
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Resonant soft x-ray and extreme ultraviolet magnetic scattering in nanostructured 
magnetic materials: fundamentals and directions

Permalink
https://escholarship.org/uc/item/1bg358tk

Author
Kortright, Jeffrey

Publication Date
2013-03-29

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1bg358tk
https://escholarship.org
http://www.cdlib.org/


1 
 

Resonant soft x-ray and extreme ultraviolet magnetic scattering in nanostructured 

magnetic materials: fundamentals and directions 

 
Jeffrey B. Kortright 

Lawrence Berkeley National Laboratory 
1 Cyclotron Road, Berkeley, CA 94720 

JBKortright@lbl.gov 
   

 

 

Theoretical and practical aspects of resonant magnetic and charge scattering in the soft x-ray and extreme 

ultraviolet spectral range are reviewed.  Intensity-only measurements are considered because they are 

more efficient than polarization-resolving measurements.  Two very different approaches are discussed 

and compared; transmission small-angle scattering described by a simple kinematical scattering model 

and specular reflection described by more complex yet standard magneto-optical formalisms.  In both 

cases the scattered intensity is seen to contain distinct terms resulting from pure-charge scattering, pure-

magnetic scattering, and charge-magnetic cross-terms, and emphasis is placed on distinguishing these 

contributions via their energy spectra and its dependence on incident polarization.  Combined with 

measurements vs. scattering vector q, both approaches provide significant capability to resolve magnetic 

and chemical structure down to nanometer length scales.  The role of and need for modeling to obtain 

reliable information from data is discussed, as are current directions and opportunities.   

PACS:  75.25.-j; 75.70.-I; 75.75.-c; 78.20.Ls; 78.70.Ck 
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Introduction 
The discovery of strong resonant magnetic terms in the atomic scattering factor expansion [1,2] 

has prompted a great deal of research using x-ray scattering to study magnetic materials that continues to 

this day.  Dipole-allowed transitions to empty, spin-polarized 3d and 4f  resonant intermediate states of 

magnetic transition metal (TM) and rare-earth (RE) elements originate from spin-orbit split 2p and 3d 

core levels, respectively, whose energies ݄ߥ of roughly 400 – 2000 eV (corresponding to wavelength λ = 

3 – 0.6 nm) fall within the soft x-ray spectral range typically served by grating monochromators.  

Transitions to the same 3d and 4f resonant intermediate states originate from the 3p  and 4d core levels, 

respectively, with 40 < ݄200 > ߥ eV (30 nm < λ < 6 nm) in the extreme ultraviolet (EUV) spectral range.  

Large element-specific magneto-optical (MO) effects at these resonances facilitate their application to 

study the spatial distribution of magnetization via angle-resolved scattering.  Using radiation from 

synchrotron and emerging free electron laser & lab-based higher harmonic generation sources [3,4], these 

element-specific MO effects bring significant new experimental opportunities.  Following introductory 

comments, this paper briefly reviews some practical theoretical and experimental considerations of 

intensity-only resonant soft x-ray & EUV magnetic scattering in the context of recent applications, and 

comments on current and future directions for extended application of these approaches.   

While resonant magnetic scattering mechanisms are essentially the same across all spectral 

regions, several practical aspects distinguish their application in the soft x-ray range [5].  One is that long 

soft x-ray wavelengths limit spatial resolution and usually, but not always, position crystalline Bragg 

peaks beyond the accessible range of scattering vector ݍത.  Low-q techniques such as small-angle 

scattering and specular reflectivity are thus well-suited for soft x-ray studies.   Another is that strong soft 

x-ray absorption significantly limits penetration into samples and requires in-vacuum measurement.  This 

strong absorption also means that the imaginary part of relevant scattering factors or optical constants 

must be included in calculations of scattering effects, while in the hard x-ray range absorptive terms are 

often small and ignored.  These attributes make soft x-ray resonant scattering well-suited to study 

magnetic behavior in nanostructured materials, thin films and layered heterostructures, and near-surface 

regions of bulk magnetic and other correlated electron systems.   

The term scattering encompasses many different processes and types of measurements and can 

mean rather different things to different researchers.  Here we take scattering to mean resonant elastic 

scattering measured as a function of scattering angle 2θ, x-ray energy hν, incident and possibly scattered 

x-ray polarization, applied magnetic field H, temperature, and possibly other parameters.  Angle-resolved 

scattering is practiced in several different scattering geometries, all of which are relevant to resonant 

magnetic scattering.  In all cases structural correlations are probed along the scattering vector ݍത ൌ ത݇௙ െ
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ത݇௢ where ത݇௢ and  ത݇௙ are the wave vectors of the incident and scattered wave fields as in Figure 1.  Below 

we consider the cases of scattering in transmission from thin films and specular reflectivity as in Figure 

2(a) and (b).  

Finally, thinking in terms of resonant magnetic scattering can be misleading because resonant 

(and non-resonant) charge scattering always accompanies the magnetic part.  Thus we must consider the 

interplay between charge and magnetic scattering amplitudes when planning and interpreting 

experiments.  This interplay is both ubiquitous and strongly dependent on specific samples and different 

parameters as detailed below.  The combined sensitivity to chemical and magnetic properties is 

significant as the two are usually highly correlated in space and it is frequently the imperfections in these 

correlations that are of interest in specific material systems.  The ultimate utility of resonant soft x-ray 

magnetic scattering will thus depend on how well we can measure and model often-subtle details in terms 

of mixed chemical and magnetic heterogeneity.   

Theoretical and practical considerations 
The resonant atomic scattering factor f(hν) expansion [1] provides the fundamental description of 

the distinct charge and magnetic x-ray scattering amplitudes as 

 ݂ ൌ ൫݁̂௙
כ · ݁̂௢൯ ௖݂ െ ݅൫݁̂௙

כ ൈ ݁̂௢൯ · ෝ݉ ௠݂ଵ ൅ ൫݁̂௙
כ · ෝ݉ሻሺ݁̂௢ · ෝ݉൯ ௠݂ଶ ൅  (1)                        .ڮ

Here ݁̂௢ and ݁̂௙
  are unit polarization vectors of the incident and scattered wavevectors, respectively, and כ

ෝ݉  is a unit vector along the axis of local magnetization of the scattering atom. The ௖݂, ௠݂ଵ, and ௠݂ଶ terms 

describe distinct linear combinations of matrix elements between initial and resonant intermediate states 

resolved according to spherical harmonics ௅ܻெ and hence angular momentum increment of the transitions 

involved.  Only electric dipole (EL with L = 1, ΔM = -1, 0, 1) terms are retained in (1).  We group the 

non-resonant charge term (approximately the atomic number Z) together with the resonant charge term in 

௖݂ as they have the same polarization dependence.  Distinct polarization dependencies describe the 

different interactions between the radiation field and the charge, ௖݂, and 1st & 2nd order magnetic terms, 

௠݂ଵ & ௠݂ଶ, respectively.  These polarization dependencies reveal that  ௠݂ଵ manifests as well-known 

magnetic circular dichroism effects while ௠݂ଶ manifests as magnetic linear dichroism.   

The polarization of incident and scattered radiation fields and the direction of local atomic 

moments are key parameters in resonant magnetic scattering.  Transverse polarization can be described 

alternatively by orthogonal linear (݁̂௦ and ݁̂௣) or opposite helicity circular (݁̂ା and ݁̂ି) basis vectors [6].  

Linear and circular polarization basis vectors are related by 
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݁̂௦ ൌ ቀ1
0ቁ , ݁̂௣ ൌ ቀ0

1ቁ , ݁̂ା ൌ ௘̂ೞା௜௘̂೛

ଶ
ൌ ଵ

√ଶ
ቀ1

݅ ቁ , ݁̂ି ൌ ௘̂ೞି௜௘̂೛

ଶ
ൌ ଵ

√ଶ
ቀ 1

െ݅ቁ.                                    (2) 

As in Figure 1 the atomic moment  ෝ݉  can have longitudinal, transverse, and polar projections (݉௟, ݉௧, 

݉௣, respectively) relative to the scattering plane and the Cartesian axes.  The total scattering angle is 2θ.   

Considering the polarization dependence of just the first two terms of (1) and using a linear (s- and p-

polarization) basis yields an expression for the s- and p-polarized components of the scattered radiation 

field ܧത௙ in terms of the incident field  ܧത௢ [7], namely 

൭
௦ܧ

௙

௣ܧ
௙൱ ൌ ൤ ௖݂ ቀ1 0

0 cos2ߠቁ െ ݅ ௠݂ଵ ൬
0 ݉௣sinߠ ൅ ݉௟cosߠ 

݉௣sinߠ െ ݉௟cosߠ ݉௧sin2ߠ ൰൨ ൬
௦ܧ

௢

௣ܧ
௢൰,               (3) 

where the 2-by-2 matrices account for the scattering effects on the polarization components of the fields.  

Completely different polarization behavior is exhibited by the charge and 1st order magnetic term.  Charge 

scattering preserves polarization aside from the suppression in the p channel that yields the Brewster 

angle at 2θ ≅ 90°.  The off-diagonal elements associated with ௠݂ଵ yield s to p scattering (and vice versa) 

due to both ݉௣ and ݉௟ components, p to p scattering from the ݉௧ component, and no s to s scattering.   

All Faraday and Kerr magneto-optical effects familiar in the near-visible spectral region are 

embodied in (1) – (3) [8, 9].  This leads naturally to questions of the value and feasibility of 

measurements in which the polarization state of scattered x-rays is measured directly, as opposed to 

intensity-only measurements that do not resolve polarization.  Linear polarizers required for polarization 

analysis result from charge scattering, typically specular reflectivity, as described by the 1st term of (3).  

At the Brewster angle the ratio of s- to p-polarized scattered intensity, หܧ௦
௙ห

ଶ
/หܧ௣

௙ห
ଶ
, can be quite high, 

although absolute reflected intensities from x-ray mirrors are quite low and generally decrease with λ.  

Multilayer interference films increase reflectivity [10, 11, 12,13] and enable polarization analysis, 

although these devices tend to be chromatic and also suffer from reduced efficiency as λ decreases.  Phase 

retarding optics based on multilayers, used with linear polarizers to resolve circular from unpolarized 

radiation or to convert linear to elliptical polarization, are even more challenging in the soft x-ray range 

due to low efficiency and chromaticity [10, 14, 15].  Circular polarizers utilizing magnetic circular 

dichroism have been demonstrated [16, 17, 18] and are also very chromatic.  Thus, while polarization 

measurements of scattered beams are possible in favorable cases, they are inefficient and not generally 

feasible because of limited performance of required optical elements.  This places added emphasis on 

understanding intensity-only measurements of magnetic scattering effects in the soft x-ray spectral range 
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[19], which we consider here.  Of course, polarization-resolved measurements can be of considerable 

value when they are made. 

The resonant energy dependence of the ௖݂, ௠݂ଵ, and  ௠݂ଶ terms are distinct yet related and their 

absorption spectroscopy is a rich subject in itself [20, 21].  While we do not review these spectroscopic 

aspects in detail here, it is important to realize that they determine the hν-dependence of resonant 

scattered intensities in useful ways as demonstrated below.  The real and imaginary parts of ௖݂ ൌ ௖݂,ଵ ൅

݅ ௖݂,ଶ and  ௠݂ଵ ൌ ௠݂ଵ,ଵ ൅ ݅ ௠݂ଵ,ଶ for a metallic Fe film [9] and Co in a Co/Pt multilayer [22] are shown 

below in Figures 7(b) and (c) across their L3 and L2 edges.  The real and imaginary parts of both charge 

and magnetic terms are related via the Kramers-Kronig dispersion relation.  The strong L3 and L2 

resonance lines are characteristic of 3d transition elements, and for ௖݂,ଶ their sum is proportional to the 

number of d holes.  The characteristic dipolar spectral shape of  ௠݂ଵ,ଶ can be analyzed in terms of sum 

rules to obtain the ratio of spin to orbital moments [23, 24, 20].  Compared to relatively featureless (band-

like) resonant lines of itinerant magnetic metals, absorption spectra of 3d TM elements in oxides and 

other correlated systems are often richer as crystal field effects split spectral lines into distinct multiplets 

providing information on filling and symmetry of the 3d manifold [21].  The spectral dependence of  

௠݂ଶ,ଶ tends to resemble the derivative of  ௠݂ଵ,ଶ and is quite weak compared to it [9, 25]; this term has not 

generally been considered explicitly in soft x-ray resonant scattering experiments to date.  In principle the 

3d transition metal M3 and M2 lines at 3p core levels contain similar information to the L3 and L2 lines at 

the 2p core levels and have been used in magnetic spectroscopy and scattering [26, 27, 28].  The spin-

orbit coupling in the 3p levels is small compared to that in the 2p levels, so that well-separated L3 and L2 

lines show significant overlap for the M3 and M2 lines, and indeed the lines for adjacent elements show 

some spectral overlap.  For magnetic rare earth elements the M5 and M4 lines originating from the 3d core 

levels are even stronger than the L3 and L2 lines for the 3d transition series and exhibit larger spin-orbit 

splitting.  The author is unaware of resonant magnetic spectroscopy or scattering at the rare earth N5 and 

N4 lines sampling the 4f resonant intermediate states from the 4d core levels.   

Scattering can be measured in any of the common scattering geometries illustrated in Figure 2.  

The geometry chosen should optimize the coupling of ݍത to the magnetic and charge structure of interest, 

consistent with sample and other constraints.  Depth-dependent structure in films is best studied using 

specular reflectivity (Fig. 2a) that varies ݍത along the sample normal [29, 30], while in-plane thin film 

structure is well-studied in symmetric transmission geometry (Fig. 2b) if transmission samples are 

feasible [22, 31, 32].  Off-specular reflectance (Fig. 2c) and grazing incidence (Fig. 2d) geometries also 

provide an in-plane ݍത component to study in-plane structure that is most commonly thought of as 
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originating from interfacial contrast [33, 34], although magnetic heterogeneity internal to films also yields 

measurable scattering in these geometries [35].  If variable applied magnetic fields of even modest 

strength are desired, the incorporation of suitable magnets in an ultrahigh vacuum chamber generally 

limits the scattering angles 2θ  and geometries accessible.  Such instrument-related considerations imply 

that no single scattering chamber is likely to optimize the angle- and field-dependent requirements of all 

measurements of interest. 

The spatial resolution of scattering in real space is inversely proportional to the q-range measured 

in reciprocal space, and since |ݍത| ൌ  we can expect to resolve smaller structure at the TM L3,2 ,ߣ/ߠ݊݅ݏߨ4

and RE M5,4 edges than at the TM M3,2 and RE N5,4 edges.  However, like in the visible regime [36], 

calculations [37, 38] and measurements [37, 39] confirm that soft x-ray reflectance measurements, e.g., 

are sensitive to magnetic layers much thinner than could be resolved according to this Fourier limit.   

Element-specificity through spectroscopy brings an added avenue to spatial resolution [40], which thus 

can be usefully considered to arise from different origins.   

The sensitivity to different magnetic projections evolves systematically with scattering angle 

according to (1) and (3) as in Figure 3.  In this figure solid lines give the θ dependence of ௠݂ଵ amplitudes 

or the Reሾ ௖݂
כ

௠݂ଵሿ intensity cross term, while dashed lines correspond to the ௠݂ଵ
כ

௠݂ଵ intensity term.  

Dominant sensitivity to longitudinal moments at low angles is evident, as is dominant sensitivity to polar 

moments in the high angle limit.  Transverse moment sensitivity is maximum at θ  = 45°, where 

polarization dependent sensitivity to ݉௟ and  ݉௣ also exists.  The fm1 amplitudes change sign as each 

projected ෝ݉  component changes sign, and how this manifests in the scattered intensity will depend on 

whether the fm1 amplitudes contribute as pure-magnetic or charge-magnetic terms, on 2θ, and on the 

specific x-ray polarization under consideration.  Measured scattered intensities will generally contain 

different magnetic contributions involving different moment projections as in (3) that can lead to many 

terms in model expressions.   Examples discussed in detail below involve limited moment orientations for 

simplicity, although many studies cited involve more complicated distributions of moments. 

Magnetic scattering in the kinematical limit 
Distinct charge and magnetic terms in the scattering amplitude lead to distinct terms in the 

scattered intensity.  Some useful generalizations regarding the interplay between ݁̂௢ and scattering 

intensities result from examining the dominant sensitivity to longitudinal magnetization (ml) at small 2θ.  

In the limit that θ → 0 equation (3) reduces to 
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൭
௦ܧ

௙

௣ܧ
௙൱ ൌ ൬ ௖݂ െ݅݉௟ ௠݂ଵ

݅݉௟ ௠݂ଵ ௖݂
൰ ൬

௦ܧ
௢

௣ܧ
௢൰.                                                     (4) 

Because of the large resonant magnetic circular dichroism associated with the ௠݂ଵ term, it was natural for 

early soft x-ray magnetic scattering experiments [41, 42, 43, 44,  45, 46] to utilize circular incident 

polarization to obtain sensitivity to magnetic structure.   Assuming opposite helicity circular polarization 

as incident radiation yields 

േܫ  ൌ ௖݂
כ

௖݂ݏ௖௖ሺݍሻ േ 2Reሾ݉௟ ௖݂
כ

௠݂ଵሿݏ௖௠ሺݍሻ ൅ ݉௟
ଶ

௠݂ଵ
כ

௠݂ଵݏ௠௠ሺݍሻ                                   (5) 

containing pure-charge and pure-magnetic contributions plus the charge-magnetic cross term that reverses 

sign with helicity.  Here we have introduced partial structure factors ݏ௜௝ሺݍሻ containing the spatial 

frequency dependence of the indicated pair correlations.  The circular difference  

ାܫ   െ ିܫ  ൌ 4Reሾ݉௟ ௖݂
כ

௠݂ଵሿݏ௖௠ሺݍሻ                                                          (6) 

leaves only the charge-magnetic cross term [47, 22].  The circular sum 

ାܫ  ൅ ܫି ൌ 2ሺ ௖݂
כ

௖݂ݏ௖௖ሺݍሻ ൅ ݉௟
ଶ

௠݂ଵ
כ

௠݂ଵݏ௠௠ሺݍሻሻ                                            (7) 

yields just pure-charge and pure-magnetic terms [22,48].  Considering linear incident polarization yields  

௟௜௡ܫ  ൌ ௖݂
כ

௖݂ݏ௖௖ሺݍሻ ൅ ݉௟
ଶ

௠݂ଵ
כ

௠݂ଵݏ௠௠ሺݍሻ ൌ ሺ ܫା൅ ିܫሻ/2 ,                                   (8) 

consistent with the understanding that ݁̂௦ and ݁̂௣ are a coherent superposition of ݁̂ା and ݁̂ି, and vice versa.  

Thus, for small 2θ, linear incident polarization yields pure-charge plus pure-magnetic intensity terms and 

is equivalent to the intensity obtained by summing opposite helicity circular incident polarization.  

Whether linear or circular polarization is more appropriate for a given study depends on the conditions 

specific to that study, including whether or not one is interested in resolving the q-dependence of the 

different partial structure factors.  With judicious parameter choice, partial or complete separation of 

different contributions of specific interest may be possible.  With this goal in mind, the scattering 

asymmetry defined as ሺ ܫାെ ିܫ ሻ/ሺ ܫା൅ ିܫሻ contains a complex combination of all possible terms and so 

may be less useful in isolating different contributions of interest.   

This simple kinematical, or single scattering, model thus makes clear and specific predictions 

about magnetic scattering and its interactions with charge scattering and polarization.  In the course of 

studying several systems these predictions have tested as briefly outlined below.   
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Testing the kinematical theory in small­angle scattering geometry 
Thin films having pronounced perpendicular magnetic anisotropy (PMA) are currently of interest 

in the quest for higher density magnetic storage media [49].  Co/Pt multilayer films are prototypical high 

PMA films and, depending on their microstructure, may or may not form submicron domains to lower 

magnetostatic energy at remenance.   Such films have provided numerous opportunities to test the 

theoretical model above.   Because the stripe domains in PMA films have moments predominantly normal 

to the film plane (arrows in Fig. 2b) and relatively large size, the transmission scattering geometry is 

ideally suited to study such structures that closely approximate expressions for the low angle, longitudinal 

limit developed above.   

 Transmission scattering vs. in-plane q at the Co L3 edge from Co/Pt at the coercive and saturation 

applied fields (HC and HS, respectively) are plotted as open symbols in Figure 4.  These data were 

measured using linear (s) incident polarization.  At the coercive field (HC = 0.1 T) a strong low-q peak 

corresponds to a spatial wavelength 2π/q = 150 nm.  This peak disappears at saturation, confirming that it 

results from the magnetic domain structure, leaving a weaker peak at higher q that appears to be non-

magnetic in origin.  Magnetic microscopy confirms that the low-q peak results from magnetic domain 

scattering.  Atomic force microscopy of the surface morphology confirms that the higher q peak 

corresponds to the surface height power spectrum characteristic of the polycrystalline grain size in these 

films [22].   The q dependence of this scattering is thus consistent with relatively distinct and sharp pure-

magnetic and pure-charge correlation lengths, represented by the low-q peak at HC and the high-q peak, 

respectively.  The position of the pure-magnetic peak gives a model-independent measure of the 

ensemble-average, up-down stripe domain period. 

The field dependence of measured intensity at the low-q peak through a major hysteresis loop is 

shown in Figure 5.  Weak scattering at saturation persists until the first reverse domains emerge at the 

nucleation field HN.  The scattering rises rapidly to a maximum at the coercive field HC where the widths 

and number of up and down stripe domains are roughly equal, and returns to the same low value as the 

last domains disappear.  The scattering hysteresis loop gives an ensemble-average, microscopic view of 

how magnetization heterogeneity evolves at a specific spatial frequency.  This is distinctly different from, 

and yet consistent with, traditional magnetometry that senses the macroscopic average of the 

magnetization through the reversal cycle.  The symmetry of the scattering hysteresis loop is consistent 

with the pure-magnetic origin of this scattering, whereby ௠݂ଵ
כ

௠݂ଵ always adds to a weak ௖݂
כ

௖݂ background 

with equal intensity on both branches of the major hysteresis loop.    
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The energy dependence of the scattering provides yet another test of the kinematical model 

predictions.  Figure 6 shows such scattering spectra measured at both HS and HC at q values 

corresponding to the magnetic and the intergranular peaks in Fig. 4.   According to (8) these spectra 

should be fit by linear combinations of pure-charge and pure-magnetic terms.  As developed in Ref. [22], 

the fits (lines) to these data are well-described by combinations of pure-charge and magnetic contributions 

using the measured ௠݂ଵ and ௖݂ spectra for Co shown in Fig. 7(b) and (c).  In particular, the scattering 

spectrum in Fig. 6a at the low-q magnetic peak and HC is fit using only ௠݂ଵ
כ

௠݂ଵ, and at 1 T with a flat 

intensity scaled by the sample’s transmission spectrum.  The spectrum measured at the high-q peak at HS 

in Fig. 4b is well modeled as a pure-charge spectrum in which both resonant Co and non-resonant Pt 

charge scattering factors contribute.  At HC this high-q peak is modeled by the same charge spectrum  

plus a small amount of resonant Co ௠݂ଵ
כ

௠݂ଵ.   

All of the resonant scattering measured using linear polarization from these Co/Pt samples is 

consistent with eqn. (8) that the intensity is described as a combination of pure-charge and pure-magnetic 

scattering.  The prediction that intensity measured using linear polarization is equivalent to the average of 

intensities measured using opposite helicity circular polarization was quantitatively confirmed in a 

separate study of scattering from dense assemblies of super-paramagnetic Co nanoparticles [48].  This 

study also considered a random 3-dimensional distribution of interparticle moment orientations and 

developed a simple model to determine if data indicate thatinterparticle magnetic correlations are 

significant.  The strong magnetic scattering from the Co/Pt multilayer system, and related films exhibiting 

strong PMA have been used to study magnetic domain memory [50, 51, 52], competing interactions 

within magnetic multilayer films [53, 54], holographic reconstruction of domain images [55], phase-

retrieval imaging [56], and most recently as test objects in XFEL measurements [57,18].    

Specular reflectivity:  x­ray magneto­optical Kerr intensity effects 

 Resonant soft x-ray specular reflectivity studies to obtain depth-resolved magnetization and 

chemical information extend near-visible magneto-optical Kerr effects to benefit from element-specificity 

and an extended q range.  Formalisms developed for layered structures in the visible [8] are readily 

extended into the x-ray regime [9, 58].  As mentioned above, depth-resolving capabilities in the soft x-ray 

range can be considered to originate from both spectroscopic and q-resolved sensitivity, and are 

maximized by combining information from both approaches [30,40].  Compared to the kinematical model 

considered above, reflectivity studies of layered systems involve multiple reflections from internal 

interfaces and so are dynamical in nature [9, 59].  In such cases modeling is complicated by the 

compounding of strong resonant spectroscopic and structural phase contributions in reflected amplitudes.   
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Such considerations imply that careful modeling of data is more critical in reflectivity than in 

transmission studies.          

 Optical models describing soft x-ray Kerr effects are based on a second-rank tensor description of 

the dielectric constant or refractive index.  The dielectric tensor is assumed to have the form  

ߝ ൌ ݊௖
ଶ ቌ

1 ݅ܳ݉௣ െ݅ܳ݉௟
െ݅ܳ݉௣ 1 ݅ܳ݉௧

݅ܳ݉௟ െ݅ܳ݉௧ 1
ቍ                                                      (9) 

where ݊௖ ൌ ሺ݊ା ൅ ݊ିሻ/2 gives the isotropic charge part of the refractive index and ܳ ൌ ሺ݊ା െ ݊ିሻ/݊௖ 

gives the MO response [9].  When mapped onto ത݇௢ and  ത݇௙ and using matrices describing propagation 

through uniform media and continuity at interfaces, interference effects in complex magnetic structures 

are readily described via matrix multiplication [8].  The resulting Kerr matrix of reflection coefficients 

determines reflected from incident field components,  

൭
௦ܧ

௙

௣ܧ
௙൱ ൌ ቀ

௦௦ݎ ௣௦ݎ
௦௣ݎ ௣௣ݎ

ቁ ൬
௦ܧ

௢

௣ܧ
௢൰,                                                            (10) 

from which polarization and intensity effects are evaluated.   

 Magneto-optical techniques in the visible spectral regime frequently measure polarization 

changes on reflection of incident linear polarization.  While polarization-resolved soft x-ray MO 

measurements have been demonstrated [11, 60], they are non-trivial as discussed above and we consider 

here intensity-only signals.  In particular, we look for relationships between the spectral response of 

reflected intensities using circular and linear polarization and their origin in pure-charge, pure-magnetic, 

and charge-magnetic terms as found above in the simple kinematical scattering model (eqns. (5) – (8)).  

Using the MO formalism just outlined, we evaluate reflection spectra under different conditions for a 

simple, hypothetical magnetic heterostructure comprised of an idealized Fe(3 nm)/Co(10 nm) magnetic 

bilayer on Si in which interfacial roughness and interdiffusion are absent and the surface is assumed to be 

free of oxidation and contamination.  The charge and magnetic optical constants used to describe Fe [9] 

and Co [22] are in Figure 7(c) and (d), respectively.   

 First we consider the MO response in the small-angle, longitudinal ෝ݉  limit for this layered 

system as done above for transmission scattering.  Reflectances ܴା, ܴି, ܴ௦, and ܴ௣ are evaluated for the 

different circular and linear incident polarizations indicated as functions of both  ݄ߥ and 2ߠ and for both 

parallel and antiparallel alignment of ݉௟ in each layer.  Figure 7(a) shows ܴା and ܴି spectra at 2θ = 20° 
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for the case when ݉௟ for each layer are aligned parallel as for ferromagnetic coupling.  Figure 7(b) shows 

ܴା െ ܴି spectra for both parallel and antiparallel alignment of the Fe and Co moments as indicated.  The 

sign of the resonant ܴା െ ܴି peaks at the Fe and Co resonant lines is the same when their moments are 

parallel, and opposite when antiparallel.  This indicates that  ܴା െ ܴି is dominated by charge-magnetic 

interference scattering consistent with (6) and, more importantly, that such spectra provide a relatively 

direct measure of the sign of interfacial exchange coupling of longitudinal moments.  This spectroscopic 

approach to determine the sign of exchange coupling has not yet been widely utilized in soft x-ray 

measurements [61], even though such energy spectra are straightforward to obtain.  While relatively 

direct, this approach to determine the sign of exchange coupling would best be applied in conjunction 

with modeling to ensure that structural imperfections or interference features do not complicate 

interpretations [62, 63]. 

In looking for evidence of pure-charge plus pure-magnetic intensity terms using linear 

polarization, as in (7) and (8), we find that the pure-magnetic effects are observed in calculations where 

different polarization components are retained to give Kerr rotation, and are less observable in intensity 

measurements.  The small size of the pure-magnetic contribution relative to the pure-charge contribution 

in reflection, compared to that observed in the transmission scattering example above, results from the 

relative size of the diagonal and off-diagonal terms in (9).  The relevant resonant optical parameters 

,௖ߜ ௠ଵߜ ا 1  and  ߚ௖, ௠ଵߚ ا 1 enter in the index of refraction as ݊௖ ൌ 1 െ ௖ߜ ൅ ௖ߚ݅ ؆ 1, while 

ܳ ؆  െߜ௠ଵ ൅ ௖௠ଵߚ݅ ا 1.  Thus in reflection the charge scattering is referenced to the vacuum value of 1, 

while the purely resonant magnetic contribution has no contrast with the nonmagnetic vacuum.  In the 

kinematical theory developed above, only contrast internal to the sample is considered, yielding magnetic 

scattering of the same order as the charge scattering as in (4) – (8) and Figs. 4-6.   

A notable exception to this predominance of pure-charge over pure-magnetic terms in linear 

intensity measurements are transverse MO effects, i.e., changes in ݉௧, that act on p-polarization and are 

maximized as θ approaches the Brewster angle where charge scattering is most strongly suppressed.  This 

is illustrated in Figure 8 for the model bilayer where ܴ௣ሺ݄ߥሻ is plotted for 2 cases; one with ݉௧ ൌ 1 for 

Fe and െ1 for Co (red), and the other for ݉௧ ൌ 0 for both layers (blue).  The ratio of intensities in these 

two cases is roughly 103 over the entire spectral range because of the large suppression of the charge 

scattering.  ܴ௣ is quite small in both cases.  When ݉௧ ് 0  ܴ௣ is independent of its sign, so that the 

enhancement in intensity above the ݉௧ ൌ 0 case goes like  ܳଶ and this scattering is pure-magnetic in 

origin.  Away from θ = 45° charge scattering is stronger and charge-magnetic interference intensity can 

easily overshadow the pure-magnet contribution.  While this transverse intensity effect is maximized for 
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p-polarization, it is also present for circular polarization that has partial p-character.  Transverse MO 

effects have been used in a Sm-Co/Fe exchange spring couple to observe the transverse moment in the 

interfacial domain wall within the soft Fe layer resulting from its coherent rotation during reversal [64], 

and in other settings [65, 66, 26, 67, 68].    

To summarize this very brief discussion of intensity-only resonant magnetic reflectivity effects, 

circular polarization is sensitive to longitudinal and polar and moments and ܴା െ ܴି removes strong 

pure-charge and weak pure-magnetic contributions to isolate intensity with charge-magnetic character.  

Transverse moments show up most strongly using p-polarization and have pure-magnetic charge-

magnetic contributions.  Reflectivity with incident p-polarization is insensitive to ݉௟ and ݉௣.  However, 

circular polarization is sensitive to changes in  ݉௧ because it is composed of both s- and p-polarization 

components.  Thus intensity-only measurements are sensitive all moment orientations provided suitable 

polarizations are used and careful analysis is made.   Three-dimensional moment distributions vs. depth 

can be resolved with intensity-only intensity measurements with careful modeling [39] that benefit from a 

large 2θ range in which the weighting of different projections varies systematically.   

As for the kinematical scattering model developed above, distinct ௖݂
כ

௖݂, ௠݂ଵ
כ

௠݂ଵ, and Reሾ ௖݂
כ

௠݂ଵሿ 

intensity contributions in reflection are evident through the symmetries they display with changes in ෝ݉  

and ݁̂௢.  The kinematical model ignores polarization changes within the sample on scattering, while the 

MO formalism explicitly accounts for polarization changes as wave fields propagate and interfere within 

samples.  This yields rich and complex resonant behavior containing much information that in turn 

requires careful modeling to extract.    

Current directions and future opportunities 

 Considering the importance of magnetic materials that are structured at nanometer and greater 

length scales in both fundamental and applied settings, resonant soft x-ray scattering studies offer much 

potential to gain relevant, new insight.  Several current directions and future opportunities and challenges 

are briefly mentioned here.   

  Resonant x-ray scattering is compatible with ultrafast studies using visible laser or other pump 

sources to probe ensuing magnetization (and charge) dynamics.  Recent studies involve both specular 

reflectivity and transmission scattering modes [69, 18, 57, 61, 67, 68].  These early ultrafast studies are 

revealing new details regarding ultrafast spin dynamics that are yet to be fully understood.  To date, 

reflectivity studies have focused primarily on element specific dynamics using resonant sensitivity and 

observed changes are usually assumed to be magnetic in origin.  More information will be obtained from 
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such measurements by combining careful modeling of temporal, depth, and spectral dependence of 

resonant  ௖݂ and ௠݂ଵ since both can exhibit dynamic responses.  Furthermore, laser-pump x-ray probe 

studies to date have generally measured x-ray signals originating from the same sample volume that is 

photo-excited by the laser.  Soft x-ray skin depths can be significantly greater than visible pump skin 

depths.  This points both to the need for care in interpreting resonant magnetic scattering signals in 

general, and to new opportunities to study how energy flows out of the photo-excited region into deeper 

regions of samples.   

 We have emphasized here that the energy dependence of resonant magnetic scattering or 

reflectance can contain much information regarding the specific contributions to scattering and how they 

vary with q.  Indeed in the domain scattering example, measured charge and magnetic scattering factors 

were used to fit the scattering spectra and further validate the kinematical scattering model.  In this case 

care was taken to measure the relevant absorption spectra with a minimum of residual artifacts.  However 

the availability of accurate resonant ௖݂ and ௠݂ଵ spectra to describe regions of interest in specific samples 

is not certain for different reasons.  One is that accurate absorption spectra from buried regions of samples 

are not always available experimentally [9].  More fundamentally, one’s goal may be to determine 

unknown spin-dependent electronic structure that exists only at buried interfaces between chemically 

dissimilar materials.  In such cases, self-consistent modeling of both the ݄ߥ- and q-dependence of 

measured reflectivity data, for example, would help to ensure that resulting  ௖݂ and ௠݂ଵand their spatial 

variation is as accurate as possible.  Progress on such self-consistent modeling of the spatial and spectral 

variation of ௖݂ and has recently been reported in studies of off-stoichiometric subsurface layers in SrTiO3 

crystals [70, 71].  Such modeling is effectively a form of generalized spectroscopic ellipsometry that 

benefits from large ܴሺݍ,  ሻ datasets readily available at synchrotron sources.  Extensions to includeߥ݄

௠݂ଵ spectral modeling should be straight-forward. 

An implicit assumption above is that (spherically symmetric) E1 ௖݂ and ௠݂ଵterms adequately 

describe the relevant scattering processes.  While this may be true in some cases, others of current and 

future interest will involve added anisotropies beyond those considered here.  Examples of such cases 

include magnetism in complex oxides, multiferroic systems, and heterostructures in which interfacial 

properties of interest may have different or even unknown local symmetries.  In addition to the ௠݂ଶ term 

describing magnetic linear dichroism, higher order electric and magnetic multipole terms describing other 

anisotropies will exist in specific cases [1, 72, 73, 74, 75, 76].  Added anisotropies will generally add 

terms and possibly dimensions to the dielectric tensor, and more amplitudes will yield more intensity 

contributions (both pure- and cross-terms) that may or may not be simply separable.  Again, this 

complexity presents both analytical challenges and opportunities.   
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Conclusions 
 The sensitivity of resonant soft x-ray scattering to magnetic and charge structure suggests that its 

use will continue to grow.  Considerations discussed here reveal a rich parameter-space in which resonant 

magnetic scattering can be beneficially applied to study a wide range of phenomena in magnetic systems.  

In addition to the polarization and magnetization dependence of distinct charge and magnetic 

contributions, element-specific spectroscopic differences and angular dependent sensitivity to the spatial 

distribution of scattering centers all provide distinct opportunities to gain new insights into specific 

questions of fundamental and applied interest. While the planning for and interpretation of experimental 

results requires careful attention, the availability of suitable instrumentation may also limit the growth in 

the application of these approaches.     
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Figure 1.  A generalized scattering diagram in which the difference of incident and scattered wavevectors 
defines the scattering vector ݍത ൌ ത݇௙ െ ത݇௢ and scattering plane.  The incident and scattered polarization 
vectors ݁̂௢,௙ are typically described in terms of orthogonal linear components in (p) and perpendicular to 
(s) the scattering plane.  The atomic magnetization vector  ෝ݉  can in general have longitudinal (݉௟), 
transverse (݉௧) and polar (݉௣) components.  The ෝ݉  components are defined such that ݉௟ and ݉௣ are in 
the scattering plane perpendicular and parallel to  ݍത, respectively, and ݉௧ is out of the scattering plane.  
This 2-dimensional scattering plane is often a good approximation when scanning an aperture detector 
about an axis.  When using a 2-dimensional detector one must consider the appropriate range of scattering 
planes, vectors, and moment projections. 
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Figure 2.  Common scattering geometries and the associated wave- and scattering-vectors.  Specular 
reflection (a) and symmetric transmission (b) geometries position the ݍത along the surface normal and in 
the film plane and optimize coupling to in-depth, and in-plane structure, respectively.  Off-specular 
reflectance (c) and grazing incidence (d) geometries provide both in-plane and out-of-plane  ݍത 
components.  In general scattered intensities can measure intensity using a point detector corresponding to 
a small volume of ݍത-space, or via 2D detectors sampling a larger range of ݍത-space for a fixed ത݇௢.   
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Figure 3.  Sensitivity of magnetic scattering to the longitudinal (red), transverse (blue), and polar (green) 
magnetization components as a function of scattering angle.  Solid lines correspond to charge-magnetic 
intensity terms while dashed lines correspond to pure-magnetic terms.   
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Figure 4.  Resonant scattering versus in-plane spatial frequency q near the Co L3 peak measured a 
transmission scattering geometry from a Co/Pt multilayer having strong perpendicular anisotropy.  Open 
symbols are intensity measured near remanence (triangles) and saturation (squares).   Filled symbols are 
scaled measurements of the power spectral density (PSD) of magnetic domains from an x-ray microscope 
image.   (After Ref. 22) 
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Figure 5.   Scattering hysteresis loop from a Co/Pt multilayer at the low-q magnetic domain peak exhibits 
low intensity when domains are absent, onset of scattering at the domain nucleation field HN (dashed 
vertical lines) and saturation of scattering at the coercive field HC (solid vertical lines).  The symmetry of 
the scattered intensity loop is consistent with its origin in pure-magnetic scattering.  (After Ref. 22) 
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Figure 6.  Resonant scattering energy spectra measured using linear incident polarization at spatial 
frequency q corresponding to the magnetic domain (a) and the polycrystalline grain (b) peak from figure 
4.  In each panel symbols are data measured near remanence (squares) and saturation triangles), and lines 
are model fits to the data as described in the text.   
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Figure 7.  (c) and (d) show the refractive and absorptive spectra, respectively, of the charge and magnetic 
optical constants for Fe and Co across their L3 and L2 edges, and are taken from Refs. 9 and 22.  (a) shows 
calculated reflectance for opposite helicity incident at θ = 10° on the indicated magnetic heterostructures 
with Fe and Co longitudinal moments aligned parallel.  (b) shows the reflectance difference for both 
parallel and antiparallel alignment of moments in the adjacent layers.   ܴା െ ܴି changes sign as the Co 
moment reverses, indicating that this quantity is odd in ml and hence has predominant charge-magnetic 
interference.   
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Figure 9.  Reflectivity spectra using linear p-polarization at θ = 45° and assuming entirely transverse 
magnetization in both layers of the Fe/Co bilayer.  For red curve the moments in Fe and Co layers are 
saturated in opposite directions.  For the blue curve mt = 0 for both layers, revealing the weak charge-
charge scattering at the Brewster angle.  The most significant magnetic intensity signals using linear 
polarization are for p-polarization and transverse moment changes.  These transverse effects have pure-
magnetic character.  




