UC San Diego UC San Diego Electronic Theses and Dissertations

Title

GnRH induces miR-132 and miR-212 and reduces p250RhoGAP and SirT-1 in pituitary LbetaT2 gonadotropes

Permalink <https://escholarship.org/uc/item/1bf5x6hx>

Author Godoy, Joseph Christopher

Publication Date 2009

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

GnRH induces miR-132 and miR-212 and reduces p250RhoGAP and SirT-1 in pituitary LbetaT2 Gonadotropes

A Thesis Submitted in partial satisfaction of the requirements for the degree of Master of Science

in

Biology

by

Joseph Christopher Godoy

Committee in charge:

Professor Nicholas Webster, Chair Professor Shelley Halpain, Co-Chair Professor Chris Armour

2009

Copyright

Joseph Christopher Godoy, 2009

All rights reserved.

The Thesis of Joseph Christopher Godoy is approved and it is acceptable in quality and form for publication on microfilm and electronically:

 $\mathcal{L}_\text{max} = \mathcal{L}_\text{max} = \mathcal{$

 $\mathcal{L}_\text{max} = \mathcal{L}_\text{max} = \mathcal{$

 \mathcal{L}_max , and the contract of the contract of

Co-chair

Chair

UNIVERSITY OF CALIFORNIA, SAN DIEGO

2009

DEDICATION

I would like to acknowledge the following past and present Webster lab members and thank them for their technical and moral support and guidance…

> Lin Bo Hao Zhang Rie Tsutsumi Shweta Sharma Debin Lan Devendra Mistry Indrani Talukdar Supriya Sen Marine Nishimura and Nicholas Webster

EPIGRAPH

Basic Research is what I'm doing when I don't know what I'm doing

Werner von Braun

TABLE OF CONTENTS

LIST OF ABREVIATIONS

LIST OF SYMBOLS

- * p=0.01
- ** p=0.001
- *** p=0.0001
- β beta

LIST OF FIGURES AND TABLES

ACKNOWLEDGEMENTS

I must acknowledge Dr. Tadashi Yamamoto, University of Tokyo in exchange for his kind gift of p250RhoGAP polyclonal rabbit antibody, without which this research would not have been possible.

This Thesis, in full, is currently being prepared for submission for publication of the material. Godoy, Joseph; Lan, Debin; Webster, Nicholas JG.

ABSTRACT OF THE THESIS

GnRH induces miR-132 and miR-212 and reduces p250RhoGAP and SirT-1 in pituitary LbetaT2 Gonadotropes

by

Joseph Christopher Godoy

Master of Science in Biology

University of California, San Diego, 2009

Professor Nicholas JG Webster, Chair

Professor Shelley Halpain, Co-Chair

Gonadotropin releasing hormone (GnRH) is vital to the proper pituitary gonadotrope function as it regulates LH and FSH synthesis and secretion. GnRH causes cell-cycle arrest in pituitary LbetaT2 gonadotrophs*,* leading to apoptosis. Microarray and q-PCR analyses show that the mouse EST, AK006051, encoding two intronic micro-RNAs, miR-132 and miR-212, is highly induced under GnRH treatment. As miR-132/212 have been linked to neuronal development, we hypothesized that these miRNAs might be linked to cell-cycle arrest in LbetaT2 gonadotrophs. GnRH treatment for increasing times causes a dose-dependent increase in AK006051 promoter activity and a concomitant increase in miR-132/212 expression which is abolished by pretreatment with the adenylate cyclase inhibitor SQ22536 and the MEK inhibitor U0126. Marked increases in both the number and morphology of neurites protruding from LbetaT2 cells are observed after 24h of GnRH treatment. As well, GnRH causes a pulse frequency-dependent increase in AK006051. GnRH inhibits p250RhoGAP expression through a miR-132/212 response element within the 3' UTR of p250RhoGAP. Knockdown of p250RhoGAP by siRNA induces the same morphology observed with GnRH treatment. Since p250RhoGAP stimulates proliferation in fibroblasts and suppresses neurite outgrowth in neurons, our findings suggest that miR-132/212 induction by GnRH is required for cell cycle arrest. We also suggest that apoptosis is due to degradation of SirT-1, another miR-132/212 target, leading to unchecked activation of p53. In conclusion, these data suggest a mechanism by which gonadotrophs synchronize their responses to GnRH leading to coordinated LH and FSH secretion by modulating synaptic-like contacts between gonadotrophs thereby regulating reproductive function.

xii

INTRODUCTION

The integration and precise coordination of hormones across the hypothalamic-pituitary-gonadal axis (HPG) is essential for sexual maturation and reproductive function in mammals. The hypothalamic decapeptide gonadotropin releasing hormone (GnRH) stimulates the synthesis and secretion of pituitary gonadotrophins Leuteinizing hormone (LH) and follicle stimulating hormone (FSH) through signaling via the GnRH receptor (GnRH-R) expressed by pituitary gonadotrophs (1,2). LH and FSH then go on to regulate most of the reproductive functions of both sexes through the production of gonadal steroids and regulation of gametogenic and hormonal functions.

The GnRH-R, a member of the G protein-coupled receptor (GCPR) family, is associated with Gs, Gi, and Gq/11 (3). Among the plethora of intracellular signaling cascades upon GnRH-R activation at the cell surface, Gs activates adenylate cyclase (AC), which in turn induces cAMP production. This leads to activation of protein kinase A (PKA) which phosphorylates the activation domain of the transcription factor cAMP response element binding protein (CREB) (4-7). CREB activation is involved in many neuronal processes including neuronal survival, proliferation, differentiation, morphogenesis, and plasticity as well as addiction and circadian rhythms (8). The other arm of G-protein signaling via Gq/11 activates phospholipase C leading to formation of inositol 1,4,5 triphosphate (IP3) and diacylglycerol (DAG). Release of intracellular calcium and

1

activation of protein kinsase C then follow, which results in the activation of ERK, p38, and JNK as well as many other transcription factors (2, 9-10).

In animals, GnRH is released in a pulsatile fashion from the hypothalamus into the hypohyseal portal system. Such episodic exposure to GnRH is essential for gonadotrope function and causes pulsatile release of LH and FSH into the circulation (11). The pulse amplitude and frequency of GnRH release greatly increases prior to ovulation and is essential for inducing the requisite LH surge. $L\beta$ T2 cells are an immortalized cell line originating from mouse gonadotrophs and driven by the SV40 T antigen (12, 13). They are also sensitive to GnRH pulses and respond by altering gene expression and LH and FSH secretion accordingly (12, 13). *In vitro* studies of pituitary gonadotrophs usually involve the tonic treatment of GnRH. Our lab and others have shown that this causes G1/G0 arrest and apoptosis in L β T2 cells (14, 15). GnRH stimulation also mediates plasticity in LβT2 cells and pituitary gonadotrophs *in vivo* (16).

Although there have been many discoveries that shed light on the complex network of signaling pathways leading to transcriptional regulation in the HPG axis, not much is known about post-transcriptional regulation, specifically the role of microRNAs (miRNA). MicroRNAs are single-stranded RNA molecules of about 21-23nt that regulate gene expression post-transcriptionally by targeting the 3' untranslated region (3'UTR) of specific mRNAs (17). MiRNAs are generally located within the intronic sequences of genes and are transcribed by RNA polymerase II (18). Primary miRNA transcripts (pri-miRNA) form a stemloop structure for each miRNA encoded by the transcript (19). Each stem-loop is then cleaved by Drosha, an RNAse III, to form the pre-miRNA, which is subsequently transferred from the nucleus to the cytoplasm by Exportin 5 (20, 21). The pre-miRNA then associates with and is cleaved by Dicer of the RISC complex into functional a miRNA (22, 23). Mature miRNA are partially complementary to a sequence located in the 3'UTR of mRNA, known as the miRNA recognition element (MRE) (22). The first seven nucleotides of the miRNA after the initial adenine are called the seed sequence. This specifies targeting while the remaining sequence is thought to stabilize the miRNA-target complex (22, 23). Annealing of miRNA to its target sequences can inhibit translation either by blocking protein translation machinery or by sequestering the mRNA transcript away from ribosomal interaction. MiRNA targeting can also trigger mRNA degradation in a similar process to RNA interference. In mammals the specificity of miRNA binding to its cognate MREs and the ultimate fate of the target mRNAs are still being elucidated (24).

The study of miRNAs has unlocked a great deal of understanding of the role of post-transcriptional regulation in development, differentiation, and normal functioning of tissues (25-27). Yet, the study of miRNAs in the reproductive system is just beginning and there is very little published data on miRNA activity in gonadotropes (28). Much of the GnRH response in both gonadotrophs and $L\beta$ T2 cells is mediated via the regulation of gene transcription. We hypothesize that the GnRH response may be further regulated by miRNAs at the posttranscriptional level. If GnRH down regulates the transcription of certain genes, the miRNAs will act in concert and reduce translation of the existing transcripts of those genes, thereby generating a swift GnRH response. Here we wish to determine the mechanisms regulating these events following GnRH stimulation in $L\beta$ T2 gonadotrophs and hope to shed light on the normal control of pituitary gonadotroph function and its synchrony in the HPG axis. We show that GnRH induces the gene encoding miR-132/212 in a pulse frequency-dependent manner. We also confirm that p250RhoGAP and SirT-1 are miR-132/212 targets in LbetaT2 cells. Our data suggests that miR-132/212 may play a vital role in the coordination of the cyclic control of gonadotropin release and ultimately reproductive function.

MATERIALS AND METHODS

Cell culture and Stimulation.

LβT2 cells, a gift from Dr. Pam Mellon (UCSD), at passages 13-19 were cultured in monolayers with DMEM containing 10 % FBS, penicillin/streptomycin, and Gluta-max (Gibco) in a humidified 10 % CO2 atmosphere at 37˚C. Cells were plated at 1x10⁶ cells/ml in triplicate in 12- and 6-well plates or 6-cm dishes coated with poly-L-lysine(Sigma) or Matrigel® (1:150 dilution, BD Biosciences). After 24 hours, cells were starved in DMEM containing 0.5% FBS, penicillin/streptomycin, and Gluta-max for an additional 24 hours. Cells were then stimulated with 10nM GnRH for .5-48h in starvation media. Inhibitors of MEK and AC (U0126: 5µM; PD98059: 5µM; SQ22536, 100µM; Calbiochem) were added 1h before the 10nM GnRH stimulation. For pulse frequency experiments, cells were washed with starving media supplemented with 2ng/ml activin (Sigma) every half hour and pulse treated with starvation media containing 10nM GnRH for two minutes every half hour or two hours. Apoptosis/Necrosis was detected by enhanced Cy3-conjugated Anexin V (Enzo Life Sciences) staining on live cells.

5

MicroArray and Quantitative PCR.

For the microarray study, the mRNA was isolated from total RNA using the ribosomal RNA reduction kit (Invitrogen) and subsequently labeled using the NCODE labeling kit. RNA from unstimulated cells was labeled with Cy3 and RNA from GnRH stimulated cells with Cy5. Labeled probes were hybridized to NCODE arrays in duplicate. For qPCR, total RNA was purified with RNA-Bee (Tel-test) according to manufacturer's protocol and first strand cDNA synthesis was done using the cDNA Reverse Transcription Kit (Applied Biosystems). Samples for qPCR were run in 20 μ L triplicate reactions on a MJ Research Chromo4 instrument using iTaq SYBR Green Master Mix (Bio-Rad). Sequencespecific primers for AK006051, p250RhoGAP, SirT-1, Beta-actin, and GAPDH were designed using the Universal Probe Library Assay Design Center (Roche). Mature miRNA expression was quantitated using Taqman Micro-RNA Assays (Applied Biosystems) for miR-132 and miR-212 and normalized to miR-30c expression, which does not change with GnRH treatment (Table 1). Gene expression levels were calculated after normalization to the housekeeping genes, GAPDH and/or Beta-actin, using the ∆∆Ct method and expressed as fold mRNA expression levels with respect to non-treated cells. Error bars are SEM.

Western Blot.

LβT2 cells were washed twice with cold PBS and lysed with 3X RIPA buffer (Stratagen). Lysates were sonicated and then centrifuged for 20 minutes at 14,000 rpm, 4°C. Total protein was quantitated from the supernatants using Bio-Rad's DC Protein Assay, and 25-35ng protein per sample was loaded with LDS loading buffer (Invitrogen) onto 4-12% gradient Bis-Tris Criterion gels (Bio-Rad) prior to electrophoresis The following polyclonal primary antibodies were used overnight at 4C in TBST, 5% BSA, .and 02% sodium azide: antip250RhoGAP (Dr. Tadashi Yamamoto, University of Tokyo), SirT-1 (Santa Cruz), Beta-tubulin (Santa Cruz), p44/p42 MAPK and acetylated-p53 (Cell Signaling) .

Transfection, Knock-Down, and Reporter Assays.

LβT2 cells were transfected by electroporation using the Microporator (Digital Bio Technology) using parameters optimized according to manufacturer's protocol with Pre-mir-132, Pre-miR control, pre-designed siRNA against p250RhoGAP, or scrambled siRNA control (Ambion). A pair of locked nucleic acid (LNA) oligos was designed against miR-132/212 with the following complimentary sequences: CTG(T/G)AGACTGTTA. SirT-1 siRNA was from Santa Cruz Biotechnology.

A luciferase reporter plasmid for the AK006051 promoter region, pAK-1.3 luc, was constructed using the region 1.3kb upstream of the AK006051 transcriptional start site, which was amplified using PfuUltra (Stratagene). The AK006051 promoter region was inserted into the pAP1-luc reporter vector (Clontech) after removal of the AP1 promoter region by restriction digest. A control reporter, pAK-.2-1.3-luc, was also constructed in which the first 200bp upstream of the transcriptional start site containing the TATA box was deleted.

One copy of the miR-132 and miR-212 target site in the 3'UTR of p250RhoGAP was cloned into the pIS vector containing a MCS downstream of Firefly Luciferase ORF as described (Lewis and Bartel). Two mutants were also constructed in which the UTR region complementary to either the 5' or 3' region of miR-132/212. Inserts were constructed by Klenow fill-in with Sac I, Spe I, and Xba I restriction sites. Luciferase plasmids were co-transfected with concentrations of 500ng per 5x10⁵ cells along with 25ng TK-lacz. Luciferase and beta-galactosidase activity were measured by the Veritas Microplate Luminometer (Turner BioSystems) using luciferin (Sigma) and Galacto-light assay kit (Applied Biosystems). Data is fold luciferase activity in GnRHstimulated cells normalized to beta-galactosidase activity versus non-treated cells. Error bars are SEM.

RESULTS

LβT2 cells undergo morphological changes, apoptosis, and altered microRNA expression under tonic GnRH treatment.

Previous studies have shown the antiproliferative and apoptotic effects of GnRH treatments longer than 12 hours (14,15). Although serum starvation alone causes the appearance of small floating cells, indicative of apoptosis, we see here that not only does GnRH stimulation increase the appearance of cell death there are also marked morphological changes induced by prolonged tonic exposure to GnRH (Figure 1). A densely packed monolayer of cells is reduced significantly with an increase in the number of floating cells and blebbing on surviving cells. Individual surviving cells take on different shapes from squamosal to more elongated and form multiple outgrowths. Projections extend from cell to cell at 18 hours of treatment. By 48 hours the surviving cells have taken on a completely different morphology and formed what looks like interconnected networks.

Extracellular matrix is required for differentiation and the support of neurite outgrowth by neurons and other cells *in vivo* and *in vitro* (31-38). As reconstituted basement membrane affects LH and FSH secretion in primary cultures of rat gonadotrophs, and gonadotrophs may be capable of matrix remodeling via activated MMP2 and MMP9 (36, 37), we wanted to see if it would

9

also facilitate outgrowth formation and the development of a more elaborate network of "neurites" in GnRH-stimulated LβT2 cells. Although gonadotrophs strictly are not neurons, we will refer to the outgrowths projecting from LβT2 cells as neurites for simplicity. Matrigel is the commercially available reconstituted basement membrane purified from the Engelbreth-Holm-Swarm mouse sarcoma that consists mainly of laminin, collagen IV, and enactin. Pre-coating dishes with poly-L-lysine and Matrigel induces differentiation and promotes basal level of neurite outgrowth in LβT2 cells (Figure 2). However, GnRH-treated cells exhibit a robust increase in the occurrence, length, and elaboration of neurites among cells.

In order to quantify the apparent apoptosis induced by GnRH, we stained cells with Anexin V. Consistent with other's findings (14), GnRH treatment increases apoptosis/necrosis of cells to 52%(+/-12%) versus 18% (+/- 5%) in non-treated cells (Figure 3). In order to elucidate the mechanisms by which these morphological and apoptotic changes occur and at the same time make a connection between GnRH signaling in gonadotrophs with post-transcriptional regulation by miRNA, a microarray was performed on the miRNA from LβT2 cells at 24 hours following GnRH treatment (Figure 4, Table 1). Out of about 280 mouse miRNAs that were spotted on the NCODE chip, only 85 were detected in LβT2 cells, most of which were not significantly up or down regulated. Among the most highly upregulated miRNAs, miR-212 expression was induced 41-fold, and miR-132 was induced 10-fold. This was verified by qPCR for the mature

forms of miR-132/212 (Figure 5). We selected miR-30c as an internal control for LβT2 cells based on the microarray data showing that its expression is unchanged by GnRH.

miR-132 and miR-212 are coordinately regulated and localize to the same chromosomal region

MiR-132/212 were traced to the first intron of the non-coding mouse EST AK006051 using the UCSC genome browser (Figure 6). The entire intron is located within a CpG island and both miR-132/212 have CRE consensus sequences directly upstream indicating that miR-132/212 may be highly regulated (39). Interestingly, their seed sequences differ by only a single nucleotide and thus likely have the same target mRNAs. QPCR analysis shows robust induction of AK006051 as early as 30 minutes under GnRH treatment (Figure 7). The induction is reduced at 24 hours, although it remains significantly upregulated even at 48 hours.

In addition to miR-132/212 being highly conserved among vertebrates, it seems the promoter region of AK006051 is also highly conserved according to the UCSC genome browser. This may imply that other signaling pathways besides those leading to CREB activation may modulate miR-132/212 espression. In order to elucidate signaling events upstream of AK006051

induction, we pre-treated cells with the adenylate cyclase inhibitor SQ22536 or the MEK inhibitors U-0126 or PD89059. Pre-treatment with SQ22536 reduces the GnRH-induced increase in AK006051 mRNA, confirming cAMP-mediated miR-132/212 induction (Figure 7). Interestingly, Erk1/2 is also important for GnRH-induced AK006051 expression in LβT2 cells. In order to investigate the promoter activity of AK006051, we constructed a reporter plasmid dubbed pAK-1.3k-luc by cloning 1.3kb upstream of the transcriptional start site and inserting it into the pAP1 luciferase vector after removing the AP1 promoter (Figure 8A). We also made a control vector, pAK-.2-1.3-luc, in which 200bp upstream of the transcriptional start site, including the TATA box, was deleted from the insert. Following GnRH treatment in transfected cells, luciferase activity was robustly increased up to 45-fold as early as 4 hours, 14-fold at 24 hours and 5-fold at 48 hours over basal levels in non-stimulated cells (Figure 8B). Therefore the promoter region alone is sufficient for the strong induction of AK006051 transcription.

Since pulsatile GnRH stimulation is necessary for proper gonadotroph function and LβT2 cells exhibit pulse-sensitivity with respect to LH and FSH expression and secretion, we wanted to investigate whether AK006051 is also differentially regulated by GnRH pulse frequency. In mice GnRH pulse frequency ranges from 30 minutes to 120 minutes, so we stimulated cells with GnRH using the same intervals for 2 minutes each for 6 hours. For both treatment conditions and non-treated, the media was changed to fresh starving media every 30

minutes. Our data shows that AK006051 mRNA is differentially up regulated by GnRH pulse frequency (Figure 9). While there is significant induction with the low frequency pulses, the high frequency pulses further induce AK006051 expression by more than double.

Degradation of p250RhoGAP and SirT-1 are required for GnRH-induced neurite outgrowth, cell cycle arrest, and apoptosis.

Among the hundreds of predicted miR-132/212 targets is p250RhoGAP, also known as RICS, Grit, and p200 RhoGAP (Table 2, 3). Rho GTPases are a subfamily of small GTPases (21-25kDa). The Rho GTPases RhoA, Rac1, and Cdc42 are intracellular binary molecular switches that regulate actin cytoskeleton rearrangements including stress fiber, lamellapodia, and filopodia formation as well as transcriptional activation, cell growth, cell survival, and vesicle trafficking. Like other G-proteins the Rho GTPases cycle between active and inactive forms depending on their interaction among three regulators (40-43). When Guanine nucleotide exchange factors (GEF) exchange GDP bound by the inactive Rho GTPase for GTP, the Rho GTPase becomes active. RhoGAPs are a GTPase activating proteins (GAP) that highly induce a Rho protein's GTPase activity, thereby deactivating it. Guanine nucleotide dissociation inhibitors (GDI) stabilize the Rho GTPase-GDP bond, also deactivating it. (40-43). Also, it has been shown that p250RhoGAP can promote proliferation by interacting with another GAP, RasGAP, and as a result allowing ERK activation (44).

Another likely miR-132/212 target is the Silent Information Regulator SirT-1, a NAD-dependent histone deacetylase that regulates apoptosis in response to DNA damage and oxidative stress (45, 46). It acts anti-apoptotically by deacetylating one of its non-histone targets, the tumor suppressor protein p53 (45). This negatively regulates p53-mediated transcription, thus preventing cellular senescence and apoptosis induced by DNA damage and stress.

A previous study has confirmed p250RhoGAP as both a miR-132/212 target and a regulator of dendritic plasticity in hippocampal neurons (48). However, SirT-1 has so far only been shown to be targeted by miR-34a, which is linked to proliferation, apoptosis, and senescence (49-50). In LβT2 cells both mRNA and protein levels of p250RhoGAP and SirT-1 are reduced under GnRH stimulation (Figure 10). In order to test whether the 3'UTR of p250RhoGAP is responsible for the degradation of p250RhoGAP, we constructed a reporter plasmid according to previously established methods for studying miRNAs (51). A modified pGL3 control vector (Promega), pIS-0 is a firefly luciferase vector in which a short multiple cloning site (MCS) was inserted immediately downstream from the stop codon. Our reporter plasmid, pIS-U, was constructed by cloning the (MRE) of p250GAP into the MCS of the pIS luciferase plasmid (Figure 11A) (51). We also constructed the mutants pIS-5, which has a mutation in the 5' end

complementary to the miRNA, and pIS-3, which has a mutation in the 3' end. After 24 hours of GnRH stimulation, there is no change in luciferase activity in the two mutants, suggesting that degradation may require precise very annealing of the miRNA to its target (Figure 11B). However, luciferase activity is reduced by half in pIS-U transfected cells, confirming that the MRE of p250RhoGAP is important for mediating down regulation of mRNA under GnRH stimulation.

In order to confirm that miR-132/212 are responsible for the degradation of p250RhoGAP and SirT-1, we co-transfected cells with pre-miR132 and saw a significant decrease in mRNA after 48 hours (Figure 12A). We also transfected cells with a locked nucleic acid (LNA) complimentary to the seed sequences of miR132/212 or scrambled control for 48 hours prior to 24 hours of GnRH treatment. This abolished the GnRH-induced reduction in p250RhoGAP and SirT-1 mRNA (Figure 12B).

In order to elucidate the functional effects of p250RhoGAP degradation, we knocked down p250RhoGAP by siRNA (Figure 13). Negative control scrambled siRNA-transfected cells exhibited neurite outgrowth similar to that seen in non-transfected cells with and without GnRH stimulation (Figure 14). Knockdown of p250RhoGAP alone was sufficient to increase the number and length of neurite outgrowths and induce the branching and network pattern seen in GnRH-stimulated cells. Stimulation of siRNA-transfected cells with GnRH did

not significantly change morphology any further than siRNA alone indicating that p250RhoGAP is the main regulator of plasticity in gonadotrophs.

In order to determine the role of SirT-1 in GnRH-induced apoptosis, we knocked down SirT-1 by siRNA (Figure 15). SirT-1 degradation by siRNA and GnRH stimulation corresponds to an increase in acetylated p53 (Ac-p53). P53 is a tumor suppressing transcription factor that inhibits proliferation and induces apoptosis in response to DNA damage and oxidative stress (52, 53). Acetylation of p53 protects it from ubiquitination by Mdm2 and is required for binding to the promoter of p21 (54, 55). Consistent with our previous data (14), GnRH stimulation increases the direct downstream targets of p53, p21 and PUMA. Thus, the degradation of SirT-1 is likely to be responsible for the antiproliferative and apoptotic effects of GnRH.

DISCUSSION

In this study, we establish that GnRH inhibits p250RhoGAP and SirT-1 expression by inducing mir-132/212 in L β T2 cells. Microarray anaylsis identified 85 differentially expressed miRNA transcripts in GnRH stimulated $L\beta$ T2 cells suggesting the likelihood that post-transcriptional regulation via miRNA is an integral factor in the GnRH response. The qPCR results for AK006051 and mature miR132/212 indicate that miR-132/212 were rapidly upregulated by GnRH and that their mature forms remain elevated even after the decline of AK006051 induction. This indicates prolonged activity of miR-132/212 which may play a critical role in mediating the GnRH response. We have shown that the highly robust induction of AK006051 by GnRH is likely due to adenylate cyclase activation and the cAMP signaling cascade, which coincides with previous studies demonstrating the cAMP-dependent increase in miR-132/212 in several other cell lines, primary cultures, and tissues. As well, miR-132/212 has been shown to be under the direct control of the CREB response elements located immediately upstream of the miR-132/212 sequences. Our AK006051 promoter assay indicates that the AK006051 promoter may also play a significant role in miR-132/212 induction.

In order to determine the most likely proteins regulated by miR-132/212, we compared the lists generated by TargetScan, miRanda, and miRacle of predicted targets having putative miR-132/212 recognition sites. From there we

17

chose to study p250RhoGAP and SirT-1 as they have been identified as targets in other tissues and relevant to the regulation of morphology, proliferation, and apoptosis. Pre-miR-132/212 alone reduces both transcripts, and anti-miR-132/212 rescues GnRH-induced degradation of p250RhoGAP and SirT-1. Our data indicate that both p250RhoGAP and Sirt-1 are indeed regulated posttranscriptionally by the GnRH induction of miR-132/212 in L β T2 cells.

Our data also indicate the likelihood that cell cycle arrest and/or apoptosis is mediated via p53 activation that is left unchecked following SirT-1 degradation. We believe this occurrence is only significant under tonic stimulation of GnRH in static culture. In the normal functioning pituitary, it is unlikely that gonadotropes commit mass suicide in response to increased GnRH pulse frequency at every cycle. As well, there is no documented histological analysis of the adenohypophysis indicating any detectable levels of cell death in normal animals. Further, SirT-1 female knockout mice do not exhibit detrimental decreases in fertility (56, 57).

Others have demonstrated the importance of miR-132/212 in ovaries (58). We show that miR-132/212 are differentially modulated by GnRH pulse frequency*.* While others have also shown that GnRH induces neurite outgrowth in L_BT2 cells as well as *in situ* locomotion in *ex vivo* gonadotropes within the pituitary, they conclude that individual gonadotropes are migrating to the portal vasculature and forming processes from which they secrete LH and FSH (16).

However, they have studied single cells or cultures in very low density. Can it be that gonadotrophs are searching for other gonadotrophs? Also, if cells are already forming projections from which they can secrete LH and FSH, do they really need to move closer to the vascular epithelium to do so? We suggest instead that under high frequency GnRH stimulation pituitary gonadotrophs establish a communication network in order to coordinate the LH and FSH surge. Any observed movement likely occurs in order for individual cells to quickly find each other. We observe a tendency for $L\beta$ T2 cells to form rafts or clumps of cells instead of a clearly defined monolayer in culture. Further, a much more elaborate meshwork of neurites is observed between two larger masses of cells than between two smaller masses of cells. We also believe that gonadotrophs do enter G0 in order to commit most of their energy expenditures to neurite outgrowth and any amount of locomotion. We believe cell cycle arrest to be mediated to a greater extent by p250RhoGAP degradation than by SirT-1 degradation as p250RhoGAP is only associated with proliferation and cell cycle and not apoptosis (48).

We propose that low frequency stimulation primes gonadotrophs such that high frequency stimulation quickly induces neurite outgrowth. The subsequent miR-132/212-mediated p20RhoGAP suppression will then allow both Rac1 and Cdc42 to remain active (48, 59-61). Rac1 and Cdc42 would then go on to mediate the morphological changes we and others have observed, primarily the induction of process formation and branching (59-63) by individual gonadotrophs

in order to locate and contact each other. Rac1 and Cdc42 might further mediate cell-to-cell communication among gonadotrophs by establishing and maintaining dendritic spines (64, 65), although it is difficult to speculate as to how gonadotrophs would actually communicate once such networks are established. We do, however, maintain that the observed networks of processes among $L\beta$ T2 cells and those that may form among gonadotrophs *in vivo* likely serve to coordinate the LH/FSH surge required for ovulation.

In conclusion, our studies have demonstrated the likelihood of a functional role that miR-132/212 may play in the GnRH response by $L\beta$ T2 cells, as well as the possibility that miR-132/212 may have an even greater role in the global regulation of reproduction.

FIGURES AND TABLES

Figure 1. GnRH induces neurite outgrowth and apoptosis in LβT-2 cells.

Figure 1. GnRH induces neurite outgrowth and apoptosis in LβT-2 cells.
LβT-2 cells were cultured in monolayers overnight in DMEM containing 10% FBS, antibiotics, and Gluta-Max
(Sigma). Cells were then washed once with PBS LβT-2 cells were cultured in monolayers overnight in DMEM containing 10% FBS, antibiotics, and Gluta-Max antibiotics, and Gluta-Max. Cells were then treated or non-treated by replacing the media with fresh starving (Sigma). Cells were then washed once with PBS and starved for 24 hours in DMEM containing 0.5% FBS, media containing 10nM GnRH or not for 12, 18, and 24 hours. media containing 10nM GnRH or not for 12, 18, and 24 hours.

Figure 2. Reconstituted basement membrane promotes elaborate neurite outgrowth.

Figure 2. Reconstituted basement membrane promotes elaborate neurite outgrowth.
Dishes were coated with poly-L-lysine and Matrigel (1:200 dilution). Cells were seeded and cultured in mololayers for
24 hours followed by 24 Dishes were coated with poly-L-lysine and Matrigel (1:200 dilution). Cells were seeded and cultured in mololayers for 24 hours followed by 24 hours starvation. Time indicates duration of GnRH stimulation after initial starvation.

Figure 3. GnRH induces Apoptosis. **Figure 3. GnRH induces Apoptosis.**

1x70⁶ cells per well were cultured in uncoated 6-well plates for 24 hours prior to an additional 24 hours of starvation. Media was then
replaced with fresh starvation media with or without 10nM GnRH. The apoptosis induce replaced with fresh starvation media with or without 10nM GnRH. The apoptosis inducer straurosporine was added to the media 4 hours 1x106 cells per well were cultured in uncoated 6-well plates for 24 hours prior to an additional 24 hours of starvation. Media was then prior to Anexin V staining on live cells. Apoptosis/necrosis occurred in 18% ±5% of non-treated (No Tx) cells and 52% ±12%.

NCODE arrays ~280 mouse miRNAs

Figure 4. MicroArray Chip of miRNA expression in LβT2 cells.

Figure 4. MicroArray Chip of miRNA expression in LβT2 cells.
(A) Cells were cultured and treated with 100nM GnRH for 24 hours prior to harvesting. Eighty
five miRNs were detected (colored spots). (B) Of the ~280 miRNA prob five miRNs were detected (colored spots). (B) Of the ~280 miRNA probes on the NCODE chip, (A) Cells were cultured and treated with 100nM GnRH for 24 hours prior to harvesting. Eighty 85 were detectable over background. Data shows expression relative to baseline. Only the miRNAs at the ends of the graph show significant changes in expression.

five miRNs were detected (colored spots). (B) Of the ~280 miRNA probes on the NCODE chip, Figure 4, Continued. MicroArray Chip of miRNA expression in LβT2 cells.
(A) Cells were cultured and treated with 100nM GnRH for 24 hours prior to harvesting. Eighty
five miRNs were detected (colored spots). (B) Of the ~280 (A) Cells were cultured and treated with 100nM GnRH for 24 hours prior to harvesting. Eighty 85 were detectable over background. Data shows expression relative to baseline. Only the miRNAs at the ends of the graph show significant changes in expression. 85 were detectable over background. Data shows expression relative to baseline. Only the miRNAs at the ends of the graph show significant changes in expression.

03: B-21 2690_mmu_miR_375 03: B-07 2718_mmu_miR_429 01: N-11 2617 mmu miR 26a 03: B-10 2592_mmu_let_7d 02: N-10 2547_mmu_miR_182 04: F-24 2613_mmu_miR_20 02: N-04 2559_mmu_miR_194 02: B-21 2642_mmu_miR_148b 03: F-04 2605_mmu_let_7a 03: N-04 2607_mmu_let_7c 02: N-13 2661_mmu_miR_28 03: J-04 2606_mmu_let_7b 01: B-08 2500_mmu_let_7i 01: J-08 2502_mmu_miR_15b 03: J-17 2700_mmu_miR_335 02: F-10 2545_mmu_miR_129_5p 02: N-15 2657_mmu_miR_17_5p 02: J-08 2550_mmu_miR_185 01: B-06 2504 mmu miR 27b 03: B-02 2608_mmu_let_7e 01: N-08 2503_mmu_miR_23b 03: F-02 2609_mmu_let_7f 03: F-23 2687_mmu_miR_361 01: J-05 2628_mmu_miR_98 01: B-09 2618_mmu_miR_26b 02: F-12 2541_mmu_miR_153 02: F-15 2655_mmu_miR_107 01: N-10 2499_mmu_let_7g 02: B-08 2548_mmu_miR_183 01: N-07 2625_mmu_miR_96 02: J-17 2652_mmu_miR_351 01: N-09 2621_mmu_miR_27a 01: J-11 2616_mmu_miR_23a 02: B-05 2674_mmu_miR_320 02: B-03 2678_mmu_miR_222 02: F-17 2651_mmu_miR_350 02: J-22 2522 mmu miR 132 01: B-03 2630_mmu_miR_424 02: N-14 2539_mmu_miR_151 **02: F-09 2667_mmu_miR_212 41.82925** 26.7431681 0.0000E+00

median 1.82125

Figure 5. Verification by qPCR of miR-132/212 induction.

QPCR analysis using TaqMan micro-RNA Assays for mature miR-132 and miR-212 , which discriminates against pri- and pre-miRNAs (Ambion). Cells were treated with 10nM GnRH following 24 hours starvation. Data is fold expression of each miRNA normalized to non-treated cells. miR-30c was used as the internal control since microarray data showed expression did not change with GnRH treatment

Figure 6. miR-132/212 are encoded in the same intron.

Schematic of the loci of miR-132/212 in mouse to the EST AK006051 and its conservation among various vertabrates. Both miR-132/212 have consensus CRE sites directly upstream.

Figure 8. GnRH induces the AK006051 promoter Activity.

 $4h$

Luciferase activity of AK006051 promoter luciferase plasmid. (A) A luciferase vector (pAK-1.3 luc) was constructed by cloning 1.3kb upstream of the AK006051 transcriptional start site and inserting it into the promoter region of the luciferase plasmid pAP1-luc (Clontech) after the AP1 promoter was extracted by restriction digest. A control vector (pAK-.2-3) was also contructed using a truncated promoter region lacking the first 200bp upstream of the AK006051 transcriptional start site. (B) Cells were starved for 24 hours following transfection and treated with 10nM GnRH.

 $24h$

 $48h$

31

Figure 9. AK006051 expression is Sensitive to GnRH Pulse Frequency.

Cells were starved for 24 hours prior to beginning pulse treatments. For the duration of the experiment, media was changed every 30 minutes. For GnRH stimulation, media containing 10nM GnRH and 2ng/ml Activin was added to cells for 2 minutes at frequencies of 30 minutes or 120 minutes.

Table 2. Potential miR-132/212 Targets Predicted by MiRANDA **Table 2. Potential miR-132/212 Targets Predicted by MiRANDA**

Table 3. miR-132/212 targets predicted by TargetScan

Number of conserved targets: 230 Number of conserved sites: 243

Figure 10. GnRH reduces p250RhoGAP and SirT-1.

Cells were treated with 10nM GnRH after 24 hours starvation. QPCR analysis of p250RhoGAP and SirT-1 mRNA fold expression normalized to non-treated cells. B. Protein levels of p250RhoGAP and SirT-1.

(A)Luciferase reporters were constructed by inserting the 3'UTR region of p250RhoGAP containing the recognition sequence for miR-132/212 into the MCS of the pIS luciferase vector (pIS-U). Two mutants were also constructed in which the UTR region complementary to either the 5' or 3' region of miR-132/212. Inserts were constructed by Klenow fill-in with Sac I, Spe I, and Xba I restriction sites. (B) Luciferase activity of pIS reporter constructs. Twenty-four hours after co-transfection with tk-lacZ plasmid, cells were starved for 24 hours before treatment with 10nM GnRH for 24 hours. Data is Luciferase activity normalized to beta-galactosidase activity

Sac I Spe I Xba I

CtacACTAGTccgggagcaatagagttgaagctgactctgctggacagtggactgttctatttT CTCGAGatgTGATCAggccctcgttatctcaacttcgactgagacgacctgtcacctgacaagataaaAGATCT

A

pIS-3: 3' mutant

pIS-5: 5' mutant CtacACTAGTccgggagcaatagagttgaagcagcctctgctggacagtggatgactctatttT CTCGAGatgTGATCAggccctcgttatctcaacttcgtcggagacgacctgtcacctactgagataaaAGATCT

pIS-U: position 4-56 of p250RhoGAP 3'UTR CtacACTAGTccgggagcaatagagttgaagcagcctctgctggacagtggactgttctatttT CTCGAGatgTGATCAggccctcgttatctcaacttcgtcggagacgacctgtcacctgacaagataaaAGATCT

Position 22-51 of p250RhoGAP 3'UTR

Figure 12. miR-132/212 target p250RhoGAP and SirT-1 for degradation.

(A) Pre-miR-132 reduces p250RhoGAP, SirT-1. QPCR analysis of miR-132/212 targets 48 hours following transfection of either Pre-miR-132 or control pre-miR (scrambled RNA hairpin) (Ambion). Data is fold expression normalized to non-treated cells. (B) Cells were transfected with anti-miR132/212 or scrambled control and harvested after 48 hours..

harvested 48 hours later.

mag x20

Figure 14. Knockdown of p250RhoGAP induces elaborate neurite outgrowth.
Cells were transfected with 100nM siRNA and cultured on poly-L-lysine- and Matrigel- coated plates for 24 hours followed by
starvation for an addition Cells were transfected with 100nM siRNA and cultured on poly-L-lysine- and Matrigel- coated plates for 24 hours followed by starvation for an additional 48 hours (Top row). Cells were then treated with 10nM GnRH for 24 hours. **Figure 14. Knockdown of p250RhoGAP induces elaborate neurite outgrowth.**

Figure 15. SirT-1 deacetylates p53 and prevents apoptosis.

(Top) SirT-1 was knocked down by siRNA at a concentration of 5µM resulting in acetylation of p53. Blot was done by Debin Lan. (Bottom) GnRH increases p53 acetylation and induces p21 and Puma.

REFERENCES

- 1. Conn PM, Crowley Jr WF 1994 Gonadotropin-releasing Hormones and its analogs. Annu Rev Med 45:391-405
- 2. Kaiser UB, Conn PM, Chin WW 1997 Studies of gonadotropin-releasing homone (GnRH) action using GnRH receptor-expressing pituitary cell line. Endocr Rev 18:46-70
- 3. Liu F, Usui I, Evans LG, Austin DA, Mellon PL, Olefsky JM, Webster NJG 2002. Involvement of both Gq/11 and Gs proteins in gonadotropoinreleasing hormone receptor-mediated signaling in LßT2 Cells. JBC 277(35) 32099-32108
- 4. Shacham S, Cheifetz MN, Lewy H, Ashkenazi IE, Becker OM, Seger R. 1999. Mechanism of GnRH receptor signaling: from the membrane to the nucleus. Ann d'endo. 60(2):79-88.
- 5. Song SB, Rhee M., Roberson MS, Maurer RA, Kim KE. 2003. Gonadotropin-releasing hormone-induced stimulation of the rat secretogranin II promoter involves activation of CREB. Mol Cell Endo. 199 (1-2), pp. 29-36.
- 6. Ando H, Hew CL, Urano A. 2001. Signal transduction pathways and transcription factors involved in the gonadotropin-releasing hormonestimulated gonadotropin subunit gene expression. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 129 (2-3), pp. 525-532.
- 7. Gonzalez GA, Montminy MR. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell, 59 (4), pp. 675-680.
- 8. Lonze, BE, Ginty DD. 2002. Function and regulation of CREB family transcription factors in the nervous system Neuron, 35 (4): 605-623.
- 9. Stanislaus D, Janovick JA, Brothers S, Conn PM 1997 Regulation of $G(q/11) \propto$ by the gonadotropin-releasing hormone receptor. Mol Endo 11:738–746
- 10.Liu F, Austin DA, Mellon PL, Olefsky JM, Webster JNG. 2002. GnRH Activates ERK1/2 Leading to the Induction of c-fos and LHß Protein Expression in LßT2 Cells. Mol Endo 16: 419 - 434.
- 11.Knobil E 1974. On the control of gonadotropin secretion in the rhesus monkey. Recent Prog rom Res 30:1-46
- 12.Turgeon JL, Windle JJ, Whyte DB, Mellon PL. 1994. GnRH and estrogen regulate secretion of LH from an immortal gonadotrope cell line. Program of the 76th Annual Meeting of the Endocrine Society, Anaheim, CA (Abstract 1781)
- 13.McGarvey C, Cates PA, Brooks A, Swanson IA, Milligan SR, Coen CW, O'Byrne KT. 2001. Phytoestrogens and gonadotropin-releasing hormone pulse generator activity and pituitary luteinizing hormone release in the rat. Endo 142:1202-1208
- 14.Zhang H, Bailey JS, Coss D, Lin B, Tsutsumi R, Lawson MA, Mellon PL, Webster NJG 2006 Activin Modulates the Transcriptional Response of LßT2 Cells to gonadotropin-releasing hormones and alters Cellular Proliferation. Mol Endo 20(11):2909-2930
- 15.Shacham S, Harris D, Ben-Shlomo H, Cohen I, Bonfil D, Przedecki F, Lewy H, Ashkenazi IE, Seger R, Naor Z. 2001. Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in pituitary gonadotrophs. Vitam. Horm. 63: 63-90.
- 16.Navratil AM, Knoll JG, Whitesell JD, Tobet SA, Clay CM. 2007. Neuroendocrine plasticity in the anterior pituitary: gonadotropin-releasing hormone-mediated movement in vitro and in vivo. Endo 148(4):1736- 1744
- 17.Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297.
- 18.Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. 2004. MicroRNA genes aretranscribed by RNA polymerase II. Embo J 23: 4051- 4060.
- 19.Lee Y, Jeon K, Lee JT, Kim S, Kim VN. 2002 MicroRNA maturation: stepwise processing and subcellular localization. Embo J 21: 4663-4670.
- 20.Kim VN. 2004 MicroRNA precursors in motion: exportin-5 mediates their nuclear export. TrendsCell Biol 14: 156-159.
- 21.Yi R, Qin Y, Macara IG, Cullen BR. 2003. Exportin-5 mediates the nuclear export of premicroRNAs and short hairpin RNAs. Genes Dev 17: 3011- 3016.
- 22.Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. 2003. Prediction of mammalian microRNA targets. Cell 115: 787-798.
- 23.Hutvagner G, Simard MJ. 2008. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol; 9: 22-32.
- 24.Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of humangenes are microRNA targets. Cell 120, 15–20.
- 25.Grimson A., Farh KK-HK., Johnston WKK., Garrett-Engele P, Lim LPP, Bartel DP. 2007. Microrna targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 27(1): 91-105.
- 26.Bartel DP. 2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
- 27.Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett 2005; 579: 5911-5922.
- 28.Hiroi H, Christenson LK, Chang L, Sammel MD, Berger SL, Strauss JF, 3rd. 2004. Temporal and spatial changes in transcription factor binding and histone modifications at the steroidogenic acute regulatory protein (stAR) locus associated with stAR transcription. Mol Endo 18: 791-806.
- 29.Yuen T, Ruf F, Chu T, Sealfon SC 2009 Microtranscriptome regulation by gonadotropin-releasing hormone Mol Cell Endo 302(1):12-17.
- 30.Edga D, Timpl. R, Thoenen, H. 1984. Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site. EMBO J., 3: 1463-1468.
- 31.Engvall E, Davis CE, Dickerson K, Ruoslahti R, Varon S, Manthorpe M. 1986. Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site. J Cell Bio 103:2457-2465.
- 32.Evercooren, B, Kleinman HK, Ohno, Marangos P, Schwartz JP, Dubois-Dalcq ME. 1982. Nerve growth factor, laminin and fibronectin promote neurite growth in human fetal sensory ganglion cultures. J. Neuro Res., 8: 179-193.
- 33.Hatten ME, Furie MB, Rifkin DB. 1982 Binding of developing mouse cerebellar cells to fibronectin: a possible mechanism for the formation of the external granular layer. J. Neuro 2: 1 1 95- 1 206.
- 34.Manthorpe M, Engvall E, Ruoslahti E, Longo FM, Davis GE, Varon S. 1983. Laminin promotes neurite regeneration from cultured peripheral and central neurons. J. cell Biol., 97: 1882-1898.
- 35.Rogers LR, Letourneau Pc, Palm SL, Mccarthy J, Furcht LT. 1983 Neurite extension by peripheral and central nervous system neurons in response to substratum-bound uibronectin and laminin. Dev. Biol., 98: 212-220.
- 36.Tomaselli KJ, Damsky CH, Reichardt LF. 1988 Purification and characterization of mammalian integrins expressed by a rat neuronal cell line (Pc12): evidence that they function as a/ı heterodimeric receptors for laminin and type lv collagen. J. Cell Bio, 107: 1241-1252.
- 37.Horacek MJ, Dada MO, Terracio L 1992. Reconstituted basement membrane influences prolactin, LH, and FSH secretion from adult and fetal adenohypophyseal cells in vitro. J Cell Physio 151:180-189.
- 38.Roelle S, Grosse R, Aigner A, Krell HW, Czubayko F, Gudermann T 2003 Matrix metalloproteinases 2 and 9 mediate epidermal growth factor receptor transactivation by gonadotropin-releasing hormone. J Biol Chem 78:47307-47318.
- 39.Vo N, Klein M, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S. 2005. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. PNAS 102(45): 16426- 16431.
- 40.Van Aeist L, Souza-Schorey CD. 1997 Rho GTPases and signaling networks. Genes Dev 11: 2295-2322.
- 41.Bishop AL, Hall A. 2000. Rho GTPases and their effector proteins. Biochem J 348: 241–255.
- 42.Sah VP, Seasholtz TM, Sagi SA, Brown JH. 2000. The role of Rho in G protein-coupled receptor signal transduction, Annu. Rev. Pharmacol. Toxicol. 40: 459–489.
- 43.Takai Y, Sasaki T, Matozaki T. 2001. Small GTP-binding proteins, Physiol. Rev. 81:153–208.
- 44.Shang X, Moon SY, Zheng Y. 2007. P200 RhoGAP promotes cell proliferation by mediating cross-talk between Ras and Rho signaling pathways. J Biol Chem 282(12): 8801-8811.
- 45.Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 403: 795-800.
- 46.Kennedy BK, Smith ED, Kaeberlein M. 2005. The enigmatic role of Sir2 in aging. Cell. 18: 548-550.
- 47.Vaziri H, Dessain SK, Eaton N, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. 2001. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. 2001. 107(2):149-159.
- 48.Wayman GAA., Davare M, Ando H, Fortin D, Varlamova O, Cheng H-Y MY, Marks D, Obrietan K., Soderling TRR, Goodman RHH, Impey S. 2008. An activity-regulated microrna controls dendritic plasticity by downregulating p250gap. PNAS 105(26): 9093-9098.
- 49.Yamakuchi M, Ferlito M, Lowenstein CJ. 2008. mir-34a repression of sirt1 regulates apoptosis. PNAS 105(36):13421-13426.
- 50.Yamakuchi, M. and Lowenstein, C. J. 2009. Mir-34, sirt1 and p53: The feedback loop. Cell cycle (Georgetown, Tex.) 8.
- 51.Yekta S, Shih IH, Bartel DP. 2004. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 304(5670):594-596.
- 52.Vogelstein B, lane D, Levine AJ. 2000. Surging the p53 network. Nature. 408:307-310.
- 53.Vogelstein G, Kinzler K. 2004. Cancer genes and the pathways they control. Nat Med 10:789-799.
- 54.Li M, Luo J, Brooks CL, Gu W. 2002. Acetylation of p53 inhibits its ubiquitination by Mdm2. JBC 277(52):50607-50611.
- 55.Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y, Sun J, Yu Y, Zhou W, Zheng Q, Wu M, Otterson G, Zhu WG. 2006. Acetylation of p53 at Lysine 373/382 by the Histone Deacetylase Inhibitor Depsipeptide Induces Expression of p21Waf1/Cip1 Mol. Cell. Biol. 26(7): 2782-2790.
- 56.Coussens M, Maresh JG, Yanagimachi R, Maeda G, Allsopp R. 2008. SirT-1 deficiency attenuates spermatogenesis in germ cell function. PLoS ONE 3(2):e1571.
- 57.Li H, Rajendran GK, Liu N, Ware C, Rubin B, Gu Y. 2007. SirT1 modulates the estrogen-insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice. Breast Can Res 9: R1.
- 58.Fiedler SD, Carletti MZ, Hong X, Christenson LK. 2008. Hormonal Regulation of MicroRNA Expression in Periovulatory Mouse Mural Granulosa Cells. Biol Reprod 79: 1030 – 1037.
- 59.Okabe T, Nakamura T, Nishimura YN, Kohu K, Ohwada S, Morishita Y, Akiyama T. 2003. RICS, a Novel GTPase-activating Protein for Cdc42 and Rac1, is involved in the β-catenin-N-cadherin and N-methyl-D-aspartate receptor signaling. JBC 278(11):9920-9927
- 60.Luo L, Hensch TK, Ackerman L, Barbel S, Jan LY, Jan YN. 1996. Differential effects of the Rac GTPase on perkinje cell axons and dendritic trunks and spines. Nature 379(6568): 837-840
- 61.Ziv NE, Smith SJ. 1996. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17(1): 91-102
- 62.Benarroch EE.. 2007. Rho GTPases. Neuro 68:1315-1318.
- 63.Da Silva JS, Schubert V, Dotti CG. 2004 RhoA, Rac1, and Cdc42 intracellular distribution shift during hippocampal neuron development. Mol Cell Neuro 27(1): 1-7.
- 64.Newey SE, Velamoor V, Govek EE, Van Aelst L. 2005. Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64:58–74.
- 65.Segal M. 2005 Dendritic spines and long-term plasticity. Nat Rev Neurosci 6:277–284.