
UC Irvine
ICS Technical Reports

Title
Supporting distributed workflow using HTTP

Permalink
https://escholarship.org/uc/item/1bg265bk

Authors
Kammer, Peter J.
Bolcer, Gregory Alan
Taylor, Richard N.
et al.

Publication Date
1998-02-19
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1bg265bk
https://escholarship.org/uc/item/1bg265bk#author
https://escholarship.org
http://www.cdlib.org/


Supporting Distributed Workflow Using HTTP

Peter J. Kammer

Gregory Alan Bolcer
Richard N. Taylor
Arthur S. Hitomi

Department of Information and Computer Science
University of California, Irvine, CA 92697

Technical Report 98-05

February 19, 1998

Abstract

Frequently process workflows are distributed collections of activities that involve groups
of individuals at disparate locations. To coordinate these tasks, a process support system
should provide for distributed process execution and integration with tools across
networks.

We describe the use of the Hypertext Transfer Protocol (HTTP), an increasingly ubiqui
tous technology, to provide a coordination mechanism for distributed process execution
and tool integration. Building on the Endeavors process support system, we discussexten
sions to an HTTP server to provide support for communication and coordination between
system components as well as integration with external tools. We also examine several
progressively more distributed and flexible approaches to distribution using HTTP and
Endeavors.

Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.G.)

6AYt.



Supporting Distributed Workflow Using HTTP

Peter J. Kammer Gregory Alan Bolcer Richard N. Taylor Arthur S. Hltoml

Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

+1 714 824 8438

{pkammer, gbolcer, taylor, ahitomi}@ics.uci.edu

Abstract

Frequently process workflows are distributed collections of
activities that involve groups of individuals at disparate
locations. To coordinate these tasks, a process support
system should provide for distributed process execution and
integration with tools across networks.

We describe the use of the Hypertext Transfer Protocol
(HTTP), an increasingly ubiquitous technology, to provide
a coordination mechanism for distributed process execution
and tool integration. Building on the Endeavors process
support system, we discuss extensions to an HTTP server to
provide support for communication and coordination
between system components as well as integration with
external tools. We also examine several progressively more
distributed and flexible approaches to distribution using
HTTP and Endeavors.'

Keywords
Software process and process improvement, hypermedia,
project management, computer supported cooperative work
(CSCW) and software engineering, distributed and parallel
systems, environments: organization and integration
principles.

1 Introduction

Complicated process workflows are inherently distributed.
They involve a wide range of people and disparate
locations. Heterogeneous mixes of hardware and software
are combined in activities that cross workgroup and
organizational boundaries, possibly across networks to
locations around the world.

A process support system must not only support and
coordinate widely removed people and activities, but also
support the heterogeneous mix of tools and applications
they use. Endeavors [4] is a process support system
designed to be easily integrated with various off-the-shelf
software tools and technologies. It provides a customizable

1. Effort sponsored by the Defense Advanced Research Projects
Agency, and Air Force Research Laboratory, Air Force Materiel Com
mand, USAF, under agreement number F30602-97-2-0021. The U.S. Gov
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representingthe official poli
cies or endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency, Air Force Research L^raory orthe U.S. Gov
ernment.

Approved for Public Release - Distribution Unlimited

process infrastructure designed to support distribution,
multiple views, and incremental adoption of system
components.

Hypertext Transfer Protocol (HTTP) [2, 7] is a widely
supported protocol that underlies the World Wide Web
(WWW). Tools supporting it are quickly becoming
ubiquitous technologies. We describe here our use of HTTP
as a distribution mechanism for the Endeavors system.
Included are progressively more powerful and flexible
approaches that extend the capability of an HTTP (web)
server to support additional functionalities.

Section2 provides an overview of the Endeavors system
and its general architecture. Section 3 explains our criteria
for selecting a distribution mechanism. Section 4 discusses
our rationale for using an extensible HTTP server.
Section 5 describes a number of approaches to utilizing
HTTP. Section 6 explains how distribution using HTTP
extends the ability to integrate with other systems.
Section 7 discusses related work, and finally Section 8
presents conclusions and future work.

2 Overview Of The Endeavors System

Endeavors provides an open, extensible process support
infrastructure. The system uses a layered object model to
provide for the object-oriented definition and specification
of process artifacts, activities, and resources. Interaction
between system components is event driven. Behavior of
process objects is specified through the use of handlers:
code invoked by the object in response to events received.
Store locally or loaded from a remote source, handlers are
bound to objects at runtime and may be changed
dynamically in the course of process execution.

Activity networks associate activities by control-flow, data
flow, and resource-flow relationships. A rich user interface
provides for their dynamic specification and control of their
execution. Networks are executed by interpreters that
traverse a network andsend appropriate events to objects to
invoke the objects' behaviors.

Figure 1 shows one example view of an Endeavors activity
network. The largest window shows the top level process.
The activity Dept. Approval is expanded into the sub
network shown below the larger main network. Also visible
is the main control panel and a dialog for editing the
individual attributes of an activity.



Start I Merge FiRlnForm CaRaceASd Recipts

project! help I INFO Ib^op INFO BROWBEF^ POENDA

DeptMpravM
Appnwert?

Unlv ApproMl /«iweel?

spacitieatioiS F»nn^e»ss
h

Parent

«1 Disburse Funds Flnlstt

^Arli*t!j Nelaofh Department Approvat

Qaftenptidn
Classlfieanon
Categsry.Far*
Sp*eincaNon_F
inseanec Par«F
It Set

Start DepL McQunUng /taproved? Merge Flrtlsh

drsra
Dept Ctialr

Networti

FIGURE 1. One view of Endeavors activity networks

Figure 2 shows a high-level view of the system architecture
and functional breakdown. Endeavors has a three-tiered

architecture. Each layer has its own object model and
responsibilities. The user layer provides the interface for
human interaction with the underlying system and
processes. It monitors events from the underlying layers
and maintains a coordinated view of the system and the
processes specified. User actions are translated into lower
level operations and events. Beneath the user level, the
system level provides the domain object model. At this
layer, artifacts, activities, and resources may be
programmatically created, manipulated, associated in
networks, and executed by an interpreter. The foundation
layer implements the Class-Metaclass model [22],
managing the loading of objects and handlers as well as
their persistent storage. This layer triggers an object's
handlers in response to received events.

Endeavors provides an open architecture that simplifies
integration with external tools, providing for two-way
communication. Handlers may activate and manipulate
external tools through existing or custom APIs. External
entities may access Endeavors through its open interfaces
provided at each layer of the system's virtual machine
architecture, allowing manipulation of process state or of
the processes themselves (subject, of course, to
authorization controls).

Finally, Endeavors leverages off the capabilities of the Java
programming language [8] in which it is entirely written.
The system is highly componentized to facilitate

incremental adoption and reuse. System functionality may
be downloaded to process execution sites as required
without the need for explicit installation processes.

Additional detail about Endeavors may be found in [4] and
[22].

3 Criteria For Selecting A Distribution Mechanism

We focused on several criteria in choosing a distribution
mechanism. In addition to examining how closely the
functionality provided matched the needs our application,
we were also concerned with matters of availability, ease of
adoption, and ability to integrate with a wide scope of
external tools.

Our initial functional requirements were that the
technology allow the sharing of object repositories and
communication of events through active message passing.
The flexibility to readily extend the technology widi
additional (possibly unanticipated) functionality was also
necessary.

Other desirable characteristics included low adoption cost,
wide availability, and broad support from third-party tools.
These qualities provide the greatest flexibility in supporting
incremental adoption and ease of integration within
existing environments.

Finally, rather than needing to support and promote the
technology, we hoped to leverage off the efforts of others in
supporting its ongoing development.



Users Interact with Endeavors through User
Level and/or external tool interfaces

External

Software
Package

Artist
Manager

User actions trigger
System-Level
method invocations

User Level

Invokes

User Interface Artists ~ Process
Visualization / Editing Tools

User notifications of changes
in underlying object store

System Level
P: Multi-Level domainobject model allows

^ programmatic manipulation of process constructs
I 1 —,

External tools T Category
manipulate

' Endeavors

\ objects through y;i|;
\ open APIs vil-

Artifacts Activities iResourct Interpreter

Interprets / Executes Networks,
Sending Events

\ ^

\ V
\ \

\ N
\ \

\ \
N \

\ S

\

System Level events
and method calls are

translated to Founda

tion calls

Notification of foundation level

changes as events

Foundation Levelo F(
1g Events sent to objects.„

...invoke handlers

Handlers interact with ^ Handler
external tools. s.

S Dynamic Class / Instance
Object ObjectModel

Method Invocations

Event Notifications

Persistent objects
stored to external
file store

Object
Store

FIGURE 2. Endeavors Layered System Architecture



4 The Choice Of HTTP

We explored a number of mechanisms for providing
communication between distributed Endeavors systems.
Issues associated with the choice of HTTP are considered
in Sections 4.1 through 4.3; some alternative technologies
are briefly considered in Section 4.4. HTTP is an
increasingly ubiquitous technology driven by its
widespread use in WWW applications. The protocol is
widely supported and allows simple integration with the
distribution mechanisms of many other tools. In addition,
many systems that manage the interaction between local
and external networks, such as proxies and fire-walls, are
designed to support and optimize HTTP interactions. Other
approaches may require the additional investment of
modifying or replacing these systems.

4.1 Further Evolution of HTTP

One of the appealing strengths of HTTP is the ongoing
effort to improve the protocol, both in terms of efficiency
and functional capability. Examples of this effort are the
release of the HTTP 1.1 draft standard [7] and the ongoing
work in distributed authoring and versioning [18, 21].

4.1.1 HTTP 1.1

HTTP 1.1 provides a number of improvements to the
protocol's overall efficiency that will speed data transfer
between client and server as the standard makes its way
into implementations. Persistent connections will reduce
the overhead for multiple transactions between the same
client and server. Further, the improved caching
specification will reduce the number of needed
transactions.

4.1.2 Distributed Authoring and Versioning(WebDAV)
WebDAV provides a number of functional extensions to
HTTP to support collaborative authoring of web resources.
Once WebDAV reaches implementation, leveraging off
these functionalities will provide added flexibility.

Write locking allows a single client to obtain an exclusive
write lock on a resource. This will not only facilitate the
interaction of clients, but also allow the integration of third-
party tools in a well-behaved standardized way. Combined
with versioning, write locking will facilitate maintaining a
consistent object store, even while it is accessed
concurrently by multiple clients.

Versioning allows multiple instances of a resource to follow
separate parallel development paths, perhaps later
combined by a merge tool. This not only allows multiple
clients to follow parallel process execution threads with
copies of the same resource, but also supports the
possibility of "process rollback" to a previous state by
reverting the object store to earlier versions.

Metadata provides information about resources such as
authoring, ownership, and age. Name space management
provides access to collection hierarchies (such as file
systems). These technologies can be utilized to handle
locating and managing resource attributes and associations
at the HTTP level.

4.2 Extending an HTTP Server via Servlets

In surveying the available web servers, we found that we
needed to extend a server to provide added functionality.
For example, most web-servers did not support the HTTP
"PUT' operation, or writing back to the server, for security
reasons. A readily extensible server also provides the
flexibility for additional functionality in the future as
needed.

Traditional web-servers have provided executable content
on the server through auxiliary programs accessed via CGI
(Common Gateway Interface). In this approach,
subprograms are executed by the server in separate
processes, each with distinct memory space. Each time the
functionality of the subprogram is called for, a new process
and version of the program is instantiated. Context
information, such as parameters and path information, are
provided to the subprogram by variables in the execution
environment.

Servlets [20] provide an alternative method for extending
the functionality of a web server. Supported by a numberof
web servers, servlets are similar to the familiarapplets, the
small executable components that add interactivity to many
web pages. While applets are downloaded and run in the
browser, however, servlets are executed on the server
machine, with access to the web-server environment and
file system.

Servlets provide a number of advantages over CGI for our
application. They are loaded into the server the first time
they are invoked and share the server's processand memory
space. This eliminates the overhead of creating a separate
process each time the functionality is required. Because the
servlets are initialized only once, they can retain persistent
state between invocations. Further, since servlets all share
the common memory space of the server, communication
between servlets may be achieved through shared data
structures. CGI applications, running in separate processes
are forced to communicate througheither the file systemor
interprocess communication.

We found that servlets provided a simple, flexible way to
extend server functionality. We will discuss specific
extensions in Section 5.

4.3 Drawbacks to HTTP

The most significant drawback to the use of HTTP is that it
primarily follows a traditional client-server model of
interaction. That is, the server responds to commands from
the client but does not establish connections or transfer
information withouta request. This makes it problematic to
have the server notify running clients of events or messages
that may be of interest. The approach taken to address this
problem will be discussed in detail in Section 5.2.

4.4 Other Technologiesfor Supporting Distribution

4.4.1 Java RemoteMethod Invocation (RMl) and Serializa
tion

Java RMI [19] is a native Java functionality that invokes
methods on remote servers. Values of parameters, return



System System System

Foundation Foundation Foundation

Endeavors clients fetch/write remote
objects and communicate via HTTP

HTTP Server

Server stores / reads objects from
server data store.

^ Object
Store

FIGURE 3. Multi-User configuration with a single remote server providing data storage and messagepassing.

values and their relationships are serialized and passed as a
stream from client to server. RMI is now a standard

component in the Java language version 1.1. This approach
promises to provide a more elegant, and perhaps more
efficient, communication mechanism. RMI is Java-specific
however, and does not provide the potential for interaction
with the variety of tools that support HTTP. Further RMI
has not been fully supported in all Java execution
environments, particularly some WWW browsers.

4.4.2 Client /Server with Centralized Database

One traditional approach to distribution is a centralized
database provided by a server and accessed by remote
clients. A number of such systems also provide HTTP
interfaces. This approach provides the power and efficiency
of a frill database management system, but it does not,
however, provide the necessary flexibility to extend the
server with additional functionality. Further, installing a
database system and server is likely to significantly
increase the cost of adoption. For our work, the additional
power of a client-server database was not justified by this
loss of flexibility and the additional investment that such a
system would require. Nevertheless, we have adopted
several key ideas from this approach and discuss them in
Section 5. Moreover, our approach does not preclude
integrating a database management system with the
foundation layer (on either client or server) as a persistence
mechanism.

4.4.3 Common Object Request Broker Architecture
(CORBA)
CORBA [17] is an open standard developed by the Object
Management Group (OMG) to provide a specification for
the interaction of heterogeneous objects through specified
interfaces. Similar to client-server databases, installing and
maintaining a CORBA product increases the entry barrier
and discourages incremental adoption. Further, CORBA is
not yet a pervasive technology, limiting the tools,
technologies and platforms that will support it. The
technology does have numerous merits, however, and we
will continue to reevaluate our choices as the context
evolves.

5 Approaches To Configuring Distribution

A variety of increasingly more flexible and powerful
approaches to supporting distribution using HTTP have
been explored in a series of prototypes using Endeavors.
We present these in the following sections. Our intent has
been to support a wide range of configurations with varying
degrees and kinds of distribution. Depending on the needs
of the user, each approach has its sphere of appropriate
application.

5.1 Stand-alone

Figure 2 shows the base system configuration without
distributed components. A user interacts with the system
through the user-interface provided at the user level or
through interfaces provided by extemal tools. Direct
method calls to lower layers of the system invoke object
behaviors in response to the user's actions. Persistence is
provided by a local file-store. As process activities are
executed by the interpreter, handlers are invoked on the
local machine to interact with tools which then may make
API method calls to access Endeavors objects. This
configuration is appropriate for individual users
manipulating their own processes as well as users wishing
simply to model, simulate, analyze, and experiment with
processes without actually executing distributed activities.
It may also be appropriate for small groups of users
utilizing a single machine.

5.2 Multi-User with a Single Remote Data-Store

Our initial extension to the single user model was to
provide concurrent access to a single data repository to
support groups of users working on a common project.
Users on remote machines share an object server and
maintain parallel views of the same underlying system
state. Figure 3 illustrates this configuration. Each client is a
complete Endeavors system (as shown in Figure 2). The
HTTP server replaces the functionality of the local data
store by providing remote data access. In addition, it
supports communication between the independent clients.
Process interpretation, handler execution, and
implementation of theEndeavors object models takes place
on the client side.



System

Foundation

Proxy

System System

Foundation
Proxy

Endeavors clients make foundation
calls via HTTP

HTTP Server
Server translates foundation calls to
calls on server side foundation layer

Foundation

Object
Store

FIGURE 5. Multi-User configuration with a remote server providing foundation services.

Similar to the way a web-browser caches pages, in this
design Endeavors caches content received from the server.
Once the data is obtained, a transaction need only occur to
write it back or to obtain an update if the item is changed by
another client. This approach is efficient when a large
number of fine-grain operations are going to be performed
because it limits the number of necessary HTTP
transactions.

There were two principle extensions to the server to provide
for this added functionality; these are shown in Figure 4.
First, we added functionality to write back to the server file
store and implemented a simple locking mechanism to
prevent conflicts when accessing files. A simple security
extension limits access to particular machines. Second, we
added support for message passing. This was a more
complex task. The HTTP server is essentially a passive
entity. It responds to requests from clients, but it cannot
actively connect to a client. We worked around this by
using a mechanism whereby clients register for messages
with the server and then maintain an open HTTP
connection. Execution threads in both the client and server
block, waiting for input on the open connection. When a
message is received for the registered client, it is fed
through the open connection to the waiting client whose
thread resumes execution and processes the message,
resuming its passive monitoring state when done.

This approach is more efficient than a polling method
which would waste resources on both the client and server
side. The connected threads are passive until activated by a
message. It is, however, less robust as it requires that the
connection remain open.

5.3 Moving Additional Functionality to the Server

In the previous approach, with the server providing a
mechanism for distributed access to files, individual
Endeavors clients each have their own complete foundation
layer. Each time a new copy of an object is required or an
object is changed, the entire object must travel between
client and server. Further, each foundation caches its own

Message Message
Send to Redirected Register
Alias to Client an Alias

Save / Retrieve
File on Server

HTTP
IVansfers

Send Register File Retrieve /
Message Alias Store
Servlet • Servlet • Servlet

Method

Message File
Control Locking

HTTP Server

FIGURE 4. Extensions to web server to provide
additional functionality

copies of objects so keeping clients synchronized is a
formidable task requiring additional communication.

A further improvement to our distribution model, therefore,
is to move the foundation functionality to the server. The
server maintains the system state for multiple processes.
The individual clients make calls to a local foundation
proxy which in turn makes requests, via HTTP, to the server
which executes therequests (returning any values). Figure 5
shows this configuration.

One effect of this division is that handlers triggered by
events on objects are now executed on the server rather than
the client. (We will look at a more flexible approach in
Section 5.4.) The process interpreter, at the system level,
still executes on individual clients.



System

Extended

Foundation

System

Extended
Foundation

System

Extended
Foundation

System

Extended

Foundation

HTTP Server

Foundation

Object
Store

HTTP Server

Foundation

Object
Store

HTTP Server

Object
Store

Foundation

Object
Store

FIGURE 6. Multi-user, multi-server configuration with distributed foundation services

In contrast to the previous approach, this configuration
requires a separate HTTP transaction for each operation on
an object. This may be more efficient for situations where
large objects are accessed with only a few operations as the
entire object does not need to be transmitted to the client.

5.3.1 Server Extensions

This approach required extending the server in a less
conventional way. While the previous configuration only
required that we be able to read and write files as well as
pass simple messages, this configuration requires the proxy
foundation on the client translate foundation calls, with
parameters, into text HTTP requests for the server. The
server then translates the request back into a method call,
responding with any resulting return value from the call,
also converted to text. The proxy then converts it back to
the appropriate data type.

This approach emphasizes simplicity, both for ease of
development and integration with external tools, but this
also produces drawbacks. The translation of complex data
types to text, transmitted via HTTP, sacrifices type
information. Client and server must be consistent in their

interfaces and interpretation of the data, limiting the
robustness of this methodology. In addition, the steps of
converting from typed data to text and then back represent
additional overhead for each transaction.'

5.3.2 Application
We have utilized this configuration in two of our process
workflow applications. In the first, a document approval
process, developed to support the requirements engineering
activity of a large telecommunications company, one
participant interacts with applets in a web-browser to
submit a document for approval. The document and
associated information are stored on the server while

execution passes to other clients whose users also
participate in the process. Each user's actions manipulate

I. Note that this raises key issues of interoperability that have
been explored in depth by other authors. See, for example, [1,
II,14. 17]

the status of the objecton the server. This is accomplished
through the underlying HTTP interfaces.

Our second application also reflects an instance where there
are multiple participants in the process with different roles.
In this web-based-leaming (WBL) process, developed for a
workstationmanufacturer, there are "course designers" who
provide the overall structure of the activities, "content
providers" who provide the information for the courses,
"students" who review the material and are tested on it, and
finally "course managers" who monitor students' progress
and the use of the course in general. These different roles
require different visualizations of the underlying process
taking place, as well as different subprocesses. This
subprocess execution and individual viewpoint is provided
by the individual clients that the users access the system
through, interacting with the single server, via HTTP, to
obtain a common set of data.

5.4 Multi-User, Multi-Server

Finally, we discuss an approach whose prototype is
currently under active development. By providing the
capabilities of both of the previous approaches—allowing
manipulation of objects on either client or server—we
increasethe flexibility and, potentially, the efficiency of our
design.

Rather than completely remove the foundation capabilities
from the client, as was done in Section 5.3 above, we
expand them to provide communication with the extended
HTTP server. Object references provided to the foundation
are given in terms of Uniform Resource Locators (URLs)
[3]. The extended foundation interprets the URL and,
depending on the location and the foundation's
configuration, locates the object in the local data-store or
makes a request of one of several remote servers. This
configuration is presented in Figure 6.

This approach provides the greatest flexibility in
configuration.Multiple servers mixed with local data stores
make it potentially much more robust. Further, it provides
greater scalability, potentially supporting large scale



networks of clients and servers. Objects can be cached
locally and clients disconnected to work independently.
Multiple servers support work across group or
organizational boundaries. Servers can be configured to
control access and coordinate process execution. For
example a server owned by one organizational unit may
provide access to its objects to a server or client from
another unit, but limit or prevent object modification.

6 Distributed Tool Integratton

Our approach to distribution also extends the ability to
integrate external tools. We briefly summarize the methods
of tool integration Endeavors supports and discuss how our
approach adds to these capabilities.

6.1 Tool Integration Styles

Non-communicative tools are launched by triggered handler
code. These tools do not provide external APIs, nor are they
aware of Endeavors APIs. A handler may either wait for the
tool to complete, so that, for example, its output may be
examined, or continue to execute concurrently.

Tools with externally visible controls are similarly launched
by handlers, but provide open APIs that may be accessed
from within the executing process.

Egocentric tools are aware of and access Endeavors
interfaces, but provide no comparable API for executing
processes to access. Control from within the Endeavors
process is limited to, at most, launching the tool, with
further interaction directed by the tool itself. Access by the
tool to process state is, of course, governed by controls on
the underlying persistent object store, either file system or
remote server.

Cooperative tools access Endeavors interfaces and also
provide open APIs to manipulate the tool. Endeavors and
the external tool act in concert to accomplish process
activities.

6.2 Further Integration Approaches Using Distribution

Our distribution model expands the capabilities for tool
integration. Handlers, launched by the foundation layer in
response to events, may be executed on either the client or
the server, providing added flexibility to the location where
a tool is launched and where it interacts with the Endeavors

system.

Distribution also provides an additional interface to
Endeavors. In addition to the open APIs provided by each
layer of the system (see Figure 2), the extended server
provides HTTP access to foundation level services. All that
is required is that an application make HTTP requests using
simple URLs. This provides not only an additional interface
mechanism, but extends the ability of remotely executing
applications to integrate with the Endeavors system. A
simple web-browser can access and modify the object store
(again, subject to access controls).

In a tighter integration, cooperative tools can be included in
processes through specialized agents, dedicated clients
composed of Endeavors services closely integrated with the

external tool, allowing it rich participation in process
execution as a client. One example of this kind of
application is a flight reservation agent integrated using a
dedicated set of Endeavors client services to allow
automated interaction with a reservation system.
Interactions between the server and agents are the same as
with clientsserving human processparticipants.

Finally, extending an HTTP server provides for the
integration of an additional kind of server-aware
application. In a manner similar to the server extensions
constructed for Endeavors, tools may be launched and
integrated within the HTTP server to provide their own
services, accessible by Endeavors clients, or by other
HTTP-aware applications.

7 Related Work

Workflow process execution on the WWW takes a bipolar
approach. One approach tightly constrains the actions that
can be performed by a process stakeholder (such as a
participant, end user, or designer) or software agent, but
guarantees the internal data consistency of the workflow
model and execution data. The other allows stakeholders to
perform arbitrary actions to accomplish their activities but
places minimal constraints on the structure of the
intermediate and final data artifacts, providing few
guarantees of consistency [5]. This section gauges several
approaches exhibited by systems along this spectrum.

7.1 The Database Model

Traditional workflow systems are built on top of database
systems. Activities are modeled as schema which include
values for who (or what role) is responsible for the activity,
what tools are needed to accomplish it, the relative priority
of the activity at hand, and data dependencies, including
precedence and documenthandoff. This approach limits the
types of actions that an end-user can perform on each
activity, as well as the changesthat a worMow designercan
make to the activities. Because the interactions are limited
to pre-specified tools at pre-specified steps in the workflow,
data consistency is guaranteed. Database systems also
allow transaction support and rollback of processes to a
previous state. This most often happens when the workflow
model becomes out of sync with the real activities taking
place. Each of the workflow process steps are data-driven.
Specification of the control flow is minimal and often hard-
coded into the database schema. Fixing the workflow steps
and schema in this way requires the process to be
stringently adhered to, thus impacting the dynamic
evolution capabilities of the system, and also strongly
constraining the work practices of the performing
organization. By restricting the tools and actions allowed to
guarantee data consistency, database systems tend to limit
their flexibility. End-users cannot use arbitrary tools to
accomplish their tasks. In addition, it is difficultto integrate
new tools into the process or maintain local process state
external to the database. Databasesystems typicallyhave a
high cost of adoptionand requirea criticalmass [9] of users
to participate in using the system before many of the
workflow benefits are seen. There is no incremental



adoption path for easily mixing human performed activities
not stored in the database and those of the process model.

7.2 Ad Hoc Systems

An opposite approach to the database model is the ad hoc
workflow model. This stems out of the CSCW field and is

typified by such commercial systems as Netscape
Collabra[16] and Microsoft Exchange[6]. Users are

^ allowed to perform their work in an "ad hoc" way where
• solutions and goals are accomplished with whatever tools

and data are immediately available. These systems are
easily adopted and accessible through the user's desktop or
browser. Their primary purpose is to inform users of the
current problems, issues, and data needed to accomplish
their particular tasks. While this approach tends to be
appealing in that it mimics more closely the fast, furious,
and unstructured pace of some projects, it provides minimal
automation and guidance support. Workflow models lack a
coherent, semantically rich, and precise description of the
work being performed. Data and control dependencies, as
well as assignments, are not immediately viewable, and
measurable status of the project is difficult to ascertain. The
ad hoc nature of these systems may cause the data and
artifacts being created and shared to be inconsistent.
However, because the changing data and rationale is
recorded over time and is both viewable and shared by all
relevant participants, any data inconsistencies are managed
by the participants and not the system. This distinction
allows for a broad degree of flexibility in accomplishing
work, but increases the difficulty for managing it.

7.3 Hybrid Approaches

'7.3.1 Lotus Domino
Lotus Domino[15] (the WWW extension to Lotus Notes)
takes a hybrid approach. Domino mixes an underlying
messaging and database system with mechanisms to allow
stakeholders to view and change data and artifacts through
a WWW browser. Data is stored in a Lotus Notes server,
and distributed sites use a replication strategy. Domino
includes development tools for workflow development and
tool integration, and workflows are actually deployed as
applications. Domino's support for Java and Java
components [10] allows for some post workflow
deployment evolution by allowing the presentation or view
of the workflow to be changed. However, the underlying
workflow model typically does not evolve once the
workflow application has been deployed. Domino provides

'̂ some WWW interfaces for manipulating and extracting
information out of the underlying relational database, but

• 'typically this is controlled by the workflow application
developer and not the end-user. Domino represents a
slightly more open approach than the traditional database
workflow systems in that custom views into the workflow
can be created via the WWW through a standard set of
APIs. These views, however, are usually fixed before
deployment to maintain data consistency. The tools
integrated into the workflow process, as well as the control
flow and data dependencies, rarely (if ever) change once the
workflow process begins execution. While this may be

necessary to guarantee data consistency, it represents an
inhibitor to the usefulness and accuracy of the system.

7.J.2 OzWeb

OzWeb [12, 13] allies itself much more closely with the
WWW-based workflow systems. While it too has an
underlying database, it provides a much more semantically
rich process representation. The OzWeb system is highly
componentized and has specific components for de^ng
with process descriptions, transactions, rules and
constraints, tool integration and management, and inter-site
coordination. Data or events can trigger rules and
constraints to both proactively and reactively drive the
workflow process. OzWeb supports evolution in that
control flow and data constraint rules can be dynamically
added, evaluated, and triggered over HTTP. In order to
maintain distributed data consistency, OzWeb employs a
summit and treaty negotiation model. When two distributed
sites encounter a condition where the data is inconsistent,
the system initiates a resolution mode to reconcile, either
automatically or with the involvement of human
participants, the inconsistent data. In this way, OzWeb
allows the distributed components of a workflow process to
proceed with local execution while providing coordination
and control support. Because OzWeb processes are, at its
center, rules, modification or evolution of a running process
often requires a high degree of technical expertise. Those
participating in a running process are not always the same
stakeholders that have the ability to change the process to
fit their work context or habits. This creates a mismatch

between those developing or defining the workflows and
those who use or benefit from it. This limits the types of
end-user customizations that can be made to an executing
workflow system.

7.4 Relationship to Endeavors

The Endeavors philosophy is derived directly from the
WWW-based model. In a similar manner to an end-user
managing the exception when encountering a "page not
found" error on the WWW, Endeavors places the burden of
resolution initially with the end-user. The end-user then has
the option to employ automated or manual workarounds to
the exception or inconsistency. Endeavors, however, differs
from ad hoc workflow systems in that it includes a
semantically rich process description language [22]. This
allows highly structured process modeling and execution
capabilities to be integrated into the workflow while not
being so constraining that ad hoc work is inhibited.
Endeavors processes allow multiple, customizable views.
The default process view allows both non-technical and
technical users to visually edit the workflow. Endeavors is
also a highly componentized system. In addition to being
able to reference and embed variousEndeavors components
into WWW pages and e-mail, various process fragments
including their data and tools can be sent and executed
using HTTP. Endeavors is flexible in its approach.
Depending on how the system is customized, the level of
data consistency enforcement allows Endeavors to be used
to either primarily inform the users of their data and
activities as in an ad hoc system or automate certain



activities based on their inputs as in a standard workflow
system. Similarly, Endeavors' policies can be customized to
enforce the workflow process execution, by limiting the
user's interactions thus keeping the data consistent, or as a
support infrastructure to enhance the coordination
capabilities between users by loosening these constraints.

8 Conclusions and Future Work

These approaches demonstrate the feasibility of using an
extended HTTP server to provide distributed process
workflow functionality. These techniques build on
Endeavors' open extensible model to provide a mechanism
for integrating with the increasing proliferation of Internet
technologies. We have described our progression from
single-user application to increasingly more powerful and
flexible distribution approaches. Our goal is to provide a
dynamically configurable system to support a wide range of
organizational contexts and tasks. We believe this approach
has broad application and may be usefully adopted by
others.

Infrastructure that requires additional cost and effort to
acquire and maintain can present a barrier to the adoption
of new technologies and approaches. By utilizing
extensible HTTP servers to provide a distribution
mechanism, we take advantage of technology already
available and familiar at many locations. We have examined
and implemented a number of approaches to this
integration and found it to be practical in supporting
distributed process participants at minimal additional cost.

Flexibility, including tolerance for discontinuity and a
dynamically changing environment are key emphases of
this research. Process participants will likely find it
necessary to disconnect from the network for a period of
time, for example to travel with a laptop computer, and
continue their individual activities. An effective distribution
approach will need to support this sort of coordination and
the ability to synchronize a process participant's state with
that of others.

AcknowledgmeDts
The authors would like to recognize the hard work and
effort in the design and implementation of Endeavors by
Patrick Young, Peyman Oreizy, and Clay Cover. In addition
we would like to acknowledge the members of the C2,
Chimera, and WebSoft projects at UCI for their exchange
of ideas during the development of this system.

References

1. I. Ben-Shaul and S. Ifergan. WebRule: an event-based
framework for active collaboration among web servers.
In Proceedings of The Sixth International World Wide
Web Conference, pages 521-531, Santa Clara, Calif.,
USA, April 1997.

2. T. Bemers-Lee, R. Fielding, and H.Frystyk. Hypertext
transfer protocol ~ HTTP/1.0. Internet Informational
RFC 1945,MIT/LCS, UCIrvine, May 1996. http://
www.ics.uci.edu/pub/ietf/http/rfcl945.txt

3. T. Bemers-Lee, L. Masinter, and M. McCahill. Uniform
resource locators (URL). RFC 1738, CERN, Xerox,

Univ. of Minnesota, December 1994. ftp://ds.inter-
nic.net/rfc/rfc 1738.txt

4. G. A. Bolcer and R. N. Taylor. Endeavors: A process
system integration infrastructure. In 4th International
Software Process Workshop, pages 76-85, Brighton,
U.K., lEEB Computer Society Press, December 1996.

5. 0. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi. A
framework for formalizing inconsistencies and devia
tions in human-centered systems. ACM Transactions on
Software Engineering Methodology, 5(3): 191-230,
(July 1996).

6. D. Fay and T. Rizzo. Active messaging and the
Microsoft exchange server. Whitepaper, Microsoft
Interactive Developer, June, 1997.

7. R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, and
T. Bemers-Lee. Hypertext transfer protocol -- HTTP/
I.l. RFC 2068, UC Irvine, DEC, MIT/LCS, January
1997. http://www.ics.uci.edu/pub/ietf/http/rfc2068.txt

8. J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley. August 1996. http://
java.sun.com/docs/books/jls/html/

9. J. Grudin and L. Palen. Why groupware succeeds: dis
cretion or mandate? In Proceedings of the 4th European
Conference on Computer-Supported Cooperative Work,
pages 263-278, Kluwer Academic Publishers.

10. G. Hamilton, Ed. JavaBeans, revision 1.01. Sun Micro
systems, July 1997. http://java.sun.com/bcans/spec.html

11. R. Kadia. Issues encountered in building a flexible soft
ware development environment: lessons from the Arca
dia project. In Proceedings ofACMSIGSOFT Fifth
Symposium on Software Development Environments,
pages 169-180, Tyson's Comer, VA, December 1992.

12.G. Kaiser,S. E. Dossick, W.Jiang, and J. J. Yang.An
Architecture for WWW-based hypercode environments.
In Proceedings ofthe I9th International Conferenceon
Software Engineering, pages 3-13, Boston, Mass. USA,
May 1997.

13.G. Kaiser,S. E. Dossick, W. Jiang, and J. J. Yang.
WWW-based collaboration environments with distrib

uted tool services. WorldWide Web Journal (in press)
14.M. J. Maybee, D H. Heimbigner, and Leon J. Osterweil.

Multilanguage interoperability in distributed systems:
experience report. In Proceedings ofthe 18th Interna
tional Conference on Software Engineering, March
1996.

15.Lotus Development Corp. Domino.Doc Whitepaper.
Lotus Development Corp, April 1997.

16.Netscape Communications. Netscape collabra server
3.0, open discussion server for enterprise collaboration.
Datasheet. Netscape Communications Inc., 1997. http://
home.netscape.com/comprod/server_central/product/
news/collabra3_data.html

17.Object Management Group. The Common Object
Request Broker: Architecture and Specification, Revi
sion2.0,July 1996. http://www.omg.org/corba/corbi-
iop.htm



18. J.A. Slein, F. E. J. Whitehead Jr., and D.G.
Durand. Requirements for distributed authoringand
yersioning on the world wide web, Internet-draft, work-
in-progress. July 1997.http://www.ics.uci.edu/pub/ietf/
webdav/requirements/draft-ietf-webdav-requirements-
03.html

19. Sun Microsystems. Java remote method invocation
specification. Sun MicroSystems, Inc., 1997. http://
www.javasoft.com/products/jdk/I. l/docs/guide/rmi/
spec/rmiTOC.doc.html

20.Sun Microsystems. The Java servlet api. Whilepaper,
Sun Microsystems, Inc., 1997.

21.E. J. Whitehead. World wideweb distributed authoring
and versioning (WebDAV): An Introduction. ACM Stan-
dardView, 5(1): 3-8, (March 1997).

22.P. Young. Customizable Process Specificationfor Tech
nical and Non-technical Users. Ph.D. thesis. University
of California, Irvine. August, 1991.

Relevant URLs

CGI: http://hoohoo.ncsa.uiuc.edu/cgi/
Endeavors: http://www.ics.uci.edu/pub/endeavors/
HTTP: http://www.ics.uci.edu/pub/ietf/http/
Java: http://java.sun.com/
JavaBeans: http://java.sun.com/beans/
Java RMI: http://java.sun.com/products/jdk/rmi/
Java Serialization: http://java.sun.com/products/jdk/rmi/
serial/

Java Web Server: http://jserv.javasoft.com/products/java-
server/webserver/

Lotus-Domino: http://www3.lotus.com/products/
domino.nsf

MicrosoftExchange: http://www.microsoft.com/exchange/
Netscape Collabra: http://home.netscape.com/comprod/
server_central/product/news/
OMG and CORBA: http://www.omg.org/
OzWeb: http://www.psl.cs.columbia.edu/ozweb.html
Servlets: http://jserv.javasoft.com/products/java-server/
servlets/

URIs/URLs: http://www.ics.uci.edu/pub/ietf/uri/
WebDAV: http.7/www.ics.uci.edu/pub/ietf/webdav/




