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Taming a non-convex landscape with dynamical long-range order: memcomputing the
Ising spin-glass

Forrest Sheldon,1, ∗ Fabio L. Traversa,2, † and Massimiliano Di Ventra1, ‡

1Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
2MemComputing, Inc., San Diego, CA 92037, USA

Recent work on quantum annealing has empha-
sized the role of collective behavior in solving op-
timization problems. By enabling transitions of
large clusters of variables, such solvers are able
to navigate their state space and locate solutions
efficiently despite having only local connections
between elements. However, collective behav-
ior is not exclusive to quantum annealers, and
classical solvers that display collective dynamics
should also possess an advantage in navigating a
non-convex landscape. Here, we propose a sim-
ple model that demonstrates this effect, based on
the recently suggested digital memcomputing ma-
chines (DMMs), which utilize a collection of dy-
namical components with memory connected to
represent the structure of the underlying opti-
mization problem. This model, when applied to
finding the ground state of the Ising spin glass,
undergoes a transient phase of avalanches which
can span the entire lattice. We then show that a
full implementation of a DMM exhibits superior
scaling compared to other methods when tested
on the same problem class. These results estab-
lish the advantages of computational approaches
based on collective dynamics.

Optimization problems draw their difficulty from the
non-convexity of their associated landscapes [1]. These
landscapes are often highly corrugated, dotted with hills,
valleys and saddles of varying heights which obscure the
search for a lowest (or highest) point. The complex-
ity of this space, combined with the ‘curse of dimen-
sionality’ yields an exponentially large number of poten-
tial solutions which are very difficult to prune down by
any systematic method. The innate difficulty and vari-
ety displayed by optimization problems, as well as their
widespread applications have made their study a contin-
uously active field of research across science and mathe-
matics [2, 3].

The exponential growth of the state space with prob-
lem size often renders any exact algorithm for locating
the optimum impractical as they require an exponen-
tial amount of time to sift through the states. As a
result, practitioners must rely on incomplete or approxi-
mate methods which will often generate better solutions
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in a limited time but are not guaranteed to converge to
the exact solution [4, 5].

Early work on approximate methods relied on analo-
gies with the dynamics of physical systems [6] which will
minimize their energy as they cool, i.e., during annealing.
For example, to find the ground state of the Ising spin
glass [7],

E = −
∑
〈ij〉

Jijsisj , si ∈ {−1, 1}, (1)

simulated annealing gradually improves an initial state
{si}Ni=1 by stochastically exploring the state space and
steadily lowering an effective temperature [8]. The early
success of this approach on combinatorial optimization
problems has led to the proliferation of solvers based on
a similar stochastic local search and their many variants
[9, 10]. Cross pollination with physics has continued,
spawning methods such as parallel tempering [11], and
quantum simulated annealing [12] as well as the analyti-
cal characterizations of combinatorial problems [13] and
random energy surfaces [14].

Annealing has again jumped to the forefront of modern
research in the form of quantum annealing and the ma-
chines manufactured by DWave [15–17]. These machines
contain 2-state quantum mechanical elements coupled to-
gether in a graph realizing a particular energy function.
During their relaxation, the quantum dynamics of the
system allows for collective tunneling of elements through
high, thin barriers in the energy function, which may pro-
vide some advantage in the search for the optimum.

Similar ideas in the context of cellular automata, neu-
ral networks and neuroscience have already received in-
terest [18, 19]. These examples substantiate the idea that
collective behavior would offer an advantage in the con-
vergence of a solver by allowing for a more efficient explo-
ration of the state space. We then expect that classical
solvers which incorporate this feature in their dynamics
will have an advantage in both the quality of solutions
they produce, and their rate of convergence.

The purpose of this work is to explore the presence of
collective dynamics in the context of specific determinis-
tic dynamical systems: Digital memcomputing machines
(DMMs) [20–22]. We show that this collective behavior,
in the form of dynamical long-range order (DLRO), al-
lows the efficient navigation of a non-convex landscape as
the one provided by the prototypical Ising spin glass (9).

In DMMs, a combinatorial optimization problem is
first transformed into a physical system described by
differential equations whose equilibrium points corre-
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FIG. 1. Constraint satisfaction problem as electrical
circuit. An arbitrary constraint (C) satisfaction problem ex-
pressed as a factor graph can be translated into an electrical
circuit with memory by considering the effect of each con-
straint on the site i. vR is a voltage generator and gR is the
conductance of a standard resistor. vM is a voltage generator
and gM is the conductance of a resistor with memory.

spond to solutions of the original problem. Theoretical
work [23] and simulations of DMMs [21, 22, 24, 25] have
indicated the presence of long-range order in their dy-
namics. However, as their native problem form involves
several distinct dynamical elements, the complexity of
the resulting solver obscures the physical principles un-
derlying its design and function. Here, by drawing on the
structure of the equations governing a DMM, we propose
a simplified model that captures their essential features
and can be applied in a setting more familiar to physi-
cists: finding the ground state of an Ising spin glass [7].

For our purposes, this problem provides the advantage
that it can be expressed in terms of very simple homoge-
neous constraints leading to a concise set of equations. In
addition, its real-space lattice representation allows for a
clearer demonstration of DLRO since the real-space dis-
tance of the lattice corresponds to the distance in the con-
straint graph. We draw on a class known as ‘frustrated-
loop instances’ used by DWave and others to benchmark
their quantum annealers [15, 26]. These instances are
constructed by embedding loops with a single frustrated
bond on an underlying graph which we take to be a hy-
percubic lattice in 2 or 3 dimensions with periodic bound-
ary conditions. These instances are convenient for bench-
marking because, by construction, they have a known
ground-state energy, and their difficulty is somewhat tun-
able by choosing the density of embedded loops [15]. The
construction and tuning of these instances is detailed in
the Supplemental Information. After showing DLRO in
the simplified model of DMMs, we then compare the re-
sults obtained by a full-fledged implementation of DMMs
with those from a variety of approaches, such as paral-
lel tempering [11], simulated annealing [6], as well as a
commercial solver [27], for problem instances of increas-
ing size. We find that DMMs exhibit superior scaling
compared to these other methods.

A DMM is constructed in correspondence to the logical
circuit it will solve. For example, the subset-sum problem
studied in [21] utilizes a circuit with the same structure as
one used to add a subset from a group of numbers. Each
traditional logic gate is replaced by a self-organizing logic

gate consisting of a set of interconnected input and out-
put terminals, each of which is dressed with a number
of memristors (resistors with memory), resistors, capaci-
tors, and voltage/current generators forming a dynamic
correction module (DCM) [21]. When voltages are ap-
plied to the boundaries of the circuit, the dynamics of
these elements are configured to satisfy the constraints
enforced by each gate, and lead the circuit to a state
where no logical contradictions are present.

We may consider the contribution of constraint C to
the dynamics of site i (see Fig. 1) [21]. The dynamics of
the circuit are constructed such that the voltage gener-
ators impose the logical constraint on the voltage vi at
site i. The memristor conductance gM , sensing a current
flowing across it due to an unsatisfied constraint, will al-
ter its value to accelerate the convergence of vi to the
logically-consistent solution. Generally, this is accom-
plished by increasing the memristor conductance, thus
allowing more current to flow into or out of the site.
As memristors are polar objects, complex constraints
may require several memristors and generators to accom-
plish this, accounting for the number of memristors in
DCMs [21].

A few simplifying assumptions give the general form
for the contribution of constraint C to site i as [21],

v̇i = ∆gMx∆VM + gR∆VR, (2)

ẋ = h(∆VM , x), x ∈ [0, 1], (3)

for the voltage vi representing the variable i and the
memory state variable of the memristor x. We can re-
gard the first and second terms on the rhs of Eq. (2) as
representing the total memrisitive and resistive contribu-
tions from the DCM, respectively. These are weighted by
the conductances ∆gM and gR, respectively, into which
we have absorbed a capacitive timescale. We regard the
memory state variable x and function h in Eq. (3) as an
effective representation of the state and evolution of all
memristors in the DCM, giving us considerable freedom
in choosing the form of h. In order to fulfill the require-
ments of a DMM, the memristor equations chosen must
take on bounded values and the equations of motion of
the whole system must be point-dissipative [28], which
establishes that trajectories will converge to an invariant
set that is uniformly asymptotically stable.

These equations share a close resemblance to those of
Lagrange programming neural networks (LPNNs) pro-
posed in [29, 30] and the dynamical systems proposed
in [31]. In these works a Lagrangian, L, for a con-
straint satisfaction problem on variables {si} is formed
from a set of constraint functions Cm({si}) which vary
from 0 when the constraint is satisfied to 1 when un-
satisfied and a set of weights for each constraint xm,
L =

∑
m xmCm({si}). In the case of LPNNs, the equa-

tions of motion of the system are then derived as

ṡi = −∇siL = −
∑
m

xm∇siCm, (4)

ẋm = ∇xm
L = Cm, (5)
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which in our formulation (Eqs. (2) and (3)) would cor-
respond to an unbounded, voltage-controlled set of mem-
ristors with equal weight. In [31] the equations for the
multipliers are altered to ẋm = xmCm, which has the
effect of making the system hyperbolic, and is analogous
to choosing unbounded current-controlled memristors in
Eq. (3). The dynamics of both systems are such that
the variables si of the optimization problem act to mini-
mize the energy, while the weights xm act to increase it,
forming a sort of competitive dynamics which seek out
saddle points in the Lagrangian. The weights may be
re-expressed as a memory term in the si equations and
so may be interpreted as “memory variables.”

The continuous constraint weighting that these La-
grangian methods perform bears a close resemblance
to DMMs, but in our investigations we do not observe
DLRO in the simulations of these Lagrangian systems
nor do they reach the solution of the problem we con-
sider here. Instead, in order to fulfill the properties of
a DMM and display the DLRO observed in these, addi-
tional terms in the equations of motion are necessary, in
particular terms that guarantee the orbits are bounded
during dynamics, and that the system manifests a form
of “rigidity” in which large groups of variables can tran-
sition together (for further discussion of rigidity in a con-
tinuous dynamical model of the spin glass, see the Sup-
plemental Information).

When applied to finding the ground state of the Ising
spin glass, Eq. (9), a simple representation of DMMs
(Eqs. (2) and (3)) that satisfies these requirements is of
the form,

v̇i =
1

2

∑
〈ij〉

|Jij |xij
(
vi + sgn(Jij)vj

)
− |Jij |

(
vi − sgn

(
Jij)vj

)
, vi ∈ [−1, 1], (6)

ẋij = βxij(1− xij)
(
|Jij |

(
1− sgn(Jij)vivj

)
− γ
)
, (7)

in which the memristive and resistive contributions are
clearly visible. The voltages vi are limited to the interval
[−1, 1]. From a state of the dynamical system, the spins
of the original Ising spin glass model (9) are assigned as
si = sgn(vi) such that the spins of the Ising model un-
dergo the orthant dynamics of the underlying continuous
voltages.

The memory state follows the simplest equation for a
bounded, volatile memristor subject to an effective volt-
age |Jij |(1 − sgn(Jij)vivj). This voltage is the energy
with which the constraint is violated, and the constant
γ sets a threshold below which xij will begin to decay.
The constant β indicates that the memristive timescale
is generally different from the voltage timescale (set by
the RC constant at the node) which will play an im-
portant role in our analysis of the system. It is useful
to re-express (6) in terms of the regimes of the memory

variable xij ,

v̇i =
∑
〈ij〉

Jijxijvj − (1− xij)
|Jij |

2
(vi − sgn(Jij)vj), (8)

which shows that the xij interpolate between two dif-
ferent interactions between the voltages. When xij ≈ 1
the voltages follow the fields imposed by the neighbor-
ing voltages as in an LPNN with L =

∑
〈ij〉 xij |Jij |(1 −

sgn(Jij)vivj), causing them to take the integral values
vi = ±1. Once the constraint is satisfied, xij → 0,
and the voltages follow the values of their neighbors in
a collective manner (see also the Supplemental Informa-
tion). As a consequence, over the course of the dynamics,
voltages form clusters with satisfied constraints that are
capable of transitioning together under the influence of
neighboring unsatisfied constraints. This has a dramatic
effect on the dynamics and inclusion of these “rigidity
terms” to the gradient-like first terms in Eq. (6) are es-
sential for achieving DLRO in the dynamics and converg-
ing to the ground state.

We simulate the system described by Eqs. (2) and (3)
from random initial voltages and xij(0) = 0.99, integrat-
ing the equations of motion until the energy (9) (cal-
culated from the signs of the voltages) has reached the
planted ground state or some maximum time has elapsed.
This is typically chosen quite long, such that the system
solves an instance with a probability p > 0.95 for a given
initial condition. For a more detailed discussion of the
numerical implementation, see the Supplemental Infor-
mation. A typical run, showing the voltages, memris-
tances and energy of the system is shown in Fig. 2 on
a 2-dimensional instance, L = 15, where we also show
that in the absence of constraint weighting via the mem-
ory variables (ẋij = 0) the system is unable to reach the
ground state (the red curve in Fig. 2(c)). In this case
the system undergoes gradient dynamics and converges
to a local minimum of H =

∑
〈ij〉−Jijvivj , vi ∈ [−1, 1].

The action of the memory variables may be interpreted
as slowly modifying this landscape to destabilize these lo-
cal minima and push the system into an avalanche. That
these avalanches display DRLO, is a feature of the added
“rigidity terms” in Eq. (6).

The discussion of DLRO in continuous dynamical sys-
tems is complicated by the continuity of the dynamics,
making it difficult to clearly infer causal relationships
between changes in variables. However, we can take ad-
vantage of the timescales above to separate the dynam-
ics into causally related events. As shown in Fig. 2(a)
when we slow the memristor timescale β relative to that
of the voltages (e.g, by choosing β = 1/400), after the
initial transient the dynamics progress through a series
of rapid transitions interpretable as avalanches (or in-
stantons [23]). These are due to the gradient dynamics
of the voltages rapidly seeking out saddle points in the
energy landscape. Since the memristive dynamics pro-
vide the unstable directions of the saddle points [22, 23],
the system will rapidly shift to a new saddle point. As
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FIG. 2. Model trajectories. When the model of Eqs. (6) and (7) is simulated for a 2-dimensional instance (L = 15) under
a separation of timescales (β = 1

400
), the voltage trajectories (a) evolve under a series of sharply defined avalanches due to

the slow motion of the memristors (b) modifying the clause weights. In (c) we have plotted the energy (left axis) without
the influence of memristors (red, β = 0) and with them (black, β = 1

400
, γ = 0.65) showing that the motion of the memory

variables allows the system to reach a far lower energy, and ultimately the ground state. The sizes of the avalanches (c, right
axis) are plotted as gray bars, showing that their size grows over the course of the simulation until a large avalanche brings
the system to its ground state. The avalanches are depicted in the inset in red with the rightmost inset corresponding to the
largest avalanche in the run.

more constraints become satisfied and transition to a
rigid interaction, larger clusters of voltages begin tran-
sitioning together (see Fig. 2(c)) until, in a manner anal-
ogous to a phase transition [22, 32], extensive clusters
of voltages/spins, spanning the entire lattice, transition
collectively and the system converges to the ground state.

We can further emphasize the long-range nature of
these clusters by computing correlation functions over the
course of an avalanche. In the limit that the timescales
become separated (i.e., the slow driving limit) the points
at which each avalanche occurs tend towards well de-
fined times as seen in Fig. 2(a). For small β these events
may be detected as sharp spikes in the voltage deriva-
tives. (See Supplemental Information for a detailed dis-
cussion of the method used to extract the structure of
the avalanches.) We are interested in the voltages/spins
which change sign in the avalanche and thus will affect
the energy of the system. We thus define the avalanche
configuration as ∆i = 1 for all spins which change sign
during an avalanche, and ∆i = 0 otherwise. A few typi-
cal examples of these avalanches and their sizes occurring
during dynamics are plotted in Fig. 2(c).

Using the avalanche configurations we are able to com-
pute correlation functions for these events and investigate
their decay across the lattice. For each run (defined as
generating a unique instance and initial conditions) the
system is simulated until it reaches the ground state or

FIG. 3. Long-range order. Spatial correlations, 〈∆〉(r),
among voltages/spins calculated from the orthant dynam-
ics in the slow driving limit of model (6) and (7) for the
largest avalanches in 2D and 3D and for different lattice sizes.
The correlations take a finite value all the way to the lattice
edge, indicating that the largest avalanches are extensive. As
the system size increases the values appear to saturate to a
dimension-dependent value for this instance class.

a maximum time is reached. If the instance is solved
within this interval, the largest avalanche is selected and
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FIG. 4. Time to solution. Time necessary for different
solvers to reach the ground state of the 3D frustrated-loop
spin glass as a function of the total number of spins N . The
sequential memcomputing solver implemented in MATLAB is
dubbed Falcon. Ten instances for each problem size are dis-
played. Comparisons with simulated annealing (SA), parallel
tempering (PT), and IBM CPlex are also shown. All calcula-
tions were performed on a single core. The solid lines are the
best fits of the worst-case time to solution for all four solvers.
The exponential fit has the following parameters: for IBM
CPlex, b = 4.5 and c = 0.16, for SA, b = 11. and c = 0.13,
and for PT b = 0.9 and c = 0.33.

its configuration and first flipping spin are stored. By av-
eraging across a sample of configurations, suitably shifted
so that the initial flipping spins coincide, the probability
that a voltage a distance r from the initial spin changes
sign, 〈∆〉(r), may then be calculated. In order to achieve
large distances with reasonable simulation times, we cal-
culated these correlations both in 2- (L = 15, 19, 23) as
well as 3-dimensional (L = 7, 8) systems.

As shown in Fig. 3, the largest avalanches possess cor-
relations that take finite values all the way to the furthest
corner of the lattice, confirming the presence of DLRO.
Dimensionally, this requires that the size of the largest
avalanche scales as ∼ LD for a system of dimension D,
and is thus extensive. We also note that, as the system
size increases the correlations appear to saturate to a di-
mension (and instance class) dependent value.

Having used this simplified model to demonstrate the
main physical ingredients promoting DLRO, we now
show that this feature also leads to superior scaling com-
pared to other methods that rely only on local informa-
tion. Unlike the model (6) and (7), DMMs have the
additional advantage of having been engineered to have
no chaotic behavior or periodic orbits [33]. Therefore,
for this scalability test, we rely on the full implementa-
tion of the dynamical equations of DMMs as in Ref. [21],
appropriately modified to handle the Ising spin glass ex-
pressed as a maximum satisfiability problem in conjunc-
tive normal form [34] (see the Supplemental Information

for a discussion of this transformation). We then utilize a
commercial sequential MATLAB solver (dubbed Falcon)
that implements such equations. In addition, we have im-
plemented two standard annealing algorithms in Python
(simulated annealing (SA) and parallel tempering (PT)),
as well as used a well-known commercial mixed-integer
programming solver, IBM CPlex [27]. Since Falcon was
implemented in interpreted MATLAB and the focus was
on scaling rather than runtime, we used only the simplest
implementation of each solver but performed substantial
tuning. Details of the implementation and tuning on the
instance class for SA and PT, as well as the configura-
tion for IBM CPlex can be found in the Supplemental
Information.

All solvers were run on 10 frustrated-loop instances in
3 dimensions, ranging in size from L = 6 (total number
of spins N = 216) to L = 40 (N = 64, 000). As is clearly
visible from Fig. 4, Falcon converged to the exact ground
state in times orders of magnitude faster than the other
methods tested, and for larger sizes than were attainable
for other solvers even given one week of computing time.
Most importantly, Falcon displays superior scaling, with
the time to solution (TTS) appearing to scale approxi-
mately as TTS ∼ N2.3, while all other instances appear
to scale exponentially, TTS ∼ exp(bN c), with b and c
solver-specific constants reported in the supplemental in-
formation and shown in Fig. 4. Of the solvers tested,
SA appears closest to subexponential. However, simu-
lated annealing has been shown to scale exponentially on
a closely related instance class [15] and, as all solvers,
except Falcon, were unable to converge for all instances
within the allotted time (1 week), the reported exponen-
tial fits may underestimate their actual scaling. Details
of the fitting procedure may be found in the Supplemen-
tal Information.

Conclusions – In this paper, using the Ising spin glass
as a well-known benchmark, we have shown that a solver
exploiting dynamical long-range order can navigate a
non-convex landscape more efficiently than traditional
methods. We have first provided a simple model of
DMMs to show how to transform the original problem
into a dynamical system in which DLRO emerges
naturally. We have then shown results on the 3D
Ising spin-glass as obtained by a full implementation of
DMMs. The approach based on DMMs exhibits superior
scaling in reaching the solution than the other methods
tested. The results presented here further reinforce the
advantages of employing collective dynamics to compute
hard problems efficiently.

Acknowledgments – F.S. and M.D. acknowledge partial
support from the Center for Memory and Recording Re-
search at UCSD. The Falcon solver used in the reported
simulations has been provided by MemComputing, Inc.
http://memcpu.com/. The authors would be delighted
to provide, upon request, all instances of the spin-glass
problems used in this work.
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Supplemental Information: Taming a
non-convex landscape with dynamical
long-range order: Memcomputing the

Ising spin glass

I. CORRESPONDENCE BETWEEN
STATISTICAL PHYSICS AND

COMBINATORIAL OPTIMIZATION

The problem of finding the ground state of a system in
statistical physics is an optimization problem for which
there is an extensive vocabulary in computer science [1].
It may be useful for the reader familiar with physics to
have some notion of this correspondence and we include
a short discussion here to that effect.

A Hamiltonian expressed as a sum over interactions be-
tween spins may be expressed as a constraint satisfaction
problem where each term in the Hamiltonian is regarded
as a constraint on the variables. For example, the Ising
Model

E = −
∑
〈ij〉

Jijsisj , si ∈ {−1, 1}, (9)

is equivalent to a weighted constraint satisfaction prob-
lem, where each interaction is expressed as an exclusive-
OR (XOR), or sum modulo-2 between the associated bi-
nary variables, bi = (si + 1)/2, jij = (1 − sgn(Jij))/2

−Jijsisj ↔ 2|Jij | bi ⊕ bj = jij (10)

where 2|Jij | is the weight associated with the constraint.
The correspondence between these two can also be easily
seen from the fact that flipping the state of any variable
changes the state of the interaction in both cases. Trans-
formations between other constraint satisfaction prob-
lem types may be undertaken similarly. For example,
when transforming to weighted conjunctive normal form
(CNF), each interaction may be translated to two OR
constraints depending on the sign of the interaction:

−Jijsisj ↔


2|Jij | bi∨b̄j
2|Jij | b̄i∨bj

, sgn(Jij) = 1,

2|Jij | bi∨bj
2|Jij | b̄i∨b̄j, sgn(Jij) = −1,

(11)

where each constraint carries a weight and negations are
indicated with a bar, e.g., b̄. In all cases, the factor of 2
may be dropped as a global scaling of the energy.

Constraint satisfaction instances (a particular exam-
ple of the problem) may be described as being either
satisfiable (SAT), if there is an assignment of the vari-
ables which satisfies every constraint, or unsatisfiable
(UNSAT) if there is no satisfying assignment (commonly
referred to as frustrated in physical treatments).

The corresponding decision problem of determining
whether such an assignment exists, and, therefore,
whether a particular instance is SAT or UNSAT is also
referred to as SAT or satisfiablity with context generally

http://www.scipy.org/
http://www.scipy.org/
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determining which meaning is intended. The optimiza-
tion problem of determining an assignment which satis-
fies the maximum number of constraints (or maximum
total weight) is referred to as MAXSAT. Determining
the ground state of a system in statistical physics is thus
equivalent to a MAXSAT instance.

Generally, the SAT problem on 2-variable OR and
XOR constraints may be trivially solved. In the case of
the Ising model, pick the value of any spin to be +1 and
propagate this throughout the lattice where every spin
value will be determined by its neighbor. If a contradic-
tion is reached, the instance is unsatisfiable. If not, this
will construct a satisfying assignment and the instance
is equivalent to the ferromagnetic Ising model through a
gauge transformation.

Despite this, the MAXSAT problem on two variable
constraints may be quite difficult, depending on the
structure of the instance. It is known that instances
on a planar graph may be solved efficiently (in poly-
nomial time) by a perfect matching algorithm [35]. If
the graph is non-planar as in the chimera graphs used
by DWave [16] or the 3-dimensional cubic lattice used
for benchmarking here, there is no general efficient algo-
rithm known, and the problem of finding an assignment
is NP-hard [36]. This statement, however, only applies
to the worst cases and for any individual instance, and
especially for classes of randomly generated instances,
one might hope that an efficient approach exists. Con-
versely, despite the fact that an efficient algorithm exists
for planar instances, they may still present meaningful
difficulty for a solver which only uses local information.
Debate over these ideas have surrounded the benchmark-
ing studies for DWave and discussions to this effect may
be found in [15, 17, 26, 35].

II. ’RIGIDITY’ IN A CONTINUOUS
DYNAMICAL SYSTEM

The notion of ’rigidity’ arises in several areas across
physics and here we clarify what our intended meaning is
in the context of continuous dynamical systems. The con-
tinuity of these systems can give rise to behaviors inac-
cessible to their discrete counterparts [22, 23]. In partic-
ular, the presence of a continuous symmetry in the equa-
tions and its effective breakdown can give rise to behavior
analogous to zero-modes in statistical physics/field the-
ory [37]. As a consequence, along some directions of the
phase space the system can respond in a correlated, or
‘rigid’ manner in which large clusters of variables will
transition together [23].

For example, in a lattice of continuous “spins” obeying,

v̇i = −|Jij |
(
vi − sgn(Jij)σ(vj)

)
, (12)

σ(x) =


1, x > 1

x, −1 ≤ x ≤ 1

−1 −1 < x.

(13)

the system will exponentially relax to a state in which
every variable vi takes the value sgn(Jij)vj for all of
its neighbors vj . If the underlying lattice is ferromag-
netic (Jij = 1), then taking any spin to its limiting value
vi = ±1 will cause the entire lattice to transition with
it in a manner analogous to long-range order. In con-
trast, for a discrete system in the ferromagnetic state
si = 1, flipping a single spin will not cause the rest of
the lattice to transition as it will not change the sign
of any local fields. The ability of a local perturbation
to flip large clusters of spins might benefit a solver at-
tempting to satisfy a constraint while maintaining the
satisfaction of its neighbors. However, the presence of
unsatisfiable/frustrated constraints renders this impossi-
ble in the model above: in this case all spins will relax to
vi = 0 and pulling a single spin to ±1 will not propagate
through the lattice.

Any unsatisfiable spin-glass instance may be associ-
ated with one or several satisfiable instances formed by
removing any unsatisfied bonds in the ground state (see
the preceding Sec. I for a discussion of these terms in the
context of computer science). In the main text we show
that the inclusion of memory variables to the dynamical
system (12) above restores some measure of the long-
range order. These variables come in the form of con-
straint weights which act to isolate the associated satisfi-
able instance and bear similarities to strategies employed
in discrete constraint satisfaction [38, 39].

III. GENERATING INSTANCES: FRUSTRATED
LOOP INSTANCES AND INSTANCE TUNING

The problem of benchmarking MAXSAT solvers is gen-
erally hindered by the fact that the problems are NP-
hard, and, for an arbitrary instance, determining or even
confirming a solution will require exponential time [36].
For this reason, planted solution instances are commonly
employed in which instances are generated such that they
have a known solution [40].

Benchmarking studies on quantum annealing have in-
troduced the class of Frustrated Loop Hamiltonians [15,
26] in which the total Hamiltonian is written as the sum
of a set of loops containing a single frustrated bond (see
schematic in Fig. 5),

H =
∑
i

HFL,i. (14)

The loops are formed such that the planted solution min-
imizes all of the Hamiltonians HFL,i simultaneously, and
so minimizes their sum.

In order to generate these instances, we first construct
an underlying lattice which we take to be hypercubic in
D-dimensions with periodic boundary conditions. Each
loop is generated by beginning at a randomly selected site
and performing a random walk until it crosses itself. The
length, l, of the loop formed is generally required to be
above some limit, otherwise it is rejected. For instance,
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FIG. 5. A schematic representation of instance cre-
ation. Separate frustrated loops (blue and red curves) are
generated by random walking around the lattice until the walk
crosses itself. Each loop has its own Hamiltonian consisting of
Jij = 1 for all bonds except one with Jkl = −1 such that the
ground state of the loop will have one unsatisfied bond. When
the loops are combined, overlapping bonds (shown in black)
have a coupling Jij which is the sum of the contributions from
each separate loop.

the instances used by DWave use a loop length limit of
l ≥ 8 [15, 16]. It is also noted that discarding the length
limit seems to lead to very difficult instances, although
an explanation for this feature is not understood. In our
investigations of the instances, we found that discarding
the loop length limit leads to instances of widely varying
difficulty, and that both the uniformity of the difficulty,
and the time to solution (measured with simulated an-
nealing) decreased as the length limit increased. In order
to avoid the complications of a widely varying difficulty,
while generating the most difficult available instances, we
chose a length limit of l ≥ 6 for our generated instances.

In order to generate a loop, we consider planting the
ferromagnetic solution si = 1. After generating an in-
stance, any other solution may be hidden by means of
a gauge transformation. All interactions in the loop
are chosen to be ferromagnetic, Jij = 1, except one
which is selected at random to be anti-ferromagnetic
Jij = −1. The solution to the loop hamiltonian HFL,i =
−
∑
〈ij〉∈li Jijsisj is thus an assignment with one unsat-

isfied interaction.
The number of loops, M , generated must be propor-

tional to the number of sites N = LD and may be char-
acterized by a density α such that M = αN . These in-
stances are known to demonstrate a hardness peak in α
such that the most difficult instances are generated when
there are neither too few loops, in which case they do not

overlap and each may be solved separately, nor too many,
in which case the antiferromagnetic interactions tend to
be canceled by the more numerous ferromagnetic inter-
actions [15–17]. The value of α at the peak also tends
to align with the amount of frustration in the instance,
as measured by the number of unsatisfied interactions in
the ground state.

In order to generate difficult instances, in D = 2 di-
mensions we used a simulated annealing solver to test
instances across a range of α, finding that the most diffi-
cult instances lay at α ≈ 0.2, consistent with the results
on the pseudoplanar chimera graphs in [15]. For D = 3
dimensions, the optimal value of α was estimated using
the amount of frustration in the instances as suggested
in [15] and found to lie at α ≈ 0.3.

IV. AVALANCHE DETECTION AND
CORRELATION CALCULATIONS

As shown in the main text, when the timescale of
the memristors is sufficiently separated from the voltage
timescale, the system evolves in well defined events which
may be interpreted as avalanches (or instantons [23]). A
set of sample trajectories, calculated on different spin
glass instances (L = 15, D = 2, α = 0.2) in the slow
driving limit is displayed in Fig. 6. Within these trajecto-
ries avalanches are clearly discernible, but the timescales
governing them seem to grow during the simulation and
additional features such as quasi-periodic behavior (as
seen in panel 6.c at beginning time 8000) also arise. De-
tecting these events in a robust manner poses a novel
problem as we must extract a discrete event from a con-
tinuous system. Here we detail the method we used to
extract these events and compute correlations during the
largest avalanche.

The rate of change of the entire system may be con-
cisely viewed through the magnitude of the voltage
derivative vector, ~̇v(t), normalized to the number of spins,

|~̇v(t)|/N shown in Fig. 7. Avalanches manifest as sharp
spikes in the magnitude of the derivative. However, as
the simulation advances and variables begin transition-
ing together, the slowest timescale in the system tends
to increase, making a simple threshold ineffective at sep-
arating the later clusters.

Instead, we first find the convex lower envelop of the
total derivative shown in Fig. 7. This gives an estimate
of how the slowest timescale in the system changes. If the
slope at the end of the envelope exceeds a bound, its slope
is extrapolated from the previous point to avoid errors
due to the termination of the integration mid-avalanche.

The time interval of an avalanche is defined as a con-
tinuous period in which the magnitude of the deriva-
tive |~̇v(t)|/N exceeds the lower envelop by a threshold.
Choosing this threshold is performed through tuning to
the specific set of instances and will depend on system
size, dimension and memristor timescale β. The thresh-
old value t used for each set of correlation calculations
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FIG. 6. A sample of trajectories. Here we show the simu-
lation results for the same initial conditions on three different
instances (L = 15, D = 2, α = 0.2). In (a.) we see well sepa-
rated events that maintain their separation until the instance
is solved. In (b.) the longer run results in lower memristor
values and a slower voltage timescale, causing the width of the
avalanches to grow. In (c.) we see markers of quasi-periodic
behavior extending from ≈ 8000 to 10000. A scheme to de-
tect avalanches must be robust to these effects in order to be
accurate.

are: (L = 15, D = 2, t = 1 × 10−4), (L = 19, D =
2, t = 2.15× 10−5), (L = 23, D = 2, t = 8 × 10−6), and
(L = 8, D = 3, t = 4×10−6) . Within an avalanche inter-
val, we define the variables included in the avalanche as
those that changed sign and thus can affect the energy
calculated from the orthant dynamics. A few of these
configurations are shown in the main text and a more
complete selection is displayed in Fig. 8.

Once a set of avalanches has been extracted from a
simulation, we investigate the structure of the largest
avalanche by calculating the probability that a spin ly-
ing a distance r away (measured in terms of lattice steps)
from the first spin to flip is included within the avalanche.
To this end, we define a cluster configuration as being
vi = 1 if the spin is included in the cluster and 0 other-
wise. This acts as indicator variable which for an indi-
vidual cluster allow us to calculate the probability that
a spin a distance r away was flipped (recall that the lat-

tices we generate are periodic and this distance is calcu-
lated as the minimum distance of a path between the two
sites). This is then averaged across randomly generated
instances and initial conditions of the solver.

The probability obtained may be interpreted as a cor-
relation in the slow driving or instantonic limit in which
the avalanche may be regarded as occurring at an instant
in time, and calculated on the orthant dynamics of the
system. As shown in the main text, the largest avalanche
gives a finite probability for a spin anywhere in the lattice
to change sign and is thus extensive.

V. SIMULATIONS AND SOLVER TUNING

With the exception of IBM CPlex and Falcon, solvers
were implemented in Python 2.7 using the NumPy and
SciPy libraries [41]. Simulated Annealing, Parallel Tem-
pering, CPlex and the model in the main text were run
at UCSD on a single core of an Intel Xeon E5430 with
16 Gb RAM.

A. Model Simulations

In order to limit the voltages and memristors to the al-
lowed regions and make them robust to numerical errors,
the equations simulated were,

v̇i = Bvi,(−1,1)

(∑
〈ij〉

Jijxijvj

− (1− xij)
|Jij |

2

(
vi − sgn(Jij)vj

))
(15)

ẋij = βBxij ,(0,1)

(
xij
(
1− xij

)
×
( |Jij |

2

(
1− sgn(Jij)vivj

)
− γ
))

(16)

where Bx,(l,h)(·) implements the bounds to ensure inte-
gration steps that leave the region return to the fixed
points as

Bx,(l,u)(f) =


(u− x), x > u, f > 0

(l − x), x < l, f < 0

f, otherwise.

(17)

Integrations are carried out using forward Euler with pa-
rameters tuned for each set of instances to maintain the
slow driving limit, hence allowing for an easy identifica-
tion of avalanches. This tuning is not required to solve
an instance, but it is in order to detect clearly defined
avalanches. First, it was determined through tuning that
β = 1

400 with a maximum time of tmax = 25, 000 gave well
defined avalanches for L = 15, D = 2 and usually solved
instances near to t = tmax/2. In order to maintain this
limit for larger instances, the memristor timescale was
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FIG. 7. Extracting avalanches from a continuous trajectory. Avalanches display as sharp spikes in the total voltage
derivative vector of the system. Here, we have displayed the magnitude of the total voltage derivative of the system normalized
to the number of spins N for the trajectory displayed in the main text (L = 15, D = 2α = 0.2). As the timescale of the
avalanches can slow, sometimes dramatically, over the course of the simulation, the convex lower bound of the derivative is first
calculated. An avalanche interval is defined as a continuous period in which the system exceeds a threshold above this envelope
(here chosen as 0.0001). Voltages that change sign during an interval are included in the avalanche configuration as shown in
Fig. 8.

FIG. 8. A sample of detected avalanches. For the trajectory shown in the main text and the clusters detected in Fig. 7
a representative sample of the detected avalanche configurations are displayed, including the first and last avalanches in the
trajectory. Over the course of the simulation, the average size of the avalanches grows until it reaches an extensive set of spins
which can span the entire lattice.

slowed, scaling with the inverse square of the number of
spins. Slowing the memristor timescale requires increas-
ing the maximum simulation time in the same way, such
that tmax was scaled with the square of the number of
spins. For L = 15, γ = 0.65 was found to give a well de-
fined transition, but as instance size increased this value
would lead to quasi-periodic behavior more often and γ
was increased to L = 19, γ = 0.75, L = 23, γ = 0.85 and
L = 8, D = 3, γ = 0.85.

B. Simulated Annealing

Simulated annealing was implemented using a linear
schedule in β̃ (the inverse temperature) from β̃i = 0.1 to

β̃f = 2 such that at each step in the annealing a sweep
of metropolis samples across the entire lattice was per-
formed. For annealers to be most effective in a given com-
putational time, the number of cooling steps (i.e., number
of metropolis sweeps) performed on a single initial con-
dition versus the number of initial conditions attempted
must be optimized. As we are working with planted so-

lution instances, runs consisted of continued repetitions
at a fixed number of metropolis sweeps until the solution
energy was encountered or some maximum allowed time
was reached. Tuning was performed by running each in-
stance with a varying number of temperature steps in the
cooling schedule until the optimum was reached. This
was performed on 600 frustrated loop instances (d = 3,
α = 0.3, l ≥ 6) for L = 6 through 11 and the time to
solution for each run was recorded. The results of these
runs are plotted in Fig. 9 along with curves representing
the q = 0.99 quantile.

Since the intention of this work is to examine the scal-
ing for very large sizes, this analysis cannot be repeated
for all sizes we intended to run. Instead, we used the
values at small N to estimate the scaling of the optimal
number of sweeps per repetition as shown by the curve in
Fig. 9. Assuming a power law form for this dependence
led to the scaling equation

#sweepsopt = (0.052)N1.326 (18)

which was used to estimate the optimal number of sweeps
for the scaling figure in the main text. Some effort was
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FIG. 9. Tuning for simulated annealing. Simulated an-
nealing runs were performed on 600 3-D frustrated loop in-
stances for L = 6, 7, 8, 9, 10, 11 at varying number of metropo-
lis sweeps. As can be seen, if the number of sweeps is too few
the ground state is only rarely encountered. Beyond a certain
amount, more sweeps will have a negligible or slightly neg-
ative effect on the runtime. We estimated the location and
scaling of this crossover with the dark curve, allowing us to
extend the runs of this algorithm to larger sizes.

FIG. 10. Tuning for parallel tempering. Parallel tem-
pering runs were performed on 600 frustrated loop instances
for L = 6, 7, 8, 9, 10, 11 with varying numbers of replicas. For
sufficiently large sizes (L > 6) a clear optimum was observed
in the time to solution, with the number of replicas at the
optimum growing with the number of spins. The location
of these optima were used to estimate a scaling law for the
optimal number of replicas at larger sizes.

made to slightly overestimate the scaling, since a modest
overestimate has a less dramatically negative effect than
an underestimate.

C. Parallel Tempering

The parallel tempering (PT) algorithm we employed

used a ladder of temperatures linearly spaced in β̃ from
β̃h = 3 to β̃l = 0.5 which were found to produce solutions
in the fastest time. One step of the algorithm consisted
of a single sweep of metropolis sampling over all repli-
cas, followed by a single proposed exchange where repli-
cas at neighboring temperatures had their configurations
switched according to the probability,

Pexchange = min{1, exp
(

(β̃ − β̃′)(E − E′)
)
}, (19)

where E and E′ are energies of the instances. This cycle
of metropolis sweeps and exchanges was repeated until
the solution was reached. As the system size increases,
the extensivity of the energy causes exchanges to become
more rare and so the number of temperatures simulated
should be increased with the size of the system. There-
fore, in order for this implementation to run efficiently,
simulations must be run with a number of temperatures
that balances the diffusion of configurations through the
temperatures with the computational cost of metropo-
lis sweeps over the larger number of systems. In order
to estimate this, the time to solution was found for 600
frustrated loop instances (dimensions D = 3, density
α = 0.3, loop length l ≥ 6) for L = 6 through 11 as
shown in Fig. 10, along with a curve representing the
q = 0.99 quantile. As with simulated annealing, a scal-
ing law for the optimal number of replicas was extracted
and found to follow

#replicasopt = (0.066)N0.74. (20)

This allows the algorithm to transfer some computation
time to memory which ultimately became the limiting
factor in our PT simulations. While we could constrain
the memory usage of the algorithm, this would likely in-
crease the computation time, so the scaling we see in Fig.
4 of the main text may be regarded as a conservative es-
timate.

D. CPlex

CPlex was run using the python API within the IBM
ILOG CPLEX Optimization Studio version 12.7.1.0 un-
der an academic license [27]. The QUBO (quadratic un-
constrained binary optimization) form for the associated
frustrated loop instance was found through the transfor-
mation to binary variables, si = 2bi − 1 which leads to
the correspondence,

ESG = − 1
2

∑
ij Jijsisj (21)

= 1
2

∑
ij Qijbibj + C (22)

Qij =

{
−4Jij , i 6= j

4
∑

j Jij , i = j
(23)

C = −4
∑

ij Jij . (24)
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Within CPlex, problems in this form are first transformed
to a mixed integer programming (MIP) form. Unlike the
other solvers in this work, CPlex is a complete solver and
will attempt a proof of optimality along with solving the
instance. To prevent this, a callback was employed that
terminates the search once the planted solution energy
was found. Cuts were set to balance optimality and fea-
sibility in the search.

E. Falcon

The memcomputing solver, Falcon, was implemented
with MATLAB as specified in [21] as a Boolean satisfia-
bility solver which accepts instances in conjunctive nor-
mal form [34]. The transformation to CNF shown in
section I has been performed on the frustrated loop in-
stances and simulations were carried out on a single core
of an Intel Xeon 6148 with 192 GB RAM. The Falcon pa-
rameters were first tuned for the smallest size instances,
and then the same parameters have been employed to
solve all instances reported in Fig. 4 of the main text.
Since Falcon integrates differential equations numerically
(using forward Euler), it employs memory that scales lin-
early with problem size [42].

VI. FITTING

Fitting of each solver was performed with the SciPy op-
timization library’s curve fit function [41], which utilizes
non-linear least squares to fit a particular function. The

time to solution for instances was found to be approx-
imately log-normally distributed, as may be observed
from the consistent standard deviations (0.5-1.5 orders
of magnitude) found in log-space in Fig. 11. Fitting was
thus performed in log-space to estimate the worst case
time to solution from the sample maximum of the in-
stance class. For each solver, fits were performed for a
polynomial, TTS ≈ ANB and exponential TTS ≈ aebNc

trend as is displayed in Fig. 11. For Falcon, an exponen-
tial fit did not converge and so only a polynomial fit is
shown following TTS ≈ (3.4× 10−8 sec)N2.3.

For the other solvers, both a polynomial and expo-
nential fit was found to converge and so more care has
been taken in selecting the appropriate trend. Paral-
lel tempering and CPlex appear to clearly favor the ex-
ponential fit, with parallel tempering following TTS ≈
(0.0051 sec)e0.90N0.33

over the polynomial fit TTS ≈
(9.7 × 10−9 sec)N3.2, and CPlex favoring TTS ≈ (2.4 ×
10−5 sec)e4.5N0.16

over TTS ≈ (3.9× 10−7 sec)N2.6.

In the case of SA, the polynomial fit is found to fol-
low, TTS ≈ (5.0 × 10−10 sec)N3.6, while the exponen-

tial fit is TTS ≈ (1.3 × 10−10 sec)e11.N0.13

. Although
the two fits may appear close, we note that SA (as well
as PT and CPlex) could not converge for all instances
within the allotted time of one week. This suggests that
the fits may underestimate their actual scaling. In ad-
dition, in [15], frustrated loop instances were tested on
the Chimera graph and found to scale exponentially for
a variety of local search algorithms. We thus expect a
similar dependence here as well.
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FIG. 11. Fitting the Time to Solution. For each solver, the geometric average complexity of the instance class was
estimated by fitting the time to solution data for a set of 10 frustrated loop spin glasses ranging in size across several orders of
magnitude. Polynomial (TTS ≈ ANB) and exponential (TTS ≈ aebN

c

) trends were fit to the data to assess the performance
of each approach. For Falcon, only the polynomial fit was found to converge and it demonstrated the lowest exponent of all fits
(B = 2.3). All other solvers were found to scale exponentially although SA appears close to sub-exponential. However, note
that CPlex, SA and PT could not converge for all instances within the allotted time of one week. Hence, the corresponding
fits may underestimate their actual scaling.
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