs

Dds

[
(θA − β)2

2
− (θB − β)2

2
− ψ(θA) + ψ(θB)

]
. (1.3)

Here, zd is the deflector redshift, Dd is the angular diameter distance to the deflector, and

ψ(θ) is the deflection potential that relates to the deflection angle as α ≡ ∇ψ. The com-

bination of the three angular diameter distances, that ∆t depends on, is referred to as the

“time-delay distance”:

D∆t ≡ (1 + zd)
DdDs

Dds

∝ 1

H0

. (1.4)

As a result, measuring the time delay leads to the time-delay distance, and thus directly

constrains the Hubble constant. Other cosmological parameters can also be measured from

the time-delay distance, but the time-delay distance is weakly dependent on them. Therefore,

combining multiple time-delay distance measurements from a large sample is necessary to

achieve strong constraints on the other cosmological parameters (Shajib et al. 2018).

To measure the time delay, the background object needs to vary in luminosity. Refsdal

(1964) first proposed to use time delays measured from strongly lensed supernova to measure

the Hubble constant. However, strongly lensed supernova are rare phenomena with only a

handful observed so far (Kelly et al. 2015; Goobar et al. 2017; Grillo et al. 2018). Strongly
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lensed quasars have provided variable sources suitable for time-delay cosmography in larger

numbers.

Early measurements of the Hubble constant from lensed quasars in the nineties and early

2000s suffered from large systematics in the methodology and/or from poor data quality.

However, over the last decade, the status of time-delay cosmography has improved by a

large margin (Treu & Marshall 2016). The key breakthroughs in this field from the past two

decades are:

1. improved measurement of the time delay from high-cadence monitoring (Fassnacht

et al. 2002; Tewes et al. 2013),

2. pixel-based lens modelling of the lensed arcs up to the noise level from high-resolution

images (Suyu & Halkola 2010),

3. combining stellar kinematics of the deflector to alleviate lensing degeneracies (Treu &

Koopmans 2002b), and

4. statistical constraint on the lensing effect from the line-of-sight structures (Suyu et al.

2010; Greene et al. 2013; Rusu et al. 2017).

Thanks to these breakthroughs, recent measurements of the time-delay distances have been

more precise and robust. The H0 Lenses in the COSMOGRAIL’s Wellspring (H0LiCOW

Suyu et al. 2017) collaboration has led this field by analyzing six lensed quasar systesm, five of

which were done blindly (Suyu et al. 2010, 2013; Wong et al. 2017; Bonvin et al. 2017; Birrer

et al. 2019; Chen et al. 2019; Rusu et al. 2019). Combination of these six systems has provided

a highly precise measurement of the Hubble constant at H0 = 73.3+1.7
−1.8 km s−1 Mpc−1. To

make further progress in this field with the goal of achieving a sub-per-cent precision in H0,

we need to increase the sample size of analysed systems and simultaneously improve current

methodologies to keep the systematics under control as statistical uncertainty shrinks.
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1.3 Overview of this dissertation

In this dissertation, I first provide a significant (3.4σ) evidence for the existence of the dark

energy – i.e., the ΛCDM cosmology – by detecting the integrated Sachs–Wolfe (ISW) effect

(Chapter 2). This was the highest detection of the ISW effect from a single dataset at the

time of publishing the result (Shajib & Wright 2016).

Next in Chapter 3, I perform a state-of-the-art measurement of the Hubble constant

using time-delay cosmography. This measurement at H0 = 74.2+2.7
−3.0 km s−1 Mpc−1 is the

most precise measurement of H0 from a single lensed quasar system to date. This relatively

high precision was achievable by extracting the rich information contained in the atypically

complex lensed quasar system DES J0408−5354, which required improving the numerical

techniques of time-delay lens modelling at multiple fronts. Combining this new analysis

with the previous sample of six H0LiCOW lenses increases the precision of H0 from time-

delay cosmography to 2 per cent, and further strenghthens the H0 tension between the

early-Universe and the late-Universe probes.

In the next chapters, I develop several methodologies that will enable rapid progress in

time-delay cosmography in the near future. There are two ways to improve the precision in

H0: (i) improve precision per system with higher quality or more informative data, and (ii)

increase the sample size by analyzing more systems. In Chapter 4, I develop a novel method

to combine spatially resolved kinematics with the lensing observables to vastly increase the

H0 precision per system. Using simulated data I forecast that we will require a sample of ∼40

lens systems to achieve a sub-per-cent precision in H0. However, our current methodology

to model lensed quasars requires a large amount of investigator time (typically 6 months to

1 year). To rapidly increase the sample size of analyzed systems, automating the modelling

procedure is key to decrease the required investigator time. In Chapter 5, I provide one of

the first automated algorithms to uniformly model large samples of lensed quasars. I apply

my algorithm to model a sample of 13 quadruply lensed quasar systems (hereafter, quads),
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which is the largest sample of uniformly modelled quads to date having nearly doubled the

sample of known quads with available high-resolution imaging.

One of the major systematics in lens modelling is the adopted mass model for the deflector

galaxies of the lens systems, which are typically massive ellipticals. Previous studies have

shown that the total mass distribution in the massive elliptical galaxies resembles a power

law close to an isothermal profile (e.g., Treu & Koopmans 2004; Gavazzi et al. 2007). These

observations motivated the use of elliptical power-law mass models to describe the deflector

galaxies for time-delay lens modelling, and such models are currently not the dominant source

of systematics (Millon et al. 2019). However, with increasing sample size of time-delay lenses

and shrinking statistical uncertainty, we need to study the internal structure of elliptical

lens galaxies more closely to revalidate our mass model assumptions. To identify potential

departure from the power-law at various scale sizes, we need to adopt more complex and

empirically motivated mass models, e.g., generalized Navarro–Frenk–White profile for the

dark matter distribution, mass-to-light ratio gradient in the baryonic distribution. However,

such complex mass profiles have been numerically intractable to implement in lens modelling.

In Chapter 6, I provide a novel method for efficient lens modelling of elliptical mass profiles

with any radial shape, however complex. Moreover, this framework self-consistently unifies

lens modelling with kinematics modelling, enabling joint analysis of lensing and spatially

resolved kinematics as introduced in Chapter 4.

Finally in Chapter 7, I summarize the main results from each chapter and conclude this

dissertation.
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CHAPTER 2

An evidence for the ΛCDM cosmology: measuring the

integrated Sachs–Wolfe effect

This chapter was published as Shajib, A. J. & E. L. Wright. 2016, ApJ, 827, 116, and

reproduced here with minor formatting changes.

2.1 Background

After the discovery of dark energy in the late nineties (Perlmutter et al. 1999; Riess et al.

1998), it became one of the most elusive mysteries in the current-era physics. The exis-

tence of dark energy is overwhelmingly, albeit indirectly, evidenced by the measurements of

low-redshift Type Ia supernovae, baryon acoustic oscillation, galaxy clustering, and strong

lensing (e.g., Riess et al. 2009; Reid et al. 2010; Vikhlinin et al. 2009; Suyu et al. 2013), com-

bined with the measurement of cosmic microwave background (CMB) anisotropies by the

Wilkinson Microwave Anisotropy Probe (WMAP) (Hinshaw et al. 2013) and Planck (Planck

Collaboration 2016a) missions. All these observations suggest our universe to be flat, ex-

panding at an accelerated rate, and dominated by dark energy with approximately 70% of

the energy density of the universe accounted by it.

The integrated Sachs-Wolfe (ISW) effect (Sachs & Wolfe 1967; Rees & Sciama 1968) pro-

vides us a method to directly detect the effect of dark energy on CMB photons. When CMB

photons cross a gravitational potential well, they experience blueshift while falling in and

redshift while going out. The large-scale gravitational potential well is frozen for a matter-
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dominated, dark-energy-free, flat universe. As a result, the net shift in energy experienced

by the CMB photons amounts to zero. However, for a dark-energy-dominated universe the

large-scale gravitational potential well decays while the CMB photons are crossing the po-

tential well. Consequently, the photons gain a little amount of energy as the redshift fail

to completely compensate the blueshift. This energy shift is approximately one order of

magnitude smaller than the primary CMB anisotropies, therefore a direct measurement of

the ISW effect is not possible. However, the ISW effect results a correlation between hotter

regions in CMB with the large-scale structure (LSS), which can be used as an indirect probe

to detect this effect.

Several studies have been performed to detect the ISW effect signal by cross-correlating

WMAP CMB temperature maps with various survey catalogs and radiation backgrounds,

e.g., Sloan Digital Sky Survey (SDSS) luminous red galaxies (Fosalba et al. 2003; Padman-

abhan et al. 2005; Granett et al. 2009; Pápai et al. 2011), 2MASS galaxies (Afshordi et al.

2004; Rassat et al. 2007; Francis & Peacock 2010), APM galaxies (Fosalba & Gaztañaga

2004), radio galaxies (Nolta et al. 2004; Raccanelli et al. 2008), and hard X-ray background

(Boughn & Crittenden 2004). The typical confidence level for the ISW effect detection in the

above studies is 2-3σ. Comprehensive analyses combining different data-sets were carried

out by Ho et al. (2008) to detect a 3.5σ ISW effect signal and by Giannantonio et al. (2008)

to achieve the strongest detection to date at 4.5σ. Planck Collaboration (2015) detected a

4σ ISW effect cross-correlation between the Planck CMB data and a combination of various

data-sets. Using the Planck 2015 data release alone, Cabass et al. (2015) measured an upper

limit for the ISW effect signal amplitude to be A < 1.1 at 95% confidence level relative to

the ΛCDM expectation of A = 1.

The Wide-field Infrared Survey Explorer (WISE ; Wright et al. 2010) conducted an all-sky

survey in four mid-infrared frequency bands spanning from 3.4 to 22 µm. This survey, with

millions of galaxies and active galactic nuclei (AGNs), provides one of the most lucrative

data-sets to carry out ISW effect studies. Some earlier studies have been conducted using
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WISE data to detect the ISW effect signal: using WISE preliminary release and WMAP

7-year data to find a 3.1σ detection with the best fit being 2.2σ higher than the ΛCDM

prediction (Goto et al. 2012); using WISE all-sky data and WMAP 7-year data to find an

1σ detection consistent with the ΛCDM prediction (Kovács et al. 2013); using WISE all-sky

data and WMAP 9-year data to find a combined 3σ ISW effect detection for galaxies and

AGNs (Ferraro et al. 2015).

Whereas some of the above mentioned studies reported the signal amplitude of the ISW

effect to be in good agreement to the ΛCDM model (e.g., Kovács et al. 2013; Ferraro et al.

2015), some other studies found the ISW effect amplitude to be higher (by 1-2σ) than that

predicted by the ΛCDM model (e.g., Ho et al. 2008; Granett et al. 2009; Goto et al. 2012).

WISE has detected a large number of point sources over the whole sky and the final AllWISE

data release goes roughly twice as deep into the redshift space than the previous all-sky data

release according to the AllWISE Explanatory Supplement1. This makes AllWISE data very

well-suited to carry out an ISW effect study as the detected objects span a wide range in

redshift space that includes where the ISW effect is maximized. In this study, we used the

AllWISE and WMAP 9-year data-sets to detect the ISW effect signal.

The organization of the chapter is as follows. In section 2.2, we briefly review the ISW

effect. In section 2.3, we describe the data-sets and methods. We present our results in

section 2.4, followed by discussion and conclusions in section 2.5. Throughout this chapter,

we use Planck 2015 results (Planck Collaboration 2016a): H0 = 67.74 km s−1Mpc−1, Ωm =

0.31 and ΩV = 0.69 for our fiducial cosmology.

2.2 The ISW Effect

The primary anisotropy in the CMB was created during the last scattering at redshift z∼1100

due to fluctuations of potential energy, photon density, and velocity. The ISW effect is a

1http://wise2.ipac.caltech.edu/docs/release/allwise/expsup/index.html
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secondary CMB anisotropy created by the time variation of gravitational potential along

the line of sight (Figure 2.1). This can be expressed as an integral from the last scattering

surface to present day as(
δT

T

)
ISW

(n̂) = − 1

c2

∫ (
Φ̇ + Ψ̇

)
[η, n̂ (η0 − η)]× e−τ(z) dη

≈ − 2

c2

∫
Φ̇ [η, n̂ (η0 − η)] dη,

(2.1)

where η is the conformal time given by η =
∫

dt/a(t), a(t) is the scale factor, Φ̇ and Ψ̇

are the conformal time derivatives of the gravitational potentials Φ and Ψ, τ is the optical

depth, and e−τ(z) is the visibility function for CMB photons. Here on the second line, we

approximated τ � 1 over the period when Φ̇ 6= 0 to take e−τ ≈ 1. We also assumed that

anisotropic stresses are negligible, thus we have Φ = Ψ.

As mentioned before, the ISW effect signal is roughly 10 times smaller than the primary

CMB anisotropies, thus cleanly separating the ISW effect from the primary anisotropy is

not possible. Moreover, the total ISW effect signal includes both positive and negative

contributions due to all the small-scale potential fluctuations along the line of sight. We

can assume that the ISW effect contributions from the small-scale potential wells and hills

cancel each other out within a large enough scale. Then, the significant contribution on the

ISW effect signal comes from the LSS. In addition to the ISW effect, the Sunyaev-Zeldovich

effect (Sunyaev & Zeldovich 1972) and lensing of CMB photons by matter distribution can

also induce a secondary anisotropy that correlates with matter overdensity. However, these

anisotropies are only important in small angular scales with multipole l & 100. We can

assume the ISW effect to be the dominant source of secondary anisotropy in the multipole

range l ≤ 100.

To detect the ISW effect signal, we can take a cross-correlation between the CMB tem-

perature anisotropy and the overdensity of a tracer for matter distribution, e.g., galaxies

and AGNs. For simplicity we only use subscript or superscript “g” to denote terms related
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Figure 2.1: Large-scale gravitational potential as a function of redshift. The potential has

been normalized so that |Φ(0)| /c2 = 1. Blue solid line is for the ΛCDM universe with our

fiducial cosmology and red dashed line is for a matter-only flat universe.
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to the tracer distribution, which are equally applicable for galaxies and AGNs. The tracer

overdensity along a given direction n̂ is given by

δg(n̂) =

∫
bg(z)

dN

dz
δm(n̂, z) dz, (2.2)

where dN/dz is the selection function of the survey normalized so that
∫

dN/dz dz = 1,

bg(z) is the tracer bias function relating visible matter and dark matter distributions, and

δm is the matter density perturbation.

Then, the overdensity-CMB cross-power spectrum is given by

CTg
l = CΦ̇g

l = 4πTCMB

∫
∆2
m(k)I Φ̇

l (k)Igl (k)
dk

k
, (2.3)

where ∆2
m(k) is the dimensionless matter power spectrum at redshift z = 0 given by ∆2

m(k) =

k3P (k, z = 0)/2π2 (Cooray 2002). The weight functions for the tracer overdensity and the

ISW effect are given by

Igl (k) =

∫
bg(z)

dN

dz
D(z)jl (kχ(z)) dz, (2.4)

I Φ̇
l (k) =

3ΩmH
2
0

c2k2

∫
d

dz
[(1 + z)D(z)] jl (kχ(z)) dz, (2.5)

where jl is the spherical Bessel function, χ(z) is the comoving distance to redshift z given by

χ(z) = c [η0 − η(z)], and D(z) is the linear growth factor normalized so that D(z = 0) = 1.
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Figure 2.2: Overdensity maps in galactic coordinate with healpix resolution parameter

nside = 128 for galaxies (left) and AGNs (right). These maps are smoothed with a Gaussian

window of standard deviation σ = 0.5 deg. The grey area is the mask where the overdensity

is zero. The mask leaves the unmasked sky fraction fsky = 0.46.

2.3 Data and Methods

2.3.1 CMB Map

We used the 9-year foreground reduced WMAP temperature data provided by the LAMBDA

website2 (Bennett et al. 2013). We only used Q, V, and W bands (41, 61, and 94 GHz

respectively) as they have the least amount of galactic contamination. As we are only

interested in l ≤ 100, the maps were re-binned into healpix (Hierarchical Equal Area

isoLatitude Pixelization; Górski et al. 2005) maps with resolution parameter nside = 128. We

have used the KQ75y9 extended temperature analysis mask with fsky = 0.65, which excludes

point sources detected by WMAP. The final mask is the combination of the WMAP mask

and a mask for the WISE data described in subsection 2.3.3. This final mask was applied

to both of the maps before taking the cross-correlation.

2http://lambda.gsfc.nasa.gov/
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2.3.2 WISE Data

The WISE mission surveyed the whole sky in four bands: 3.4 (W1), 4.6 (W2), 12 (W4), and

22 µm (W4). In this study, we used the AllWISE data release, which combines the 4-band

cryogenic phase with the NEOWISE post-cryo phase (Mainzer et al. 2011). This data release

is deeper than the previous all-sky data release by roughly a factor of two in W1 and W2

bands as the NEOWISE post-cryo phase only used these two bands. The AllWISE source

catalog has over 747 million objects with SNR ≥ 5 for profile-fit flux measurement in at least

one band. We only select sources from the catalog using W1 and W2 magnitudes with SNR

≥ 5 for W1 band and SNR ≥ 3 for W2 band.

The coverage of WISE is not uniform throughout the sky. The median number of expo-

sures for the AllWISE data release is 30.17± 0.02 in W1 and 30.00± 0.03 in W2 with each

exposure being 7.7 s long for both bands. According to the AllWISE Explanatory Supple-

ment, the catalog is 95% complete for W1 < 17.1. Therefore, we applied this magnitude cut

to ensure uniformity and completeness for our galaxy sample.

In this study, galaxies are defined as sources in the AllWISE catalog that are not classified

as stars or AGNs. To remove stars from the object catalog, we used the color cut: [W1-W2

< 0.4 & W1 < 10.5] (Jarrett et al. 2011). We also removed any object with W1 - W2 < 0

to effectively remove galactic stars (Ferraro et al. 2015; Goto et al. 2012). To select AGNs

from the catalog, we used the color cut criterion

W1−W2 > 0.662 exp
[
0.232(W2− 13.97)2

]
(2.6)

(Assef et al. 2013).

For some of the objects in the AllWISE catalog, the W1 source flux uncertainty could

not be measured because of the presence of a large number of saturated pixels in 3-band cryo

frames containing the source. These sources lie along a narrow strip of ecliptic longitude

and they are marked by null values for w1msigmpro. These objects are removed from the

sample. We also discarded any object with cc flags 6= 0 in W1 or W2, as a non-zero value
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for cc flags indicates a spurious detection (diffraction spike, persistence, halo, or optical

ghost). After applying the SNR and magnitude cuts, we are left with approximately 383

million objects. Out of these, roughly 192 million (50.0%) are classified as galaxies, 189

million as stars (49.3%), and 2.6 million (0.7%) as AGNs according to the adopted color cut

criteria.

2.3.3 Mask

We constructed the mask for the overdensity-CMB cross-correlation analysis with healpix

resolution parameter nside = 128. The moon lev flag in the AllWISE catalog indicates the

fraction of frames contaminated by moonlight among the number of frames where the flux

from a source was measured. We added healpix pixels with more than 20% sources with

moon lev > 2 to the mask. healpix pixels with more than 10% sources with cc flags 6= 0

out of the total source count within the pixel are also added to the mask. As mentioned

in subsection 2.3.2, some objects in the AllWISE catalog with null values for w1msigmpro

were removed from the sample and we excluded regions with more than 1% of such sources.

We also excluded regions with galactic latitude |b| < 10◦ to effectively remove areas of

galactic contamination. For the AGN overdensity map, some healpix pixels (<0.2%) had

abnormally high source count and we added these pixels to the mask for the AGN overdensity

map. After applying the combined final mask, the unmasked sky fraction becomes fsky = 0.46

(Figure 2.2). This unmasked region contains approximately 106 million galaxies and 1.5

million AGNs.

2.3.4 Theoretical Computation

It is computationally difficult to evaluate the spherical Bessel integrals in equations (2.4)

and (2.5) through brute force. For efficient computation, we reformulated these integrals

as logarithmically discretized Hankel transform following Hamilton (2000). In this form,
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the integrals can be evaluated through fast-Fourier-transform (FFT) convolutions using the

FFTLog algorithm (Talman 1978).

Lastly, we used camb with halofit (Lewis et al. 2000; Smith et al. 2003) to generate

the non-linear matter power spectra for our fiducial cosmology.

2.4 Results

2.4.1 Redshift Distribution

We performed source matching between SDSS DR12 (Alam et al. 2015) galaxy sample and

our AllWISE galaxy sample with a matching radius of 3′′. The matching radius was chosen

based on the angular resolutions for WISE W1 and W2 bands, which are 6.1′′ and 6.4′′

respectively. We only chose approximately 82 million galaxies with r > 22.2 (95% complete-

ness limit, Abazajian et al. 2004) from the SDSS DR12 Photoz catalog.3 The common sky

fraction for our mask and SDSS coverage region is fsky = 0.24 and it contains approximately

56 million AllWISE galaxies. We find matching pairs for roughly 29% of the AllWISE galaxy

sample. The redshift distribution was then inferred from the SDSS photometric redshift of

the matched galaxies (Figure 2.3). The low matching percentage of the AllWISE galax-

ies with SDSS is expected, because high redshift galaxies are optically fainter with redder

r−W1 color and the majority of the unmatched AllWISE galaxies can be massive ellipticals

at z & 1 (Yan et al. 2013). As the 95% completeness magnitude limit for WISE, W1< 17.1,

goes quite deep in the redshift space, many high redshift WISE selected galaxies fall beyond

the SDSS 95% completeness limit of r < 22.2 (Figure 2.4).

To obtain the redshift distribution of the AGN sample, we executed source matching

with approximately 750 thousand objects flagged as ‘QSO’ in the SDSS DR12 SpecObjAll

catalog, which has spectroscopic redshifts for roughly 4.4 million objects. The matching

3RA and dec for corresponding sources in the Photoz table are taken from the GalaxyTag table.
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radius was also taken as 3′′. Out of roughly 848,000 WISE selected AGNs in the common

coverage region, we found matching pairs for approximately 15% of them.

It should be noted that SDSS had an uneven target selection strategy over different

redshifts leading to a bias in the redshift distribution of the SDSS objects. Therefore,

the redshift distribution obtained by source matching with SDSS objects would also be

similarly biased. However, the ISW effect sensitivity function is widespread over a broad

range of redshift peaking at zpeak ≈ 0.66 (Figure 2.3) and the ISW effect measurement by

cross-correlation is not largely sensitive to errors in the estimation of redshift distribution

(Afshordi 2004).

2.4.2 Bias Measurement

Following Ferraro et al. (2015), we used weak lensing of CMB by our tracers of matter

overdensity to measure the bias. This method has two advantages over measuring the bias

from auto-correlation of the tracers: (1) it takes into account contamination by stars or

artifacts, (2) it is less prone to systematic errors giving a more robust estimation of the

bias. The observed CMB temperature T (n̂) is the lensed remapping of the original CMB

temperature field T0(n̂ + d) = T (n̂), where d is the deflection field. Then, CMB lensing

convergence is defined as κ ≡ −∇ · d/2 = −∇2φ/2, where φ is the lensing potential. The

lensing convergence can be expressed as the line-of-sight integral of matter fluctuation as

κ(n̂) =

∫
δ (χn̂, z(χ)) W κ(χ) dχ, (2.7)

where W κ is the lensing window function given by

W κ(χ) =
3ΩmH

2
0

2c2

χ

a(χ)

χls − χ
χls

(2.8)

(Cooray & Hu 2000). Here, a(χ) is the scale factor and χls ≈ 14 Gpc is the comoving

distance to the last-scattering surface.

The cross-correlation between the lensing convergence and matter overdensity field can

be calculated using the Limber approximation (Limber 1953; Kaiser 1992), which works well
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Figure 2.3: Redshift distribution of AllWISE galaxy (blue solid line) and AGN (red dashed

line) samples along with the sensitivity function for the ISW effect cross-correlation (green

dotted line). The redshift distribution for galaxies was obtained by cross-matching with

SDSS galaxy Photoz catalog and the redshift distribution for AGNs was obtained by cross-

matching with SDSS SpecObjAll catalog, with 3′′ matching radius for both cases. The

distributions are normalized so that
∫

(dN/dz) dz = 1. The sensitivity function for the

ISW effect cross-correlation given by W ISWdV/dz is shown with green dashed line, where

W ISW = d [(1 + z)D(z)] /dz is the ISW effect window function and V is the comoving

volume. The sensitivity function is normalized to have a peak value of 1.
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Figure 2.4: Matching fraction of the WISE galaxies with SDSS galaxies for different magnitudes

and colors. The top panel shows r−W1 vs W1 color distribution of the matched galaxies. Darker

area denotes higher density of galaxies and lighter area represents lower density of galaxies in this

color-magnitude plot. The bottom panel shows the numbers of SDSS-matched (purple dashed line),

unmatched (red solid line), and total (green dotted line) WISE galaxies per magnitude bin. The

vertical grey dashed line shows the W1< 17.1 magnitude cut for 95% completeness. Most of the

unmatched galaxies are fainter in W1 and falls behind r < 22.2 (95% completeness cut for SDSS).

20



50 100 150 200 250 300 350 400 450 500
l

1.6

1.8

2.0

2.2

2.4

lC
κ
g

l
[×

10
5
]

b(z) = 1. 17

b(z) = 0. 86(1+ z)

50 100 150 200 250 300 350 400 450
l

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

lC
κ
g

l
[×

10
5
]

b(z) = 2. 90

b(z) = 0. 79+ 0. 42(1+ z)2

Figure 2.5: Cross-correlation between Planck lensing convergence and WISE galaxies (left)

and AGNs (right). Vertical error bars are obtained from 100 simulated lensing convergence

maps provided in the Planck lensing package and the horizontal error bars show bin widths

for the bandpowers. The different bias models used for fitting are shown using lines and

described in the corresponding legends. See Table 2.1 for the errors of the best fit parameters

for different models.
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for our angular scale of interest l & 100, as

Cκg
l ≈

∫
1

χ2
W κ(χ)W g(χ)P

(
k =

l + 1/2

χ
, z

)
dχ

dz
dz, (2.9)

where P (k, z) is the non-linear matter power spectrum at redshift z for our fiducial cosmology

and W g is the tracer distribution window function given by

W g(χ) =
dz

dχ

dN

dz
b(χ). (2.10)

We used the lensing convergence map provided by Planck data release4 2 (Planck Collab-

oration 2016b) to cross-correlate it with the overdensity maps of our LSS tracers to measure

their effective biases. The correlation between WISE and Planck lensing convergence was

investigated by Geach et al. (2013) and Planck Collaboration (2014), where these authors

found ∼ 7σ detection for both galaxies and AGNs. Here, we repeated a similar analysis. We

converted the lensing convergence and overdensity maps to healpix resolution nside = 512.

The mask for this analysis was taken to be a combination of the mask for the ISW effect

analysis and the lensing convergence mask provided in the Planck lensing package. The

unmasked sky fraction for this combined mask is fsky = 0.45. We obtained the pseudo-

power spectrum C̃κg
l of lensing-overdensity cross-correlation using the anafast facility of

the healpix package. We deconvolved the effect of masking and pixelization using the

master approach (Hivon et al. 2002) as

Cκg
l′ =

1

Bl′

∑
l

M−1
ll′ C̃

κg
l , (2.11)

where Mll′ is the mode-mode coupling kernel for the applied mask and Bl is the pixel window

function for nside = 512. We binned the power spectra into six bins (bandpowers) in the

multipole range 100 ≤ l ≤ 400 as Cκgb =
∑

l PblC
κg
l , where Pbl is the binning operator

Pbl =


l

l
(b+1)
low − l(b)low

, if l
(b)
low ≤ l < l

(b+1)
low ,

0, otherwise.

(2.12)

4https://irsa.ipac.caltech.edu/Missions/planck.html
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Here, l
(b)
low is the lower boundary of the b-th bin.

We used 100 simulated lensing convergence maps provided in the Planck lensing package

to calculate the covariance matrix C as

Cbb′ =
〈
(Cκgb − 〈C

κg
b 〉sim)(Cκgb′ − 〈C

κg
b 〉sim)

〉
sim

, (2.13)

where 〈 〉sim denotes an average over the simulated maps.

We fit the estimated cross-correlation bandpowers to different bias models for both galax-

ies and AGNs. Several bias models have been proposed in the literature, e.g., constant bias

model b(z) = b0 (Peacock & Dodds 1994), linear redshift evolution model b(z) = b0(1 + z)

(Ferraro et al. 2015), fitting function for AGNs b(z) = b0(0.55 + 0.289(1 + z)2) (Croom et al.

2005) etc. We fit for the constant and linear evolution bias models in the lensing-overdensity

cross-correlation analysis for galaxies, and the constant and fitting function bias models in

the lensing-overdensity cross-correlation analysis for AGNs (Figure 2.5).

We obtained the best fit for each model by maximizing the likelihood function

L(d; t,C) ∝ exp

[
−1

2
(d− t)TC−1(d− t)

]
, (2.14)

where d is the vector containing measured bandpowers, t is the vector containing expected

bandpowers of the cross-correlation for each bias model, which depend on the model pa-

rameters, and C is the covariance matrix. Here, we have assumed that individual data

points are Gaussian distributed. Maximizing the likelihood function is equivalent to mini-

mizing χ2 = (d − t)TC−1(d − t) and the likelihood ratio between two models are given by

−2 ln(L1/L2) = ∆χ2. The best fit parameters for each model are given in Table 2.1. We

used the best fit bias models, linear evolution model for galaxies and constant bias model

for AGNs, in the CMB temperature-overdensity cross-correlation analysis.
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Table 2.1. Best fit parameters for different bias models

LSS tracer bias model b(z) b0 χ2

Galaxy sample
b0 1.17±0.02a 10.6

b0(1 + z) 0.86±0.01a 9.7

AGN sample
b0 2.90±0.07a 36.3

b0
(
0.55 + 0.289(1 + z)2

)
1.44±0.04a 37.0

aThe errors are computed by fitting the likelihood function

L(d; t(b0),C) ∝ exp
[
(d− t)T C−1(d− t)

]
to a Gaussian distri-

bution and taking the standard deviation σ of the fit as the error.

Here, d is the vector containing measured bandpowers, t is the

vector containing expected bandpowers for a given bias model,

and C is the covariance matrix.
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2.4.3 Cross-correlation Measurement

We measured the cross-correlation of WMAP CMB maps in Q, V, and W bands and the

AllWISE galaxy and AGN overdensity maps. The complex geometry of the mask induces

off diagonal correlations between the multipoles. We deconvolved the effect of masking and

pixelization from the pseudo-power spectrum C̃Tg
l , which is obtained through anafast, as

CTg
l′ =

1

Bl′Fl′

∑
l

M−1
ll′ C̃

Tg
l , (2.15)

where Mll′ is the mode-mode coupling kernel for our adopted mask, Bl is the pixel window

function for nside = 128, and Fl is the WMAP beam transfer function. WMAP provides

beam transfer functions for each differencing assembly in a band. We took an average of the

beam transfer functions for all the differencing assemblies in a given band to obtain the beam

transfer function for each band as F 2
l =

∑N
i (F

(i)
l )2/N , where N is the number of differencing

assemblies in each WMAP band and the index i goes over all the differencing assemblies.

We binned the deconvolved power spectra into eight logarithmic bins (bandpowers) using a

binning operator Pbl given by

Pbl =


1

2π

l(l + 1)

l
(b+1)
low − l(b)low

, if l
(b)
low ≤ l < l

(b+1)
low ,

0, otherwise,

(2.16)

where l
(b)
low denotes the lower boundary of the b-th bin. We took the bin boundaries as l = 2,

5, 8, 12, 17, 26, 41, 64, 100; thus the first band includes l =2, 3, 4 etc. We avoided l ≥ 100

as the ISW effect is not sensitive to these small scales.

To estimate the Monte Carlo error bars and covariance matrices, we ran 5000 simulations

for each WMAP band. We used our fiducial cosmological parameters and WMAP beam

transfer function to obtain the simulated CMB maps using synfast included in the healpix

package. Then, we added noise to each pixel by adding a random value from a Gaussian

distribution with zero mean and standard deviation given by σ = σ0/
√
Nobs, where σ0 is

2.188, 3.131, and 6.544 mK for Q, V, and W bands respectively and Nobs is the effective
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Figure 2.6: Examples of simulated WMAP CMB maps in Q band (top), V band (middle),

and W band (bottom) using our fiducial cosmology and WMAP beam transfer function.

They used different random alm’s, but the same Cl generated using camb for our fiducial

cosmology.
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Figure 2.7: Monte Carlo covariance matrices for galaxy-CMB (left) and AGN-CMB (right)

cross-correlation bandpowers in Q band. Covariance matrices for V and W bands are not

included as they are similar.

number of observations for the corresponding pixel in the WMAP survey. Some examples

of the simulated CMB maps for different WMAP bands are shown in Figure 2.6. We cross-

correlated these simulated maps with AllWISE galaxy and AGN overdensity maps to obtain

the covariance matrices according to equation (2.13). The error bars are taken to be the

square roots of diagonal elements of the covariance matrix. The neighboring bins are anti-

correlated by 3-20% in the lower multipole range and correlated by roughly 20-30% in the

higher end of the multipole range (Figure 2.7).

We find that the band powers are consistent across different WMAP bands (Figure 2.8).

This indicates that the CMB maps are not likely to have significant foreground contamina-

tion.

We obtained the amplitude A of the signal by minimizing χ2 = (d − At)TC−1(d −

At), where d is the vector containing the measured bandpowers, t is the vector containing

corresponding bandpowers of the theoretically predicted power spectra for the ΛCDM model,

and C is the Monte Carlo covariance matrix. Then, the signal amplitude and its error are
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Figure 2.8: Power spectra of the cross-correlation between WMAP CMB maps and AllWISE

overdensity maps for galaxies (top) and AGNs (bottom). The power spectra for 2 ≤ l ≤ 100

in three WMAP bands, Q(blue circle), V(red triangle), and W(green rectangle), are binned

into eight logarithmic bins. The points for Q and W bands are slightly shifted negatively and

positively along l axis for better visual clarity. The vertical error bars are Monte Carlo error

bars computed using 5000 simulated CMB maps for each WMAP band. The grey horizontal

error bars for each group of points show the bin widths. The black solid line shows the

theoretical prediction from the ΛCDM model and the blue dashed line is the best fit for Q

band. For both galaxies and AGNs, the measured cross-correlation amplitude agrees very

well with the ΛCDM prediction.

28



Table 2.2. Statistical properties of WISE–CMB

cross-correlation amplitudes.

LSS tracer WMAP Band A S/N χ2 d.o.f. ∆χ2
ΛCDM ∆χ2

null

Q 1.18 ± 0.35 3.3 6.09 7 0.26 11.17

Galaxy sample V 1.19 ± 0.36 3.3 6.40 7 0.32 11.31

W 1.17 ± 0.36 3.3 6.52 7 0.21 10.58

Q 0.65 ± 0.74 0.9 9.12 7 0.21 0.77

AGN sample V 0.62 ± 0.74 0.8 9.86 7 0.28 0.70

W 0.65 ± 0.74 0.9 9.32 7 0.22 0.79

Note. — The “d.o.f.” column refers to the degrees of freedom of the χ2-distribution.

∆χ2
null shows ∆χ2 of the best fit from the null hypothesis t = 0 and ∆χ2

ΛCDM shows ∆χ2

of the best fit from the ΛCDM prediction.
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given by

A = dTC−1t
[
tTC−1t

]−1
,

σA =
[
tTC−1t

]−1/2
.

(2.17)

We calculated the significance of the detection from

S/N =
√
χ2
null − χ2

fit

= dTC−1t
[
tTC−1t

]−1/2
=

A

σA
,

(2.18)

where χ2
fit is for the best fit and χ2

null is for the null hypothesis with t = 0.

We detected the ISW effect signal for AllWISE galaxies with 3.3σ significance for all three

WMAP bands. The combined ISW effect signal amplitude for the three WMAP bands is

A = 1.18±0.36, which agrees very well with the ΛCDM prediction of A = 1. For AGNs, the

ISW effect amplitude is A = 0.64 ± 0.74 with 0.9σ significance, which is also in agreement

with the ΛCDM model. The signal amplitude and some basic statistical properties for each

WMAP band are given in Figure 2.4.3.

2.5 Discussion and Conclusions

In this study, we detected the ISW effect signal from the cross-correlation between the

WMAP CMB temperature map and the matter overdensity map using AllWISE galaxies

and AGNs as tracers for matter distribution. The ISW effect detection significances for

galaxies and AGNs are 3.3σ and 0.9σ respectively with a combined significance of 3.4σ, with

good agreement to the ΛCDM model for both tracers.

Among other ISW effect studies using WISE data, Goto et al. (2012) detected the ISW

effect amplitude to be 2.2σ higher than that for the ΛCDM model, where these authors used

WISE preliminary release and WMAP 7-year data. Ferraro et al. (2015) used WISE all-sky

release and WMAP 9-year data to detect the ISW effect signal at 3σ and in good agreement

with the ΛCDM cosmology. Our result fully agrees with the finding of Ferraro et al. (2015).
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The measured biases of the tracers in our study for constant and linear redshift evolution

bias models are lower than those calculated by Ferraro et al. (2015) by approximately 13-

20%. Ferraro et al. (2015) used the lensing potential map from Planck data release 1 (2013),

whereas we used the lensing convergence map provided by Planck data release 2 (2015).

The 2013 lensing potential map was obtained by combining only the 143 and 247 GHz

channels, whereas the 2015 lensing convergence map was constructed by applying a quadratic

estimator to all nine frequency bands. Kuntz (2015) used both of the Planck data releases

to measure the cross-correlation between CMB lensing and Canada-France-Hawaii Telescope

Lensing Survey (CFHTLenS) galaxy catalog and found that the cross-correlation amplitude

measured using the 2015 data is roughly 19% lower than that measured using the 2013 data.

This result is consistent with the discrepancy in the bias measurement between Ferraro et al.

(2015)’s and our studies.

The redshift distribution of the AllWISE galaxies might have missed a large fraction

(∼70%) at the higher redshift end of the distribution due to the shallower depth of SDSS

galaxies. However, this missing fraction does not significantly effect our final amplitude

measurement. We checked the robustness of our measurement against errors in redshift

distribution estimation by using the redshift distribution of W1 selected galaxies from WISE

all-sky release given by Yan et al. (2013) (as used by Ferraro et al. (2015)) instead of our

own estimation. This distribution spans a wide range of redshift up to z ∼ 0.9. We found

the ISW effect amplitude for the galaxy sample to be A = 1.28±0.39 for this galaxy redshift

distribution, which is very close (within 0.3σ) to the original measurement.

Contamination due to foreground emission in the CMB maps might lead to systematic

error in the ISW effect detection in the form of spurious correlation with LSS tracers. How-

ever, the amount of foreground contamination would be different across the frequency bands.

In our measurement, we find the cross-correlations between the LSS tracers and the CMB

maps in three WMAP bands to be consistent with each other. This consistency rules out

any significant contamination by foreground emission in the CMB maps.
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The significance of the ISW effect signal amplitude for our AGN sample is low (0.9σ).

This low significance is partially because the AGN sample mostly spans redshift range z ≥ 1

where the universe is not yet dominated by dark energy. As a result, the ISW effect is less

sensitive to this redshift range and the expected signal becomes low. On the other hand,

due to the much smaller sample size of the AllWISE AGNs, the shot noise is higher than

that for the galaxy sample. This high shot noise limits the detection significance, especially

in higher multipoles.

Dark energy is one of the most active fields in modern cosmology as many of its properties

still remain unknown. Although the existence of dark energy is highly evidenced by various

indirect measurements, the ISW effect is one of the only few direct observational probes

to study dark energy. In this study, we detected the ISW effect signal by cross-correlating

WMAP CMB temperature maps with AllWISE galaxies and AGNs. These detections rule

out a matter-dominated, dark-energy-free universe by a combined significance of 3.4σ. Future

surveys, covering a large portion of the sky with extensive redshift coverage and sufficient

number of frequency bands for photometric redshift estimation, can push this detection

significance to 5σ level and attain the precision necessary to pinpoint the physical properties

of dark energy.
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3.1 Background

The concordance Λ cold dark matter (ΛCDM) cosmology explains the accelerated expansion

of the Universe by incorporating the cosmological constant Λ (Riess et al. 1998; Perlmutter

et al. 1999). The ΛCDM model is very successful in predicting observations covering a large

range of physical scales – from the scale of sound horizon at the recombination epoch, down to

the structure formation at the megaparsec scale (e.g. Alam et al. 2017; Planck Collaboration

2018; Abbott et al. 2018b). The Hubble constant, H0, plays a central role in cosmology,

including in the ΛCDM model. The Hubble constant is not only crucial to determine the

age of the Universe, it also normalizes the distances to distant galaxies. As a result, a precise

understanding of the galaxy formation and evolution, and the Universe as a whole, closely

depends on the precise knowledge of the Hubble constant.

Recently, a significant tension has been reported between the measurements of the Hub-

ble constant using early-Universe and late-Universe probes (e.g. Planck Collaboration 2018;

Riess et al. 2019; Wong et al. 2019). Among others, the most precise constraints on the

Hubble constant come from extrapolating the cosmic microwave background (CMB) obser-

vation at the early-Universe, and from the measurement based on the cosmic distance ladder

calibrated with parallax distances, Cepheids, and type Ia supernovae (SNIae). Assuming a

ΛCDM cosmology, the Planck measurement gives H0 = 67.4 ± 0.5 km s−1 Mpc−1(Planck

Collaboration 2018). The Supernovae, H0, for the Equation of State of dark energy (SH0ES)

team measures H0 = 74.03 ± 1.42 km s−1 Mpc−1 by calibrating the SNIa distance ladder

using Cepheids and parallax distances (Riess et al. 2019). These two measurements are at

4.4σ tension. A cosmic distance ladder measurement from the Carnegie–Chicago Hubble

project calibrated by the tip of the red giant branch (TRGB) stars reports H0 = 69.8± 1.9

km s−1 Mpc−1, consistent with both of the above values on opposite sides (Freedman et al.

2019). However, the SH0ES team finds H0 = 72.4 ± 1.9 km s−1 Mpc−1using the TRGB

stars to calibrate the SNIae distance ladder (Yuan et al. 2019). Additional probes, all con-
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sistent with the tension at varying degrees of significance are summarized by Verde et al.

(2019). This tension between the early-Universe and the late-Universe probes can be due

to unknown systematics in any or all of the probes. However, if systematics can be ruled

out as the source of this tension, then this tension would require extension of the ΛCDM

model. In order to reach a conclusion on the tension and whether new physics is needed,

it is paramount to have multiple independent measurements of the Hubble constant, each

with sufficient precision on its own to resolve the discrepancy (< 2 per cent). In parallel it

is also crucial to investigate in detail all possible sources of systematic uncertainties in each

method.

Time-delay cosmography measures H0 and other cosmological parameters independently

of both the CMB or other high-redshift observations and the local probes such as the ones

using the cosmic distance ladder (Refsdal 1964). The time-delay between the arrival time

of photons at multiple images of a strong-lensing system (hereafter, lens) depends on the

three angular diameter distances – between the observer and the deflector, between the

deflector and the source, and between the observer and the source. A combination of these

three angular diameter distances gives the so-called “time-delay distance” (Suyu et al. 2010).

This time-delay distance is inversely proportional to H0 and thus measuring this distance

directly constrains H0.

To measure the time delay between the arrivals of photon at different lensed images that

were emitted at the same time, we require a time-variable source. Although Refsdal (1964)

originally proposed using strongly lensed supernovae as a time-variable source to measure

the time-delay, only a few such supernovae have been discovered so far (e.g. Kelly et al. 2015;

Goobar et al. 2017; Grillo et al. 2018). Even though the number of lensed supernova is still

too small to be a competitive cosmological probe, the re-appearance of supernova Refsdal as

predicted provides an important validation of the method (Treu et al. 2016).

Strongly lensed quasars have provided time-variable sources in larger numbers. As a

result, these objects have been predominantly used to measure H0 from their time-delays
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(e.g. Schechter et al. 1997; Treu & Koopmans 2002b; Suyu et al. 2010). Although some

of the early measurements had shortcomings in the data quality or the analysis technique,

both of these aspects have tremendously improved over the past decade (for a review with

historical perspective, see Treu & Marshall 2016). The key breakthroughs in the past two

decades have been: (i) high cadence monitoring to determine the time delays (e.g. Fassnacht

et al. 2002; Tewes et al. 2013), (ii) high resolution images of the lensed arcs from the quasar

host galaxy and pixel-based lens modelling to constrain the lens mass distribution (Suyu

et al. 2010), (iii) adding stellar kinematics of the deflector (Treu & Koopmans 2002b), and

(iv) statistical analysis of the line of sight to constrain the external convergence (Suyu et al.

2010; Greene et al. 2013; Rusu et al. 2017). Implementing these improvements, the H0 Lenses

in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration measure H0 = 73.3+1.7
−1.8 km s−1

Mpc−1 using six lens systems (Suyu et al. 2010, 2013, 2014; Wong et al. 2017; Bonvin et al.

2017; Birrer et al. 2019; Rusu et al. 2019; Chen et al. 2019; Wong et al. 2019).

To reach 1 per cent precision in the Hubble constant with time-delay cosmography, a

sample of ∼40 lenses is necessary (Shajib et al. 2018). To have such a large sample of

strongly lensed quasars available in the first place, the STRong-lensing Insights into Dark

Energy Survey collaboration (STRIDES; Treu et al. 2018) has discovered numerous new

lenses from the Dark Energy Survey (DES) footprint, in cases combining data from other

large-area sky surveys (e.g. Agnello et al. 2015b; Nord et al. 2016; Ostrovski et al. 2017;

Agnello et al. 2018b; Anguita et al. 2018; Lemon et al. 2019). The STRIDES is an external

collaboration of the DES. The DES data are particularly useful in discovering new lenses

due to its combination of uniform depth and coverage of area in the Southern hemisphere

that is not covered by the Sloan Digital Sky Survey (SDSS). Additionally, thanks to new

data mining and machine learning based techniques, new lenses have been discovered also

from other photometric surveys – such as the VLT Survey Telescope-ATLAS (VST-ATLAS),

Kilo-Degree Survey Strongly lensed Quasar Detection project (KiDS-SQuaD) (e.g., Agnello

et al. 2015a, 2018d; Spiniello et al. 2018).
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In this chapter, we present a blind analysis of the lens system DES J0408−5354 and

infer H0 from its time delays (Courbin et al. 2018). This lens was discovered in the DES

footprint (Lin et al. 2017; Diehl et al. 2017). This chapter sets down two goals underlying

our analysis. First, we aim to increase the statistical precision of the H0 determination

by presenting results from the analysis of a new lens system. Second, this system is being

analysed independently and in parallel by two teams using two different codes in order to

estimate potential systematics arising from modelling choices and software. This chapter

presents the first of these two independent and blind analyses for DES J0408−5354. To

facilitate meaningful comparison between independent modelling teams, the participating

teams agreed beforehand on a set of baseline models with minimal but sufficient specifica-

tions. The teams are free to extend on the baseline models for exploring different sources of

systematics as they see fit. This additional exploration by a team proceeds independently

while keeping the cosmographic inferences blind. In this way, we aim to check on systematics

that can potentially arise from different codes through comparison of the baseline models

from different teams, and also from different model choices within one team’s analysis. In

this chapter, we infer H0 using the lens modelling software lenstronomy, which is publicly

available online at Github1 (Birrer et al. 2015; Birrer & Amara 2018). A second indepen-

dent team uses the software glee to analyse the same lens system (Suyu & Halkola 2010).

In a future paper, cosmographic inference based on this second analysis and a comparison

between the two analyses will be presented (Yıldırım et al., in preparation). Both of the in-

dependent modelling works use the results from a companion paper, which analyses the lens

environment to detect galaxy groups and estimate the external convergence using the DES

data, and measure the stellar kinematics of the central deflector galaxy from spectroscopic

observations (Buckley-Geer et al. 2020).

Our concerted effort to analyse a system independently but based on the same data,

and with some overlap in modelling choices, is an important step forward in estimating the

1� https://github.com/sibirrer/lenstronomy
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modelling errors with respect to previous works. Previous efforts by the H0LiCOW and

Strong-lensing High Angular Resolution Programme (SHARP) collaborations took some

step in this direction by assigning different lead investigators and softwares to the analysis

of the six lenses (Lagattuta et al. 2012; Suyu et al. 2017). The lens systems B1608+656,

RXJ1131–1231, HE 0435–1223, WFI2033–4723, and PG 1115+080 were analysed using the

lens modelling software glee, whereas the systems RXJ1131–1231 and SDSS 1206+4332

were analysed using the software lenstronomy (Suyu et al. 2010, 2013; Birrer et al. 2016,

2019; Wong et al. 2017; Rusu et al. 2019; Chen et al. 2019). In total, four different lead

investigators modelled these six lenses, even though there was overlap between the team

members. The two softwares used in the modelling differ in various aspects. For example,

lenstronomy performs source-reconstruction using a basis set of shapelets, whereas glee

performs a pixelized source-reconstruction with regularization. lenstronomy is a publicly

available open-source software, whereas glee is not.

In order to preserve the blindness of the analysis, this chapter and the companion de-

scribing the analysis of the environment and line of sight used to compute the external

convergence were internally reviewed by the STRIDES collaboration and the DES strong-

lensing working group before unblinding. Once both the analyses and manuscripts met the

approval of the internal reviewers and co-authors, unblinding happened on 2019 September

25. After unblinding, the only changes to the manuscript were the addition of the unblinded

measurements, discussion on the unblinded results in Section 3.7, minor editing for clarity,

grammar, and typos after the DES collaboration-wide review, and the addition of the plot

showing the galaxy group’s convergence described in Appendix 3.C.

This chapter is organized as follows. In Section 3.2, we lay out the necessary formalism

and describe the analysis framework. We present the data sets used in our analysis in Section

3.3. Next in Section 3.4, we describe the different mass and light profiles that are used in

the lens modelling. We present the various lens model choices in Section 3.5. We report the

results from the lens modelling and the cosmographic inference in Section 3.6. Finally, we
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discuss the results and summarize the chapter in Section 3.7. We provide summaries of the

uncertainty budget in our inferred H0, systematic checks, adopted models and parameter

priors in Appendices 3.F and 3.G. The reported uncertainties in this chapter are computed

from 16th and 84th percentiles of the posterior probability distribution.

3.2 Framework of the cosmographic analysis

In this section, we outline our cosmographic analysis using strong-lensing time delays. We

briefly lay out the strong-lensing time-delay formalism in Section 3.2.1, discuss the lensing

degeneracies in Section 3.2.2, present an overview of the kinematic analysis in Section 3.2.3,

describe the cosmological analysis in Section 3.2.4, and formalize the underlying Bayesian

inference framework of our analysis in Section 3.2.5.

3.2.1 Strong-lensing time delay

The framework described in this subsection was developed in previous studies – e.g., see

Schneider et al. (1992); Blandford & Narayan (1992) – and was applied in previous studies

to the measure H0 from time delays (e.g., Suyu et al. 2010; Wong et al. 2017; Birrer et al.

2019).

The time delay ∆tXY between arrival of photons at two images, indexed with X and Y,

of a multiply-imaged quasar by a single deflector is given by

∆tXY =
1 + zd

c

DdDs

Dds

[
(θX − β)2

2
− (θY − β)2

2
− ψ(θX) + ψ(θY)

]
. (3.1)

Here, the three angular diameter distances are Dd: between the observer and the deflector,

Ds: between the observer and the source, and Dds: between the deflector and the source.

Additionally, zd is the deflector redshift, c is the speed of light, θ is the image position, β is

the source position, and ψ is the deflection potential. The deflection potential is defined such

that its gradient gives the deflection field α ≡ ∇ψ. Then, the deflection potential relates to
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the convergence κ as κ = ∇2ψ/2. We define the Fermat potential φ as

φ(θ) ≡ (θ − β)2

2
− ψ(θ), (3.2)

and the time-delay distance as

D∆t ≡ (1 + zd)
DdDs

Dds

. (3.3)

Then, we can express equation (3.1) in a more compact form as

∆tXY =
D∆t

c
(φ(θX)− φ(θY)) ≡ D∆t

c
∆φXY. (3.4)

If multiple deflectors are present at close angular proximity at different redshifts, then

we need to use the multilens-plane formalism to describe the lensing effect with sufficient

accuracy. The time delay between two images for the case of lensing with P lens planes can

be obtained by tracing the lensed light-ray backward from the image plane to the source

plane as

∆tXY =
P∑
i=1

D∆t,i,i+1

c

[
(θX,i − θX,i+1)2

2
− (θY,i − θY,i+1)2

2

−ζi,i+1 {ψi(θX,i)− ψi(θY,i)}]

(3.5)

(cf. equation 9.17 of Schneider et al. 1992). Here, the first lens plane is the nearest to the

observer and the (P + 1)-th plane refers to the source plane. The time-delay distance D∆t,i,j

between a pair of planes is defined as

D∆t,i,j ≡
1 + zi
c

DiDj

Dij

, i < j, (3.6)

where Di is the angular diameter distance from the observer to the ith plane and Dij is the

angular diameter distance between the ith and jth planes. The rescaling factor ζi,j is defined

as

ζi,j ≡
DijDs

DjDis

, i < j. (3.7)

In this multilens-plane case, we can define the time-delay distance between the central de-

flector plane and the source plane as the effective time-delay distance Deff
∆t ≡ D∆t,d,s that
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normalizes the multilens-plane time delay as

∆tXY =
Deff

∆t

c

P∑
i=1

1 + zi
1 + zd

DiDi+1Dds

DdDsDi i+1

[
(θX,i − θX,i+1)2

2

− (θY,i − θY,i+1)2

2

−ζi,i+1 {ψi(θX,i)− ψi(θY,i)}]

=
Deff

∆t

c
∆φeff

XY.

(3.8)

Here, we defined the effective Fermat potential for the multilens-plane case as

φeff(θ) ≡
P∑
i=1

1 + zi
1 + zd

DiDi+1Dds

DdDsDi i+1

[
(θi − θi+1)2

2
− ζi,i+1ψi(θi)

]
. (3.9)

In equation (3.8), the effective Fermat potential difference ∆φeff
XY only contains the distance

ratios. Thus, this term does not depend on H0. However, the distance ratios weakly depend

on the relative expansion history, thus on the density parameter Ω in the context of ΛCDM.

Only the effective time-delay distance Deff
∆t depends on H0 in equation (3.8). For the single

lens plane case with P = 1, the effective Fermat potential φeff and the effective time-delay

distance Deff
∆t naturally take the form of their single-lens-plane equivalents φ and D∆t from

equations (3.2) and (3.3), respectively.

3.2.2 Mass-sheet degeneracy

For lensing, the imaging observables such as the flux ratios and the relative astrometry are

invariant with respect to the mass-sheet transformation (MST; Falco et al. 1985). If we

transform the convergence and the source plane as

κ(θ)→ κϑ(θ) = ϑκ(θ) + 1− ϑ,

β → β′ = ϑβ,
(3.10)

then the lensing observables except the time delay remain invariant. This invariance under

the MST is called the mass-sheet degeneracy (MSD). Notably, the MST also rescales the
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magnification, thus the MSD can be broken with standard candles (Bertin & Lombardi

2006).

We can express the physically existent “true” mass distribution as

κtrue = κlens + κext, (3.11)

where, κlens is the convergence of the central deflector including nearby satellites and per-

turbers, and κext is the convergence from projecting all the line-of-sight inhomogeneities onto

the lens plane. If we impose the condition limθ→∞ κlens = 0, then we have limθ→∞ κtrue = κext.

As a result, we can interpret the external convergence κext as the convergence far from or

“external” to the central deflector. However, as we cannot constrain κext only from the lens-

ing observables due to the MSD, we aim to constrain a model κ′model that captures all the

lensing effects of κtrue. By taking ϑ = 1/(1− κext) in equation (4.7), we can obtain an MST

of κtrue as

κϑ =
1

1− κext

(κlens + κext)−
κext

1− κext

=
κlens

1− κext

= κ′model. (3.12)

Here, we name this κϑ as κ′model because it captures all the lensing effect of κtrue by the virtue

of MST. If we can constrain κ′model, then we can obtain κtrue simply through a MST with

ϑ = 1−κext where κext is separately constrained by studying the lens environment. However,

the lens model κmodel that we actually constrain can potentially be an internal MST of κ′model

given by

κ′model = ϑintκmodel + 1− ϑint. (3.13)

The internal MST factor ϑint only changes the shape of the mass profile, but it does not add

any physical mass to the model within the Einstein radius. Note that both κmodel and κ′model

can satisfy limθ→∞ κ = 0 by construction. In that case, ϑint is not a constant over the whole

plane and we have the condition limθ→∞ ϑint = 1 (Schneider & Sluse 2014). This condition

implies that ϑint does not physically add an infinite background-mass-sheet. With such a

ϑint, both models κmodel and κ′model can reproduce the lensing observables that are indistin-

guishable within the noise level in the data. Finally, combining equations (3.11), (3.12),
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and (3.13), we write the relation between the “true” convergence κtrue and the modelled

convergence κmodel as

κtrue = (1− κext) [ϑintκmodel + 1− ϑint] + κext. (3.14)

Using different but equally plausible model parametrizations – e.g. power-law profile, com-

posite profile – we explore different model families related by equation (3.13). To alleviate

the MSD within a model family by constraining ϑint, we utilize non-lensing observables, e.g.

kinematics of the deflector galaxy. Kinematics probes the 3D deprojection of κlens for a given

combination of κmodel and κext. Moreover, the addition of the kinematic information also

constrains the angular diameter distance to the deflector Dd (Paraficz & Hjorth 2009; Jee

et al. 2015). As a result, the uncertainty on the estimated H0 is improved by kinematics in

two ways:

1. by alleviating the MSD, and

2. by adding extra constraint on cosmology through Dd

(Birrer et al. 2016; Jee et al. 2016; Shajib et al. 2018). In the next subsection, we outline

the kinematic analysis framework.

3.2.3 Kinematic analysis

The kinematic observable is the luminosity-weighted line-of-sight stellar velocity dispersion

σlos. To model the 3D mass distribution consistent with the observed velocity dispersion, we

adopt the spherical solution of the Jeans equations. Although the true mass distribution is

non-spherical, the assumption of spherical symmetry is sufficient given the 10–25 per cent

uncertainty in our kinematic data (Section 3.3.4; Sonnenfeld et al. 2012). We can express

the spherical Jeans equation as

d (l(r) σ2
r )

dr
+

2βani l(r) σ
2
r

r
= −l(r) dΦ

dr
. (3.15)
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Here, l(r) is the 3D luminosity density of the stars, σr is the intrinsic radial velocity dis-

persion, and βani(r) is the anisotropy parameter relating σr with the tangential velocity

dispersion σt as

β(r) ≡ 1− σ2
t

σ2
r

. (3.16)

By solving equation (3.15), we can obtain the luminosity-weighted, line-of-sight velocity

dispersion as

σ2
los(R) =

2G

I(R)

∫ ∞
R

Kβ
( r
R

) l(r) M(r)

r
dr, (3.17)

where M(r) is the enclosed mass within radius r (equation (A15)–(A16) of Mamon &  Lokas

2005). Here, the function Kβ(%) depends on the parametrization of β(r). We adopt the

Osipkov–Merritt parametrization of the anisotropy parameter given by

βani(r) =
r2

r2 + r2
ani

, (3.18)

where rani is the anisotropy scale radius (Osipkov 1979; Merritt 1985b,a). For this parametriza-

tion, the function Kβ takes the form

Kβ(u) =
u2

ani + 1/2

(uani + 1)3/2

(
u2 + u2

ani

u

)
tan−1

(√
u2 − 1

u2
ani + 1

)

− 1/2

u2
ani + 1

√
1− 1

u2
,

(3.19)

where uani = rani/R (Mamon &  Lokas 2005).

The enclosed mass M(r) is computed from the 3D mass profile. For the convergence and

surface brightness profiles that cannot be straightforwardly deprojected into three dimension,

we decompose them into concentric Gaussian components (Bendinelli 1991; Emsellem et al.

1994; Cappellari 2002; Shajib 2019). We then deproject the Gaussian components into 3D

Gaussians to compute the enclosed mass M(r) and 3D light density profile l(r).

3.2.4 Cosmological distances

In this section, we effectively follow Birrer et al. (2016, 2019) to jointly infer D∆t and Dd.

From the modelled convergence profile κ′model of the deflector, we derive the time-delay dis-
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tance D′∆t particular to the deflector’s line of sight. We need to correct D′∆t for the external

convergence κext to obtain the true time-delay distance D∆t. From equations (3.1) and (3.12),

we can express the true time-delay distance D∆t as

D∆t =
D′∆t

1− κext

. (3.20)

We can express σlos in terms of parameters characterizing the 2D mass and light distri-

butions and relevant angular diameter distances as

σ2
los =

Ds

Dds

c2 J(ξlens, ξlight, βani), (3.21)

where ξlens is the set of mass parameters, ξlight is the set of light distribution parameters, c is

the speed of light, and the function J captures all the dependencies from the mass profile, the

light profile, and the orbital anisotropy (Birrer et al. 2016). The parameters in the argument

of the function J are expressed in angular units, thus they do not depend on the cosmology.

Then from equation (3.1), we have

DdDs

Dds

=
c ∆tXY

(1 + zd) ∆φeff
XY(ξlens)

. (3.22)

Combining this equation with equation (3.21), we can write

Dd =
c3 ∆tXY J(ξlens, ξlight, βani)

(1 + zd) σ2
los ∆φeff

XY(ξlens)
(3.23)

(Birrer et al. 2016). As a result, we can estimate the angular diameter distance Dd to

the deflector by combining the kinematics with the lensing observables. Therefore, we can

infer two cosmological distances, D∆t and Dd, at specific redshifts relevant to the lens sys-

tem. Thus, we can constrain the Hubble constant and other cosmological parameters from

the distance–redshift relation for a given cosmology. In the next section, we describe the

combined Bayesian framework to infer the Hubble constant from the observables.

3.2.5 Bayesian inference framework

At the top level, the two cosmological distances D∆t and Dd contain all the cosmographic

information. We express the set of cosmological distances using the notation D, which is a
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function D(ω;C) of the set of cosmological parameters ω for a given cosmology C. We denote

the set containing all the observables as O ≡ {Oimg, O∆t, Okin, Oenv}, where Oimg contains

the imaging data of the lens system, O∆t contains the observed time delays, Okin contains

the spectra the of the deflector to estimate the kinematics, and Oenv contains photometric

and spectroscopic survey data of the lens environment to estimate the external convergence.

Then from Bayes’ theorem, we can write

p(ω | O,C) ∝ p(O | ω,C) p(ω | C)

= p (O | D(ω;C)) p(ω | C),
(3.24)

where the probability density p(ω | O,C) is called the posterior of ω, the probability density

p(O | ω,C) is called the likelihood of O given {ω,C}, and the probability density p(ω | C)

is called the prior for ω. In the last line of the above equation, we have changed {ω,C}

into D(ω;C) in the likelihood term, as it allows us to break down the computation of the

likelihood into two steps. First, we compute the likelihood p(O | D) of the observed data for

given cosmological distances marginalizing over various model choices and their respective

parameters. Then, we can fold in the prior of the cosmological parameters p(ω | C) to obtain

the posterior p(ω | O,C). As the different pieces of the data in O are independent, we can

break up the likelihood into likelihoods of each observable type as

p(O | D) = p(Oimg | D) p(O∆t | D) p(Okin | D) P (Oenv | D). (3.25)

When computing these likelihood functions, we adopt a combination of model choices. We

denote the model choice containing the mass model parameters ξlens and deflector light model

parameters ξlight as M . In addition, we have to make specific choices for the parametrization

ξsource of the source light distribution and the parametrization ξpert of the mass profiles of

the line-of-sight perturbers. We denote the model choice encompassing ξsource and ξpert as S.

We also marginalize over the external convergence κext and the parameters ξβ characterizing

βani. Adding it all together, we can marginalize all the specific model parameters to express
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the total likelihood given the distances as

p(O | D,M) =

∫
p(Oimg | ξlens, ξlight, ξsource, ξpert,M, S)

× p(O∆t | ∆t(ξlens, ξlight, ξpert, κext;M,S))

× p(ξsource, ξpert | S) p(S)

× p(Okin | σlos(ξlens, ξlight, κext, ξβ;M)) p(ξβ | ξlens, ξlight,M)

× p(Oenv | κext) p(κext)

× p(ξlens, ξlight |M)

× dξsource dξpert dS dξβ dκext dξlens dξlight.

(3.26)

Here, we omitted some model parameters and model specifications in the conditional state-

ments of the likelihoods where the corresponding likelihood does not depend on them. Break-

ing up the likelihood as above allows us to partially separate the computation of the like-

lihoods for different observable types before marginalizing over the model parameters. We

first describe the imaging likelihood and marginalization over relevant models and model pa-

rameters in Section 3.2.5.1, then we explain the derivation of the joint posterior combining

time delay and kinematics likelihoods with the lens model posterior in Section 3.2.5.2.

3.2.5.1 Lens model posterior and evidence from imaging likelihood

We can first obtain the posterior of the lens model parameters Ξ ≡ {ξlens, ξlight, ξsource, ξpert}

as

p(Ξ | Oimg,M, S) =
p(Oimg | Ξ,M, S) p(Ξ |M,S)

p(Oimg |M,S)
. (3.27)

Here, the term in the denominator Z ≡ p(Oimg |M,S) is the evidence for the imaging data

Oimg given the model {M,S}. We first change the variables {ξlens, ξpert} → {ξlens,∆φ
eff
XY}

in equation (3.27) to be able to marginalize over parameters related to the line-of-sight

galaxies while retaining their effect on the Fermat potential difference ∆φXY. As the Jacobian
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determinant |d{ξlens,∆φ
eff
XY}/d{ξlens, ξpert}| cancels out from both sides, we have

p(ξlens,ξlight, ξsource,∆φ
eff
XY | Oimg,M, S)

= p(Oimg | ξlens, ξlight, ξsource,∆φ
eff
XY,M, S)

× p(ξlens, ξlight, ξsource,∆φ
eff
XY |M,S)

p(Oimg |M,S)
.

(3.28)

We can marginalize this posterior over ξsource and S as

p(ξlens,ξlight,∆φ
eff
XY | Oimg,M)

=

∫
p(ξlens, ξlight, ξsource,∆φ

eff
XY | Oimg, S,M)

× p(S) dξsource dS.

(3.29)

Since the term inside the integral contains the evidence term Z, the integral over the model

space S automatically weights the models {S} according to their evidence ratios. As we can

only discretely sample models {Sn} from the model space S, the integral in equation (3.27)

becomes a discrete sum as

p(ξlens,ξlight,∆φ
eff
XY | Oimg,M)

=
∑
n

∆Sn

∫
p(ξlens, ξlight, ξsource,∆φ

eff
XY | Oimg, Sn,M)

× p(Sn) dξsource.

(3.30)

Here, the term ∆Sn can be interpreted as the model space volume represented by the model

Sn, thus it can account for sparse sampling from the model space.

In our model, we have both linear and non-linear parameters. The linear parameters are

the amplitudes of the surface brightness profiles that we treat with a basis set in our model

(Birrer et al. 2015). We denote the linear parameters using the vector λ and non-linear

parameters using the set ν. Hence, the lens model parameters can alternatively be expressed

as Ξ ≡ {ν,λ}. We can write the evidence integral as

Z =

∫
p(Oimg | ν,λ,M, S) p(λ |M,S) p(ν |M,S) dλ dν. (3.31)
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We can first marginalize over the linear parameters to get the likelihood P (Oimg | ν,M, S)

in terms of only the non-linear parameters as

p(Oimg | ν,M, S) =

∫
p(Oimg | ν,λ,M, S) p(λ |M,S) dλ. (3.32)

If λ̂ is the maximum-likelihood estimator of P (Oimg | ν,λ,M, S) for given {ν,M, S}, then we

can approximate the likelihood using up to the second-order terms in the Taylor expansion

in the vicinity of λ̂ as

p(Oimg | ν,λ,M, S) ≈ p(Oimg | ν, λ̂,M, S)

× exp

[
−1

2
∆λTK−1

λλ∆λ

]
,

(3.33)

where ∆λ = λ − λ̂, and Kλλ is the covariance matrix of λ (equation [12] of Birrer et al.

2015). We can directly obtain λ̂ given the set of non-linear parameters ν by solving a set of

linear equations. If we take a uniform prior U(−w/2,w/2) for λ, then from equation (3.32)

we have

p(Oimg | ν,M, S) ≈ p(Oimg | ν, λ̂,M, S)
[(2π)n det (Kλλ)]1/2∏n

i wi
, (3.34)

where n = dim(λ) is the number of linear parameters. Then, we can express the evidence as

Z ≈ [(2π)n det (Kλλ)]1/2∏n
i wi

∫
p(Oimg | ν, λ̂,M, S) p(ν |M,S) dν. (3.35)

3.2.5.2 Joint posterior combining time delay and kinematics likelihoods

Next, we can fold in the time-delay likelihood to update the posterior and marginalize over

the Fermat potential ∆φeff
XY as

p(D,ξlens, ξlight, κext | Oimg, O∆t, Oenv,M)

∝
∫
p(O∆t | ∆t(D, ξlens, ξlight,∆φ

eff
XY, κext;Oimg, Oenv,M))

× p(ξlens, ξlight,∆φ
eff
XY | Oimg,M)

× p(κext | Oenv) p(D) d∆φeff
XY.

(3.36)
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Tie & Kochanek (2018) introduce a possible microlensing time-delay effect due to the asym-

metric magnification of a quasar accretion disc – assuming the lamppost model (Shakura

& Sunyaev 1973) – due to microlensing by the foreground stars in the deflector galaxy.

Note, the time-delay measurement from the quasar light curves accounts for the long-term

variation in the microlensing magnification pattern. Tie & Kochanek (2018)’s microlensing

time-delay effect is due to the non-uniform weighting of the quasar accretion disc brightness

by the microlensing magnification pattern, thus this effect depends on the gradient of the

magnification across the accretion disc. The long-term change in the magnification pattern

is not necessarily correlated with the gradient of the magnification across the accretion disc.

For the case that marginalizes over this microlensing time-delay effect, the above equation

becomes

p(D, ξlens, ξlight, κext | Oimg, O∆t, Oenv,M)

∝
∫
p(O∆t | ∆t(D, ξlens, ξlight, ξmicro, κext,∆φ

eff
XY;Oimg, Oenv,M))

× p(ξlens, ξlight,∆φ
eff
XY | Oimg,M)

× p(κext | Oenv) p(ξmicro) p(D) d∆φeff
XY dξmicro,

(3.37)

where ξmicro is the set of parameters relevant to the microlensing time-delay effect, e.g.

parameters related to the properties of the black hole and the accretion disc (Chen et al.

2018, Section 3.6.2.3).

Then, we can update the posterior once again by folding in the kinematic likelihood as

p(D, ξlens,ξlight, κext, ξβ | Oimg, O∆t, Okin, Oenv,M)

= p(Okin | σlos(D, ξlens, ξlight, κext, ξβ;M))

× p(ξβ | ξlens, ξlight,M)

× p(D, ξlens, ξlight, κext | Oimg, O∆t,M).

(3.38)

Now, we can marginalize over the model parameters to obtain the posterior of the cos-
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mological distances D as

p(D | O,M) = p(D | Oimg, O∆t, Okin, Oenv,M)

=

∫
p(D, ξlens, ξlight, κext, ξβ | Oimg, O∆t, Okin, Oenv,M)

× dξβ dκext dξlens dξlight.

(3.39)

Finally, we can marginalize over the deflector mass model choices as

p(D | O) =
∑
M

p(D | O,M) p(M | O). (3.40)

A particular choice of mass model M breaks the MSD (Schneider & Sluse 2014). However, we

cannot ascertain that our adopted mass model choice represents the true mass distribution.

As a result, we cannot weigh different mass models according to their evidence ratios as a

higher evidence value may just be a fluke from breaking the MSD near a better fit of the

data. Therefore, we take p(M | O) = 1 to equally weight different deflector mass model

choices.

As the likelihood p(O | D) follows the proportionality relation

p(O | D) ∝ p(D | O)

p(D)
, (3.41)

we can then use the distance posterior p(D | O) to obtain the posterior of the cosmological

parameters p(ω | O,C) from equation (3.24).

3.3 The Lens System and Data Sets

In this chapter, we perform cosmographic analyses of the lens systems DES J0408−5354.

This lens was discovered and confirmed by Lin et al. (2017) from a large sample of potential

galaxy–galaxy lenses in the DES footprint (Diehl et al. 2017). Agnello et al. (2017) acquired

follow-up data and modelled the system presenting evidence for a faint perturber G2 near

one of the quasar images, which was later confirmed by the deeper and higher resolution

imaging from the Hubble Space Telescope (HST ; Shajib et al. 2019).
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The necessary data sets and ancillary measurements for cosmographic analysis are

1. high-resolution imaging of the lens system,

2. spectroscopy of the lens components to measure redshifts,

3. measured time-delays between the images,

4. LOS velocity dispersion of the central deflector galaxy, and

5. estimate of the external convergence.

Each type of data set or ancillary measurement is described in the following subsections.

3.3.1 HST imaging of the lens system

HST Wide-Field Camera 3 (WFC3) imaging was obtained under the program GO-15320

(PI: Treu; Shajib et al. 2019). The images were taken in three filters: F160W in infrared

(IR), F814W and F475X in ultraviolet–visual (UVIS). For each filter, four exposures – two

short and two long – were taken to cover the large dynamic range in brightness encompassing

the bright quasar images and the fainter extended host galaxy. For the IR band, we chose

a 4-point dither pattern and STEP100 readout sequence for the MULTIACCUM mode. For

the UVIS bands, we adopted a 2-point dither pattern. The total exposure times for the three

filters are 2196.9 s in F160W, 1428 s in F814W, and 1348 s in F475X.

The data in each band were reduced with the standard astrodrizzle package (Avila

et al. 2015). The final pixel scale after drizzling is 0.08 arcsec in the IR band, and 0.04 arcsec

in the UVIS band. We estimate the background level in the reduced image from each band

using sextractor and subtract it from the reduced image (Bertin & Arnouts 1996).

Fig. 3.1 shows the color-composite image for the lens system and its surrounding. The

central deflector galaxy G1 has a visible satellite galaxy G2. The four prominent nearby
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galaxies along the line of sight are marked with G3, G4, G5, and G6. Note that the naming

convention of these galaxies is different in Lin et al. (2017) and Agnello et al. (2017).

The lens has multiple lensed arcs from additional source components, S2 and S3. The

lensed arc S2 lies inside the Einstein radius and it has a noticeable counterimage on the

North–West of image B. Another faint lensed arc S3 lies on the East of image D. We could

not identify the counterimage of S3 from visual inspection.

3.3.2 Spectroscopic observations of the lens components

The central deflector G1 sits at the redshift zd = 0.597 and the quasar sits at redshift

zQSO = 2.375 (Lin et al. 2017). Buckley-Geer et al. (2020) measure redshifts for the nearby

line-of-sight galaxies G3–G6 from spectroscopic observations using the Magellan and the

Gemini telescopes obtaining zG3 = 0.769, zG4 = 0.771, zG5 = 1.032, and zG6 = 0.594. The

redshifts are precise up to the specified decimal point.

We measure the redshift of S2 zS2 = 2.228 from the integral-field spectroscopy observa-

tions of DES J0408−5354 with the Multi-Unit Spectroscopic Explorer (MUSE, on the ESO

VLT UT4). The MUSE observations of the lens and its immediate neighbourhood, within

approximately 45 arcsec, were carried out in Period 102 during two nights on 2019 January

11 and 13 [run 0102.A-0600(E), PI Agnello]. The observations were executed in wide-field

mode with adaptive-optics (AO) corrections, so that the multiple images and galaxies in this

lens could be properly deblended. The AO wide field mode of MUSE results in a wavelength

coverage from 4700 to 5803 Å, and 5966–9350 Åat a spectral resolution of R ∼ 1700–3400.

Each observation block contains four exposures, with the main target placed in four different

quadrants of the instrument’s field of view. An approximately 15 arcsec × 15 arcsec region

centred on the lens was exposed for 4h, with a dither-and-rotation pattern that minimized

artefacts due to the multiple instrument slicers and channels. We reduced the data cubes

using the standard esorex pipeline recipes and flux calibrated them using observations of

standard stars obtained on the two nights. Offsets between 20 individual exposures were
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determined from cross-correlations of white light images created from individual data cubes.

We cleaned strong sky-line residuals from the final combined data cube using zap (Soto et al.

2016). The setup results in a final data cube with a full field of view of 92 arcsec × 95 arcsec.

For this work, we analysed a 8 arcsec × 8 arcsec ‘mini-cube’ centred around the lens. We use

three stars in the field as reference point source function (PSF) cubes. We decompose the

‘mini-cube’ as a superposition of four Moffat profiles for the quasar images, and a convolved

de Vaucouleurs profile for the deflector light distribution. By means of this procedure, all

component spectra could be reliably separated and the quasar shot noise on the deflector

spectra was minimized. We use Mg ii emission lines to measure S2’s redshift and velocity

dispersion. As S2 and the quasar are at different redshift, the quasar’s Mg ii contamination

does not overlap with S2’s Mg ii lines. Also, given the large systematic uncertainty on the

velocity dispersion described in the next paragraph, residual AGN contamination is not a

dominant source of bias.

We also measure the line-of-sight velocity dispersions of G3–G6 and S2 from the MUSE

spectra (Table 3.1). We adopt an uncertainty of 20 km s−1 on the measured velocity disper-

sion to account for the typical systematic uncertainty for kinematics extracted from MUSE

spectra (Guérou et al. 2017). The estimated PSF from the stars in the MUSE observation

can be different than the PSF of the quasar due to different SED within a filter. How-

ever, the impact in the estimated velocity dispersion from this potential PSF mismatch is

subdominant to this conservative estimate of the systematic uncertainty.

3.3.3 Time delays

Courbin et al. (2018) present the measured time delays between the images of DES J0408−5354.

This system was monitored to obtain light-curves of the lensed images using the MPIA 2.2

m telescope at La Silla observatory between 2016 October 1 and 2017 April 8. The system

was observed almost daily except for 14 consecutive nights between 2016 December 10 and

2016 December 24, and for one week in 2017 January due to bad weather and technical
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Table 3.1: Redshift and stellar velocity dispersion for the line-of-sight galaxies G3–G6 and

S2. The relative offsets of the observed centroids for G3–G6 are computed from the coor-

dinate RA 04:08:21.71 and Dec −53:53:59.34. The tabulated uncertainties for the velocity

dispersions are statistical uncertainties. However, we adopt a 20 km s−1 uncertainty for each

measurement to account for the typical systematic uncertainty for kinematics obtained from

MUSE spectra (Guérou et al. 2017). The redshifts are precise up to the specified decimal

point.

Galaxy ∆RA ∆Dec Redshift Stellar velocity dispersion

(arcsec) (arcsec) (km s−1)

G3 1.08 −6.52 0.769 226 ± 7

G4 -0.40 −13.58 0.771 153 ± 10

G5 5.34 −0.78 1.032 56 ± 2

G6 10.90 5.53 0.594 63 ± 7

S2 – – 2.228 46 ± 9
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Figure 3.1: RGB color composite of the lens systems DES J0408−5354. The three HST filters

used to create the RGB image are F160W (red), F814W (green), and F475X (blue). The

relative amplitudes between the three filters are adjusted in this figure for better visualization

by achieving a higher contrast. We label different components of the lens system. G1 is the

main deflector galaxy and G2 is its satellite galaxy. In addition to the lensed arcs from the

extended quasar host galaxy, this lens system has extra source components S2 and S3. The

source component S2 is doubly imaged and forms an extended arc inside the Einstein radius.

S3 forms another fainter extended arc on the North-East outside the Einstein radius without

a noticeable counterimage. Four nearby perturbers G3–G6 along the line of sight are marked

with the dashed, white circles.
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problems. Additional monitoring was carried out using the 1.2 m the Leonhard Euler 1.2 m

Swiss Telescope (Euler) between 2016 July and 2017 April. The mean observation cadence

with Euler is 5 d. From these light-curves of the lensed images, the measured time delays are

∆tAB = −112.1± 2.1 d, ∆tAD = −155.5± 12.8 d, and ∆tBD = −42.4± 17.6 d (see Fig. 3.1

for the naming of the images). The time delays relative to image C could not be measured

due the close proximity of a satellite galaxy as it is difficult to deblend the quasar flux from

the satellite’s in the ground-based monitoring data.

3.3.4 Velocity dispersion of the central deflector

Buckley-Geer et al. (2020) measure the velocity dispersion of G1. The velocity dispersion

is measured with four different observing setups: two mask setups with the Magellan tele-

scope, one with the Gemini telescope, and one with the MUSE spectra. The specifics and

the measured values from these four setups are tabulated in Table 3.2. We estimate the sys-

tematic uncertainty σsys
σlos

in the measured velocity dispersion to add the reported statistical

uncertainty σstat
σlos

. We infer a systematic uncertainty of 17 km s−1 from the variance in the

estimated velocity dispersions when different settings – e.g. the stellar population library,

the stellar templates, the wavelength region – are varied in the kinematic fitting. We form

a covariance matrix for the velocity dispersion measurements with (σsys
σlos

)2 + (σstat
σlos

)2 for the

diagonal terms and (σsys
σlos

)2 for off-diagonal terms, as the source of the systematic in the

kinematic fitting is common between all the measurements.
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Table 3.2: Measurements of velocity dispersion from three different setups from Buckley-Geer et al. (2020). The quoted

uncertainties are only statistical, see Section 3.3.4 for the estimated systematic uncertainty.

Instrument and setup Aperture dimension Aperture rotation Seeing Moffat PSF exponent Velocity dispersion

(arcsec × arcsec) (deg E of N) (arcsec) (km s−1)

Magellan mask A 1×1 99 0.68 −2.97 230 ± 37

Magellan mask B 1×1 99 0.76 −3.20 236 ± 42

Gemini mask A2 0.75×1 0 0.52 −3.06 220 ± 21

MUSE 1×1 0 0.61 −1.55 227 ± 9
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3.3.5 Estimate of the external convergence

Buckley-Geer et al. (2020) present the distribution of the external convergence κext for DES

J0408−5354. This analysis is based on the weighted galaxy number counts approach of

Greene et al. (2013), which was further developed by Rusu et al. (2017), Birrer et al. (2019),

and Rusu et al. (2019). In brief, weighted number counts are computed in 45 arcsec- and 120

arcsec-radii apertures centred on the lensing system, up to a depth of I = 22.5 mag, using

simple physical weights robust to measurement errors, such as the inverse of the distance to

the lens and photometric/spectroscopic redshifts. Analogous number counts are computed

in a large number of same-size apertures and depth in a cosmological survey, in this case

DES, so as to measure the over/underdensity of the DES J0408−5354 line of sight relative

to the median line of sight through the Universe, in terms of weighted number count ratios.

In this case, the line of sight was found to be underdense, and a combination of weighted

number count ratios was used as constraint to select statistically similar lines of sight from

the Millennium Simulation (Springel et al. 2005). Using the external convergence maps from

Hilbert et al. (2009) corresponding to each Millennium Simulation line of sight, we construct

a probability distribution function of κext. This probability distribution function of κext is

provided in Section 3.6.2.2 (specifically in Fig. 3.7).

3.4 Lens model ingredients

In this section, we describe the mass and light profiles used to construct the lens model in

our analysis.

3.4.1 Central deflector’s mass profiles

To model the main deflector’s mass distribution, we adopt two sets of profiles: (i) power-law,

and (ii) composite mass profile.
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3.4.1.1 Power-law mass profile

We adopt the power-law elliptical mass distribution (Barkana 1998). This profile is described

by

κPL(θ1, θ2) =
3− γ

2

[
θE√

qmθ2
1 + θ2

2/qm

]γ−1

, (3.42)

where γ is the power-law slope, θE is the Einstein radius, and qm is the axis ratio. The

coordinates (θ1, θ2) are in the frame that is aligned with the major and minor axes. This

frame is rotated by a position angle ϕm from the frame of on-sky coordinates.

3.4.1.2 Composite mass profile

In the composite mass profile, we adopt separate mass profiles for the baryonic and the dark

components of the mass distribution.

For the dark component, we choose a Navarro–Frenk–White (NFW) profile with ellipticity

defined in the potential. The spherical NFW profile in 3D is given by

ρNFW(r) =
ρs

(r/rs) (1 + r/rs)
2 , (3.43)

where rs is the scale radius, and ρs is the normalization (Navarro et al. 1997).

For the baryonic mass profile, we adopt the Chameleon convergence profile. The Chameleon

profile approximates the Sérsic profile within a few per cent in the range 0.5–3Reff , where

Reff is the effective or half-light radius of the Sérsic profile. The Chameleon profile is the

difference between two non-singular isothermal ellipsoids given by

κChm(θ1, θ2) =
κ0

1 + qm

[
1√

θ2
1 + θ2

2/q
2
m + 4w2

c/(1 + q2
m)

− 1√
θ2

1 + θ2
2/q

2
m + 4w2

t /(1 + q2
m)

] (3.44)

(Dutton et al. 2011; Suyu et al. 2014). This profile is convenient to compute lensing properties

using closed-form expressions.
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With each of these models, we include an external shear profile parameterized with the

shear magnitude γext and shear angle ϕext.

3.4.2 Central deflector’s light profile

We use the Sérsic profile and the Chameleon profile to model different light components of

the lens system.

3.4.2.1 Sérsic profile

The Sérsic profile is given by

ISérsic(θ1, θ2) = Ieff exp

−bn

(√

θ2
1 + θ2

2/q
2
L

θeff

)1/ns

− 1


 , (3.45)

where θeff is the effective radius, Ieff is the amplitude at θeff , and ns is the Sérsic index (Sérsic

1968). The factor bn normalizes the profile such that half of the total luminosity is contained

within θeff .

3.4.2.2 Chameleon profile

We use the same Chameleon profile from equation (3.44) to fit the central deflector’s light

profile by replacing the convergence amplitude κ0 with flux amplitude I0.

3.4.3 Quasar host galaxy’s light profile

We choose an elliptical Sérsic profile to model the smooth component of the quasar host

galaxy’s light distribution. Additionally, we use a basis set of shapelets to reconstruct the

non-smooth features in the extended source light distribution (Refregier 2003; Birrer et al.

2015). The set of shapelets is characterized with a scale size ς and maximum polynomial

order nmax. The order nmax determines the total number of shapelet components nshapelet =
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(nmax + 1)(nmax + 2)/2.

We model the quasar images as point-sources on the image plane convolved with the

reconstructed point spread function (PSF). We let the amplitudes of each quasar image free.

3.5 Lens model setups

In this section, we present the specific model choices for DES J0408−5354. Extending on

the baseline models, we choose different options – that we consider equally viable – for

some particular components of the model. A combination of these options then make up

our model settings S for each mass profile family M . To be specific, the model settings S

include the model components describing the source and the line-of-sight galaxies, and the

model settings M include the mass and light profiles of the central deflector galaxy G1. We

marginalize over these model settings S to account for any possible source of systematics

that may be introduced from adopting only one specific choice. We first state the baseline

models in Section 3.5.1. Then, we elaborate on the different additional model choices in

Sections 3.5.2–3.5.9, and we summarize the set of model settings S that we marginalize over

in Section 3.5.11. A summary of the adopted models and the parameter priors are tabulated

in Appendix 3.G.

3.5.1 Baseline models

The specifics of the baseline models agreed by the participating independent modelling teams

are:

1. Central deflector G1’s mass profile: power-law profile and composite profile (elliptical

NFW potential for the dark component, double Chameleon convergence for luminous

component),

2. Central deflectors G1’s light profile:
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(1) For models with power-law mass profile: double Sérsic profile in all three bands,

(2) For models with composite mass profile: double Chameleon light profile in the F160W

band linked with the double Chameleon mass profile, double Sérsic profiles in UVIS

bands,

3. Satellite G2’s mass profile: singular isothermal sphere (SIS) placed on G1’s lens plane,

4. External shear,

5. Explicit modelling of the line-of-sight galaxies G3–G6, multilens-plane treatment for G3,

6. Multisource-plane treatment for quasar host S1 and additional source component S2.

In the next sections, we explain these model settings and further extend on some of these

settings as we see fit.

3.5.2 Central deflector G1’s mass and light profiles

We choose two sets of mass profile for the central deflector G1: power-law mass profile and

composite mass profile.

For the corresponding light profile distribution of G1 with the power-law mass profile,

we adopt a double Sérsic profile in the IR band, and a single Sérsic profile for each of the

UVIS bands. Here, we deviated from the baseline model of double Sérsic profile for the

UVIS bands, as we find a single Sérsic profile for each of the UVIS bands is sufficient and

the posteriors of the lens model parameters are almost identical between the double Sérsic

and single Sérsic profiles for the UVIS bands. Therefore, we adopt the single Sérsic profile

for the UVIS bands to increase numerical efficiency by simplifying our model. However, we

still use the double Sérsic profile in the IR band where the signal-to-noise ratio of the galaxy

light is higher and thus more flexibility is needed to render it within the noise. The centroids

are joint for all the Sérsic profiles between the bands. The axis ratio qL, position angle ϕL,
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and the Sérsic index ns are also joint between the UVIS bands. We let effective radius θeff

and amplitude Ieff as free parameters independently for all bands to allow a color gradient.

For the composite mass profile, we model the dark matter distribution with a NFW

profile with ellipticity parameterized in the potential. For the baryonic matter distribution,

we adopt two concentric Chameleon profiles to model both the luminous mass distribution

and the light distribution in the F160W band. We join the scaling and ellipticity parameters

of each pairing of the Chameleon profiles between the baryonic mass distribution and the

F160W light distribution. We do not fix the amplitude ratio between the two Chameleon

profiles and this ratio is sampled as a non-linear parameter in our model. For each of the

two UVIS bands, we adopt a single Sérsic profile. Similar to power-law profile, the Sérsic

profile parameters except θeff and Ieff are joint between the UVIS bands and the centroids of

the all the deflector light profiles are joint together. The amplitudes of the mass and light

profiles are independent of each other, thus we allow the mass-to-light ratio (M/L) to be

free. We adopt a Gaussian prior equivalent to 12.74±1.71 arcsec for the NFW scale radius rs

based on the results of Gavazzi et al. (2007) for the Sloan Lens ACS (SLACS) survey lenses

(Bolton et al. 2006). G1’s velocity dispersion and redshift are within the range of those from

the SLACS lenses, thus SLACS is a representative sample of elliptical galaxies such as G1

(Treu et al. 2006). Similar priors were adopted in previous H0LiCOW analyses of time-delay

lenses (e.g., Wong et al. 2017; Rusu et al. 2019).

We find the half-light radius θeff of the Sérsic profiles to be degenerate with the Sérsic

index ns in our models and the models tend to optimize towards large values of θeff that is in-

consistent with our observational prior. To prevent θeff from converging towards abnormally

large values, we impose an empirical prior on θeff . We derive a scaling relation from the dis-

tribution of the central velocity dispersion σe/2 measured within half of effective radius and

Reff in physical unit for the lenses in the SLACS sample (Auger et al. 2010a). We account

for intrinsic scatter in the derived scaling relation as we are ignoring the average surface

brightness I(Reff) in the relation between the three quantities along the fundamental plane.
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Then, we derive a distribution for Reff for DES J0408−5354 for the given central velocity

dispersion measurements from Table 3.2. In practice, we simultaneously sample RJ0408
eff and

the parameters {m, b,S} – for the scaling relation

log10(σlos/km s−1) = m log10(Reff/kpc) + b (3.46)

with scatter S – from a joint likelihood for the SLACS sample data and the measured velocity

dispersions of DES J0408−5354. For each sampled RJ0408
eff , we transform the measured central

velocity dispersions within each aperture into σe/2 using the aperture correction formulae

given by Jorgensen et al. (1995). We include the intrinsic scatter in the likelihood term for

DES J0408−5354’s velocity dispersions, thus the scatter in the scaling relation propagates

into the RJ0408
eff distribution. We estimate the scaling relation parameters as m = 0.18+0.05

−0.04,

b = 2.2± 0.04, S = 1.53± 0.05. We convert the RJ0408
eff distribution in physical unit into θeff

distribution in angular unit using the angular diameter distance to DES J0408−5354 for our

fiducial cosmology, however we add 10 per cent uncertainty to the distribution to remove

any strong dependence on the choice of cosmology. We take a Gaussian prior with the same

mean and standard deviation of the resultant θeff distribution from the SLACS lenses (Table

3.9). We adopt this prior only to prevent θeff from veering off to very large values. The

adopted prior is broad enough not to bias the θeff posterior within the plausible range of

values, including for the double Sérsic profile.

3.5.3 Satellite G2’s mass and light profile

In addition to the power-law or composite mass profile for the central deflector, we add

a singular isothermal sphere (SIS) profile for G2’s mass distribution and a circular Sérsic

profile for its light distribution. The Sérsic profile parameters except θeff are joint between

all bands. We join the centroid between the SIS and Sérsic profiles. Although a deviation

from the isothermal profile in G2’s mass can potentially change the deflection potential at

image C, such a change will be negligible in our inference of H0 as time-delays with respect to
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image C are not used in our inference. The SIS profile is sufficient to capture the astrometric

position of the image C in our modelling.

3.5.4 Nearby line-of-sight galaxies

We explicitly model the mass distributions of line-of-sight galaxies G3–6 to fully capture

their higher than second-order lensing effects that cannot be accounted for by the external

convergence and the external shear profiles. First in Section 3.5.4.1, we describe our selection

criterion for the line-of-sight galaxies to explicitly include in our lens model. Then in Section

3.5.4.2, we explain the mutli-lens-plane treatment of the line-of-sight galaxies. Lastly in

Sections 3.5.4.3 and 3.5.4.4, we describe the mass profiles we adopt to model these line-of-

sight galaxies.

3.5.4.1 Selection criterion of the line-of-sight galaxies for explicit modelling

To select the line-of-sight galaxies for explicit modelling, we first estimate the contribution in

time-delays between the images from higher than second-order derivatives of the deflection

potential of these galaxies. To quantify this effect, we set a SIS profile for each perturber

with its Einstein radius corresponding to the estimated central velocity dispersion. We infer

the velocity dispersion for all the line-of-sight galaxies from their stellar masses using two

scaling relations – one from Auger et al. (2010a) and the other from Zahid et al. (2016).

To be conservative, we choose the upper limit of the 1σ confidence interval of the estimated

stellar mass and choose the larger value of the velocity dispersions estimated from the two

scaling relations (Buckley-Geer et al. 2020). We select the line-of-sight galaxies that may

cause more than 1 per cent shift in the measured Hubble constant if higher than second-order

derivatives of their deflection potential are ignored. The shift in the Hubble constant can be

related to the relative astrometric shift δθAB between image A and B as

δH0

H0

.
D∆t

c∆tAB

(θA − θB) · δθAB (3.47)
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(Birrer & Treu 2019). We take the relative astrometric shift δθAB = α
(3)
A − α

(3)
B , where

the term on the right-hand side is the relative deflection angle for third and higher order

lensing effects from the SIS profile corresponding to each line-of-sight galaxy. Thus, we set

the selection criterion

Dfiducial
∆t

c∆tAB

(θA − θB) ·
(
α

(3)
A −α

(3)
B

)
≥ 0.01. (3.48)

This criterion selects G3–G6 for explicit modelling. Note that the perturber selection cri-

terion based on the “flexion shift” ∆3x > 10−4 also selects G3–G6 for explicit modelling

(McCully et al. 2017; Sluse et al. 2019; Buckley-Geer et al. 2020).

3.5.4.2 Multilens-plane modelling of the line-of-sight galaxies

We model this lens system with a multilens-plane treatment by setting G3’s lens plane at

its own redshift zG3 = 0.769, as G3 is close enough to G0 to cause more than 1 per cent

deviation in the computed time-delays if we place it on G0’s lens plane. We place G4–G6

on G0’s lens plane as we assume that the deviation in computed time-delays due to this

assumption is negligible given the combinations of their stellar masses and distances from

G0.

Additionally, we model the mass profile of S2 at its redshift zS2 = 2.228. Therefore, we

have three lens-planes in our model. We can express the effective Fermat potential for the

triple-lens-plane case from equation (3.9) as

φeff(θ) =

[
DG3DG1,S1

DS1DG1,G3

(θG1 − θG3)2

2
− ψG1(θG1)

]
+

1 + zG3

1 + zG1

[
DG3DS2DG1,S1

DG1DS1DG3,S2

(θG3 − θS2)2

2

−DG3DG1,S1

DG1DG3,S1

ψG3(θG3)

]
+

1 + zS2

1 + zG1

DS2DG1,S1

DG1DS2,S1

[
(θS2 − β)2

2
− ψS2(θS2)

]
.

(3.49)

Here, θG is the quasar’s image position on G’s plane with G ∈ {G1, G3, S2}, ψG is the
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deflection potential of G, and β is the quasar’s position on the source-plane. We fix the

distance ratios in the above equation in our modelling. We adopt the ΛCDM cosmology

with the cosmological density parameters Ωm = 0.3, ΩΛ = 0.7 to obtain these distance

ratios. The relevant distance ratios change by less than 1 per cent within 0.25 . Ωm . 0.35

and −1.1 . w . −0.9 (Fig. 3.2). Therefore, adopting this fiducial cosmology is only a

weak assumption in our analysis. Fixing these distance ratios does not linearly affect our

inference of H0, as the ratios do not depend on H0. However, there can potentially be a small

non-linear shift in the inferred H0 from our analysis had we adopted a different set of values

for Ωm and ΩΛ. The non-linear effect on H0 from fixing density parameters in the multilens-

plane treatment was demonstrated to be less than 1 per cent for two previously analysed

lens systems, HE 0435–1223 and WFI 2033–4723 (Wong et al. 2017; Rusu et al. 2019). In

Appendix 3.A, we show that H0 shifts by less than 1 per cent if we change the matter density

parameter to Ωm = 0.1 and to Ω = 0.45 within the ΛCDM cosmology. This range in Ωm

covers nearly the full range of our prior Ωm ∈ [0.05, 0.5] for inferring H0 for the ΛCDM

cosmology. As a shift less than 1 per cent in H0 is much smaller than the typical precision

on H0 (∼5–8 per cent) allowed by the current data quality, we consider that the impact

of fixing the distance ratios using a fiducial ΛCDM cosmology has negligible impact in our

analysis. However, we find that our inference of H0 is sensitive to the dark energy equation

of state parameter w in the wCDM cosmology. As we adopt a double source plane model –

as described in Section 3.5.6 – the distance ratios or the ζ terms in equation (3.8) become

sensitive to w (Gavazzi et al. 2008; Collett et al. 2012; Collett & Auger 2014). Therefore, the

distance posteriors from this analysis should not be used to infer H0 in extended cosmologies

other than the ΛCDM model. We postpone the derivation of a distance posterior in more

general cosmologies to future work.

We model G3 and S2 with SIS profiles. We place G3 at it’s “true” position on its own lens

plane by tracing back from its observed position accounting for the foreground deflectors.

As we also model the flux distribution from S2, we join the centroid of S2’s mass profile with
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Figure 3.2: Impact of varying Ωm in the ΛCDM cosmology on the angular diameter distance

ratios between the lens and source planes. All the distance ratios except for the black

line changes less than 1 per cent for a wide range of Ωm. The black line corresponds to

the distance ratio involving S2’s lens plane. As the S2’s Einstein radius is small (∼0.002

arcsec), the change in the black line only has a small effect on the effective Fermat potential

[cf. equation (3.49)]. Therefore, fixing the distance ratios for the fiducial cosmology with

Ωm = 0.3 is not a strong assumption in our analysis. See Appendix 3.A for tests validating

this point.
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Figure 3.3: Observed and estimated properties of the line-of-sight galaxies G3–G6. Top

left: velocity dispersions derived from the MUSE integral field spectra. Top right: SIS

Einstein radius distributions obtained from the observed velocity dispersions. Middle left:

estimated stellar masses from Buckley-Geer et al. (2020). Middle right: halo mass M200

inferred from the estimated stellar mass using the stellar mass–halo mass relation from

Behroozi et al. (2019). Bottom left: halo concentration parameter c200 obtained using a

halo mass–concentration relation for our fiducial cosmology (Diemer & Joyce 2019). Bottom

right: scale radius of the NFW profile in angular unit for our fiducial cosmology from the

M200 and c200 priors. The intrinsic scatter and uncertainties of the adopted scaling relations

are accounted for at each conversion step. We use the SIS Einstein radius distributions as

priors for the SIS model and the M200 and c200 distributions as priors for the NFW model

for G4–G6.
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its light centroid on its plane.

For G4–G6, we fix their centroids at their observed position on the lens plane of G1. For

the mass profiles of G4–G6, we adopt two choices: the SIS profile and the spherical NFW

profile. We choose the additional NFW model for G4–G6 as the NFW scale radius estimated

from each of their stellar masses is smaller than the distance between the galaxy and G0

(Fig. 3.3, Section 3.5.4.4). Thus, their mass profile slopes can potentially be different from

the isothermal profile at the centre of G0. In Sections 3.5.4.3 and 3.5.4.4, we describe the

priors for the SIS and NFW profile parameters, respectively, of the line-of-sight galaxies.

3.5.4.3 SIS profile for the line-of-sight galaxies

We estimate the SIS Einstein radius distribution from each galaxy’s SIS velocity dispersion

σSIS using the relation

θE,SIS = 4π
(σSIS

c

)2 DG,S1

DS1

, (3.50)

where θE,SIS is the Einstein radius for an SIS profile, and DG,S1 is the angular diameter

distance between a line-of-sight galaxy G ∈ {G3, G4, G5, G6, S2} and S1. We calculate the

distance ratio in the above equation using our fiducial cosmology. We do not need to add

uncertainty to the fiducial cosmology used here as the distance ratios are independent of H0

and a large shift (e.g., by 0.1) in Ωm changes them by negligible amount relative to the 20

km s−1 uncertainty we adopted for the velocity dispersions.

G4 and G6’s observed morphologies indicate that they are elliptical galaxies. Therefore,

we take their observed stellar velocity dispersions σap as σSIS in equation (3.50) to obtain

these galaxies’ Einstein radius prior distributions (Treu et al. 2006; Auger et al. 2010a).

In contrast, G5’s spectra contains bright [O ii] emission lines indicative of a star-forming

galaxy. We also take S2 as a star-forming galaxy due to its blue color in the HST three-

band imaging (Fig. 3.1). Therefore, we estimate the rotational velocities vc of G5 and S2

from their observed ‘aperture-averaged’ velocity dispersions σap using the scaling relation
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between v2
c/σ

2
ap and Sérsic index ns from Agnello et al. (2014). We obtain the Sérsic index

of G5 ns = 4 by fitting a Sérsic profile to its light distribution in the F814W band. From

a preliminary lens model, we adopt S2’s Sérsic index as ns = 1.5. For these Sérsic indices,

the v2
c/σ

2
ap ratios are approximately 2.5 and 2.2, respectively, for G5 and S2. We adopt a

Gaussian uncertainty with standard deviation 0.2 for these ratios to account for the scatter

observed in the v2
c/σ

2
ap–ns distribution (cf. fig. 6 of Agnello et al. 2014). Then, to convert

the estimated rotational velocity vc into the corresponding SIS velocity dispersion σSIS, we

use the relation

σ2
SIS =

GM(R)

2R
=
vc(R)2

2
, (3.51)

where M(R) is the enclosed 3D mass within a radius R. The estimated SIS velocity dis-

persions are σG5
SIS = 62 ± 22 km s−1 and σS2

SIS = 48 ± 11 km s−1. We parameterize the SIS

Einstein radius distributions derived from the velocity dispersions as Gaussian priors for the

SIS mass profiles of G3–G6 and S2.

3.5.4.4 NFW profile for the line-of-sight galaxies

We parameterize the NFW profiles for G4–G6 with the halo mass M200 and concentration

c200. We obtain the priors on the NFW profile parameters from the estimated stellar masses

of G4–G6 (Buckley-Geer et al. 2020). We derive the halo mass distribution from the stellar

mass distribution using the stellar mass–halo mass relation from Behroozi et al. (2019) for

the respective redshift of the line-of-sight galaxy. We weight the halo-mass distribution with

the halo mass function for our fiducial cosmology and the relevant redshift from Tinker et al.

(2008). We obtain the concentration distribution from the halo mass distribution for our

fiducial cosmology using the M–c relation from Diemer & Joyce (2019). We propagate the

uncertainties and scatters in these relations when deriving one quantity from another. The

M200 priors and c200 priors for G4–G6 are shown in Fig. 3.3. We can also derive the NFW

scale radius rs = R200/c200 in physical unit, and convert it to the scale radius θs in angular

unit given our fiducial cosmology (Fig. 3.3). We do not use these scale radii as prior, we only
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show the distributions to motivate our choice of the NFW profile for the galaxies G4–G6.

3.5.5 Galaxy group containing G1

We do not explicitly model the galaxy group that contains the central deflector G1 [Group

5 in Buckley-Geer et al. (2020)]. The estimated flexion shift log10 ∆x3 = −3.86+0.97
−0.72 for this

group is marginally above the conservative threshold ∆x3 > 10−4 (Buckley-Geer et al. 2020).

However, the larger end of the flexion shift is provided by the case where the group is centred

near to the central deflector. In that case, the group’s halo coincides with the deflector’s

halo, which is already accounted for in our lens models. However, if the group’s centroid is

offset from the central deflector, then the flexion shift becomes smaller. Then, the group’s

contribution can be considered only in the approximated convergence, as the external shear

profile already captures the shear contribution from the group. In Appendix 3.C, we show

that the impact of the group’s convergence, if explicitly accounted for, only shifts H0 by 0.4

per cent. This small shift justifies our choice of not including the group in our lens model.

3.5.6 Source component light profiles

We use an elliptical Sérsic light profile and a set of shapelets to reconstruct the quasar host

S1’s light profile. We join all the Sérsic profile parameters across the three bands. We join the

shapelet scale size ς across the UVIS bands and leave ς in the IR band as a free parameter.

To reconstruct S2’s light profile, we take a basis set of one elliptical Sérsic profile and

multiple shapelets. We join the Sérsic profile parameters and the shapelet scale size ς across

bands. For S3’s light profile, we adopt only an elliptical Sérsic profile. All the profile

parameters for this profile except the amplitude Ieff are joint across the three bands.

For each model setup, we choose three fixed values of nmax: S1’s nmax in the IR band,

S1’s nmax in the UVIS band, and S2’s nmax common across the three bands. We adopt three

different sets of {nS1, IR
max , nS1, UVIS

max , nS2
max}: {6, 3, 2}, {7, 4, 2}, {8, 5, 3}. A minimum number
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of shapelets is necessary to sufficiently capture the complex structures in the lensed arcs,

however we would start to fit the noise in the data by adopting too many more shapelets

than necessary. We choose these values for nmax so that we hit a balance between these two

scenarios. As we show in Table 3.3, the model evidence peaks around these values leading to

our choice of these nmax values. We check if the inferred H0 value from our analysis depends

on the particular range of nmax values adopted above. We find that a set of larger nmax

values {12, 9, 9, 4} and a set of smaller nmax values {2, 2, 2, 2} both infer H0 within the range

spanned by the models with our adopted nmax values. Thus, our inference of H0 is robust

against the particular range of adopted nmax values.

We place the additional source component S2 at the source plane with redshift zS2 =

2.228. As we do not know the redshift of S3, we adopt two choices for its redshift: zQSO and

zS2.

For the model where we place S3 on S2’s plane, we ignore the mass distribution of

S3. From our lens model, we find that S3 is approximately twice further away from the

quasar position on S2’s plane than S2. We run a lens model ignoring S2’s mass profile as

well and find that the time-delay distance shifts by 0.94 per cent. The total flux from the

reconstructed source light distribution of S2 and S3 are comparable after accounting for

lensing magnification. If S2 and S3 are at a similar redshift, then they have similar total

mass. If we assume SIS profile for S2 and S3, then the convergence of S3 at the quasar

position would be approximately half of that from S2. We estimate that the time-delay

distance will shift by . 0.5 per cent due to ignoring S3’s mass distribution, if it indeed

lies at a similar redshift of S2. This shift is negligible compared to the typical uncertainty

(5–8 per cent) on the estimated time-delay distance given the quality of the current data.

Therefore, we do not include its mass distribution in our model as we do not know the true

redshift of S3.
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3.5.7 Potential additional image C2 split from the image C

A faint blob is noticeable on a few pixels toward North-East from the position of G2 in the

F160W band. This blob can potentially be another quasar image C2 split off from the image

C by the nearby satellite G2. This potential additional image is not noticeable in the UVIS

bands, but this non-detection in the UVIS bands can be caused by differential extinction

through G2. If such an additional image is predicted by the model, we allow the model to

assign point-source-like flux at the position of the predicted additional image. Note that we

do not impose the existence of this additional image in the model.

3.5.8 HST image region for likelihood computation

To compute the imaging likelihood, we choose a large enough circular region of the HST

image centred on the deflector galaxy in each band so that it contains most of the flux

from the lens system in that particular band. The radii of these regions are 4.3, 3.3, and

3.3 arcsec in the F160W, F814W, and F475X bands, respectively. We mask out some of

the pixels around the faint blob visible between G1 and G3 to block its light that would

otherwise be within the chosen apertures. See the “Normalized Residual” plots of Figs 3.4

or 3.5 for the shape of the likelihood computation regions. In Appendix 3.B, we show that

this particular choice of likelihood computation regions is not a source of bias in our analysis.

3.5.9 Dust extinction by the satellite G2

The satellite G2 may cause differential dust extinction to the lensed light distribution near

image C. Ignoring this differential extinction may produce poor fitting around image C

in the modelling. To account for this effect, we multiply a differential extinction factor

exp[−τλ(θ1, θ2)] to the lensed light distribution from the quasar host galaxy in all three

bands. Here, τλ is equivalent to an optical depth parameter. We set the differential ex-

tinction profile proportional to G2’s IR surface brightness with a wavelength-dependent
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normalization. Therefore, we take τλ(θ1, θ2) = τ 0
λIG2(x, y), where IG2(θ1, θ1) is G2’s light

distribution parameterized with a Sérsic profile as described in Section 3.5.3. Thus, we are

only modelling the differential extinction effect by G2 and this extinction goes to zero far

away from G2. We do not model the differential extinction effect for the central deflector

G1 as elliptical galaxies like G1 are typically dust-poor. We connect the proportionality

constant τλ0 for each band using the differential extinction law of Cardelli et al. (1989) with

RV = 3.1. As a result, we only have τ 0
F814W as a non-linear parameter in our model. As a

check, we run a lens model with the proportionality constant τ 0
λ in each band independent

of each other and we find that the three constrained τ 0
λ parameters follow the extinction

law from Cardelli et al. (1989) for RV ∼3–5. The amplitudes of the quasar images are free

parameters, therefore any possible differential extinction effect in the quasar image flux is

already accounted for.

3.5.10 Requirement for astrometric precision

For the lens system DES J0408−5354, a precision of 6 mas is required in the estimated

source position to match the precision of the most precise time delay, ∆tAB (Birrer & Treu

2019). Given the magnification and the multiplicity of the images, this precision in the

source position translates to an astrometric precision of approximately 40 mas for each

image position on the image plane under a fixed lens model. As we can constrain the image

positions in our models within 10 mas, we meet the requirement for astrometric precision.

We expect any non-accounted astrometric uncertainty on the level of 10 mas or below to be

subdominant in the error budget and the systematic impact.

3.5.11 Model choice combinations

Assembling the different choices described above for various components in our models, we

have the following options that we vary:
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1. Central deflector G1’s mass profile: power-law, composite,

2. Source nmax: {6, 3, 2}, {7, 4, 2}, {8, 5, 3},

3. S3 redshift: zQSO = 2.375, zS2 = 2.28, and

4. G4–G6 mass profile: SIS, NFW.

Taking all possible combinations of these choices, we have 24 different models in total –

12 for the power-law and 12 for the composite mass profiles. All the light profiles for lens

and source light distribution form a linear basis set, thus all the amplitude parameters are

linear (Birrer et al. 2015; Birrer & Amara 2018). We have 85–137 linear parameters and

57–62 non-linear parameters in the 24 model setups with either power-law or composite mass

profiles.

We can compare the number of chosen models in this study with the 128 model runs

performed in the cosmographic analysis of SDSS 1206+4332 (Birrer et al. 2019). Since

Birrer et al. (2019) performed two separate sampling runs for the same model, these authors

adopt 64 different models in practice combining the power-law and composite mass profiles.

As Birrer et al. (2019) find that explicitly accounting for the non-linear components of the

foreground shear has negligible impact in the cosmographic analysis, we choose not to include

it in our analysis. Note, the linear components of the foreground shear is already accounted

by the adopted external shear profile. Moreover, Birrer et al. (2019) incorporate two different

likelihood-computation region sizes in their model choices, whereas we do not vary it in our

analysis as we show that our analysis is stable against different choices of the likelihood-

computation region size (Appendix 3.B). As a result, the comparable number of models in

Birrer et al. (2019) is 16 to contrast with our adopted model number of 24. These numbers,

although not identical, are comparable and difference between the exact number of chosen

models to check systematics can arise naturally due to different complexity in different lens

systems.
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3.6 Lens modelling and cosmographic inference

In this section, we first present the lens modelling results (Section 3.6.1), combine the time-

delay and kinematics likelihoods with the lens model posterior to produce the cosmological

distance posterior (Section 3.6.2), and infer H0 from the distance posterior (Section 3.6.3).

3.6.1 Modelling workflow and results

We simultaneously model the images from all three HST bands. For each model choice from

Section 3.5.11, we reconstruct the PSF for each HST band. Thus, a set of three reconstructed

PSFs is part of the model choice S that we marginalize (cf. equation 3.27). To initiate the

PSF reconstruction, we take an initial PSF estimate by taking the median of a few (∼4–6)

stars from each HST image and then re-centring the median PSF. At each iteration of the

PSF reconstruction process, we first realign the IR band’s coordinate system with the UVIS

bands’ coordinate system using the quasar image positions (Shajib et al. 2019). Then, we

optimize the lens model given the PSF from the initial estimate or the previous iteration

of PSF reconstruction. Finally, we subtract the extended host-galaxy and the lens-galaxy

light from the image and optimize the PSF using the residual quasar images (see for details

Birrer et al. 2019, and for similar procedure Chen et al. 2016). We use lenstronomy for

lens modelling and PSF reconstruction and the particle swarm optimization (PSO) routine

of cosmohammer for optimizing the model (Kennedy & Eberhart 1995; Akeret et al. 2013;

Birrer & Amara 2018). We repeat the set of the following three steps five times in total to

reconstruct the PSF:

1. IR band image re-alignment,

2. lens model optimization using PSO,

3. PSF reconstruction.

We check that the reconstructed PSF stabilizes after five such iterations as the PSFs from
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additional iterations do not lead to higher imaging likelihood.

After the PSF reconstruction, we simultaneously sample from the lens model posterior

and compute the model evidence Z using the dynamic nested sampling algorithm (Skilling

2004; Higson et al. 2018). We use the nested sampling software dypolychord (Handley

et al. 2015; Higson et al. 2019). In Appendix 3.E, we describe the sampler settings, assess the

numerical performance, and conclude that the choosen settings allow for sufficient exploration

of the posterior space.

We perform our analysis while blinding H0 and other model parameters and lensing

quantities directly related to H0, i.e. the model-predicted time delays. We also blind the

mass profile slope γ of the power-law model after the initial exploration stage to find a stable

preliminary lens model. In practice, the mean of the blinded quantities are always subtracted

from the distribution within the analysis software, so that the printed values or plotted

distributions are centred at zero. After all the co-authors had agreed during a teleconference

on 2019 September 25 that sufficient amount of checks for modelling systematics were carried

out, the analysis was frozen and the actual posterior distribution of H0 was revealed for the

first time. We report this H0 posterior in this chapter without any further alteration.

Figs. 3.4 and 3.5 display the most likely models for the power-law and composite profiles,

respectively. In addition to the lensed complex structures in the Einstein ring from the

extended quasar host galaxy, the lensed arcs S2 and S3 are also reproduced very accurately.

Moreover, the models reproduce the additional split image C2 on the other side of G2 from

image C.

Tables 3.3 and 3.4 tabulate the evidences for different model choices. We combine the

model posteriors weighted by the evidence ratios within each lens model family – power-law

or composite – to marginalize over the model choices. Previous studies – e.g. Birrer et al.

(2019); Rusu et al. (2019); Chen et al. (2019) – use the Bayesian information criterion (BIC)

as an estimate of the evidence for Bayesian model averaging (BMA; e.g. Madigan & Raftery

1994; Hoeting et al. 1999). Whereas BIC estimates the model evidence based on the maxima
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of the likelihood function under certain assumptions, nested sampling directly computes the

model evidence by integrating over the whole prior space. Hence, the evidence obtained from

nested sampling is more robust.

We account for sparse sampling from the model space by down-weighting the evidence

ratios between the models. Effectively, we want to estimate the factor ∆Sn in equation (3.30)

to account for sparse sampling. We estimate the sparsity of the sampled models by taking the

variance of ∆ logZ between “neighbouring” model pairs that differ in only one model setting.

In this way, we are being conservative by accepting more variance in our lens model posterior

to avoid any bias due to sparse sampling from the model space. For 12 models within each

mass profile family, we then have 20 such “neighbouring” models. We obtain σmodel
∆ logZ = 436

for the power-law models and σmodel
∆ logZ = 1210 for the composite models. We follow Birrer

et al. (2019) to adjust the relative weights of the model by convolving the evidence ratios

with a Gaussian kernel with standard deviation σ∆ logZ = (σmodel
∆ logZ

2
+ σnumeric

∆ logZ
2
)1/2. Here,

we take σnumeric
∆ logZ = 34 as explained in Appendix 3.E. Following Birrer et al. (2019), we first

calculate the absolute weight Wn,abs of the nth model by convolving the evidence uncertainty

with the evidence ratio function f(x) as

Wn,abs =
1√

2πσ∆ logZ

∫ ∞
−∞

f(x) exp

[
−(logZn − x)2

2σ2
∆ logZ

]
dx, (3.52)

where we define the evidence ratio function f(x) as

f(x) ≡


1 x ≥ logZmax,

exp (x− logZ max) x < logZmax.

(3.53)

We then obtain the relative weight Wn,rel by simply normalizing the absolute weights by the

maximum absolute weight as

Wn,rel =
Wn,abs

max ({Wn,abs})
. (3.54)

In the limit of n → ∞, we would have a perfect sampling of models from the model space.

In that case, we have σmodel
∆ logZ → 0 and σ∆ logZ → σnumeric

∆ logZ . Furthermore, if the evidence
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value is perfectly computed with σnumeric
∆ logZ = 0, then the exponential function inside equation

(3.52) becomes a Dirac delta function. In that limit, the relative weight Wn,rel approaches

the evidence ratio as

lim
σ∆ logZ→0

Wn,rel =
Zn
Zmax

. (3.55)

In Fig. 3.6, we compare the posteriors of important lens parameters between power-law

and composite mass profiles after marginalizing over the model space using the adjusted

evidence ratios as described above.
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Table 3.3: Evidence for different power-law model setups. The model setups are ordered from higher to lower evidence.

The relative weights for each model are obtained from the evidence ratios adjusted for sparse sampling from the model

space as described in Section 3.6.1.

Mass profile Source nmax zS3 G4–G6 mass profile logZ ∆ logZ Relative weight, Wrel

(±24) (±34)

Power law {8, 5, 3} 2.375 SIS −25087 0 1.00

Power law {6, 3, 2} 2.375 SIS −25215 128 0.77

Power law {8, 5, 3} 2.228 SIS −25232 145 0.74

Power law {7, 4, 2} 2.375 SIS −25317 230 0.60

Power law {7, 4, 2} 2.228 SIS −25421 333 0.45

Power law {6, 3, 2} 2.228 SIS −25450 363 0.41

Power law {8, 5, 3} 2.375 NFW −25578 490 0.26

Power law {7, 4, 2} 2.228 NFW −25624 537 0.22

Power law {6, 3, 2} 2.228 NFW −25656 569 0.19

Power law {6, 3, 2} 2.375 NFW −26432 1345 0.00

Power law {8, 5, 3} 2.228 NFW −26469 1382 0.00

Power law {7, 4, 2} 2.375 NFW −26551 1464 0.00
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Table 3.4: Evidence for different composite model setups. The model setups are ordered from higher to lower evidence.

The relative weights for each model are obtained from the evidence ratios adjusted for sparse sampling from the model

space as described in Section 3.6.1.

Mass profile Source nmax zS3 G4–G6 mass profile logZ ∆ logZ Relative weight, Wrel

(±24) (±34)

Composite {7, 4, 2} 2.228 SIS −25055 0 1.00

Composite {8, 5, 3} 2.228 SIS −25121 66 0.96

Composite {8, 5, 3} 2.375 SIS −25147 92 0.94

Composite {6, 3, 2} 2.228 SIS −25155 100 0.94

Composite {7, 4, 2} 2.375 SIS −25155 100 0.93

Composite {6, 3, 2} 2.375 NFW −25252 197 0.87

Composite {6, 3, 2} 2.375 SIS −25292 237 0.85

Composite {7, 4, 2} 2.375 NFW −25482 427 0.72

Composite {6, 3, 2} 2.228 NFW −25985 930 0.44

Composite {8, 5, 3} 2.375 NFW −26541 1486 0.22

Composite {8, 5, 3} 2.228 NFW −27073 2018 0.09

Composite {7, 4, 2} 2.228 NFW −28979 3924 0.00
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3.6.2 Combining the time delays, kinematics, and external convergence infor-

mation

To combine the time-delay likelihood with the lens imaging likelihood, we importance sample

from the lens model posterior weighted by the joint time-delay and kinematics likelihood

(Lewis & Bridle 2002). In Section 3.6.2.1, we fold in the time-delay and kinematic likelihoods

into the lens model posterior. Then in Section 3.6.2.2, we add the external convergence

distribution to the cosmological distance posteriors. Finally in Section 3.6.2.3, we check the

impact of microlensing time-delay on our inference of the effective time-delay distance.

3.6.2.1 Combining time-delay and kinematics likelihoods

The posterior samples from nested sampling carry weights proportional to their contribu-

tion to the posterior mass. We obtain 10000 equally weighted posterior samples through

weighted random sampling from the nested sampling chain for each lens model setup. To

combine distance posteriors from different lens model setups, we randomly sample a number

of points from the lens model posterior for each setup within a mass-model family, where the

sampled number is proportional to the relative weight computed from the adjusted evidence

ratio (Tables 3.3 and 3.4). We then uniformly sample 4000 points of (Deff
∆t, Ds/Dds) for

each lens model sample from [0, 2.15]Deff,fiducial
∆t × [0.35, 1.35](Ds/Dds)

fiducial. The chosen

boundaries fully contain (> 5σ) the distance posteriors and they also encompass the range

allowed by the priors H0 ∈ [0, 150] km s−1 Mpc−1 and Ωm ∈ [0.05, 0.5], given our fiducial

cosmology. This procedure effectively gives us 4000×Nsample points from the joint space com-

bining the lens model parameters and (Deff
∆t, Ds/Dds), where Nsample is the number of lens

model samples. We then importance sample from these 4000×Nsample points weighted by the

joint time-delay and kinematic likelihood to obtain the marginalized posterior distribution

of (Deff
∆t, Ds/Dds). We only consider ∆tAB and ∆tAD in the time-delay likelihood as ∆tBD is

not independent of the others. We then transform the (Deff
∆t, Ds/Dds) distribution into the

85



1''

Observed

1''

Reconstructed

1"

Convergence

1" E
N

Magnification model

A

B

CC2

D

1"

F160W

1"

Reconstructed

1"

Normalized Residuals

1"

E

N
Reconstructed source

S1

S2
S3

1"

F814W

1"

Reconstructed

1"

Normalized Residuals

1"
E

N

Reconstructed source

S1

S2
S3

1"

F475X

1"

Reconstructed

1"

Normalized Residuals

1"
E

N

Reconstructed source

S1

S2
S3

0.5

0.0

0.5

1.0

1.5

lo
g 1

0

8

4

0

4

8

1.6

0.8

0.0

0.8

1.6

lo
g 1

0 f
lu

x

3

2

1

0

1

2

lo
g 1

0 f
lu

x

3

2

1

0

1

2

lo
g 1

0 f
lu

x

1.6

0.8

0.0

0.8

1.6

lo
g 1

0 f
lu

x

3

2

1

0

1

2
lo

g 1
0 f

lu
x

3

2

1

0

1

2

lo
g 1

0 f
lu

x

4

2

0

2

4

(f
m

od
el

 - 
f d

at
a)

/

4

2

0

2

4

(f
m

od
el

 - 
f d

at
a)

/

4

2

0

2

4

(f
m

od
el

 - 
f d

at
a)

/

2.0

1.6

1.2

0.8

0.4

0.0

lo
g 1

0 f
lu

x

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0 f
lu

x

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0 f
lu

x

Figure 3.4: The most likely lens model and reconstructed image of DES J0408−5354 using

the power-law model. The top row shows the observed RGB image, reconstructed RGB

image, the convergence profile, and the magnification model in order from the left-hand side

to the right-hand side. The next three rows show the observed image, the reconstructed

image, the residual, the reconstructed source in order from the left-hand side to the right-

hand side for each of the HST filters. The three filters are F160W (second row), F814W

(third row), and F475X (fourth row). All the scale bars in each plot correspond to 1 arcsec.

The patchy or ring-like artefacts in the source reconstruction translate to lensed features

below the noise level in the image, thus they do not affect our lens model.
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Figure 3.5: The most likely lens model and reconstructed image of DES J0408−5354 using

the composite model. The top row shows the observed RGB image, reconstructed RGB

image, the convergence profile, and the magnification model in order from the left-hand side

to the right-hand side. The next three rows show the observed image, the reconstructed

image, the residual, the reconstructed source in order from the left-hand side to the right-

hand side for each of the HST filters. The three filters are F160W (second row), F814W

(third row), and F475X (fourth row). All the scale bars in each plot correspond to 1 arcsec.

The patchy or ring-like artefacts in the source reconstruction translate to lensed features

below the noise level in the image, thus they do not affect our lens model.
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Figure 3.6: Comparison of the lensing properties between the power-law and composite

mass models. The posteriors are weighted combinations of 12 models for each mass model

family. Here, θ̃E is the Einstein radius defined to contain mean convergence of 1, and the

profile slope γ̃ is defined as the derivative of the convergence profile at θ̃E. We blind the

profile-slope and the effective Fermat potential differences by subtracting the mean and then

normalize it with the mean to show relative offsets in percentage.
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(Deff
∆t, Dd) distribution.

Since there are four observing setup for G1’s central line-of-sight velocity dispersion, we

compute four line-of-sight velocity dispersions for each sample from the lens model posterior.

We account for covariance between these four measurements in the kinematic likelihood (see

Section 3.3.4 for covariance matrix definition). We choose a uniform prior for the anisotropy

scale radius as rani ∼ U(0.5θhl, 5θhl), where θhl is the half-light radius in the F160W band.

As we model the deflector light distribution using a double Sérsic profile, we numerically

compute the radius of the circular aperture that contains half of the total flux from the

double Sérsic profile.

3.6.2.2 Adding the external convergence distribution into the cosmological dis-

tance posterior

We apply a selection criterion on the P (κext) estimated in Buckley-Geer et al. (2020) by

requiring that the selected lines of sight also correspond to the external shear values predicted

by our lens models. In Fig. 3.7, we show the probability distribution of κext for the fiducial

choice of constraints explored in Buckley-Geer et al. (2020), and the two κext distributions

consistent with the external shear values for the power-law and composite mass profiles [see

Buckley-Geer et al. (2020) for further details].

We simple-sample from the external convergence distribution corresponding to each mass

profile.We correct the distance posterior using the sampled external convergence according

to equation (3.20).

Fig. 3.8 shows the comparison of distance posteriors between the mass model families

and between different settings within a mass model family. The distance posteriors are

consistent between different model setups. From the combined distance posterior from all

the models, we obtain the 1D marginalized constraints for the effective time delay distance

Deff
∆t = 3382+146

−115 Mpc and the angular diameter distance Dd = 1711+376
−280 Mpc (Fig. 3.9).
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Figure 3.7: Distribution of external convergence κext. The black line shows the κext dis-

tribution from Buckley-Geer et al. (2020) without imposing any shear constraint. The red

and blue lines show the distributions with shear constraints from the power-law and the

composite mass models, respectively.

3.6.2.3 Microlensing time-delay effect

We check the impact of microlensing by the deflector galaxy’s stars on the measured time-

delays in our analysis (Tie & Kochanek 2018). Note, this microlensing time-delay from Tie

& Kochanek (2018) is based on the lamp-post model for the AGN accretion disc (Shakura

& Sunyaev 1973). This effect will not necessarily exist for other disc models.

We generate the microlensing time-delay maps following Bonvin et al. (2018) and Chen

et al. (2018). The estimated microlensing time-delay depends on the magnification of the

lens model, on the stellar contribution at the image position, and on the properties of the

black hole’s accretion disc.
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Figure 3.8: Comparison of the distance posteriors between choices of the lens model setups

for the power-law models (top row) and the composite models (bottom row). The distance

posteriors are weighted combinations of different runs with one common model setting as

specified. One of the posteriors mean is subtracted from all them and then they are normal-

ized by the mean to get the relative shifts in percentage. Left-hand panel: the distance

posteriors for different settings of the source components’ nmax. Centre: the distance pos-

teriors for different redshifts of S3. Right-hand panel: the distance posteriors for SIS

and NFW mass profiles for the line-of-sight galaxies. The distance posteriors from different

models are consistent.
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Figure 3.9: Cosmological distance posteriors for power-law (red) and composite mass-profile

families (blue), and for all models combined (purple). All the models are combined within

each categories weighted by their adjusted evidence ratios (Table 3.3). The solid contours

for the power-law and composite mass profiles are without accounting for the microlensing

time-delay effect (MTDE), and the corresponding dashed contours show the ones with the

MTDE. The MTDE is negligible in our analysis and we do not incorporate this effect in the

final distance posterior (purple contours) combining all the models.
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We estimate the black hole mass using the scaling relation

log10

(
MBH,Mg ii

M�

)
= b+m log10

(
EWMg ii

Å

)
+ 2 log10

(
FWHMMg ii

km s−1

) (3.56)

between the black hole massMBH,vir, and the rest-frame full width at half-maximum (FWHM)

and equivalent width (EW) of the Mg ii broad line. This equation is equivalent to the

MBH ∝ RBLRσ
2
BLR, where RBLR is the radius of the broad-line region and σBLR is the veloc-

ity dispersion of the broad-line region. Here, we used the EW as a proxy for RBLR and the

FWHM as a proxy for σBLR [cf. equation (2) of Shen et al. (2011)]. We estimate the param-

eters of this scaling relation using the SDSS quasars from the catalogue provided by Shen

et al. (2011) as b = 2.71 and m = −0.61. We only take the quasars with non-zero entries

for MBH,vir, FWHMMg ii, and EWMg ii. Moreover, we only select the quasars within 1300

km s−1 ¡ FWHMMg ii ¡ 30000 km s−1 to remove the quasars creating stripe-like features at

the boundaries of the MBH,vir–FWHMMg ii scatter plot. As a result, we have 85038 selected

quasars to fit the above scaling relation. We obtain the rest-frame FWHM and EW of the

Mg ii line from the quasar spectra at image B and image D from Agnello et al. (2017) as

FWHMB
Mg ii = 3413 km s−1, EWD

Mg ii = 37.3 Å, FWHMD
Mg ii = 2952 km s−1, EWB

Mg ii = 30.5

Å. We apply a magnification correction to the estimated black hole mass from each image

as

log10

(
MBH

M�

)
= log10

(
MBH,Mg ii

M�

)
− g log10 µ, (3.57)

where we take the calibration factor g = 0.5 (Vestergaard & Peterson 2006). We also add

0.25 dex uncertainty to the estimated black hole mass to account for the limitation of using

Mg ii to measure it (Woo et al. 2018). Averaging over the estimates from image B and D,

we obtain the black hole mass of the quasar as log10

(
MJ0408

BH,vir/M�
)

= 8.41 ± 0.27. We also

estimate the Eddington ratio using the scaling relation

log10

(
L′bol

L′Edd

)
= b+m log10

(
MBH,Mg ii

M�

)
. (3.58)
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Table 3.5: Lensing quantities at the image positions used to create the microlensing time-

delay map. The total convergence κ, the stellar convergence κ?, the shear γshear, and the

magnification µ are obtained from the best-fitting composite model. As the local slope of

the composite model at the image positions can deviate from the 3D slope γ = 2 of an

isothermal profile, κ and γshear are not necessarily identical.

TImage κ κ? γshear µ

A 0.46 0.03 0.19 3.9

B 0.59 0.06 0.32 15.5

D 0.70 0.13 0.69 -2.6

We estimate m = −0.33, b = 2.2 with an intrinsic scatter of 0.64 dex by fitting the relation to

the same objects selected from Shen et al. (2011)’s catalogue. We also apply a magnification

correction on the Eddington ratio obtained for each image as

log10

(
Lbol

LEdd

)
= log10

(
L′bol

L′Edd

)
+ (g − 1) log10 µ (3.59)

(Birrer et al. 2019). As a result, we obtain log10 (Lbol/LEdd) = −1.48± 0.27 after averaging

over the estimates from images B and D. The accretion disc size R0 is determined assuming a

standard accretion disc model (Shakura & Sunyaev 1973). In Tables 3.5 and 3.6, we tabulate

the values used to create the microlensing time delay maps shown in Fig. 3.10. We assumed

Salpeter initial mass function (IMF) and ignored the uncertainty on the convergence and

shear parameters. Shifting the stellar convergence κ? by the typical uncertainty of 10 per

cent or changing the IMF has negligible impact on the estimated microlensing time-delay

distribution in Fig. 3.10.

We account for the microlensing time-delay effect in the measured time delay by sampling

from the microlensing time-delay distribution and adjusting the measured time delay as

∆tXY,adjusted = ∆tXY,measured + tX,micro − tY,micro. (3.60)

The microlensing time-delay effects is small compared to the uncertainty on the measured
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Figure 3.10: Microlensing time-delay maps and the probability of microlensing time-delays

for images A, B, and D. Each microlensing time-delay map on the left-hand column is created

from the relevant image magnification, stellar contribution to the convergence at the image

position, and the accretion disc properties of the black hole. The probability density function

of the microlensing time-delay at each image position is shown in the right-hand column.

The expected fluctuation in the measured time-delays is small relative to the measurement

uncertainty.
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Table 3.6: Properties of the quasar accretion disc used to compute the microlensing time-

delay maps.

Quantity Value

Black hole mass, log10(MBH/M�) 8.41 ± 0.27

Eddington ratio, log10(Lbol/LEdd) -1.48 ± 0.27

Accretion disc size, R0 (cm) 3.125×1014

Accretion efficiency, η 0.1

Central wavelength for light curve observation, λ (µm) 0.668

Average foreground stellar mass, 〈M?/M�〉 0.3

time delays. Thus, accounting for this microlensing time-delay effect does not shift the

effective time-delay distance by more than 0.1 per cent (Fig. 3.9). We only perform this

step as a check and we do not include this effect in our inference of H0.

3.6.3 Inference of H0

The cosmological distance posterior contains all the cosmographic information. We infer H0

from this distance posterior for a flat ΛCDM cosmology with priors H0 ∈ [0, 150] km s−1

Mpc−1 and Ωm ∈ [0.05, 0.5]. We take these priors for consistency with previous H0LiCOW

analyses (Birrer et al. 2019; Rusu et al. 2019; Chen et al. 2019). The Ωm prior is based on our

knowledge from various observations that the Universe is neither empty nor closed. We take

a kernel density estimate of the distance posterior as the likelihood function for cosmological

parameters to retain the full covariance between Deff
∆t and Dd. Similar to Birrer et al. (2019),

we take the bandwidth for the kernel density estimation to be sufficiently narrow so as to

not affect the resultant posteriors of the cosmological parameters. We infer H0 = 74.2+2.7
−3.0

km s−1 Mpc−1 in the ΛCDM cosmology, which is a 3.9 per cent measurement (Fig. 3.11).

In this 3.9 per cent uncertainty, we estimate that the time-delay measurement contributes
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1.8 per cent, the external convergence contributes 3.3 per cent, and the lens modelling and

other sources contribute the remaining 1 per cent uncertainty. As a systematic check on

our model weighting scheme, we infer H0 by combining all the models with equal weight

as done in the first few analyses of the H0LiCOW lenses (e.g., Wong et al. 2017). For this

most conservative weighting scheme, we find H0 = 74.8+2.7
−3.0 km s−1 Mpc−1, which is a 0.8

per cent deviation from our quoted H0 above. We summarize the various systematic checks

performed in this chapter and their corresponding impacts on the inferred H0 in Appendix

3.F.

3.7 Discussion and summary

In this chapter, we analyse the lens system DES J0408−5354 to blindly infer the effective

time-delay distance from the observed time delays. We model the mass profile of the lens

system using high-resolution HST imaging from three bands. We combine the time-delay and

kinematic likelihoods with the lens model posterior, and factor in the statistically inferred

external convergence to obtain the cosmological distance posteriors in the Deff
∆t–Dd plane.

We perform a thorough check for systematic effects arising from model choices, and we

marginalize over them to account for this source of systematic uncertainties in our analysis.

As a result, we constrain the 2D joint posterior of the effective time delay distance Deff
∆t and

the angular diameter distance to the deflector Dd that fully incorporates their covariance.

The marginalized estimates for these two distances are Deff
∆t = 3382+146

−115 with 3.9 per cent

uncertainty, and Dd = 1711+376
−280 with 19.2 per cent uncertainty. These constraints translate

into H0= 74.2+2.7
−3.0 km s−1 Mpc−1 with a precision of 3.9 per cent. This estimated value of

H0 is consistent with from the previously analysed sample of six lenses by the H0LiCOW

collaboration, H0 = 73.3+1.7
−1.8 km s−1 Mpc−1 (Wong et al. 2019). It is also consistent with

measurements of H0 based on the local distance ladder (Riess et al. 2019; Freedman et al.

2019), reinforcing the tension (Verde et al. 2019) with the inference from early Universe
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Figure 3.11: Posterior probability distribution functions of H0 and Ωm in the ΛCDM cos-

mology for the 2D distance posterior in Fig. 3.9. The inferred Hubble constant is H0 =

74.2+2.7
−3.0 km s−1 Mpc−1.
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probes (Planck Collaboration 2018; Abbott et al. 2018b).

The one presented in this chapter is the first of two independent cosmographic analysis of

the lens system DES J0408−5354, which is based on the lens-modelling software lenstron-

omy. A second independent and blind analysis using the lens-modelling software glee will

be presented in a future work (Yıldırım et al., in preparation). In this future paper, we will

compare the results from the two modelling efforts and quantitatively evaluate the systematic

uncertainty that may arise due to using different softwares and adopting different modelling

choices by different investigators. The posterior probability distribution function of H0 from

DES J0408−5354 will be combined with previous measurements by the H0LiCOW team

after the second analysis is complete, so as to include this modelling systematic uncertainty

in the combination.

The analysis presented in this chapter can be improved in the future. Due to a multitude

complexities required in the lens model of DES J0408−5354, we fix the distance ratios

between the multiple lens and source planes in our analysis using a fiducial ΛCDM cosmology

to make our analysis computationally feasible. We show that the choice of fiducial cosmology

has negligible impact on our inference within the ΛCDM model. However, it would be ideal

to treat the distance ratios as independent non-linear parameters in the model. We leave this

improvement to be implemented in future works, where more general cosmological models

will be considered. Furthermore, the precision on the inferred H0 can be improved in the

future with the help of spatially resolved kinematics (Shajib et al. 2018; Yıldırım et al. 2019).

In the modelling, more general mass profiles can be used in the composite model – e.g.,

the generalized NFW profile, or a mass-to-light ratio gradient in the stellar component (e.g.,

Zhao 1996; Sonnenfeld et al. 2018a). However, these types of generalized mass profile had

been computationally intractable for lens modelling in the elliptical case until only recently

(Shajib 2019). Given the computational cost of this study (∼ 106 CPU h) already pushing

far beyond the typical case of modelling endeavours for a single lens system, we leave the

explorations of more general mass models and estimation of the corresponding impact in the
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inference of H0 for future studies.

Improving the precision on H0 measurement from each single lens system, increasing the

number of systems to ∼40, and investigating the presence of yet unknown systematic errors

are all necessary steps towards reaching 1 per cent precision from time-delay cosmography

(Shajib et al. 2018). The analysis presented in this chapter took one step in each direction.
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at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de

F́ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians

Universität München and the associated Excellence Cluster Universe, the University of Michi-

gan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio

State University, the University of Pennsylvania, the University of Portsmouth, SLAC Na-

tional Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M

University, and the OzDES Membership Consortium.

Based in part on observations at Cerro Tololo Inter-American Observatory, National

Optical Astronomy Observatory, which is operated by the Association of Universities for

Research in Astronomy (AURA) under a cooperative agreement with the National Science

Foundation.

The DES data management system is supported by the National Science Foundation

under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish

institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-

66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which

include ERDF funds from the European Union. IFAE is partially funded by the CERCA pro-

gram of the Generalitat de Catalunya. Research leading to these results has received funding

from the European Research Council under the European Union’s Seventh Framework Pro-

gram (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We

acknowledge support from the Australian Research Council Centre of Excellence for All-

sky Astrophysics (CAASTRO), through project number CE110001020, and the Brazilian

101



Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2).

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No.

DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High

Energy Physics. The United States Government retains and the publisher, by accepting

the article for publication, acknowledges that the United States Government retains a non-

exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form

of this manuscript, or allow others to do so, for United States Government purposes.

This research made use of lenstronomy (Birrer et al. 2015; Birrer & Amara 2018), dy-

polychord (Higson et al. 2019), polychord (Handley et al. 2015), cosmohammer (Ak-

eret et al. 2013), fastell (Barkana 1999), numpy (Oliphant 2015), scipy (Jones et al. 2001),

astropy (Astropy Collaboration 2013, 2018), jupyter (Kluyver et al. 2016), matplotlib

(Hunter 2007), seaborn (Waskom et al. 2014), nestcheck (Higson 2018), sextractor

(Bertin & Arnouts 1996), emcee (Foreman-Mackey et al. 2013), colossus (Diemer 2018),

and getdist (https://github.com/cmbant/getdist).

3.A Impact of fiducial cosmology in the lens modelling

We check the impact of fixing the distance ratios between the lens and the source planes

with a fiducial ΛCDM cosmology with density parameters Ωm = 0.3 and ΩΛ = 0.7. For

this purpose, we run two separate lens models with the same model setup for the power-law

mass profile, but with the cosmological parameters (Ωm = 0.1, ΩΛ = 0.9) and (Ωm = 0.45,

ΩΛ = 0.55) to fix the distance ratios. Within this wide-range of Ωm values within the flat

ΛCDM cosmology, H0 only shifts by . 1 per cent (Fig. 3.12). As this shift is much smaller

than the precision of the measured Hubble constant allowed by the quality of our data, we

conclude that our inferred cosmological distance posterior on the D∆t–Dd plane is effectively

independent of the choice of cosmological parameters within the flat ΛCDM cosmology.

However, we find that the inferred distance posteriors depend on the fiducial cosmology
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within the wCDM model. If we adopt the fiducial wCDM cosmology with w = −1.06,

Ωm = 0.3, Ωde = 0.7, then the inferred H0 shifts by approximately 3 per cent from that

inferred from the cosmology with w = −1 (Fig. 3.13). We adopt the shift ∆w = 0.06 for

comparison, as this range is in w is the joint precision from the Planck with CMB lensing,

SNIae, and baryon acoustic oscillation measurements (Planck Collaboration 2018). This

significant shift in H0 demonstrate that our double source plane treatment is sensitive to

the dark energy equation of state parameter w (e.g. Gavazzi et al. 2008; Collett et al. 2012;

Collett & Auger 2014). Therefore, our distance posteriors should not be used to constrain

cosmological parameters in extended cosmologies other than the flat ΛCDM model. We leave

the computation of a posterior distribution function valid in more general cosmologies for

future work.

3.B Impact of likelihood computation region choice

We check if our adopted region for imaging likelihood computation can be a source of system-

atic bias in the lens modelling. We perform the modelling procedure for two different region

sizes keeping every other settings in the model the same for a power-law model. The regular

region sizes are 4.3, 3.3, and 3.3 arcsec in radius for the F160W, F814W, and F475X bands,

respectively. The larger region sizes are larger by 0.2 arcsec in each band. The median of the

effective time-delay distance shifts by less than 0.1 per cent and the median of the angular

diameter distance shifts by less than 2 per cent between these two choices of the likelihood

computation region (Fig. 3.14).

3.C Impact of the convergence from the group containing G1

We estimate the convergence at G1’s centre from the galaxy group containing G1 [group ID

5 in Buckley-Geer et al. (2020)]. We randomly sample halos from the centroid and velocity
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Figure 3.12: Comparison of the distance posteriors and inferred H0 for different fiducial

cosmologies within the flat ΛCDM model. We compare between three set of cosmological

parameters: Ωm = 0.3, ΩΛ = 0.7 (orange), Ωm = 0.1, ΩΛ = 0.9 (green), and Ωm = 0.45,

ΩΛ = 0.55 (purple). The distance posteriors are from identical lens model setups with the

power-law mass profile except for the fiducial cosmology. H0 shifts by less than 1 per cent

within these wide range of Ωm values. This shift is much smaller than the precision on

H0 allowed by our current data quality. As a result, we can treat the distance posteriors

inferred from our analysis to be independent of cosmological assumptions within the flat

ΛCDM cosmology.
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Figure 3.13: Comparison of the distance posteriors and inferred H0 for different fiducial

cosmologies within the wCDM model. We compare between three set of cosmological pa-

rameters: w = −1, Ωm = 0.3, ΩΛ = 0.7 (orange), and w = −1.06, Ωm = 0.1, ΩΛ = 0.9

(green). The distance posteriors are from identical lens model setups with the power-law

mass profile except for the fiducial cosmology. H0 shifts by ∼3 per cent for a shift ∆w = 0.06,

which is approximately the joint precision on w from the Planck with CMB lensing, SNIae,

and the baryon acoustic oscillation measurements (Planck Collaboration 2018). This shift

in H0 shows that the double source plane treatment in our analysis is sensitive to the dark

energy equation of state parameter w (Gavazzi et al. 2008; Collett & Auger 2014). As a

result, our distance posterior should not be used to constrain parameters in cosmologies that

extend the flat ΛCDM model.
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Figure 3.14: Comparison of the distance posteriors from the power-law lens model for two

likelihood computation region sizes. The smaller regions have radii 4.3, 3.3, and 3.3 arcsec

in the F160W, F814W, F475X bands, respectively. The larger region sizes are 4.5, 3.5, and

3.5 arcsec in the same order. All the other model setups are same between the two runs.

The distance posteriors are almost identical. Therefore, the choice of likelihood computation

region has negligible impact in our analysis.
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dispersion distributions estimated as described in Buckley-Geer et al. (2020). However, we

use a uniform prior to obtain the velocity dispersion for the halo, whereas Buckley-Geer

et al. (2020) adopt the Jeffrey’s prior. We convert the group’s velocity dispersion into halo

mass using the scaling relation

log10 [h(z)M200] = 13.98 + 2.75 log10

(
σgroup

500 km s−1

)
(3.61)

(Munari et al. 2013). We weight this halo mass distribution using the halo mass function

from Tinker et al. (2008) corresponding to our fiducial cosmology and the lens redshift. We

obtain the concentration parameter distribution using the theoretical M200–c relation from

Diemer & Joyce (2019) with 0.16 dex uncertainty. We also apply 10 per cent uncertainty on

M200 to remove any strong dependency on H0 through the fiducial cosmology. We compute

the convergence distribution at G1’s centre due to this distribution of the halo masses and

we apply a cut in the group’s shear distribution γgroup < 0.1 to remove halos that are incon-

sistent with the model predicted shear (Fig. 3.15). The median of the group’s convergence

distribution is 0.004. As we are explicitly accounting for the group’s convergence here, we

re-estimate κext after removing the galaxies in this group from the number count statistic of

Buckley-Geer et al. (2020). The re-estimated κext decreases by 0.005 for the power-law mass

models and by 0.008 for the composite mass models. As a result, explicitly accounting for

the group’s convergence decreases H0 by approximately 0.4 per cent. This shift is negligible

compared to the 3.9 per cent uncertainty in our estimated value of H0.

3.D Checking for the existence and impact of a dark substructure

Agnello et al. (2017) propose a possible dark subhalo near image D toward the North–East

direction. We check the impact of such a dark substructure in our analysis by including a

mass profile for the substructure in our lens model. We check with both SIS and spherical

NFW profile for the substructure. We take a broad uniform prior of 0.8 arcsec × 0.8 arcsec

for the centroid of the mass profile to encompass the possible position of the substructure
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Figure 3.15: Distribution of the convergence at G1’s centre from the galaxy group’s halo

containing G1. The distribution p(κgroup) is estimated for the estimated centroid and velocity

dispersion of this group in Buckley-Geer et al. (2020).
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given in fig. 9 of Agnello et al. (2017).

For both of the SIS and NFW profiles, our lens model constrains the possible position

of the mass profile for the potential substructure (Fig. 3.16). Interestingly, the constrained

position is consistent with the proposed position by Agnello et al. (2017), although the model

had the freedom to offset the position by ∼0.4 arcsec from the constrained position. We

estimate the SIS velocity dispersion of this possible dark substructure to be σSIS = 33.7+1.9
−1.3

km s−1. From the model with the NFW profile for the dark substructure, we estimate the

halo mass log10(M200/M�) = 10.65+0.10
−0.06, halo radius r200 = 45.7+3.5

−2.1 kpc, and concentration

c200 = 12.2+4.1
−2.2.

However, we do not add the potential substructure in our final lens model as the addition

of the dark substructure shifts the estimated H0 by less than 1 per cent. Moreover, it is not

clear if the constrained parameters for the additional mass profile to account for the dark

substructure indeed reflect the existence of the substructure. A similar effect can also arise

if the additional source component S2 lies at a redshift between the quasar and the central

deflector G1. The proximity of the constrained position of the dark substructure and the

lensed position of S2 hints this scenario to be a possibility.

Agnello et al. (2017) use the dust-corrected and delay-corrected flux ratios observed in

the DES data as a constraint for the lens model and propose that the existence of a dark

substructure fits the data better. We check if microlensing can be a possible source for the

deviation of the flux ratios from a smooth model observed by Agnello et al. (2017). We

derive the amplitude of microlensing in images A, B, and D by comparing their MUSE spec-

tra. Microlensing is stronger in the continuum than in the broad emission lines. Therefore,

we can isolate the microlensed fraction of the spectra if we assume that microlensing is

more important in one of the lensed images under scrutiny and derive a lower limit on the

amplitude of microlensing effect in the continuum emission (e.g. Sluse et al. 2012b). This

procedure reveals substantial differential microlensing between the continuum and the broad

lines when we consider image pairs A–D and B–D, but not A–B. The data are compatible
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with a microlensing demagnification of image D by at least a factor of 2. This demagnifica-

tion translates into a mircrolensing corrected flux ratio ∆mAD = 0.25 mag. This estimate,

however, may be affected by systematic errors caused by intrinsic variability. From the past

light-curves of this system, we estimate that over the period corresponding to the time delay

between images A and D, this systematic error could reach up to 0.2 mag. Therefore, we

cannot definitively attribute the observed “flux-ratio anomaly” to microlensing. In summary,

whereas we cannot find strong evidence for the existence of the potential substructure, we

also cannot rule out its existence. Since the presence or the impact of the dark substructure

is not significant in our analysis, we omit it in our lens models for simplicity.

3.E Nested sampling settings

In this Appendix, we provide our adopted settings for the nested sampling software dypoly-

chord and validate that the numerical requirements for our analysis are met.

We choose the dypolychord settings ninit = 100, nrepeats = 30, nconst live =

140, , dynamic goal = 0.9, precision criterion = 0.001 [see Higson et al. (2019) for

explanation of these settings]. To check the appropriateness of these settings, we run two

sampling runs with the same lens model and sampler settings (Fig. 3.17). We find that the

posteriors PDFs of the parameters are consistent within 1σ between the two runs, there-

fore we accept the chosen settings to be appropriate for sufficient exploration of the prior

space. However, we find the estimated evidence values to differ by more than the estimated

statistical uncertainty. This difference indicates that there is a systematic scatter in the

computed evidence value. To estimate this scatter, we run a second set of nested sam-

pling runs for 17 different lens models with precision criterion = 0.01. We choose a

lower precision criterion for this second set of runs to make the sampling run terminate

faster. A lower precision criterion does not largely impact the evidence values, although

it may affect the posterior estimation (Higson et al. 2018). As we are only interested to ob-
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Figure 3.16: Constraints from our lens model for the position and NFW halo properties

of the dark substructure proposed by Agnello et al. (2017). Left-hand panel: 2σ credible

region for the position of the dark substructure in our lens model assuming the SIS profile

(the orange contour) and the NFW profile (the yellow contour) for the substructure. Right-

hand panel: The constraint on the M200–c200 plane assuming the NFW profile for the

dark substructure. The purple contours show the 1σ and 2σ credible regions. We show a

comparison with the theoretical c200–M200 relation for our fiducial cosmology from Diemer

& Joyce (2019).
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Table 3.7: Uncertainty contributions from different parts of the cosmographic analysis.

Analysis component Uncertainty budget (per cent)

Time-delay measurement 1.8

κext estimation 3.3

Lens modelling and other sources 1.0

Total uncertainty 3.9

tain a conservative estimate of the scatter present in the computed logZ values, this lower

precision criterion is sufficient for this purpose. By taking the mean of the evidence

difference between runs from the two sets with the same lens model, we estimate the scatter

in the evidence value as 24. Therefore, we take σnumeric
logZ = 24 as the numerical error in the

computed evidence values. Albeit, if we increase nlive const or nrepeats, we can decrease

the error in the computed logZ values in the exchange of a higher computational cost. How-

ever, as we down-weight the relative evidence ratios to account for sparse sampling of our

models from the model space, this numerical error in logZ is a subdominant factor (Section

3.6.1).

3.F Summary of uncertainty budget and systematic checks

In this appendix, we summarize the uncertainty budgets from different parts of the cosmo-

graphic analysis (Table 3.7) and the systematic checks performed in our analysis with their

impacts on the inferred H0 in Table 3.8.

3.G Model summary and parameter priors

In this appendix, we provide the priors for the parameters in our lens models (Table 3.9).

To make the nested sampler efficiently explore and integrate over the high-dimensional
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Figure 3.17: nestcheck diagnostic plot showing samples’ distributions in two different

runs with the same lens model for our chosen sampling settings. The top right-hand panel

shows the relative posterior mass as a function of logX, where X is the prior volume fraction.

The next three panels show the progressions of sampling (right to left) for three of the main

lens mass parameters. The black solid and dashed lines show the evolution of one random

thread of the dynamic nested sampler. The left column shows the posterior distributions

of each parameter. The coloured contours represent the iso-probability credible regions of

the probability density functions. The posteriors of the parameters are consistent within

1σ, therefore we accept that the chosen settings allow for sufficient exploration of the prior

volume.
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Table 3.8: Summary of systematic checks and their impacts on the inferred H0. The relevant

section in the chapter is referenced for each systematic check.

Systematic check ∆H0

(per cent)

Fixing Ωm = 0.10 in fiducial cosmology (App. 3.A) −0.06

Fixing Ωm = 0.45 in fiducial cosmology (App. 3.A) +0.94

Choosing a larger likelihood computation region (App. 3.B) +0.10

Explicitly accounting for the galaxy group (App. 3.C) −0.40

Accounting for a possible dark subhalo near S3 (App. 3.D) −0.46

Not accounting for the deflection by S2’s mass (Note, we included S2’s

mass in our models, thus already marginalizing in our quoted posterior;

Section 3.5.6)

+0.95

Accounting for Tie & Kochanek (2018)’s microlensing time-delay (Sec-

tion 3.6.2.3)

−0.10

Total systematic shift −0.92–0.08
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(∼60D) prior volume in our models, we narrow down the width of the uniform priors for some

of the parameters more than that would be known purely a priori. We choose these prior

bounds by looking at the posterior PDFs for the lens models from the initial exploratory

phase of this study and we further adjust these prior widths through trial and error. We

check that the posterior PDFs of the parameters are fully contained within the chosen bounds

for our final lens models, unless we specifically set the bound using an empirical or physical

prior. Below we explain some of the parameters from Table 3.9 that were not introduced

within the main body of this chapter.

The amplitude of the Chameleon convergence profile is parameterized with the deflection

angle at 1 arcsec, αChm
1 . The ellipticity parameters e1 and e2 in the relevant profiles are

related to the axis ratio q and the position angle φ as

q =
1−

√
e2

1 + e2
2

1 +
√
e2

1 + e2
2

,

tan 2φ =
e2

e1

.

(3.62)

Parameterizing the ellipticity with e1 and e2 avoids the periodicity in the polar coordinate

φ and makes the sampling more efficient. The centroids (θc
1, θ

c
2) of the relevant profiles are

relative to the coordinate RA 04:08:21.71 and Dec -53:53:59.34. We take a uniform prior

U(−5 × 104, 5 × 104) for the amplitudes of the shapelet components – which are linear

parameters – to compute the evidence using equation (3.35).

115



Table 3.9: Prior for the model parameters.

Model component Parameter Prior

G1 mass, power law γ U(1.80, 2.15)

G1 mass, composite rNFW
s (arcsec) N (12.42, 2.94) with bound [5.6, 19.3) (Section 3.5.2)

G1 mass, composite αChm
1 (arcsec) U(0.2, 1.5)

External shear γext U(0.01, 0.09)

External shear ψext (rad) U(0,π)

G2 mass, SIS θE (arcsec) U(0.19, 0.27)

G3 mass, SIS θE (arcsec) N (0.772, 0.024) with bound [0.3, 1.6) (Section 3.5.4.3, Fig. 3.3)

G4 mass, SIS θE (arcsec) N (0.353, 0.012) with bound [0.0, 1.0) (Section 3.5.4.3, Fig. 3.3)

G4 mass, NFW log10(M200/M�) Empirical prior with bound [11.3, 13.4) (Section 3.5.4.4, Fig. 3.3)

G4 mass, NFW c200 Empirical prior with bound [0.0, 16.0) (Section 3.5.4.4, Fig. 3.3)

G5 mass, SIS θE (arcsec) N (0.046, 0.002) with bound [0.0, 0.2) (Section 3.5.4.3, Fig. 3.3)

G5 mass, NFW log10(M200/M�) Empirical prior with bound [10.8, 12.3) (Section 3.5.4.4, Fig. 3.3)

G5 mass, NFW c200 Empirical prior with bound [0.0, 16.5) (Section 3.5.4.4, Fig. 3.3)

G6 mass, SIS θE (arcsec) N (0.070, 0.004) with bound [0.0, 0.3) (Section 3.5.4.3, Fig. 3.3)

G6 mass, NFW log10(M200/M�) Empirical prior with bound [11.4, 12.5) (Section 3.5.4.4, Fig. 3.3)

G6 mass, NFW c200 Empirical prior with bound [0.0, 20.0) (Section 3.5.4.4, Fig. 3.3)

S2 mass, SIS θE (arcsec) N (0.0022, 9.98× 10−6) with bound [0.000, 0.022) (Section 3.5.4.3)

Continued on next page
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Table 3.9 – Continued from previous page

Model component Parameter Prior

S1 light, Sérsic θeff (arcsec) U(0.04, 0.15)

S1 light, Sérsic ns U(0.6, 5.0)

S1 light, Sérsic e1 U(−0.05, 0.35)

S1 light, Sérsic e2 U(−0.16, 0.20)

S1 light, F814W+F475X, shapelets ς (arcsec) U(0.06, 0.11)

S1 light, F160W, shapelets ς (arcsec) U(0.08, 0.15)

S2 light, Sérsic θeff (arcsec) U(0.08, 0.40)

S2 light, Sérsic ns U(1.0, 5.0)

S2 light, Sérsic e1 U(0.04, 0.37)

S2 light, Sérsic e2 U(−0.20, 0.00)

S2 light θc
1 (arcsec) U(−0.47, 0.30)

S2 light θc
2 (arcsec) U(−2.48, −1.48)

S2 light, shapelets ς (arcsec) U(0.06, 0.12)

S3 light, Sérsic θeff (arcsec) U(0.18, 0.90)

S3 light, Sérsic ns U(0.6, 2.5)

S3 light, Sérsic e1 U(0.20, 0.42)

S3 light, Sérsic e2 U(0.00, 0.35)

S3 light θc
1 (arcsec) U(0.75, 1.80)

Continued on next page
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Table 3.9 – Continued from previous page

Model component Parameter Prior

S3 light θc
2 (arcsec) U(1.70, 2.30)

G1 light, F814W θeff (arcsec) N (0.61, 0.27) with bound [0.1, 2.7) (Section 3.5.2)

G1 light, F814W ns U(2.0, 8.0)

G1 light, F814W+F475X e1 U(−0.20, 0.00)

G1 light, F814W+F475X e2 U(−0.05, 0.13)

G1 light θc
1 (arcsec) U(0.023, 0.035)

G1 light θc
1 (arcsec) U(−0.010, 0.003)

G1 light, F475X θeff (arcsec) N (0.61, 0.27) with bound [0.1, 2.7) (Section 3.5.2)

G1 light, F475X ns U(1.0, 5.0)

G1 light, F160W, Sérsic 1 θeff (arcsec) N (0.61, 0.27) with bound [0.1, 2.7) (Section 3.5.2)

G1 light, F160W, Sérsic 1 ns U(1.0, 5.0)

G1 light, F160W, Sérsic 1 e1 U(−0.25, 0.00)

G1 light, F160W, Sérsic 1 e2 U(−0.10, 0.12)

G1 light, F160W, Sérsic 2 θeff (arcsec) N (0.61, 0.27) with bound [0.1, 2.7) (Section 3.5.2)

G1 light, F160W, Sérsic 2 ns U(0.6, 6.0)

G1 light, F160W, Sérsic 2 e1 U(−0.05, 0.10)

G1 light, F160W, Sérsic 2 e2 U(0.07, 0.25)

G1 light, double Chameleon I0,Chm1/I0,Chm2 U(0.2, 9.5)

Continued on next page

118



Table 3.9 – Continued from previous page

Model component Parameter Prior

G1 light, Chameleon 1 wc (arcsec) U(0.00, 0.10)

G1 light, Chameleon 1 wt (arcsec) U(0.20, 1.00)

G1 light, Chameleon 1 e1 U(−0.25, 0.25)

G1 light, Chameleon 1 e2 U(−0.25, 0.25)

G1 light, Chameleon 2 wc (arcsec) U(0.01, 1.50)

G1 light, Chameleon 2 wt (arcsec) U(2.50, 9.00)

G1 light, Chameleon 2 e1 U(−0.20, 0.20)

G1 light, Chameleon 2 e2 U(−0.20, 0.20)

G2 light θeff (arcsec) U(0.25, 1.10)

G2 light ns U(2.0, 6.0)

G2 light θc
1 (arcsec) U(−1.60, −1.56)

G2 light θc
2 (arcsec) U(−0.97, −0.93)

Image A ∆α (arcsec) U(1.940, 1.948)

Image A ∆δ (arcsec) U(−1.576, −1.568)

Image B ∆α (arcsec) U(−1.819, −1.809)

Image B ∆δ (arcsec) U(0.263, 0.290)

Image C ∆α (arcsec) U(−1.935, −1.926)

Image C ∆δ (arcsec) U(−0.954, −0.940)

Continued on next page
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Table 3.9 – Continued from previous page

Model component Parameter Prior

Image D ∆α (arcsec) U(0.096, 0.110)

Image D ∆δ (arcsec) U(1.385, 1.392)

Differential dust extinction τF814W
0 U(0.1, 2.0)
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CHAPTER 4

Improving time-delay cosmography with spatially

resolved kinematics

This chapter was published as Shajib, A. J., T. Treu, & A. Agnello. 2018, MNRAS, 473,

210, and reproduced here with minor formatting changes.

4.1 Background

Our current understanding of cosmography, i.e. the description of geometry and kinematics

of the Universe, has been largely acquired from the measurements of cosmic distances as a

function of redshift. For example, relative luminosity distance measurements using Type Ia

supernovae led to the discovery of dark energy (Riess et al. 1998; Perlmutter et al. 1999).

More recently, baryon acoustic oscillation (BAO) in galaxy clustering has been used to

determine angular diameter distances as a function of redshifts (Eisenstein et al. 2005; Alam

et al. 2017).

Absolute distances, and the Hubble constant H0 in particular, play a central role in

cosmography. In fact, the uncertainty on H0 is currently one of the main limiting factors in

cosmological inferences based on the cosmic microwave background (CMB; e.g. Suyu et al.

2012; Weinberg et al. 2013). The tension between the recent measurement of the local value

of H0 to 2.4 per cent precision determined from Type Ia supernovae (Riess et al. 2016;

Bernal et al. 2016), and that extrapolated from the CMB assuming a flat Λcold dark matter

(ΛCDM) cosmology highlights the importance of absolute distances. If the tension cannot
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be explained as residual systematic uncertainties in one (or both) measurements, it may be

an indication of new physics, like additional families of relativistic particles, departures from

flatness, or dark energy that is not the cosmological constant (Riess et al. 2016). In this

context, independent and precise measurements of absolute distances are needed to resolve

this tension, and may be required in order to disprove conclusively the standard flat ΛCDM

model.

Gravitational lens systems where the source is variable in time provide a powerful direct

measurement of distances, that is completely independent of the local distance ladder and

the CMB (Refsdal 1964). Substantial progress in data quality, monitoring campaigns, and

modelling techniques over the past decade has finally allowed this technique to deliver on

its promises (see Treu & Marshall 2016, for a historical perspective and a review of current

methods). It has recently been shown that just three lenses are sufficient to determine H0

to 3.8 per cent precision (e.g. Suyu et al. 2010, 2013; Bonvin et al. 2017), in ΛCDM.

The primary distance measurement is the so-called time-delay distance D∆t, a multi-

plicative combination of the three angular diameter distances between the observer, the

deflector, and the source. By combining the time-delay measurement with the stellar ve-

locity dispersion measurements of the deflector, it is possible to measure also the angular

diameter distance Dd to the deflector (Grillo et al. 2008; Paraficz & Hjorth 2009; Jee et al.

2015), thereby improving the constraints on the cosmological parameters (Jee et al. 2016).

In order to harness the power of strong lenses to constrain cosmography one needs to

break two families of degeneracy. The first one is the mass-sheet degeneracy (MSD; Falco

et al. 1985) and its generalizations (Schneider & Sluse 2013, 2014; Xu et al. 2016) that

affect the interpretation of lensing observables. Breaking this degeneracy requires making

appropriate physical assumptions on the mass profile of the main deflector (Xu et al. 2016) or

on the properties of the source (Birrer et al. 2016), measuring the lensing effects along the line

of sight (Suyu et al. 2010, 2013; Greene et al. 2013; Sluse et al. 2017; Rusu et al. 2017), and

including as much non-lensing information as possible, especially stellar velocity dispersion
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of the deflector (Treu & Koopmans 2002b; Koopmans et al. 2003; Suyu et al. 2010, 2013,

2014; Wong et al. 2017). The interpretation of stellar velocity dispersion data introduces

the second degeneracy, known as the mass-anisotropy degeneracy (see, e.g. van der Marel

1994; Courteau et al. 2014, and references therein), whereby different combinations of mass

profiles and stellar orbits can reproduce the same kinematic profiles. This holds especially for

elliptical galaxies, which constitute most of the deflectors in strong lens samples. Even though

lens galaxies and nearby ellipticals are on average consistent with simple density profiles and

modest anisotropy (Koopmans et al. 2009; Barnabè et al. 2011; Agnello et al. 2014), there

are significant system-to-system variations and appreciable systematic uncertainties. Also

the exploration of different anisotropy profiles can affect the inference on the mass profile,

privileging regions of parameters space where the inferred masses depend weakly on the

anisotropy parameters (e.g. at large anisotropy radii, Agnello et al. 2014), a problem that is

exacerbated by kinematic data within the half-light radius. The mass-anisotropy degeneracy

is alleviated in the virial regime of large apertures (e.g. Treu & Koopmans 2002a; Agnello

et al. 2013), so a combination of extended radial coverage and a tight control on systematics

can be used to aid cosmography with lensing and stellar dynamics (e.g. Birrer et al. 2016).

Spatially resolved kinematics of galaxy scale lensed quasars is challenging with seeing

limited observations, owing to the presence of bright quasar within the typical separation

of the order of arcsecond. Diffraction limited spectroscopy is needed to make progress,

either from the ground with the assistance of laser guide star adaptive optics (AO), or from

space. Recent advances in AO technology and the imminent launch of the James Webb

Space Telescope (JWST ) make this kind of measurement feasible, and calls for a detailed

investigation of its potential for cosmography.

In this paper, we investigate the improvements to time-delay cosmography that can be

expected in the next few years by combining spatially resolved kinematics with lensing data.

Unfortunately, state of the art modelling techniques are too computationally expensive at

present to carry out a full-blown pixel-based analysis of a large number of mock systems.
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Thus, in order to keep the computational cost manageable, we develop a framework to

simulate and model mock lenses in a simplified and effective manner, but calibrated to yield

realistic uncertainties as they would be obtained with a pixel-based analysis. We then apply

these techniques to study the precision and accuracy that can be achieved on Dd and D∆t

per system for plausible observational data quality that can be expected for current (e.g.

OSIRIS on Keck, Larkin et al. 2006), imminent (NIRSPEC on JWST ), and future (e.g.

IRIS on the Thirty Metre Telescope (TMT), Wright et al. 2016) integral field spectrographs

(IFSs). Finally, we use our results on the estimated precision of Dd and D∆t to forecast the

cosmological precision that can be attained with the current sample of nine lenses for which

accurate time delays and deep Hubble Space Telescope (HST ) imaging data are available,

and for a sample of 40 lenses that is expected to be completed in the next few years by a

dedicated follow-up campaign of newly discovered lenses from ongoing wide field imaging

surveys [e.g. the STrong lensing Insights into the Dark Energy Survey (STRIDES)1].

Our work builds upon and extends previous work by Jee et al. (2016) in two important

ways. First, we consider spatially resolved kinematics whereas Jee et al. (2016) focused on

integrated quantities. As we will show, this aspect allows us to let anisotropy be a free pa-

rameter and show that the mass-anisotropy degeneracy can be overcome. Secondly, rather

than assuming a target uncertainty on the two distances D∆t, Dd [Jee et al. (2016) adopted

a fiducial 5 per cent uncertainty on both], we derive them from realistic assumptions about

the measurements exploring different scenarios corresponding to variation in data quality,

e.g. effect of including kinematics, improved instrumental precision, and observing condi-

tions. We then use these uncertainties to infer the attainable precisions on the cosmological

parameters.

The structure of this chapter is as follows. In Section 4.2 we briefly review the strong

gravitational lensing formalism and describe the mass models we used to simulate the deflec-

1STRIDES is a Dark Energy Survey Broad External Collaboration; PI: Treu. http://strides.astro.

ucla.edu

124

http://strides.astro.ucla.edu
http://strides.astro.ucla.edu


tor galaxy mass distribution. In Section 4.3 we describe the methods to create mock lensing

and kinematic data from simulated strong lens systems. We present our results on the pre-

cision of the cosmological distances in Section 4.4 and forecast the cosmological parameter

uncertainties in Section 4.5. We follow that with our discussion about the study and com-

parison with previous works in Section 4.6 and the limitations of this work in Section 4.7.

Lastly, we conclude the paper with a summary in Section 4.8.

4.2 Model ingredients

Multiply-imaged quasars are ideal candidates for time-delay cosmography as the time delay

can be measured by monitoring quasar variability. The deflector in such a system is usually

an elliptical galaxy. In this section, we first present a brief review of the strong gravitational

lensing formalism in Section 4.2.1. Then in Section 4.2.2 we describe the models we use to

simulate realistic deflector mass distributions.

4.2.1 Strong gravitational lensing

In this subsection, we set the notation by briefly reviewing the theory of strong gravitational

lensing (see Schneider et al. 2006, for a detailed description). Let us consider a strong

gravitational-lens system with the deflector at the origin and the background source at β.

Then, the image positions θ are given by the solutions of the lensing equation

β = θ −α(θ), (4.1)

where α(θ) = ∇θψ(θ) is the deflection angle and ψ is the deflection potential. The dimen-

sionless quantity convergence κ is defined as κ(θ) ≡ Σ(θ)/Σcr, where Σ(θ) is the projected

surface mass density of the deflector and Σcr is the critical surface density for lensing given
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by

Σcr =
c2

4πG

Ds

DdDds

, (4.2)

where Ds, Dd, and Dds are the angular diameter distances between the observer and the

source, between the observer and the deflector, and between the deflector and the source,

respectively. The deflection potential is related to the convergence by the Poisson equation

κ(θ) =
1

2
∇2

θψ(θ). (4.3)

The Einstein radius of the lens system is given by the solution of Equation (4.1) with β = 0

which is the case where the source lies directly behind the deflector. The Einstein radius

can be expressed as

θEin =

√
4GM(θEinDd)Dds

c2DsDd

, (4.4)

where M(r) is the enclosed mass of the deflector within a radius r.

The time delay between two images is

∆tij =
D∆t

c

[
1

2
(θi − β)2 − 1

2
(θj − β)2 − ψ(θi) + ψ(θj)

]
. (4.5)

Here D∆t is the time-delay distance given by

D∆t = (1 + zd)
DsDd

Dds

, (4.6)

where zd is the redshift of the deflector.

The mass-sheet transformation (MST; Falco et al. 1985)

κ(θ)→ κ′(θ) = (1− λ) + λκ(θ), (4.7)

β → β′ = λβ (4.8)

leaves the image positions invariant. The additive term (1−λ) can be internal to the deflector

mass distribution affecting the time delay and the velocity dispersion as

∆t′ = λ∆t,

σ′∗ =
√
λσ∗.

(4.9)
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Furthermore, this additive term can be due to the line-of-sight structures external to the

deflector mass distribution, quantified as the external convergence κext = 1 − λext, which

only affects the time-delay. Schneider & Sluse (2013) point out that assuming a power-

law profile for the deflector mass distribution breaks the MSD as the MST of a power

law is not a power law. Therefore, it is necessary to consider more flexible models for

the deflector mass distribution or families of mass models connected by the source-position

transformation (SPT; Schneider & Sluse 2014) to obtain unbiased measurements of the

cosmological parameters.

4.2.2 Deflector mass model

We need to model the mass distribution of the deflector in order to compute spatially resolved

kinematics of the deflector and lensing data of the background source. We require this model

to be realistic, yet simple enough to be computationally efficient to create mock data for

numerous realizations of a lens system while performing the Bayesian inference. Therefore,

for simplicity we assume spherically symmetric mass profiles for the deflector instead of

elliptical mass profiles. This assumption simplifies many computational tasks by reducing

a number of two-dimensional problems to only one-dimensional, namely the radial, ones.

Naturally, real lenses are typically not spherical, so our spherical models are not intended

literally, but to be representative of non-spherical models, after marginalization over all the

non-spherical parameters. As we shall see in Section 4.3 we will tune the uncertainties in

our spherical models so as to effectively reproduce the uncertainty of non-spherical models.

Following standard practice (e.g. Treu & Koopmans 2002b; Suyu et al. 2014), we de-

scribe the mass distribution of the deflector using two components: dark matter and lumi-

nous matter, where the luminous matter resides within a dark matter halo. We choose the

Navarro-Frenk-White (NFW) profile (Navarro et al. 1996) for the dark matter distribution

and Jaffe profile (Jaffe 1983) for the luminous matter distribution. It is empirically known

that the total mass distribution in a galaxy, as a combination of the dark matter and lumi-
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nous matter distributions, closely follows an isothermal profile, which is a power-law profile

with the power-law slope γ ≈ 2 (Treu & Koopmans 2004; Koopmans 2006; Koopmans et al.

2009; Auger et al. 2010b; Dutton & Treu 2014).

4.2.2.1 NFW profile

The NFW profile describes the mass distribution in the dark matter haloes as suggested by

cosmological N -body simulations (Navarro et al. 1996, 1997). The spherical NFW profile

has the form

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (4.10)

where ρs and rs are the scale density and radius, respectively. The convergence κ implied by

this mass profile is (Bartelmann 1996)

κ(θ) =
2κs

(x2 − 1)
[1−F(x)] , (4.11)

where x = θDd/rs, κs = ρsrs/Σcr is the scale convergence, and the function F(x) is given by

F(x) =


sec−1(x)/

√
x2 − 1 (x > 1),

1 (x = 1),

sech−1(x)/
√

1− x2 (x < 1).

(4.12)

The deflection angle for the NFW profile can be derived as (Meneghetti et al. 2003)

α(θ) =
2

θ

∫ θ

θ′κ(θ′)dθ′ =
4κsθs

x
[ln(x/2) + F(x)] , (4.13)

where θs = rs/Dd. The deflection potential for the NFW profile is then

ψ(θ) =

∫
α(θ)dθ = 2κsθ

2
s

[
log2

(x
2

)
+ (x2 − 1)F2(x)

]
. (4.14)

4.2.2.2 Jaffe profile

The Jaffe profile is given by

ρ(r) =
ρs

(r/rs)2(1 + r/rs)2
, (4.15)
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where ρs and rs are the scale density and radius, respectively. This profile reproduces well the

R1/4 surface brightness profile in projection with rs = Reff/0.763, where Reff is the effective

radius. The convergence for the Jaffe profile is given by (Jaffe 1983)

κ(θ) = κs

[
π

x
+ 2

1− (2− x2)F(x)

1− x2

]
, (4.16)

where x = θDd/rs, κs = ρsrs/Σcr is the scale convergence, and F(x) is given in Equation

(4.12). The deflection angle for the Jaffe profile can be derived as (Bartelmann & Meneghetti

2004)

α(θ) = 2κsθs [π − 2xF(x)] , (4.17)

where θs = rs/Dd. The deflection potential that reproduces the convergence in Equation

(4.16) is

ψ(θ) = 2κsθ
2
s

[
πx+ log(x2)− 2(x2 − 1)F(x)

]
. (4.18)

4.2.2.3 Power-law mass profile

The elliptical power-law model is often used to describe galaxy scale lenses (e.g. Suyu et al.

2013). In order to calibrate the uncertainty in our models we use the spherical power law

mass density profile as a baseline comparison. This mass density profile is given by

ρ(r) = ρ0

(
r

r0

)−γ
. (4.19)

The deflection angle for the power law mass profile is given by

α(θ) =

(
θEin

θ

)γ−2

θEin, (4.20)

where θEin is the Einstein radius.

4.3 Creating mock data

In order to measure Dd and D∆t, three sets of data are necessary: (1) imaging data of the

lensed images of the quasar and its host galaxy, (2) time delays from a monitoring campaign,
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Figure 4.1: Posterior PDF of the model parameters for a power-law mass profile inferred

from lensing data with 230 conjugate points. D∆t, θE,γ, and δβ are normalized with Dfiducial
∆t ,

θE, and θE, respectively, where θE is the true Einstein radius of the lens system. Grey lines

show the true values of the parameters and orange contours show the 1σ and 2σ confidence

regions. The uncertainty on the power-law slope is δγ = 0.02 and the time-delay distance

D∆t is simultaneously estimated with 4.2 per cent uncertainty for an assumed Gaussian prior

with 3 per cent uncertainty on (1− κext).
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Figure 4.2: Line-of-sight velocity dispersion for a combination of NFW (dark component)
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the velocity dispersion and it was smoothed with a Gaussian of FWHM=0.1 arcsec to take

the effect of seeing into account.
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and (3) kinematics of the deflector. In this section we describe how we create mock data of

each kind for a given strong lens system. First, in Section 4.3.1 we describe how we use a set

of conjugate points to mimic the detailed modelling of the lensed quasar host, which would

be otherwise too computationally expensive to carry out for large number of systems. Then,

in Section 4.3.2 we describe how we create the full simulated data sets.

4.3.1 Mimicking extended source reconstruction with conjugate points

For the sake of speed, instead of carrying out a full extended source reconstruction analysis,

we describe each extended source as a set of points, and analyse them with the so-called

conjugate point techniques (Gavazzi et al. 2008). In order to obtain realistic results, we need

to determine how many points to simulate and the associated astrometric uncertainty we

want to associate with each one. The amount of information depends on both quantities,

so we start by setting the latter and then adjust the former to obtain a realistic precision.

Computing time depends on the number of points, so we adopt the smallest number that

allows us to achieve realistic precision on the model parameters while keeping the computing

time short enough for our purposes. In order to calibrate our model we focus on the slope of

the mass density profile of a power-law mass model, which is the main parameter controlling

the velocity dispersion and time delay at a fixed Einstein radius (e.g. Wucknitz 2002; Suyu

et al. 2012). Thus, the minimum number of necessary source point is chosen such that,

for a power-law deflector mass profile given in Equation (4.19), the power-law exponent

can be inferred from the set of conjugate points with an uncertainty δγ ∼ 0.02. We set

this criterion to match with the precision on power-law slope γ attainable by current (Suyu

et al. 2013; Wong et al. 2017) and future technologies (Meng et al. 2015) from a full-blown

computationally intensive lens modelling effort.

We used a set of uniformly spaced points within a circle with 20 mas minimum separation

between neighbouring points to mimic an extended source. We assumed a power law mass

profile given in Equation (4.19) for the deflector and created mock image data for the given
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source points. We set the uncertainty in the image position as σθ = 60 mas (corresponding

to approximately half a pixel on the HST Wide Field Camera 3 infrared channel). The

mock lens system in our analysis only produces two lensed images due to the assumed

spherical symmetry. In doubly-imaged lens systems, there is a degeneracy between the

power-law slope γ and the Einstein radius θEin for asymmetric lens configurations whereas

θEin is completely independent of γ for a perfectly symmetric lens configuration (Suyu et al.

2012). Therefore, the number of conjugate points with fixed positional uncertainty needed

to achieve a particular δγ by breaking this degeneracy depends on the asymmetry of the

lens configuration. We fix βcentre = θEin/2 for the rest of this study which is the case in the

middle between the two extremes of perfect symmetry and maximal asymmetry.

We tuned this setup to give realistic errors on model parameters by analysing mock data

to obtain the posterior probability distribution function (PDF) of the model parameters: the

power law slope of the mass profile γ, the Einstein radius θEin, and the source-point positions

β. From Bayes’ theorem, the posterior PDF follows

P (γ, θEin,γ,β, κext|θ) ∝ P (θ|γ, θEin,γ,β, κext)P (γ, θEin,γ,β, κext), (4.21)

where θ is the mock data for image positions, θEin,γ is the Einstein radius for the power-law

mass profile, and κext is the external convergence. The first term on the right-hand side is

the likelihood of the data given the model parameters, and the second one is the prior PDF

of the model parameters.

To sample from the posterior PDF through the Markov Chain Monte Carlo (MCMC)

method, we use the cosmoHammer package (Akeret et al. 2013), which embeds emcee

(Foreman-Mackey et al. 2013), a Python implementation of an affine-invariant ensemble

sampler for MCMC proposed by Goodman & Weare (2010). We first find the maxima of

the likelihood function for the given image positions treating the source-point positions

uncorrelated using the particle swarm optimization routine (Kennedy & Eberhart 1995)

included in cosmoHammer. We tuned the settings of the optimization process to find the

maxima with ∼99 per cent accuracy. We then treat the source-point positions at the the
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Table 4.1: Priors for joint analysis with power-law mass profile

Parameter Prior

D∆t Uniform in [0, 2]×Dfiducial
∆t

*

γ Uniform in [1, 3]

θEin,γ Uniform in [0.5, 2] arcsec

κext Gaussian with 3 per cent uncertainty on (1− κext)

s Uniform in [0, 2]

δβ Uniform in [-0.5, 0.5] arcsec

* Dfiducial
∆t is the fiducial value of the time-delay distance.

maxima of the likelihood function as the reconstructed source. We sample from the posterior

PDF of the source-point positions as

βsampled = sβreconstructed + δβ, (4.22)

using two parameters: a rescaling factor s for the source plane, and an offset δβ. Equation

(4.22) is essentially a SPT (Schneider & Sluse 2014)

β → β′ = [1 + f(β)]β, (4.23)

which is a generalization of the MST and leaves the strong lensing properties invariant. This

allows us to incorporate the degeneracies induced by the SPT into our model.

We impose a Gaussian prior with 3 per cent uncertainty for (1−κext) and uniform priors

in appropriately large ranges for all the other parameters. The details of the chosen priors

are given in Table 4.1. After performing this analysis for various numbers of source points,

we find that the uncertainty of the power law exponent achieves our target δγ ∼ 0.02 for a

source with 230 points (Figure 4.1). In comparison, a conservative choice of δγ ∼ 0.04 can

be achieved by adopting a source with 130 points. We also jointly sample the posterior PDF

of the time-delay distance D∆t by adding a mock time-delay measurement to the data set.
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The posterior PDF of the joint analysis is

P (X|θ,∆t) ∝ P (θ,∆t|X)P (X)

∝ P (θ|X)P (∆t|X)P (X),
(4.24)

where X are the model parameters {D∆t, γ, θEin,γ, κext, s, δβ}. The second line in Equation

(4.24) is implied because the image positions and the time-delay data are independent mea-

surements. The marginalized uncertainty of D∆t from the joint analysis is 4.2 per cent which

is comparable to the state of the art measurements of the time-delay distance (Suyu et al.

2013; Wong et al. 2017) after taking the difference in the uncertainty of κext into account.

We thus conclude that the analysis of 230 correlated points with positional uncertainty 60

mas with a spherical model approximates well the extended source reconstruction with a

non-spherical model as far as the main parameters controlling Dd and D∆t are concerned.

Therefore, we adopt this setup when we analyse two component mass models.

4.3.2 Mock lensing data with spatially resolved velocity dispersion

We choose a composite mass model for the deflector galaxy assuming the NFW profile for

the dark matter component and the Jaffe profile for the luminous matter component.

We assumed that in projection one-third of the total mass comes from the dark matter

component within half of the half-light radius (Auger et al. 2010b), to obtain the normaliza-

tions for the NFW and Jaffe profiles.

First, we created mock lensing data for 230 conjugate points for the adopted deflector

mass profile. Random Gaussian noise with standard deviation σθ = 60 mas was added to

the conjugate point positions.

The velocity dispersion profile for a mass distribution can be obtained by solving the

spherical Jean’s equation, which is given by

1

l(r)

d(lσ2
r)

dr
+ 2βani(r)

σ2
r

r
= −GM(≤ r)

r2
. (4.25)
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Here, l(r) is the luminosity density of the galaxy, σr is the radial velocity dispersion and

βani(r) is the anisotropy profile given by

βani = 1− σ2
t

σ2
r

, (4.26)

where σt is the tangential velocity dispersion for a spherically symmetric mass distribution.

The surface-brightness-weighted, line-of-sight velocity dispersion can be obtained by solving

this equation as (Mamon &  Lokas 2005)

I(R)σ2
los(R) = 2G

∫ ∞
R

k
( r
R
,
rani

R

)
l(r)M(r)

dr

r
, (4.27)

where I(R) is the surface brightness. For Osipkov-Merritt anisotropy parameter βani(r) =

1/(1 + r2
ani/r

2) (Osipkov 1979; Merritt 1985a,b), the function k(u, uani) is given by

k(u, uani) =
u2

ani + 1/2

(u2
ani + 1)3/2

(
u2 + u2

ani

u

)
tan−1

√
u2 − 1

u2
ani + 1

− 1/2

u2
ani + 1

√
1− 1/u2.

(4.28)

Using Equation (4.27), we computed the line-of-sight velocity dispersion weighted by surface

brightness in a given bin size (e.g. 0.1 arcsec). To take seeing into account, we convolved the

surface-brightness-weighted line-of-sight velocity dispersion image with a Gaussian kernel of

a given full width at half-maximum (FWHM) and then normalized it to obtain the line-of-

sight velocity dispersion as

σ̃2
los(x, y) =

Iσ2
los ∗ g(x, y)

I ∗ g(x, y)
, (4.29)

where g(x, y) is a two-dimensional Gaussian function, and the symbol ‘∗’ denotes the con-

volution (Figure 4.2). Finally, we added random Gaussian noise with a given standard

deviation to each pixel. We also added a random Gaussian noise with 2 per cent standard

deviation to the time delay, typical of the best measurements (e.g. Bonvin et al. 2017).
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Figure 4.3: Priors for the anisotropy radius rani (left) and their effects on the mass-anisotropy

degeneracy breaking (right). The two chosen priors are uniform prior for rani in [0.5,

5]×Reff [labelled P[0.5,5](rani/Reff), solid] and uniform prior for βani(Reff) in [0, 1] [labelled

P[0,1](βani(Reff)), dashed]. In the right plot, the contours represent 1σ and 2σ confidence

regions and Dd is normalized with Dfiducial
d . P[0,1](βani(Reff)) puts more weight in the re-

gion rani/Reff < 2, where the assumed value of rani in our model lies, in comparison with

P[0.5,5](rani/Reff) and it leads to a more unbiased and constrained estimate of the angular

diameter distance Dd.
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Figure 4.4: Posterior PDF of the model parameters given from joint analysis with lensing

and time delay data with spatially resolved kinematics (solid), with integrated kinematics

(dashed), and without any kinematics (dotted). The contours for each case represent 1σ

and 2σ confidence regions. The model parameters Dd, D∆t, r
NFW
s , rJaffe

s , rani, and δβ are

normalized with Dfiducial
d , Dfiducial

∆t , REin, REin, REin, and θEin, respectively, where REin is the

true Einstein radius with the dimension of length. Grey solid lines show the true values of the

parameters. Dd can only be determined with kinematics. The anisotropy radius rani is also

well determined with kinematics showing that the mass-anisotropy degeneracy is overcome.
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Figure 4.5: Posterior PDF of the model parameters given from joint analysis with lensing and

time delay data with spatially resolved kinematics for baseline (dashed), futuristic (solid),

and conservative (dotted) setups. The contours for each case represent 1σ and 2σ confidence

regions. The model parameters Dd, D∆t, r
NFW
s , rJaffe

s , rani, and δβ are normalized with

Dfiducial
d , Dfiducial

∆t , REin, REin, REin, and θEin, respectively, where REin is the true Einstein

radius with the dimension of length. Grey solid straight lines show the true values of the

parameters. The constraints on the model parameters become tighter with higher quality of

spatially resolved stellar kinematics.
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4.4 Precision on Cosmological Distance Measurements

In this section we use the mock data created as described in the previous section to estimate

the uncertainties of the angular diameter and time-delay distances using the MCMC method.

We performed a joint analysis to obtain the posterior PDF of the model parameters X

given the mock lensing data with velocity dispersion and the time delay data. From Bayes’

theorem, the posterior PDF follows

P (X|θ,σ∗,∆t) ∝ P (θ,σ∗,∆t|X)P (X), (4.30)

where P (θ,σ∗,∆t |X ) is the likelihood of the data given the model parameters, P (X) is the

prior PDF of the model parameters, θ is the image position data, σ∗ is the velocity disper-

sion data, ∆t is the time delay between images, and X contains all the model parameters

{Dd, D∆t, κ
NFW
s , rNFW

s , κJaffe
s , rJaffe

s , rani, κext, β}. As the image positions, the velocity

dispersion, and the time delay are independent data, the likelihood of the data given the

model parameters can be written as

P (θ,σ∗,∆t|X) = P (θ|X)P (σ∗|X)P (∆t|X). (4.31)

As it is often the case in high dimensional spaces, it is important to choose the priors

carefully (e.g. Brewer et al. 2014). If the priors are not carefully chosen, the marginalized

one-dimensional posteriors on each parameter can be significantly skewed (e.g. Birrer et al.

2016), resulting in the median and mode of the PDF to be a biased estimator of the true

value. Naturally this bias can be mitigated or eliminated by using the full PDF and not just

point estimators. However, it is important to use priors that are as informative as possible.

We impose Gaussian priors on rJaffe
s and κext, as rJaffe

s can be measured directly by fitting the

surface brightness profile of the lens, whereas κext can be inferred indirectly by comparing

the statistics of galaxies along the line of sight to the lens with simulated light cones (Hilbert

et al. 2009; Suyu et al. 2013; Greene et al. 2013; Collett et al. 2013; Rusu et al. 2017). We

set a Gaussian prior for rNFW
s with 20 per cent uncertainty (Table 4.2). Note, this is a
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Table 4.2: Priors for joint analysis with composite mass model

Parameter Prior

Dd Uniform in [0, 2]×Dfiducial
d

*

D∆t Uniform in [0, 2]×Dfiducial
∆t

*

κNFW
s Jeffrey’s prior

rNFW
s Gaussian with 20 per cent uncertainty

κJaffe
s Jeffrey’s prior

rJaffe
s Gaussian with 2 per cent uncertainty

rani Uniform prior for βani in [0, 1]

κext Gaussian prior on (1− κext)

s Uniform in [0, 2]

δβ Uniform in [-0.5, 0.5] arcsec

* Dfiducial
d and Dfiducial

∆t are the fiducial values of the an-

gular diameter distance to the deflector and the time-

delay distance.

conservative choice comparing to the 14 per cent uncertainty adopted by Wong et al. (2017)

based on the results of Gavazzi et al. (2007). We choose Jeffrey’s prior P (ξ) ∝ 1/ξ for

κNFW
s and κJaffe

s . We tested two prior choices for rani: (a) uniform in [0.5, 5]×Reff (hereafter

referred to as P[0.5,5](rani/Reff), as used in Suyu et al. 2012; Birrer et al. 2016; Wong et al.

2017), and (b) a uniform prior for βani(Reff) in [0, 1] (hereafter referred as P[0,1](βani(Reff))).

P[0,1](βani(Reff)) puts more weight in the region rani/Reff < 2, where the assumed value of rani

in our model lies, in comparison with P[0.5,5](rani/Reff) and it results in a more unbiased and

constrained estimate of the angular diameter distance Dd (Figure 4.3). Adopting a more

restricting uniform prior for rani in [0.5, 2]×Reff produces a similar constraint on Dd as the

one by adopting P[0,1](βani(Reff)). We set P[0,1](βani(Reff)) as the prior for rani for the rest of

this study.
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We have examined the effect of having spatially resolved velocity dispersion data on the

uncertainties of the model parameters by studying three cases: (1) without any kinematics,

(2) with integrated velocity dispersion data of the deflector within 1.2 arcsec radius, and (3)

with spatially resolved velocity dispersion data. We adopted three observational settings,

which reflect variation in qualities of observation instruments and conditions. These settings

are (1) “baseline”: representative of the resolution and precision that can be achieved with

integral field spectrographs (IFSs) on current and upcoming instruments, e.g. OSIRIS on

Keck or NIRSPEC on the JWST, with the precision on the velocity dispersion and the exter-

nal convergence that can be expected in the best cases, (2) “conservative”: same as baseline

but with conservative precision on the velocity dispersion and the external convergence, and

(3) “futuristic”: for IFSs on upcoming extremely large telescopes, e.g. IRIS on Thirty Meter

Telescope (TMT) (Table 4.3). It is beyond the scope of this paper to estimate the amount

of exposure time required to meet these goals for each one of the instrumental setups and to

analyse the sources of systematic uncertainties. This exploration is left for future work.

As expected, Dd can only be measured by adding the stellar kinematic information to

the lensing and time-delay data (Figure 4.4). When integrated stellar kinematics is added,

the anisotropy radius rani is not constrained due to the mass-anisotropy degeneracy. Given

our parametrization and assumptions, Dd absorbs most of the improvement after adding

the integrated stellar kinematics, since the precision of D∆t is limited by the assumed priors

on time delay and external convergence. If one were to consider more flexible models, the

gain would be even more significant, highlighting the importance of kinematics. In the real

world of course, having additional information is not only helpful for improving the precision

but also for checking for systematics and improving the accuracy. Using spatially resolved

velocity dispersion data can improve uncertainty on Dd from ∼20 to ∼10 per cent for the

baseline setup and from ∼27 to ∼17 per cent for the conservative setup with respect to

using integrated velocity dispersion data (Figure 4.5). Moreover, the anisotropy radius rani

is well-determined only when spatially resolved kinematics is introduced (Figure 4.4), which
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demonstrates that spatially resolved kinematics help break the mass-anisotropy degeneracy

and allow us to use the anisotropy radius rani as a free parameter. For our adopted lensing

data quality equivalent to δγ ∼ 0.02, the lens model parameters are limited by modelling

uncertainties, thus the addition of the spatially resolved kinematics improves the constraints

only by ∼1 per cent. If we adopt a conservative lensing data quality equivalent to δγ ∼ 0.04,

the addition of the spatially resolved kinematics leads to more relative improvement in the

constraints on the model parameters, e.g. uncertainty on D∆t improves by ∼3 per cent

compared to the case with only integrated kinematics. In comparison to our adopted lensing

data quality (δγ ∼ 0.02), this conservative lensing data quality worsens the constraint D∆t by

∼2 per cent (from ∼6 to ∼8 per cent). The constraint on Dd does not significantly change

(within 1 per cent), as Dd is limited by the quality of the stellar kinematics data. The

uncertainties on Dd and D∆t for different data sets and observational setups are summarized

in Table 4.4.

To check for bias in point estimators of the model parameters, we performed 25 joint

analyses for different noise realizations using the same lensing parameters with the “base-

line” setup. The 1σ regions of the parameter estimates from these analyses are shown in

with horizontal error bars in the one-dimensional histograms of Figure 4.4. All the point

estimators of the model parameters are within 1σ of the true values. We note however, that

it is highly preferable to not adopt point estimators of individual parameters, but rather

take into account the full (asymmetric) posterior PDF.
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Table 4.3: Parameters for different observational setups.

Observational setup* Annulus width Nannuli
† PSF FWHM

Parameter uncertainties

aJaffe 1− κext ∆t σ∗ θ

(arcsecond) (arcsecond) (per cent) (per cent) (per cent) (per cent) (mas)

Baseline 0.1 12 0.1 2 3 2 5 60

Conservative 0.2 6 0.1 2 5 2 10 60

Futuristic 0.05 24 0.03 2 3 2 5 60

* The “baseline” and “conservative” setups represent what we can expect to obtain with current and upcoming diffraction

limited IFSs, e.g. OSIRIS on Keck and NIRSPEC on JWST. The “futuristic” setup is for diffraction-limited IFSs on

upcoming extremely large telescopes, e.g. TMT or E-ELT.

† Nannuli refers to the number of annuli for the spatially resolved kinematics for each observational setup.
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Table 4.4: Uncertainties of Dd and D∆t for a single lens with different observational setups.

Model Kinematics data σDd
σD∆t

(per cent) (per cent)

Baseline

No - 6.5

Integrated 19.8 6.5

Resolved 9.6 5.8

Conservative
Integrated 27.0 7.8

Resolved 16.7 7.5

Futuristic Resolved 7.7 5.3
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Table 4.5: Cosmological models and parameter priors.

Model name Description Priors

ΛCDM Flat ΛCDM cosmology h ∈ [0, 1.5], Ωm ∈ [0, 1]

oΛCDM Non-flat ΛCDM cosmology h ∈ [0, 1.5], ΩΛ ∈ [0, 1], Ωk ∈ [−0.5, 0.5], Ωm > 0

wCDM Flat wCDM cosmology h ∈ [0, 1.5], ΩΛ ∈ [0, 1], w ∈ [−2.5, 0.5]

NeffCDM Flat NeffCDM cosmology h ∈ [0, 1.5], ΩΛ ∈ [0, 1], Neff ∈ [1, 5]

owCDM Non-flat wCDM cosmology h ∈ [0, 1.5], ΩΛ ∈ [0, 1], Ωk ∈ [−0.5, 0.5], Ωm > 0, w ∈ [−2.5, 0.5]

waCDM Flat waCDM cosmology h ∈ [0, 1.5], ΩΛ ∈ [0, 1], w0 ∈ [−2.5, 0.5], wa ∈ [−8, 4.5]
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4.5 Cosmological inference

Having estimated the precision attainable on the two distances for a single lens, we now turn

to the estimation of cosmological parameters from samples of time-delay lenses. First, in

Section 4.5.1. we investigate the precisions achievable from time delay lensing data alone.

Then, in Section 4.5.2, we combine the lensing information with Planck data to illustrate

complementarity in the determination of the cosmological parameters.

4.5.1 Cosmology from strong lensing alone

We performed a Bayesian analysis to obtain the posterior PDF of the cosmological parame-

ters C given the inferred angular diameter and time-delay distances computed in Section 4.4.

The posterior PDF is given by Bayes’ theorem as

P (C|D,Z) ∝ P (D|C,Z)P (C), (4.32)

where D is the set of measurements of Dd and D∆t for the strong lenses, and Z is the set of

redshifts pairs (zd, zs) for the lenses. To efficiently compute the likelihood term P (D|C,Z),

we approximate the posterior PDF of Dd and D∆t of each lens by its best fit bivariate normal

distribution function as

P (Dd, D∆t) =
1

2πσDd
σD∆t

√
1− ρ2

cor

exp

[
−z(Dd, D∆t)

2(1− ρ2
cor)

]
, (4.33)

where

z(Dd, D∆t) =
(Dd − µDd

)2

σ2
Dd

+
(D∆t − µD∆t

)2

σ2
D∆t

− 2ρcor(Dd − µDd
)(D∆t − µD∆t

)

σDd
σD∆t

,

(4.34)

and ρcor = cov(Dd, D∆t)/σDd
σD∆t

with cov(Dd, D∆t) being the covariance between the two

distances. µDd
and µD∆t

are the means of Dd and D∆t, respectively. Assuming the posterior

PDF as a bivariate normal distribution function is accurate to the order of Fisher matrix

approximation. As we are only interested in the precision of cosmological parameters, we

choose µDd
and µD∆t

to be the fiducial values of the angular and time-delay distances.
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Table 4.6: Uncertainties of Dd and D∆t for different lens systems.

Lens system zd zs Velocity dispersion data σDd
σD∆t

(per cent) (per cent)

HE0047 0.41 1.66 Resolved 9.6 5.9

J1206 0.75 1.79 Resolved 8.8 5.4

HE0435 0.46 1.69 Resolved 9.5 7.0

HE1104 0.73 2.32 Resolved 9.1 5.5

RXJ1131 0.29 0.65 Resolved 10.0 6.6

J0246 0.73 1.68 Resolved 8.9 5.5

HS2209 0.38* 1.07 Integrated 21.7 7.0

WFI2033 0.66 1.66 Integrated 18.5 6.1

B1608 0.63 1.39 Integrated 19.8 6.1

* The deflector redshift for HS2209 has not been accurately measured yet, there-

fore we used a fiducial redshift of z = 0.38. The results are not sensitive to the

assumed redshift.
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The quoted uncertainties on the parameters are determined from the 16- and 84-percentiles

of the posterior PDF. We have considered six different cosmological models for this anal-

ysis (Table 4.5). The first one is the basic flat ΛCDM model. The next three models

are one-parameter extensions of the basic ΛCDM model for ΩK , w, and Neff , labelled as

oΛCDM, wCDM, and NeffCDM models, respectively. The last two cosmological models are

two-parameter extensions from the basic ΛCDM model, relaxing (ΩK , w) and (w0, wa), la-

belled as owCDM and waCDM models, respectively. In the waCDM model, the dark-energy

equation-of-state parameter w is given by (Chevallier & Polarski 2001; Linder 2003)

w(a) = w0 + wa(1− a), (4.35)

where, a is the scale factor. We examined the parameter uncertainties primarily using the

fiducial cosmology: H0 = 70 km/s/Mpc, Ωm = 0.3, ΩΛ = 0.7, ΩK = 0, w = −1.

First, we explored the uncertainties on the cosmological parameters achievable by using

nine real lenses for which accurate time delay measurements and deep HST imaging data are

readily available. The details of these nine lenses are given in Table 4.6. Out of these nine

lenses, we consider six lenses to have spatially resolved kinematics and the remaining three

to have integrated kinematics from the “baseline” observational setup, since three of the

lenses are currently outside of the reach of OSIRIS on Keck. Spatially resolved kinematics

for all nine systems could be obtained with JWST, so our estimate should be considered

as conservative in this respect. Then, to explore the strength of using strong lenses to

measure the cosmological parameters, we repeated the analysis for a simulated sample of 40

strong lenses expected to be available in the next few years through dedicated follow-up of

newly discovered systems. Thus, we created a mock catalogue of 31 lenses with a redshift

distribution that resembles the one for the nine lenses given in Table 4.6 in the following

manner. First, we fit a Gaussian distribution to the redshift distribution of deflectors of the

nine lenses and sampled from this fitted Gaussian distribution. Next, we also fit a Gaussian

distribution to the distribution of the ratios of the deflector and source redshifts from the

nine lenses and sampled from this distribution to determine the source redshift for each of
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Table 4.7: Uncertainties on cosmological parameters.

Data sets H0 σ(H0) Ωm σ(Ωm) Ωk σ(Ωk) w σ(w) Neff σ(Neff)

(km/s/Mpc) (per cent)

ΛCDM

L9* 69.7± 1.4 2.0 0.33+0.09
−0.12 0.11 - - - - - -

L40* 69.91± 0.64 0.92 0.307+0.042
−0.047 0.044 - - - - - -

L9+Planck 68.35+0.82
−0.73 1.1 0.300± 0.010 0.010 - - - - - -

L40+Planck 69.45+0.59
−0.43 0.74 0.2866+0.0058

−0.0061 0.0059 - - - - - -

oΛCDM

L9 69.6± 2.3 3.3 0.35+0.19
−0.22 0.20 −0.01± 0.27 0.27 - - - -

L40 70.0± 1.1 1.6 0.308+0.087
−0.091 0.089 0.00± 0.12 0.12 - - - -

L9+Planck † 56.3+1.1
−0.9 1.8 0.443+0.018

−0.016 0.017 −0.0341± 0.0048 0.0048 - - - -

L40+Planck † 56.47+0.44
−0.47 0.81 0.441+0.011

−0.009 0.010 −0.0337+0.0033
−0.0030 0.0031 - - - -

wCDM

L9 70.2+3.5
−4.3 6.2 0.340.12

0.13 0.13 - - −1.11+0.66
−0.48 0.57 - -

L40 70.2+1.8
−2.2 2.9 0.307± 0.050 0.050 - - −1.03+0.24

−0.21 0.22 - -

L9+Planck 71.9+2.1
−1.8 2.8 0.276+0.014

−0.015 0.015 - - −1.157± 0.081 0.081 - -

L40+Planck 71.50+0.96
−0.79 1.2 0.2779+0.0060

−0.0058 0.0059 - - −1.127+0.054
−0.067 0.060 - -

NeffCDM

L9 69.7+1.4
−1.3 2.0 0.33+0.09

−0.13 0.11 - - - - 3.0+1.3
−1.4 1.4

L40 69.94± 0.65 0.93 0.305+0.042
−0.047 0.045 - - - - 3.0± 1.4 1.4

L9+Planck 69.7+1.1
−1.0 1.6 0.299+0.011

−0.010 0.010 - - - - 3.31± 0.16 0.16

L40+Planck 69.94+0.55
−0.54 0.77 0.2971+0.0084

−0.0076 0.0080 - - - - 3.33+0.13
−0.12 0.13

owCDM

L9 71.1+4.0
−5.2 6.5 0.41+0.24

−0.20 0.22 −0.10+0.26
−0.29 0.28 −1.25+0.72

−0.55 0.63 - -

L40 70.7+2.0
−3.1 3.6 0.36+0.19

−0.14 0.17 −0.06+0.19
−0.22 0.21 −1.14+0.46

−0.38 0.42 - -

waCDM

Data sets H0 σ(H0) Ωm σ(Ωm) ΩΛ σ(ΩΛ) w0 σ(w0) wa σ(wa)

(km/s/Mpc) (per cent)

L9 70.4+5.0
−5.8 7.7 0.40+0.12

−0.13 0.13 0.60+0.12
−0.13 0.13 −0.98+0.86

−0.77 0.82 −2.2+3.7
−3.3 3.5

L40 68.7+3.7
−3.6 5.3 0.359+0.092

−0.078 0.085 0.641+0.092
−0.078 0.085 −0.77+0.46

−0.64 0.55 −1.6+3.5
−2.4 3.0

L9+Planck+BAO 65.5+2.6
−2.2 3.7 0.335± 0.025 0.025 0.665± 0.025 0.025 −0.59+0.28

−0.29 0.29 −1.46+0.86
−0.85 0.86

L40+Planck+BAO 67.0+2.2
−2.0 3.2 0.321+0.022

−0.020 0.021 0.679+0.020
−0.022 0.021 −0.67+0.23

−0.26 0.25 −1.39+0.75
−0.77 0.76

* L9 refers to the set of nine lenses and L40 refers to the set of 40 lenses.

† For oΛCDM model, to combine Planck with the lensing information, the fiducial cosmology was chosen to be the Planck oΛCDM cosmology:

H0 = 56.5 km/s/Mpc, Ωm = 0.441, ΩΛ = 0.592, and ΩK = −0.033.
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Figure 4.6: Distribution of deflector and source redshifts of the lenses. The circles show the

redshifts for the nine actual lenses with measured time delays and deep HST imaging. The

triangles show the redshifts for the 31 lenses in the mock catalogue. We assume a fiducial

redshift zd = 0.38 for the strong lens HS2209 as it has not been accurately measured yet and

it is marked with a dark circle on the plot.

the 31 mock lensing systems. The redshift distribution of the real and mock lenses is shown

in Figure 4.6.

4.5.1.1 Nine lenses

The detailed parameter uncertainties for all the cosmological models considered in this paper

are tabulated in Table 4.7. For the flat ΛCDM model, H0 is estimated with 2.0 per cent

precision (69.7± 1.4 km/s/Mpc) and Ωm is estimated with precision σ(Ωm) = 0.11.

To measure the improvement over cosmological parameter uncertainties by using spatially

resolved kinematics, we did the same analysis for nine lenses without using kinematics. In
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Figure 4.7: Posterior PDF of cosmological parameters for the flat ΛCDM model obtained

from distance measurements for nine lenses (L9) without kinematics (dotted), for nine lenses

with kinematics (dashed) and for 40 lenses (L40) with kinematics (solid). The contours

represent 1σ and 2σ confidence regions. Solid straight lines show the fiducial values. Using

kinematics breaks the degeneracy between parameters and improves the precision on H0

from 3.2 to 2.0 per cent for nine lenses.
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Figure 4.8: Posterior PDF of cosmological parameters obtained from distance measurements

for oΛCDM (top left), wCDM model (top right), and NeffCDM (bottom) models. The

posterior PDF inferred from nine lenses (L9) without kinematics is shown in dotted contours,

from nine lenses with kinematics is shown in dashed contours, and from 40 lenses (L40) with

kinematics is shown in solid contours. The contours represent 1σ and 2σ confidence regions.

Solid straight lines show the fiducial values. For all cosmological models, adding spatially

resolved kinematics lifts degeneracies between the cosmological parameters and puts tighter

constraints on them.
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Figure 4.9: Posterior PDF of cosmological parameters obtained from the distance mea-

surements for owCDM model. The posterior PDF inferred from nine lenses (L9) without

kinematics is shown in dotted contours, from nine lenses with kinematics is shown in dashed

contours, and from 40 lenses (L40) with kinematics is shown in solid contours. The contours

represent 1σ and 2σ confidence regions. Solid straight lines show the fiducial values. This

is a further illustration of the role of spatially resolved kinematics in breaking degeneracies

between the parameters for a two-parameter extension from the basic ΛCDM model.
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that case, the parameter uncertainties are σ(H0) = 3.2 per cent and σ(Ωm) = 0.32. Using

spatially resolved kinematics for nine lenses leads to an improvement in the precision of H0

from 3.2 to 2.0 per cent. If we adopt the conservative lensing data quality equivalent to

δγ ∼ 0.04, addition of the spatially resolved stellar kinematics for nine lenses still improves

the precision of H0 by 1 per cent from 3.9 to 2.9 per cent. Without any kinematics there

is a very strong degeneracy in Ωm, which can be broken by adding the stellar kinematics

information (Figure 4.7).

For the oΛCDM model with our “primary” fiducial cosmology, the cosmological param-

eter uncertainties are estimated to be σ(H0) = 3.3 per cent, σ(Ωm) = 0.2, σ(ΩK) = 0.27

(Figure 4.8). For the flat wCDM model, we estimate the cosmological parameters uncer-

tainties to be σ(H0) = 6.2 per cent, σ(Ωm) = 0.13, and σ(w) = 0.57 (Figure 4.8). For

the NeffCDM model, the parameter uncertainties are estimated to be σ(H0) = 2.0 per cent,

σ(Ωm) = 0.11 and Neff is completely degenerate.

For the owCDM model, where we relax ΩK and w from the flat ΛCDM model, we

estimate the parameters with uncertainties σ(H0) = 6.5 per cent, σ(Ωm) = 0.22, σ(ΩK) =

0.28, σ(w) = 0.63. For the waCDM model, w0 and wa are estimated with uncertainties

σ(w0) = 0.82 and σ(wa) = 3.5, respectively.

4.5.1.2 40 lenses

For the flat ΛCDM model, using distance measurement uncertainties from 40 lenses we

estimate H0 with 0.92 per cent precision and Ωm with σ(Ωm) = 0.044. For the conservative

lensing data quality equivalent to δγ ∼ 0.04, the sample of 40 lenses constraints H0 with

1.3 per cent uncertainty. The parameter uncertainties are estimated for oΛCDM model to

be σ(H0) = 1.6 per cent, σ(Ωm) = 0.089, and σ(ΩK) = 0.12 and for wCDM model to be

σ(H0) = 2.9 per cent, σ(Ωm) = 0.05, and σ(w) = 0.22. For NeffCDM model, we estimate

the parameter uncertainties to be σ(H0) = 0.93 per cent, σ(Ωm) = 0.045. Adding more lens

to the sample does not improve the degeneracy in Neff showing time-delay cosmography is
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insensitive to Neff .

For the owCDM model, we estimate the parameter uncertainties to be σ(H0) = 3.6 per

cent, σ(Ωm) = 0.17, σ(ΩK) = 0.21, σ(w) = 0.42 (Figure 4.9). For the waCDM model, w0

and wa are estimated with uncertainties σ(w0) = 0.55 and σ(wa) = 3.0, respectively.

4.5.2 Joint analysis with Planck

We combined the inference on cosmography from strong lensing with Planck 2015 data release

(Planck Collaboration 2016a, hereafter Planck).2 To combine the two data sets, we followed

the importance sampling method prescribed by Lewis & Bridle (2002) and implemented by

Suyu et al. (2010, 2013), and Bonvin et al. (2017). We used the bivariate normal distribution

fit of the posterior PDF of Dd and D∆t given in Equation (4.33) to compute the “importance”

or weight of each point in the Planck chain.

For many combinations of cosmological model and parameters, the confidence regions

from the time-delay cosmography are orthogonal to the ones from the Planck. As a result,

combining the inferences from the time-delay cosmography with the Planck leads to much

tighter constraints (Figure 4.10).

For flat ΛCDM model, combining Planck with nine lenses leads to an 1.1 per cent mea-

surement of H0. For the combination of 40 lenses and Planck, the precision of H0 becomes

0.74 per cent (Table 4.7) in the flat ΛCDM model.

For oΛCDM model, the maximum likelihood regions of the Planck and the lensing

data with the “primary” fiducial cosmology are too far apart to implement the impor-

tance sampling method. Therefore, we used the Planck values, H0 = 56.5 km/s/Mpc,

Ωm = 0.441, ΩΛ = 0.592, ΩK = −0.033 as the fiducial cosmology to generate the lens-

ing likelihood to combine with the Planck likelihood. This combination gives σ(H0) = 1.8

2We used the Planck chains designated by “plikHM TT lowTEB” which uses the baseline high-l Planck

power spectra and low-l temperature and LFI polarization.
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per cent, σ(Ωm) = 0.017, and σ(ΩK) = 0.0048 for nine lenses and σ(H0) = 0.81 per cent,

σ(Ωm) = 0.01, and σ(ΩK) = 0.0031 for 40 lenses.

For the wCDM model, the precision of w is estimated to be σ(w) = 0.081 and σ(w) =

0.060 for combination of Planck with nine and 40 lenses, respectively. For the NeffCDM

model, we constrain the number of relativistic species with σ(Neff) = 0.16 and σ(Neff) = 0.13

by combining Planck with nine and 40 lenses, respectively.

We did not combine Planck with the lensing likelihoods for oΛCDM model as the Planck

collaboration did not publicly release the parameter chains for this model. For waCDM

model, we combined the lensing information with Planck+BAO constraints. From the joint

analysis, we estimate the parameter uncertainties to be σ(w0) = 0.29 and σ(wa) = 0.86

giving dark-energy figure of merit (FoM; given by the inverse of the area enclosed by the

1σ confidence contour in the w0 − wa plane) 0.85 for nine lenses, and σ(w0) = 0.27 and

σ(wa) = 0.82 giving an FoM = 1.11 for 40 lenses (Figure 4.11).

4.6 Discussion and Comparison with Previous Work

We explored how incorporating spatially resolved kinematics of the deflector in addition to

the lensing and time-delay data improves the precision of the inferred cosmological param-

eters. We showed that the addition of the spatially resolved kinematics to the lensing and

time-delay data helps break the mass-anisotropy degeneracy and leads to improved precision

in the determination of the angular diameter distance of the deflector (from ∼ 20 to ∼ 10 per

cent). We found that the time-delay distances can be simultaneously measured with ∼ 6 per

cent accuracy, which is comparable to the 6 per cent measurement of the time-delay distance

for the lens RXJ1131-1231 (Suyu et al. 2013) and the 7.6 per cent measurement for the lens

HE0435-1223 (Wong et al. 2017). These precision margins are achievable by current and

future IFSs, e.g. OSIRIS on Keck with laser guide star AO or space-based instruments, e.g.

NIRSPEC on JWST. Future telescopes like TMT or E-ELT would improve these precisions
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Figure 4.10: 1σ and 2σ regions of cosmological parameters obtained from lensing data alone

and in combination with Planck for ΛCDM (top left), oΛCDM (top right), wCDM (bottom

left), and NeffCDM (bottom right) models. The constraints from nine lenses with spatially

resolved kinematics are shown with dotted contours, from 40 lenses with spatially resolved

kinematics are shown with dash-dotted contours, from Planck are shown in dashed contours,

and from the combination of Planck and 40 lenses are shown in solid contours. In all

cases, adding the lensing information to the Planck data improves the constraints on the

cosmological parameters.
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Figure 4.11: 1σ and 2σ confidence regions of the dark energy equation of state parame-

ters obtained from lensing data alone and in combination with Planck for waCDM model.

The constraints from nine lenses with spatially resolved kinematics are shown with dotted

contours, from 40 lenses with spatially resolved kinematics are shown with dash-dotted con-

tours, from Planck are shown in dashed contours, and from the combination of Planck and

40 lenses are shown in solid contours. Adding lensing measurements to the Planck+BAO

data improves the dark energy FoM by 56 per cent.
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further. Jee et al. (2016) assume 5 per cent precision on both angular diameter and time-

delay distances; however we found that 5 per cent precision on angular diameter distance

measurement is probably beyond reach with current or imminent technology.

We confirmed the result by Linder (2011) and Jee et al. (2016) that combining lensing

information with CMB and other external data sets can greatly improve the constraints

on the cosmological parameters. Linder (2011) finds that by combining time-delay distance

measurements with 5 per cent uncertainty from 150 hypothetical strong lens systems with the

CMB and supernova constraints, dark energy FoM can be improved by almost a factor of 5.

Jee et al. (2016) find that combining angular diameter and time-delay distance measurements

with 5 per cent uncertainties on both from 55 lenses with Planck+BAO+JLA constraints

improves the precision on wa and the dark energy figure of merit by approximately a factor

of 2 for the time-varying dark energy model. In our study, combining angular diameter

and time-delay distance measurements with ∼10 per cent and ∼6 per cent uncertainties,

respectively, from 40 lenses with Planck+BAO data improves the Planck+BAO constraint

on wa by 13 per cent and the dark energy FoM by 56 per cent, consistent with previous

results after taking into account the differences.

4.7 Limitation of this present work

In order to model a large number of lenses in a computationally efficient manner we adopted

many simplifying assumptions. First, we used a collection of conjugate points to replace

the detailed modelling of the lensed quasar host galaxy. Secondly, we assumed spherical

symmetry to speed up the calculations. By requiring the uncertainty on the effective mass

density profile slope to be equal to 0.02, the precision obtained by full-blown models, this

procedure ensures that we get realistic uncertainties on distances. We know from full pixel-

based simulations that such precision can be attained by modelling images obtained with

reasonable exposure time using current and future technology (Meng et al. 2015). A similar
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study is required to estimate the exposure times required to carry out the spectroscopic

observations (Meng et al. 2017, in preparation).

We assumed a 3-5 per cent uncertainty for the external convergence as it can be indirectly

estimated by comparing the statistics of galaxy number counts along the line of sight with

simulated light cones from the Millennium Simulation. This approach has the caveat of

being dependent on the assumed cosmology and thus possibly biasing the final cosmological

inferences (Rusu et al. 2017). Moreover, there can be ∼25 per cent deviation in the inferred

κext between the Planck cosmology and the Millennium Simulation. This would leave some

residual systematics to be accounted for when analysing real-life lenses. With the most

pessimistic approach of 25 per cent variation between median κext inferred from ray-tracing,

this would mean that a median value of κext = 0.04 would impart a 1 per cent systematic

uncertainty on H0. However, κext can be shown to depend primarily on Ωmσ8 where σ8

is the root-mean-square fluctuation of the mass density, while other contributions are sub-

dominant (Equation C4 in Rusu et al. 2017). This means that one can perform a complete

cosmographic inference, where also Ωm and σ8 are varied when importance-sampling from

the CMB chains. Whereas the product Ωmσ8 (hence the reconstructed median κext) can

vary appreciably between “different” CMB experiments (with different setups, or different

multipole coverage, or beam characterization), its possible variation is smaller within the

same CMB experiment, which means that the median κext inferred will vary by less than

the most pessimistic estimate (25 to 1 per cent on H0). Hence, regardless of whether Ωmσ8

are varied or kept at a fiducial value when considering κext, time-delays are still a robust

way of probing departures from flat-ΛCDM as inferred from within a particular CMB probe,

without particular worries from the κext reconstruction, with sub-percent accuracy. There

are, in fact, other factors affecting the accuracy of κext reconstruction, such as the choice

of weighting scheme in terms of distances and masses, or the importance of a multi-plane

approach. However, when dealing with real-life lenses, these have been (and are being)

discussed at length for each individual system while still at blinded-inference stage. Different
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lenses have required different evaluations of κext, but after unblinding they have all given

consistent H0 results, which suggests that this side of reconstruction systematics is currently

under control. Part of the reason may be that the width of the κext PDF is not negligible

with respect to the median, so any systematics affecting the shift in κext are still comprised

within 1σ from the “true” value.

Finally, we emphasize that our study takes into account systematic uncertainties only

in an indirect manner. Possible sources of known systematics can be contamination from

the bright quasar images to the the host galaxy flux or the deflector spectra, unaccounted

line-of-sight contribution to the projected mass etc. We assumed that these sources of

known systematics can be accounted by our chosen error budget for different mock data

and model parameters, e.g. 5-10 per cent uncertainty on the velocity dispersion and 3-

5 per cent uncertainty on the external convergence, which are realistic error budgets for

these quantities from the state of the art measurements. It would be useful to carry out a

systematic investigation of strategies that may be required to limit any potential bias arising

from these systematic uncertainties to be well below the statistical errors.

4.8 Summary

Strong lenses with measured time delays can be used as probes to constrain cosmological

parameters through the measurement of the angular diameter distance to the deflector and

the time-delay distance. However, spatially resolved kinematics is essential to measure the

angular diameter distance to the deflector and it also helps break the mass-anisotropy degen-

eracy. In this paper, we used a realistic model of a deflector galaxy to create mock lensing

and kinematic data and estimated the achievable precisions of the cosmological parameters.

The main conclusions of this study are as follows

1. The angular diameter distance to the deflector can be measured to approximately 10

per cent uncertainty by including spatially resolved kinematics from current ground-
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based IFS with laser guide star AO, e.g. OSIRIS on Keck, or with space-based instru-

ments, e.g. NIRSPEC on JWST, to the imaging data of the lensed quasar and the

time-delay measurement. The time-delay distance can be simultaneously measured to

∼6 per cent uncertainty.

2. Using spatially resolved kinematics improves the precision on angular diameter distance

per system from ∼20 to ∼10 per cent over using integrated kinematic data.

3. H0 can be measured to 2.0 per cent precision using lensing and spatially resolved

kinematics from nine lenses and to sub-percent precision (0.9 per cent) from 40 lenses.

4. The uncertainty on H0 improves from 3.2 to 2.0 per cent by adding the spatially

resolved kinematics to the lensing and time-delay data for nine strong lens systems.

5. Combining Planck with lensing and spatially resolved kinematics data can break de-

generacies between the cosmological parameters and greatly improve the constraints on

them. Especially, for the time-dependent dark energy parameter model, the dark en-

ergy FoM is improved by 56 per cent by combining a sample of 40 lenses with measured

time delays and kinematics with Planck+BAO constraints.

This is a very interesting time for time-delay cosmography as several wide-field and

deep-sky surveys such as the Dark Energy Survey, Euclid, the Wide Field Infrared Survey

Telescope (WFIRST), the Large Synoptic Survey Telescope (LSST), should allow for the

discovery and follow-up of tens to hundreds of multiply imaged quasars (Oguri & Marshall

2010). The launch of NIRSPEC on JWST, scheduled for 2018, and the constantly improving

ground-based instruments with laser guide star AO (e.g. OSIRIS on Keck) make it possible

to have high-quality spatially resolved kinematics for these lens systems. In turn, this can

lead to the measurement of the Hubble parameter to sub-per-cent precision. Combining the

distance measurements from strong lens systems to other cosmological probes, i.e. CMB,

BAO, and Type Ia supernova, would help tightly constraint the cosmological parameters
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leading to a deeper understanding of dark energy, dark matter, and other fundamental

properties of our Universe.
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CHAPTER 5

Automated and uniform modelling of lensed quasars

This chapter was published as Shajib, A. J., S. Birrer, T. Treu, M. W. Auger, A. Agnello,

T. Anguita, E. J. Buckley-Geer, J. H. H. Chan, T. E. Collett, F. Courbin, C. D. Fassnacht,

J. Frieman, I. Kayo, C. Lemon, H. Lin, P. J. Marshall, R. McMahon, A. More, N. D. Mor-

gan, V. Motta, M. Oguri, F. Ostrovski, C. E. Rusu, P. L. Schechter, T. Shanks, S. H. Suyu,

G. Meylan, T. M. C. Abbott, S. Allam, J. Annis, S. Avila, E. Bertin, D. Brooks, A. Carnero

Rosell, M. Carrasco Kind, J. Carretero, C. E. Cunha, L. N. da Costa, J. De Vicente, S. De-

sai, P. Doel, B. Flaugher, P. Fosalba, J. Garćıa-Bellido, D. W. Gerdes, D. Gruen, R. A.

Gruendl, G. Gutierrez, W. G. Hartley, D. L. Hollowood, B. Hoyle, D. J. James, K. Kuehn,

N. Kuropatkin, O. Lahav, M. Lima, M. A. G. Maia, M. March, J. L. Marshall, P. Mel-

chior, F. Menanteau, R. Miquel, A. A. Plazas, E. Sanchez, V. Scarpine, I. Sevilla-Noarbe,

M. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E. C. Swanson, G. Tarle, & A. R.

Walker. 2019, MNRAS, 483, 5649, and reproduced here with minor formatting changes.

5.1 Background

Strong gravitational lensing is the effect where light from a background object is deflected

by a foreground mass distribution (e.g. galaxy or galaxy cluster) and multiple images of the

background object form. Strong gravitational lenses are powerful probes to answer a variety

of astrophysical and cosmological questions (see, e.g., Treu 2010), as we discuss briefly below.

According to the concordance model in cosmology, our Universe consists of 5 per cent
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baryonic matter, 26 per cent dark matter, and 69 per cent dark energy accounting for a

cosmological constant Λ (Planck Collaboration 2018). This model is known as the Λ cold

dark matter (ΛCDM) model. The predictions of the ΛCDM model have been extensively

tested with good agreement to observations spanning from the largest scale up to the horizon

down to ∼1 Mpc (e.g. Dawson et al. 2013; Shajib & Wright 2016; Planck Collaboration 2018).

However, there also have been observations that are in tension with the flat ΛCDM paradigm.

For instance, there is a tension at the & 3σ level between the local measurement of H0 from

Type Ia supernovae (Riess et al. 2016; Riess et al. 2018; Riess et al. 2018; Bernal et al. 2016)

and that extrapolated from the Planck cosmic microwave background measurement for a

flat ΛCDM cosmology. This tension may arise from unknown systematic uncertainties in

one or both of the measurements, or might point to new physics, e.g. additional species of

relativistic particles, a non-flat cosmology, or dynamic dark energy. Therefore, it is crucial

to have precise and independent measurements of H0 to settle this discrepancy.

In a gravitational lens, if the background source is time-variable (typically a quasar,

but also a supernova as originally proposed), the delay between the arrival time of photons

for the different images can be used to measure the so-called ‘time-delay distance’ (Refsdal

1964; Suyu et al. 2010). This distance is inversely proportional to H0, thus it can be used to

constrain H0 and other cosmological parameters (for a detailed review, see Treu & Marshall

2016). H0 has been determined to 3.8 per cent precision using three lens systems in the flat

ΛCDM cosmology (Suyu et al. 2010, 2013, 2017; Sluse et al. 2017; Rusu et al. 2017; Wong

et al. 2017; Bonvin et al. 2017; Tihhonova et al. 2018). With a large sample size of about 40

lenses, it is possible to measure H0 with the per cent precision (Jee et al. 2016; Shajib et al.

2018) necessary to resolve the H0 tension and make the most of other dark energy probes

(Linder 2011; Suyu et al. 2012; Weinberg et al. 2013).

One of the baryonic components in dark matter is low-mass star. Surprisingly, recent

studies have shown that the low-mass star contribution in massive elliptical galaxies is signif-

icantly underestimated if the stellar initial mass function (IMF) of the Milky Way is assumed
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(Treu et al. 2010; van Dokkum & Conroy 2010; Auger et al. 2010b; Cappellari et al. 2012;

Schechter et al. 2014). Precise knowledge about the IMF is key in measuring almost any

extragalactic quantity involving star and metal formation. Measuring the stellar mass-to-

light ratio in the deflectors of quadruply imaged lensed quasars (henceforth quads) from

microlensing statistics provides one of the most robust methods to constrain the IMF (e.g.

Oguri et al. 2014; Schechter et al. 2014).

Quads also provide a unique test of small-scale structure formation (Kauffmann et al.

1993; Witt et al. 1995; Klypin et al. 1999; Moore et al. 1999; Boylan-Kolchin et al. 2011;

Metcalf & Madau 2001; Dalal & Kochanek 2002; Yoo et al. 2006; Keeton & Moustakas

2009; Moustakas et al. 2009) by measuring the subhalo mass function (Metcalf & Zhao 2002;

Kochanek & Dalal 2004; Amara et al. 2006; Metcalf & Amara 2012; Nierenberg et al. 2014,

2017; Xu et al. 2015; Birrer et al. 2017, see also for studies involving extended source only,

Koopmans 2005; Vegetti & Koopmans 2009; Vegetti et al. 2010, 2012, 2018; Hezaveh et al.

2016), independent of their luminosity function. With a large sample of quads, Gilman et al.

(2018) demonstrate the possibility of constraining the free-streaming length of dark matter

particles more precisely than current limits based on the Lyman-α forest (Viel et al. 2013).

Until recently, all of these methods could only be applied to a small sample of known

quads. However, such systems are currently being discovered at a rapidly increasing rate due

to multiple strong-lens search efforts involving various large-area sky surveys (e.g. Agnello

et al. 2015a, 2018d,c; Williams et al. 2017, 2018; Schechter et al. 2017; Sonnenfeld et al.

2018b; Lemon et al. 2018; Anguita et al. 2018, Treu et al. 2018, submitted). With more

deep wide-field surveys, e.g. Wide-Field Infrared Survey Telescope, Large Synoptic Survey

Telescope, Euclid, etc., coming online within the next decade, the sample size of quads is

expected to increase by two orders of magnitude or more (Oguri & Marshall 2010; Collett

2015).

Modelling such lens systems has so far been carried out for individual systems while fine-

tuning the modelling approach on a case-by-case basis. However, with the rapidly increasing
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rate of discovery, it is essential to develop a modelling technique that is applicable to a wide

variety of quads to efficiently reduce the time and human labour necessary in this endeavour.

Given the large diversity in the morphology and complexity of quads, this is an interesting

problem to pose: is every quad different or ‘unhappy in its own way’ that requires careful

decision-making by a human in the modelling procedure, or are the quads similar or ‘happy’

to some extent so that a uniform modelling technique can be applied to generate acceptable

models without much human intervention?

Recently, some initial strides have been undertaken along the lines of solving this problem

for strong lenses with extended sources. Nightingale et al. (2018) devised an automated lens

modelling procedure using Bayesian model comparison. Hezaveh et al. (2017) and Perreault

Levasseur et al. (2017) applied machine learning techniques to automatically model strong

gravitational lenses and constrain the model parameters. In this chapter, we devise a general

framework or decision-tree that can be applied to model-fitting of quads both in a single band

and simultaneously in multiple bands. We implement this uniform modelling approach using

the publicly available lens-modelling software Lenstronomy (Birrer & Amara 2018, based

on Birrer et al. 2015) to a sample of 13 quads from the Hubble Space Telescope (HST ) data

in three bands. Lenstronomy comes with sufficient modelling tools and the architecture

allows a build-up in complexity as presented in this work. We report the model parameters

and other derived quantities for these lens systems.

To demonstrate the scientific capabilities of such a sample of strong-lens systems, we

study the properties of the deflector galaxy mass distribution, specifically the alignment of

the mass and light distributions in them. The distribution of dark matter and baryons in

galaxies can test predictions of ΛCDM and galaxy formation theories (e.g. Dubinski 1994;

Ibata et al. 2001; Kazantzidis et al. 2004; Macciò et al. 2007; Debattista et al. 2008; Lux

et al. 2012; Read 2014). N-body simulations with only dark matter particles predict nearly

triaxial, prolate haloes (Dubinski & Carlberg 1991; Warren et al. 1992; Navarro et al. 1996;

Jing & Suto 2002; Macciò et al. 2007). In the presence of baryons, the halos become rounder
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(Dubinski & Carlberg 1991; Dubinski 1994; Warren et al. 1992). With a modestly-triaxial

luminous galaxy embedded in the dark matter halo, large misalignments (∼ 16 ± 19deg)

between the projected light and mass major axes can be produced (Romanowsky & Kochanek

1998). For disk galaxies, the dark matter distribution is shown to be well-aligned with the

light distribution (Katz & Gunn 1991; Dubinski & Carlberg 1991; Debattista et al. 2008).

As the lensing effect is generated by mass, strong gravitational lenses give independent

estimates of the mass distribution that can be compared with the observed light distribution.

The deflectors in quads are typically massive ellipticals (with Einstein mass ME & 1011.5M�).

Most of the massive ellipticals are observed to be slow rotators with uniformly-distributed

misalignments between the kinematic and photometric axes (Ene et al. 2018). The uniform

distribution of misalignments suggests these massive ellipticals to be intrinsically triaxial.

Massive ellipticals can also have of stellar populations and dust distribution with different

geometries producing isophotal twist which can create a misalignment between the mass

and light distributions (Goullaud et al. 2018). For lens systems, a tight alignment within

±10deg between the major axes of the mass and light distribution has been observed for

deflector galaxies with weak external shear, whereas galaxies with strong external shear can

be highly misaligned (Keeton et al. 1998; Kochanek 2002; Treu et al. 2009; Sluse et al. 2012a;

Gavazzi et al. 2012; Bruderer et al. 2016). However, there has been some conflict about the

correlation between the ellipticity of the mass and light distributions with reports of both

strong correlation (Sluse et al. 2012a; Gavazzi et al. 2012) and no correlation (Keeton et al.

1998; Ferreras et al. 2008; Rusu et al. 2016).

this chapter is organized as follows. In Section 5.2, we describe the data used in this

study. We describe our methodology in Section 5.3 and the results in Section 5.4. Finally,

we summarize the paper followed by a discussion in Section 5.5. When necessary, we adopt

a fiducial cosmology with H0 = 70 km s−1 Mpc−1, Ωm = 0.3, ΩΛ = 0.7, and Ωr = 0. All

magnitudes are given in the AB system.
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Table 5.1: Observation information and references for the lens systems.

System name Observation date

Total exposure time

Reference(seconds)

F160W F814W F475X

PS J0147+4630 2017 Sept 13 2196.9 1348.0 1332.0 Berghea et al. (2017)

SDSS J0248+1913 2017 Sept 5 2196.9 1428.0 994.0 Ostrovski et al. (in preparation), Delchambre et al. (2018)

ATLAS J0259-1635 2017 Sept 7 2196.9 1428.0 994.0 Schechter et al. (2018)

DES J0405-3308 2017 Sept 6 2196.9 1428.0 1042.0 Anguita et al. (2018)

DES J0408-5354 2018 Jan 17 2196.9 1428.0 1348.0 Lin et al. (2017); Diehl et al. (2017); Agnello et al. (2017)

DES J0420-4037 2017 Nov 23 2196.9 1428.0 1158.0 Ostrovski et al. (in preparation)

PS J0630-1201 2017 Oct 5 2196.9 1428.0 980.0 Ostrovski et al. (2018); Lemon et al. (2018)

SDSS J1251+2935 2018 Apr 26 2196.9 1428.0 1010.0 Kayo et al. (2007)

SDSS J1330+1810 2018 Aug 15 2196.9 1428.0 994.0 Oguri et al. (2008)

SDSS J1433+6007 2018 May 4 2196.9 1428.0 1504.0 Agnello et al. (2018a)

PS J1606-2333 2017 Sept 1 2196.9 1428.0 994.0 Lemon et al. (2018)

DES J2038-4008 2017 Aug 29 2196.9 1428.0 1158.0 Agnello et al. (2018c)

WISE J2344-3056 2017 Sept 9 2196.9 1428.0 1042.0 Schechter et al. (2017)

5.2 HST sample

Our sample consists of twelve quads and one five-image system. Some of these systems

were discovered by the STRong-lensing Insights into the Dark Energy Survey (STRIDES)1

collaboration [STRIDES paper I Treu et al. (2018), paper II Anguita et al. (2018), and paper

III Ostrovski et al. (in preparation)], some are recent discoveries by independent searches

outside of the Dark Energy Survey (DES), and some are selected from the literature. In this

section, we first describe the high-resolution imaging data obtained through HST. We then

briefly describe the lens systems in the sample.

1STRIDES is a Dark Energy Survey Broad External Collabora- tion; PI: Treu. http://strides.astro.

ucla.edu.
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5.2.1 Data

Images of the lenses were obtained using the HST Wide Field Camera 3 (WFC3) in three

filters: F160W in the infrared (IR) channel, and F814W and F475X in the ultraviolet-visual

(UVIS) channel (ID 15320, PI Treu). In the IR channel filter, we used a 4-point dither

pattern and STEP100 readout sequence for the MULTIACCUM mode. This approach

guarantees a sufficient dynamic range to expose both the bright lensed quasar images and

the extended host galaxy. For the UVIS channel filters, we used a 2-point dither pattern.

Two exposures at each position, one short and one long, were taken. Total exposure times

for all the quads and the corresponding dates of observation are tabulated in Table 5.1.

The data were reduced using AstroDrizzle. The pixel size after drizzling is 0.′′08 in

the F160W band, and 0.′′04 in the F814W and F475X bands.

5.2.2 Quads in the sample

In this subsection, we give a brief description of each quad in our sample (Fig. 5.1).

5.2.2.1 PS J0147+4630

This quad was serendipitously discovered from the Panoramic Survey Telescope and Rapid

Response System (Pan-STARRS) survey (Berghea et al. 2017). The source redshift is zs =

2.341±0.001 (Lee 2017) and the deflector redshift is zd = 0.5716±0.0004 (Lee 2018). Initial

models from the Pan-STARRS data suggests a relatively large external shear γext ∼ 0.13.

5.2.2.2 SDSS J0248+1913

This lens system was discovered in Sloan Digital Sky Survey (SDSS) imaging data us-

ing the morphology-independent Gaussian-mixture-model supervised-machine-learning tech-

nique described in Ostrovski et al. (2017) applied to SDSS u, g and i, and Wide-field In-
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Figure 5.1: Comparison between the observed (first, third and fifth columns) and recon-

structed (second, fourth and sixth columns) strong-lens systems. The three HST bands:

F160W, F814W, and F475X are used in the red, green, and blue channels, respectively, to

create the red-green-blue (RGB) images. Horizontal white lines for each system are rulers

showing 1 arcsec. The relative intensities of the bands have been adjusted for each lens

system for clear visualisation of the features in the system.
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frared Survey Explorer (WISE ) W1 and W2 catalogue level photometry (Ostrovski et al.,

in preparation). The lensing nature was confirmed via optical spectroscopy with the Echel-

lette Spectrograph and Imager (ESI) on the Keck telescope in 2016 December prior to the

HST observations presented here and will be described in Ostrovski et al. (in preparation).

Delchambre et al. (2018) report the independent discovery of this spectroscopically confirmed

lensed system as a lensed quasar candidate using Gaia observations. The lens system resides

in a dense environment with several other galaxies within close proximity. Part of the lensed

arc from the extended source is noticeable in the F160W band in IR.

5.2.2.3 ATLAS J0259-1635

This lens system was discovered in VLT Survey Telescope (VST)-ATLAS survey from can-

didates selected with quasar-like WISE colours (Schechter et al. 2018). The source for this

system is at redshift zs = 2.16 (Schechter et al. 2018).

5.2.2.4 DES J0405-3308

The discovery of this system is reported by Anguita et al. (2018). A complete or partial

Einstein ring is noticeable in all the HST bands. The source redshift is zs = 1.713 ± 0.001

(Anguita et al. 2018).

5.2.2.5 DES J0408-5354

This system was discovered in the DES Year 1 data (Lin et al. 2017; Diehl et al. 2017;

Agnello et al. 2017). The deflector redshift is zd = 0.597 and the quasar redshift is zs = 2.375

(Lin et al. 2017). This is a very complex lens system with multiple lensed arcs noticeable

in addition to the quasar images. The sources of the lensed arcs can be components in

the same source plane as the lensed quasar or they can be at different redshifts. This

system has measured time-delays between the quasar images: ∆tAB = −112 ± 2.1 days,
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∆tAD = −155.5± 12.8 days, and ∆tBD = −42.4± 17.6 days (Courbin et al. 2018).

5.2.2.6 DES J0420-4037

This lens system was discovered in DES imaging data using the morphology-independent

Gaussian-mixture-model supervised-machine-learning technique described in Ostrovski et al.

(2017) applied to DES g, r and i, Visible and Infrared Survey Telescope for Astronomy

(VISTA) J and K, and WISE W1 and W2 catalogue level photometry (Ostrovski et al., in

preparation). Several small knots are noticeable near the quasar images that are possibly

multiple images of extra components in the source plane.

5.2.2.7 PS J0630-1201

This system is a five-image lensed quasar system (Ostrovski et al. 2018). The discovery

was the result of a lens search from Gaia data from a selection of lens candidates from

Pan-STARRS and WISE. The source redshift is zs = 3.34 (Ostrovski et al. 2018).

5.2.2.8 SDSS J1251+2935

This quad was discovered from the SDSS Quasar Lens Search (SQLS; Oguri et al. 2006;

Inada et al. 2012) (Kayo et al. 2007). The source redshift is zs = 0.802 and the deflector

redshift is zd = 0.410 measured from the SDSS spectra (Kayo et al. 2007).

5.2.2.9 SDSS J1330+1810

This lens system was also discovered from the SQLS (Oguri et al. 2008). The redshifts of

the deflector and the source are zd = 0.373 and zs = 1.393, respectively (Oguri et al. 2008).
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5.2.2.10 SDSS J1433+6007

This lens system was discovered in the SDSS data release 12 photometric catalogue (Agnello

et al. 2018a). The redshifts of the source and deflector are zs = 2.737 ± 0.003 and zd =

0.407± 0.002, respectively (Agnello et al. 2018a).

5.2.2.11 PS J1606-2333

This quad was discovered from Gaia observations through a candidate search with quasar-

like WISE colours over the Pan-STARRS footprint (Lemon et al. 2018). The main deflector

has a noticeable companion near the South-most image.

5.2.2.12 DES J2038-4008

This lens system was discovered from a combined search in WISE and Gaia over the DES

footprint (Agnello et al. 2018c). The deflector and the source redshifts are zd = 0.230±0.002

and zs = 0.777 ± 0.001, respectively (Agnello et al. 2018c). This system has an intricate

Einstein ring with complex features from the extended quasar host galaxy.

5.2.2.13 WISE J2344-3056

This lens system was discovered in the VST-ATLAS survey (Schechter et al. 2017). This is

a small-size quad with reported maximum image separation ∼ 1.′′1. Several small and faint

blobs are in close proximity, two of which are particularly noticeable near the North and

East images.

5.3 Lens modelling

To devise a uniform approach that will suit a wide range of quads that vary in size, con-

figuration, light profiles, etc., we need to choose from the most general models for the lens
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Figure 5.2: Flowchart showing the decision-tree for uniform modelling of quads to simultane-

ously fit multi-band data. After the initial setup (node a), the fitting is first done only with

one band (node b) to iteratively choose the necessary level of complexity in the mass and

light profiles (nodes d, e, f, g, h, k, l). A proposed model is accepted, if the power-law slope

γ does not diverge to a bound of the allowed range (nodes j) and the p-value & 10−8 for the

fit (nodes c, j). After deciding upon a set of profiles to simultaneously model the multi-band

data (node i), the uncertainties on the model parameters are obtained by running a MCMC

routine (node m).
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mass profile and the light distributions. It is often required to fine-tune the choice of models

by adding complexities to the lens model in a case-by-case basis to suit the purpose of the

specific science driver of an investigator. However, such detailed lens-modelling is outside

of the scope of this analysis. We only require our models to satisfactorily (χ2
red ∼ 1) fit the

data while being general enough to be applicable to a wide variety of lens systems.

We use the publicly available software package Lenstronomy2 (Birrer & Amara 2018,

based on Birrer et al. 2015) to model the quads in our sample. Prior to this work, Lenstron-

omy was used to measure the Hubble constant (Birrer et al. 2016) and to quantify lensing

substructure (Birrer et al. 2017). We first adopt the simplest yet general set of profiles to

model the deflector mass and light, and the source-light distributions (e.g. Section 5.3.1,

5.3.2). Then, we run a particle swarm optimization (PSO) routine through Lenstronomy

to find the maximum of the likelihood function. After the PSO routine, we check for the

goodness-of-fit of the best fit model. If the adopted profiles can not produce an acceptable

fit to the data, we gradually add more mass or light profiles to account for extra complexities

in the lens system, e.g, presence of satellites, complex structure near the Einstein ring, or

extra lensed source components. We run the PSO routine after each addition of complex-

ity until a set of adopted mass and light profiles can produce an acceptable model. Next,

we obtain the posterior probability distribution functions (PDFs) of the model parameters

using a Markov chain Monte Carlo (MCMC) routine. The PSO and MCMC routines in

Lenstronomy utilize the cosmoHammer package (Akeret et al. 2013). cosmoHammer

itself embeds emcee (Foreman-Mackey et al. 2013), which is an affine-invariant ensemble

sampler for MCMC (Goodman & Weare 2010) written in Python.

In this section, we first describe the profiles used to parameterize the mass and light

distributions. Then, we explain the decision-tree of the modelling procedure.

2https://github.com/sibirrer/lenstronomy
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5.3.1 Mass profile parameterization

We adopt a power-law elliptical mass distribution (PEMD) for the lens mass profile. This

profile is parameterized as

κ =
3− γ

2

(
θE√

qθ2
1 + θ2

2/q

)γ−1

, (5.1)

where γ is the power-law slope, θE is the Einstein radius, q is the axis ratio. The coordi-

nates (θ1, θ2) depend on position angle φ through a rotational transformation of the on-sky

coordinates that aligns the coordinate axes along the major and minor axes.

We also add an external shear profile parameterized by two parameters, γ1 and γ2. The

external-shear magnitude γext and angle φext are related to these parameters by

γext =
√
γ2

1 + γ2
2 , tan 2φext =

γ2

γ1

. (5.2)

If there is a secondary deflector or a satellite of the main deflector, we choose an isothermal

elliptical mass distribution (IEMD), which is a PEMD with the power-law slope γ fixed to

2.

5.3.2 Light profile parameterization

We choose the elliptical Sérsic function (Sérsic 1968) to model the deflector light profile. The

Sérsic function is parameterized as

I(θ1, θ2) = Ie exp

−k

(√

θ2
1 + θ2

2/q
2
L

θeff

)1/nSersic

− 1


 . (5.3)

Here Ie is the amplitude, k is a constant that normalizes θeff so that it is the half-light radius,

qL is the axis ratio, and nSersic is the Sérsic index. The coordinates (θ1, θ2) also depend on the

position angle φL that rotationally transforms the on-sky coordinates to align the coordinate

axes with the major and minor axes. We add a ‘uniform’ light profile parameterized by only
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one parameter, the amplitude, that can capture unaccounted flux from the lens by a single

Sérsic profile.

The circular Sérsic function (with qL = 1, φL = 0) is adopted to model the host-galaxy-

light distribution. We limit θeff > 0.′′04 (which is the pixel size in the UVIS bands) on the

source plane to prevent the Sérsic profile to be too pointy effectively mimicking a point

source. For a typical source redshift zs = 2, 0.′′04 corresponds to ∼ 0.33 kpc. This is a

reasonable lower limit for the size of a lensed source hosting a supermassive black hole. If

there are complex structures in the lensed arcs that can not be fully captured by a simple

Sérsic profile, we add a basis set of shapelets (Refregier 2003; Birrer et al. 2015) on top of

the Sérsic profile to reconstruct the source-light distribution. The basis set is parameterized

by maximum order nmax, and a characteristic scale β. The number of shapelets is given by

(nmax + 1)(nmax + 2)/2.

The quasar images are modelled with point sources with a point spread function (PSF)

on the image plane.

5.3.3 Modelling procedure

We model the quads in a general framework to simultaneously fit the data from all three

HST bands. Fig. 5.2 illustrates the flow of the modelling procedure. We describe the nodes

of this flow-chart below. Each node is marked with a lowercase letter. Some of the decision

nodes in Fig. 5.2 are self-explanatory and need no further elaboration.

a. Initial setup: We first pre-process the data in each band. A cutout with an ap-

propriate field-of-view covering the lens and nearby environment from the whole image is

chosen. The background flux estimated by SExtractor (Bertin & Arnouts 1996) from the

whole image is subtracted from the cutout. We also select four or more stars from the HST

images to estimate the initial PSF in each band. A circular mask with a suitable radius
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is chosen to only include the deflector-light distribution, and the lensed quasar-images and

arcs. If there is a nearby galaxy or a star, we mask it out unless we specifically choose

to model the light profile of a satellite or companion galaxy, e.g., for DES J0408-5354, PS

J0630-1201, SDSS J1433+6007 and PS J1606-2333. As PS J0630-1201 is a five-image lens,

we allow the model the flexibility to produce more than four images.

b. Fit the ‘most informative’ band: It is important to judiciously initiate any

optimization routine, such as the PSO, to efficiently find the global extremum. Finding the

global maximum of the joint likelihood from all the bands together from a random initial

point is often very expensive in terms of time and computational resource. Therefore, we

first only fit the ‘most informative’ band to iteratively select the light and mass profiles

necessary to account for the lens complexity. In this study, we choose F814W as the ‘most

informative’ band. It is easier to decompose the deflector and the source-light distributions

in the F814W band than in the F160W band as the deflector does not have a large flux

near or beyond the Einstein ring. The resolution in the F814W band is also twice as high as

in the F160W band. Furthermore, the deflector flux in the F475X band is often too small

to reliably model the deflector-light distribution without a good prior. At first, we fix the

power-law slope for the lens mass model at γ = 2 (i.e. the isothermal case). With each

consecutive PSO routine, we narrow down the search region in the parameter space around

the maximum of the likelihood. After each PSO routine, we iteratively reconstruct the PSF

with the modelled-extended-light subtracted quasar images themselves. This is performed

iteratively such that the extended light model updates its model with the new PSF to avoid

biases and over-constraints on the PSF model. Similar procedures have been used in Chen

et al. (2016); Birrer et al. (2017); Wong et al. (2017). The details are described in Birrer

et al. (2019) and the reconstruction routines are part of Lenstronomy.

c. Good fit? We check for the goodness of fit by calculating the p-value for the total
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χ2 and degrees of freedom. We set p-value & 10−8 as a criterion to accept a model. This

low p-value is enough to point out substantial inadequacies in the model while applicable

to the wide variety of the lens systems in our sample. Implementing a higher p-value would

require noise-level modelling which is hard to achieve in a uniform framework. The total χ2

in this node is computed from the residuals in the F814W band only.

e. Add satellite mass profile: We add an IEMD for the satellite or companion mass

profile. The light distribution of the satellite is modelled with an elliptical Sérsic profile.

The initial centroid of the satellite is chosen approximately at the center of the brightest

pixel in the satellite.

g. Add extra source component: If there are extra lensed source components, e.g.,

blobs or arcs, that are not part of the primary source structure near the Einstein ring, we

add extra light profiles in the same source plane of the lensed quasar. We only add one light

profile for each set of conjugate components. It is easier to identify and constrain the posi-

tions of additional source components on the image plane. Among the identifiable conjugate

components from visual inspection, if one component is a smaller blob, and the others form

arcs, we choose the blob’s position in the image plane as the initial guess. First, we only

add one circular Sérsic profile for each additional source component. For the second visit

to this node, i.e. there is unaccounted structure or extra light near the additional lensed

source components, we add shapelets with nmax = 3 on top of the Sérsic profile. For each

subsequent visit, we increase nmax by 2.

h. Add shapelets to source-light profile: If there are structures near the Einstein

ring, we add a basis set of shapelets on top of the Sérsic function to the primary source-light

profile. We first add shapelets with nmax = 10 and increase nmax by 5 for each future visit

to this node. The characteristic scale β of the shapelets is initiated with the best fit θeff of
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the Sérsic profile for the source.

i. Fit all bands simultaneously: Before fitting all the bands simultaneously it is im-

portant to check astrometric alignment between the bands and correct accordingly if there is

a misalignment. We align the data from the IR channel (F160W) with those from the UVIS

band (F814W and F475X) by matching the positions of the four lensed quasar images. After

that, we run PSO routines to fit all the bands simultaneously. Each PSO routine is followed

by one iterative PSF reconstruction routine. During simultaneous fitting, only the intensities

of the light profiles and shapelets are varied independently for different bands. All the other

parameters, such as scalelength, ellipticity, position angle and Sérsic index, are set to be

common across wavelengths, which is a common practice for simultaneous fitting of multi-

band data (e.g. Stoughton et al. 2002; Lackner & Gunn 2012). As a result, for the case of a

single Sérsic profile the best fit parameters are effectively an average over the wavelengths.

However, we find the resultant best-fit parameters from the simultaneous fitting to be within

1σ systematic+statistical uncertainty of the ones from the individual fits of different bands

for one representative system (DES J0405-3308) from our sample. Therefore, we assume

that setting these parameters to be common across wavelengths is sufficient for the purpose

of this study. For the case of shapelets or double Sérsic profile, the relative intensities of the

shapelets or Sérsic components can freely vary across bands. This allows for more complex

morphological variation across wavelengths and makes our assumption even more reasonable.

j. Good fit? We check for the goodness of fit with the same criteria described in

node c. In this node, the total χ2 is computed from the residuals in all the three bands.

Moreover, we check that the power-law slope γ has not diverged to the bound of the allowed

values when γ is relaxed in node i. This might happen if there is not enough complexity

in the adopted model to reconstruct the observed fluxes. We also check if there is lens flux

unaccounted by the single Sérsic profile. If the total flux in the ‘uniform’ light profile within
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the effective radius is more than one per cent of that for the elliptical Sérsic profile, we decide

that there is unaccounted lens flux. This can particularly happen in the F160W band as the

lens light is more extended in the IR than in the UVIS channels and two concentric Sérsic

functions provide a better fit to the lens light (Claeskens et al. 2006; Suyu et al. 2013). If

there is no unaccounted lens light, we discard the ‘uniform’ profile from the set of lens-light

profiles before moving to node m.

l. Add second Sérsic function to lens-light profile: If there is unaccounted lens

flux, we discard the ‘uniform’ light profile and add a second Sérsic function on top of the first

one with the same centroid. We fix the Sérsic indices for the two Sérsic profiles to nSersic = 4

(de Vaucouleurs profile) and nSersic = 1 (exponential). We fix these Sérsic indices for nu-

merical stability. These profile fits should not be interpreted as bulge-disk decompositions.

For a proper bulge-disk decomposition, more robust methods should be adopted to detect

the presence of multiple components, e.g., Bayesian model comparison (D’Souza et al. 2014)

and axis-ratio variation technique (Oh et al. 2017).

m. Run MCMC: If the PSO fitting sequence finds an acceptable model for the quad,

we run a MCMC routine. The initial positions of the walkers are centered around the best

fit found by the PSO fitting sequence.

n. Finish: After the MCMC routine, we check for the convergence of the chain. We

accept the chain as converged, if the total number of steps is ∼ 10 times the autocorrelation

length, and the median and variance of the walker positions at each step are stable for 1

autocorrelation length at the end of the chain. We then calculate the best-fit value for each

model parameter from the median of the walker positions at the last step. Similarly, 1σ

confidence levels are computed from the 16- and 84-th percentiles in the last step.
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5.3.4 Systematics

We estimate the systematic uncertainties of the lens model parameters by marginalizing

over several numerical settings. We performed the modelling technique described in Section

5.3.3 with eleven different numerical settings: varying the lens-mask size, varying the mask

size for extra quasar-images for PSF reconstruction, varying the sampling resolution of the

reconstructed HST image, without PSF reconstruction, and with different realisations of

the reconstructed PSF. We checked for systematics for the lens system SDSS J0248+1913.

This system was chosen for two reasons: (i) this system has relatively fainter arc compared

to the point source and deflector brightness, thus providing a conservative estimate of the

systematics, and (ii) the modelling procedure is one of the simplest ones that enables running

the modelling procedure numerous times with different settings in relatively less time. We

assume the systematics are the same order of magnitude for the other lens systems in the

sample.

5.4 Results

In this section, we first describe the lens models and report the model parameters along with

some derived parameters for all the quads. Then, we investigate the alignment between the

mass and light profiles and report our findings. In Appendix 5.A, 5.B and 5.C we report

additional inferred lens model parameters that are not directly relevant for the scientific

investigation carried out here but may be of interest to some readers, especially in planning

future follow-up and observations.

5.4.1 Efficiency of the uniform framework

All the 13 quads are reliably (p-value ∼ 1, Table 5.2) modelled following the uniform ap-

proach described in Section 5.3. The framework was designed and tuned from the experience
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gained from uniformly modelling the first ten observed quads in the sample. The three quads,

SDSS J1251+2935, SDSS J1330+1810 and SDSS J1433+6007, were observed after the de-

sign phase. We effectively modelled these three lenses implementing the general framework,

which validates its effectiveness. The total investigator time spent for these two lenses is ∼ 3

hours per lens including data reduction, initial setup and quality control of the model out-

puts. The number of CPU hours (on state-of-the-art machines3) per system ranges between

50 to 500 depending on the complexity of the model.

5.4.2 Lens models

The set of profiles chosen through the decision-tree for modelling the quads along with the

corresponding p-values are listed in Table 5.2. We show a breakdown of the best-fit models

in each band for the quads, SDSS J0248+1913, DES J0408-5354, SDSS J1251+2935, SDSS

J1433+6007, as examples, in Fig. 5.3. Model breakdowns for the rest of lenses are provided

in Appendix 5.D. We show the red-green-blue (RGB) images produced from the HST data

alongside the reconstructed RGB images for all the quads in Fig. 5.1.

We checked the robustness of the estimated lens model parameters with and without PSF

reconstructions. We find the Einstein radius θE, axis ratio q, mass position angle φ, external

shear γext and shear angle φext to be robustly (within 1σ systematic+statistical uncertainty)

estimated. However, the power-law slope γ is affected by ≥1σ systematic+statistical un-

certainty due to deviations of the reconstructed PSF. This is expected as γ depends on the

thickness of the Einstein ring and this thickness in the reconstructed model in turn depends

on the PSF.

We investigated if setting the Sérsic radius and index of the source light profile common

across wavelength bands biases the measurement of the power-law slope. For one represen-

3We utilized the Hoffman2 Shared Cluster provided by UCLA Institute for Digital Research and Edu-

cation’s Research Technology Group. https://idre.ucla.edu/hoffman2.
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tative system (DES J0405+3308) from our sample, we find the power-law slope from the

individual fits of different bands to agree within 1σ systematic+statistical uncertainty of the

one from the simultaneous fit. Therefore, we conclude that setting the scaling parameters

of the source light profile except the intensity to be common across wavelengths does not

significantly (> 1σ) bias the power-law slope.

We checked if the lens model parameters are stable with increasing complexity in the

model (Fig. 5.4). The stability of the Einstein radius θE and the external shear γext improves

if the mass profile of a satellite is explicitly modelled. For increasing complexity in modelling

the source-light distribution, the power-law slope γ, the Einstein radius θE and the external

convergence γext are stable.

We report the lens model parameters: Einstein radius θE, power-law slope γ, axis ratio

q, position angle φ, external shear γext, and shear angle φext and deflector light parameters:

effective radius θeff , axis ratio qL, and position angle φL in Table 5.3. For the deflectors

fitted with double Sérsic profiles, the ellipticity and position angles are computed by fitting

isophotes to the double Sérsic light distribution. We use the Photutils4 package in Python

for measuring the isophotes which implements an iterative method described by Jedrzejewski

(1987). We tabulate the astrometric positions of the deflector galaxy and the quasar images

in Table 5.4. The apparent magnitudes of the deflector galaxy and the quasar images in

each of the three HST bands are given in Table 5.5.

4http://photutils.readthedocs.io
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Table 5.2: Lens model profiles.

System name Mass profiles Lens-light profiles Source-light profiles p-value∗ Decision flow∗∗

PS J0147+4630 PEMD Double elliptical Sérsic Sérsic 1.0 abcijklbcijmn

Point source (image plane)

SDSS J0248+1913 PEMD Elliptical Sérsic Sérsic 1.0 abcijmn

Point source (image plane)

ATLAS J0259-1635 PEMD Elliptical Sérsic Sérsic 1.0 abcdfhbcijmn

Shapelets (nmax = 10)

Point source (image plane)

DES J0405-3308 PEMD Elliptical Sérsic Sérsic 1.0 abcijmn

Point source (image plane)

DES J0408-5354 PEMD Elliptical Sérsic Sérsic 1.0 abcdebcdfgbcdfgbcijkdf

IEMD† Elliptical Sérsic† Shapelets (nmax = 10) gbcijkdfhbcijmn

Sérsic†

Shapelets† (nmax = 3)

Sérsic†

Point source (image plane)

DES J0420-4037 PEMD Elliptical Sérsic Sérsic 1.0 abcijkdfgbcijmn

Sérsic†

Sérsic†

Point source (image plane)

PS J0630-1201 PEMD Elliptical Sérsic Sérsic 1.0 abcdebcijmn

IEMD† Elliptical Sérsic† Point source (image plane)

SDSS J1251+2935 PEMD Double elliptical Sérsic Sérsic 1.0 abcijklbcijkdfhbcijmn

Shapelets (nmax = 10)

Point source (image plane)

SDSS J1330+1810 PEMD Double elliptical Sérsic Sérsic 0.005 abcijklbcijkdfhbcijmn

Shapelets (nmax = 10)

Point source (image plane)

SDSS J1433+6007 PEMD Double elliptical Sérsic Sérsic 1.0 abcdebcijklbcijmn

IEMD† Elliptical Sérsic† Point source (image plane)

PS J1606-2333 PEMD Double elliptical Sérsic Sérsic 1.0 abcdebcdfhbcijklbcijmn

IEMD† Elliptical Sérsic† Shapelets (nmax = 10)

Point source (image plane)

DES J2038-4008 PEMD Double elliptical Sérsic Sérsic 1.0 abcdfhbcijklbcijmn

Shapelets (nmax = 10)

Point source (image plane)

WISE J2344-3056 PEMD Double elliptical Sérsic Sérsic 1.0 abcijklbcijmn

Point source (image plane)

∗ The p-value is for the combined χ2 from all three bands.

∗∗ Labels of nodes visited during the modelling procedure in the flow-chart shown in Fig. 5.2.

† Satellite or extra source component separate from the central source.
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Table 5.3: Lens model parameters. The reported uncertainties are systematic and statistical uncertainties added in

quadrature.

System name θE γ q φ (E of N) γext φext (E of N) θeff
† qL

† φL (E of N)†

(arcsec) (degree) (degree) (arcsec) (degree)

PS J0147+4630 1.90 ± 0.01 2.00 ± 0.05 0.81 ± 0.04 -55 ± 6 0.16 ± 0.02 -72 ± 3 3.45 ± 0.10 0.93 ± 0.06 49 ± 16

SDSS J0248+1913 0.804 ± 0.004 2.19 ± 0.04 0.40 ± 0.06 46 ± 6 0.09 ± 0.02 6 ± 3 0.16 ± 0.03 0.40 ± 0.02 13 ± 1

ATLAS J0259-1635 0.75 ± 0.01 2.01 ± 0.04 0.66 ± 0.04 18 ± 6 0.00 ± 0.02 -30 ± 3 1.00 ± 0.09 0.38 ± 0.04 20 ± 4

DES J0405-3308 0.70 ± 0.01 1.99 ± 0.04 0.95 ± 0.05 41 ± 12 0.01 ± 0.02 -79 ± 5 0.44 ± 0.09 0.55 ± 0.05 37 ± 4

DES J0408-5354 1.80 ± 0.01 1.98 ± 0.04 0.62 ± 0.04 18 ± 6 0.05 ± 0.02 -15 ± 3 2.15 ± 0.09 0.82 ± 0.04 28 ± 4

DES J0420-4037 0.83 ± 0.01 1.97 ± 0.04 0.87 ± 0.04 24 ± 6 0.03 ± 0.02 -20 ± 4 0.44 ± 0.09 0.61 ± 0.04 27 ± 4

PS J0630-1201 1.02 ± 0.01 2.00 ± 0.04 0.53 ± 0.04 -27 ± 6 0.14 ± 0.02 -2 ± 3 1.64 ± 0.09 0.79 ± 0.04 12 ± 4

SDSS J1251+2935 0.84 ± 0.01 1.97 ± 0.04 0.71 ± 0.04 28 ± 6 0.07 ± 0.02 -88 ± 3 1.02 ± 0.09 0.67 ± 0.04 23 ± 4

SDSS J1330+1810 0.954 ± 0.005 2.00 ± 0.04 0.59 ± 0.06 24 ± 6 0.07 ± 0.02 8 ± 3 0.40 ± 0.03 0.28 ± 0.02 24 ± 1

SDSS J1433+6007 1.71 ± 0.01 1.96 ± 0.04 0.51 ± 0.04 -81 ± 6 0.09 ± 0.02 -30 ± 3 1.10 ± 0.09 0.56 ± 0.04 -88 ± 4

PS J1606-2333 0.63 ± 0.01 1.97 ± 0.04 0.88 ± 0.05 41 ± 10 0.16 ± 0.02 53 ± 3 1.36 ± 0.09 0.60 ± 0.07 -24 ± 5

DES J2038-4008 1.38 ± 0.01 2.35 ± 0.04 0.61 ± 0.04 38 ± 6 0.09 ± 0.02 -58 ± 3 2.85 ± 0.09 0.67 ± 0.04 38 ± 4

WISE J2344-3056 0.52 ± 0.01 1.95 ± 0.05 0.51 ± 0.06 -70 ± 6 0.06 ± 0.02 -68 ± 8 2.61 ± 0.19 0.76 ± 0.03 -69 ± 4

† Calculated from the F160W band for the lenses with double Sérsic fit for the lens light.
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Table 5.4: Astrometric positions of the deflector and quasar images. The reported uncertainties are on relative astrometry

and they are systematic and statistical uncertainties added in quadrature.

System name

Deflector Image A Image B Image C Image D

α δ ∆α ∆δ ∆α ∆δ ∆α ∆δ ∆α ∆δ

(degree) (degree) (arcsec) (arcsec) (arcsec) (arcsec) (arcsec) (arcsec) (arcsec) (arcsec)

PS J0147+4630 26.792331 46.511559 -0.0046 ± 0.0002 2.0649 ± 0.0001 1.1671 ± 0.0002 1.6555 ± 0.0001 -1.2439 ± 0.0002 1.9716 ± 0.0002 -0.3462 ± 0.0005 -1.1560 ± 0.0003

SDSS J0248+1913 42.203099 19.225246 -0.787 ± 0.001 -0.175 ± 0.001 -0.645 ± 0.001 0.658 ± 0.001 0.211 ± 0.001 -0.791 ± 0.001 0.261 ± 0.001 0.620 ± 0.001

ATLAS J0259-1635 44.928561 -16.595376 0.602 ± 0.003 -0.216 ± 0.001 0.275 ± 0.001 0.658 ± 0.001 -0.883 ± 0.001 0.340 ± 0.001 -0.124 ± 0.001 -0.614 ± 0.001

DES J0405-3308 61.498964 -33.147417 0.536 ± 0.001 -0.155 ± 0.001 -0.533 ± 0.001 -0.478 ± 0.002 0.186 ± 0.002 0.686 ± 0.002 -0.684 ± 0.001 0.538 ± 0.004

DES J0408-5354 62.090451 -53.899816 1.981 ± 0.002 -1.495 ± 0.001 -1.775 ± 0.001 0.369 ± 0.001 -1.895 ± 0.002 -0.854 ± 0.002 0.141 ± 0.001 1.466 ± 0.002

DES J0420-4037 65.194858 -40.624081 -0.698 ± 0.001 -0.231 ± 0.001 -0.457 ± 0.001 0.802 ± 0.001 0.711 ± 0.001 -0.448 ± 0.001 0.172 ± 0.002 0.908 ± 0.002

PS J0630-1201 97.537601 -12.022037 0.613 ± 0.001 -1.349 ± 0.001 1.131 ± 0.001 -0.783 ± 0.001 1.470 ± 0.001 0.337 ± 0.001 -1.050 ± 0.002 1.082 ± 0.001

SDSS J1251+2935 192.781427 29.594652 0.3370 ± 0.0005 -0.6245 ± 0.0005 0.698 ± 0.001 -0.265 ± 0.001 0.628 ± 0.001 0.327 ± 0.001 -1.089 ± 0.001 0.310 ± 0.002

SDSS J1330+1810 202.577755 18.175788 0.247 ± 0.001 -1.025 ± 0.001 -0.179 ± 0.001 -1.049 ± 0.001 -1.013 ± 0.001 0.133 ± 0.002 0.4938 ± 0.0004 0.550 ± 0.002

SDSS J1433+6007 218.345420 60.120777 -0.960 ± 0.002 2.070 ± 0.003 -0.962 ± 0.003 -1.679 ± 0.003 -1.740 ± 0.002 -0.072 ± 0.002 1.056 ± 0.003 -0.127 ± 0.003

PS J1606-2333 241.500982 -23.556114 0.856 ± 0.001 0.298 ± 0.001 -0.769 ± 0.001 -0.298 ± 0.001 0.064 ± 0.001 -0.616 ± 0.001 -0.272 ± 0.001 0.449 ± 0.001

DES J2038-4008 309.511379 -40.137024 -1.529 ± 0.001 0.495 ± 0.001 0.7867 ± 0.0005 -1.216 ± 0.001 -0.735 ± 0.001 -1.186 ± 0.001 0.656 ± 0.001 0.860 ± 0.001

WISE J2344-3056 356.070739 -30.940633 -0.475 ± 0.001 0.281 ± 0.001 0.110 ± 0.001 0.632 ± 0.001 -0.235 ± 0.001 -0.376 ± 0.001 0.398 ± 0.001 -0.038 ± 0.001

† The relative positions of the image E are ∆α = −0.′′330± 0.′′003 and ∆δ = 0.′′326± 0.′′002.
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5.4.3 Alignment between mass and light distributions

In this subsection, we report our results on the alignment between the mass and light dis-

tributions in our sample of quads (Fig. 5.5).

5.4.3.1 Centroid

The centers of the mass and light distributions match very well for most of the quads with

a root-mean-square (RMS) of 0.′′04 excluding three outliers (Fig. 5.5a). The three outliers

are PS J0147+4630, DES J0408-5354 and PS J0630-1201. In PS J0630-1201, there are two

deflectors with comparable mass creating a total of five images. If the two deflectors are

embedded in the same dark matter halo, the center of the luminous part of the deflector can

have an offset from the center of the halo mass. The other two outliers also have nearby

companions possibly biasing the centroid estimation.

5.4.3.2 Ellipticity

We find a weak correlation between the ellipticity parameters of the mass and light distri-

bution for the whole sample (Fig. 5.5b). We calculate the Pearson correlation coefficient

between the axis ratios q and qL of the mass and light distributions, respectively, in the

following way. We sample 1000 points from a two-dimensional Gaussian distribution that

is centered on the axis ratio pair (q, qL) for each quad. We take the standard deviation for

this Gaussian distribution along each axis equal to the 1σ systematic+statistical uncertainty.

We take the covariance between the sampled points for each lens as zero as we observe no

degeneracy in the posterior PDF of the axis ratios for individual lenses. The Pearson cor-

relation coefficient for the distribution of the sampled points from all the quads is r = 0.2

(weak correlation).
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Table 5.5: Photometry of the deflector and quasar images. The deflector magnitudes are

calculated from the total flux within a 5′′× 5′′ square aperture. Magnitudes are given in the

AB system. The reported uncertainties are systematic and statistical uncertainties added in

quadrature.

System name Filter Deflector A B C D

PS J0147+4630

F160W 18.3± 0.1 15.46± 0.03 15.78± 0.03 16.18± 0.03 18.05± 0.03

F814W 19.4± 0.1 15.79± 0.03 16.09± 0.03 16.45± 0.03 18.21± 0.03

F475X 21.8± 0.3 16.39± 0.03 16.67± 0.03 17.13± 0.03 18.74± 0.03

SDSS J0248+1913

F160W 20.8± 0.1 19.88± 0.04 20.41± 0.04 19.91± 0.03 20.13± 0.04

F814W 22.7± 0.1 20.20± 0.03 20.23± 0.03 20.43± 0.03 20.66± 0.03

F475X 26.4± 0.3 21.14± 0.03 21.18± 0.03 21.35± 0.03 21.80± 0.03

ATLAS J0259-1635

F160W 20.7± 0.1 18.48± 0.03 18.57± 0.04 19.06± 0.03 19.30± 0.04

F814W 22.7± 0.1 19.00± 0.03 19.16± 0.03 19.62± 0.03 19.70± 0.03

F475X – 21.08± 0.03 20.81± 0.03 21.50± 0.04 21.33± 0.03

DES J0405-3308

F160W 20.2± 0.1 19.43± 0.07 19.58± 0.04 19.60± 0.04 19.33± 0.03

F814W 22.0± 0.1 20.22± 0.04 20.60± 0.04 20.33± 0.03 20.09± 0.03

F475X 25.0± 0.3 22.16± 0.04 22.81± 0.04 22.04± 0.03 21.91± 0.03

DES J0408-5354

F160W 18.6± 0.1 20.18± 0.03 19.79± 0.04 20.33± 0.04 20.82± 0.04

F814W 19.9± 0.1 20.38± 0.03 20.00± 0.03 21.66± 0.03 20.87± 0.03

F475X 22.6± 0.3 21.20± 0.03 21.34± 0.03 23.16± 0.03 21.86± 0.04

DES J0420-4037

F160W 18.6± 0.1 20.18± 0.03 21.03± 0.04 21.85± 0.04 21.96± 0.05

F814W 19.5± 0.1 20.44± 0.03 20.96± 0.03 21.71± 0.03 21.98± 0.04

F475X 21.5± 0.3 20.66± 0.03 21.25± 0.03 22.09± 0.03 22.09± 0.03

PS J0630-1201†

F160W 20.4± 0.1 18.71± 0.03 18.82± 0.03 18.74± 0.03 21.01± 0.04

F814W 22.5± 0.1 19.70± 0.03 19.67± 0.03 19.71± 0.03 21.67± 0.03

F475X 26.7± 0.3 21.06± 0.03 20.92± 0.03 21.10± 0.03 23.03± 0.03

† The magnitudes of image E are 22.51± 0.10, 23.40± .04, and 24.77± 0.04 in the F160W, F814W,

and F475X bands, respectively.
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Figure 5.3: Best fit models for SDSS J0248+1913 (top left), DES J0408-5354 (top right),

SDSS J1251+2935 (bottom left), and SDSS J1433+6007 (bottom right). The first three rows

for each lens system show the observed image, reconstructed lens image, and the normalized

residuals in three HST bands: F160W, F814W, and F475X, respectively. The fourth row

shows the reconstructed source in the F160W band, the convergence, and the magnification

model. The models for the rest of the sample are shown in Appendix 5.D (Figure 5.7, 5.8).
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Figure 5.4: Stability of lens model parameters with increasing model complexity. The four

panels show the power-law slope γ, Einstein radius θE, external shear γext, and logarithm of

p-value of the reduced-χ2 of the model fit, top to bottom, along the decision-flow for the quad

DES J0408-5354. The bottom-horizontal axis denotes the node identifiers along the decision

flow as in Fig. 5.2. Short descriptions for added profiles at corresponding points along

the decision flow are shown along the top-horizontal axis. Solid-grey lines attached to the

blue circles show 1σ systematic+statistical uncertainty. The dashed-grey line at the bottom

panel marks the threshold p-value=10−8 for accepting a model. The p-value decreases after

crossing the threshold the first time due to addition of the other two bands for simultaneous

fitting, which requires more complexity in the model.
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Table 5.6: Continued from Table 5.5.

System name Filter Deflector A B C D

SDSS J1251+2935

F160W 18.3± 0.1 19.35± 0.03 20.25± 0.05 21.30± 0.06 21.02± 0.05

F814W 19.4± 0.1 20.01± 0.03 20.80± 0.04 22.80± 0.06 21.66± 0.04

F475X 21.4± 0.3 20.01± 0.03 20.73± 0.04 22.73± 0.04 21.95± 0.04

SDSS J1330+1810

F160W 17.9± 0.1 19.17± 0.03 19.36± 0.03 20.00± 0.03 21.24± 0.05

F814W 19.1± 0.1 20.11± 0.03 20.03± 0.03 20.48± 0.03 20.56± 0.03

F475X 21.4± 0.3 20.31± 0.03 20.82± 0.04 21.24± 0.03 21.58± 0.04

SDSS J1433+6007

F160W 18.1± 0.1 20.43± 0.03 20.47± 0.04 20.55± 0.04 21.56± 0.04

F814W 19.2± 0.1 20.25± 0.03 20.17± 0.03 20.45± 0.03 21.74± 0.03

F475X 21.2± 0.3 20.31± 0.03 20.16± 0.03 20.49± 0.03 21.93± 0.04

PS J1606-2333

F160W 19.5± 0.1 19.59± 0.03 19.65± 0.04 19.99± 0.03 19.47± 0.03

F814W 20.6± 0.1 19.06± 0.03 19.22± 0.03 19.38± 0.03 19.52± 0.03

F475X 21.8± 0.3 19.52± 0.04 19.76± 0.04 19.97± 0.03 20.48± 0.04

DES J2038-4008

F160W 16.4± 0.1 18.48± 0.03 18.27± 0.03 18.60± 0.03 19.49± 0.04

F814W 17.4± 0.1 20.25± 0.03 19.99± 0.03 20.05± 0.03 20.88± 0.03

F475X 19.1± 0.3 21.02± 0.03 20.89± 0.03 20.71± 0.03 21.43± 0.03

WISE J2344-3056

F160W 19.0± 0.1 21.36± 0.05 20.94± 0.04 21.16± 0.06 20.78± 0.04

F814W 20.0± 0.1 21.76± 0.03 21.20± 0.03 21.27± 0.03 20.76± 0.03

F475X 21.6± 0.3 22.79± 0.03 21.68± 0.03 21.66± 0.03 21.13± 0.03

5.4.3.3 Position angle

The position angles of the elliptical mass and light distributions are well aligned for nine out

of 13 quads. The standard deviation of the misalignment in position angles for these eight

lenses is 11deg. (Fig. 5.5c). The systems with large misalignment also have large external

shear. We find a strong correlation between the misalignment angle and the external shear

magnitude (r = 0.74, Fig. 5.5d). We find weak correlation between the misalignment angle

and the mass axis ratio q (r = 0.21, Fig. 5.5e).
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Figure 5.5: Mass and light alignments in the deflector galaxies: comparison between (a) the

mass and light centroids, (b) the axis ratios of the light and mass profiles, (c) the misalignment

angle (between the mass and light profiles’ position angles), (d) the misalignment angle and the

external shear, and (e) the misalignment angle and the mass profile axis ratio. The thin-solid-

grey lines attached to the data points show 1σ statistical uncertainty and the thick-solid-black bars

annotated with ‘sys.’ in each figure show the 1σ systematic uncertainty. The systematic uncertainty

is estimated by marginalizing over various numerical settings for the system SDSS J0248+1913 as

described in Section 5.3.4. In (a) the solid-grey ellipse centered at (0, 0) shows the root-mean-square

(RMS) spread of ∆RA and ∆dec for nine lens systems excluding the systems with large deviations:

PS J0147+4630, DES J0408-5354 and PS J0630-1201. This RMS spread can be taken as the upper

limit of the systematics. The dashed grey line traces the perfect 1-to-1 correlation in (b) and the

zero misalignment in (c) to aid visualisation. The centers of the mass and light distributions match

very well (a). The systems with large offsets between the mass and light centroids have satellites

or comparable-mass companions possibly biasing the centroid estimate. The axis ratios of the light

and mass distributions are only weakly correlated (b). The position angles align very well within

±12deg for eight out of the 12 systems (c). Systems with large misalignment have larger values

of external shear (d). However, there is very weak to no correlation between the position angle

misalignment and mass ellipticity (e).
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5.4.4 Deviation of flux ratios from macro-model

Stars or dark subhalos in the deflector can produce additional magnification or de-magnification

of the quasar images through microlensing and millilensing, respectively (for detailed descrip-

tion, see Schneider et al. 2006). In that case, the flux ratios of the quasar images will be

different than those predicted by the smooth macro-model. Deviation of the flux ratios can

also be produced by baryonic structures (Gilman et al. 2017) or disks (Hsueh et al. 2016,

2017), quasar variability with a time delay, and dust extinction (Yonehara et al. 2008; An-

guita et al. 2008). We quantify this deviation of the flux ratios in the quasar images as a

χ2-value by

χ2
f =

I 6=J∑
I,J∈{A, B, C, D}

(fIJ, observed − fIJ, model)
2

σ2
fIJ

, (5.4)

where fIJ = FI/FJ is the flux ratio between the images I and J. We assume 20 per cent

flux error giving σfIJ
= 0.28fIJ. We set this error level considering the typical order of

magnitude for intrinsic variability of quasars (e.g. Bonvin et al. 2017; Courbin et al. 2018).

Although, many of the quads in our sample have short predicted time-delays (Table 5.10),

where intrinsic variability is not a major source of deviation in flux-ratios, we take 20 per

cent as a conservative error estimate for these lenses.

If the flux ratios are consistent with the macro-model, χ2
f is expected to follow the

χ2(3) distribution, i.e. χ2
f ∼ χ2(3), as only three out of the six flux ratios are independent

producing three degrees of freedom. However, the χ2
f -distribution is shifted toward a higher

value than χ2(3) (Fig. 5.6). The mean of the combined distribution of log10 χ
2
f from all

the three HST bands is 2.04. A Kolmogorov-Smirnov test of whether the observed χ2
f -

distribution matches with the χ2(3)-distribution yields a p-value of ∼ 0. The shift is higher

in shorter wavelengths. The mean of the log10 χ
2
f ’s in the F160W, F814W, and F475X bands

are 1.85, 2.09, and 2.17, respectively. This is expected, as the quasar size is smaller in shorter

wavelengths making it more affected by microlensing, and as shorter wavelengths are also

more affected by dust extinction.
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Figure 5.6: Distribution of χ2
f for flux-ratio anomalies from Equation (5.4) assuming 20 per

cent error in flux. The distribution is for twelve quads in our sample excluding PS J0630-

1201. The χ2
f -distributions in bands F160W, F814W, and F475X are shown in orange, green,

and purple shaded regions, respectively. The χ2
f -distribution from all the bands combined

is shown as the grey shaded region. The black dashed line shows the expected χ2
f ∼ χ2(3)

distribution in the absence of microlensing. The arrows on the top show the mean of the χ2
f -

values in bands F160W (solid orange), F814W (dashed green), and F475X (dotted purple).

The combined χ2
f -distribution is shifted to higher values. The shift is higher for shorter

wavelengths, as the quasar size gets smaller with decreasing wavelength making it more

susceptible to microlensing.
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5.5 Summary and Discussion

We presented a general framework to uniformly model large samples of quads while at-

tempting to minimize investigator time. We apply this framework to model a sample of 13

quads and simultaneously fit imaging data from three HST WFC3 bands. All the quads are

satisfactorily (p-value & 10−8) modelled in our uniform framework. We choose the p-value

threshold to be suitably low to be applicable to our quad sample with large morphological

variation while being able to point out deficiencies in the modelling choice of profiles along

the decision tree. In the end, most of the lens systems in our sample are modelled with

p-value ∼ 1 (Table 5.2). Thus, we showed that a large variety of quads can be modelled with

a basic set of mass and light profiles under our framework, i.e. all the quads in our sample

are ‘happy’ (or, at least ‘content’).

Only one of the quads in our sample, DES J0408-5354, has measured time delays:

∆tobserved
AB = −112 ± 2.1 days, ∆tobserved

AD = −155.5 ± 12.8 days (Courbin et al. 2018). The

predicted time delays: ∆tpredicted
AB = −100 ± 9 and ∆tpredicted

AD = −140 ± 13 days (Appendix

5.C) are in good agreement with the measured values, although the measured values were

not used as constraints in the modelling procedure.

In order to make the problem computationally tractable for much larger samples we

made some simplifying assumptions. Thus, whereas some of the lensing quantities, such as

Einstein radius, deflector center of mass, position angle and ellipticity, and image flux ratios,

are robustly determined, our models are not appropriate for all applications. In particular,

science cases requiring high precision might require more sophisticated modelling for each

individual lens system.

The main simplifying assumptions in our work are: 1) we restricted our models to simple

yet general profiles to describe the mass and light distributions. 2) we assume no colour

gradient in the deflector and source fluxes. Thus, we use the same scalelengths and ellipticity

in the deflector- and source-light profiles in different bands while fitting simultaneously. Some
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straightforward ways to further improve the lens modelling are to allow for colour dependency

of the light distribution of the source and deflector, explicitly including mass distribution

of more nearby companions or satellites, increasing the number of shapelets (nmax), and

consider composite mass models consisting of both stellar and dark matter components.

We illustrate the information content of this large sample of quads by investigating the

alignment between the light and mass distributions in the deflector galaxies, and the distri-

bution of so-called flux ratio anomalies. Our key results are as follows:

1. The centers of the mass and light distributions match very well (the RMS of the offsets

is 0.′′04).

2. We find the correlation between the ellipticity of the mass and light distributions to

be weak (Pearson correlation coefficient, r = 0.2).

3. The position angles of the major axes of the mass and light distributions are well-

aligned within ±11deg for nine out of 13 lenses.

4. Systems with high (> 30deg) misalignment angle between the light and mass also

have large external shear (γext & 0.1). The Pearson correlation coefficient between the

misalignment angle and the external shear is r = 0.74.

5. The measured flux ratios between the images depart significantly from those predicted

by our simple mass models. These flux ratio anomalies are strongest in the bluest band,

consistent with microlensing being the main physical driver, in addition to millilensing

associated with unseen satellites.

Our finding of weak correlation between the light and mass ellipticity slightly agrees

with Keeton (2001), Ferreras et al. (2008) and Rusu et al. (2016) who find no correlation.

However, we do not find a strong correlation as Sluse et al. (2012a) and Gavazzi et al.

(2012) report. The weak correlation between the mass and light ellipticity in our study is
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consistent with the hierarchical formation scenario of elliptical galaxies where the remnants

in the simulation of multiple mergers are shown to have no correlation between the halo and

light ellipticity (Weil & Hernquist 1996). Moreover, some of the deflectors in our sample are

disky galaxies. The projected ellipticity of disky galaxies will not be correlated with the halo

ellipticity if viewed from arbitrary orientations.

Moreover, dark matter halos are expected to be rounder than the stellar distribution from

simulation (Dubinski & Carlberg 1991; Warren et al. 1992; Dubinski 1994) with reported

agreements to observations (Bruderer et al. 2016; Rusu et al. 2016). In our sample, the

majority of the systems follow this prediction. Only three systems have significantly flatter

mass distribution than the light distribution (DES J0408-5354, PS J0630-1201 and WISE

J2344-3056). All these systems have satellites or comparable-mass companions and thus are

not the typically relaxed systems where we expect this to hold. In contrast, four systems in

our sample are significantly rounder in mass than in light: ATLAS J0259-1635, DES J0405-

3308, DES J0420-4037 and PS J1606-2333. These are likely to be disky galaxies from visual

inspection of their shapes. This explains the large difference in ellipticity between the mass

and light.

To reliably compare the ellipticity of the light and mass distribution, the ellipticity needs

to be estimated within the same aperture, or within an aperture large enough beyond which

the ellipticity does not significantly evolve. From a strong-lens system, only the total (pro-

jected) mass within the Einstein radius can be estimated. If the Einstein radius is much

smaller than the effective radius of the deflector galaxy, the comparison of ellipticity be-

tween light and mass may not be representative of the entire galaxy.

We find a strong alignment between the mass and light position angles, which agree very

well with previous reports (Kochanek 2002; Ferreras et al. 2008; Treu et al. 2009; Gavazzi

et al. 2012; Sluse et al. 2012a; Bruderer et al. 2016). Our result is also in agreement with

Bruderer et al. (2016) that the systems with high misalignment (> 30deg) also have strong

external shear (γext & 0.1). The absence of systems with high misalignment but low external
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shear is in agreement with the prediction of galaxy formation models. Orbits that are highly

misaligned in isolated galaxies (thus with low external shear) are shown to be rare and

unstable (Heiligman & Schwarzschild 1979; Martinet & de Zeeuw 1988; Adams et al. 2007;

Debattista et al. 2015). The misalignment in isolated galaxies can only be sustained by a

constant gas-inflow in blue starburst galaxies (Debattista et al. 2015).

Furthermore, for systems with θE/θeff < 1, the lensing mass is likely to be dominated

by the stellar mass. In that case, relatively stronger correlation between the mass and

the light distributions is naturally expected. A comparison between the dark matter and

luminous matter distribution would be more interesting in regard to directly testing ΛCDM

and galaxy formation theories. However, broadly speaking, large deviations in ellipticity

and alignment in our sample have to be explained by the presence of dark matter. However,

direct comparison between the dark and luminous mass distributions requires composite

mass models with dark and luminous components as adopted by Bruderer et al. (2016).

Gomer & Williams (2018) find that two elliptical mass distributions corresponding to the

dark matter and baryon with an offset can better reproduce the image positions in quads

than just one smooth elliptical mass distribution with external shear. Those kinds of mass

models are beyond the scope of this analysis and left for future studies.

The departures of flux-ratios from the smooth model in the disky galaxies in our sam-

ple are not at the extreme of the χ2
f -distribution. This further supports microlensing by

foreground stars being the dominant source of the flux-ratio anomaly.

Detailed follow-up of this sample is under way, to measure redshift and velocity dispersion

of the deflectors as well as the time delays between the quasars and the properties of the

environment. Once follow-up is completed, we will use this sample to address fundamental

questions such as the determination of the Hubble Constant (e.g. Bonvin et al. 2017), the

nature of dark matter (e.g. Gilman et al. 2018), and the normalization of the stellar initial

mass function in massive galaxies (e.g. Schechter et al. 2014).
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Table 5.7: Lens light parameters. The reported uncertainties are systematic and statistical

uncertainties added in quadrature. The magnitudes are given in AB system.

System name nSersic θeff Ie (F160W) Ie (F814W) Ie (F475X) qL φL (E of N)

(arcsec) (mag arcsec−2) (mag arcsec−2) (mag arcsec−2) (degree)

PS J0147+4630 4 4.97 ± 0.03 29.7 ± 1.0 32.2 ± 1.0 34.4 ± 1.5 0.81 ± 0.01 18 ± 1

1 0.14 ± 0.03 23.4 ± 0.9 26.7 ± 0.9 30.0 ± 1.3 0.87 ± 0.01 62 ± 1

SDSS J0248+1913 2.4 ± 1.4 0.16 ± 0.03 24.5 ± 0.4 27.8 ± 0.4 31.6 ± 0.6 0.40 ± 0.02 13 ± 1

ATLAS J0259-1635 11.8 ± 1.4 1.00 ± 0.03 28.7 ± 1.0 32.2 ± 1.0 – 0.38 ± 0.02 20 ± 1

DES J0405-3308 7.6 ± 1.4 0.44 ± 0.03 26.8 ± 1.0 30.1 ± 1.0 33.1 ± 1.5 0.55 ± 0.02 37 ± 1

DES J0408-5354 5.5 ± 1.4 2.15 ± 0.03 28.5 ± 1.0 31.3 ± 1.0 34.0 ± 1.5 0.82 ± 0.01 28 ± 2

DES J0420-4037 4.0 ± 1.4 0.44 ± 0.03 25.1 ± 1.0 27.5 ± 1.0 29.5 ± 1.5 0.61 ± 0.01 27 ± 1

PS J0630-1201 6.8 ± 1.4 1.64 ± 0.03 29.9 ± 1.0 33.5 ± 1.0 37.7 ± 1.5 0.79 ± 0.01 12 ± 1

SDSS J1251+2935 4 0.53 ± 0.03 25.5 ± 1.0 28.1 ± 1.0 30.4 ± 1.5 0.67 ± 0.01 23 ± 1

1 5.00 ± 0.03 30.4 ± 0.9 32.6 ± 0.9 34.0 ± 1.3 0.67 ± 0.03 16 ± 3

SDSS J1330+1810 4 0.75 ± 0.03 24.8 ± 0.4 27.7 ± 0.4 31.9 ± 0.6 0.26 ± 0.01 24 ± 1

1 0.37 ± 0.03 24.5 ± 0.4 26.7 ± 0.4 27.9 ± 0.6 0.37 ± 0.01 25 ± 1

SDSS J1433+6007 4 0.56 ± 0.03 25.4 ± 1.0 28.2 ± 1.0 30.4 ± 1.5 0.56 ± 0.02 -88 ± 2

1 3.35 ± 0.03 28.9 ± 0.9 31.1 ± 0.9 32.8 ± 1.3 0.54 ± 0.02 -88 ± 1

PS J1606-2333 4 0.11 ± 0.03 25.2 ± 1.0 27.7 ± 1.0 – 0.56 ± 0.06 -26 ± 4

1 1.66 ± 0.04 28.5 ± 0.9 31.0 ± 0.9 32.1 ± 1.3 0.77 ± 0.02 -11 ± 2

DES J2038-4008 4 3.36 ± 0.03 26.7 ± 1.0 29.3 ± 1.0 31.1 ± 1.5 0.64 ± 0.01 38 ± 1

1 4.99 ± 0.03 29.2 ± 0.9 31.3 ± 0.9 32.6 ± 1.3 0.47 ± 0.01 -62 ± 1

WISE J2344-3056 4 0.61 ± 0.04 26.9 ± 1.0 30.9 ± 1.0 – 0.75 ± 0.03 -68 ± 4

1 4.67 ± 0.05 30.1 ± 0.9 31.7 ± 0.9 33.1 ± 1.3 0.80 ± 0.07 65 ± 10

This research made use of NumPy (Oliphant 2015), SciPy (Jones et al. 2001), Astropy,

a community-developed core Python package for Astronomy (Astropy Collaboration 2013),

Jupyter (Kluyver et al. 2016), Matplotlib (Hunter 2007), and draw.io at https://www.

draw.io.

5.A Lens light parameters

We report the parameters of the best fit Sérsic functions for the deflectors in Table 5.7.
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5.B Convergence, shear and stellar convergence

The convergence κ, shear γ, and the stellar convergence κ? at the image positions for each

lens are given in Table 5.8. The convergence at the image position is given by the lens

mass distribution. We assume a constant mass-to-light ratio to convert the surface bright-

ness distribution into a stellar surface mass-density distribution. We choose the maximum

normalization factor for the stellar convergence that meets these two criteria: (i) the stel-

lar convergence is smaller than the convergence, and (ii) the integrated stellar convergence

is smaller than two-thirds of the integrated convergence within half of the effective radius

(Auger et al. 2010a).

5.C Time delays

The time delay between two images I and J is given by

∆tIJ =
D∆t

c

[
1

2
(θI − β)2 − 1

2
(θJ − β)2 − ψ(θI) + ψ(θJ)

]
, (5.5)

where θ is the image position, β is the source position, ψ is the lensing potential, c is the

speed of light, and D∆t is the time-delay distance given by

D∆t = (1 + zd)
DdDs

Dds

. (5.6)

Here zd is the deflector redshift, Dd, Ds, and Dds are the angular diameter distances between

the observer and the deflector, between the observer and the source, and between the deflector

and the source, respectively. The predicted time delays between the images for the quads

are given in Table 5.10.

5.D Lens models

In this section, we provide rest of the lens models in Figure 5.7, 5.8 and 5.9 that were not

included in Figure 5.3.
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Table 5.8: Convergence, shear, and stellar convergence at the image positions. The reported

uncertainties are systematic and statistical uncertainties added in quadrature. The stellar

convergence, κ?, is estimated from the F160W band for the lenses with double Sérsic fit for

the lens light.

System name Image κ γ κ?/κ

PS J0147+4630

A 0.41± 0.03 0.55± 0.04 0.37± 0.17

B 0.39± 0.03 0.52± 0.04 0.37± 0.17

C 0.43± 0.03 0.45± 0.03 0.27± 0.12

D 0.84± 0.06 0.99± 0.08 0.41± 0.18

SDSS J0248+1913

A 0.63± 0.05 0.87± 0.06 0.002± 0.001

B 0.26± 0.03 0.50± 0.02 0.003± 0.002

C 0.20± 0.03 0.31± 0.02 0.006± 0.003

D 0.87± 0.07 1.04± 0.09 0.011± 0.003

ATLAS J0259-1635

A 0.41± 0.03 0.42± 0.03 0.06± 0.03

B 0.66± 0.05 0.67± 0.05 0.25± 0.15

C 0.36± 0.03 0.36± 0.02 0.05± 0.03

D 0.64± 0.04 0.65± 0.04 0.21± 0.11

DES J0405-3308

A 0.48± 0.04 0.46± 0.03 0.06± 0.02

B 0.53± 0.04 0.53± 0.04 0.20± 0.08

C 0.52± 0.04 0.51± 0.04 0.19± 0.08

D 0.49± 0.03 0.47± 0.03 0.06± 0.02

DES J0408-5354

A 0.34± 0.02 0.31± 0.02 0.17± 0.06

B 0.45± 0.03 0.35± 0.02 0.24± 0.09

C 0.57± 0.04 0.57± 0.04 0.17± 0.07

D 0.75± 0.05 0.68± 0.05 0.32± 0.13

DES J0420-4037

A 0.56± 0.04 0.56± 0.04 0.12± 0.05

B 0.50± 0.04 0.44± 0.03 0.07± 0.03

C 0.45± 0.03 0.41± 0.03 0.05± 0.02

D 0.56± 0.04 0.51± 0.04 0.16± 0.06
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Table 5.9: Continued from Table 5.8.

System name Image κ γ κ?/κ

PS J0630-1201

A 0.52± 0.04 0.45± 0.03 0.07± 0.05

B 0.49± 0.03 0.52± 0.04 0.07± 0.05

C 0.45± 0.03 0.55± 0.04 0.07± 0.04

D 1.39± 0.10 1.23± 0.08 0.03± 0.02

SDSS J1251+2935

A 0.57± 0.04 0.57± 0.04 0.21± 0.08

B 0.50± 0.04 0.41± 0.03 0.17± 0.07

C 0.63± 0.04 0.57± 0.04 0.21± 0.09

D 0.33± 0.02 0.25± 0.02 0.12± 0.05

SDSS J1330+1810

A 0.48± 0.08 0.43± 0.04 0.04± 0.02

B 0.59± 0.09 0.52± 0.05 0.16± 0.08

C 0.36± 0.06 0.43± 0.04 0.02± 0.01

D 0.74± 0.12 0.71± 0.06 0.23± 0.12

SDSS J1433+6007

A 0.35± 0.02 0.20± 0.01 0.08± 0.03

B 0.38± 0.03 0.35± 0.02 0.10± 0.04

C 0.78± 0.06 0.72± 0.05 0.16± 0.06

D 1.20± 0.09 1.16± 0.08 0.22± 0.09

PS J1606-2333

A 0.46± 0.03 0.25± 0.02 0.50± 0.20

B 0.49± 0.03 0.22± 0.02 0.53± 0.22

C 0.77± 0.06 0.75± 0.05 0.61± 0.25

D 0.57± 0.04 0.66± 0.05 0.77± 0.31

DES J2038-4008

A 0.21± 0.02 0.43± 0.03 0.73± 0.27

B 0.22± 0.02 0.49± 0.03 0.73± 0.27

C 0.45± 0.03 0.89± 0.06 0.72± 0.28

D 0.59± 0.04 1.11± 0.08 0.74± 0.26

WISE J2344-3056

A 0.79± 0.06 0.69± 0.06 0.54± 0.22

B 0.37± 0.03 0.38± 0.03 0.62± 0.25

C 0.37± 0.03 0.38± 0.03 0.66± 0.26

D 0.82± 0.07 0.72± 0.06 0.60± 0.24
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Table 5.10: Predicted time-delays between the quasar images. The reported uncertainties

are systematic and statistical uncertainties added in quadrature. We adopt fiducial redshifts

zd = 0.5 and zs = 2 where the redshifts are not measured yet.

System name zd zs ∆tAB ∆tAC ∆tAD

(days) (days) (days)

PS J0147+4630 0.572 2.341 -2.1± 0.3 -7± 1 -193± 18

SDSS J0248+1913 0.5 2.0 2.7± 0.2 20± 2 -5.9± 0.4

ATLAS J0259-1635 0.5 2.16 -3.6± 0.3 7± 1 -2.7± 0.2

DES J0405-3308 0.5 1.713 -1.7± 0.2 -0.9± 0.2 -0.3± 0.2

DES J0408-5354 0.597 2.375 -100± 9 -105± 9 -140± 13

DES J0420-4037 0.5 2.0 1.8± 0.2 7± 1 1.4± 0.1

PS J0630-1201 0.5 3.34 -0.12± 0.02 -0.09± 0.02 -108± 10

SDSS J1251+2935 0.41 0.802 0.6± 0.1 -0.43± 0.04 36± 3

SDSS J1330+1810 0.373 1.393 -0.20± 0.02 6± 1 -11± 1

SDSS J1433+6007 0.407 2.737 -24± 2 -36± 3 -100± 9

PS J1606-2333 0.5 2.0 -3.8± 0.4 -11± 1 -7± 1

DES J2038-4008 0.23 0.777 -6± 1 -11± 1 -27± 2

WISE J2344-3056 0.5 2.0 3.3± 0.4 3.4± 0.4 -0.6± 0.2
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Figure 5.7: Best fit models for PS J0147+4630 (top left), ATLAS J0259-1635 (top right),

DES J0405-3308 (bottom left), and DES J0420-4037 (bottom right). The first three rows

for each lens system show the observed image, reconstructed lens image, and the normalized

residuals in three HST bands: F160W, F814W, and F475X, respectively. The fourth row

shows the reconstructed source in the F160W band, the convergence, and the magnification

model.
209



1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

0.1" E
N

Reconstructed source

1" E
N

Convergence

1" E
N

Magnification model

D
E

B
C

A

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x
5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g 1

0 

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

de
t(A

1 )

5

4

3

2

1

0

1
lo

g 1
0 f

lu
x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

0.1" E
N

Reconstructed source

1" E
N

Convergence

1" E
N

Magnification model

AB
CD

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g 1

0 

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

de
t(A

1 )

5

4

3

2

1

0

lo
g 1

0 f
lu

x

5

4

3

2

1

0

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

0.1" E
N

Reconstructed source

1" E
N

Convergence

1" E
N

Magnification model

A
BC

D

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g 1

0 

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

de
t(A

1 )

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

1"

Observed

E
N

1"

Reconstructed

E
N

1"

Normalized Residuals

E
N

0.1" E
N

Reconstructed source

1" E
N

Convergence

1" E
N

Magnification model

A
B C
D

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x
5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g 1

0 

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

de
t(A

1 )

5

4

3

2

1

0

1
lo

g 1
0 f

lu
x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

5

4

3

2

1

0

1

lo
g 1

0 f
lu

x

6

4

2

0

2

4

6

(f
m

od
el

-f
da

ta
)/

Figure 5.8: Best fit models for PS J0630-1201 (top left), SDSS J1330+1810 (top right), PS

J1606-2333 (bottom left), and DES J2038-4008 (bottom right). The first three rows for each

lens system show the observed image, reconstructed lens image, and the normalized residuals

in three HST bands: F160W, F814W, and F475X, respectively. The fourth row shows the

reconstructed source in the F160W band, the convergence, and the magnification model.
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Figure 5.9: Best fit model for WISE J2344-3056. The first three rows show the observed

image, reconstructed lens image, and the normalized residuals in three HST bands: F160W,

F814W, and F475X, respectively. The fourth row shows the reconstructed source in the

F160W band, the convergence, and the magnification model.
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CHAPTER 6

Unified lensing and kinematic analysis of elliptical

mass profiles

This chapter was published as Shajib, A. J. 2019, MNRAS, 488, 1387, and reproduced here

with minor formatting changes.

6.1 Background

Gravitational lensing (hereafter, lensing) has versatile applications in astrophysics and cos-

mology. Lensing is the effect when light bends while passing by a massive object. If two

galaxies sit along the same line-of-sight of an observer, the background galaxy appears multi-

ple times due to lensing. This system is called a galaxy-scale strong-lensing system (hereafter,

lens). Lenses are useful to measure the Hubble constant H0, dark matter subhalo mass func-

tion, dust characteristics in galaxies, mass of super-massive black holes, stellar initial mass

function, etc. (e.g., Falco et al. 1999; Peng et al. 2006; Suyu et al. 2013; Vegetti et al. 2014;

Schechter et al. 2014).

In several applications, stellar kinematics play a complementary role to lensing. Lensing-

only observables suffer from mass-sheet degeneracy (MSD) – if we appropriately rescale a

mass profile after adding an infinite mass-sheet on top of it, then all the lensing observables

stay invariant except the time delay (Falco et al. 1985; Schneider & Sluse 2014). When a

measured quantity depends on the mass profile, the MSD adds uncertainty to the measure-

ment. Kinematics help break this degeneracy. Lensing observables probe the projected mass;
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kinematic observables probe the three-dimensional potential. Thus, the lensing–kinematics

combination tightly constrains the mass profile, and enables us to robustly measure astro-

physical and cosmological quantities (e.g., Treu & Koopmans 2004; Barnabè et al. 2011).

In practice, it is difficult to compute lensing and kinematic quantities for elliptical mass

profiles, which are required to describe the most common kind of lenses, i.e., elliptical galax-

ies. We need to integrate over density profiles while fitting a model to either the lensing

or the kinematic data. For example, in lensing, the deflection angle is an integral over the

surface density profile; in kinematics, the line-of-sight velocity dispersion is a double integral

over three-dimensional mass and light profiles. For most elliptical density profiles, we are

unable to express these integrals with elementary or special functions. Special functions

are numerically well-studied, hence fast algorithms to compute them are usually available.

Thus, these functions can be numerically convenient for evaluating model-predicted observ-

ables in large numbers (e.g., ∼ 106) when sampling the lens model posterior with Markov

chain Monte Carlo (MCMC) methods, or even when only searching for the best-fit model.

Otherwise, it would be inefficient to numerically compute lensing and kinematic integrals for

general elliptical profiles.

Usually, the numerical difficulties are circumvented through simplifying assumptions or

approximations. We now outline common assumptions and approximations in kinematic and

lensing analyses, noting that these can limit the accuracy and precision of the inferences.

Either axisymmetry or spherical symmetry is usually assumed for kinematic analysis.

If we start with a surface density profile for lensing analysis, we need to deproject this

profile along the line of sight to compute the kinematics. This deprojection has an infinite

degeneracy (Contopoulos 1956). Therefore, it is necessary to choose a line-of-sight symmetry

when deprojecting, for which either axisymmetry or spherical symmetry is often a convenient

choice.

In lensing analysis, spherical symmetry is rarely sufficient and we need to consider el-

lipticity to achieve the required precision. All the lensing quantities are related to the

213



q = 0.8

Deflection potential Surface density

q = 0.6

Figure 6.1: Elliptical deflection potential (left column) producing dumbbell-shaped surface-

density (right column). The dashed contours in the left column are isopotential curves for

Sérsic profile with nSérsic = 4, and the solid contours in the right column are corresponding

isodensity curves. The axis ratios are q = 0.8 in the top row, and q = 0.6 in the bottom row.

The dumbbell shape in surface density is unphysical and it gets more pronounced for higher

ellipticity in the deflection potential. Hence, we can not use elliptical deflection potential to

simplify lensing analysis of moderately elliptical galaxies. We need to treat ellipticity in the

surface density, not deflection potential, to make our lensing analysis generally consistent

with our physical priors.
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deflection potential or its derivatives. The time delay depends on the deflection potential

difference. The gradient of the deflection potential gives the deflection angle. The Hessian

of the deflection potential relates to the surface density, the shear, and the magnification.

To efficiently compute these quantities for the elliptical case, we can find the following three

approximations in the literature:

1. Ellipticity in deflection potential: The gradient and the Hessian of an elliptical deflection

potential can be easily computed through numerical differentiation (e.g., Kovner 1987;

Golse & Kneib 2002). However, this solution is not general, as the surface density becomes

dumbbell-shaped for an elliptical deflection potential with axis ratio q . 0.6 (Fig. 6.1,

Kassiola & Kovner 1993). This oddly shaped surface-density is unphysical.

2. Elliptical power-law profile: We can efficiently compute the lensing quantities for the

elliptical power-law profile using numerical approximation or analytical expressions (for

the isothermal case, Kormann et al. 1994; and for the general case, Barkana 1998; Tessore

& Metcalf 2015). This profile can be sufficient to use in statistical studies that do not

require detailed modelling of individual lenses (e.g., Koopmans et al. 2009; Sonnenfeld

et al. 2013). However, adopting a power-law profile artificially breaks the MSD and it

could potentially bias the H0 measurement (e.g., Schneider & Sluse 2013; Sonnenfeld

2018). Therefore, we need to explore different, physically-motivated mass models, such

as a composite model that explicitly accounts for the luminous and the dark components

(Suyu et al. 2014; Yıldırım et al. 2019).

3. Chameleon profile: The Sérsic profile well describes the surface brightness of a galaxy

(Sérsic 1968). The Chameleon profile approximates the Sérsic profile within a few per

cent (Dutton et al. 2011). We can efficiently compute lensing quantities for the Chameleon

profile using analytic expressions. However, this profile only describes the baryonic com-

ponent. The precise lensing analysis of elliptical Navarro–Frenk–White (NFW) profile for

the dark component still lacks a general solution (Navarro et al. 1997).
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In a nutshell, these approximations for elliptical lensing analysis are only applicable in re-

stricted regimes as described above.

In this paper, we present a general method to precisely compute the gradient and the Hes-

sian of the deflection potential for any elliptical surface-density profile. The method follows

a “divide and conquer” strategy. We can approximately divide, or decompose, an elliptical

profile into concentric Gaussian components (e.g., Bendinelli 1991). For this Gaussian de-

composition, we devise a fast and accurate algorithm by introducing an integral transform.

For each Gaussian component, we derive analytic expressions of the gradient and the Hes-

sian of the deflection potential. For the deprojected Gaussian component, Cappellari (2008)

derives the line-of-sight velocity dispersion. We can combine the computed quantities from

each Gaussian component back together to obtain these quantities for the total density pro-

file. In this way, the lensing and kinematic descriptions are self-consistently unified. At the

same time, this method is general, as we can apply it to lensing with any elliptical surface-

density and to kinematics with either axisymmetry or spherical symmetry. Our method

is more efficient than numerical integration to compute lensing quantities for an elliptical

surface-density profile.

We organize this paper as follows. In Section 6.2, we motivate the “divide and con-

quer” strategy behind our method and introduce an integral transform that provides a fast

algorithm to decompose any elliptical surface-density profile into concentric Gaussian com-

ponents. In Section 6.3, we summarize the kinematic description of the Gaussian components

from Cappellari (2008). In Section 6.4, we derive the gradient and the Hessian of the deflec-

tion potential for elliptical Gaussian surface-density. Next in Section 6.5, we demonstrate

a proof-of-concept for our method using simulated data. Then, we summarize the paper in

Section 6.6. Additionally in Appendix 6.A, we prove some fundamental theorems for the

integral transform introduced in Section 6.2. This integral transform with a Gaussian kernel

is the continuous case of concentric Gaussian decomposition. The theorems in Appendix 6.A

establish the existence, uniqueness, and invertibility of this transform.
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To compute the deflection field
of an elliptical surface-density:
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x
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x

N

1. decompose into concentric,
elliptical Gaussian components,

+

+

2. compute the deflection field
for each Gaussian component,

x

y

1(x, y)

+

+

x
y

N(x, y)

3. add the deflection fields
together to obtain the total.

(x, y)

x

y

Figure 6.2: “Divide and conquer” strategy to compute lensing quantities for elliptical surface-

density profile. In this figure, we choose the deflection field as the quantity of interest to

illustrate the method. However, this method works equally well for other quantities such as

the lensing shear and the line-of-sight velocity dispersion. Each column demonstrates one

step in the strategy and the arrows show the progression of these steps. We explain each

step in the text at the top of the corresponding column.

6.2 Decomposing an elliptical profile into concentric Gaussian com-

ponents

We aim to decompose an elliptical surface-density profile into simpler functions to make the

computation tractable. This function should be simple enough so that we can both

1. express the deflection angle in terms of elementary or special functions, and

2. easily deproject it into three-dimension and compute the enclosed mass for kinematic
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analysis.

The Gaussian function meets both of these criteria. We validate criterion (i) in Section 6.4.2,

where we express the deflection angle for an elliptical Gaussian surface-density profile with

the complex error function. For criterion (ii), deprojecting a two-dimensional Gaussian into

three-dimension is straightforward, as the Abel inversion of a two-dimensional Gaussian is

a three-dimensional Gaussian. The enclosed mass for a three-dimensional Gaussian has the

form of the error function, which we can efficiently compute without integrating numerically.

Given these points, we approximately decompose an elliptical surface-density profile as

Σ(x, y) ≈
J∑
j=0

Σ0j exp

(
−q

2x2 + y2

2σ2
j

)
, (6.1)

where Σ0j is the amplitude of the j-th Gaussian, and all the components have a common

axis ratio q. Similar decomposition into concentric Gaussian components has been used in

the literature to fit the surface brightness profile of galaxies [called as the multi-Gaussian

expansion (MGE) by Emsellem et al. (1994), and the mixture-of-Gaussians by Hogg & Lang

(2013)]. The lensing and kinematic quantities of our interest – namely the gradient and

the Hessian of the deflection potential, and the line-of-sight velocity dispersion – follow the

principle of superposition. As a result, we can compute these quantities separately for each

Gaussian component and then add them together to recover these quantities for the total

surface-density profile (see Fig. 6.2).

We describe the kinematics and lensing analyses for the Gaussian components in Sec-

tions 6.3 and 6.4, but first, we need a fast method to decompose an elliptical profile into

concentric Gaussian components. Cappellari (2002) presents a method that uses non-linear

optimization. However, this non-linear optimization method is computationally too expen-

sive to implement within MCMC. Although, this method has been implemented to compute

the kinematic observable while sampling from the lens model posterior (e.g., Birrer et al.

2019). Computing the kinematic observable can involve at least one numerical integra-

tion, which is the main bottleneck in efficiency, not the non-linear optimization method for

218



Gaussian decomposition. To make our lens-modelling method efficient, we require a (i) gen-

eral, (ii) precise, and (iii) fast technique to decompose a function into concentric Gaussian

components. In Sections 6.2.1 and 6.2.2, we provide a technique that satisfies these three

requirements.

6.2.1 An integral transform for fast Gaussian decomposition

Now, we introduce an integral transform with a Gaussian kernel. Using this transform,

we obtain an algorithm to efficiently decompose an elliptical surface-density profile into

concentric Gaussian components.

We start with the simple one-dimensional case of the integral transform. We aim to

approximate a function F (x) as a sum of concentric Gaussian components as

F (x) ≈
N∑
n=0

An exp

(
− x2

2σ2
n

)
, (6.2)

where An and σn are respectively the amplitude and the standard deviation of the n-th

Gaussian component. We can convert this discrete summation into a continuous integral by

taking N →∞. Accordingly, we define the following integral transform:

F (x) ≡
∫ ∞

0

f(σ)√
2πσ

exp

(
− x2

2σ2

)
dσ. (6.3)

Here, the amplitude An is converted into a function f(σ)/
√

2πσ. We call F (x) as the

transform of f(σ). We prove three fundamental properties of this integral transform in

Appendix 6.A. These three properties tell us that

1. this integral transform exists for most mass and light profiles of practical use,

2. the transform is unique for these functions, and

3. the integral transform is invertible.

We call f(σ) as the inverse transform of F (x). The inverse transform is given by

f(σ) =
1

iσ2

√
2

π

∫
C

zF (z) exp

(
z2

2σ2

)
dz. (6.4)
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Here, i is the imaginary unit as i =
√
−1. Also, we have extended F (x) to some region on

the complex plane and wrote it as F (z), where z is a complex variable. The contour C for

the integral lies within the region where F (z) is defined (for details, see Appendix 6.A and

Fig. 6.7). In Section 6.2.1.1, we provide an algorithm that does not require C to be explicitly

specified for computing the inverse transform f(σ).

We can use the inverse transform to decompose a function into concentric Gaussian

components and the forward transform to recover the original function by combining the

Gaussian components. First in Section 6.2.1.1, we provide an efficient algorithm to compute

the inverse transform from equation (6.4); then in Section 6.2.1.2, we discuss a method for

computing the forward transform from equation (6.3).

6.2.1.1 Computing the inverse transform

The integral transform in equation (6.3) can be converted into a Laplace transform by suit-

able change of variables (Remark 6.A.9). Therefore, we can use any of the several algorithms

available for inverse Laplace transform by appropriately changing the variables (for a simple

overview of the algorithms, see Abate & Whitt 2006). In this paper, we modify the Euler

algorithm to approximate equation (6.4) as

f(σ) ≈
2P∑
n=0

ηnRe [F (σχn)] . (6.5)

(Abate et al. 2000). Here, the weights ηn and nodes χn can be complex-valued and they are

independent of f(σ). The weights and the nodes are given by

χn =

[
2P log(10)

3
+ 2πin

]1/2

,

ηn = (−1)n 2
√

2π 10P/3ξp,

ξ0 =
1

2
, ξn = 1, 1 ≤ n ≤ P, ξ2P =

1

2P
,

ξ2P−n = ξ2P−n+1 + 2−P
(
P

n

)
, 0 < n < P.

(6.6)

220



We can precompute the weights and the nodes just once before the MCMC sampling. In

that way, computing them does not add any extra burden in computing the likelihood. The

precision of the inverse transform is ∼ O(10−0.6P ) (Abate & Whitt 2006). Therefore, the

value of P can be appropriately chosen to achieve a required precision. Note that the decimal

precision of the machine sets an effective upper limit for P . For example, the precision will

not improve with increasing P when P & 12 for 32-bit floating point number, and when

P & 27 for 64-bit floating point number. Thus, equation (6.5) gives a straightforward, fast,

and precise algorithm to compute the inverse transform.

6.2.1.2 Computing the forward transform

Let us approximate the forward transform integral such that we can recover F (x) from only

a finite number of f(σ) values computed at fixed σ’s. This finite number should be on the

order of tens to keep the lensing analysis computationally feasible, as we have to compute

lensing quantities for each Gaussian component individually. We write equation (6.3) as

F (x) =
1√
2π

∫ ∞
0

f(σ) exp

(
− x2

2σ2

)
d(log σ)

⇒ F (x) = lim
N→∞

N∑
n=1

f(σn)√
2π

exp

(
− x2

2σ2
n

)
∆(log σ)n

⇒ F (x) ≈
N∑
n=1

An exp

(
− x2

2σ2
n

)
.

(6.7)

We have recovered the form of equation (6.2) by taking logarithmically spaced σn. Here,

the amplitudes are An = wnf(σn)∆(log σ)n/
√

2π. The weights wn depend on the choice of

the numerical integration method. We use the trapezoidal method with weights w1 = 0.5,

wn = 1 for 1 < n < N , wN = 0.5, as the trapezoidal method is highly efficient to numerically

compute integrals of this form (Goodwin 1949). As a result, equation (6.7) efficiently recovers

F (x) from only a finite number of f(σ) values.

As an example, we demonstrate the integral transform method to decompose the NFW

profile and the Sérsic profile into concentric Gaussian components (Fig. 6.3). The two-
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Figure 6.3: Decomposing the Sérsic profile and the projected NFW profile into concentric

Gaussian components using the integral transform with a Gaussian kernel. The blue lines

correspond to the Sérsic profiles with: solid for Sérsic index nSérsic = 1 and dotted for nSérsic =

4. The red, dashed lines correspond to the two-dimensional projected NFW profile. Both

profiles are normalized to have Σ(Reff) = 1. Left: the inverse transform f(σ) of the Sérsic

profiles and the projected NFW profile. Here, we choose the NFW scale radius rs = 5Reff .

To decompose a function into 15 Gaussian components, we only need to compute f(σ) at

15 points. These points are marked along the top border as blue ticks for the Sérsic profiles

and as red ticks for the NFW profile. Center: recovering the original profile as Σapprox(R)

using the forward transform by combining the 15 Gaussian components. We do not plot the

true form of ΣSérsic(R) or ΣNFW(R), because they are visually almost indistinguishable from

Σapprox(R). Right: noise-normalized difference between the recovered profile Σapprox(R) and

the true form of ΣSérsic(R) or ΣNFW(R). We assume 1 per cent Poisson noise at R = Reff

to obtain the noise level for normalizing the residual. Our method approximates the NFW

profile and the Sérsic profile as a sum of 15 Gaussians within the noise level for 0.1Reff ≤

R ≤ 10Reff .
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Figure 6.4: Comparison between our method and the multi-Gaussian expansion (MGE)

method from Cappellari (2002) to decompose a one-dimensional function into concentric

Gaussian components. Here, we only show the case for a Sérsic function with nSérsic = 1,

however the cases for higher Sérsic indices of for the projected NFW profile are qualitatively

similar or better. Left: the Sérsic function (solid, blue line) approximated with 15 Gaussian

components using our Gaussian decomposition method. The dotted, lighter-blue lines show

the individual Gaussian components. Some of the Gaussian components are out of the

figure range. Center: same as the left figure but using the MGE method with 15 Gaussian

components. The dashed, grey line shows the Sérsic function approximated by MGE and the

dot-dashed, lighter-grey lines show individual Gaussian components. Right: comparison of

the noise-normalized residual for the two methods. We assume 1 per cent Poisson noise at

effective radius Reff to obtain the noise level for normalizing the residual. The MGE method

approximates the Sérsic function within the noise level up to ∼ 6Reff , whereas our method

approximates the Sérsic function within the noise level up to 10Reff . More importantly,

our method is ∼ 103 times faster than the MGE method to decompose a one-dimensional

function into concentric Gaussian components.
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dimensional projected NFW profile is given by

ΣNFW(R) =



2ρsrs
(R/rs)2−1

[
1− sec−1(R/rs)√

(R/rs)2−1

]
(R > rs),

2
3
ρsrs (R = rs),

2ρsrs
(R/rs)2−1

[
1− sech−1(R/rs)√

1−(R/rs)2

]
(R < rs)

(6.8)

(Bartelmann 1996). Here, ρs is the three-dimensional density normalization, and rs is the

scale radius. The Sérsic profile is given by

ΣSérsic(R) = Σeff exp
[
−bn

{
(R/Reff)1/nSérsic − 1

}]
(6.9)

(Sérsic 1968). Here, the normalizing factor bn ensures that half of the total projected mass is

contained within the effective radius Reff . We only need to compute as many f(σ) values as

the number of Gaussian components. We can appropriately choose this number to achieve

the required precision for approximating the original function within a given range of R. In

this example, we set rs = 5Reff and assume 1 per cent Poisson noise at R = Reff . Then, we

can approximate both the projected NFW profile and the Sérsic function within the noise

level with only 15 Gaussian components in the range 0.1Reff ≤ R ≤ 10Reff . The standard

deviations σn of the 15 Gaussians are logarithmically spaced between 0.005rs and 50rs for the

NFW profile, and between 0.02Reff and 15Reff for the Sérsic profile. Thus using the integral

transform method, we can decompose a function into concentric Gaussian components within

any required precision by appropriately choosing the component number N .

6.2.1.3 The integral transform method is more efficient than the MGE method.

We compare our method to decompose a one-dimensional function into concentric Gaussian

components with the MGE method (Fig. 6.4). We use both methods to decompose the

Sérsic function into 15 Gaussian components. The MGE method approximates the Sérsic

function within the noise level up to ∼ 6Reff , whereas our method approximates the Sérsic

224



function within the noise level up to 10Reff with the same number of components. Albeit,

we can increase the number of Gaussian components in the MGE method to reach the

desired precision. In our method, the precision of the decomposition can be affected by

both P in equation (6.5) and the number of Gaussians N in equation (6.7). However, if

P is appropriately chosen so that 10−0.6P is sufficiently (e.g., by a factor of ∼ 10−2–10−4)

smaller than the required precision, then the precision predominantly depends on N . For

lensing and kinematic analyses, increasing the number of Gaussian components N introduces

more computational burden than increasing P . Therefore, it is advisable to first choose a

sufficiently large P and then adjust the number of Gaussians to achieve the required precision.

Note that the real power of our method is in its efficiency. A python implementation of

our method is ∼ 103 times faster than the MGE method to decompose a one-dimensional

function into concentric Gaussian components with similar or better precision.

6.2.2 Decomposing a two-dimensional elliptical profile with the one-dimensional

transform

So far, we have discussed the one-dimensional case of the integral transform; now we show

that the one-dimensional transform is sufficient to decompose a two-dimensional elliptical

profile. We can extend the one-dimensional integral transform from equation (6.3) into a

two-dimensional integral transform for a function f(σ1, σ2) as

F (x, y) =

∫ ∞
0

dσ1

∫ ∞
0

dσ2
f(σ1, σ2)

2πσ1σ2

exp

(
− x2

2σ2
1

− y2

2σ2
2

)
. (6.10)

If F (x, y) is elliptically symmetric, then we can express it as F (R) in terms of the elliptical

radius R =
√
q2x2 + y2 and axis ratio q. Then, we can write

F (x, y) = F (R(q)) =

∫ ∞
0

F (R(%)) δ(%− q) d%

=

∫ ∞
0

d% δ(%− q)
∫ ∞

0

dσ
fy(σ)√

2πσ
exp

(
−R(%)2

2σ2

)
,

(6.11)
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where fy(σ) is the inverse transform of F (0, y). If we make the change of variables σ1 = σ/%,

σ2 = σ, this integral becomes

F (x, y) =
1

2π

∫ ∞
0

dσ1

∫ ∞
0

dσ2

√
2πq δ(σ2/σ1 − q) fy(σ2)

σ1σ2

× exp

(
− x2

2σ2
1

− y2

2σ2
2

)
.

(6.12)

Because of the uniqueness property (Theorem 6.A.7), comparing equations (6.10) and (6.12)

we can write

f(σ1, σ2) =
√

2πq δ

(
σ2

σ1

− q
)
fy(σ2). (6.13)

Therefore, for an elliptically symmetric function, it is sufficient to numerically compute the

one-dimensional inverse transform fy(σ2) along the y-axis. As a result, we can express a

two-dimensional elliptical function as a sum of concentric, elliptical Gaussian components as

F (x, y) ≈
N∑
n=1

An exp

(
−q

2x2 + y2

2σ2
n

)
. (6.14)

By now, we have shown that the integral transform method meets all of our three re-

quirements for decomposing a function into concentric Gaussian components:

1. generality : the method applies to most mass and light profiles of practical use,

2. precision: the method achieves any required precision over a given range by appropriately

choosing the number of Gaussian components, and

3. efficiency : the method runs approximately ∼ 103 times faster than the previously avail-

able method.

With these three requirements met, our lensing analysis method has cleared the first hurdle

to be feasible in practice. In Section 6.4.2, we show that we can efficiently compute the

gradient and the Hessian of the deflection potential for an elliptical Gaussian surface-density.

With that, our method also clears the final hurdle to be efficient. Next in Section 6.3, we

summarize the kinematic analysis for the Gaussian components from Cappellari (2008). Then
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in Section 6.4, we describe the lensing analysis for the Gaussian components and complete

the unification of lensing and kinematic descriptions.

6.3 Kinematics of Gaussian components

Cappellari (2008) presents the Jeans anisotropic modelling of kinematics for a mass pro-

file decomposed into concentric Gaussian components. We summarize the analysis here to

complete our unified framework. The kinematic observable is the luminosity-weighted, line-

of-sight velocity dispersion. The velocity dispersion can be an integrated measurement within

a single aperture or it can be spatially resolved on the plane of the sky. To compute this

quantity for a combination of mass and light profiles, we need to solve the Jeans equations.

We can decompose the surface mass-density profile into concentric Gaussian components as

Σ(x, y) ≈
J∑
j=1

Σ0j exp

(
−
q2
jx

2 + y2

2σ2
j

)
, (6.15)

and decompose the surface brightness profile into concentric Gaussian components as

I(x, y) ≈
K∑
k=1

I0k exp

(
−q

2
kx

2 + y2

2σ2
k

)
. (6.16)

Here, we use different subscript letters to make the context of the Gaussian decomposition

clear: we use the subscript j for a component of the mass profile and the subscript k for a

component of the light profile. We have also allowed different ellipticity for each Gaussian

component represented by qj or qk. This is the most general case, for example, when struc-

tures with different ellipticities constitute the total mass or light distribution. We first need

to deproject these two-dimensional profiles into three-dimension as the kinematic quantities

depend on the three-dimensional distributions of mass and light. We assume axisymmetry

or spherical symmetry for the deprojected three-dimensional structure to circumvent the

infinite degeneracy in deprojection. First, we provide the kinematic analysis for the axisym-

metric case in Section 6.3.1; then we do the same for the simpler case of spherical symmetry

in Section 6.3.2.
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6.3.1 Axisymmetric case

For an axisymmetric system, the cylindrical coordinates (R′, z′, φ′) are the most suitable to

express the Jeans equations. We use the prime symbol to denote the coordinates in the

system’s symmetry-frame, where the z′-axis aligns with the axis of symmetry. We assign

(x, y, z) coordinates to the sky frame, where the z-axis aligns with the line of sight and the

x-axis aligns with the projected major axis. If the galaxy is inclined by an angle ι, then the

(x′, y′, z′) coordinates in the symmetry frame relate to the the (x, y, z) coordinates in the sky

frame as 
x′

y′

z′

 =


1 0 0

0 cos ι − sin ι

0 sin ι cos ι



x

y

z

 . (6.17)

In the symmetry frame, equation (6.15) deprojects into the mass density profile ρ as

ρ(R′, z′) =
J∑
j=1

q′j
2Σ0j√

2πσjqj
exp

(
−
q′j

2R′2 + z′2

2σ2
j

)
, (6.18)

and equation (6.16) deprojects into the light density profile l as

l(R′, z′) =
K∑
k=1

q′k
2I0k√

2πσkqk
exp

(
−q
′
k

2R′2 + z′2

2σ2
k

)
. (6.19)

Here, the intrinsic axis ratio q′ relates to the projected axis ratio q as

q′ =

√
q2 − cos2 ι

sin ι
. (6.20)

We can first solve the Jeans equations for these mass and light density profiles in the sym-

metry frame to get the intrinsic velocity dispersions and then integrate along the line of sight

to obtain the line-of-sight velocity dispersion.

The Jeans equations to solve for an axisymmetric system are

b l v2
z′ − l v2

φ′

R′
+
∂
(
b l v2

z′

)
∂R′

= −l ∂Φ

∂R′
,

∂
(
l v2

z′

)
∂z′

= −l ∂Φ

∂z′
.

(6.21)
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Here, the gravitational potential Φ relates to the three-dimensional mass density ρ by

∇2Φ = ρ, and b represents the anisotropy as in v2
R′ = bv2

z′ . We can let bk for each lu-

minous Gaussian component have different values to approximate the luminosity-weighted

anisotropy parameter as

βz′(R
′, z′) ≡ 1− v2

z′

v2
R′

≈ 1−
∑

k lk∑
k bklk

(6.22)

(Binney & Mamon 1982; Cappellari 2008). The line-of-sight second velocity moment for

total mass profile obtained from solving the Jeans equations is given by

v2
los(x, y) =2

√
πG

∫ 1

0

J∑
j=1

K∑
k=1

q′j
3q′k

2Σ0jI0ku
2

σjqjσkqk

×
σ2
k

(
cos2 ι+ bk sin2 ι

)
+Dx2 sin2 ι

(1− Cu2)
√

(A+ B cos2 ι)
[
1−

(
1− q′j

2
)
u2
]

× exp

(
−A

[
x2 +

(A+ B)y2

A+ B cos2 ι

])
du,

(6.23)

where G is the gravitational constant and

A =
1

2

(
u2q′j

2

σ2
j

+
q′k

2

σ2
k

)
,

B =
1

2

{
1− q′k

2

σ2
k

+
q′j

2
(
1− q′j

2
)
u4

σ2
j

[
1−

(
1− q′j

2
)
u2
]} ,

C = 1− q′j
2 −

q′j
2σ2

k

σ2
j

,

D = 1− bkq′k
2 −

[
(1− bk)C + (1− q′j

2
)bk

]
u2

(6.24)

(Cappellari 2008). The line-of-sight velocity dispersion σlos relates to the second velocity

moment by v2
los = v2

mean + σ2
los, where vmean is the stellar mean velocity.

6.3.2 Spherical case

If we assume the system is spherically symmetric, then the spherical coordinates (r, φ, θ)

are the most suitable to express the Jeans equations. In this coordinate system, the mass
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density profile deprojected from equation (6.15) takes the form

ρ(r) =
J∑
j=1

Σ0j√
2πσjqj

exp

(
− r2

2σ2
j

)
, (6.25)

and the light density profile deprojected from equation (6.16) turns into

l(r) =
K∑
k=1

I0k√
2πσkqk

exp

(
− r2

2σ2
k

)
. (6.26)

The projected axis ratio q shows up in these equations to keep the total mass and luminosity

conserved. We can express the three-dimensional enclosed mass for this density profile as

M(r) =
J∑
j=1

2πσ2
jΣ0j

qj

[
erf

(
r√
2σj

)
−
√

2

π

r

σj
exp

(
− r2

2σ2
j

)]
, (6.27)

where erf (x) is the error function. The spherical Jeans equation is

d
(
l v2

r

)
dr

+
2β l v2

r

r
= −ldΦ

dr
, (6.28)

where β(r) is the anisotropy parameter given by

β(r) = 1− v2
θ/v

2
r . (6.29)

Spherical symmetry imposes that v2
θ = v2

φ. By solving the Jeans equation for the spherically

symmetric case, we can obtain the line-of-sight second velocity moment as

v2
los(x, y) =

2G

I(x, y)

∫ ∞
√
x2+y2

Kβ

(
r√

x2 + y2

)
l(r) M(r)

dr

r
(6.30)

(Mamon &  Lokas 2005). Here, the function Kβ(υ) depends on the form of the anisotropy

parameter β(r). For the isotropic case with β = 0, the function Kβ shapes into

Kβ(υ) =

√
1− 1

υ2
. (6.31)

For the Osipkov-Merritt parameterization β(r) = r2/(r2 + r2
ani), where rani is a scale radius,

the function Kβ takes the form

Kβ (υ) =
υ2

ani + 1/2

(υani + 1)3/2

(
υ2 + υ2

ani

υ

)
tan−1

(√
υ2 − 1

υ2
ani + 1

)

− 1/2

υ2
ani + 1

√
1− 1

υ2

(6.32)
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with υani = rani/
√
x2 + y2 (Osipkov 1979; Merritt 1985b,a). See equation (A16) of Mamon

&  Lokas (2005) for the form of Kβ corresponding to other parameterizations of β(r). When

assuming spherical symmetry is sufficient, we can use equation (6.30) to compute the line-

of-sight velocity dispersion in a much simpler way than the axisymmetric case [cf. equation

(6.23)].

The kinematic description of an elliptical mass distribution by decomposing it into con-

centric Gaussian components is thus well developed in the literature. In the next section,

we unify the lensing description with the kinematic description under the same framework.

6.4 Lensing by Gaussian components

In this section, we present the lensing analysis for an elliptical surface-density profile decom-

posed into concentric Gaussian components. In Section 6.2, we introduced an integral trans-

form that efficiently decomposes an elliptical surface-density profile into concentric Gaussian

components as

Σ(x, y) ≈
J∑
j=1

Σ0j exp

(
−
q2
jx

2 + y2

2σ2
j

)
. (6.33)

We can compute a lensing quantity for each individual Gaussian component, and then

linearly add the contributions from all the components to obtain the total lensing quantity.

For example, if αj(x, y) is the deflection at position (x, y) for the j-th Gaussian component,

then the total deflection is simply given by α(x, y) =
∑J

j=1αj(x, y). Therefore, it is sufficient

to analyze the lensing properties of one elliptical Gaussian component. We use the complex

formulation of lensing to solve the deflection integral for an elliptical Gaussian surface-density

profile. Below, we first lay out the complex formalism of lensing in Section 6.4.1; then we

study the lensing properties of an elliptical Gaussian surface-density profile in Section 6.4.2.
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6.4.1 Complex formulation of lensing

The strong lensing effect is usually described using the vector formulation on the two-

dimensional image plane. We first define the lensing quantities in the familiar vector for-

mulation, then we translate them to the complex formulation. The convergence κ is a

dimensionless surface-density defined as κ ≡ Σ/Σcrit, where the critical density Σcrit is given

by

Σcrit =
c2Ds

4πGDdsDd

. (6.34)

Here, c is the speed of light. The three angular diameter distances are Dd: between the

observer and the deflector, Ds: between the observer and the source, and Dds: between

the deflector and the source. The convergence κ relates to the vector deflection angle α as

κ = ∇ · α/2. The deflection angle α is the gradient of the deflection potential as α = ∇ψ,

thus the convergence κ relates to the deflection potential ψ as κ = ∇2ψ/2. The Hessian of

the deflection potential is

H =


∂2ψ

∂2x

∂2ψ

∂x∂y

∂2ψ

∂x∂y

∂2ψ

∂2y


. (6.35)

The convergence κ, the shear parameters (γ1, γ2), and the magnification µ relate to the

Hessian, since we can express them as

κ =
1

2

(
∂2ψ

∂2x
+
∂2ψ

∂2y

)
,

γ1 =
1

2

(
∂2ψ

∂2x
− ∂2ψ

∂2y

)
,

γ2 =
∂2ψ

∂x∂y
,

µ =
1

det (I−H)
,

(6.36)

where I is the identity matrix. Therefore, if we start with a convergence κ and derive the

deflection α and the shear parameters (γ1, γ2), then we can obtain the gradient and the
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Hessian of the deflection potential from them.

Now we reformulate the lensing quantities on the complex plane. Following Bourassa

et al. (1973), we can express the deflection vector α as a complex quantity

α(z) ≡ αx + iαy, (6.37)

where the complex quantity z = x + iy corresponds to the position vector r = (x, y). We

can define a complex deflection potential ψ(z) with its real part equal to the usual deflection

potential (Schramm 1990). Then, the complex deflection angle is the Wirtinger derivative

of the deflection potential as

α(z) =
∂ψ

∂x
+ i

∂ψ

∂y
= 2

∂ψ

∂z∗
. (6.38)

We can express the convergence κ as

κ =
∂α∗

∂z∗
. (6.39)

Furthermore, the complex shear γ ≡ γ1 + iγ2 satisfies the relation

γ∗ =
∂α∗

∂z
. (6.40)

Using this complex formulation, we analyze the lensing properties of an elliptical Gaussian

convergence next in Section 6.4.2.

6.4.2 Lensing by elliptical Gaussian convergence

We derive the deflection angle and shear for the elliptical Gaussian convergence

κ(R) = κ0 exp

(
− R

2

2σ2

)
, (6.41)

where R =
√
q2x2 + y2 is the elliptical radius. Using the complex formulation, the deflection

angle for the elliptical convergence can be obtained from

α∗(z) = 2 sgn(z)

∫ R(z)

0

dζ
ζκ(ζ)√

q2z2 − (1− q2)ζ2

=
2κ0

qz

∫ R(z)

0

dζ
ζ exp(−ζ2/2σ2)√

1− (1− q2)ζ2/q2z2
,

(6.42)
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where sgn(z) ≡
√
z2/z is the complex sign function, and R(z) =

√
q2x2 + y2 is the semi-

minor axis length for the ellipse with axis-ratio q that goes through the point z = x + iy

(Bourassa & Kantowski 1975; Bray 1984). With changes of variables s = 1/2σ2, t = (1 −

q2)/q2z2, τ =
√

1− tζ2, we can express equation (6.42) as

α∗(z) =
2κ0 e−s/t

qzt

∫ 1

√
1−tR(z)2

dτ exp
(s
t
τ 2
)

=
2κ0 e−s/t

qzt

[
1

2

√
πt

s
erfi

(√
s

t
τ

)]1

√
1−t(q2x2+y2)

= κ0σ

√
2π

1− q2
exp

(
− q2z2

2σ2(1− q2)

)[
erfi

(
qz

σ
√

2(1− q2)

)

− erfi

(
q2x+ iy

σ
√

2(1− q2)

)]

= κ0σ

√
2π

1− q2
ς(z; q),

(6.43)

where erfi (z) ≡ −i erf (iz) and we have defined the function

ς(z; q) ≡ exp

(
− q2z2

2σ2(1− q2)

)[
erfi

(
qz

σ
√

2(1− q2)

)

− erfi

(
q2x+ iy

σ
√

2(1− q2)

)]
.

(6.44)

We obtain the complex conjugate of the complex shear from equation (6.40) as

γ∗(z) = − κ0

1− q2

[
(1 + q2) exp

(
−q

2x2 + y2

2σ2

)
− 2q

+

√
2πq2z

σ
√

1− q2
exp

(
− q2z2

2σ2(1− q2)

){
erfi

(
qz

σ
√

2(1− q2)

)

−erfi

(
q2x+ iy

σ
√

2(1− q2)

)}]

= − 1

1− q2

[
(1 + q2)κ(x, y)− 2qκ0 +

√
2πq2κ0z

σ
√

1− q2
ς(z; q)

]
.

(6.45)
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Both the deflection angle and the shear contain the function ς(z; q). This function relates to

the Faddeeva function wF(z). First, we write the function ς(z; q) as

ς(z; q) = $

(
qz

σ
√

2(1− q2)
; 1

)
−$

(
qz

σ
√

2(1− q2)
; q

)
, (6.46)

where $(z; q) = exp (−z2) erfi (qx + iy/q). We can express $(z; q) using the Faddeeva

function wF(z) as

$(z; q) = e−x
2−2ixyey

2 − i exp
[
−x2(1− q2)− y2(1/q2 − 1)

]
× wF(qx+ iy/q).

(6.47)

Thus, we can compute the deflection angle and the shear using the Faddeeva function

(Fig. 6.5). Faddeeva function is a well-studied special function for its various applica-

tions in physics, for example, in radiative transfer and in plasma physics (e.g., Armstrong

1967; Jiménez-Domı́nguez et al. 1989). We can readily compute wF(z) in python using

the scipy.special.wofz function. For some other popular programming languages, code-

packages to compute this function are available at the web-address http://ab-initio.mit.

edu/Faddeeva. In this paper, we use the algorithm outlined by Zaghloul (2017) to compute

wF(z) with relative error less than 4 × 10−5 over the whole complex plane. We state this

algorithm in Appendix 6.B. A python implementation of this algorithm is approximately

twice as fast as the function provided by scipy. As a result, we can efficiently compute the

gradient and Hessian of the deflection potential for an elliptical Gaussian convergence using

equations (6.43) and (6.45).

Now, we turn our attention to computing the deflection potential. The deflection poten-

tial ψ(z) is given by

ψ(z) = Re

(∫ z

0

α∗(z′) dz′
)
, (6.48)

where we set ψ(0) = 0. Often times we are interested in the potential difference between

two points z1 and z2 given by

∆ψ = ψ(z2)− ψ(z1) = Re

(∫ z2

z1

α∗(z′) dz′
)
. (6.49)
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Figure 6.5: Lensing quantities for an elliptical Gaussian convergence profile. Left: con-

vergence (orange shade), deflection field (green arrows), isopotential contours (blue, dashed

contours). The arrow directions are for the negative of the deflection angles and the lengths

are shrunk by a factor of 4 for nicer visualization. Right: Critical curves (black lines)

and corresponding caustics (pink lines). The solid-contour caustic corresponds to the solid-

contour critical curve, similarly dot-dashed contours correspond to each other. Here, we take

the amplitude of the Gaussian convergence κ0 = 2 and the axis ratio q = 0.5. We express the

gradient and the Hessian of the deflection potential for an elliptical Gaussian convergence

using the complex error function, as a result we can efficiently compute them.
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This integral is independent of the choice of a contour. We have to carry out this integral

numerically. However, the number of times we need to compute it in most applications,

e.g., for computing time delays, is much fewer than that for α(z). We can also numerically

solve the Poisson equation ∇2ψ = 2κ using the Fourier transform of the deflection potential

ψ̂ ≡ F [ψ] (van de Ven et al. 2009). This equation turns into k2ψ̂ = 2κ̂ in the Fourier domain.

The solution of the Poisson equation is then ψ = F−1(2κ̂/k2). We can analytically compute

the forward Fourier transform because the convergence has the Gaussian form. Then, we

need to compute only the inverse transform numerically. Although obtaining the deflection

potential necessitates a numerical integration or a numerical Fourier transform, we can keep

the computational burden under control in most applications by computing this quantity

only for a feasible number of models sampled from the lens model posterior.

6.5 Adding it all together: proof of concept

In this section, we demonstrate the feasibility of our method to model lenses. We first

simulate synthetic data of a mock lens and then model the lens using our method. We

use the publicly available lens-modelling software lenstronomy to simulate the synthetic

data and perform the model-fitting (Birrer & Amara 2018). We added extra modules to

lenstronomy to implement the lensing analysis presented in Section 6.4.2.

For the mock strong lensing system, we adopt an elliptical NFW deflection potential for

the dark component and an elliptical Chameleon convergence for the luminous component.

We take realistic scale sizes and normalizations for these profiles. We choose the Chameleon

profile for two reasons:

1. we can analytically simulate the data with ellipticity in the convergence, and

2. we know the Sérsic-profile parameters that approximates the chosen Chameleon profile

a priori, so we can check the fidelity of our method.
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We parameterize the scaling of the NFW profile with two parameters: scale radius rs and

the deflection angle αs at rs. For a spherical NFW profile given by

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2
, (6.50)

the normalization ρs relates to αs as

αs =
4ρsr

2
s

DdΣcrit

(1− ln 2) . (6.51)

(Meneghetti et al. 2003). The elliptical Chameleon convergence is given by

κChm(x, y) =
κ0

1 + q

[
1√

x2 + y2/q2 + 4w2
c/(1 + q2)

− 1√
x2 + y2/q2 + 4w2

t /(1 + q2)

] (6.52)

(Suyu et al. 2014). We also add external shear to the mass profiles. Therefore, our fiducial

lens mass profile has three components in total: elliptical NFW deflection potential, elliptical

Chameleon convergence, and external shear.

We simulate data for this fiducial lens system with image quality similar to the Hubble

Space Telescope (HST ) Wide-Field Camera 3 imaging in the F160W filter (see top-left panel

of Fig. 6.6). We adopt 0.08 arcsec for the pixel size, 2197 s for exposure time, and a realistic

point spread function (PSF) to achieve data quality similar to the lens sample presented by

Shajib et al. (2019).

We fit the synthetic data with a model composed of elliptical NFW deflection poten-

tial, elliptical Sérsic convergence profile decomposed into concentric Gaussians, and external

shear. Note that we take ellipticity in the deflection potential for the NFW profile due

to a design restriction of lenstronomy. However, we can also extend an elliptical NFW

convergence into concentric Gaussians for lensing analysis in principle. For now, this limi-

tation does not affect the point of this exercise to show that lensing analysis with Gaussian

components is feasible. We take the PSF as known for simplicity when fitting a model.
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We also separately model the lens with the fiducial mass profiles for comparison. In both

cases, the parameters for the light and the luminous mass profiles are joint except for the

amplitudes. We fit the model to the data by using the MCMC method. For every sample

point in the parameter space, we first decompose the elliptical Sérsic profile into concentric

Gaussian components using equations (6.5) and (6.7). Similar to the example in Section

6.2.1.2, we take 15 Gaussian components with logarithmically spaced σ’s between 0.02Reff

and 15Reff . These 15 Gaussian components approximate the Sérsic function well within the

noise level for 0.1Reff ≤ R ≤ 10Reff (Fig. 6.3). We compute the gradient and the Hessian

of the deflection potential for each Gaussian component. Finally, we add the contributions

from all the individual components together to obtain these quantities for the total mass

profile. These total quantities are used to compute the likelihood in the MCMC method for

fitting the model to the data.

Our method fits the synthetic data very well (see the ‘Normalized Residuals’ plot in

Fig. 6.6). The fiducial Sérsic profile parameters are also recovered with reasonable to high

accuracies at the same time (Table 6.1). The total runtime is only approximately three times

longer than using the fiducial model with the Chameleon profile. This loss in efficiency is a

reasonable tradeoff for generality. Thus, we have demonstrated a feasible implementation of

our lensing analysis in lens modelling.

6.6 Conclusion: precision is feasible.

In this paper, we present a general method for precise lensing analysis of any elliptical

convergence profile. Our method follows a “divide and conquer” strategy. In our method,

we first decompose an elliptical convergence profile into concentric Gaussian components as

κ(x, y) ≈
J∑
j=1

κ0j exp

(
−q

2x2 + y2

2σ2
j

)
(6.53)
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Figure 6.6: Fitting synthetic lensing data with concentric Gaussian components of an ellip-

tical Sérsic profile for the luminous component. We fit the dark component with an elliptical

NFW profile. The Sérsic parameters for the lens light are joint with the luminous mass

distribution except for the amplitudes letting the global mass-to-light ratio be a free pa-

rameter. We generated the synthetic data for a composite model with elliptical NFW and

elliptical Chameleon profiles. In the ‘Reconstructed source’ plot, the pink contours outline

the caustics. The blue star indicates the point source position. The green arrows in the

‘Convergence and deflection’ plot represent negative deflection angles and they are shrunk

by a factor of 4 for nicer visualization. The red dots in the ‘Magnification model’ plot point

out the image positions. Our method of computing lensing quantities for the Sérsic profile

with ellipticity in the convergence works well as evident from the ‘Normalized Residual’ plot.

This method only takes approximately three times longer than using the fiducial model with

the Chameleon profile. Unlike the Chameleon profile, however, our method is general.
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Table 6.1: Fidelity of our lens modelling method. We simulate mock data with a fiducial

model composed of elliptical Chameleon convergence, elliptical NFW deflection potential,

and external shear. We test our method with the “Gaussian model”: elliptical Sérsic con-

vergence decomposed into concentric Gaussians, elliptical NFW deflection potential, and

external shear. The ‘True’ rows contain the mock values of the fiducial model parameters.

The ‘Gaussian-fit’ rows contain the parameters of the “Gaussian model” fit to the data.

Similarly, the ‘Fiducial-fit’ rows contain the parameters of the fiducial model fit to the data.

We do not provide uncertainty for the values that are accurate up to the displayed decimal

point. The accuracy of our computational method with Gaussian components is comparable

to that using the fiducial model.

Mass Profile Parameters

Sérsic Reff nSérsic q φ

(arcsec) (deg)

Truea 1.55 3.09 0.60 45

Gaussian-fit 1.51±0.02 3.04±0.03 0.61 45.1±0.3

Chameleon wt wc q φ

(arcsec) (arcsec) (deg)

True 0.038 1.7 0.60 45

Fiducial-fit 0.038 1.7 0.60 45.0±0.2

NFW rs αs q φ

(arcsec) (arcsec) (deg)

True 5 1 0.9 45

Gaussian-fit 5.0 0.99±0.03 0.87±0.02 44±2

Fiducial-fit 5.0 1.00±0.01 0.90±0.01 45±2

External shear γ φ – –

(deg)

True 0.051 5.7 – –

Gaussian-fit 0.056±0.002 9±3 – –

Fiducial-fit 0.051±0.001 6±2 – –

Notes. aThe true values of the Sérsic-profile parameters correspond to the true values of the

Chameleon-profile parameters.
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We then compute lensing quantities, e.g., the gradient and the Hessian of the deflection

potential, for each Gaussian component. Finally, we add the lensing quantities from indi-

vidual Gaussian components together to obtain these quantities for the total surface-density

profile. Moreover, we can straightforwardly deproject a Gaussian component to obtain its

corresponding three-dimensional density profile assuming either axisymmetry or spherical

symmetry. Then, we can also compute the kinematic properties, such as the line-of-sight

velocity dispersion, for each Gaussian component (Cappellari 2008). We can then add the

velocity dispersions from individual Gaussians together to obtain the total line-of-sight veloc-

ity dispersion. In this way, we self-consistently unify the lensing and kinematic descriptions

of any elliptical mass profile.

We introduce an integral transform with a Gaussian kernel that leads us to a general,

precise, and fast algorithm for decomposing a surface density profile into concentric Gaussian

components. Without such an algorithm, decomposing into Gaussians would end up as a

bottleneck in the lens modelling efficiency. We obtain the algorithm by first inverting the

integral transform as

f(σ) =
1

iσ2

√
2

π

∫
C

zF (z) exp

(
z2

2σ2

)
dz. (6.54)

Although this is an integral, we provide a straightforward formula to compute f(σ). The

computed values of f(σ) then quantify the amplitudes κ0j of the Gaussian components in

equation (6.53). As a result, this integral transform fulfills the three requirements for a

decomposition algorithm to be (i) general, (ii) precise, and (iii) fast. To be specific, this

decomposition algorithm is ∼ 103 times faster than the MGE algorithm from Cappellari

(2002). Consequently, our lensing analysis requires the same order of CPU time as other

methods currently in use to model a lens with a composite mass profile. Thus, the integral

transform enables the lens modelling with the Gaussian components to be efficient and, in

turn, makes our unified framework for lensing and kinematic analysis of an elliptical mass

profile feasible.
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Our method enables precise lens modelling with an elliptical mass profile for several

astrophysical applications. Specifically, our method gives an efficient method to model com-

posite mass profiles with separate components for the baryonic matter and the dark matter.

For example, the usual choices for these components are the Sérsic and the NFW profiles;

both are computationally difficult to directly implement in lens modelling for the elliptical

case. Our method makes both of these profiles computationally tractable while achieving the

required precision. Thus, our method will be useful in applications where a composite mass

profile is essential for lens modelling, for example, in detecting dark-matter substructure, in

measuring the Hubble constant, and in testing massive elliptical-galaxy formation theories

(e.g., Vegetti et al. 2012; Wong et al. 2017; Nightingale et al. 2019).
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6.A Properties of the Integral transform with a Gaussian Kernel

In this appendix, we prove some fundamental properties of the integral transform with a

Gaussian kernel. In three theorems, we prove that

1. the integral transform exists for a function with certain characteristics,

2. the transform is unique for a continuous function, and

3. the transform is invertible.

First, we define the integral transform.

Definition 6.A.1. Define an integral transform T that takes a function f(σ) : R≥0 → R to

a function F (z) : C→ C as

F (z) ≡ T [f ](z) ≡ 1√
2π

∫ ∞
0

f(σ)

σ
exp

(
− z2

2σ2

)
dσ. (6.55)

Next, we define a transformable function in the context of this paper.

Definition 6.A.2. A function f(σ) : R≥0 → R is said to be transformable, if it satisfies the

following conditions:

1. the function f(σ) is piecewise continuous,

2. the function f(σ) = O(exp(c/2σ2)) as σ → 0, where c ∈ R≥0,

3. the function f(σ) = O(σλ) with λ < 0 as σ →∞.

We refer to these three conditions as the transformability conditions. The namesake for the

transformable function is made clear next in Theorem 6.A.3.

Theorem 6.A.3 (Existence). If f(σ) is transformable, then its integral transform F (z)

exists in the region of convergence (ROC) Re(z2) > c.
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Proof. Divide the integral in equation (6.55) as

F (z) =
1√
2π

(∫ a

0

dσ +

∫ b

a

dσ +

∫ ∞
b

dσ

)
f(σ)

σ
exp

(
− z2

2σ2

)
=

1√
2π

(I1 + I2 + I3) ,

(6.56)

where 0 < a < b <∞.

1. The integral I2 converges, as the integrand is piecewise continuous in [a, b] according to

transformability condition (i) in Definition 6.A.2.

2. According to transformability condition (ii), there exists M1 ∈ R>0 such that f(σ) ≤

M1 exp(c/2σ2) for σ ≤ a. Then using Jensen’s inequality, we have

|I1| ≤
∫ a

0

∣∣∣∣f(σ)

σ
exp

(
− z2

2σ2

)∣∣∣∣dσ
⇒ |I1| ≤

∫ a

0

∣∣∣∣M1

σ
exp

(
−z

2 − c
2σ2

)∣∣∣∣dσ
⇒ |I1| ≤M1

∫ a

0

1

σ
exp

(
−Re(z2)− c

2σ2

)
dσ.

(6.57)

Therefore, the integral I1 converges in the region Re(z2) = x2− y2 > c, where z = x+ iy,

x ∈ R, y ∈ R.

3. According to transformability condition (iii), there exists M2 ∈ R>0 such that f(σ) ≤

M2σ
λ for σ ≥ b. Then, we have

|I3| ≤
∫ ∞
b

∣∣∣∣f(σ)

σ
exp

(
− z2

2σ2

)∣∣∣∣dσ
⇒ |I3| ≤

∫ ∞
b

M2σ
λ−1

∣∣∣∣exp

(
− z2

2σ2

)∣∣∣∣dσ
⇒ |I3| ≤M2

∫ ∞
b

σλ−1dσ = −M2
bλ

λ
<∞.

(6.58)

Here, we applied the inequality |exp(−z2/2σ2)| ≤ 1 for Re(z2) > c ≥ 0. As a result, the

integral I3 converges.

Therefore, the transform F (z) exists in the ROC Re(z2) > c.
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Figure 6.7: Region of convergence (shaded region) on the complex plane for the integral in

equation (6.55). The hyperbolic contour C for the integral in equation (6.63) is shown with

solid black hyperbola.

Fig. 6.7 shows the ROC for the integral in equation (6.55). We can extend the ROC by

the following two corollaries.

Corollary 6.A.4. If a transformable function f(σ) additionally satisfies the condition f(σ) =

O(σβ exp(c/2σ2)) with β ≥ 1 as σ → 0, then the integral in equation (6.55) converges in the

ROC Re(z2) ≥ c.

Proof. According to the additional condition, there exists M3 ∈ R>0 such that f(σ) ≤
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M3σ
β exp(c/2σ2) for σ ≤ a. Then, we can rewrite equation (6.57) as

|I1| ≤
∫ a

0

∣∣∣∣f(σ)

σ
exp

(
− z2

2σ2

)∣∣∣∣dσ
⇒ |I1| ≤

∫ a

0

∣∣∣∣M3σ
β−1 exp

(
−z

2 − c
2σ2

)∣∣∣∣dσ
⇒ |I1| ≤M3

∫ a

0

σβ−1 exp

(
−Re(z2)− c

2σ2

)
dσ.

(6.59)

For Re(z2) = c, this becomes

|I1| ≤M3

∫ a

0

σβ−1dσ =
M3a

β

β
<∞. (6.60)

Therefore, the ROC for the integral in equation (6.55) extends to Re(z2) ≥ c.

Corollary 6.A.5. If a transformable function f(σ) additionally satisfies f(σ) = O(σβ) with

β ≥ 1 as σ → 0, then the integral in equation (6.55) converges in the ROC Re(z2) ≥ 0.

Proof. The proof is trivial with the substitution c = 0 in Corollary 6.A.4.

Next we prove the uniqueness theorem for the transform. First, we state a well-known

proof of the following lemma for completeness.

Lemma 6.A.6. If f(x) is continuous in [0, 1], and
∫ 1

0
xnf(x) dx = 0 for n = 0, 1, 2, . . . ,

then f(x) = 0.

Proof. From the Weierstrass approximation theorem, for any ε > 0, there exists a poly-

nomial Pε(x) such that |f(x)− Pε(x)| < ε for all x ∈ [0, 1]. The hypothesis implies that∫ 1

0
Pε(x)f(x) dx = 0. By taking the limit ε→ 0, this equation becomes

∫ 1

0
f(x)f(x) dx = 0.

As f(x)2 ≥ 0, we have f(x) = 0.

Theorem 6.A.7 (Uniqueness). If f(σ) and g(σ) are continuous, and T [f ](z) = T [g](z) for

all z in the ROC, then f(σ) = g(σ).
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Proof. Due to linearity, it is sufficient to prove that if T [f ](z) = 0, then f(σ) = 0. Take

d such that the contour Re(z2) = d lies in the ROC. By making the change of variables

s = exp(−1/2σ2), for z2 = d+ n+ 1 with n = 0, 1, 2, . . . we have

T [f ](z) =
1√
2π

∫ ∞
0

f(σ)

σ
exp

(
−d+ n+ 1

2σ2

)
dσ = 0

⇒
∫ 1

0

[
−
sdf(

√
−1/2 log s)

2
√

2π log s

]
snds = 0.

(6.61)

This integral exists as s→ 0, because

lim
s→0

[
−
sdf(

√
−1/2 log s)

2
√

2π log s

]
= lim

σ→0

[
σ2f(σ)√

2π
exp

(
− d

2σ2

)]
= 0. (6.62)

Therefore, according to Lemma 6.A.6, we have f(σ) = 0.

Theorem 6.A.8 (Inversion). If F (z) is the transform of f(σ), then f(σ) is given by the

inverse transform

f(σ) = T −1[F ](σ) =
1

iσ2

√
2

π

∫
C

zF (z) exp

(
z2

2σ2

)
dz, (6.63)

where the contour C is the hyperbola Re(z2) = d such that C lies in ROC of F (z).

Proof. Write equation (6.55) for z2 = d as

F
(√

d
)

=
1√
2π

∫ ∞
0

f(σ)

σ
exp

(
− d

2σ2

)
dσ. (6.64)

With the change of variables p = 1/σ2, this equation transforms into

F
(√

d
)

=

∫ ∞
0

g(p) exp

(
−dp

2

)
dp, (6.65)

where

g(p) =
σ2f(σ)

2
√

2π
. (6.66)

Define a new function

h(p) =


g(p) exp

(
−dp

2

)
, p ≥ 0,

0, p < 0.

(6.67)
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Theorem 6.A.3 implies that
∫∞
−∞|h(p)| dp < ∞, thus h(p) belongs to the Lebesgue space

L1(R). Therefore, we can take the Fourier transform of h(p) as

ĥ(ν) =
1√
2π

∫ ∞
−∞

h(p)e−ipνdp

=
1√
2π

∫ ∞
0

g(p) exp

(
−(d+ 2iν)p

2

)
dp

=
1√
2π
F
(√

d+ 2iν
)
,

(6.68)

where we used equation (6.65) for the substitution in the last line. Now, take the inverse

Fourier transform of ĥ(ν) as

h(p) =
1√
2π

∫ ∞
−∞

ĥ(ν)eipνdν

⇒g(p) exp

(
−dp

2

)
=

1

2π

∫ ∞
−∞

F
(√

d+ 2iν
)
eipνdν

⇒σ2f(σ)

2
√

2π
=

1

2π

∫ ∞
−∞

F
(√

d+ 2iν
)

exp

(
d+ 2iν

2σ2

)
dν

⇒f(σ) =
1

iσ2

√
2

π

∫
C

zF (z) exp

(
z2

2σ2

)
dz.

(6.69)

Here, we used the substitution of variable z2 = d+ 2iν in the last line, which transforms the

integral path to the hyperbolic contour C given by Re(z2) = d.

Remark 6.A.9. Equation (6.65) has the form of a Laplace transform. Therefore, the integral

transform with a Gaussian kernel for a transformable function can be converted into a Laplace

transform by suitable change of variables.

6.B Efficient algorithm to compute the Faddeeva function

In this appendix, we state an efficient algorithm to compute the Faddeeva function wF(z)

(Algorithm 1, for details see Zaghloul 2017). The relative error of this algorithm is less than

4× 10−5 over the whole complex plane.
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Algorithm 1 Compute wF(z)

y ← Im(z)

if |z|2 ≥ 3.8× 104 then

wF ←
i

z
√
π

else if 3.8× 104 > |z|2 ≥ 256 then

wF ←
iz√

π(z2 − 0.5)
else if 256 > |z|2 ≥ 62 then

wF ←
i(z2 − 1)

z
√
π(z2 − 1.5)

else if 62 > |z|2 ≥ 30 and y2 ≥ 10−13 then

wF ←
iz(z2 − 2.5)√

π(z2(z2 − 3) + 0.75)
else if (62 > |z|2 ≥ 30 and y2 < 10−13) or (30 > |z|2 ≥ 2.5 and y2 < 0.072) then

U ← [1.320522, 35.7668, 219.031, 1540.787

3321.990, 36183.31]

V ← [1.841439, 61.57037, 364.2191, 2186.181

9022.228, 24322.84, 32066.6]

wF ← exp(−z2) + iz × (U [6] + z2(U [5] + z2(U [4] + z2(U [3]+

z2(U [2] + z2(U [1] + z2
√
π))))))/(V [7] + z2(V [6]+

z2(V [5] + z2(V [4] + z2(V [3] + z2(V [2] + z2(V [1]

+z2)))))))

else

U ← [5.9126262, 30.180142, 93.15558, 181.92853

214.38239, 122.60793]

V ← [10.479857, 53.992907, 170.35400, 348.70392

457.33448, 352.73063, 122.60793]

wF ← (U [6]− iz(U [5]− iz(U [4]− iz(U [3]− iz(U [2]− iz(U [1]

−iz
√
π))))))/ (V [7]− iz(V [6]− iz(V [5]− iz(V [4]

−iz(V [3]− iz(V [2]− iz(V [1]− iz)))))))

end if

250



CHAPTER 7

Conclusion

7.1 Summaries

I present an evidence for the ΛCDM cosmology by detecting the integrated Sachs–Wolfe

effect (Chapter 2). I perform a new measurement of the Hubble constant using time-delays

of strongly lensed quasar system, which increases the tension between early-Universe and

late-Universe measurements (Chapter 3). This increased tension can potentially point to

new physics beyond the ΛCDM model. However, first we need to rule out the presence

of systematics in various measurements including the time-delay cosmography. I develop

several methodologies to improve the time-delay cosmography in the future to both improve

the H0 precision per system and to rapidly increase the sample size of analyzed systems

(Chapters 4, 5, 6). I summarize the main results from the Chapters 2–7 below.

7.1.1 Chapter 2: An evidence of the ΛCDM cosmoloy: measuring the integrated

Sachs–Wolfe effect

One of the physical features of a dark-energy-dominated universe is the integrated Sachs–

Wolfe (ISW) effect on the cosmic microwave background (CMB) radiation, which gives us a

direct observational window to detect and study dark energy. The AllWISE data release of

the Wide-field Infrared Survey Explorer (WISE ) has a large number of point sources, which

span over a wide redshift range including where the ISW effect is maximized. AllWISE

data is thus very well-suited for the ISW effect studies. In this study, we cross-correlate All-
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WISE galaxy and active galactic nucleus (AGN) overdensities with the Wilkinson Microwave

Anisotropy Probe CMB temperature maps to detect the ISW effect signal. We calibrate the

biases for galaxies and AGNs by cross-correlating the galaxy and AGN overdensities with

the Planck lensing convergence map. We measure the ISW effect signal amplitudes relative

to the ΛCDM expectation of A = 1 to be A = 1.18±0.36 for galaxies and A = 0.64±0.74 for

AGNs . The detection significances for the ISW effect signal are 3.3σ and 0.9σ for galaxies

and AGNs respectively giving a combined significance of 3.4σ. Our result is in agreement

with the ΛCDM model.

7.1.2 Chapter 3: Measurement of the Hubble constant from the strong lens

system DES J0408−5354

We present a blind time-delay cosmographic analysis for the lens system DES J0408−5354.

This system is extraordinary for the presence of two sets of multiple images at different

redshifts, which provide the opportunity to obtain more information at the cost of increased

modelling complexity with respect to previously analysed systems. We perform detailed

modelling of the mass distribution for this lens system using three band Hubble Space Tele-

scope imaging. We combine the measured time delays, line-of-sight central velocity dispersion

of the deflector, and statistically constrained external convergence with our lens models to

estimate two cosmological distances. We measure the “effective” time-delay distance corre-

sponding to the redshifts of the deflector and the lensed quasar Deff
∆t = 3382+146

−115 Mpc and

the angular diameter distance to the deflector Dd = 1711+376
−280 Mpc, with covariance between

the two distances. From these constraints on the cosmological distances, we infer the Hubble

constant H0= 74.2+2.7
−3.0 km s−1 Mpc−1 assuming a flat ΛCDM cosmology and a uniform prior

for Ωm as Ωm ∼ U(0.05, 0.5). This measurement gives the most precise constraint on H0 to

date from a single lens. Our measurement is consistent with that obtained from the previous

sample of six lenses analysed by the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW)

collaboration. It is also consistent with measurements of H0 based on the local distance
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ladder, reinforcing the tension with the inference from early Universe probes, for example,

with 2.2σ discrepancy from the cosmic microwave background measurement.

7.1.3 Chapter 4: Improving time-delay cosmography with spatially resolved

kinematics

Stellar kinematics of the deflector galaxy play an essential role in the measurement of the

time-delay distance by: (i) helping break the mass-sheet degeneracy; (ii) determining in

principle the angular diameter distance Dd to the deflector and thus further improving the

cosmological constraints. In this paper we simulate observations of lensed quasars with

integral field spectrographs and show that spatially resolved kinematics of the deflector

enable further progress by helping break the mass-anisotropy degeneracy. Furthermore, we

use our simulations to obtain realistic error estimates with current/upcoming instruments

like OSIRIS on Keck and NIRSPEC on the James Webb Space Telescope for both distances

(typically ∼ 6 per cent on D∆t and ∼ 10 per cent on Dd). We use the error estimates

to compute cosmological forecasts for the sample of nine lenses that currently have well

measured time delays and deep Hubble Space Telescope images and for a sample of 40 lenses

that is projected to be available in a few years through follow-up of candidates found in

ongoing wide field surveys. We find that H0 can be measured with 2 per cent (1 per cent)

precision from nine (40) lenses in a flat Λcold dark matter cosmology. We study several

other cosmological models beyond the flat Λcold dark matter model and find that time-

delay lenses with spatially resolved kinematics can greatly improve the precision of the

cosmological parameters measured by cosmic microwave background data.

7.1.4 Chapter 5: Automated and uniform modelling of lensed quasars

Strong-gravitational lens systems with quadruply-imaged quasars (quads) are unique probes

to address several fundamental problems in cosmology and astrophysics. Although they are
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intrinsically very rare, ongoing and planned wide-field deep-sky surveys are set to discover

thousands of such systems in the next decade. It is thus paramount to devise a general

framework to model strong-lens systems to cope with this large influx without being limited

by expert investigator time. We propose such a general modelling framework (implemented

with the publicly available software Lenstronomy) and apply it to uniformly model three-

band Hubble Space Telescope Wide Field Camera 3 images of 13 quads. This is the largest

uniformly modelled sample of quads to date and paves the way for a variety of studies.

To illustrate the scientific content of the sample, we investigate the alignment between the

mass and light distribution in the deflectors. The position angles of these distributions are

well-aligned, except when there is strong external shear. However, we find no correlation

between the ellipticity of the light and mass distributions. We also show that the observed

flux-ratios between the images depart significantly from the predictions of simple smooth

models. The departures are strongest in the bluest band, consistent with microlensing being

the dominant cause in addition to millilensing. Future papers will exploit this rich dataset in

combination with ground based spectroscopy and time delays to determine quantities such

as the Hubble constant, the free streaming length of dark matter, and the normalization of

the initial stellar mass function.

7.1.5 Chapter 6: Unified lensing and kinematic analysis of elliptical mass pro-

files

We demonstrate an efficient method to compute the strong-gravitational-lensing deflection

angle and magnification for any elliptical surface-density profile. This method solves a nu-

merical hurdle in lens modelling that has lacked a general solution for nearly three decades.

The hurdle emerges because it is prohibitive to derive analytic expressions of the lensing

quantities for most elliptical mass profiles. In our method, we first decompose an elliptical

mass profile into concentric Gaussian components. We introduce an integral transform that

provides us with a fast and accurate algorithm for this Gaussian decomposition. We derive
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analytic expressions of the lensing quantities for a Gaussian component. As a result, we

can compute these quantities for the total mass profile by adding up the contributions from

the individual components. This lensing analysis self-consistently completes the kinematic

description in terms of Gaussian components presented by Cappellari (2008). Our method

is general without extra computational burden unlike other methods currently in use.

7.2 Final remarks

Although the ΛCDM cosmology is tremendously successful in explaining a large number of

observational results, the currently significant (& 5σ) tension in H0 can a potential hint

for new physics beyond the ΛCDM model. Future studies involving larger sample of lensed

quasars and supernova will be independently able to resolve or confirm this tension, thanks to

the methodologies developed in this dissertation in addition to the tremendous improvements

this field of time-delay cosmography has experienced over the past decade. With several new

space and ground based telescopes coming online within the next decade – such as the James

Webb Space Telescope, the Vera Rubin Observatory Legacy Survey for Space and Time, the

Nancy Grace Roman Space Telescope – thousands of new lensed quasars and galaxy–galaxy

lenses will be discovered (Oguri & Marshall 2010; Collett 2015). These large datasets will

provide us with sufficient number of lens systems to closely investigate the internal structure

of lens galaxies to beat down systematics in the time-delay cosmography and help resolve

the H0 tension.
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Andrews, E. Armengaud, É. Aubourg, S. Bailey, & et al. 2015, ApJS, 219, 12

Alam, S., M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J. A. Blazek, A. S. Bolton, J. R. Brown-

stein, A. Burden, C.-H. Chuang, J. Comparat, A. J. Cuesta, K. S. Dawson, D. J. Eisen-
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P. Fosalba, J. Garćıa-Bellido, D. W. Gerdes, D. Gruen, R. A. Gruendl, G. Gutierrez,

286



W. G. Hartley, D. L. Hollowood, B. Hoyle, D. J. James, K. Kuehn, N. Kuropatkin, O. La-

hav, M. Lima, M. A. G. Maia, M. March, J. L. Marshall, P. Melchior, F. Menanteau,

R. Miquel, A. A. Plazas, E. Sanchez, V. Scarpine, I. Sevilla-Noarbe, M. Smith, M. Soares-

Santos, F. Sobreira, E. Suchyta, M. E. C. Swanson, G. Tarle, & A. R. Walker. 2019,

MNRAS, 483, 5649

Shajib, A. J., S. Birrer, T. Treu, A. Agnello, E. J. Buckley-Geer, J. H. H. Chan, L. Chris-

tensen, C. Lemon, H. Lin, M. Millon, J. Poh, C. E. Rusu, D. Sluse, C. Spiniello, G. C. F.

Chen, T. Collett, F. Courbin, C. D. Fassnacht, J. Frieman, A. Galan, D. Gilman, A. More,

T. Anguita, M. W. Auger, V. Bonvin, R. McMahon, G. Meylan, K. C. Wong, T. M. C.

Abbott, J. Annis, S. Avila, K. Bechtol, D. Brooks, D. Brout, D. L. Burke, A. Carnero

Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, M. Costanzi, L. N. da Costa,

J. De Vicente, S. Desai, J. P. Dietrich, P. Doel, A. Drlica-Wagner, A. E. Evrard, D. A.
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