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ABSTRACT OF THE DISSERTATION

Towards Fair and Interpretable AI Healthcare predictive Models: from wearable sensors to causal

graphs

by

Wenhao Zhang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Majid Sarrafzadeh, Chair

The rapid expansion of data in the healthcare sector has highlighted the need for powerful

and user-friendly artificial intelligence (AI) techniques in the medical field. Although AI toolkits

have transformed various areas such as image recognition and natural language processing, their

integration into healthcare has been relatively slow. Patient records contain data from a variety of

sources, including electronic health records, medical imaging, wearable and ambient biosensors, lab

results, and genomics, with the aim of capturing the intricacies of patient health conditions. However,

the complex, diverse, and high-dimensional nature of medical datasets creates unique challenges for

data analysis and limits the effectiveness and practicality of existing solutions. Additionally, ethical

and legal concerns regarding the introduction of medical AI models exist, such as the potential

model bias against some minority groups in society, lack of interpretability of some AI algorithms,

data privacy problems. Hence, further research is necessary on the development and deployment

of medical AI models. In this thesis, we mainly focuses on using machine learning and causal

inference to solve applied research problems based on healthcare data for fair and trustworthy

medical AI models.

The first part of our work involves utilizing machine learning models and statistical toolkits to

construct predictive risk models from a patented remote patient monitoring system. The models

are based on a comprehensive set of features that are derived from wearable sensors and bluetooth

ii



beacons. These features provide a clear storyline of the daily activities of the frail population in

rehabilitation settings. Additionally, we suggest a deep transfer learning framework to classify

arrhythmia heartbeat. The proposed method involves fine-tuning a general-purpose image classifier,

ResNet-18, with the MIT-BIH arrhythmia dataset. We managed to train the proposed arrhythmia

classifier in accordance with the AAMI EC57 standard to ensure that there was no data leakage

during model development. The next aspect of my work in healthcare analytics focuses on imbal-

anced learning where classes are not equally represented in the medical dataset. This issue can

be challenging for machine learning classifiers, often leading to biased predictions favoring the

majority class and low accuracy for the minority class. To address this issue, we have introduced a

new approach that utilizes a weighted oversampling technique and ensemble boosting method to

enhance the accuracy of minority data while maintaining accuracy for the majority class.

The second part of our work mainly focuses on using causal inference to develop fair and

interpretable machine learning models. By incorporating causality, the model’s interpretability

and performance can be improved. Causal relationships are often represented in directed acyclic

graphs (DAGs) known as causal graphs, which allow researchers to identify the causes of the

outcome variables and eliminate irrelevant factors during modeling through visual inspection.

In this thesis, we developed a causal discovery algorithm that identifies causal relationships in

healthcare datasets with high dimensionality. The proposed algorithm treats causal discovery as

a continuous constrained optimization problem with a polynomial constraint. The optimization

objective function evaluates the fit of the data to the estimated causal graph, while the constraint

ensures that there is no cycle in the estimated graph.

Another aspect of this thesis involves building a causal model to estimate the conversion rate

(CVR) in e-commerce recommender systems. This task is particularly challenging in industrial

settings due to two major issues: user self-selection leading to selection bias, and data sparsity

resulting from rare click events. Our work addresses these challenges by leveraging inverse

propensity weight techniques to adjust for selection bias in the final estimation. Additionally, our

methods are based on the multi-task learning framework, which can mitigate the impact of data

sparsity.
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CHAPTER 1

Introduction: healthcare and machine learning

The rapid expansion of data in the healthcare sector has highlighted the need for powerful and

user-friendly artificial intelligence (AI) techniques in the medical field. Although AI toolkits

have transformed various areas such as image recognition and natural language processing, their

integration into healthcare has been relatively slow. Patient records contain data from a variety of

sources, including electronic health records, medical imaging, wearable and ambient biosensors, lab

results, and genomics, with the aim of capturing the intricacies of patient health conditions. However,

the complex, diverse, and high-dimensional nature of medical datasets creates unique challenges for

data analysis and limits the effectiveness and practicality of existing solutions. Additionally, ethical

and legal concerns regarding the introduction of medical AI models exist, such as the potential

model bias against some minority groups in society, lack of interpretability of some AI algorithms,

data privacy problems. Hence, further research is necessary on the development and deployment

of medical AI models. In this thesis, we mainly focuses on using machine learning and causal

inference to solve applied research problems based on healthcare data for fair and trustworthy

medical AI models.

1.1 Background and motivation

The advancement in remote patient monitoring systems coupled with AI and machine learning

models have provided healthcare professionals with the ability to construct AI predictive risk

models using extensive patient data. These medical AI models enable physicians to receive early

warnings about patients whose health conditions are deteriorating. As a result, timely medication
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and interventions can be administered, leading to reduced hospitalization costs and improved health

outcomes [10, 11, 12, 13, 14]. Nonetheless, the raw data obtained from healthcare analysis often

requires preprocessing and transformation before it can be effectively analyzed. Machine learning

practitioners are faced with the task of handling challenges such as imbalanced data [15, 16],

missing data [17], feature selection [18], and other related issues in order to make the data suitable

for analysis. The first part of my thesis centers around the aforementioned problems in healthcare

data analysis.

During the analysis of healthcare data, healthcare practitioners often pose causal questions which

cannot be addressed solely by correlation-based methods. For instance, research questions arise in

healthcare data analysis, such as "What is the effectiveness of a specific medication in treating a

particular disease?" or "Why do certain statistically significant features fail to predict the outcome?"

[19, 20]. These causal questions share a common focus on cause-effect relationships [21, 5]. David

Hume, an eighteenth-century philosopher, defined causation in terms of counterfactuals: A is

considered a cause of B if, 1) B is consistently observed to follow A, and 2) if A had not occurred,

B would not have existed [22]. Judea Pearl, a Turing Award recipient and a pioneer in causal

inference research, asserts that a causal learner and human-like AI must acquire three levels of

cognitive abilities: seeing, doing, and imagining. Pearl describes these levels as the "ladder of

causation" [23]. AI agents become more human-like as they ascend this ladder: starting with

passive observation (seeing) of correlations and associations in the data, progressing to active

manipulation and intervention (doing) within the systems and models under consideration, and

ultimately reaching the highest level of the ladder, which involves reasoning about an unseen world

through retrospective analysis (imagining).

I begin my work on causality research by firstly examining the application of causal inference in

recommender systems. This field primarily focuses on understanding the cause-and-effect relation-

ships in interventions. For instance, questions like "Will users actually purchase the recommended

items on an e-commerce website?" or "Would users click on recommended ads?" are at the core of

this inquiry. Consequently, many of the research questions in recommender systems revolve around

causal-effect relations, and the mathematical models and methods employed can be extended to
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the healthcare research domain [24]. Additionally, I focus on investigating algorithms that can

autonomously uncover causal-effect relationships within medical datasets. The identification of

such causal relations can be highly valuable in addressing inquiries like "Which factors contribute to

the progression of patients’ diseases?" This, in turn, can lead to significant enhancements in model

interpretability [21, 25]. Moreover, employing causal inference in healthcare data analysis offers

the advantage of selecting features that possess causal-effect relationships with predictive outcomes

[26, 27].

1.2 Objectives and Main Contributions

The first part of our work involves utilizing machine learning models and statistical toolkits to

construct predictive risk models for a patented remote patient monitoring system. The models are

based on a comprehensive set of features that are derived from wearable sensors and bluetooth

beacons. These features provide a clear storyline of the daily activities of the frail population in

rehabilitation settings. Additionally, we suggest a deep transfer learning framework to classify

arrhythmia heartbeat. The proposed method involves fine-tuning a general-purpose image classifier,

ResNet-18, with the MIT-BIH arrhythmia dataset. We took care to train the proposed arrhythmia

classifier in accordance with the AAMI EC57 standard to ensure that there was no data leakage

during model development. The next aspect of my work in healthcare analytics focuses on imbal-

anced learning where classes are not equally represented in the medical dataset. This issue can

be challenging for machine learning classifiers, often leading to biased predictions favoring the

majority class and low accuracy for the minority class. To address this issue, we have introduced a

new approach that utilizes a weighted oversampling technique and ensemble boosting method to

enhance the accuracy of minority data while maintaining accuracy for the majority class.

The second part of our work mainly focus on using causal inference to develop fair and

interpretable machine learning models. By incorporating causality, the model’s interpretability

and performance can be improved. Causal relationships are often represented in directed acyclic

graphs (DAGs) known as causal graphs, which allow researchers to identify the causes of the
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outcome variables and eliminate irrelevant factors during modeling through visual inspection.

In this thesis, we developed a causal discovery algorithm that identifies causal relationships in

healthcare datasets with high dimensionality. The proposed algorithm treats causal discovery as

a continuous constrained optimization problem with a polynomial constraint. The optimization

objective function evaluates the fit of the data to the estimated causal graph, while the constraint

ensures that there is no cycle in the estimated graph.

Another aspect of this thesis involves building a causal model to estimate the conversion rate

(CVR) in e-commerce recommender systems. This task is particularly challenging in industrial

settings due to two major issues: user self-selection leading to selection bias, and data sparsity

resulting from rare click events. Our work addresses these challenges by leveraging inverse

propensity weight techniques to adjust for selection bias in the final estimation. Additionally, our

methods are based on the multi-task learning framework, which can mitigate the impact of data

sparsity.

1.3 Thesis outline

Chapter 1,2, and 3 provide background knowledge and literature review of our research:

• Chapter 1: Introduction: healthcare and machine learning.

I provide a brief description of the objectives, motivations and contributions.

• Chapter 2: Background: data analytics in healthcare.

I discuss the background to the patented remote patient monitoring system–Sensing at Risk

Population–used in this chapter. I also provide a literature reivew on imbalanced learning and

arrhythmia classification using deep transfer learning with electrocardiogram dataset.

• Chapter 3: Background: healthcare analysis with causal inference. In this chapter, I

provide a brief overview of the background information related to causal inference. This

includes an explanation of the concept of causality, the fundamental principles of structural

causal models, causal graphs, and intervention using do-calculus. Additionally, I explore the
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issues of spurious correlation and confounding, including the Simpson paradox. Finally, I

discuss the methods for discovering causal relationships from data.

• Chapter 4: Healthcare data analytics in remote patient monitoring. This chapter showcases

how the Sensing At-Risk Population system, which is a patented remote patient health

monitoring system [28], can provide a deeper insight into the health conditions of patients by

using wearable technology with sophisticated physical activity tracking algorithms that are

specifically designed for geriatric patients. This study has a twofold aim. Firstly, to examine

the ability of a combination of physical activity and indoor location features, extracted at

baseline, on a cohort of 154 rehabilitation-dwelling patients to discriminate between subacute

care patients who are re-admitted to the hospital versus the patients who are able to stay in

a community setting. Secondly, to observe longitudinal changes of sensor-based physical

activity and indoor localization features of patients receiving rehabilitation at a skilled nursing

facility and investigate if the sensor-based longitudinal changes can complement patients’

changes captured by therapist assessments over the course of rehabilitation in the skilled

nursing facility.

• Chapter 5: Imbalanced learning in healthcare analytic. This chapter introduces a new

approach called WOT-Boost, which combines a Weighted Oversampling Technique with an

ensemble Boosting method. The aim of this method is to enhance the accuracy of minority

data classification without compromising the accuracy of the majority class.

• Chapter 6: Arrythmia classification using deep transfer learning using with eletrocar-

diogram datasets. In this chapter, a new deep transfer learning framework is introduced,

which is designed for classification tasks with limited training data. The proposed approach

involves fine-tuning a general-purpose image classifier ResNet-18 with the MIT-BIH ar-

rhythmia dataset while adhering to the AAMI EC57 standard. The study also inv estigates

several existing deep learning models that have failed to avoid data leakage as per the AAMI

guidelines. Furthermore, the impact of various data split methods on model performance is

also examined and compared.
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• Chapter 7: Causal models to debiasing post-click conversion rate estimation with multi-

task learning. In this chapter, I propose two principled, efficient and highly effective CVR

estimators for industrial CVR estimation. The proposed models approach the CVR estimation

from a causal perspective and account for the causes of missing not at random. In addition,

the proposed methods are based on the multi-task learning framework and mitigate the data

sparsity issue. Extensive experiments on industrial-level datasets show that the proposed

methods outperform the state-of-the-art CVR models

• Chapter 8: Causal discovery in high dimension and curse of high dimensionality. This

chapter presents a novel approach to identifying causal relations in high dimensional space by

formulating causal discovery as a continuous constraint problem with a polynomial constraint.

By utilizing this method, deep learning frameworks like Tensorflow and Pytorch can efficiently

solve the problem.

Finally, I provide a summary of the thesis’s main conclusions and propose future research

directions for further advancing this study.

• Chapter 9: Conclusion and future work.

In the concluding chapter, I provide a summary of the significant findings and insights

obtained from the research. Additionally, I highlight the limitations of the study and suggest

future research directions that could help further advance the practical application of the

research in real-world scenarios.
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CHAPTER 2

Background: data analytics in healthcare

This chapter provides a literature review of concepts involved in various healthcare data analytics

projects addressed throughout this thesis. Firstly, it discusses the development of a patented Remote

Patient Monitoring (RPM) system known as Sensing At-Risk Population (SARP). The data analyses

presented in Chapter 4 is based on data collected from SARP system. Next, the chapter highlights

the issue of imbalanced learning. It then presents a comprehensive review arrhythmia classification

using electrocardiogram signals thereby reemphasizing the paramount importance of RPMs and

related healthcare data analytics challenges.

2.1 Remote patient monitoring

According to the most recent census statistics, by 2050, the population aged 65 years and older

is projected to double in size to 83.7 million in the United States [29]. With the increase of this

geriatric population, health care utilization will increase dramatically, with a concomitant demand

for rehabilitation and in-home care after hospitalization [30]. Finding the best way to support

patients during rehabilitation, both at facilities and in home, without compromising patient safety is

considered to be a significant challenge. The importance of patient safety and rehabilitation has

highlighted the need for constant vigilance and fostered methodologies by which patients can be

remotely monitored [30, 31, 32, 33, 34, 35, 36].

Numerous studies have investigated the effectiveness of remote patient health monitoring,

some suggesting the potential for such technologies to reduce the overall re-admission cost [37].

With the advent of wearable devices in recent years, remote health monitoring has evolved and
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drawn attention, mainly by utilizing physical activity trackers. It is widely assumed that a physical

activity regimen implies behavioral patterns that can affect health outcomes. Hence, tracking these

patterns and leveraging them may allow the prediction of harmful outcomes, such as falls, in a

timely manner. Moreover, tracking individuals’ personalized behavioral patterns may allow for the

creation of actionable messages to patients and caregivers to improve patient health and outcomes

[38]. The purpose of this study was to investigate the physical activity and indoor localization

features obtained from our remote patient monitoring system, Sensing At-Risk Population (SARP)

[30, 39, 40, 41, 28]. This study reports on SARP sensor–based markers for rehabilitation screening

within a geriatric population, exploring if SARP can be used to prospectively distinguish between

at-risk patients in a subacute rehabilitation environment.

2.1.1 Sensing At-Risk Population System Overview

Details of the system architecture with proximity-based sensors (beacons) and a Bluetooth-enabled

smartwatch as its main components can be found in the study by Moatamed et al [30] and the

patent application by Ramezani et al [28]. Building models for physical activity tracking and indoor

localization was based on data collected using (1) commercially available Sony SmartWatch 3 with

built-in EM7180 2g triaxial accelerometer, 420 mA battery, and BCM43340 Bluetooth module and

(2) proximity beacons (MCU ARM Cortex-M4 32-bit processor with floating-point unit). To build

the activity tracking and indoor localization models of SARP system, patients were consented on

admission to a subacute care rehabilitation center in Los Angeles.

2.1.2 Bluetooth Low Energy Beacons and Indoor Localization

Beacons broadcast their presence to Bluetooth-enabled devices. Utilizing the beacons’ Received

Signal Strength Indicator (RSSI) values using smartwatches, the SARP system calculates the prox-

imity of the watch to each beacon, thereby inferring the indoor location of the patient wearing that

watch. BLE beacons (bluetooth low-energy sensors) have become popular in gathering contextual

awareness because of durability and low cost. When used in health care, however, validating
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Figure 2.1: Subacute rehabilitation facility map: resident room on top and therapy room at the

bottom with locations of mounted beacons shown in red.

reliability and accuracy of their location information is paramount. Beacons are highly susceptible

to diffraction, multipath propagation, angle-of-arrival, lack of line-of-sight, and absorption by

the human body. In this project, because locations of interest were within close proximity, we

considered RSSI values ranged between −50 dBm to −100 dBm. The average RSSI within the

line-of-sight, measured by the watch at 1 feet distance, was −66 dBm. To achieve the best accuracy

with respect to locations of interest, shown in Figure 2.1, considering beacons hardware specification

was crucial. Beacon’s antenna configuration and the proximity of locations heavily influence the

accuracy of indoor localization. Hence, to achieve a high indoor localization accuracy, it was

essential to refine beacon placements iteratively. Moreover, in the rehabilitation facility shown in

Figure 2.1, we empirically learned to set the transmission power to −12 dBm and the transmission

interval to 250 ms. In studies by Bouchard et al [39, 40, 41], we proposed a few methods and

considerations that can help enhance the indoor localization accuracies. A summary of the ground
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truth testing executed at the rehabilitation facility shown in Figure 2.1, with an overall accuracy

> 80%, can be found in a study by Moatamed et al [30].

2.1.3 Accelerometer Data Processing and Physical Activity Parameters

To infer physical activity of patients in this study, 3-axis raw acceleration signal sampled at 16

Hz was extracted, and the signal magnitude (SM) was initially calculated according to Figure 2.2,

equation (1), where acc indicates acceleration force around each axis in g units including gravity

(1g = 9.81m/s2). The range of the acquired signal is ±2g. Batches of 160 samples (window size

of 10 seconds) were fed to a fifth order Butterworth band-pass filter with cut-off frequencies of 0.5

and 8 Hz. The filtering limited the signal to highlight the frequencies that are most representative

of human motion while eliminating the direct current component. Various window sizes ranging

from 4 to 12.8 seconds with different overlapping implementations have been used in different

studies [42]. These characteristics are normally chosen empirically based on feature extraction,

activity labeling, and other annotation factors. In this study, a window size of 10 seconds was used

with a 1-second overlap [30]. After preprocessing the accelerometer data, the next step was to

infer human activity (positioning) and to later translate the positioning into a quantifiable metric.

However, quantifying the physical activity can be deemed challenging and will be discussed after a

brief description of physical activity classification.

A decade has passed since the advent of commercially available low-cost, light-weight ac-

celerometers. The enthusiasm about their potential in extracting physical patterns to usually, but

not exclusively, improve health outcomes has led researchers to master the techniques of activity

recognition [42, 43]. Some researchers have even tried to infer activity intensities and predict

energy consumption by comparing accelerometer patterns with measured metabolic equivalents

[44, 45, 46]. Despite significant and impressive outcomes, the triumph is mostly based on analyzing

small cohorts, or often a homogeneous group of people, with similar age or health conditions.

Training and testing datasets in most studies are normally collated from people following a cer-

tain protocol, whereas in real life, human movements are intertwined, that is, the sequence of

movements does not always form a same pattern. As such, the performance of various activity
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recognition algorithms/approaches applied to real-world scenarios should be taken with a grain

of salt [42, 43, 45, 46, 47]. The following factors are influential in any human activity tracking

algorithm: (1) diversity of human movement habits; (2) variety of human disabilities needing

different assistive devices, yielding distinct movement patterns; (3) deficiencies of machine learning

algorithms in building one-size-fits-all model; and (4) limitations to distinguish particular motions

due to accelerometer placement, for instance, classifying sitting still and laying down with sensor

on wrist versus waist [42, 47]. To reduce the negative effect of the mentioned factors, this study uses

a combination of classifications in 3 steps according to algorithm shown in Figure 2.3. Time and

frequency domain characteristics of the signal (main, median, variance, skewness, kurtosis, peak

frequency, and peak power) were used as features. SARP initially categorizes activities broadly into

walking and stationary.

Walking embodies active status, and when stationary, the classifier separates brisk (active) and

idle (nonactive) movements and later classifies postures into sedentary, standing, and laying down.

Both Tables 2.1 and 2.2 depict the summary of physical activity (positioning) classifiers’ 10-fold

cross-validation results built on 50 patients over approximately 22 hours of collated data at subacute

care rehabilitation center in Los Angeles. The algorithms were later validated and refined over the

course of 6 months of ground truth testing at the same skilled nursing facility.

2.1.4 Step Counts Versus Raw Accelerometer Assessment

The next stage was to find a way to quantify the difference between different activity status. Step

counting is a common way that has long been used to quantify the ambulatory physical activity.

However, similar to activity recognition approaches explained earlier, the accuracy of step counters is

often the subject of debate among researchers. Comprehensive studies with contradictory results on

the accuracy of pedometers and wearable accelerometers can be found in the studies by Crouter et al

[48], Mammen et al [49], and Case et al [50]. What is rather clear in using step counters/pedometers

is their efficacy in quantifying ambulatory activities and not stationary. For step counters to be

more accurate, a user is required to satisfy a minimum walking speed that is often mentioned in

the literature as 67 m/min or even higher [51, 52]. Therefore, step counters are less likely to
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Figure 2.2: Equations. MAD: mean absolute deviation.

produce accurate assessment for less mobile geriatric population. Besides, they are deemed even

less effective in quantifying activities in stationary positions. Most studies assess the accuracy of

step counters by asking users to walk on a treadmill, which neglects scenarios in which users are

stationary, yet pedometers accumulate step counts because of movements in hand. To account for

any movements (stationary and ambulatory), this study calculates mean absolute deviation (MAD)

of accelerometer magnitude signal using equation (2), Figure 2.2. MAD calculates the statistical

dispersion of acceleration from the mean and its unit is meter per second squared,

where xi is the SM in each 10-second window, and the xave is the average of accelerometer mag-

nitude for 160 samples (10-second epoch×16 Hz). MAD of accelerometer magnitude represents the

average magnitude of acceleration within an interval (in this case, 10 seconds) and is proportionate

12



Figure 2.3: Hierarchical Activity Recognition Pseudo Code.

to force applied to the watch by patient since f = ma. This value multiplied into displacement will

produce relative work and energy. Take into account that calculating displacement from acceleration,

however, is not very accurate because it is the result of accelerometer’s double integration, that

is, any acceleration jitter accumulates and yields big drifts in displacement. Calculating force,

however, is accurate and proportionate to energy; hence, the term energy has been used in this study

to quantify human activity movements.

Another way of quantifying activity is to integrate each acceleration channel to produce kinetic

energy using e = 1
2
mv2. This way, however, requires more calculations compared with MAD; for

the actual speed, each channel should be considered separately so that the direction of acceleration

and deceleration that are removed in SM will be taken into account.

It is worth highlighting that by using a smartwatch accelerometer, it is only possible to calculate

the force, proportionate to energy, that is spent on the watch. Hence, if a patient is carrying a weight

on the watch-worn hand, the energy expenditure of the patient will not change with regard to the

watch.

Active/nonactive is determined in this study using an empirical threshold of 0.02 m/s2 (2

cm/s2) over the MAD value. As explained earlier, calculating displacement from the accelerometer
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is not highly reliable. However, for illustrative purposes, assume the initial speed of hand movement

in each window of 10 seconds is zero. Using equation (3) shown in Figure 2.2, the value 0.02

indicates that a patient’s hand displacement has been 1 m in 10 seconds. In case of equal or greater

shifts, the patient is considered active, otherwise, idle (nonactive).

Figure 2.4 shows 10-second examples of acceleration SM of a person. It illustrates the difference

in walking, active and nonactive stationary positions.

Table 2.1: Online watch classifier.

Class TPa rate FPb rate Precision Recall F-measure ROCc area

Stationary 0.992 0.015 0.977 0.992 0.984 0.954

Walking 0.985 0.008 0.995 0.985 0.990 0.992

Weighted average 0.988 0.011 0.988 0.988 0.974 0.929
aTP: true positive.
bFP: false positive.
cROC: receiver operating characteristic.

Table 2.2: Activity recognition: positioning.

Position Accuracy Precision Recall F-measure

Stand 91 0.94 0.91 0.92

Sit 93.7 0.87 0.93 0.90

Lay 90.8 0.97 0.90 0.94

Walk 95.1 0.92 0.95 0.94

2.2 Imbalanced learning in healthcare data analytics

Learning from imbalanced datasets can be very challenging as the classes are not equally represented

in the datasets [53]. There might not be enough examples for a learner to form a legit hypothesis

that can well model the under-represented classes. Hence, the classification results are often

biased towards the majority classes. The curse of imbalanced learning is prevalent in real-world
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Figure 2.4: Magnitude of accelerometer signal after filtering (direct current component removed

before filtering).

applications. In medical research, models are usually trained to give predictions on a dichotomous

outcome based on a series of observable features [54]. For example, learning from a cancer

dataset which mostly contains non-cancer data samples is perceived to be difficult. Other practical

applications with more severely skewed datasets are fraudulent telephone calls [55], detection of oil

spills in satellite images [56], detection of network intrusions [57], and information retrieval and

filtering tasks [58]. In these scenarios, the imbalance ratio of majority class to minority class can go

up to 100,000 [59]. Even though class imbalance issue can exist in multi-class applications, we only

focus on the binary class scenario in this paper as it is feasible to reduce a multi-class classification

problem into a series of binary classification problems [60].

There have been ongoing efforts in this research domain finding ways to better tackle the

imbalanced learning problem. Most of the state-of-the-art research methodologies are fallen into

two major categories: 1) Data level approach, or 2) Algorithm level approach [61, 62].

2.2.1 Data level approach

On the data level, skewed datasets can be balanced by either 1) oversampling the minority class

data examples, 2) under-sampling the majority class data examples.
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2.2.1.1 Oversampling

It aims to overcome the class imbalance by artificially creating new data from the under-represented

class. However, simply duplicating the minority class samples would potentially cause overfitting.

One of the most widely used techniques is SMOTE. The SMOTE algorithm generates synthetic

data examples for minority class by randomly placing the newly created data instances between

minority class data points and their neighbors [59]. This technique not only can better model the

minority classes by introducing a bias towards the minority instances but also has a lower chance of

overfitting. This is due to SMOTE forcing the learners to create larger and less specific decision

regions. Based on SMOTE, Hui Han et al. propose the Borderline-SMOTE, which only synthesizes

the minorities on the decision borderline [63]. The Borderline-SMOTE classifies minority classes

into "safe type" and "dangerous type". The "safe type" is located in the homogeneous regions where

the majority of data examples belong to the same class. On the other hand, the "dangerous type" data

points are outliers and most likely lie within the decision regions of the opposite class. The intention

behind Borderline-SMOTE is to give more weights to the "dangerous type" minority class as it is

deemed to be more difficult to learn [64]. Haibo He et al. adopt the same philosophy and proposed

ADASYN algorithm, which uses a weighted distribution for different minority class data. The

weights are assigned to minority data examples based on the level of difficulty in learning. In other

words, harder data examples have more weights thus higher chance of getting more synthesized data.

Prior to generating synthetic data, ADASYN inspects the K nearest neighbors for each minority

class data example, and counts the number of neighbors from the majority class, ∆i. Next, the

difficulty of learning can be calculated as a ratio of ∆i/K [65]. ADASYN assigns higher weights

on the difficult minority samples. On the contrary, Safe-Level-SMOTE gives more priority to safer

minority instances and has a better accuracy performance than SMOTE and Borderline-SMOTE

[66]. Karia et al. propose a genetic algorithm, GenSample, for oversampling in imbalanced Datasets.

GenSample accounts for the difficulty in learning minority examples when synthesizing, along with

the performance improvement achieved by oversampling [67].
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2.2.1.2 Undersampling

This technique approaches the imbalanced learning by removing a certain number of data examples

from the majority class while keeping the original minority data points untouched. Random

undersampling is the most common method in this category [62]. Elhassan AT et al. combine the

undersampling algorithm with Tomek Link (T-Link) to create a balanced dataset [54, 68]. However,

the undersampling method may suffer severe information loss. In this paper, we mainly focus on

the oversampling technique and its variants [69].

2.2.2 Algorithm level approach

On the algorithm level, there are typically three mainstream approaches: a) Improved algorithms, b)

cost-sensitive learning, and c) ensemble method [62, 70].

2.2.2.1 Improved algorithms

This approach generally attempts to tailor the classification algorithms to directly learn from the

skewed dataset by shifting the decision boundary in favor of the minority class. Tasadduq Imam et

al. propose z-SVM to counter the inherent bias in datasets by introducing a weight parameter, z,

for minority class to correct the decision boundary during model fitting [71]. Other modified SVM

classifiers have also been reported, such as GSVM_RU and BSVM [72, 73]. One special form of an

improved algorithm for imbalanced datasets is one-class learning. This method aims to generalize

the hypothesis on a training dataset which only contains the target class [74, 75].

2.2.2.2 Cost-sensitive learning

This technique penalizes the misclassifications of different classes with varying costs. Specifically,

it assigns more costs to the misclassification of the target class. Hence, the false negative would be

penalized more than the false positives [76, 77]. In cost-sensitive learning, a cost weight distribution

is predefined in favor of the target classes.
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2.2.2.3 Ensemble method

Ensemble method trains a series of weak learners in a fixed number of iterations. A weak learner is

a classifier whose accuracy is just barely above chance. At each round, a weak learner is created

and a weak hypothesis is generalized. The predictive outcome is produced by aggregating all these

weak hypotheses using a weighted voting method [78]. For example, AdaBoost.M2 algorithm

calculates the pseudo-loss of each weak hypothesis during boosting. The pseudo-loss is computed

over all data examples with respect to the incorrect classifications. The weight distribution is

computed using the pseudo-loss (see Algorithm 1). The weight distribution is updated with respect

to pseudo loss at the current iteration and will be carried over to the next round of boosting. Hence,

the learners in the next iteration will concentrate on the data examples which are hard to learn

[79]. Since Adaboost is apt to learn from a imbalanced dataset, several works are based on this

boosting framework [80, 81, 82]. SMOTEBoost is proposed to combine the merits of SMOTE

and Boosting methods by adding a SMOTE procedure at the beginning of each round of boosting.

SMOTEBoost aims to improve the true positives without sacrificing the accuracy of majority class.

RUSBoost alleviates class imbalanced by introducing random undersampling technique into a

standard boosting procedure. Compared with SMOTEBoost, RUSBoost is a faster and simpler

alternative to SMOTEBoost [81]. Ashutosh Kumar et al. proposed RUSTBoost algorithm which

adds a redundancy-driven modified Tomek-Link based undersampling procedure before RUSBoost

[83]. The Tomek-Link pairs are the pairs of closest data points from different classes. However,

all the mentioned boosting algorithms treat the data examples equally. Krystyna Napierala et al.

highlighted that the various types of minority data examples (e.g., safe, borderline, rare, and outlier)

have unequal influence on the outcome of classification. As such, the algorithms should be designed

to focus on the examples which are not easy to learn[64]. DataBoost-IM is reported to discriminate

different types of data examples beforehand and adjust the weight distribution accordingly during

boosting [82].
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2.3 Arrhythmia classification using deep transfer learning with electrocar-

diogram dataset

Electrocardiogram (ECG) is a simple non-invasive measure to identify heart-related issues such as

irregular heartbeats known as arrhythmias. Even though sometimes being observed in healthy people,

arrhythmias can develop life-threatening cardiac diseases. Manual inspection on ECG signals to

identify arrhythmia can be time consuming and error-prone [84, 85]. Due to the capability of learning

complex representation, there have been major developments in utilizing deep learning methods for

automatic ECG-based arrhythmia diagnosis [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96].

In the literature, the ECG analysis generally consists of the following steps: 1) ECG sig-

nal preprocessing and noise attenuation, 2) heartbeat segmentation, 3) feature extraction, and 4)

learning/classification [85].

The first three steps have been widely studied and discussed in the literature [92]. In this section,

we only review a selection of these methods due to page limit. For example, Omid Sayadi et al.

proposed a modified extended Kalman filter structure which can be used not only for denoising the

ECG signal, but also for compression [92]. C Li et al. presented a heartbeat segmentation algorithm

based on wavelet transforms (WT’s), which can detect QRS complex (see Figure 2.5) from high P or

T waves even with the existence of serious noise or drift [93]. As for feature extraction, Chun-Cheng

Lin et al. proposed an automatic heartbeat classification system for arrhythmia classification based

on normalized RR intervals (i.e., interval between two successive R waves) and morphological

features derived from wavelet transform and linear prediction modeling [97].

Machine learning models are widely used for arrhythmia classification in the literature [85, 86,

88, 90, 91, 96, 97, 98]. Mi Hye Song et al. proposed a support vector machine-based classifier with

reduced features derived by linear discriminant analysis [88]. Inspired by the success of Hidden

Markov Model (HMM) in modeling speech waveforms for automatic speech recognition, D A Coast

et al. applied HMM method in ECG arrhythmia analysis. The model can combine the temporal

information and statistical knowledge of the ECG signal in one single parametric model [98].

Awni Y. Hannun et al. proposed an end-to-end deep learning approach which directly takes raw
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Figure 2.5: A typical heartbeat ECG signal contains P, Q, R, S, and T waves. A QRS complex is a

combination of Q,R,S waves.

ECG signal as input and produces classifications without feature engineering or feature selection

[91]. Mousavi, Sajad et al. proposed an automatic ECG-based heartbeat classification approach

by utilizing a sequence-to-sequence deep learning method to automatically extract temporal and

statistical features of the ECG signals [99].

Our work in Chapter 6.1 differs from the studies in 2-fold: 1) it leverages the Short-term Fourier

Transform (STFT) to convert 1D ECG signal into 2D time-frequency domain data. Therefore, it

is feasible to apply pre-trained 2D Convolution Neural Network in arrhythmia analysis; 2) it is

evaluated using MIT-BIH dataset with “inter-patient” training/testing split paradigm detailed in

[100].

2.4 Conclusion

In conclusion, this chapter presented a comprehensive literature review of healthcare data analytics

projects, with a focus on remote patient monitoring. The chapter started by introducing the Sensing

At-Risk Population (SARP) system, a patented remote patient monitoring platform that serves as
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the data collection and processing platform for the subsequent data analysis work. The importance

of remote patient monitoring in the context of an aging population and the increasing demand

for rehabilitation and in-home care was highlighted. The chapter further discussed the challenges

of imbalanced learning encountered during the data analysis task and presented a review of the

classification of arrhythmias using electrocardiogram signals, which is an integral part of the remote

patient monitoring system.

The study emphasized the potential of remote patient monitoring in reducing re-admission

costs and improving patient outcomes. It discussed the evolution of remote health monitoring with

the advent of wearable devices and the utilization of physical activity trackers to track behavioral

patterns that can affect health outcomes.

Overall, this chapter provided a thorough overview of remote patient monitoring, the SARP

system, and the challenges and techniques involved in analyzing healthcare data for improved

patient care and outcomes. The findings and insights from this chapter lay the foundation for the

subsequent chapters that delve into the analysis of data collected from the SARP system and the

classification of arrhythmias. These contribute to the advancement of healthcare data analytics and

remote patient monitoring.
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CHAPTER 3

Background: healthcare analysis with causal inference

3.1 What is causality and why it matters

In this section, we introduce the concept of causality and why causal reasoning is of paramount

importance in analyzing data that arise in various domains such as healthcare or social sciences.

3.1.1 What is causality?

The truism of “correlation does not imply causation” is well known and generally acknowledged

[101, 102]. The question is how to define "causality".

3.1.1.1 David Hume’s definition

The eighteenth-century philosopher, David Hume, defined causation in the language of the counter-

factual: A is a cause of B, if:

1. B is always observed to follow A, and

2. A had not been, B never had existed [103].

In the former case, A is a sufficient causation of B, and A is a necessary causation of B in the

latter case [5]. When both conditions are satisfied, we can safely say that A causes B (necessary-

and-sufficient causation). For example, sunrise causes rooster’ crow. This cause-effect relation

cannot be described the other way around. If the rooster is sick, the sunrise still occurs. Rooster’s

crow is not a necessary causation of sunrise. Hence, rooster’s crow is an effect rather the cause of
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sunrise.

3.1.1.2 Causality in medical research

In medical research, the logical description of causality is considered too rigorous and occasionally

not applicable. For example, smoking does not always lead to lung cancer. Causality in medical

literature is often expressed in probabilistic terms [104, 105]. A type of chemotherapy treatment

might increase the likelihood of survival of a patient diagnosed with cancer, but does not guarantee

it. Therefore, we express our beliefs about the uncertainty about the real world in the language of

probability.

One main reason of probabilistic thinking is that we can easily quantify our beliefs in numeric

values and build probabilistic models to explain the cause given our observation. In clinical di-

agnosis, the doctors often seek the most plausible hypothesis (disease) that explain the evidence

(symptom). Assume that a doctor observes a certain symptom S, and he or she has two explanations

for this symptom, disease A or disease B. If this doctor can quantify his or her belief into condi-

tional probabilities, i.e., Prob(disease A|Symptom S) and Prob(disease B|Symptom S) (the

likelihood of disease A or B may occur given the symptom S is observed). Then the doctor can

choose the explanation that has larger value of conditional probability.

The dilemma: potential outcome framework When we study the causal-effect of a new treat-

ment, we are interested in how the disease responses when we intervene upon it. For example, a

patient is likely to recover from the cancer when receiving a new type of chemotherapy treatment.

To measure the causal effect on this particular patient, we shall compare the outcome of treatment

to the outcome of no treatment. However, it is not possible to observe the two potential outcomes

of the same patient at once. Because this comparison is done using two parallel universes that we

imagine: 1) a universe where the patient is treated with the new chemotherapy, and 2) the other

where she is not treated. There is always one universe missing. This dilemma is known as the

"fundamental problem of causal inference".
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3.1.2 Why causal inference?

A data science task can be deemed as making sense of the data or to test a hypothesis about it. The

conclusions inferred from data can greatly guide us to make informative decisions. Big data has

enabled us to carry out countless prediction tasks in conjunction with machine learning. However,

there exist a large gap between highly accurate predictions and decision making. For example,

an interesting study [1] reports that there is a "surprisingly powerful correlation" (ρ = 0.79, p <

0.0001) between the chocolate consumption and the number of Nobel Laureates in a country (Figure

3.1). The policy makers might hesitate to promote chocolate consumption as a way of obtaining

more Nobel prizes. The developed western countries where people eat more chocolate are more

likely to have better education systems and chocolate consumption has no direct impact on the

number of Nobel Laureates. As such, intervening on chocolate cannot possibly lead us to desired

outcome. In Section 3.3, we will explore more examples of the spurious correlations explained by

confounders (In statistics, confounder is a variable that impacts a dependent variable as well as an

independent variable at the same time, causing a spurious correlation [106]) and how to use causal

inference to gauge the real causal effect between variables under such circumstances.

Figure 3.1: A spurious correlation between the chocolate consumption and the number of Nobel

Laureates by countries [1].

In predictive tasks, understanding of causality, mechanisms through which an outcome is

produced, will yield more descriptive models with better performance. In machine learning, for
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instance, one underlying assumption, generally, is that training and testing datasets have identical or

at least comparable characteristics/distributions. This assumption is often violated in real practice.

For example, an activity recognition model built on a training cohort of highly active participants

might perform poorly if it is applied over a cohort of bedridden elderly patients. In this example,

variables age and mobility are the causes that explain the difference between two datasets. Therefore,

understanding causality between various features and outcomes is an integral part of a robust and

generalized machine learning model. Often, most statistical models rely upon pure correlations

perform well under static conditions where the characteristics of the dataset are invariant. Once

the context changes, such correlations may no longer exist. On the contrary, relying on the causal

relations between variables can produce models less prone to change with context. In Section 3.4,

we will discuss on the external validity and transportability of machine learning models.

In many real-world data analytics, in addition to relying solely on statistical relations amongst

data elements, it is essential for machine learning practitioners to ask questions surrounding "causal

intervention" and "counterfactual reasoning". Questions such as "what would Y be if I do X ?"

(causal intervention) or "would the outcome change if I had acted differently?" (counterfactual).

Suppose that one wants to find the effects of wine consumption on heart disease. We certainly live

in a world in which we cannot run randomized controlled trials asking people to drink wine, say, 1

glass every night, and force them to comply with it for a decade to find the effect of wine on heart

disease. In such scenarios we normally resort to observational studies that may eventually highlight

associations between wine consumption and reduced risk of heart disease. The simple reaction

would be to intervene and to promote wine consumption. However, causal reasoning suggests

thinking twice whether wine-reduced heart disease is a causal-effect relation or the association

is confounded by other factors, say, people who drink wine are have more money and can buy

better quality food, or have better quality of life in general. Counterfactual reasoning, on the

other hand, often answers questions in retrospective such as "Would the outcome change if I had

acted differently?". Imagine a doctor who is treating a patient with kidney stones. The doctor is

left with two choices, conventional treatment that includes open surgical procedures and a new

treatment that only involves making a small puncture in the kidney. Each treatment may result
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in certain complications, raising the following questions: “Would the outcome be different if the

other treatment had been given to this patient.” The “if” statement is a counterfactual condition, a

scenario that never happened. The doctor cannot go back in time, give a different treatment to same

patient under the same exact condition. So it behooves the doctor to think about counterfactual

questions in advance. Counterfactual reasoning enables us to contemplate alternative options in

decision-making to possibly avoid undesired outcomes. By understating causality, we will be able

to answer questions related to intervention or counterfactuals, concepts we aim to cover in the

following sections.

3.1.2.1 Randomized Controlled Trials

Due to the mentioned dilemma, a unit-level of causal effect cannot be directly observed as potential

outcomes for an individual subject cannot be observed in a single universe. Randomized controlled

trials (RCT) enable us to gauge the population-level causal effect by comparing the outcomes of two

groups under different treatments, while other factors are kept identical. Then, the population-level

causal effect can be expressed as average causal effect(ACE) in mathematical terms. For instance,

ACE = |Prob(Recovery|Treatment = Chemotherapy)−

Prob(Recovery|Treatment = Placebo)|, (3.1)

where ACE is also referred as average treatment effect (ATE).

In a randomized controlled trial (RCT), treatment and placebo are assigned randomly to groups

that have the same characteristics (e.g., demographic factors). The mechanism is to "disassociate

variables of interest (e.g., treatment, outcome) from other factors that would otherwise affect them

both"[5].

Another factor that might greatly bias our estimation of causal effect is a century-old problem

of "finding confounders" [107, 108, 109]. Randomized controlled trial was firstly introduced by

James Lind in 1747 to identify treatment for scurvy, and then popularized by Ronald A. Fisher in
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the early 20th century. It is currently well acknowledged and considered as the golden standard to

identify the true causal effect without distortions introduced by confounding. However, randomized

controlled trials are not always feasible in clinical studies due to ethical or practical concerns. For

example, in a smoking-cancer medical study, researchers have to conduct randomized controlled

trials to investigate if in fact smoking leads to cancer. Utilizing such trials, researchers should

randomly assign participants to an experiment group where people are required to smoke and a

control group where smoking is not allowed. This study design will ensure that smoking behavior

is the only variable that differs between the groups, and no other variables (i.e., confounders) will

bias the results. On the contrary, an observational study where we merely follow and observe the

outcomes of smokers and non-smokers will be highly susceptible to confounders and can reach

misleading conclusions. Therefore, the better study design would be to choose RCTs, however, it is

perceived as highly unethical to ask participants to smoke in a clinical trial. Typically, randomized

controlled trials are often designed and performed in a laboratory setting where researchers have

full control over the experiment. In many real-world studies, data are collected from observations

when researchers cannot intervene/randomize the independent variables. This highlights the need

for a different toolkit to perform causal reasoning in such scenarios. In Section 3.3, we will discuss

how to gauge the true causal effect from observational studies that might be contaminated with

confounders.

3.2 Preliminaries: structural causal models, causal graphs, and intervention

with do-calculus

In this section, we primarily introduce 3 fundamental components of causal reasoning: structural

causal model (SCM), directed acyclic graphs (DAG), and intervention with do-calculus.

3.2.1 Structural Causal Model

The structural causal model (SCM),M, is proposed by Pearl et al. [6, 110] to formally describe the

interactions of variables in a system. A SCM is a 4-tupleM =< U, V, F, P (u) > where
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1. U is a set of background variables, exogenous, that are determined by factors outside the

model.

2. V = {V1, ..., Vn} is a set of endogenous variables that are determined by variables within the

model.

3. F is a set of functions {f1, ..., fn} where each fi is a mapping from Ui ∪ PAi to Vi, where

Ui ⊆ U and PAi (PA is short for "parents") is a set of causes of Vi. In other words, fi assigns

a value to the corresponding Vi ∈ V , vi ← fi(pai, vi), for i = 1, ..., n.

4. P (u) is a probability function defined over the domain of U .

Note that there are two sets of variables in a SCM, namely, exogenous variables,U , and endoge-

nous variables, V . Exogenous variables are determined outside of the model and are not explained

(or caused) by any variables inside our model. Therefore, we generally assume certain probability

distributions P (u) to describe the external factors. The values of endogenous variables, on the other

hand, are assigned by both exogenous variables and endogenous variables. These causal mappings

are captured by a set of non-parametric functions F = {f1, ..., fn}.fi can be a linear or non-linear

function to interpret all sorts of causal relations. The value assignments of endogenous variables are

also referred to as data generation process (DGP) where nature assigns the values of endogenous

variables.

Let us consider a toy example: in a smoking-lung cancer study, we can observe and measure the

treatment variable smoking (S) and the outcome variable lung cancer (L). Suppose these two factors

are endogenous variables. There might be some unmeasured factors that interact with the existing

endogenous variables, e.g., genotype (G). Then the SCM can be instantiated as,

U = {G}, V = {S, L}, F = {fS, fL} (3.2)

fS : S ← fS(G) (3.3)

fL : L← fL(S,G) (3.4)
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This SCM model describes that both genotype and smoking are direct causes of lung cancer.

Certain genotype is responsible for nicotine dependence hence explains the smoking behavior

[111, 112]. However, no variable in this model explains variable genotype and G is an exogenous

variable.

3.2.2 Directed Acyclic Graph

Every SCM is associated with a directed acyclic graph (DAG). The vertices in the graph are variables

under study and causal mechanisms and processes are edges in DAG. For instance, if variable X is

the direct cause of variable Y , then there is a directed edge from X to Y in the graph. The previous

SCM model can be visualized as follows:

Figure 3.2: Graphical representation of SCM model in Section 3.2.1. Square node denotes the

exogenous variable and round nodes denote the endogenous variable. The directed edge represents

the causal mechanism.

Note that the graphical representation encodes the causal relations in Equation 3.3-3.4 via a

rather intuitive way. In the next section, we will show the strengths of the graphical representation

when we need to study the independent relations among variables.
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3.2.3 Intervention with do-calculus do(·)

Do-calculus was developed by Pearl [113, 114] to gauge the effects of causal interventions [113,

114]. In the example of smoking-lung cancer, the likelihood of getting lung cancer in case of

smoking, can be expressed in this conditional probability, Prob(L = 1|do(S = 1)), which describes

the cause-effect identified in a randomized controlled trial. L and S are Bernoulli random variables

which only take two values: 0 and 1. L = 1 denotes the fact of getting lung cancer, and L = 0

represents the observation of no lung cancer. S = 1 means that the observation of smoking whereas

S = 0 says no smoking is observed. In other words, this post-intervention distribution represents the

probability of getting lung cancer (L = 1) when we intervene upon the data generation process by

deliberately forcing participant to smoke, i.e., do(S = 1). Post-intervention probability distribution

refers to probability terms that contain do-notation, do(· ). This post-intervention distribution is

different from the conditional probability in an observational study: Prob(L = 1|S = 1), which

only represents the likelihood of outcome (L = 1) when we observe that someone smokes. This

conditional probability in observational study does not entail the true causal effect as it might be

biased by confounders. We will discuss the confounding issue in the next section.

To recall, randomized controlled trials might be impractical or even unethical to conduct at

times. For example, we cannot force participants to smoke in a randomized controlled experiment

in order to find the cause-effect of an intervention (do(S = 1)). Do-calculus suggests us to raise

the following question instead: is it possible to estimate the post-intervention Prob(L|do(S)) from

observational study. If we can express Prob(L|do(S)) in terms of the conditional probability

Prob(L|S) estimated in the observational study, then we can gauge the causal-effect without

performing randomized controlled trials.

3.2.3.1 do-calculus algebra

Here we introduce the algebraic procedure of do calculus that allows us to bridge the gap of

probability estimation between observational study and randomized controlled trials. The goal of

do-calculus is to reduce the post-intervention distribution that contains the do(· ) operator into a set
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of probability distributions of do(· ) free. The complete mathematical proof of do-calculus can be

seen in [115, 6].

Rule 1. Prob(Y|do(X),Z,W)=Prob(Y|do(X),Z) when we observe the variable W is irrelevant to Y

(possibly conditional on the other variable Z), then the probability distribution of Y will not change.

Rule 2. Prob(Y|do(X),Z)=Prob(Y|X,Z) if Z is a set of variables blocking all "back-door" paths from

X to Y, then Prob(Y |do(X), Z) is equivalent to Prob(Y |X,Z). Backdoor path will be explained

shortly.

Rule 3. Prob(Y|do(X))=Prob(Y) we can remove do(X) from Prob(Y|do(X)) in any case where there

are no causal paths from X to Y. If it is not feasible to express the post-intervention distribution,

Prob(L|do(S)), in terms of do-notation-free conditional probabilities (e.g., Prob(L|S)) using the

aforementioned rules, then randomized controlled trials are necessary to gauge the true causality.

3.2.3.2 Backdoor path and d-separation

In rule 2, the backdoor path refers to any path between cause and effect with an arrow pointing

into cause in a directed acyclic graph (or a causal graph). For example, the backdoor path between

smoking and lung cancer in Figure 3.2 is "smoking← genotype→ lung cancer". How do we know

if a backdoor path is blocked or not?

Judea Pearl in his book [5] introduced the concept of d-separation that tell us how to block the

backdoor path. Please refer to [116] for the complete mathematical proof.

a) In a chain junction, A → B → C, conditioning on B prevents information about A from

getting to C or vice versa.

b) In a fork or confounding junction, A← B→ C, conditioning on B prevents information about

A from getting to C or vice versa.

c) In a collider, A→ B← C, exactly the opposite rules hold. The path between A and C is

blocked when not conditioning on B. If we condition on B, then the path is unblocked. Bear

in mind if this path is blocked A and C would be considered independent of each other.
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In Figures 3.2, conditioning on genotype will block the backdoor path between smoking and

lung cancer. Here, conditioning on genotype means that we only consider a specific genotype in

our analysis. Blocking the backdoor between the cause and effect actually prevents the spurious

correlation between them in an observational study. Please refer to the next section for more details

on confounding bias.

3.2.4 What is the difference between Prob(Y = y|X = x) and Prob(Y = y|do(X = x))?

In [6], Pearl et al explains the difference between the two distributions as follows, "In notation,

we distinguish between cases where a variable X takes a value x naturally and cases where we

fix X = x by denoting the latter do(X = x). So Prob(Y = y|X = x) is the probability that

Y = y conditional on finding X = x, while Prob(Y = y|do(X = x)) is the probability that

Y = y when we intervene to make X = x. In the distributional terminology, Prob(Y = y|X = x)

reflects the population distribution of Y among individuals whose X value is x. On the other hand,

Prob(Y = y|do(X = x)) represents the population distribution of Y if everyone in the population

had their X value fixed at x". This can be better understood with a thought experiment. Imagine

that we study the association of barometer readings and weather conditions. We can express this

association in terms of Prob(Barometer|Weather) or Prob(Weather|Barometer). Notice that

correlations can be defined in both directions. However, causal relations are generally uni-directional.

Prob(Weather = rainy|Barometer = low) represents the probability of weather being rainy

when seeing the barometer reading is low. Prob(Weather = rainy|do(Barometer = low))

describes the likelihood of weather being rainy after we manually set the barometer reading to low.

Our common sense tells us that manually setting the barometer low would not affect the weather

condition, hence, this post-intervention probability should be zero, whereas Prob(Weather =

rainy|Barometer = low) might not be zero.
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3.2.5 From Bayesian networks to Structural Causal Models.

Some readers may raise the question: “what is the connection between structural causal models

and Bayesian networks, which also aims to interpret causality from the data using DAGs?”. Firstly,

Bayesian network (also know as belief networks) was introduced by Pearl [117] in 1985 as his

early attempt into causal inference. A classic example of Bayesian network is shown in Figure

3.3. The nodes in Bayesian networks represent the variables of interests, and the edges between

linked variables denote their dependencies, and the strength of such dependencies are quantified

by conditional probabilities. The directed edges in this simple network (Figure 3.3) encodes

the following causal assumptions: 1) Grass wet is true if the Sprinkler is true or Rain is true.

2) Rain is the direct cause of Sprinkler as the latter is usually off in a rainy day to preserve

the water usage. We can use this probabilistic model to reason the likelihood of a cause given

an effect is observed, e.g., the likelihood of a rainy day if we observe the sprinkler is on is

Prob(Rain = True|Sprinkler = True) = 0.4 as shown in the conditional probability tables in

Figure 3.3.

Figure 3.3: A simple example of Bayesian network with conditional probability tables.

However, “a Bayesian network is literally nothing more than a compact representation of a
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huge probability table. The arrows mean only that the probabilities of child nodes are related to the

values of parent nodes by a certain formula (the conditional probability tables)” [5]. On the contrary,

the arrows in the structural causal models describe the underlying data generation process between

linked variables (i.e., cause and effect) using a function mapping instead of conditional probability

tables. If that we construct a SCM on the same example, the DAG remains unchanged, but the

interpretations of the edges are different. For example, the edge of “Rain→ Sprinkler” indicates

the function Sprinkler ← f(Rain), which dictates how the effect (Sprinkler) would respond if we

wiggle the cause (Rain). Note that Sprinkler is the effect and Rain is the cause, and the absence of

the arrow “Sprinkler ← Rain” in the DAG says there is no such function, Rain← f(Sprinkler).

Consider we would like to answer an interventional question, “What is likelihood of a rainy

if we manually turn on the sprinkler, Prob(Rain = True|do(Sprinkler = True))?”. It is

natural to choose SCMs for such questions: since we know that Sprinkler is not the direct

cause of Rain according to the causal graph, the rule 3 of do-calculus algebra (Section 3.2.3.1)

permits us to reduce Prob(Rain = True|do(Sprinkler = True)) to Prob(Rain = True).

That is the status of Sprinkler has no impact on Rain. However, a Bayesian network is not

equipped to answer such interventional and counterfactual questions. The conditional probability

Prob(Sprinkler = True|Rain = True) = 0.4 only says the association between Sprinkler and

Rain exists. Therefore, the ability to emulate interventions is one of the advantages of SCMs over

Bayesian networks [5, 118].

However, Bayesian networks is an integral part of the development of causal inference framework

as it is an early attempt to marry causality to graphical models. All the probabilistic properties

(e.g., local Marko property) of Bayesian network are also valid in SCMs [5, 116, 118]. Meanwhile,

Bayesian networks also impact causal discovery research, which focuses on the identification of

causal structures from data through computational algorithms [119].
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3.3 Simpson paradox and confounding variables

Spurious correlations introduced by confounder

The famous phrase "correlation does not imply causation" suggests that the observed correlation

between variables A and B does not automatically entail causation between A and B. Spurious

correlations between two variables may be explained by a confounder. For example, considering

the following case (Figure 3.4) where a spurious correlation between yellow fingernails and lung

cancer is observed. One cannot simply claim that people who have yellow fingernails have higher

risk of lung cancer as neither is the cause of the other. Confounding is a causal concept and cannot

be expressed in terms of statistical correlation [120, 121].

Figure 3.4: Smoking is a common cause and confounder for yellow finger nails and lung cancer. A

spurious correlation may be observed between two groups who have yellow fingernails and lung

cancer because of the third variable smoking

Another interesting study [1] reported there is a "surprisingly powerful correlation" (rho =

0.79, p < 0.0001) between the chocolate consumption and the number of Nobel Laureates in a

country. It is hard to believe there is any direct causal relation between these two variables in this

study. This correlation might be again introduced by a confounder (e.g., advanced educational

system in developed countries) that is not included in this study.

Pearl argues that [6]: "one cannot substantiate causal claims from association alone, even at the

population level. Behind every causal conclusion there must lie some causal assumptions that is not

testable in an observational study".

35



3.3.0.1 Simpson paradox example: kidney stone

Confounder (a causal concept) may not only introduce spurious correlations but can also generate

misleading results. Table 3.1 shows a real-life medical study [122] that compares the effectiveness

of two treatments for kidney stones. Treatment A includes all open surgical procedures while

treatment B is percutaneous nephrolithotomy (which involves making only a small puncture(s) in

the kidney). Both treatments are assigned to 2 groups with the same size (i.e., 350 patients). The

fraction numbers indicate the number of success cases over the total size of the group.

If we consider the overall effectiveness of two treatments, treatment A (success rate= 273
350

=

0.78) is inferior to treatment B (success rate= 289
350

= 0.83). At this moment, we may think treatment

B has higher chance of cure. However, if we compare the treatment by the size of the kidney stones,

we discover that treatment A is clearly better in both groups, patients with small stones and patients

with large stones. Why is the trend at the population level is reversed when we analyze treatments

in sub-populations?

Table 3.1: Kidney stone treatment. The fraction numbers indicate the number of success cases over

the total size of the group. Treatment B is more effective than treatment A at overall population

level. But the trend is reversed in sub-populations.

Treatment A Treatment B

Small Stones

(357
700

= 0.51)
81
87

= 0.93 234
270

= 0.87

Large Stones

(343
700

= 0.49)
192
263

= 0.73 55
80

= 0.69

Overall 273
350

= 0.78 289
350

= 0.83

If we inspect the table with more caution, we realize that treatments are assigned by the severity,

i.e., people with large stones are more likely to be treated with method A while most of those with

small stones are assigned with method B. Therefore, severity (the size of the stone) is a confounder

that affects both the recovery and treatment as shown in Fig.3.5.
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Figure 3.5: Observational study that has a confounder, severity

Ideally, we are interested in the pure causal relation of "treatment X → recovery" without

any other unwanted effects from exogenous variables (e.g., the confounder severity). We de-

confound the causal relation of "treatment X→ recovery" by intervening on variable Treatment

and forcing its value to be either A or B. By fixing the treatment, we can remove the effect

coming from variable Severity to variable Treatment. Note that the causal edge of "Severity →

Treatment" is absent in the mutilated graphical model shown in Figure 3.5. Since Severity

does not affects the Treatment and Recovery at the same time after the intervention, it is no

longer a confounder. Intuitively, we are interested in understanding if we use treatment A on

all patients, what will be the recovery rate, Prob(Recovery|do(Treatment = A)). Similarly,

what is the recovery rate, Prob(Recovery|do(Treatment = B)), if we use treatment B only.

If the former has larger value, then treatment A is more effective; otherwise, treatment B has

higher chance of cure. The notation do(X = x) is a do-expression which fixes the value of

X = x. Note that the probability Prob(Recovery|do(Treatment)) marginalizes away the effect

of severity by Prob(Recovery|do(Treatment)) = Prob(Recovery|do(Treatment),Severity =

treatmentA) + Prob(Recovery|do(Treatment),Severity = treatmentB). Essentially, we are

computing the causal effects of "treatment A→ recovery" and "treatment B→ recovery":
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Figure 3.6: We simulate the intervention in the form of a mutilated graphical mode.

The causal effect Prob(Recovery|do(Treatment)) is equal to the conditional probability

Prob(Recovery|Treatment) in this mutilated graphical model.

Prob(R = 1|do(T = A)) (3.5)

=
∑

s∈{small,large}

Prob(R = 1, S = s|do(T = A)) ( law of total probability) (3.6)

=
∑

s∈{small,large}

Prob(R = 1|S = s, do(T = A))Prob(S = s|do(T = A)) (3.7)

=
∑

s∈{small,large}

Prob(R = 1|S = s, do(T = A))Prob(S = s)1 (3.8)

=
∑

s∈{small,large}

Prob(R = 1|S = s, T = A)Prob(S = s)2 (3.9)

= Prob(R = 1|S = small, T = A)Prob(S = small)+

Prob(R = 1|S = large, T = A)Prob(S = large) (3.10)

= 0.93× 0.51 + 0.73× 0.49 (3.11)

= 0.832 (3.12)

Similarly, we can compute,

1rule #3 in do-calculus, see Section 3.2.3
2rule #2 in do-calculus, see Section 3.2.3
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Prob(R = 1|do(T = B)) (3.13)

=
∑

s∈{small,large}

Prob(R = 1, S = s|do(T = B)) ( law of total probability) (3.14)

=
∑

s∈{small,large}

Prob(R = 1|S = s, do(T = B))Prob(S = s|do(T = B)) (3.15)

=
∑

s∈{small,large}

Prob(R = 1|S = s, do(T = B))Prob(S = s)1 (3.16)

=
∑

s∈{small,large}

Prob(R = 1|S = s, T = B)Prob(S = s)2 (3.17)

= Prob(R = 1|S = small, T = B)Prob(S = small)+

Prob(R = 1|S = large, T = B)Prob(S = large) (3.18)

= 0.87× 0.51 + 0.69× 0.49 (3.19)

= 0.782 (3.20)

Now we know the causal effects of Prob(Recovery|do(Treatment = A)) = 0.832

and Prob(Recovery|do(Treatment = B)) = 0.782. Treatment A is clearly more effective than

Treatment B. The results also align with our common sense that open surgery (treatment A) is

expected to be more effective. A more informative interpretation of the results is that the difference

of the two causal effects denotes the fraction of the population that would recover if everyone

is assigned with treatment A compared to the other procedure. Recall that we have the opposite

conclusion if we read the "effectiveness" at population level in Table 3.1.

3.3.1 How to estimate the causal effect using intervention?

The "interventionist" interpretation of causal effect is often described as the magnitude by which

outcome Y is changed given a unit change in treatment T . For example, if we are interested in the

effectiveness of a medication in the population, we would set up an experimental study as follows: 1)

1rule #3 in do-calculus, see Section 3.2.3
2rule #2 in do-calculus, see Section 3.2.3

39



We administer the drug uniformly to the entire population, do(T = 1), and compare the recovery rate

Prob(Y = 1|do(T = 1)) to what we obtain under the opposite context Prob(Y = 1|do(T = 0)),

where we keep everyone from using the drug in a parallel universe, do(T = 0). Mathematically, we

estimate the differenceknown as ACE (defined in section 3.1.2.1),

ACE = Prob(Y = 1|do(T = 1))− Prob(Y = 1|do(T = 0)) (3.21)

"A more informal interpretation of ACE here is that it is simply the difference in the fraction

of the population that would recover if everyone took the drug compared to when no one takes

the drug" [21]. The question is how to estimate the intervention distribution with the do operator,

Prob(Y |do(T )). We can utilize the following theorem to do so,

Theorem 1. The causal effect rule Given a graph G in which a set of variables PA are designated

as the parents of X, the causal effect of X on Y is given by

Prob(Y = y|do(X = x)) =
∑
z

Prob(Y = y|X = x, PA = z)Prob(PA = z) (3.22)

If we multiply and divide the right hand side by the probability Prob(X = x|PA = z), we get

a more convenient form:

Prob(y|do(x)) =
∑
z

Prob(X = x, Y = y, PA = z)

Prob(X = x, PA = z)
(3.23)

Now the computation of Prob(Y |do(T )) is reduced to the estimation of joint probability distribu-

tions Prob(X, Y, PA) and Prob(X,PA), which can be directly computed from the corresponding

observational dataset. Please refer to [123] for details on probability distribution estimation.

3.4 External validity and transportability of machine learning models.

In the era of big data, we diligently and consistently collect heterogeneous data from various studies.

For example, data collected from different experimentational conditions, underlying population,
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locations, or even different sampling procedures. In short, the collected data are messy, and rarely

serves our inferential goal. Our data analysis should account for these factors. "The process

of translating the results of a study from one setting to another is fundamental to science. In

fact, scientific progress would grind to a halt were it not for the ability to generalize results from

laboratory experiments to the real world" [5]. We initially need to take a better look at heterogenous

datasets.

3.4.1 How to describe the characteristics of heterogeneous datasets?

Figure 3.7: Heterogeneous datasets can vary on the dimensions (d1, d2, d3, d4) shown above.

Suppose we are interested in the causal effect X → Y in a study carried out in Texas, and we have

the same causal effect studied in Los Angeles and New York. This table exemplifies the potential

differences between the datasets [2]

.

Big data empowers us to conduct a wide spectrum of studies and to investigate the analytical

results. We normally incline to incorporate or transfer such results to a new study. It naturally raises

the question: under what circumstances can we transfer the existing knowledge to new studies that

are under different conditions. Before we come up with "licenses" of algorithms that permits such

transfer, it is crucial to understand how the new dataset in the target study differs from the ones in

the existing studies.

Bareinboim [124] summarizes the differences of heterogeneous datasets over the four dimensions
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shown in Figure 3.7 [124] that are certainly not enough to enumerate all possibilities in real practice,

but more dimensions can be added in future research. In Figure 3.7,

• d1) datasets may vary on the study population;

• d2) datasets may vary in study design. For instance, the study in Los Angeles is an experi-

mental study under laboratory setting, while the study in New York is an observational study

in real world;

• d3) datasets may vary in collection process. For instance, dataset 1 may suffer from selection

bias on variable age; for example, if the subjects recruited in study 1 are contacted only using

landlines, the millennials probably are excluded in the study as they prefer mobile phones;

• d4) Studies might also take measurements on different sets of variables.

3.4.2 Selection bias

Selection bias is caused by preferential exclusion of data samples [125]. It is a major obstacle in

validating statistical results, and it can hardly be detected in either experimental or observational

studies.

3.4.2.1 COVID-19 example

During the COVID-19 pandemic crisis, a statewide study reported that 21.2% of New York City

residents have been infected with COVID-19 [126]. The study tested 3,000 New York residents

statewide at grocery and big-box stores for antibodies that are to indicate whether someone has had

the virus. Cassie Kozyrkov [127] argues the study might be contaminated with selection bias. The

hypothesis notes that the cohort in the study is largely skewed towards the group of people who are

high risk-takers/less cautious and have had the virus. The large portion of the overall population

may include people who are risk-averse and cautiously stay home; these people were excluded from

the research samples. Therefore, the reported toll (i.e., 21.2%) is likely to be inflated. Here, we try

to investigate a more generic approach to spot-on selection bias issues.
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Causal inference requires us to make certain plausible assumptions when we analyze data. Data

sets are not always complete, that is, it does not always tell the whole story. The aresults of the

analyses (e.g., spurious correlation) from data alone can be often very misleading. You may recall

the example of smokers who may develop lung cancer and have yellow fingernails. If we find this

association (lung cancer and yellow fingernails) to be strong, we may come to the false conclusion

that one causes the other.

Back to our COVID-19 story, what causal assumptions can we make in the antibody testing

study? Consider Figure 3.8 in which each of the following assumptions represent an edge.

i) We know that the antibody will be discovered if we do the related test.

ii) People who have had COVID-19 and survived would generate an antibody for that virus.

iii) Risk taking people are more likely to go outdoor and participate in the testing study.

iv) In order to highlight the difference between the sample cohort and the overall population in the

graph, Bareinboim [124, 125] proposed a hypothetical variable S (standing for "selection").

The variable bounded in the square in Fig. 8 stands for the characteristics by which the two

populations differ. You can also think of S as the inclusion/exclusion criteria. Variable S have

incoming edges from variables "risk taking" and "carried virus". This means that the sample

cohort and overall population differ in these two aspects.

Now we have encoded our assumptions into a transparent and straightforward diagram. You

may wonder why we go through all the hassle to make this graphical diagram? What value does it

add to our identification of selection bias or even debiasing procedure?

Let us begin with the question of how it helps us to find the common pattern/principle of

identifying selection bias?

3.4.2.2 Identify selection bias with causal graph

First, a couple of quick tips in identifying selection bias: 1) find any collider variable on the

backdoor path between the cause variable and the effect variable, 2) selection bias occurs when
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Figure 3.8: Graphical model that illustrates the selection bias scenario. Variable S (squared shape)

is a difference producing variable, which is a hypothetical variable that points to the characteristic

by which the two populations differ.

your data collection process is conditioning on these collider variables [125]. Note that these tips

are only sufficient but not necessary conditions in finding selection bias. By conditioning we mean

considering only some of the possibilities a variable can take and not all.

The backdoor path in tip 1) refers to any path between cause variable (COVID testing) and

effect variable (antibody %) with an arrow pointing into cause variable ([5] , page 158). In our

example, the only backdoor path is "COVID-19 test← risk taking→ S← carried virus→ antibody

%". Spurious correlation will be removed if we block every backdoor path.

We observe that there are 3 basic components on the backdoor path: 1) a fork "COVID-19 test

← high risk→ S"; 2) a collider "high risk→ S← carried"; 3) another fork "S← carried virus→

antibody %". Now we notice that this backdoor path is blocked if we do not condition on variable S

in the collider (rule c). If we condition on variable S (e.g., set S={high risk, have had virus}), the

backdoor path will be opened up and spurious correlation is introduced in your antibody testing

results.
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Now we come to a realization that if we condition on collider on the backdoor path between

cause→ effect and open up the backdoor path, we will encounter the selection bias issue. With this

conclusion, we can quickly identify if our study has a selection bias issue given any causal graph.

The procedures of this identification can also be automated when graph is complex. So, we offload

this judgement to algorithms and computers. Hopefully, you are convinced at this point that using

graphical model is a more generic and automated way of identifying selection bias.

3.4.2.3 Unbiased estimation with do-calculus

Now we are interested in the estimation of cause effect between “COVID-19 test → Antibody

%”, P (Antibody|do(test)). In other words, the causal effect represents the likelihood of antibody

discovery if we test everyone in the population. Our readers may wonder at this point the do-

calculus makes sense, but how would we compute and remove the do-operator? Recall the algebric

of do-calculus introduced in Section 3.2.3. Let us compute P (Antibody|do(test)) as follows,

P (Antibody|do(test)) (3.24)

= P (Antibody|do(test), {})1 (3.25)

= P (Antibody|test, {})2 (3.26)

= P (Antibody|test) (3.27)

=
∑

i∈{high,low}
j∈{true,false}

P (Antibody, risk = i, virus = j|test)3 (3.28)

=
∑

i∈{high,low}
j∈{true,false}

P (Antibody|test, risk = i, virus = j)P (risk = i, virus = j|test) (3.29)

(3.30)

1Condition on nothing, an empty set.
2The backdoor path in Figure 3.8 is blocked naturally if we condition on nothing, {}. According to rule b) of

do-alculus, we can safely remove the do notation.
3Law of total probability.
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The last step of the equation show four probability terms measured in the study required to have

an unbiased estimation. If we assume close-world (risk={high, low}, virus={true, false}), it means

we need to measure every stratified group. Now we have seen that do-calculus can help us identify

what pieces we need in order to recover the unbiased estimation.

Model transportability with data fusion.

Transferring the learned knowledge across different studies is crucial to scientific endeavors. Con-

sider a new treatment that has shown effectiveness for a disease in an experimental/laboratory

setting. We are interested in extrapolating the effectiveness of this treatment in a real-world setting.

Assume that the characteristics of the cohort in the lab setting is different from the overall population

in real-world, e.g., age, income, etc. Direct transfer of existing findings into new setting will result

in biased inference/estimation of the effectiveness of the drug. Certainly, we can recruit a new

cohort that is representative of the overall population and study whether the effectiveness of this

treatment is consistent. However, if we could use the laboratory findings to infer our estimation

goal in the real-world, this would reduce cost of repetitive data collection and model development.

Let us consider a toy example of how causal reasoning could help with data fusion.

3.4.2.4 A toy example of data fusion with causal reasoning

Imagine we developed a new treatment for a disease, and we estimated the effectiveness of the new

drug for each age group in a randomized controlled experimental setting. Let P (Recovery|

do(Treatment), Age) denote the drug effect at each age group. We wish to generalize the lab

results to a different population. Assume that the study cohort in lab setting and the target population

are different and the differences are explained by a variable S as shown in Figure 3.8. Meanwhile,

we assume these causal effects of each specific age group are invariant across populations. We

are interested in gauging the drug effect in the target population (S = s∗), and the query can be

expressed as P (Recovery = True|do(Treatment = True), S = s∗). Then the query can be

solved as follows:
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Figure 3.9: An toy example shows how to transfer existing inference in a lab setting to another

population where the difference is the age, denoted by a hypothetical difference variable S (in

yellow)

Query = P (Recovery|do(Treatment), S = s∗) (3.31)

=
∑
age

P (Recovery|do(Treatment), S = s∗, Age = age)×

P (Age = age|do(Treatment), S = s∗) (3.32)

=
∑
age

P ∗(Recovery|do(Treatment), Age = age)P ∗(Age = age) (3.33)

In the last step of the equation, P ∗(Recovery|do(Treatment), Age = age) is the effect

we discovered through various experimental studies, and it is invariant across study cohorts.

Hence, P ∗(Recovery|do(Treatment), Age = age) = P (Recovery|do(Treatment), Age =

age). P ∗(Age = age) is the age distribution in the new population, and is a shorthanded for

P (Age = age|S = s∗). We realize that to answer the query, we just need to compute the summation

of the experimental findings weighted by the age distribution in the target population.

For example, we assume that we have discovered the effectiveness of the new treatment on

different age groups through some experimental studies. The effectiveness is expressed as follows,
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P (Recovery|do(Treatment), Age < 10) = 0.1 (3.34)

P (Recovery|do(Treatment), Age = 10 ∼ 20) = 0.2 (3.35)

P (Recovery|do(Treatment), Age = 20 ∼ 30) = 0.3 (3.36)

P (Recovery|do(Treatment), Age = 30 ∼ 40) = 0.4 (3.37)

P (Recovery|do(Treatment), Age = 40 ∼ 50) = 0.5 (3.38)

The age distribution in our target population is as follows,

• group1 : Age < 10 P ∗(Age < 10) = 1/10

• group2 : Age = 10 ∼ 20 P ∗(10 ≤ Age < 20) = 2/10

• group3 : Age = 20 ∼ 30 P ∗(20 ≤ Age < 30) = 4/10

• group4 : Age = 30 ∼ 40 P ∗(30 ≤ Age < 40) = 2/10

• group5 : Age = 40 ∼ 50 P ∗(40 ≤ Age < 50) = 1/10

According to Equation 3.31-3.33, the effectiveness in the target population should be computed

as,

P (recovery|do(treatment), S = s∗) =
∑
age

P (recovery|do(treatment), age)P ∗(age) (3.39)

= 0.1 ∗ 1

10
+ 0.2 ∗ 2

10
+ 0.3 ∗ 4

10
+ 0.4 ∗ 2

10
+ 0.5 ∗ 1

10

(3.40)

= 0.03 (3.41)
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3.5 Learn from missing data using causal inference.

Introduction

Missing data occurs when the collected values are incomplete for certain observed variables.

Missingness might be introduced in a study for various reasons: for examples, due to sensors that

stop working because the run out of battery; Data collection is done improperly by researchers;

Respondents refuse to answer some survey questions that may reveal their private information (e.g.,

income, disability). Missing data issue is inevitable in some scenarios. In a smoking-cancer medical

study, it is perceived highly unethical to ask participants to smoke in order to test the hypothesis of

smoking leading to lung cancer.

Typically, building machine learning predictors or statistical models with missing data may

expose ourselves to the following risks: a) the partially observed data may bias our inference models,

and the study outcomes may largely deviate from the true value [128], b) the reduced sample size

may lose the statistical power to provide any informative insights [129], c) this technical impediment

might also cause severe predictive performance degradation as most of the machine learning models

assume datasets are complete when making inferences.

Extensive research endeavors have been dedicated to this issue. List-wise deletion or mean

value substitutions are commonly used in dealing with missing data because of their simplicity.

However, these naive methods fail to account for the relationships between the missing data and the

observed data. Thus, the interpolations usually deviate from the real values by large. Rubin et al.

introduce the concept of missing data mechanism which is widely adopted in the literature [130].

This mechanism classifies missing data into tree categories:

• Missing completely at random (MCAR): the observed data are randomly drawn from the

complete data. In other words, missingness is unrelated to other variables or itself. For

example, in Figure 3.10, job performance ratings is a partially observed variable, and variable

IQ is complete without any missingness. The MCAR column shows that the missing ratings

are independent of IQ values and itself.
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Figure 3.10: Example source [3]. Job performance ratings is a partially observed variable, and vari-

able IQ is a completely observed variable without any missingness. The second column shows the

complete ratings. The 3rd/4th/5th columns show the observed ratings under MCAR/MAR/MNAR

conditions, respectively.

• Missing at random (MAR): the missing values of the partially observed variable dependents

on other measured variables. For example, in Fig. 3.10, the MAR column shows that the

missing ratings are associated with low IQs.

• Missing not at random (MNAR): MNAR includes scenarios when data are neither MCAR

nor MNAR. For example, in Fig. 3.10, the MNAR column shows that the missing ratings are

associated with itself. i.e., low job performance ratings (ratings < 9) are missing.

Pearl et al. demonstrate that theoretical performance guarantee (e.g. convergence and unbiased-

ness) exists for inference with data that are MCAR and MAR [4, 131]. In other words, we can still

have bias-free estimation with even missing data. For example, in Figure 3.10, assume Y is the

random variable that represents the job performance ratings. The expectation of job performance

ratings under complete, MCAR, MNAR columns are EComplete[Y ] = 10.35, EMCAR[Y ] = 10.60,
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EMNAR[Y ] = 11.40, respectively. It can be easily verified that bias of BiasMCAR = |EComplete[Y ]−

EMCAR[Y ]| = 0.25 is less than BiasMNAR = |EComplete[Y ] − EMNAR[Y ]| = 1.05. As the size

of the dataset grows, EMCAR[Y ] will converge to the real expectation value EComplete[Y ], i.e.,

BiasMCAR = 0. However, since the MNAR mechanism dictates that low ratings (Y < 9) are

inherently missing from our observations, we cannot have an bias-free estimation, regardless of the

sample size, if we make no assumptions of the missing mechanism. We can notice that the observed

data are governed by the missing mechanism (or data generation process). Therefore, missing

data issue is inherently a causal inference problem [131, 132]. Details of the causal perspective to

missing data can be referred to Section 3.5.

Most statistical techniques proposed in the literature for handling missing data assume that

data are MCAR or MAR [133, 134, 135, 136]. For example, expectation maximum likelihood

algorithm is generally considered superior to other conventional methods (e.g. list-wise or pair wise

deletion) when the data are MCAR or MAR [3]. Moreover, it provides theoretical guarantee (e.g.

unbiasedness or convergence) [137] under MCAR or MAR assumptions. However, when it comes

to MNAR, estimations with the conventional statistical techniques will mostly be biased. Mohan

et al. report that we can achieve unbiased estimation in MNAR scenario under certain constraints

using causal methods[4, 131, 132]. These work still leave certain problems unsolved with MNAR

case. The limitations will be presented and discussed in details in section 3.5. Therefore, we can

focus our future research direction towards solving this unexplored issues.

Causal Perspective

In this section, we briefly explore and discuss the causal approaches proposed by Karthika Mohan

and Judea Pearl in dealing with missing data[4, 131, 132]. Firstly, we introduce the concept of

causal graph representation for missing data – missing graph(s) (m-graph(s) for short). Then we

introduce the definition of recoverability, a formal definition of unbiased estimation with missing

data. Next we discuss under what conditions we can achieve recoverability. At last, we identify the

unsolved problems with data that are MNAR.
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Figure 3.11: m-graphs for data that are: (a) MCAR, (b) MAR, (c) & (d) MNAR; Hollow and solid

circles denote partially and fully observed variables respectively [4]

Preliminary on missing graphs

Let G(V, E) be the causal graph (a DAG) where V = V ∪ U ∪ V ∗ ∪ R. V denotes the set of

observable nodes, which represents observed variables in our data. These observable nodes can be

further grouped into fully observable nodes, V obs, and partially observable nodes, V mis. Hence,

V = V obs∪V mis. V obs denotes the set of variables that have complete values whereas V mis denotes

the set of variables that are missing at least one data record. Each partially observed variable

vi ∈ V mis has two auxiliary variables Rvi and V ∗
i , where V ∗

i is a proxy variable that is actually

observed, and Rvi denotes the causal mechanism responsible for missingness of V ∗
i ,

v∗i = f(rvi , vi) =


vi, if rvi = 0

missing, if rvi = 1

(3.42)

In missing graphs, Rvi can be deemed as a switch that dictates the missingness of its proxy

variable, V ∗
i . For example, in Figure 3.11 (a), X is a fully observable node which has no auxiliary

variables. Partially observable node Y is associated with Y ∗ and RYi
. Y ∗ is the proxy variable that

we actually observe on Y , and Ry masks the values of Y by its underlying missingness mechanism

(e.g., MCAR, MAR, MNAR). E is the set of edges in m-graphs, and U is the set of unobserved

variables (latent variables). For example, in a recommender system, the purchase interest of a user

can not be measured nor observed. Hence it is an unobserved variable. The toy example in Figure

3.11 is not involved with any latent variable.

We can cast the classification of missingness mechanisms (e.g., MCAR, MAR, MNAR) onto
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m-graphs as depicted in Figure 3.11.

• Figure 3.11 a) shows the MCAR case where Ry |= X 1. The on-off status of Ry is solely

determined by coin-toss. Bear in mind that the absence of an edge between two vertices in

causal graph is a strong constraint which represents there is no relation between them. The

criterion of deciding if a m-graph represents MCAR is R |= (V obs ∪ V mis ∪ U).

• Figure 3.11 b) shows the MAR case where Ry |= Y |X 1. Ry depends on the fully observed

variable X . The criterion of deciding if a m-graph represents MAR is R |= (V mis ∪ U)|V obs.

• Figure 3.11 c)&d) show the MNAR cases where neither of the aforemetioned criterions holds.

It is a clear advantage that we can directly read the missingness mechanism from the m-graphs

using d-seperation 2 without conducting any statistical test.

Recoverability

Before we can discuss under what conditions we can achieve bias-free estimation, we shall firstly

introduce the definition of recoverability.

Definition 1. Recoverability [4]. Given a m-graph G, and a target query relation Q defined on

the variables in V, Q is said to be recoverable in G if there exists an algorithm that produces a

consistent estimate of Q for every dataset D such that P(D) is 1) compatible with G and 2) strictly

positive over complete cases, i.e., P (V obs, V mis,R = 0) > 0.

The definition in the original paper [4] may be a bit obscure at first. To my understanding, a

query (e.g. what is the value of joint probability, Prob(X, Y ) in Figure 3.11) is recoverable if

there exists an algorithm that computes Prob(X, Y ) with the observed values of X, Y ∗. Then this

algorithm is referred as a "consistent estimator" which gives unbiased inference. We will see some

examples in this section later.

1This (conditional) independence is directly read off from causal graphs using d-separation technique
2Watch this video on d-separation: https://www.youtube.com/watch?v=yDs_q6jKHb0
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Corollary 1. [4]. A query relation Q is recoverable in G if and only if Q can be expressed in

terms of the probability P(O) where O = R, V ∗, V obs is the set of observable variables in G. In

other words, for any two models M1 and M2 inducing distribution PM1 and PM2 respectively, if

PM1(O) = PM2(O) > 0 then QM1 = QM2 .

Recoverability when data are MCAR

Example 3.5.1. [4]. Let X be the treatment and Y be the outcome as depicted in the m-graph in

Figure 3.11 a). Let it be the case that we accidentally delete the values of Y for a handful of samples,

hence Y ∈ Vm. Can we recover P(X,Y)?

Yes, P(X,Y) under MCAR is recoverable. We know that Ry |= (X, Y ) 1 holds in Figure 3.11

a). Thus, P (X, Y ) = P (X, Y |Ry) = P (X, Y |Ry = 0). When Ry = 0, we can safely replace Y

with Y ∗ as P (X, Y ) = P (X, Y ∗|Ry = 0). Note that P (X, Y ) has been expressed in terms of the

probability (P (X, Y ∗|Ry = 0)) we can compute using observational data. Hence, we can recover

P(X,Y) with no bias.

Recoverability when data are MAR

Example 3.5.2. [4]. Let X be the treatment and Y be the outcome as depicted in the m-graph in

Figure 3.11 b). Let it be the case that some patients who underwent treatment are not likely to report

the outcome, hence X ∈ Ry. Can we recover P(X,Y)?

Yes, P(X,Y) under MAR is recoverable. We know that Ry |= Y |X 1 holds in Figure 3.11 b).

Thus, P (X, Y ) = P (Y |X)P (X) = P (Y |X,Ry)P (X) = P (Y |X,Ry = 0)P (X). When Ry = 0,

we can safely replace Y with Y ∗ as P (X, Y ) = P (Y ∗ |X,Ry = 0)P (X). Note that P (X, Y )

has been expressed in terms of the probability (P (Y ∗ |X,Ry = 0)P (X)) we can compute using

observational data. Hence, we can recover P(X,Y) with no bias.

54



Recoverability when data are MNAR

Example 3.5.3. [4]. Figure 3.11 d). depicts a study where (i) some units who underwent treatment

(X=1) did not report the outcome Y, and (ii) we accidentally deleted the values of treatment for a

handful of cases. Thus we have missing values for both X and Y which renders the dataset MNAR.

Can we recover P(X,Y)?

Yes, P(X,Y) in d) is recoverable. We know that X |= Rx and (Ry ∪ Ry) |= Y |X 1 holds in

Figure 3.11 d). Thus, P (X, Y ) = P (Y |X)P (X) = P (Y |X,Ry)P (X) = P (Y ∗|X∗, Ry =

0, Rx = 0)P (X∗|Rx = 0). Note that P (X, Y ) has been expressed in terms of the probability

(P (Y ∗|X∗, Ry = 0, Rx = 0)P (X∗|Rx = 0)) we can compute using observational data. Hence, we

can recover P(X,Y) with no bias.

In the original paper [4], P (X, Y ) is not recoverable in Figure 3.11. c). Mohan et al. provide a

theorem (see Theorem 1 in [4]) which states the sufficient condition for recoverability.

Testability

In Figure 3.11 b), we assume that the missing mechanism Ry is the causal effect of X , hence the

arrow pointing from X to Ry. The question naturally arises: "is our assumption/model compatible

with our data?" Mohan et al. propose an approach to testify the plausibility of missing graphs from

the observed dataset [138].

Testability of Conditional Independence (CI) in m-graphs

Definition 2. [138] Let X ∪ Y ∪ Z ⊆ Vo ∪ Vm ∪ R and X ∩ Y ∩ Z ̸= ∅. X |= Y |Z is testable if

there exists a dataset D governed by a distribution P (Vo, V
∗, R) such that X |= Y |Z is refuted in

all underlying distributions P (Vo, Vm, R) compatible with the distribution P (Vo, V
∗, R).

In other words, if the CIs can be expressed in terms of observable variables exclusively, then

these CIs are deemed testable.
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Theorem 2. Let X, Y, Z ⊂ Vo ∪ Vm ∪ R and X ∩ Y ∩ Z = ∅. The conditional independence

statement S: X |= Y |Z is directly testable if all the following conditions hold:

1. Y ⊈ (RXm ∪RZm). In words, Y should contain at least one element that is not in RXm ∪RZm

2. RXm ⊆ X ∪Y ∪Z. In words, the missingness mechanisms of all partially observed variables

in X are contained in X ∪ Y ∪ Z

3. RZm ∪ RYm ⊆ Z ∪ Y . In words, the missingness mechanisms of all partially observed

variables in Y and Z are contained in Y ∪ Z

Testability of CIs comprising of only substantive variables

As for the CIs that only includes substantive variables (e.g., Figure 3.11 (b)), it is fairly easy to see

X |= Y is testable when X, Y ∈ Vo.

Missing data from causal perspective

Given an incomplete dataset, our first step is to postulate a model based on causal assumptions of

the underlying data generation process. Secondly, we need to determine whether the data rejects

the postulated model by identifiable testable implications of that model. Last step is to determine

from the postulated model if any method exists that produces consistent estimates of the queries of

interests.

3.6 Augmented machine learning with causal inference in recommender

systems.

Despite the rising popularity of causal inference research, the route from machine learning to

artificial general intelligence still remains uncharted. Strong artificial intelligence aims to generate

artificial agents with the same level of intelligence as human beings. The capability of thinking

causally is integral for achieving this goal [139]. In Chapter 7, I make my initial endeavor to enhance
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deep learning models in recommenders systems by incorporating causal inference techniques.

Numerous research inquiries in recommender systems center around assessing the impact of specific

interventions or recommendations, essentially involving cause-and-effect relationships. Hence,

recommender systems serve as an ideal foundation for exploring causal inference in intervention

research.

3.6.1 Selection bias in recommender systems

Selection bias is a widely-recognized issue in recommender systems [140, 141, 142]. For example,

music stream services usually suggest genres that have positive user feedbacks (e.g., favorite, share,

and buy, etc.), and selectively ignore the ones that are rarely exposed to users [143]. In this section,

we study the selection bias that exists in the post-click conversion rate (CVR) estimation.

Figure 3.12: Illustration of the selection bias issue in conventional conversion rate (CVR) estimation.

The training space of conventional CVR models is the click space O, whereas the inference space

is the entire exposure space D. The discrepancy of data distribution between O and D leads to

selection bias in conventional CVR models.

Problem formulation

Post-click conversion rate (CVR) estimation is a critical task in e-commerce recommender systems

[144, 145]. A typical e-commerce transaction has the following sequential events: "exposure→

click→ conversion" [141]. Post-click conversion rate indicates the probability of transitions from
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click to conversion. Typically, when training CVR models, we only include the items that customers

clicked on as we are unaware of the conversion feedback of the items that are not clicked by

customers [146]. Bear in mind, not clicking on an item does not necessarily indicate the customer

is not interested in purchasing it. Customers may unconsciously skip certain items that might

be interesting to them. Figure 3.12 reveals that the exposure space D is a super set of the click

space O. Selection bias occurs when conventional CVR models are trained in the click space, and

the predictions are made in the entire exposure space (see Figure 3.12) [141]. Intuitively, data in

the click space is drawn from the entire exposure space and is biased by the user self-selection.

Therefore, the data distribution in the click space is systematically different from the one in the

exposure space. This inherent discrepancy leads to data that is missing not at random (MNAR), and

selection bias in the conventional CVR models [142, 137, 147, 148].

We identify two practical issues that make CVR estimation quite challenging in industrial-level

recommender systems:

• Selection bias: The systematic difference of data distributions between training space O (i.e.,

all user self-selected items) and inference spaceD (i.e., all exposed items) biases conventional

CVR models [149, 146, 150]. This bias usually causes the degradation of model performance.

• Data sparsity: In the CVR estimation task, it refers to the fact that item clicks are rare events

(we have a CTR of 5.2% in the production dataset and 4% in the public dataset). Conventional

CVR models are typically trained only using data in the click space. Therefore, the number

of training samples may not be sufficient for the large parameter space. In our experiments,

the numbers are 0.6 billion samples vs. 5.3 billion parameters in production dataset, and 4.3

million samples vs. 2.6 billion parameters in public dataset (see Chapter 7) [151, 152].

3.6.2 A causal perspective to unbiased CVR estimation

Recall that selection bias in CVR estimation comes from the fact that models are trained over the

click space O, whereas the predictions are made over the exposure space D (See Figure 3.12).

Ideally, we can remove the selection bias by building our CVR estimators using a dataset where the
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Figure 3.13: This causal graph formulate CVR estimation as a causal problem. [5] In (a), Z is

a confounder that affects both clicks and purchases, and it biases the inference. In (b), we apply

intervention on click events (do(Click) = 1). Once users are "forced" to click on each exposed

item, Z has no control over user click behaviors. Note the absence of the arrow from Z to Click.

Hence, we have successfully removed the confounder Z, and the selection bias [6, 5, 7, 8, 9].

conversion labels of all the items are known. In the language of causal inference, it is equivalent

to training CVR estimators on a "do dataset", where causal intervention is applied on click event

during the data generation process. Specifically, users are "forced" to click on every item in the

exposure space D and further make their purchase decisions. Note that the training space is the

same as the inference space in the "do dataset". Hence, the selection bias is eliminated. Intuitively,

we can also understand how causal intervention removes the bias in Figure 3.13. Z denotes the

self-selection factors that affect both click events and conversion events. For example, Z can be the

purchase interest or price discount that customers consider in online-shopping. In causal inference,

we refer Z as "confounder(s)" that biases the CVR inference [7]. Once the causal intervention is

applied on the click event (i.e., users are forced to click on all exposed items), Z has no control over

user click behaviors. It means that we have successfully removed the confounder Z which biases

our CVR estimation [6, 5, 7, 8, 9].

Apparently, this "do dataset" generated in this imaginary intervention experiment cannot be
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obtained in reality. Now the challenge is how to train our CVR estimators on the observed dataset

O as if we do on the "do dataset". In Chapter 7, we will discuss two estimators that can achieve

unbiased CVR prediction with the data that are MNAR.

3.6.3 Related works

In this section, we review several existing works that attempt to tackle the selection bias issue in

recommender systems. Meanwhile, we summarize how our methods are different from prior works.

Ma et al. [141] proposed the Entire Space Multi-task Model (ESMM) to remedy selection bias

and data sparsity issues in the conversion rate (CVR) estimation. ESMM is trained in the entire

exposure space, and it formulates CVR task as two auxiliary tasks, i.e., click-through rate (CTR)

and click-through & conversion rate (CTCVR) estimations. However, we argue that ESMM is

biased. The details of our argument are presented in Section 7.2.2 in Chapter 7.

Causal inference offers a way to adapt for the data generation process when we attempt to restore

the information from MNAR data [147]. Schnabel et al. [140] proposed an IPW-based estimator

for training and evaluating recommender systems from biased data. IPW-based models may still be

biased if the propensities are not accurately estimated. Wang et al. [153] proposed a doubly robust

(DR) joint learning approach for estimating item ratings that are MNAR. Doubly robust estimator

combines the IPW-based methods with an imputation model that estimates the prediction error for

the missing data. When the propensities are not accurately learned, DR estimator can still enjoy

unbiasedness as long as its imputation model is accurate. However, the existing DR-based methods

are not devised for CVR estimation, hence fail to account for the severe data sparsity issue that

widely exists in the CVR estimation. In addition, such a joint learning approach is not efficient in

industrial setting (see Figure 7.3).
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3.7 Causal discovery methods in high dimensional space

3.7.1 Dimension reduction by feature selection

Hao et al. proposed 3-phase causal discovery algorithm framework, Causal Discovery on High

Dimension (CDHD), to solve the high dimensional problem by using conventional feature selection

algorithms to reduce the size of the feature space before identifying the causal relations [154]. In

the first phase, a heuristic-based feature selection algorithm, Max-Relevance and Min-Redundancy

(MRMR), is employed to select most relevant features with respect to the target variable, resulting

in search space reduction [155]. In the second phase, a constraint-based causal discovery method is

utilized to discover the causal skeleton. In the third phase, a causal direction learning algorithm,

Information Geometric Causal Inference (IGCI), is incorporated to orient the edge directions in the

learned causal graphs [156].

3.7.2 Fast PC algorithm for high dimensional causal discovery

It is well acknowledged that the PC algorithm does not scale well with high dimensional dataset

as its runtime is exponential to the number of variables [157, 158, 159, 160, 161]. Meanwhile, the

inferred graph from the PC algorithm is variable order-dependent; that is, the resulting graph will

change if the order of input features changes [162]. Recall that the PC algorithm generate causal

structure skeleton by removing edges if the connected pair of nodes are conditionally independent.

In practice, however, we do not have the perfect knowledge of these conditional independence

relations. The conditional independence is obtained by statistical conditional independence tests at

some predefined significance level, α [162]. For example, the standard Pearson chi-square test is

generally performed under i.i.d. assumption (i.e., independent, identically distributed) [163]. Since

the causal structure is updated dynamically after each edge removal, the resulting skeleton might be

different from the true structure if these statistical tests return false independence relations.

The fast PC algorithm, based on [162], is a parallelized approach that groups conditional

independence tests at each level, ensuring they are not correlated. These subtasks are then distributed
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across different CPU cores for simultaneous execution. The results obtained from each core are

later integrated to form the final outcome. To enable easy combination of subgraphs, this algorithm

requires that the subtasks be independent. The parallel-PC algorithm has been recognized as

a fast and memory-efficient procedure for learning causal structures. It has been evaluated on

both synthesized datasets and real-world datasets [164]. Furthermore, the proposed algorithm

is also order-independent, allowing for flexibility in the arrangement of variables. Readers can

find the implementation of the algorithm in the R package pcalg, available at https://cran.

r-project.org/web/packages/pcalg/index.html.

3.7.3 Association rule mining for causal discovery

[160] propose an association rule mining based algorithm for causal discovery. The associate rule

mining generally utilizes machine learning models to identify “if-then” association patterns in the

data. Meanwhile, association rule mining has already been demonstrate being efficient method for

relation discovery. Note that the associations are generally in the scope of correlation interpretation

and should be carefully investigated before treated as casual relations [165]. An associate rule

generally consists of an antecedent ("if") and a consequent ("then"), both of which are a list of

items.

There are generally three metrics in assessing the strength of the association: 1) support, 2)

confidence, and 3) lift. The first two metrics are described with more details in [165]. We present

the concept of lift to introduce the underlying concept of using association rule mining in causal

discovery.

Lift is a metric that calculates the ratio of confidence to support. Specifically, it is defined as,

Lift(X → Y ) =
(Transactions containing both X and Y )/(Transactions containing X)

Fraction of transactions containing Y

The interpretation of lift(X → Y ) literally means the lift or raise in confidence of observing

Y if we have seen X over the probability of observing Y without any knowledge of X . This

interpretation has the similar philosophy of average treatment effect (ATE) in a randomized control
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trials in gauging the causal effect [160, 166]. lift(X → Y ) can be seen as the causal effect under

the assumption that no confounder exists that impact X and Y at the same time.

The proposed algorithm in [160] identifies the causal relations as follows: firstly, it identifies

all the irrelevant variables with respect to the target outcome. This is done by calculating the

lift (odds ratio) of an independent variable X to the target outcome Y. The proposed algorithm

assumes that an input variable is irrelevant if the odds ratio is significantly lower than 1. Next, all

the irrelevant variables are excluded from the candidates feature set for the causal discovery. To

check if the remaining features are indeed casual features, the proposed algorithm calculates the

confidence interval of the lift through sampling a fraction dataset that contains the antecedent and

consequent. If the lower bound of the lift is significantly larger than 1. Then the algorithm assumes

that the associate rule is a causal relation. Meanwhile, the proposed algorithm also leverage the

anti-monotone property of association rule mining to accelerate the computation. In particular, a

rule is redundant if it is implied by a more generalized rule. For example, if rule “college graduate

→ high salary” holds, then we know that both male college graduates and female college graduates

enjoy high salaries. It is therefore redundant to have the rules “male college graduate → high salary”

and “female college graduate → high salary”. Therefore, this anti-monotone property can prune the

search space in the high dimension settings.

3.7.4 Formulating the causal discovery problem as a continuous constrained optimization

problem

Zheng et al. introduced an innovative framework that addresses the causal structure learning

problem by formulating it as a continuous optimization problem, which can be efficiently solved

using gradient-based solvers [167]. Their key contribution lies in the utilization of a continuous

equality constraint that ensures acyclicity in the causal structure. The advantage of this continuous

constraint is its compatibility with existing toolkits for constraint optimization problems, enabling

efficient computation of the optimal solution.

However, the approach presented in [167] relies on the assumption of a linear Structural Equation
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Model (SEM), which may be overly restrictive for many real-world datasets. To overcome this

limitation, Yue Yu et al. proposed DAG-GNN, an architecture based on graph neural networks that

captures more complex data characteristics [168]. DAG-GNN is capable of handling both discrete

input variables and vector-valued variables.

Furthermore, it is worth mentioning that the equality constraint proposed in [167] still incurs

computational expenses. In Chapter 8.1 of our work, we aim to enhance this constraint and propose

improvements upon it.

3.8 Conclusions

In this chapter, we explored the strengths of causal reasoning when facing problems such as

confounding bias, model transportability, and learning from missing data. We present some

examples to demonstrate pure data-driven or correlation-based statistical analysis may generate

misleading conclusions. We argued the need to consider causality in our models to support critical

clinical decision-making. Machine learning has been widely employed in various healthcare

applications with recently increased efforts on how to augment machine learning models with

causality to improve interpretability [169, 170] and predictive fairness [24, 171] and to avoid bias

[172, 173]. The model interpretability can be enhanced through the identification of cause-effect

relation between the model input and outcome. We can observe how the model outcome responds

to interventions upon inputs. For example, powerful machine learning models can be built for

early detection of type 2 diabetes mellitus using a collection of features such as age, weight, HDL

cholesterol, and triglycerides [174]. However, healthcare practitioners are not content with mere

predictions – they are also interested in the variables upon which the intervention will help reduce

the risk of the disease effectively. Understanding causality is crucial to answer such questions.

We also showed how causality can address confounding bias and selection bias in data analyses.

Literature shows that causal inference can be adopted in deep learning modeling to reduce selection

bias in recommender systems [24, 171]. Model fairness aims to protect the benefit of people in the

minority groups or historically disadvantageous groups from the discriminative decisions produced
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by AI. Causal inference can also ensure model fairness against such social discriminations [172].

In addition to the attempts and progressed made in this field, there are many low-hanging fruits in

combining causal inference with machine learning methods. We hope this brief introduction of

causal inference can inspire more interested readers in this research area.
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CHAPTER 4

Healthcare data analytics in remote patient monitoring

4.1 Introduction

In recent years, the field of healthcare has made significant progress in integrating wireless technol-

ogy into traditional care models. The widespread availability of devices like wearable sensors has

enabled researchers to gather large amounts of data and apply it to various aspects of healthcare.

One important objective of using wearable sensors is to study and analyze human activity and

functional patterns in order to predict harmful outcomes such as falls. These sensors can also

track individual movements to identify personalized behavioral patterns and establish standardized

measures for frailty, well-being, and independence. Many wearable devices, such as activity trackers

and smartwatches, come equipped with affordable embedded sensors that provide users with health

statistics. Additionally, Bluetooth low-energy sensors called BLE beacons have gained popularity

among researchers in the field of ambient intelligence. These beacons, known for their low cost and

durability, are useful for collecting indoor localization data, which is an important component of

recognizing human activity. In studies conducted by Moatamed et al. and in a patent application by

Ramezani et al., a comprehensive framework called Sensing At-Risk Population was introduced.

This framework combines the classification of human movements using a 3-axial accelerometer

with the extraction of indoor localization using BLE beacons.

The purpose of this chapter is threefold:

• To assess the effectiveness of combining physical activity and indoor location features,

extracted at baseline, in distinguishing between subacute care patients who are readmitted to

the hospital and those who are able to remain in a community setting. This assessment was
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conducted on a cohort of 154 patients residing in a rehabilitation facility.

• To examine the longitudinal changes in sensor-based physical activity and indoor localization

features of patients receiving rehabilitation at a skilled nursing facility. By tracking these

changes over time, we can gain insights into the progress and development of these patients.

• To investigate whether the changes detected by sensors over time can complement the

assessments made by therapists during the course of rehabilitation at the skilled nursing

facility. By comparing the two sources of information, we can better understand the overall

progress and recovery of the patients.

4.2 Methods

4.2.1 Overview

From June 2016 to November 2017, we recruited patients after admission to a subacute rehabilitation

center in Los Angeles. We performed a cross-sectional baseline study of this cohort to better

understand data features collected by the SARP system. We investigated the prevalence of physical

activity tracking features and indoor localization features at baseline for both outcome groups

(hospital vs long-term care). Moreover, we assessed their efficacy in determining the outcome

(hospital vs long-term care).

4.2.2 Participants

Participants aged older than 60 years were recruited from a subacute rehabilitation facility in Los

Angeles. The study cohort contains patients who had been admitted to a subacute rehabilitation

center for 21 days. After this period, patients were either re-admitted to hospital (H) or stayed in

community (C; either at home or long-term care). The inclusion criteria were broad, allowing any

patient to participate as long as they were aged older than 60 years, English speaking, and able

to consent with the exclusion criteria including movement disorders or paralysis of the upper or
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lower extremity. The diversity of cohort included patients who were a postsurgical, poststroke, and

postclinical decompensation because of medical illnesses. Eligible participants signed a consent

form approved by the University of California, Los Angeles, Institutional Review Board.

4.2.3 Study Design

Patients were given a smartwatch by a clinical coordinator every morning at 9 am. Patients were

asked to wear their watches at all times until the coordinator collected the watch at around 6 pm

every day. Watch batteries were expected to last longer than the protocol period (>9 hours). Patients

normally stayed in the resident room (bedroom) and were scheduled for an hour of daily exercise

and activity in the therapy room. Beacons were mounted at locations of interest (Table 4.2.3), shown

with color dots in Figure 4.1 within bedroom and therapy room. Take into account that despite

imposing an identical protocol for all patients, daily collected data from each individual may differ.

This is primarily because of patients not complying with the protocol at all times, losing interest

during the day, feeling uncomfortable, and getting concerned about their privacy. Therefore, to

provide a situation in which a fair comparison among patients can be enforced, we determined

analysis inclusion criteria.

Table 4.1: Locations of interest. For sensor-based feature assessment throughout the paper, shower,

toilet, and sink are considered as bathroom; walls 1, 2, and 3 as wall; beds 1 to 4 inside the therapy

room and beds 1 and 2 inside the resident room as beds.

Location Sublocations

Resident room Bed, chair, shower, toilet

Therapy room Bed, resband, bike, endorphine, strip, table, small table,

hallway, seats, wall, hallway doors, sink, bath
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Figure 4.1: Subacute rehabilitation facility map: resident room on top and therapy room at the

bottom with locations of mounted beacons shown in red.

4.2.4 Analysis Inclusion Criteria

4.2.4.1 Baseline predictive task

For the baseline analysis, we included study participants who satisfied the following constraints:

(1) patients with 4 hours or more of watch wear time data in at least 1 day within the first 3 days

of admission (defined as baseline); and (2) having 15 min or more of therapy room wear time in

that particular baseline day. In case both inclusion criteria were satisfied on more than 1 day, the

earliest day was selected as baseline. The reason for choosing 4 hours or more wear time was to set

a standard minimum; given the health of this population whom mostly recently discharged from the

hospital, we anticipated variability in watch usage. To have a minimum standard, we agreed that

patients needed to wear the watch more than 50% of the available hours per day (in this study, 8

hours).
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4.2.4.2 Longitudinal data analysis

The analysis inclusion criteria of longitudinal study were defined to ensure all patients satisfy a

minimum amount of daily sensor data and collected PT and OT assessments. Analysis criteria

include patients with the following data: (1) ≥ 3 days of watch data; (2) each day ≥ 4 hours of

watch wear time; and (3) ≥ 3 sessions of PT or OT or a combination of both PT and OT. Cohort

data were agglomerated for analyses according to the consort diagram shown in Figure 4.2.

Figure 4.2: Diagram describing the analysis cohort. OT: occupational therapy; PT: physical therapy.

The hours when the watch was not worn were excluded from the study; therefore, hours may

not be consecutive.
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4.2.5 Measures

4.2.5.1 Demographic and Clinical Characteristics

We collected the demographic characteristics of patients such as age, race, gender, and ethnicity.

We also translated the clinical coordinator’s assessments including usage of assistive devices and

their type, measures of activity of daily living (ADL), pain (yes/no), and number of active diagnosis

(more or less than 10). We investigated the significance of such characteristics in distinguishing the

outcome (community vs hospital).

4.2.5.2 Sensor-Based Parameters

Sensor-based features are combination of 3 groups of parameters that are achieved by harnessing

smartwatch and BLE beacons. The features are based on (1) activity recognition such as sitting

time and standing time; (2) indoor localization, for example, time in bed, time in bathroom, or

therapy room; and (3) row acceleration quantification, MAD (energy; see section Sensing At-Risk

Population System Overview). By combining these attributes, we achieved features such as sitting

time in bed or energy spent in walking or in bed.

To perform a fair comparison among patients with different watch wear time, we normalized

features: time spent (minutes) in a certain physical activity or location was divided by uptime (the

total watch wear time in a day in minutes) to yield normalized time features. Uptime is an essential

factor in providing fair comparison

We investigated the significance of sensor-based features with respect to the outcomes: hospital

versus community. All measurements are at baseline, that is, the day that satisfies inclusion criteria

from 9 am to 6 pm. We calculated "time spent in percentage", "energy intensity (E)", and "energy

spent in percentages", as shown in equations (4), (5), and (6) in Figure 2.2.

To recap, for each individual, time-related features such as sitting time were divided by uptime.

Energy-related features such as walking were divided by: (1) the uptime, yielding energy intensity

and (2) their total daily value, producing the energy percentage.
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4.2.5.3 Clinical Features

Clinical assessments in this study are 2-fold: physical therapy (PT) and occupational therapy (OT).

PT and OT metrics included functional activities such as bed mobility (includes rolling, moving

between supine and sitting, scooting in supine, scooting on the edge of the bed), gait (movement

patterns that make up walking and associated interpretations), transfers (moving body from one

surface to another without walking), hygiene, toileting, and lower body dressing. Those activities

were scored based on the functional levels (1 to 6), from independent to completely dependent [175].

A comprehensive collection of PT and OT key metrics were performed every week; hence, patients

were expected to have ≥ 3 PT or OT assessments within 21 days. In this study, a subset of clinical

features was chosen; these features were common in more than 65% (n=72) of patients’ PT and

OT visits. The most common PT functional activities, performed by more than 65% of the cohort,

are as follows: gait distance (in feet), transfer activity, and bed mobility, including movement from

supine to sit. Common OT functional activities are comprised of lower body dressing, toileting

activity, hygiene, and overall ability to tolerate daily activities (activity tolerance).

4.2.6 Statistical Analysis

4.2.6.1 Baseline predictive task

We explored the capability of baseline sensor-based and demographic features to distinguish

between subacute rehabilitation patients based on their outcomes (i.e., re-admitted to hospital (H)

vs staying in the community (C) either long-term care or home). Chi-squared tests were used to

compare categorical demographic variables between outcome groups. We compared quantitative

demographic variables and sensor-based metrics (physical activity derived from watch accelerometer

and indoor localization inferred from BLE beacons RSSI) between groups using the Kruskal-Wallis

test. Cohen’s d was used to summarize the effect size and illustrate the discriminatory power of

each feature. Commonly, 0.2, 0.5, and 0.8 are Cohen’s d cut-off values indicating small, medium,

and large effect size, respectively. Spearman rho was used to measure correlations between physical

activity and location-based features.
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4.2.6.2 Longitudinal data analysis

Visualization of prior analysis was generated to unveil any longitudinal patterns. The time trends of

sensor-based features appeared to be approximately linear; hence, we decided to use linear models

for longitudinal analysis.

Descriptive statistics (medians and IQR) were computed for clinical assessments (i.e., PT and

OT) at each session. Generalized linear mixed effect model was used to understand the longitudinal

relationships between the clinical measures and the sensor-based features [176, 177, 178]. Due to

the frequency difference in which sensor and clinical assessments were collected, we merged a day

of clinical assessment data with its corresponding day or closest day containing the sensor data (SD

3 days).

Three models, each with different sets of sensor-based features, were constructed for each

clinical outcome. Model 1 included overall energy intensity as covariate. Model 2 considered

energy intensity at resident room and energy intensity at therapy area as covariates. Additionally,

sensor-based activity parameters (e.g., energy intensity of sitting) were used in model 3. Linear

time indicates the number of weeks since the enrollment day. Interaction effects of sensor features

with time were also included.

4.2.6.3 Predictive Models of Outcome

We investigated the capability of features at baseline to triage and predict patients who were re-

admitted to the hospital or who stayed in community. We built random forest models (maximum

depth=2, random state=40, and class_weight=balanced), with hospital patients as positive group. We

used single or combination of features with highest statistical significance in distinguishing outcomes

according to Kruskal-Wallis tests. Model generation and evaluating performance characteristics

(3-fold cross-validation) including sensitivity, specificity, accuracy, and area under the curve (AUC)

estimation were performed using Python Programming Language libraries Pandas (version 0.21.0)

and Numpy (version 1.14.5), Scipy (version 1.0.0), and Scikit-learn (version 0.19.1) [179, 180, 181].
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4.3 Results: baseline prediction task

4.3.1 Demographic and Clinical Characteristics

From 184 consented subjects, 30 were excluded because of not satisfying the analysis inclusion

criteria. A total of 154 patients were included in this study in which 145 (94.2%) of subjects

discharged home/community (C), and 9 (5.8%) re-admitted to hospital (H) at the end of their

rehabilitation process. Table 4.2 presents detailed sociodemographic and clinical characteristics of

this cohort, such as age, gender, race-ethnicity, presence of pain, number of active diagnoses, usage

of assistive devices, and ADL. Table 4.2 indicates the mean (SD) and number of patients included

for every particular parameter. Among the clinical assessments, Table 4.2 shows that ADL Toilet

is significant in determining the outcome (P=.007) with 65% of the cohort in need of extensive

assistance and 35% limited assistance.

Table 4.2: Sociodemographic and clinical characteristics of

the cohort of 154 patients.

Parameter Community Hospital
Community vs hospital

(P value)

Subjects, n(%) 145 (94.2) 9 (5.8) _ a

Age (years), mean (SD) 82.16 (9.55) 84.22 (13.87) .24

Gender, n (%) .56

Female 104 (71.7) 4 (44.4)

Male 41 (28.3) 5 (55.6)

Race/ethnicity, n(%) >.99

Asian 5 (3.4) 0 (0.0)

Black/African American 14 (9.7) 0 (0.0)

Hispanic/Latino 4 (2.7) 0 (0.0)

Native/hawaiian Pacific Islander 3 (2.1) 0 (0.0)

White 119 (82.1) 9 (100)
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Table 4.2 continued from previous page

Parameter Community Hospital
Community vs hospital

(P value)

Pain present, n (%) .92

No 44 (31.7) 1 (14.3)

Yes 95 (68.3) 6 (85.7)

Active diagnoses, n (%) >.99

<10 22 (15.2) 1 (11.1)

>= 10 123 (84.8) 8 (88.9)

ADL b transfer, n (%) .77

Limited assistance 65 (45.1) 2 (22.2)

Extensive assistance 79 (54.9) 7 (77.8)

ADL dress, n (%) .96

Limited assistance 32 (22.2) 1 (11.1)

Extensive assistance 112 (77.8) 8 (88.9)

ADL eat, n (%) .91

Independent 128 (88.9) 7 (77.8)

Supervision 4 (2.8) 0 (0.0)

Limited assistance 9 (6.2) 1 (11.1)

Extensive assistance 3 (2.1) 1 (11.1)

ADL toilet, n (%) c .007

Limited assistance 50 (34.7) 1 (11.1)

Extensive assistance 94 (65.3) 7 (77.8)

Total dependence 0 (0.0) 1 (11.1)

ADL walk room, n (%) .73

Limited assistance 73 (50.7) 2 (22.2)

Extensive assistance 59 (41.0) 5 (55.6)

Activity did not occur 12 (8.3) 2 (22.2)
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Table 4.2 continued from previous page

Parameter Community Hospital
Community vs hospital

(P value)

ADL walk hall, n (%) .88

Limited assistance 73 (50.7) 2 (22.2)

Extensive assistance 64 (44.4) 6 (66.7)

Activity occurred only once or twice 2 (1.4) 0 (0.0)

Activity did not occur 5 (3.5) 1 (11.1)

ADL walk on unit, n (%) .85

Supvervision 1 (0.7) 0 (0.0)

Limited assistance 71 (49.3) 2 (22.2)

Extensive assistance 72 (50.0) 7 (77.8)

ADL hygiene, n (%) .84

Supervision

Limited assistance

Extensive assistance

ADL bed, n (%) .61

Supervision 1 (0.7) 0 (0.0)

Limited assistance 83 (57.6) 2 (22.2)

Extensive assistance 60 (41.7) 7 (77.8)

Urinary continence, n (%) .09

Always continent 117 (81.2) 4 (44.4)

Occasionally incontinent 4 (2.8) 0 (0.0)

Frequently incontinent 8 (5.6) 2 (22.2)

Always incontinent 7 (4.8) 3 (33.3)

Not rated 8 (5.6) 0 (0.0)

Bowel continence, n (%) .08

Always continent 128 (88.9) 5 (55.6)
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Table 4.2 continued from previous page

Parameter Community Hospital
Community vs hospital

(P value)

Occasionally incontinent 3 (2.1) 0 (0.0)

Frequently incontinent 7 (4.8) 1 (11.1)

Always incontinent 6 (4.2) 3 (33.3)

Assistive devices, n (%) .97

Walker 1 (0.7) 0 (0.0)

Wheelchair 5 (4.0) 1 (14.3)

Walker and wheelchair 123 (94.6) 6 (85.7)

Cane and wheelchair 1 (0.7) 0 (0.0)

a Not applicable.

bADL: activity daily living.

cParameters with P < .05.

4.3.2 Energy Intensity Features Assessment

Amongst sensory-based features shown in Figure 2.2, equations (4-6), energy intensity features are

the ratio of the total energy spent in a particular activity or location to their corresponding time

spent. Taking into account, indoor localization capability of SARP system enabled us to calculate

the energy spent at each location of interest, sum of which was broadly categorized into (1) energy

intensity in resident room and (2) energy intensity in therapy room. According to Table 4.3, energy

features that best discriminated community and hospital patients were energy intensity in resident

room (P<.001, d=1.21), resident_bed (P<.001, d=1.23), resident_bath (P=.004, d=1.18), and total

energy intensity (P=.003, d=0.87). Features such as energy intensity of laying down (P=.02), and

therapy_bathroom (P=.02), despite statistical significance, have low effect sizes (d=0.418 and

d=0.17, respectively). Moreover, with P<.001 and d=1.25, energy intensity in resident room has

high discriminatory power with respect to outcome.
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Figure 4.3 depicts the energy intensity distributions between 2 groups in resident and therapy

rooms. It shows that energy intensity in therapy room in both groups has similar mean value (line

within the box); therefore, a clear distinction cannot be made within 2 groups based on that feature.

However, the mean value of community group in resident room is clearly higher than in hospital

patients.

Kernel density estimation (KDE) distributions are shown in Figure 4.4 (subplots A and D). The

figure attests to the distinction of energy intensity in resident room among community and hospital

patients (subplot A). However, the KDE of energy intensity in therapy room (subplot D) does not

indicate the same discriminatory power. Figure 4.4 (subplot B) indicates that energy intensity of

most patients in therapy room is higher compared with resident room for both outcome groups

because most patients fall below the identity line. Points shown on the identity line represent

patients with same therapy and resident intensities. According to subplot (C), the center core of

the contour plot (representing most patients) in community group is almost circular contrary to

hospital patients. This indicates that the ratio of resident to therapy intensity is closer to one (ie,

same activity intensities). On the contrary, more oval shape of the contour core in hospital group can

imply that most patients are persistently more active during therapy sessions while being less active

in their resident room. The increase in energy levels can be seen clearly in Figure 4.5. The figure

depicts the ratio of energy intensity in therapy room to resident room. Most patients in hospital

outcome group, demarcated by red line, fall around number 2. In other words, therapy room energy

intensity is twice the resident room for most patients in hospital group. However, 50 patients in

community group (blue histogram) have the ratio close to 1, that is, the same intensity in both

therapy and resident room. A more detailed scenario of both groups within the therapy room can be

found in Figure 4.6 and Table 4.4.

Average time spent and energy intensity at each therapy location stratified by groups are shown

in Figure 4.6. It is clear that hospital group spent no time at stairs, scifit, table, and endorphine.

The 5 most intensive activities were small table, stairs, scifit, table, and bike. Small table and table

are places where patient normally carried out hand pedaling exercises. Table 4.4 further highlights

the details of therapy room location/facility usage in each group. More than 70% of participants
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from both groups had used bed and bathroom in therapy room, with bathroom ’s P<.05 (Table 4.3).

However, it is worth mentioning that the effect size of bathroom energy intensity is small: 0.17

(cut-off regions: 0.2 small, 0.5 medium, and 0.8 large). Furthermore, Figure 4.6 reveals that both

groups’ intensities at bed and bathroom were less than 60 per min. In a study by Razjouyan et

al [36], a cutoff point of 90 is suggested to differentiate between light and moderate-to-vigorous

activities.

Figure 4.7 illustrates Spearman correlations among features. According to annotations explained

in the Features section, E indicates energy intensity, E% denotes energy percentage, and T% shows

the percentage of time spent. Circles, contrary to ovals, correspond to low correlation, whereas

lines imply the highest correlation. Darker spectrum on either side (red or blue) represents higher

correlation; red implies positive, whereas blue is indicative of negative correlation. It is clear from

the figure that laying down is negatively correlated with the rest of the features. Bath and bed in

resident room are understandably correlated strongly with energy spent in resident room because

almost all activities happened in those 2 locations, and patients hardly used the chair. Bed, bath,

resband, small table, bike, and scifit are strongly correlated with energy spent in therapy room. It

is clear that being active is highly correlated with overall energy intensity. Resident room energy

intensity is strongly correlated with overall energy intensity.

Table 4.3: Sensor-based (activity and indoor localization) features: as-

sessment according to outcomes. C denotes "Community" group and H

denotes "Hospital" group.

Feature
Community,

mean (SD)

Hospital,

mean (SD)
P value Effect size 1 Frequency

C H

Energy % parameters

Active 2 2.37 (3.84) 1.00 (1.29) .001 1.24 145 9

Walking 2.37 (3.84) 1.00 (1.29) .08 0.50 145 9

Standing 2 59.70 (8.70) 57.92 (6.39) .002 1.24 145 9

Sitting 2 17.83 (9.69) 13.33 (8.90) .02 0.86 145 9

Laying down 2 20.10 (6.43) 27.73 (9.94) .04 0.54 145 9
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Table 4.3 continued from previous page

Feature
Community,

mean (SD)

Hospital,

mean (SD)
P value Effect size 1 Frequency

C H

Energy intensity

parameters

Total energy 2 52.61 (18.23) 35.85 (16.53) .003 0.87 145 9

Active 11.94 (18.27) 6.05 (8.02) .30 0.42 145 9

Walking 450.47 (253.08) 366.45 (218.66) .44 0.34 145 9

Standing 85.93 (26.92) 82.27 (36.12) .32 0.11 145 9

Sitting 184.33 (97.58) 156.19 (104.74) .31 0.28 145 9

Laying down 2 26.23 (8.68) 19.54 (7.35) .02 0.418 145 9

Energy intensity

therapy room

Energy therapy room 70.75 (43.11) 68.49 (63.56) .36 0.04 145 9

Bathroom 2 74.84 (49.02) 62.35 (83.54) .02 0.17 114 8

Strip 57.84 (42.33) 13.03 (8.30) .06 1.43 88 2

Bed 60.22 (40.27) 39.09 (7.15) .27 0.72 97 4

Resband 61.06 (43.10) 75.73 (85.49) .57 0.20 100 6

Bike 91.80 (76.82) 120.58 (38.41) .31 0.43 36 2

Scifit 98.39 (55.04) 0.0 (0.0) _3 _ 14 0

Endor 41.38 (6.74) 0.0 (0.0) - - 3 0

Midstrip 56.46 (48.92) 65.46 (24.53) .38 0.22 45 3

Small table 61.07 (40.37) 148.47 (138.78) .53 .71 57 3

Table 93.49 (66.75) 0.0 (0.0) - - 56 0

Hallway seats 42.58 (43.13) 32.52 (7.89) .87 0.32 43 3

Stairs 133.48 (128.07) 0.0 (0.0) - - 8 0

Wall 57.07 (28.49) 25.61 (0.0) .17 - 73 1

Energy intensity

resident room

Energy resident room 2 43.32 (17.44) 26.99 (6.05) <.001 1.25 145 9

Bed 2 43.93 (19.01) 25.76 (4.37) <.001 1.23 144 9

Bathroom 2 55.89 (27.95) 32.50 (9.30) .004 1.18 141 9

Chair 42.45 (20.61) 0.0 (0.0) - - 5 0
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Table 4.3 continued from previous page

Feature
Community,

mean (SD)

Hospital,

mean (SD)
P value Effect size 1 Frequency

C H

Time %

parameters

Active 2 12.92 (6.52) 6.94 (4.01) .001 1.10 145 9

Walking 0.35 (0.51) 0.15 (0.27) .09 0.44 145 9

Standing 2 44.22 (7.94) 32.68 (7.30) <.001 1.51 145 9

Sitting 2 8.60 (8.36) 6.16 (7.36) .04 0.31 145 9

Laying down 2 46.83 (9.83) 60.99 (11.11) <.001 1.35 145 9

Time spent %

therapy room

Bathroom 0.03 (0.04) 0.06 (0.08) .16 0.27 114 8

Strip 0.01 (0.03) 0.005 (0.002) .62 0.48 88 2

Bed 0.62 (0.19) 0.55 (0.23) .64 0.43 97 4

Resband 2 0.02 (0.02) 0.05 (0.03) .03 0.74 100 6

Bike 0.03 (0.03) 0.01 (0.002) .51 0.80 36 2

Scifit 0.03 (0.02) 0.0 (0.0) - - 14 0

Endor 0.009 (0.01) 0.0 (0.0) - - 3 0

Midstrip 0.02 (0.02) 0.02 (0.02) .31 0.49 45 3

Small table2 0.02 (0.03) 0.04 (0.0p2) .04 0.50 57 3

Table 0.06 (0.05) 0.0 (0.0) - - 56 0

Hallway seats 0.006 (0.004) 0.01 (0.16) .64 0.78 43 3

Stairs 0.02 (0.04) 0.0 (0.0) - - 8 0

Wall 0.01 (0.02) 0.01 (0.0) .98 - 73 1

Time spent %

resident room

Bed 0.62 (0.19) 0.55 (0.23) .16 0.12 144 9

Bathroom 0.21 (0.17) 0.25 (0.20) .92 0.52 141 9

Chair 0.007 (0.03) 0.0 (0.0) - - 5 0

1Effect sizes have been calculated as Cohen d
2Parameters with P < .05.
3Not applicable.
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4.3.3 Energy Percentage Features Assessment

Energy percentage feature, as mentioned in Figure 2.2, is the percentage of energy spent in walking,

sitting, standing, laying, or energy spent in locations of interest divided by total energy spent in that

day. According to Table 4.3, community patients are more active (P=.001, d=1.24) than patients

re-admitted to the hospital. Meanwhile, energy percentage of standing (P=.002, d=1.24) and sitting

(P=.02, d=0.86) of the community group is higher than those in hospital group. Other than walking,

all energy percentage parameters were shown significant in distinguishing between both groups.

Walking is not significant in distinguishing the outcome: Energy (%) in walking (P=.08, d=0.50)

and energy intensity during walking (P=.44, d=0.34).

Figure 4.3: Energy intensity distribution.

4.3.4 Time Features Assessment

According to Table 4.3, standing time (%) has the strongest discriminatory power (P<.001, d=1.51)

among all watch-derived parameters. Community group has higher time percentage in laying down
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Figure 4.4: Gauging energy intensity in community versus hospital.

(P<.001, d=1.35) and active state (P=.001, d=1.24) compared with hospital group. Despite statistical

significance of sitting time (%), its effect size is between small and medium (P=.04, d=0.31).

Walking time was quite negligible (<1% of time for both groups with P=.09, d=0.44), whereas

overall active state, which captures walking and stationary active periods, was highly significant

(P=.001, d=1.10). As shown in the table, none of the time (%) parameters in resident room have the

ability to discriminate between the 2 outcome groups.
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Figure 4.5: Distribution of patients spending energy in therapy room compared with resident room.

X-axis indicates the ratio of energy in therapy to resident room.

Figure 4.6: Time and energy intensity details of therapy room.
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Figure 4.7: Correlations among sensor-based features. Asterisk indicates parameters with P < .05.

4.3.5 Performance of Predictive Models at Baseline

Random forest models were built based on the most statistically significant features. In reviewing

Table 4.2, the top 3 most influential features in distinguishing the outcomes were % standing

time (P<.001, d=1.51), % laying down time (P<.001, d=1.35), and resident room energy intensity

(P<.001, d=1.25). Results of 3-fold cross-validation models with their corresponding AUC score

are presented in Table 4.5. Take into account that the sensitivity (recall) presented in the table is not

the weighted average and reflects only recall of minority (H) group. Specificity indicates the true

negative rate when negative group is comprised most patients returning to community setting (C)
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Table 4.4: Frequency of therapy room location/facility usage by group.

Location/facility Frequency of facility usage

Community, n (%) Hospital, n (%)

Scifit 14 (9.6) 0 (0.0)

Endor 3 (2.1) 0 (0.0)

Table 56 (38.6) 0 (0.0)

Stairs 8 (5.5) 0 (0.0)

Bed 118 (81.4) 7 (77.8)

Bike 36 (24.8) 2 (22.2)

Midstrip 45 (31.0) 3 (33.3)

Small table 57 (39.3) 3 (33.3)

Bathrooma 114 (78.6) 9 (100.0)

Resband 100 (69.0) 7 (77.8)

Hallway seat 43 (29.7) 3 (33.3)

Strip 88 (60.7) 3 (33.3)

aParameters with P < .05.

after the rehabilitation period.

4.4 Results: longitudinal data analysis

4.4.1 Demographic and Clinical Characteristics

From 184 consented patients, 110 (60%) met the watch wearing time protocol with mean age of

79.4 (SD 5.9) years. Moreover, 97 (88%) patients were included in PT-watch paired analysis and

60 (54%) in OT with watch analytics. Most participants were female (n=79, 72%) and of White

race or ethnicity (n=84, 76%). Additionally, 62% (n=69) of the patients had pain, 99% (n=109)

of them needed some level of assistance with functional mobility activities (transfer activity), and

75% (n=83) needed assistive devices for walking. Table 4.6 presents detailed sociodemographic and
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Table 4.5: Predictive models: 3-fold cross-validation (community, n=48; hospital, n=3).

Features
Sensitivity

mean (SD)a
Specificity

mean (SD)a
Accuracy

mean (SD)a
AUCb

mean (SD)

Standing time (%) 22.2 (31.4) 74.4 (15.3) 71.4 (12.9) 0.62 (0.06)

Standing time (%),

laying down time (%)
11.1 (15.7) 91.0 (0.9) 86.4 (1.5) 0.70 (0.10)

Standing time (%),

laying down time (%),

resident room energy intensity (%)

44.4 (41.6) 87.6 (4.3) 85.1 (5.5) 0.85 (0.09)

Resident room energy intensity 77.7 (15.7) 74.5 (8.5) 74.7 (7.3) 0.84 (0.10)
aMean (SD) reported for the validation datasets based on a 3-fold cross-validation. Mean and SD are calculated across

all 3 folds.
bAUC: area under the curve.

clinical characteristics of the 110 patients. ADL parameters and their significance in determining

the outcome are presented based on initial assessments, at the time of admission, or within one day.

Table 4.6: Sociodemographic and clinical characteristics (ini-

tial assessment) of the cohort of 110 patients.

Parameter Community Hospital
Community vs hospital

(P value)

Subjects, n(%) 105 (95.5) 5 (4.5) _ a

Age (years), mean (SD) 78.0 (5.7) 84.1 (6.8) .03

Gender, n (%) >.99

Female 76 (72.4) 3 (60)

Male 29 (27.6) 2 (40)

Race/ethnicity, n(%) >.99

Asian 5 (4.8) 0 (0)
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Table 4.6 continued from previous page

Parameter Community Hospital
Community vs hospital

(P value)

Black/African American 12 (11.4) 1 (20)

Hispanic/Latino 2 (1.9) 0 (0)

Native/hawaiian Pacific Islander 2 (1.9) 0 (0)

White 84 (80) 4 (80)

Pain present, n (%) .95

No 29 (30) 2 (50)

Yes 67 (70) 2 (50)

Active diagnoses, n (%) .86

<10 22 (21) 0 (0)

>= 10 83 (79) 5 (100)

Transfer, n (%) b .87

Supervision 1 (1) 0 (0)

Limited assistance 57 (55) 1 (20)

Extensive assistance 46 (44) 4 (80)

Dressing, lower body, n (%) .93

Independent 1 (1) 0 (0)

Limited assistance 28 (27) 0 (0)

Extensive assistance 75 (72) 5 (100)

Eating, n (%) .93

Independent 90 (90) 4 (80)

Supervision 4 (4) 1 (20)

Limited assistance 4 (4) 1 (0)

Extensive assistance 2 (2) 1 (0)

Toileting, n (%) .70

Independent 1 (1) 0 (0)
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Table 4.6 continued from previous page

Parameter Community Hospital
Community vs hospital

(P value)

Limited assistance 45 (43) 0 (0)

Extensive assistance 58 (56) 5 (100)

Walk room, n (%) .91

Supervision 1 (1) 0 (0)

Limited assistance 61 (59) 1 (20)

Extensive assistance 34 (32) 3 (60)

Activity did not occur 8 (8) 1 (20)

Walk hall, n (%) .92

Supervision 1 (1) 0 (0)

Limited assistance 62 (60) 1 (20)

Extensive assistance 35 (33) 4 (80)

Activity occurred only once or twice 1 (1) 0 (0)

Activity did not occur 5 (5) 0 (0)

Walk on unit, n (%) .78

Supvervision 1 (1) 0 (0)

Limited assistance 62 (60) 1 (20)

Extensive assistance 41 (39) 4 (80)

Hygiene, n (%) .84

Independent 1 (1) 0 (0)

Limited assistance 59 (57) 2 (40)

Extensive assistance 44 (42) 3 (60)

Bed mobility, n (%) .96

Supervision 1 (1) 0 (0)

Limited assistance 68 (65) 2 (40)

Extensive assistance 35 (34) 3 (60)
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Table 4.6 continued from previous page

Parameter Community Hospital
Community vs hospital

(P value)

Urinary continence, n (%) b .002

Always continent 85 (82) 1 (20)

Occasionally incontinent 3 (3) 0 (0)

Frequently incontinent 7 (6) 1 (20)

Always incontinent 4 (4) 3 (60)

Not rated 5 (5) 0 (0)

Bowel continence, n (%) b .006

Always continent 91 (87) 2 (40)

Occasionally incontinent 3 (3) 0 (0)

Frequently incontinent 5 (5) 0 (0)

Always incontinent 5 (5) 3 (60)

Assistive devices, n (%) >.99

Wheelchair 3 (4) 0 (0)

Walker and wheelchair 75 (95) 4 (100)

Cane and wheelchair 1 (1) 0 (0.0)

a Not applicable.

bParameters with P < .05.

4.4.2 Longitudinal Analysis of All Features (Sensor and Clinical Measurements)

The community group spent higher overall energy intensity and energy intensity at the resident

room compared to the hospital group, as seen in Figures 4.8 (a) and (b). However, energy intensity

during therapy sessions tends to have similar values between two groups, especially toward the end

of the rehabilitation period, as seen in Figure 4.8 (c).

The descriptive statistics of clinical parameters are summarized in Table 4.7. It shows that “gait
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Figure 4.8: Energy intensity averaged per days in 21 days.

distance feet” increases over time (median and IQR after the first week), and “activity tolerance”

increases (IQR after first week and median after second week). The table indicates no clear

improvements in other clinical-based measures gauged by PT and OT functional levels within 3

weeks.
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Table 4.7: Descriptive statistics of all measures.
Measures Admission day Week 1 Week 2 Week 3

N Median IQR N Median IQR N Median IQR N Median IQR

Sensor features

Overall EI a 110 17.97 13.00 ∼23.74 110 18.88 13.76∼25.17 83 19.30 14.97∼25.05 57 18.43 15.10∼23.37

Resident room EI 110 19.41 14.90∼24.74 110 19.94 15.58∼25.85 83 20.65 16.12∼25.66 57 19.45 15.69∼24.39

Therapy room EI 110 15.09 9.02∼25.36 110 15.29 9.83∼25.01 83 17.19 10.30∼24.34 57 14.96 11.20∼20.50

Occupational therapy features

Dressing, lower body 16 3.00 2.75∼3.00 39 4.00 3.00∼4.00 40 4.00 4.00∼4.00 31 4.00 4.00∼4.00

Toileting general 16 4.00 2.75∼4.00 37 4.00 3.00∼4.00 40 4.00 4.00∼4.00 29 4.00 4.00∼4.00

Activity tolerance general (min) 11 8.00 5.00∼9.00 34 15.00 10.00∼15.00 37 15.00 15.00∼20.00 29 20.00 15.00∼20.00

Hygiene grooming 4 4 4.00∼4.00 15 4.00 4.00∼4.00 19 4.00 4.00∼4.00 15 4.00 4.00∼4.00

Physical therapy features

Transfer general 20 4.00 3.75∼4.00 72 4.00 4.00∼4.00 86 4.00 4.00 ∼4.00 50 4.00 4.00∼4.00

Gait distance, feet 20 40.00 18.75∼50.00 70 100.00 71.25∼150.00 80 150.00 100.00∼200.00 44 150.00 97.50∼200.00

Gait assistive device 21 2.00 1.00∼2.00 60 2.00 2.00∼2.00 69 2.00 2.00∼2.00 38 2.00 2.00∼2.00

Gait level surface 18 4.00 4.00∼4.00 61 4.00 4.00∼4.00 71 4.00 4.00∼4.00 40 4.00 4.00∼4.00

Bed mobility supine sit 21 4.00 3.00∼4.00 72 4.00 4.00∼4.00 84 4.00 4.00∼4.00 49 4.00 4.00∼4.00
aEI: energy intensity.

4.4.3 Longitudinal Association Between Clinical Measures and Sensor-Based Features

The associations of repeated PT, OT, and sensor-based measurements are modeled through three

generalized linear mixed models. On PT and sensor associations, according to Table 4.8, the results

of model 1 revealed that gait distance feet (β=.28; SE=0.06; P<.001), gait level surface β=.17;

SE=0.04; P<.001, and bed mobility including supine to sit (β=.26; SE=0.05; P<.001) improved over

time. Higher overall energy intensity indicates a higher score of transfer activity (β=.22; SE=0.08;

P=.03).

In model 2, energy intensity at the therapy room was positively associated with transfer activity

(β=.19; SE=0.08; P=.02). In addition, gait distance feet (β=.28; SE=0.05; P<.001), gait level surface

(β=.17; SE=0.04; P<.001) and bed mobility including supine to sit (β=.26; SE=0.05; P<.001)

improved every week.

In model 3, sitting energy intensity showed positive association with transfer activity (β=.16;

SE=0.07; P=.02). Meanwhile, according to model 3, participants showed weekly improvements

in gait distance (measured in feet; β=.27; SE=0.06; P<.001), gait level surface (β=.16; SE=0.05;
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Table 4.8: Generalized linear mixed model association between physical therapy and occupational

therapy assessments with sensor-based features
Models Gait distance feet Transfer general Gait level surfaces Bed mobility supine sit Dressing lower body Toileting general Activity tolerance general

Estimate β SE Estimate β SE Estimate β SE Estimate β SE Estimate β SE Estimate β SE Estimate β SE

Model 1

Intercept -.01 0.09 -.01 0.09 .02 0.11 .01 0.09 <.01 0.01 .01 0.13 <.01 0.10

Time (weeks) .28 0.06a .08 0.05 .17 0.04a .26 0.05a .30 0.07a .16 0.05b .59 0.06a

Overall EI c .14 0.08 .22 0.08b .11 0.08 .18 0.08b .19 0.09b .23 0.09b -.08 0.08

Time × overall EI .01 0.06 -.05 0.05 -.07 0.05 -.09 0.05 -.09 0.07 -.04 0.06 -.01 0.07

Model 2

Intercept <-0.1 0.08 -0.2 0.09 .01 0.10 .01 0.09 <-.01 0.10 .01 0.13 <.01 0.10

Time (weeks) .28 0.05a .08 0.05 .17 0.04a .26 0.05a .29 0.07a .15 0.05b .59 0.06a

Resident room EI .16 0.10 .06 0.09 .02 0.10 .14 0.09 .07 0.10 .14 0.10 .04 0.29

Therapy room EI -.05 0.08 .19 0.08b .10 0.08 .07 0.07 .16 0.10 .15 0.08 -.02 0.24

Resident room EI × time .07 0.07 -0.4 0.07 .01 0.06 -.08 0.06 -.07 0.09 -.06 0.07 -.02 0.12

Therapy room EI × time -.08 0.07 .02 0.07 -.10 0.06 -.01 0.06 .02 0.09 .05 0.08 -.01 0.10

Model 3

Intercept -.01 0.08 -.01 0.09 .02 0.11 .01 0.09 -.01 0.11 .02 0.14 <.01 0.10

Time (weeks) .27 0.06a .06 0.05 .16 0.05a .26 0.05a .32 0.07a .18 0.05a .59 0.06a

Sitting EI .03 0.07 .16 0.07b .03 0.06 <.01 0.06 .13 0.09 .09 0.07 .10 0.07

Standing EI -.01 0.09 .06 0.08 .07 0.07 -.03 0.08 .07 0.11 .03 0.08 -.03 0.09

Laying down EI .13 0.09 .06 0.09 .06 0.08 .14 0.08 .03 0.11 .10 0.11 -.14 0.09

Sitting EI × time .03 0.06 -.04 0.05 -.01 0.05 -.02 0.05 -.15 0.08 -.13 0.06b -.13 0.07

Standing EI × time .08 0.07 .11 0.07 .02 0.06 .04 0.06 -.05 0.10 -.07 0.07 .04 0.09

Laying dowm EI × time -.01 0.08 -.13 0.07 -.09 0.06 -.09 0.07 .11 0.11 .15 0.09 -.10 0.08
a P < .001.
b P < .05.
c EI: energy intensity.
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P<.001), and bed mobility including supine to sit (β=.26; SE=0.05; P<.001).

On OT and sensor associations, Table 4.8 shows that lower body dressing, toileting activity,

and activity tolerance in general improved every week in all three models. The higher value of

overall energy intensity in model 1 implied a higher functional score of lower body dressing (β=.19;

SE=0.09; P=.03) and toileting activity (β=.23; SE=0.09; P=.01).

4.4.4 Longitudinal Analyses of Location Occurrences Between 2 Outcome Categories of

Patients

The occurrence of a location is equal to the number of times a patient spends more than 40 continuous

seconds within that specific location. In other words, if the smartwatch receives Bluetooth low

energy signal of a beacon corresponding a location for 40 seconds, the occurrence of that location

increases by one unit. Figure 4.9 (a and b) shows total occurrences of patients in various nursing

facility locations (daily) normalized by the number of patients in each category. Darker colors

indicate higher frequency of patients visiting a particular location. In short, patients in outcome

category “home” traveled within the facility (resident and therapy area) much more frequently than

patients eventually admitted to a longer-term care or the “hospital” group. Additionally, no patient

in the hospital category used upper body exercise (SciFit), Endorphin, and stair equipment in the

therapy area.

4.5 Discussion

To our knowledge, this is the first study that has combined indoor localization and accelerometer-

based physical activity recognition to assess older patients. A subset of indoor location and physical

activity features were found to be highly correlated with the outcomes (community vs hospital

re-admission) at baseline. In this section, we discuss the significant highlights of the result.
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Figure 4.9: Normalized observation counts per patient by location within 21 days; (a): 105 patients

in the "community" group; (b): 5 patients in the "hospital" group
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4.5.1 Steps Versus Raw Acceleration Signal

Interestingly, walking, a known distinctive parameter in assessing physical functional performance

in certain older populations [36], did not yield significance in this study. In populations that are

frail, similar to that in subacute rehabilitation, only a negligible amount of time is spent walking

(<1% of daily activity). This suggests that in these populations, steps counters may not necessarily

be the best way to quantify active state [51, 52]. It would be best to prepare for the stark reality that

geriatric population may not be active enough to assess their well-being or infer their independence

only based on step counts or by monitoring their walking. A combination of activity features

that includes both wearable sensor and stationary beacons that provide corresponding indoor

localizations could be a stronger indicator of their general well-being and/or frailty. Moreover,

the use of raw acceleration signals to quantify energy intensity allows us to capture even small

movements, the movements that may not trigger step counters but still indicate some level of activity.

Let us consider an example in which we considered energy spent rather than steps: compared with

community, hospital patients show higher percentage of energy while laying down (P=.39, d=0.54).

They also spent more overall time (%) in that position (60.99) compared with 46.83 for community

patients. However, energy intensity of community patients is higher than hospital patients (26.23

vs 19.54). This indicates that community patients have been more active while lying down. Being

more active while lying down may be the result of turning in bed; hence, this feature may denote

higher ability to move in community patients. In this scenario, as discussed earlier, step counters

will not produce reliable results to quantify patients’ activity levels.

4.5.2 Activity With Therapist Versus Resident Time Alone

One interesting aspect of this study was to investigate the activity while a patient is with a physical

therapist versus activity during the other hours of the day. It did not appear that a clear distinction

could be made between different outcome groups based on therapy room energy intensity. This

could be because all patients during therapy sessions are engaged by the therapist in similar physical

activities following set protocols. However, the energy intensity of resident room was distinctive
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within outcome groups.

4.5.3 Value of Indoor Localization Data

To assess the value of indoor localization in activity tracking, it would be best to highlight some

of the scenarios: according to Table 4.2, among clinical characteristic assessment, ADL toilet

(P=.007) was the most significant feature in determining the outcome. This feature corresponds

to the watch-derived feature energy intensity in resident bathroom. With P=.004 and effect size

of d=1.18, energy intensity in resident room (achieved from indoor localization) hence confirms

the clinical finding and can be considered in the absence of ADL evaluations. In other words,

ADL variant, a highly significant clinical feature, can be replicated using combination of indoor

localization and activity/energy derivations.

Both group energy intensities at bed and bath were less than 60 per min. In the study by

Razjouyan et al [36], authors use a cutoff point of 90 to differentiate between light and moderate-to-

vigorous activities. On the basis of that, given the intensity in both bathroom and bed for either of

the groups, we can conclude that patients performed light activities in those locations.

None of the patients in hospital outcome group used therapy room toilet/bathroom. It is likely

that those patients were not capable enough to perform such exercises or even not advised by

clinicians/nurses to do so to prevent injury. Either way, the lack of performing an activity, in this

case, information extracted from indoor localization data, could be an early indication of which

group a patient belongs to; it could also potentially be used to identify adverse outcomes and

proactively address to prevent a negative outcome.

4.5.4 Predictive Analysis: Statistically Significant Features

P value as statistical significance or strength of evidence index has long been a subject of debate

[182, 20]. It is very crucial to know that the P value is not a definite test; increasing more attributes

significantly correlated with the outcome variable in a predictive model does not necessarily yield

higher predictability. Although statistical significance index and its effect size provide a standard
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exploratory data analysis and perhaps a good informal heuristic for choosing attributes of a prediction

model, machine learning practice has more freedom from model assumptions. This study shows

that the addition of significant variants did not increase predictive power and the model with only

energy intensity in resident room produced the highest recall of minority class (hospital outcome)

and overall AUC (0.84).

Considering only the prediction results, we can infer that location data add value to our system.

It is apparent that energy intensity in resident room is the most decisive feature in predicting the

outcome.

4.5.5 Activity With Therapist Versus Resident Time Alone and the Value of Indoor Localiza-

tion

One of the principal findings of this study is that the energy intensity spent in therapy sessions,

unlike in resident room, tend to have similar values in both outcome groups, more significantly

toward the end of the rehabilitation period (Figure 4.8). Perhaps the therapists in both patient

groups are encouraged to complete their therapy activities and are part of an individually designed

therapeutic program that aimed to improve functional activity. Moreover, energy intensity spent in

the resident room is very similar to overall energy intensity in that patients generally spend most of

their time in the resident room. Resident room activity levels are likely to be crucial in determining

the outcome of patients, even at early stages of their rehabilitation. Further understanding of the

therapeutic skills learned during therapeutic intervention and carryover into the resident room

warrants further study.

Based on Table 4.7, the PT and OT features investigated in this study all improved over

time along with the sensor-based feature, energy intensity. However, improvements are more

distinguishable between admission day and weeks 1 and 2. On week 3, the mean value for sensor-

based features such as overall energy intensity declines. Similarly, OT and PT features show less

change compared to week 1 and admission day. One possible reason could be the drop in sample

size after week 2 as patients are likely to be discharged earlier. Note that despite the steady PT and
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OT functional scores in later times, the interquartile range decreases over time, which indicates less

variations in functional levels. This could mean that residents achieved their functional goals or

plateaued in functional progression. Other aspects that limit a resident’s functional ability need to

be examined to determine if nonmotor parameters are limiting a resident’s progress. Cognition,

vision, and psychological factors are some of the areas that may limit functional progression.

Table 4.7 also shows that except the “gait distance in feet,” the improvement of features was

not evident after the 2nd and 3rd week. Further exploration of therapy treatment intensity or type of

intervention is warranted. Significant improvements in "gait distance in feet" suggest the importance

of this feature in clinical assessment. The rest of the gait measures showed they were less likely to

change over time. Dynamic gait parameters and their relation to mobility in daily activities need

more investigation.

4.5.6 Sensor-Based Features and Changes in Clinical Assessments

The captured sensor-based longitudinal changes such as lying down, sitting, and overall energy

intensity reflect changes in PT and OT features (Table 4.8). This finding confirms the benefit of

remote patient monitoring systems as adjunct tools to further reveal patients’ daily story lines.

Such systems can bear valuable information in further understanding the type and intensity of

therapy interventions that impact overall functional outcome. Brisk features remained surprisingly

unchanged over time when patients were expected to become less sedentary during recovery of

functional abilities, at least partially. Average sedentary time among all patients was more than

99.8% and remained unchanged. In other words, the cohort was walking less than 0.2% of the time,

measured objectively by the SARP wrist-worn sensor. This finding strongly suggests that focusing

on sedentary features among elderly patients is beneficial, confirming the studies in [183, 184, 185],

contrary to the emphasis many patient monitoring systems place on using activity trackers to count

steps [52, 186]. This study shows the importance of translating all movements into measurements

such as energy, or energy intensity, rather than solely relying on steps. This may shed light on the

type of intervention needed for improving the mobility of the elderly resident population.
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4.6 Limitations and Future Research

Activity classification can best be obtained using a series of motion sensors placed on various parts

of the body. Thus, a wide range of activities can be captured as most body motions are detected.

However, to simplify the activity detection, using single motion sensors is quite popular. Placing

an accelerometer on the hip has been one of the most popular methods because it captures almost

all human motions; however, it underestimates the arm ergometry, as it cannot fully extract the

arm movements [187]. Wrist-worn accelerometers are popular because of their ease of use, water

resistance in most brands, and capturing a comprehensive set of activities. However, interpreting

their data for certain sedentary activities such as sitting, standing, and laying is rather challenging,

in that, hand movements are very similar in those scenarios. Although ambulation detection is

evident in most cases, error rates of classification increase when using assistive devices, walking in

very low speed, carrying a weight with the hand that is not wearing the watch, or doing activities

involving hand and feet movement together such as sweeping [42, 187, 188].

Patients’ compliance with wearing a smartwatch was the main challenge of this study, and we

expect it to be a generic obstacle in similar studies that aim to harness wearable technology for

patients. Moreover, if the target population is less familiar with new forms of technology such as

wearable devices, the compliance issue might become even more crucial. In this study, we recruited

184 patients, of which 30 patients were excluded for not satisfying the analysis inclusion criteria

(watch wear time constraint). Our baseline analyses revealed that 50% of patients removed their

watches before the study coordinator collects them at the end of the 8 hours.

Dealing with medical datasets is rather challenging in that the datasets predominantly consist

of normal cases in addition to minority abnormal instances that deem to be more interesting [189].

Many attempts have been made to overcome the obstacle of the normal and abnormal samples

known as imbalanced datasets. There exist approaches to improve the performance of predictive

models by oversampling and/or undersampling the dominant and abnormal instances [59, 15, 65].

In our study cohort, the 2 outcome categories are not equally represented, making the dataset

imbalanced. In the future, we aim to further investigate the use of oversampling and undersampling
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of our dataset as methods that perhaps are not very conventional in the medical field but can possibly

improve the predictability of our models.

4.7 Conclusions

Despite the evolution of eHealth and mobile health (mHealth) and the emerging role of wearable

and mobile technology in new platforms of health care, there are anecdotal claims that wearable

technology may not precisely quantify patients’ health [190]. In this study, we showed that wearable

technology, equipped with refined physical activity tracking algorithms, in our case, tailored for

geriatrics, can result in a better understanding of patients and hopefully pave the way in developing

intervention alerts and approaches. We discussed how SARP features provide a clearer storyline of

daily activity patterns by merging indoor localization with physical activities. The SARP system can

be incorporated into mHealth technology platforms and can provide a more objective assessment of

the frail population.
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CHAPTER 5

Imbalanced learning in healthcare analytics

5.1 Introduction

Learning from imbalanced datasets can be very challenging as the classes are not equally represented

in the datasets [53]. There might not be enough examples for a learner to form a hypothesis that can

well model the under-represented classes. Hence, the classification results are often biased towards

the majority classes. The curse of imbalanced learning is prevalent in real-world applications as

discussed in Section 2.2.

To address this, we propose WOTBoost, a method that combines Weighted Oversampling

Technique and ensemble Boosting. WOTBoost synthesizes minority data to balance the dataset

and identifies difficult minority data. By generating more synthesized data near difficult-to-learn

minority samples, WOTBoost can potentially improve classification accuracy without compromising

the majority class. Even though class imbalance issue can exist in multi-class applications, we only

focus on the binary class scenario in this paper as it is feasible to reduce a multi-class classification

problem into a series of binary classification problems [60].

The contributions in this paper are as follows:

• We identify the minority class data examples which are harder to learn at each round of

boosting and generate more synthetic data for this kind.

• We test our proposed algorithm extensively on 18 public accessible datasets and compared

the results with the most commonly used algorithms. To our knowledge, this might be first

work to carry out such a comprehensive comparison study in ensemble method combined
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with oversampling approach.

• We inspect the various distributions of 18 datasets and discussed why WOTBoost performs

better on certain datasets.

5.2 WOTBoost: Weighted Oversampling Technique in Boosting

In this section, we propose the WOTBoost algorithm which combines a weighted oversampling

algorithm with the standard boosting procedure. The Weighted Oversampling Technique populates

synthetic data based on the weights that are associated to each minority data. In other words, higher

weighted minority data samples are synthesized more. This algorithm is an ensemble method and

creates a series of classifiers in an arbitrary number of iterations. The boosting procedure will be

elaborated with details in Algorithm 1 and 2: a) We introduce a weighted oversampling step at the

beginning of each iteration of boosting. b) We adjust the weighted oversampling strategy using

the updated weights (i.e., Dt at line 8 in Algorithm 1) associated with the minority during each

round of boosting [53]. The boosting algorithm gives more weights to the data samples which were

misclassified in the previous round. Hence, WOTBoost can be designed to generate more synthetic

data examples for the minority data which were misclassified in the previous iterations. Meanwhile,

boosting technique would also add more weights to misclassified majority class data, and force the

learner to focus on these data as well. Therefore, we combine the merits of weighted oversampling

technique and AdaBoost.M2 together. The goal is to improve the discriminative power of the

classifier on difficult minority examples without sacrificing the accuracy of the majority class data

instances.

Algorithm 1 presents the details of the boosting procedure, which is a modified version of Ad-

aBoost.M2 [79]. It takes a training dataset DTr with m data samples, DTr = {(x1, y1), (x2, y2), ...,

(xm, ym)}. xi is the ith feature vector in n-dimensional space, and yi ∈ Y = {majority,minority}

is the true label associated with xi. ŷi is the predicted label. We initialize a mislabel distribution, B,

which contains all the misclassified data instances (i.e., ŷi ̸= yi). In addition, we also initialize a
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Algorithm 1: Boosting with weighted oversampling
Input: Training dataset DTr with m samples {xi, yi}, i = 1, 2, ...,m, where xi is an

instance in the n dimensional feature space, X , and yi

∈ Y = {majority,minority} is the label associated with xi;

Let B = {(i, ŷi) : i = 1, ...,m, ŷi ̸= yi};

T specifies the number iterations in boosting procedure;

Initialize: D1(i, ŷi) =
1
m

, i = 1, 2, ...,m

for t=1,2,3,... T do
Create N synthetic examples from minority class with the weight distribution Dt using

Algorithm 2;

Fit a weak learner using the temporary training dataset which is a combination of

original data and synthetic data;

Calculate a weak hypothesis ht : X × Y → [0, 1];

Compute the pseudo-loss of ht: εt = 1
2

∑
(i,ŷi)∈B

Dt(i, ŷi)(1− ht(xi, yi) + ht(xi, ŷi));

Let βt =
εt

1−εt
;

Update the weight distribution Dt+1: D̃t+1(i, ŷi) = Dt(i, ŷi)β
1
2
×(1−ht(xi,yi)+ht(xi,ŷi))

t ;

Normalize Dt+1 : Dt+1(i, ŷi) =
D̃t+1(i,ŷi)

Zt
, where Zt is a normalization constant such

that
∑
i∈m

Dt+1(i, ŷi) = 1

end

Output: hfinal(x) = argmaxŷi∈Y
T∑
t=1

(log 1
βt
)ht(x, ŷi)

weight distribution for the training data by assigning equal weights over all samples. During each

round of boosting (step 1 - step 9), a weak learner is built on a training dataset which is the output

of a weight oversampling procedure. The weak learner formulates a weak hypothesis which is just

slightly better than random guessing, hence the name [79]. But this is good enough as the final

output will aggregate all the weak hypotheses using weighted voting. As for error estimation, the

pseudo loss of a weak hypothesis is calculated as specified at step 5. Instead of using ordinary

training loss, pseudo loss is adopted to force the ensemble method to focus on mislabeled data. More
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Algorithm 2: Dynamic weighted oversampling procedure

Input: N is the number of synthetic data examples from minority class;

Dt is the weight distribution passed at line 2 in Algorithm 1

Calculate the number of synthetic data examples for each minority class instance:

gi = N × Dt(i,ŷi)∑
j∈minority

Dt(j,ŷi)
;

For each minority class instance, x(i), in original training dataset, generate gi synthetic data

examples using the following rules:

for 1,2,3,...,gi do:

(I) Randomly choose a minority class example, xnn(i), from the k nearest neighbors of

x(i), which is a n-dimensional feature vector.

(II) Calculate the difference vector δ = xnn(i)− x(i).

(III) Create a synthetic data example using the following equation:

xsyn(i) = x(i) + δ × λ

where λ ∈ [0, 1]. Output: A temporary training dataset combining the original

data with synthetic data

justification for using pseudo loss can be found in [79, 191]. Once the pseudo loss is computed, the

weight distribution, Dt, is updated accordingly and normalized at step 5 - step 8.

Algorithm 2 demonstrates the weighted oversampling procedure. The inputs to oversampling

technique are the weight distribution, Dt, and an arbitrary number of synthetic data samples, N .

It uses the weight distribution as the oversampling strategy to decide how to synthesize for each

minority data samples, as it is described at step 1 in Algorithm 2. As mentioned previously, the

ensemble method would assign more weights to misclassified data. Therefore, this oversampling

strategy facilitates the classifier to learn a broader representation of mislabeled data by placing more

similar data samples around them.
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Figure 5.1: Overview of the comparison study

5.3 Experimentation

In this section, we conduct a comprehensive comparison study of WOTBoost algorithm with

decision tree, SMOTE + decision tree, ADASYN + decision tree, and SMOTEBoost. Figure 5.1

shows how the models are built and assessed.

5.3.1 Dataset overview

We evaluate these 5 models extensively using 18 imbalanced datasets which are publicly accessible.

The imbalanced ratio (i.e., counts of majority class samples to counts of minority class samples)

of these datasets vary from 1.7 to 42. Since some testing imbalanced datasets have more than 2

classes, and we are only interested in the binary class problem in this paper, we pre-processed

these datasets and modified them into a binary class datasets following the rules in the literature

[59, 63, 66, 65, 80, 83]. Meanwhile, only numeric attributes are included when processing datasets.

The details of data cleaning can be referred to the prior works [59, 80, 65]. The characteristics of

these datasets are summarized in Table 5.1.
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Table 5.1: Characteristics of 18 testing datasets
Dataset Instances Attributes Outcome Frequency Imbalanced Ratio No. of safe minority No. of unsafe minority unsafe minority%

Pima Indian Diabetes [192] 768 9 Maj: 506 Min:268 1.9 86 182 67.9%

Abalone [193] 4177 8 Maj:689 Min:42 6.4 5 37 88.1%

Vowel Recognition [193] 990 14 Maj:900 Min:90 10.0 89 1 1.1%

Mammography [194] 11183 7 Maj: 10923 Min: 260 42 107 153 58.8%

Ionosphere [193] 351 35 Maj: 225 Min 126 1.8 57 69 54.8%

Vehicle [193] 846 19 Maj: 647 Min:199 3.3 154 45 22.6%

Phoneme [195] 5404 6 Ma j: 3818 Min:1580 2.4 980 606 38.2%

Haberman [193] 306 4 Maj: 225 Min:81 2.8 8 73 90.1%

Wisconsin [193] 569 31 Maj: 357 Min: 212 1.7 175 37 17.5%

Blood Transfusion [196] 748 5 Maj: 570 Min: 178 3.2 23 83 87.1%

PC1 [197] 1484 9 Maj: 1032 Min: 77 13.4 8 69 89.6%

Heart [193] 294 14 Maj: 188 Min: 106 1.8 17 89 84.0%

Segment [193] 2310 20 Ma j: 1980 Min: 330 6.0 246 84 25.5%

Yeast [193] 1484 9 Ma j: 1240 Min: 244 5.1 95 149 61.1%

Oil 937 50 Maj: 896 Min: 41 21.9 0 41 100.0%

Adult [193] 48842 7 Maj: 37155 Min: 11687 3.2 873 10814 92.5%

Satimage [193] 6430 37 Maj: 5805 Min: 625 9.3 328 297 47.5%

Forest cover [198] 581012 11 Maj: 35754 Min: 2747 13.0 2079 668 24.3%

5.3.2 Experiment setup

We compare the WOTBoost algorithm with naive decision tree classifier, decision tree classi-

fier after SMOTE, decision tree classifier after ADASYN, and SMOTEBoost. Figure 5.1 shows

that the clean datasets are split evenly into training and testing during each iteration [65]. As a

control group, a naive decision tree model learned directly from the imbalanced training dataset.

SMOTE and ADASYN algorithms are used separately to balance the training dataset before in-

putting it to decision tree classifiers. SMOTEBoost and WOTBoost take in imbalanced training

datasets and synthesize new data samples for the minority at each round of boosting. Both of

them use decision tree as the weak learner [80]. Models are evaluated on a separate testing dataset.

The evaluating metrics used in this study are precision, recall, F1 measure, G mean, specificity,

area under ROC. The final performance assessments are averaged over 100 such runs, and they

are summarized in Table 5.3. During each testing run, we oversample the training dataset in a

way that both minority class and majority class are equally represented in all models [65]. For

SMOTE, ADASYN, SMOTEBoost, and WOTBoost, we set the number of nearest neighbors to be 5.
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5.3.3 Metrics

Overall accuracy is typically chosen to evaluate the predictive power of machine learning classifiers

provided with a balanced dataset. As for imbalanced datasets, overall accuracy is no longer an

effective metric. For example, in the information retrieval and filtering domain by Lewis and Catlette

(1994), only 0.2% are interesting cases [56]. A dummy classifier that always gives predictions of

majority class would easily achieve an overall accuracy of 99.8%. However, this predictive model is

uninformative as we are more interested in classifying the minority class. Common alternatives to

overall accuracy in assessing imbalanced learning models are F measures, G mean, and Area Under

the Curve (AUC) for Receiver Operating Characteristic (ROC) [199]. By convention, majority

class is regarded as negative class and minority class as positive class [59, 200]. Table II shows a

confusion matrix that is typically used to visualize and assess the performance of predictive models.

Based on this confusion matrix, the evaluation metrics used in this paper are mathematically

formulated as follows:

Table 5.2: Confusion matrix of a binary classification problem

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

F1measure = 2 · precision× recall

precision+ recall
(5.3)
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G mean =
√
Positive Accuracy ×Negative Accuracy

=

√
TP

TP + FN
× TN

TN + FP

(5.4)

Table 5.3: Evaluation metrics and performance comparison

Dataset Methodsa OAb Precisionb Recallb F_measureb G_meanb ROC AUCb

Pima

Indian

Diabetes

DT 0.71 ± 0.02 0.61 ± 0.04 0.54 ± 0.05 0.57 ± 0.03 0.66 ± 0.02 0.67±0.02

S 0.67±0.02 0.55±0.03 0.54±0.04 0.54±0.02 0.63±0.02 0.64±0.02

A 0.68 ± 0.02 0.56±0.04 0.58±0.05 0.57±0.03 0.66±0.03 0.66±0.02

SM 0.66±0.02 0.52±0.02 0.86±0.04 0.64±0.02 0.68±0.02 0.70±0.01

WOT 0.73±0.02 0.60±0.03 0.78±0.05 0.68±0.02 0.74±0.02 0.74±0.02

Abalone

DT 0.93 ± 0.01 0.46±0.12 0.46±0.10 0.46±0.08 0.66±0.08 0.71±0.04

S 0.88±0.02 0.24±0.07 0.38±0.11 0.29±0.07 0.59±0.08 0.65±0.05

A 0.88±0.02 0.24±0.06 0.42±0.11 0.31±0.07 0.62±0.09 0.66±0.05

SM 0.84±0.06 0.19±0.04 0.46±0.12 0.27±0.05 0.63±0.05 0.66±0.05

WOT 0.94±0.01 0.55±0.33 0.34±0.11 0.42±0.13 0.58± 0.18 0.66 ±0.05

Vowel

Recognition

DT 0.97±0.00 0.90±0.06 0.79±0.06 0.84±0.04 0.88±0.03 0.89±0.03

S 0.96±0.00 0.85±0.06 0.74±0.06 0.80±0.04 0.86±0.03 0.87±0.03

A 0.97±0.00 0.88±0.05 0.79±0.07 0.83±0.04 0.88±0.03 0.89±0.03

SM 0.98±0.00 0.83±0.05 0.96±0.04 0.89±0.03 0.97±0.02 0.97±0.02

WOT 0.98±0.01 0.87±0.10 0.98±0.01 0.93±0.07 0.98±0.02 0.98±0.01

Ionosphere

DT 0.86±0.02 0.83±0.06 0.73±0.06 0.77±0.04 0.82±0.03 0.83±0.03

S 0.85±0.03 0.75±0.05 0.81±0.06 0.78±0.04 0.84±0.03 0.84±0.03

A 0.88±0.03 0.84±0.05 0.80±0.06 0.82±0.04 0.86±0.03 0.86±0.03

SM 0.91±0.02 0.89±0.06 0.85±0.04 0.87±0.03 0.90±0.02 0.90±0.02

WOT 0.91±0.02 0.92±0.05 0.79±0.04 0.85±0.03 0.87±0.02 0.88±0.02

Vehicle

DT 0.94±0.01 0.85±0.04 0.88±0.04 0.87±0.03 0.92±0.02 0.92±0.02

S 0.90±0.01 0.75±0.04 0.88±0.05 0.81±0.03 0.89±0.02 0.89±0.02

A 0.92±0.01 0.81±0.04 0.87±0.04 0.84±0.02 0.90±0.02 0.90±0.02

SM 0.95±0.00 0.84±0.03 0.97±0.02 0.90±0.02 0.96±0.01 0.96±0.01

WOT 0.89±0.10 0.70±0.15 0.97±0.03 0.81±0.11 0.92±0.07 0.92±0.06

Phoneme

DT 0.86±0.00 0.75±0.01 0.74±0.01 0.75±0.01 0.82±0.00 0.82±0.00
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Table 5.3 continued from previous page

Dataset Methodsa OAb Precisionb Recallb F_measureb G_meanb ROC AUCb

S 0.86±0.00 0.74±0.01 0.78±0.01 0.76±0.01 0.83±0.01 0.83±0.00

A 0.83±0.00 0.68±0.01 0.78±0.01 0.73±0.01 0.82±0.00 0.82±0.00

SM 0.77±0.00 0.57±0.01 0.86±0.01 0.69±0.01 0.80±0.00 0.80±0.00

WOT 0.52±0.06 0.38±0.03 0.99±0.01 0.54±0.03 0.57±0.07 0.66±0.04

Haberman

DT 0.67±0.03 0.38±0.06 0.25±0.08 0.30±0.05 0.46±0.05 0.54±0.03

S 0.65±0.03 0.40±0.05 0.39±0.08 0.39±0.05 0.64±0.04 0.57±0.03

A 0.60±0.03 0.37±0.05 0.52±0.08 0.43±0.05 0.58±0.05 0.58±0.04

SM 0.48±0.06 0.34±0.03 0.84±0.07 0.48±0.03 0.53±0.10 0.59±0.02

WOT 0.54±0.05 0.35±0.07 0.70±0.12 0.47±0.05 0.57±0.05 0.59±0.03

Wisconsin

DT 0.95±0.01 0.93±0.03 0.93±0.01 0.93±0.01 0.95±0.01 0.95±0.01

S 0.92±0.01 0.89±0.03 0.90 ±0.03 0.89±0.02 0.91±0.01 0.91±0.01

A 0.95±0.01 0.93±0.03 0.94±0.03 0.94±0.02 0.95±0.01 0.95±0.01

SM 0.98±0.01 0.99±0.00 0.95±0.01 0.97±0.01 0.97±0.01 0.97±0.01

WOT 0.97±0.01 0.97±0.03 0.95±0.02 0.96±0.02 0.96±0.01 0.96±0.01

Blood

Transfusion

DT 0.72±0.01 0.39±0.06 0.28±0.08 0.32±0.06 0.49±0.07 0.57±0.04

S 0.71±0.01 0.39±0.05 0.39±0.07 0.39±0.05 0.56±0.05 0.60±0.03

A 0.70±0.01 0.38±0.05 0.42±0.08 0.40±0.06 0.57±0.07 0.60±0.04

SM 0.44±0.03 0.29±0.03 0.93±0.10 0.45±0.03 0.52±0.04 0.61±0.04

WOT 0.68±0.03 0.38±0.16 0.52±0.12 0.44 ±0.09 0.61±0.14 0.62±0.05

PC1

DT 0.90±0.01 0.25±0.05 0.27±0.05 0.26±0.04 0.50±0.04 0.61±0.02

S 0.87±0.02 0.22±0.04 0.38±0.05 0.27±0.04 0.58±0.03 0.64±0.02

A 0.87±0.02 0.26±0.04 0.51±0.06 0.35±0.03 0.68±0.03 0.71±0.02

SM 0.82±0.05 0.16±0.02 0.41±0.04 0.23±0.03 0.59±0.07 0.63±0.02

WOT 0.91±0.03 0.34±0.03 0.30±0.07 0.32±0.03 0.53±0.02 0.63±0.02

Heart

DT 0.77±0.03 0.68±0.06 0.63±0.08 0.65±0.05 0.73±0.04 0.74±0.03

S 0.76±0.03 0.67±0.06 0.57±0.07 0.62±0.04 0.70±0.04 0.71±0.03

A 0.79±0.03 0.68±0.05 0.75±0.06 0.71±0.04 0.78±0.03 0.78±0.03

SM 0.70±0.03 0.55±0.05 0.75±0.06 0.63±0.03 0.71±0.03 0.71±0.03

WOT 0.74±0.03 0.60±0.06 0.74±0.06 0.66±0.04 0.74±0.03 0.74±0.03

Segment

DT 0.96±0.00 0.88±0.04 0.88±0.03 0.88±0.02 0.93±0.02 0.93±0.01

S 0.96±0.00 0.87±0.03 0.85±0.03 0.86±0.02 0.91±0.01 0.91±0.01

A 0.96±0.00 0.88±0.03 0.87±0.03 0.87±0.02 0.92±0.01 0.92±0.01
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Table 5.3 continued from previous page

Dataset Methodsa OAb Precisionb Recallb F_measureb G_meanb ROC AUCb

SM 0.95±0.00 0.80±0.03 0.87±0.02 0.83±0.02 0.92±0.01 0.92±0.01

WOT 0.72±0.09 0.34±0.08 0.97±0.07 0.51±0.08 0.81±0.06 0.82±0.05

Yeast

DT 0.83±0.01 0.46±0.03 0.59±0.05 0.51±0.03 0.72±0.03 0.73±0.02

S 0.81±0.01 0.41±0.04 0.60±0.04 0.49±0.03 0.71±0.02 0.72±0.02

A 0.82±0.01 0.43±0.03 0.66±0.05 0.52±0.02 0.75±0.03 0.75±0.02

SM 0.70±0.02 0.32±0.02 0.82±0.03 0.46±0.02 0.75±0.01 0.75±0.01

WOT 0.84±0.02 0.50±0.05 0.73±0.05 0.59±0.03 0.79±0.02 0.80±0.02

Oil

DT 0.93±0.01 0.35±0.11 0.48±0.13 0.41±0.11 0.68±0.12 0.72±0.06

S 0.91±0.01 0.26±0.07 0.48±0.11 0.33±0.07 0.67±0.08 0.70±0.05

A 0.89±0.01 0.22±0.09 0.52±0.11 0.31±0.08 0.69±0.09 0.71±0.05

SM 0.94±0.01 0.41±0.07 0.52±0.10 0.46±0.06 0.71±0.06 0.74±0.05

WOT 0.95±0.02 0.47±0.13 0.28±0.16 0.35±0.09 0.52±0.12 0.63±0.07

Adult

DT 0.75±0.00 0.48±0.00 0.47±0.00 0.48±0.00 0.63±0.00 0.66±0.00

S 0.70±0.00 0.41±0.00 0.56±0.00 0.48±0.00 0.65±0.00 0.65±0.00

A 0.71±0.00 0.42±0.00 0.57±0.00 0.48±0.00 0.65±0.00 0.66±0.00

SM 0.81±0.00 0.62±0.01 0.55±0.01 0.58±0.00 0.70±0.01 0.72±0.00

WOT 0.75±0.02 0.48±0.03 0.67±0.05 0.56±0.01 0.72±0.01 0.72±0.01

Satimage

DT 0.91 ± 0.00 0.53±0.02 0.51±0.03 0.52±0.02 0.70±0.02 0.73±0.01

S 0.90±0.00 0.51±0.02 0.63±0.02 0.56±0.01 0.77±0.01 0.78±0.01

A 0.89±0.00 0.45±0.03 0.60±0.03 0.52±0.02 0.75±0.01 0.76±0.01

SM 0.90±0.00 0.49±0.02 0.72±0.02 0.58±0.01 0.81±0.00 0.82±0.01

WOT 0.88±0.01 0.42±0.03 0.75±0.03 0.54±0.02 0.82±0.01 0.82±0.01

Forest cover

DT 0.97±0.00 0.81±0.01 0.82±0.01 0.82±0.01 0.90±0.00 0.90±0.00

S 0.97±0.00 0.78±0.01 0.85±0.01 0.81±0.00 0.91±0.00 0.92 ±0.00

A 0.97±0.00 0.79±0.01 0.86±0.01 0.82±0.01 0.92±0.00 0.92±0.00

SM 0.96±0.00 0.73±0.01 0.72±0.01 0.72±0.00 0.84±0.00 0.85±0.00

WOT 0.91±0.02 0.43±0.05 0.88±0.02 0.58±0.05 0.90±0.01 0.90±0.01

a DT=Decision Tree, S=SMOTE, A=ADASYN, SM=SMOTEBoost, WOT=WOTBoost.

b Values are rounded to 2 decimal places
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We highlight the best model and its performance in boldface for each dataset in Table 5.3. Figure 5.2

presents the performance comparison of these 5 models on G mean and AUC score in 18 datasets.

To assess the effectiveness of the proposed algorithm on these imbalanced datasets, we count the

cases when WOTBoost algorithm outperforms or matches other models on each metric. The results

presented in Table 5.4 show that WOTBoost algorithm has the most winning times on G mean (6

times) and AUC (7 times). As defined in Equation 5.4 in the metric section, G mean is the square

root of the product between positive accuracy (i.e., recall or sensitivity) and negative accuracy (i.e.,

specificity). Meanwhile, area under the ROC curve, or AUC, is typically used for model selection,

and it examines the true positive rate and false positive rate at various thresholds. Hence, both

evaluation metrics consider the accuracy of both classes. Therefore, we argue that WOTBoost

indeed improves the learning on the minority class while keeping the accuracy of the majority class.

Figure 5.2: Performance comparison of G mean and AUC score on 18 datasets

In Table 5.3, we observe that WOTBoost has the best G mean and AUC score on Pima Indian

Diabetes whereas SMOTEBoost is the winner on Ionoshphere with the same assessments. Con-

sidering these two datasets have similar global imbalanced ratio, it naturally raises the question:

are there any other factors that are influential in the classification performance? To understand the

reasons why WOTBoost performs better on certain datasets, we investigate the local characteristics
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Table 5.4: Summary of effectiveness of WOTBoost algorithm on 18 datasets
Winning counts Precision Recall F_measure G_mean AUC

Decision Tree 9 0 2 2 2

SMOTE 2 1 1 3 3

ADASYN 2 3 3 3 3

SMOTEBoost 3 10 8 4 6

WOTBoost 6 8 4 6 7

of the minority class in these datasets. We use t-SNE to visualize the distribution of these two

datasets as shown in Figure 5.3. t-SNE algorithm allows us to visualize high dimensional datasets

by projecting it into a two-dimensional panel. Figure 5.3 indicates there are more overlapping

between two classes in Pima Indian Diabetes, whereas more "safe" minority class samples in

Ionosphere. It is likely that WOTBoost is able to learn better when there are more difficult minor-

ity data examples. Figure 5.4 demonstrates the distribution of Pima Indian Diabetes before and

after applying WOTBoost. We highlight one of the regions where minority data samples are diffi-

cult to learn. WOTBoost algorithm is able to populate synthetic data for these minority data samples.

Figure 5.3: (a) Distribution of Pima Indian Diabetes dataset. (b) Distribution of Ionosphere dataset

Table 5.1 shows the number of safe/unsafe minority samples of 18 dataset. We consider a minority

class sample to be safe if its 5 nearest neighbors contain at most 1 majority class sample; Otherwise,

it is labeled as an unsafe minority [63, 64]. Unsafe minority percentage is computed by

unsafe minority% =
counts of unsafe minority

counts of minority
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Figure 5.4: Pima Indian Diabetes distribution before and after applying WOTBoost

We observe that the unsafe minority percentages are around 50% or higher in most of the datasets

where WOTBoost has the best G-mean or AUC shown in Table 5.3. For example, Adult, Haberman,

Blood Transfusion, Pima Indian Diabetes, and Satimage have 92.5%, 90.1%, 87.1%, 67.9%, 47.5%

unsafe minority among the total minority class samples, respectively. Meanwhile, the global imbal-

anced ratios of these datasets are from 1.9 to 10.0. Hence, WOTBoost might be a good candidate to

tackle imbalanced datasets with large proportion of unsafe minority samples and relatively high

between-class imbalance ratios.

5.4 Conclusion

In this paper, we propose the WOTBoost algorithm to better learn from imbalanced datasets. The

goal is to improve the performance of classification on minority class without sacrificing the accu-

racy of the majority class. We carry out a comprehensive comparison between WOTBoost algorithm

and 4 other classification models. Results indicate that WOTBoost has the best G mean and AUC

scores in 6 out of 18 datasets. WOTBoost shows more balanced performance, such as in G mean,

than other classification models compared to particularly SMOTEBoost. Even though WOTBoost is

not a cure-all method to the imbalanced learning problem, it is likely to produce promising results

for datasets that contain a large portion of unsafe minority samples and maybe relatively high global
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imbalanced ratios. We hope that our contribution to this research domain would provide more

insights and directions.

In addition, our study demonstrates that having the prior knowledge of the minority class distri-

bution could facilitate the learning performance of the classifiers [53, 82, 65, 64, 63, 66]. Further

investigating on the data-driven sampling may produce interesting findings in this domain.
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CHAPTER 6

Electrocardiogram heartbeat classification using deep transfer

learning with Convolutional Neural Network and STFT

technique

6.1 Introduction

Electrocardiogram (ECG) is a simple non-invasive measure to identify heart-related issues such

as irregular heartbeats known as arrhythmias. While artificial intelligence and machine learning

is being utilized in a wide range of healthcare related applications and datasets, many arrhythmia

classifiers using deep learning methods have been proposed in recent years. Deep learning methods

generally require a large amount of training data. While well-annotated ECG datasets for arrhythmia

detection are limited [91], resorting to transfer learning techniques in which a pre-trained image

classifier is used can be warranted. There have been recent attempts in using transfer learning

framework with MIT-BIH dataset to develop arrhythmia diagnosis models [84].

In this paper, we propose a deep transfer learning framework that is aimed to perform classifica-

tion on a small size training dataset. The proposed method is to fine-tune a general-purpose image

classifier ResNet-18 with MIT-BIH arrhythmia dataset in accordance with the AAMI EC57 standard.

This paper further investigates many existing deep learning models that have failed to avoid data

leakage against AAMI recommendations. We compare how different data split methods impact the

model performance. This comparison study implies that future work in arrhythmia classification

should follow the AAMI EC57 standard when using any including MIT-BIH arrhythmia dataset.

The main contributions of this paper are summarized as follows:

116



• Propose an end-to-end ECG classification framework that can leverage the learning power of

existing pre-trained 2D CNN models.

• Demonstrate how the choice of samples in MIT-BIH dataset significantly impacts the deep

learning model performance.

• Highlight the unreliable and biased model evaluation in current literature on ECG classification

with deep learning methods.

Figure 6.1: Heartbeat annotations in MIT-BIH dataset according to AAMI EC 57. The consolidated

classes are N, S, V, F, Q.

6.2 Dataset

Similar to the majority of the arrhythmia analysis studies, this study develops the model on MIT-BIH

Arrhythmia dataset [89]. The dataset includes 48 half-hour excerpts of two-channel ambulatory
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ECG recordings collected from 47 patients at 360 Hz. The dataset was annotated at heartbeat level

by two or more cardiologists independently. 14 original heartbeat types are consolidated into 5

groups according to AAMI recommendation, shown in Figure 6.1.

Set Heartbeat types (AAMI EC57 standard)

N S V F Q Total

Full MIT-BIH set 90,631 2,781 7,236 803 8,043 109,494

Intra-patient split

Training

(80% split)
72,471 2,223 5,789 642 6,431 87,756

Testing

(20% split)
18,118 556 1,447 161 1,608 21,890

Inter-patient split

Training

(DS1 in [100])
45,866 944 3,788 415 8 51,021

Testing

(DS2 in [100])
44,259 1,837 3,221 338 7 49,712

Table 6.1: Heartbeat distribution by classes of the raw data, intra-patient split, and inter-patient

There are two ways to split the dataset into training and testing sets, inter-patient paradigm

versus intra-patient paradigm. The intra-patient paradigm creates the training/testing dataset by

randomly choosing heartbeat samples. In this paradigm, the heart- beat samples from the same

patient might exist in both training and testing dataset. Therefore, the testing data might influence

the model training. We argue that this data split paradigm can result in unreliable results. Models

developed under intra-patient split paradigm should be reconsidered and re-evaluated for clinical

decision making; overall, intra-patient approach should be highly discouraged [87, 100]. On the

other hand, in inter-patient paradigm the training/testing datasets are created from different patients

[100, 201]. Hence, inter-patient split avoids the information leakage issue existed in its counterpart

method. In the inter-patient split, the MIT-BIH dataset is divided into two datasets (DS1 and DS2),
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identified by the patient IDs: DS1 = 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124,

201, 203, 205, 207, 208, 209, 215, 220, 223, 230 and DS2 = 100, 103, 105, 111, 113, 117, 121,

123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234 proposed by Chazal et al.

[100]. DS1 is used for model training (training set) and DS2 is used for model evaluation (testing

set). Patient 102, 104, 107, 217 are excluded in inter-patient split.

6.3 Methodology

In this section, we describe the proposed work in two steps: 1) building an end-to-end transfer

learning framework with STFT and ResNet18, and 2) investigating how the inter-patient split and

intra-patient split of MIT-BIH dataset impact the performance of a series of models presented in the

literature [84, 86, 96].

6.3.1 Preprocessing

The raw MIT-BIH data firstly goes through a high pass filter (> 0.5 Hz) to remove baseline constant

signal. Moving average is applied to remove base drift. Chebyshev type I 4th-order filter and

bandwidth 6-18 Hz coupled with Shannon energy filters are used to find the R peak. Then the

ECG recordings are segmented into a set of heartbeats with the length of 1.2 RR interval (the time

between two consecutive peaks).

In our proposed approach, we use pretrained 2D CNN models (ResNet18) which requires the

input data to be in the format of 2D images. Therefore, Short-Term Fourier Transform (STFT) is

used to obtain 2D time-frequency spectrograms of the digitized 1D ECG recordings for capturing

the frequency variations [100, 202]. The 2D time-frequency spectrograms for each point in the

signal is computed by [202],

STFTx[n] = X(x, ω) =
∞∑

n=−∞

x[n]w[n−m]e−jωn (6.1)

Where x[n] is the signal which is sampled at 360 Hz and w[n−m] is the moving window (e.g.,
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Hanning window or Guassian window). We suggest using Hanning window with size 512. The

resulting 2D spectrograms are in dimension of 224 × 224. The STFT transformation is performed

using Python library librosa (version 0.9.1).

Figure 6.2: ECG grey-scaled spectrograms of the 4 class in MIT BIH dataset.

The class distribution in MIT-BIH dataset is highly imbalanced (the majority class N takes 89%

of the entire dataset, see Table 6.1. In this study, we only consider the heartbeat type N, S, V, F, and

exclude class Q due to limited samples (n=15). Over- sampling and under-sampling techniques are

explored in this study to construct equalized class representation. Note that data sampling methods

are only applied on training dataset DS1. We applied oversampling after STFT is performed. Image

rotation, flip, and adding Gaussian noise are used to create the artificial data samples.

6.3.2 Arrhythmia Classifier using Transfer Learning

Inspired by the application of using pretrained CNN classifiers (e.g., ResNet18, Res- Net50, etc.) to

build predictive models in lung CT scans, we explored the feasibility of using such classifiers in

Arrhythmia classification [203]. ResNet18 is used to classify ECG recordings into 4 classes listed

in Figure 6.2. The dimension of the input data is adjusted to 224 × 224 × 1 for ResNet 18. A fully
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connected layer at the end of ResNet18 is adjusted to predict 4 classes. To classify Arrhythmia, the

pretrained ResNet18 network is fine-tuned using the preprocessed DS1 dataset from inter-patient

split paradigm. Then the retrained ResNet18 is evaluated using DS2.

Figure 6.3: Visualization of transfer learning in this work. The pretrained models are developed

on generic image dataset. There are wide choices of existing pretrained models such as ResNet18

and VGGs. The pretrained models are then fine-tuned with task-specific data, i.e., 2D ECG data

in time-frequency domains transformed from 1D ECG waveform recordings. We suggest using

pretrained ResNet 18 for classification.

The training parameters opted for the transfer learning-based model are: i) using Adam optimizer,

ii) batch size is 500, iii) model is trained up to 20 epochs, iv) learning rate is .0001. The metrics

used for evaluation are precision, recall, and accuracy.
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6.3.3 Investigation of how the choice of Intra-patient split versus Inter-patient split paradigm

impact model performance

In this section, we investigate how the inter-patient split and intra-patient split methods impact the

performance of several state-of -the-art deep learning models in the literature [84, 86]. Eduardo Luz

et al. studied the impact of these two data split paradigms [87] on machine learning models such as

SVM and shallow neural networks. However, that study was published in 2011 and did not include

deep learning models. In our study, we implemented two state-of-the-art deep learning models:

Convolutional Neural Networks and its variant described in [84, 86]. Kachuee et al. only evaluates

their arrhythmia classifier on intra-patient split [84]. However, we re-implemented1 these deep

learning models and tested the models using both intra-patient and inter-patient split paradigms.

6.4 Results

The performance of the proposed transfer learning framework model is presented in Table 6.2. We

also report the comparison study of existing models in the literature and show the performance

difference between inter-patient paradigm and intra-patient paradigm in Table 6.2 and Table 6.3,

respectively.

It is worth noting that authors in [84] tried to mitigate the imbalance problem even in the "test

set" which is contrary to machine learning practice; mitigation occurs during training. Also, in

[84] the number of test samples in F class is equal to the entire class which may explain the high

precision and recall.

Table 6.2 shows the proposed ResNet18 model with data augmentation achieves best overall

accuracy, best recall in normal (N) class, best precisions in arrhythmia (S, V, F) classes. It is worth

mentioning that the first model [84] in Table 6.2 was only tested using intra-patient split paradigm in

the original paper. In addition, the results from our re-implementation in study [86] are not similar

to the reported numbers. We notice that the evaluation procedure is based on intra-patient split even

1Our implementation can be found at https://github.com/wenhaoz-fengcai/
ECG-Arrhythmia-Detection-DL.

122

https://github.com/wenhaoz-fengcai/ECG-Arrhythmia-Detection-DL.
https://github.com/wenhaoz-fengcai/ECG-Arrhythmia-Detection-DL.


Table 6.2: Performance comparison of deep learning models with inter-patient split paradigm. The

metrics reported are overall accuracy, precision (Pre), and recall (Rec). Note that the first model

was not tested using inter-patient split paradigm in the original paper. The results obtained here are

from our re-implementations. The best scores are bold-faced in each column.

Work
Accuracy

(%)
Arrhythmia types

N

(n=44,259)

S

(n=1,837)

V

(n=3,221)

F

(n=338)

Q

(n=7)

Pre/Rec Pre/Rec Pre/Rec Pre/Rec Pre/Rec

Kachuee [84] 81.2 94.4/84.5 0.0/0.0 30.9/92.4 1.0/1.3 0.0/0.0

Romdhane [86] 62.1 95.6/64.0 0.0/0.0 12.7/79.3 0.0/0.0 0.0/0.0

Proposed method 90.8 95.3/95.1 13.0/9.0 68.2/88.4 1.3/0.3 N/A

Table 6.3: Performance of deep learning model re-implementations with intra-patient split paradigm.

The reported metric are the overall accuracy, precision (Pre), and recall (Rec) of our implementation.

The numbers in paratheses are results reported in the literature.

Work
Accuracy

(%)
Arrhythmia types

N

(n=18,118)

S

(n=556)

V

(n=1,447)

F

(n=161)

Q

(n=1,608)

Pre/Rec Pre/Rec Pre/Rec Pre/Rec Pre/Rec

Kachuee[84] 93.1 98.4/94.3 38.1/82.6 96.6/82.3 26.6/93.8 98.3/92.6

(reported in literature) (93.4) (84.3/97.0) (98.9/89.0) (95.0/96.0) 100.0/86.0 100.0/98.0

Romdhane[86] 2 82.7 82.8/99.9 0.0/0.0 42.9/0.4 0.0/0.0 0.0/0.0

though the authors claimed that their model was tested using inter-patient split method [86]. Table

3 presents the model testing results from our implementation as well as the reported performance

in the literature. There is a significant performance drop once deep learning models are trained

using inter-patient split instead of intra-patient split for deep learning models described in [84, 86].
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Huang et al. only evaluated their model on heartbeat type N, S, V, hence the testing results under F

and Q are not available.

6.5 Discussion and Conclusion

We proposed an end-to-end ECG classification framework using 2D CNN classifiers. By trans-

forming the 1D ECG waveforms into 2D frequency-time spectrogram using Short-Term Fourier

Transform, the proposed framework provides the opportunity of integrating the general purpose

pre-trained 2D CNN models (e.g., VGG-16, Efficient Net, etc) for arrhythmia detection. The

proposed method achieves better overall accu- racy compared with deep learning models described

in [84, 86].

Our second contribution is to demonstrate how the choice of samples in MIT-BIH dataset

significantly impacts the deep learning model performance. We re-implemented two deep learning

models for arrhythmia detection in [84, 86], and then tested these models following the AAMI

recommendation using the inter-patient data split. We observe that the model evaluation using intra-

patient split generates better results compared with the testing results using inter-patient paradigm.

However, we argue that the testing set of intra-patient paradigm is susceptible to contamination

and is highly likely to have included samples from the same patients appeared in the training set.

Therefore, the intra-patient split paradigm is more likely to generate inflated and biased results com-

pared with inter-patient split paradigm.

In addition, there is a lack of consistency regarding the usage of MIT-BIH dataset for arrhythmia

classification. For example, study [96] only includes data samples from 14 patients out of 47 in

the MIT-BIH dataset. Meanwhile, classifiers in studies [88, 96, 201, 204] only predict a subset

of heartbeat types. In [96], only normal beat (NOR), left bundle branch block beat (LBB), right

bundle branch block beat (RBB), pre-mature ventricular contraction beat (PVC), atrial premature

contraction beat (APC) are in- cluded in the analysis. Moreover, there is a lack of standard reporting

in the arrhythmia classification literature. For example, [84, 86] evaluate their models using

precision, recall, and overall accuracy, whereas [87, 88] reported their models performance using
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specificity and sensitivity.

With the intention of building robust and unbiased arrhythmia classifiers, we highly suggest that

practitioners follow the correct practice of splitting the training and testing data to avoid any possible

information leakage. Moreover, we are calling for more transparency of data pre-processing and

model development, along with a standard of model evaluation. In such a manner, the research

community can reproduce and verify the results.
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CHAPTER 7

Large-scale Causal Approaches to Debiasing Post-click CVR

Estimation with Multi-task Learning

7.1 Introduction

This chapter represents our initial endeavor to enhance deep learning models by incorporating causal

inference. Numerous research questions within the realm of recommender systems revolve around

estimating the impact of specific interventions or recommendations, essentially exploring cause-

and-effect relationships. Consequently, recommender systems serve as a promising foundation for

delving into causal inference research regarding interventions.

Post-click conversion rate (CVR) estimation is a critical task in e-commerce recommender

systems. This task is deemed quite challenging under industrial setting with two major issues: 1)

selection bias caused by user self-selection, and 2) data sparsity due to the rare click events. These

two issues have been well discussed in Section 3.6. A successful conversion typically has the

following sequential events: "exposure→ click→ conversion". Conventional CVR estimators are

trained in the click space, but inference is done in the entire exposure space. They fail to account

for the causes of the missing data and treat them as missing at random. Hence, their estimations are

highly likely to deviate from the real values by large. In addition, the data sparsity issue can also

handicap many industrial CVR estimators which usually have large parameter spaces.

In this chapter, we propose two principled, efficient and highly effective CVR estimators for

industrial CVR estimation, namely, Multi-IPW and Multi-DR. The proposed models approach the

CVR estimation from a causal perspective and account for the causes of missing not at random. In

addition, our methods are based on the multi-task learning framework and mitigate the data sparsity
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issue. Extensive experiments on industrial-level datasets show that our methods outperform the

state-of-the-art CVR models.

We have reviewed several related works in Section 3.6. Our approach differs from those methods

in three aspects: 1) The problems are different. We developed our methods for CVR estimation

in e-commerce system, while they focus on the rating prediction [205]. 2) The challenges are

different. we design our models to address the selection bias and data sparsity issues, while they

only consider the former (ESMM considers both). 3) The methods are different. we integrate multi-

task framework with causal approaches. Specifically, We co-train propensity model, imputation

model and prediction model simultaneously with deep neural networks, while they train these

modules separately or alternatively, and usually with models such as linear regression or matrix

factorization [206, 207, 208, 209]. We will further justify our design in Section 7.2 and report the

performance improvement in Section 7.4.

To simplify the debiasing task of CVR estimation, we assume the exposure space is the entire

item space we are interested in (see Figure 3.12) [141]. Such a relaxation is also made based on the

postulation that most items are exposed at least once. Table 7.1 shows that our dataset contains 81.5

million items and 11.5 billion exposures, i.e., each item is exposed, on average, about 150 times.

The main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first paper that combines IPW-based and DR-

based methods with multi-task learning. From a causal perspective, we aim to tackle the

well-recognized issues (i.e., selection bias and data sparsity) in CVR estimation in concert.

• We highlight that the state-of-the-art CVR model, ESMM [141], is biased. Different from

existing works, our methods adjust for MNAR data, and deal with the selection bias in a

principled way. Meanwhile, we give mathematical proofs that the proposed methods are

theoretically unbiased. The empirical study shows our approaches outperform ESMM and

several state-of-the-art causal models, and demonstrates the efficiency of our methods in real

industrial setting.
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7.2 Causal CVR Estimators with multi-task learning

7.2.1 Preliminary

Let U = (u1, u2, ..., uN) be a set of N users and I = (i1, i2, ..., iM) be a set of M items,D = U ×I

be the user-item pairs, R ∈ RN×M be the true conversion label matrix where each entry ru,i ∈ {0, 1},

and R̂ ∈ RN×M be the predicted conversion score matrix where each entry r̂u,i ∈ [0, 1]. Then, the

Prediction inaccuracy P over all user-item pairs can be formulated as follows,

P = P(R, R̂) =
1

|D|
∑

(u,i)∈D

e(ru,i, r̂u,i), (7.1)

where e(ru,i, r̂u,i) = −ru,i log(r̂u,i)− (1− ru,i) log(1− r̂u,i).

Let O ∈ {0, 1}U×I be the indicator matrix where each entry ou,i is an observation indicator:

ou,i = 1 if a user u clicks on item i, ou,i = 0 otherwise. Since the clicks are subjective to certain

unobserved factors (e.g., users latent interests), such user self-selection process generates MNAR

data [130, 3]. Naive CVR estimators are trained only in the click spaceO = {(u, i)|ou,i = 1, (u, i) ∈

D}. Let Robs and Rmis be the set of conversion labels that are present and absent in D. We evaluate

these naive CVR models by averaging the cross-entropy loss over the observed data [140, 153],

ENaive = E(Robs, R̂)

=
1

|O|
∑

(u,i)∈O

e(ru,i, r̂u,i)

=
1

|O|
∑

(u,i)∈D

ou,ie(ru,i, r̂u,i),

(7.2)

where |O| =
∑

(u,i)∈D ou,i.

We say a CVR estimator M is unbiased when the expectation of the estimated prediction

inaccuracy over O equals to the prediction inaccuracy P , i.e., BiasM = |EO[EM] − P| = 0,

otherwise it is biased. If data is MNAR, |EO[EM]− P| ≫ 0 [4].
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Figure 7.1: A toy example that demonstrates ESMM is biased.

7.2.2 Is ESMM an Unbiased CVR Estimator?

In this section, we demonstrate that ESMM, the state-of-the-art CVR estimator in practice, is

essentially biased, though the author claim in the paper that the model eliminates the selection bias

[141]. We formulate the estimation bias of ESMM, and prove it is not theoretically unbiased by

giving a counter example.

Let eCTR
u,i , eCVR

u,i , eCTCVR
u,i , (u, i) ∈ D, be the cross-entropy losses of CTR, CVR, and CTCVR tasks.

Then we have,

BiasESMM = |EO[EESMM]− P|

=

∣∣∣∣EO

[
1

|D|
∑

(u,i)∈D

(eCTR
u,i + eCTCVR

u,i )

]
− 1

|D|
∑

(u,i)∈D

eCVR
u,i

∣∣∣∣
=

∣∣∣∣ 1

|D|
∑

(u,i)∈D

(eCTR
u,i + eCTCVR

u,i )− 1

|D|
∑

(u,i)∈D

eCVR
u,i

∣∣∣∣
=

1

|D|

∣∣∣∣ ∑
(u,i)∈D

(eCTR
u,i + eCTCVR

u,i − eCVR
u,i )

∣∣∣∣.
(7.3)

We can easily verify that BiasESMM > 0 using the counter example in Figure 7.1. Note that to be

theoretically unbiased, ESMM should satisfy |ED[EESMM]− P| = 0,∀D. Therefore, we conclude

that ESMM cannot ensure unbiased CVR estimation.
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7.2.3 Multi-task Learning Module

To address the data sparsity issue, we adopt the philosophy of multi-task learning and introduce an

auxiliary CTR task [210]. The multi-task learning module exploits the typical sequential events

in e-commerce recommender system, i.e., "exposure→ click→ conversion", and chains the main

CVR task with the auxiliary CTR task. The amount of training data in CTR task is generally larger

than that in CVR task by 1 ∼ 2 order of magnitudes (see Table 7.1), thus CTR task trains the

large volume of model parameters more sufficiently. Besides, the feature representation learned

in the CTR task is shared with the CVR task, which makes the CVR model benefit from the extra

information via parameter sharing. Hence, the data sparsity issue is remedied [211, 141, 212].

Meanwhile, multi-task learning is also perceived as being cost-effective in training phase [141].

Specifically, multi-task learning co-trains multiple tasks simultaneously as if they were one task.

This mechanism can potentially reduce storage space for saving duplicate copies of embedding

matrix. In addition, the parallel training mechanism generally reduces the training time by large.

The Multi-IPW and Multi-DR models inherit aforementioned merits by incorporating a multi-task

learning module.

7.2.4 Multi-task Inverse Propensity Weighting CVR Estimator

Let the marginal probability P (ou,i = 1) denote the propensity score, pu,i, of observing an entry in

R. In practice, the real pu,i can not be obtained directly. Instead, we estimate the real propensity with

p̂u,i. The IPW-based estimator uses p̂u,i to inversely weight prediction loss [147, 213, 140, 214],

E IPW =
1

|D|
∑

(u,i)∈D

ou,ie(ru,i, r̂u,i)

p̂u,i
. (7.4)

Typically, p̂u,i is learned via an independent logistic regression model [215]. In Figure 7.2, we

propose the Multi-IPW model which leverages the multi-task learning framework to simultaneously

learn the propensity score (i.e., CTR in Multi-IPW) with CVR. Hence, the loss function of Multi-
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Figure 7.2: Multi-Inverse Propensity Weighting estimator and Multi-Doubly Robust estimator. The

Multi-DR estimator augments Multi-IPW with an imputation model. We use predicted CTR as

propensity scores in the Multi-IPW estimator. In the multi-task learning module, the CTR task,

CVR task, and Imputation task are chained together via parameter sharing.

IPW estimator can be written as follows,

EMulti-IPW(XO; θCTR, θCVR,Φ)

=
1

|D|
∑

(u,i)∈D

ou,ie(ru,i, r̂u,i(x⃗u,i; θCVR,Φ))

p̂u,i(x⃗u,i; θCTR,Φ)
,

(7.5)

where Φ represents the shared embedding parameters. θCVR and θCTR are neural network parameters

of CVR task and CTR task, respectively. e(ru,i, r̂u,i), parameterized by θCVR and Φ, is the cross

entropy loss of true CVR label ru,i and predicted CVR score r̂u,i. We use the predicted CTR score

p̂u,i, parameterized by θCTR and Φ, as propensities. D denotes all the data in the exposure space.

XO is the input feature vectors in O.

we formally derive the bias of Multi-IPW and prove it is unbiased given the propensities are

accurately estimated.

Theorem 3. Given the true propensities P and the true conversion label matrix R, the Multi-IPW
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CVR estimator gives unbiased CVR prediction when estimated propensity scores are accurate

p̂u,i = pu,i,

|EO[EMulti-IPW]− P| = 0. (7.6)

Proof.

|EO[EMulti-IPW]− P

=

∣∣∣∣ 1

|D|
∑

(u,i)∈D

EO

[
ou,ie(ru,i, r̂u,i)

p̂u,i

]
− P

∣∣∣∣
=

∣∣∣∣ 1

|D|
∑

(u,i)∈D

pu,ie(ru,i, r̂u,i)

p̂u,i
− P

∣∣∣∣
=

∣∣∣∣ 1

|D|
∑

(u,i)∈D

e(ru,i, r̂u,i)− P
∣∣∣∣ = 0.

(7.7)

Multi-IPW estimator inherits the merits of multi-task learning: 1) better CVR prediction due to

parameter sharing, and 2) reduced training time and parameter storage. These are clear advantages

over conventional IPW-based estimators.

Algorithm 3: Multi-Inverse Propensity Weighting
Input: Observed conversion labelsRobs and user-item features XO = {x⃗u,i}O, u, i ∈ O

while stopping criteria is not satisfied do

Sample a batch B of user-item pairs {x⃗u,i}B from O

Co-train CTR task and CVR task
Update θCTR,Φ by descending along the gradients

▽θCTR
EMulti−IPW ,▽ΦEMulti−IPW

Update θCV R,Φ by descending along the gradients

▽θCV R
EMulti−IPW ,▽ΦEMulti−IPW

end
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7.2.5 Multi-task Doubly Robust CVR Estimator

The IPW-based models are unbiased contingent on accurately estimated propensities (i.e., p̂u,i =

pu,i). In practice, this condition is too restricted. To address this issue, doubly robust estimator is

introduced by previous works [216, 153, 217, 218].

Wang et al. [153] proposed a joint learning approach for training a doubly robust estimator,

and introduced two models: 1) a prediction model r̂u,i = fθ(x⃗u,i), and 2) an imputation model

êu,i = gϕ(x⃗u,i). The prediction model, parameterized by θ, aims to predict the ratings, and its

performance is evaluated by eu,i = e(ru,i, r̂u,i), (u, i) ∈ D. The imputation model, parameterized by

ϕ, aims to estimate the prediction error eu,i with êu,i. Its performance is assessed by δu,i = eu,i− êu,i.

The feature vector x⃗u,i encodes all the information about the user u and the item i, (u, i) ∈ D. Then,

we can formulate the loss of doubly robust estimator as,

EDR =
1

|D|
∑

(u,i)∈D

(
êu,i +

ou,iδu,i
p̂u,i

)
, (7.8)

Similarly, we propose the Multi-DR estimator which augments Multi-IPW estimator by including

an imputation model estimating the prediction error eu,i. Multi-DR optimizes the following loss,

EMulti-DR(X ; θCTR, θCVR, θImp,Φ)

=
1

|D|
∑

(u,i)∈D

(
êu,i(x⃗u,i; θImp,Φ) +

ou,iδu,i(x⃗u,i; θCVR, θImp,Φ)

p̂u,i(x⃗u,i; θCTR,Φ)

)
,

(7.9)

where Φ represents the shared embedding parameters among CTR task, CVR task, and imputation

task. θCTR, θCVR, θImp are neural network parameters of CTR task, CVR task, imputation task,

respectively. p̂u,i is the propensity (i.e., predicted CTR score) given by CTR task. Estimated

prediction error ê, parameterized by θImp and Φ, is given by imputation task. δu,i = eu,i − êu,i is the

error deviation.

We can formally derive the bias of Multi-DR and prove it is unbiased if either true propensity

scores or true prediction errors are accurately estimated (i.e., ∆u,i = 0 or δu,i = 0).

Theorem 4. Given the true propensities P and the true conversion label matrix R, the Multi-DR

CVR estimator gives unbiased CVR prediction when either estimated propensity scores are accurate
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∆u,i =
pu,i−p̂u,i

p̂u,i
= 0 or the estimated prediction errors are accurate δu,i = eu,i − êu,i = 0,

|EO[EMulti-DR]− P| = 0. (7.10)

Proof.

|EO[EMulti-DR]− P|

=
1

|D|

∣∣∣∣ ∑
(u,i)∈D

(
êu,i + EO

[
ou,iδu,i
p̂u,i

])
− P

∣∣∣∣
=

1

|D|

∣∣∣∣ ∑
(u,i)∈D

(
êu,i +

pu,iδu,i
p̂u,i

)
− P

∣∣∣∣
=

1

|D|

∣∣∣∣ ∑
(u,i)∈D

(pu,i − p̂u,i)δu,i
p̂u,i

∣∣∣∣
=

1

|D|

∣∣∣∣ ∑
(u,i)∈D

∆u,iδu,i

∣∣∣∣ = 0.

(7.11)

Algorithm 4: Multi-Doubly Robust
Input: Observed conversion labelsRobs and user-item features XD = {x⃗u,i}D, u, i ∈ D

while stopping criteria is not satisfied do

Sample a batch B of user-item pairs {x⃗u,i}B from D

Co-train CTR task, CVR task, and Imputation task

Update θCTR,Φ by descending along the gradients ▽θCTR
EMulti−DR,▽ΦEMulti−DR

Update θCV R,Φ by descending along the gradients ▽θCV R
EMulti−DR,▽ΦEMulti−DR

Update θImp,Φ by descending along the gradients ▽θImp
EMulti−DR,▽ΦEMulti−DR

end

7.3 Experimentation

In this section, we evaluate the performance of the proposed models with a public dataset and a

large-scale production dataset collected from Mobile Taobao, the leading e-commerce platform in

China. The experiments are intended to answer the following questions:
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• Q1: Do our proposed approaches outperform other state-of-art CVR estimation methods?

• Q2: Are our proposed models more efficient in industrial setting than other baseline models?

• Q3: How is the performance of our proposed models affected by hyper-parameters?

7.3.1 Datasets

Ali-CCP 1[141]

Alibaba Click and Conversion Prediction (Ali-CCP) dataset is collected from real-world traffic logs

of the recommender systems in the Taobao platform. See the statistics in Table 7.1.

Production sets

This industrial production dataset is collected from the Mobile Taobao e-commerce platform. It

contains 3-week transactional data (see Table 7.1). Our production dataset includes 109 features,

which are primarily categorized into: 1) user features, 2) item features, and 3) combination features.

We further divide this dataset into 4 subsets: Set A, Set B, Set C, and Set D, which contain the

first two days (5%), the first five days (20%), the first twelve days (50%), and the 3-week of data

(100%), respectively. We use the data of the last day in each set as testing set and the remaining

data as training set.

Table 7.1: Statistics of experimental datasets

Dataset # Exposure # Click # Conversion # user # item

Ali-CCP 84M 3.4M 18k 0.4M 4.3M

Set A 1.1B 54.5M 0.6M - 22.5M

Set B 2.7B 0.2B 1.9M - 39.1M

Set C 6.0B 0.4B 4.3M - 62.6M

Set D 11.5B 0.6B 8.3M - 81.5M

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=408
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7.3.2 Baseline models

We compare Multi-IPW model and Multi-DR model with the following baselines. Note that some

baselines are causal estimators which we modify to predict the unbiased CVR, and others models

are existing non-causal estimators designed for CVR predictions.

7.3.2.1 Non-causal estimators

• Base is a naive post-click CVR model, which is a Multi-layer Perceptron (See the CVR task

in Figure 7.2). Note that this is essentially an independent MLP model which takes the feature

embeddings as input and predicts the CVR. The base model is trained in the click space.

• Oversampling [219, 220] deals with the class imbalance issue by duplicating the minority

data samples (conversion=1) in training set with an oversampling rate k. In our experiment,

we set k = 5. The oversampling model is trained in the click space.

• ESMM [141] utilizes multi-task learning methods and reduces the CVR estimation into two

auxiliary tasks, i.e., CTR task and CTCVR task. ESMM is trained in the entire exposure

space, and deemed as the state-of-the-art CVR estimation model in real practice.

• Naive Imputation takes all the unclicked data as negative samples. Hence, it is trained in the

entire exposure space.

7.3.2.2 Causal estimators

• Naive IPW[140] is a naive IPW estimator. Note that it is not specifically designed for CVR

estimation task as CVR prediction has its intrinsic issues. For example, it cannot deal with

the data sparsity issue that inherently exists in CVR task.

• Joint Learning DR [153] is devised to learn from ratings that are missing not at random.

In this experiment, we tailor Joint Learning DR for the CVR estimation. Similarly, Joint

learning DR handles data sparsity issue poorly.
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• Heuristic DR is designed as a baseline for Multi-DR. It assumes that the unclicked items are

negative samples with probability 1−η, where η is smoothing rate and it denotes the probabil-

ity of having a positive label. In the experiments, we explore η in {0.0005, 0.001, 0.002, 0.005,

0.01} and report the best performance.

7.3.3 Metrics

In CVR prediction task, ROC AUC is a widely used metric [221]. One interpretation of AUC in the

context of ranking system is that it denotes the probability of ranking a random positive sample

higher than a negative sample. Meanwhile, we also adopt Group AUC (GAUC) [222]. GAUC

extends AUC by calculating the weighted average of AUC grouped by page views or users,

GAUC =

∑
i∈U wi × AUCi∑

i∈U wi

, (7.12)

where wi is exposures. GAUC is commonly recognized as a more indicative metric in real practice

[222]. In the public dataset, models are only assessed with AUC as the dataset is missing the

information for computing GAUC.

7.3.4 Unbiased Evaluation

In this work, we use CTCVR-AUC/GAUC to evaluate the unbiasedness of CVR estimators [141].

We need to point out that testing with an unbiased dataset or randomization is generally a golden

standard for unbiasedness assessment [223, 224]. However, the unbiased training/testing dataset for

CVR estimation is rather unobtainable in real practice.The real-world system can randomly expose

items to users and generate unbiased evaluation sets for CTR estimation. But they cannot force

users to randomly click on items to generate unbiased data for CVR estimations. This limitation

may be further investigated in the future work.
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7.3.5 Experiments setup

7.3.5.1 Ali-CCP experiment

The experiment setup on Ali-CCP mostly follows the prior work [141]. We set the dimension of

all embedding vectors to be 18. The architecture of all these multi-layer perceptrons (MLP) in

multi-task learning module are identical as 512× 256× 128× 32× 2. The optimizer is Adam with

a learning rate lr = 0.0002, and batch size is set to |batch| = 1024.

7.3.5.2 Production set experiment

In production set experiment, we vary the dimensions of feature embedding vectors according to

each feature’s real size in order to minimize the memory usage. In order to have a fair comparison

study, all the models in this experiment share |batch| = 10000, MLP architecture 1024 × 512 ×

256×128×32×2, adam optimizer with learning rate lr = 0.0005. We also added l2 normalization

to imputation model in Multi-DR, and the coefficient is v = 0.0001.

7.4 Results and Discussion

In this section, we evaluate the proposed models and answer the questions raised in Section 7.4.

7.4.1 Model Assessments (Q1)

In this section, we report the experiment results in Table 7.2, 7.3. Multi-IPW and Multi-DR are

clear winners over other baselines across all experiments. Meanwhile, we have the following

observations:

• In production dataset, Multi-IPW and Multi-DR consistently outperform Joint Learning DR

[153]. We reason that the performance improvement benefits from multi-task learning module,

which remedies the data sparsity issue.
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Table 7.2: Results of comparison study on Production datasets. The best scores are bold-faced in

each column. Note that this table has two sections, AUC scores and GAUC scores. The rows that

contain the models proposed in this paper are highlighted in color grey.

Set A (1.1B) Set B (2.7B) Set C (6.0B) Set D (11.5B)
Model

CVR CTCVR CVR CTCVR CVR CTCVR CVR CTCVR

AUC score

Base 78.24 73.12 78.67 73.86 79.62 74.70 81.66 76.28

Oversampling[219] 78.63 73.53 78.72 74.09 79.69 74.82 81.77 76.30

ESMM[141] 79.29 73.86 79.74 74.33 80.11 74.97 82.17 76.55

Naive Imputation 78.12 73.21 78.44 73.50 79.32 73.81 81.56 76.39

Naive IPW[140] 79.23 73.82 79.73 74.34 80.14 74.92 82.13 76.45

Heuristic DR 78.45 73.45 78.84 73.99 79.52 74.18 81.74 76.40

Joint Learning DR[153] 79.09 73.67 79.53 74.51 80.01 74.90 82.09 76.61

Multi-IPW 79.51 73.99 79.85 74.81 80.21 75.01 82.57 76.89

Multi-DR 79.72 74.45 79.80 74.91 80.50 75.39 82.72 77.23

GAUC score

Base - 59.69 - 60.16 - 60.58 - 61.27

Oversampling[219] - 60.17 - 60.28 - 60.59 - 61.30

ESMM[141] - 60.53 - 60.90 - 61.13 - 61.76

Naive Imputation - 60.14 - 60.39 - 60.56 - 61.39

Naive IPW[140] - 60.51 - 60.95 - 61.09 - 61.77

Heuristic DR - 60.01 - 60.30 - 60.65 - 61.35

Joint Learning DR[153] - 60.43 - 60.83 - 60.97 - 61.67

Multi-IPW - 60.70 - 61.09 - 61.25 - 61.98

Multi-DR - 60.90 - 60.99 - 61.52 - 62.28

• We notice that Multi-DR mostly has better performance than Multi-IPW. Recall that Multi-

DR augments Multi-IPW by introducing an imputation model. Provided that 0 ≤ ê ≤ 2e,

the tail bound of Multi-DR is proven to be lower than that of Multi-IPW for any learned
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Table 7.3: Results of comparison study on Public dataset: Ali-CCP. Experiments are repeated 10

times and mean ± 1 std of AUC scores are reported below. The best scores are bold-faced in each

column. The rows that contain the models proposed in this paper are highlighted in color grey.

Model CVR AUC CTCVR AUC

Base 66.00 ± 0.37 62.07 ± 0.45

Oversampling [219] 67.18 ± 0.32 63.05 ± 0.48

ESMM-NS [141] 68.25 ± 0.44 64.44 ± 0.62

ESMM [141] 68.56 ± 0.37 65.32 ± 0.49

Multi-IPW 69.21 ± 0.42 65.30 ± 0.50

Multi-DR 69.29 ± 0.31 65.43 ± 0.34

propensity score p̂u,i, (u, i) ∈ O [153]. Therefore, Multi-DR is expected to perform better

than Multi-IPW when the imputation model is well-trained.

• We observe that Multi-IPW/Naive IPW estimator are superior to Base in all experiments.

Compared with the Base, both IPW-based models introduce estimated propensities to correct

the selection bias. Recall that Theorem 1. ensures the CVR estimators are unbiased if the

propensities are accurately estimated. While in practice the estimated propensities may

deviate from the real values, this control experiment attests to “enough accuracy” of the

propensity model.

The experiment results demonstrate that Multi-IPW and Multi-DR counter the selection bias

and data sparsity issues in CVR estimation in a principled and highly effective way. In the next

subsection, we will discuss other strengths of the proposed methods.

7.4.2 Computational efficiency (Q2)

In this section, we study the computational efficiency of the proposed models against the baselines

under industrial setting. We summarize the records of training time and parameter space size of

each model in Figure 7.3, and the cluster configuration in Table 7.4.
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Figure 7.3: Computational cost of Multi-IPW and Multi-DR. The left subplot reveals the hours

needed to complete one epoch of training. The middle subplot shows the size of embedding

parameters of each model. The right subplot shows the size of hidden layer parameters of each

model. Note that the proposed models achieve the best prediction performance, while have the

lowest computational cost.

We observe that Multi-IPW and Multi-DR require less or equivalent training time compared

with other baselines. Recall that multi-task learning method co-trains multiple tasks simultaneously

as if they were one task. We can expect the training time being greatly shortened. Meanwhile, our

methods are also economical in memory usage due to parameter sharing in the multi-task learning

module.

Table 7.4: Distributed cluster configuration

Cluster configuration Parameter Server Worker

# instances 4 100

# CPU 28 cores 440 cores

# GPU2 - 25 cards

MEMORY (GB) 40 1000

2GPU specs: Tesla P100-PCIE-16G
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7.4.3 Hyper-parameters in model implementation

IPW bound τ is a hyper-parameter introduced in our model implementation to handle high variance

of propensities. IPW bound clamps the propensities if the values are greater than the predefined

threshold. A plausible IPW bound value is typically confined by τ ∈ [propensitymin,

propensitymean]. IPW bound percentage can be calculated as τ% = τ−propensitymin

propensitymean−propensitymin
. In

Multi-DR, imputation model will introduce the unclicked items to the training set. Empirically,

most of the unclicked items will not be purchased by customers even if they were clicked. Therefore,

including these unclicked items in training set will skew the data distribution and make the class

imbalance issue worse. Therefore, Instead of adding all the unclicked samples, we under-sample

them with a sampling rate λ. For example, if the number of clicked samples (Nclicked) is 100 and the

batch size is 1000, λ = 1.5 means that after under-sampling the samples we used to train Multi-DR

is Nclicked × λ = 100× 1.5 = 150. Note that without under-sampling, Multi-DR takes all samples

in the batch as training samples.

7.4.4 Empirical study on hyper-Parameter sensitivity (Q3)

Figure 7.4: Results of parameter sensitivity experiments.

In this section, we investigate how Multi-IPW and Multi-DR are affected by two important
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hyper-parameters in our model implementation, IPW bound τ and sampling rate λ. We evaluate the

performance of Multi-IPW with varying IPW bound τ . We observe that in Figure 7.4, when IPW

bound 50% < τ% < 90%, prediction performance eventually improves as IPW bound increases.

We can clearly see the performance drop of CVR AUC if the threshold is greater than 95%. We

reason that larger IPW bound allows undesired higher variability of propensity scores, which may

lead to sub-optimal prediction performance.

We evaluate the performance of Multi-DR with varying sampling rate λ. We observe that

λ = 1.5 produces the best prediction, and the model performance starts decreasing when λ > 5.

We argue that, as the sampling rate increases, more unclicked samples are included to our training

set, and it inevitably worsens the class imbalance issue, which typically causes predictive models

to generalize poorly. On the contrary, introducing a small number of unclicked samples from the

imputation model can boost our CVR prediction (see figure (d) when λ ∈ [1.0, 1.5]).

7.5 Conclusion and future works

In this paper, we proposed Multi-IPW and Multi-DR CVR estimators for industrial recommender

system. Both CVR estimators aim to counter the inherent issues in practice: 1) selection bias,

and 2) data sparsity. Extensive experiments with billions of data samples demonstrate that our

methods outperform the state-of-the-art CVR predictive models, and handle CVR estimation task

in a principled, highly effective and efficient way. Although our methods are devised for CVR

estimation, the idea can be generalized to debiasing CTR estimation by exploiting the sequential

pattern "item pool→ exposure→ click".
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CHAPTER 8

Curse of dimensionality and Causal discovery

8.1 Introduction

Healthcare data analytics has been longing for interpretable and transparent learning methods. Iden-

tification of the evidence of causality from observational dataset can keep healthcare practitioners

from unreliable decision making due to confounding issues, which are commonly observed [25, 24].

Meanwhile, causal discovery also enables domain adaptation and model fairness research [225, 226].

Existing works of “causal discovery theory” for causal relations identification are far from practical

for healthcare analytics due to the several theoretical challenges such as data high dimensionality

and heterogeneity.

The objective of this project is to advance the casual discovery research in high dimensional set-

ting. Casual relations are often encoded in directed acyclic graphs (DAGs), known as causal graphs.

However, a major barrier deterring the causal discovery application in healthcare domain is the com-

plexity in constructing causal graphs. In high dimensional datasets, say, the protein interaction data,

search problem of identifying causal diagrams from observational data is deemed computationally

intensive since the search space of directed acyclic graphs scales super-exponentially with the num-

ber of nodes [227]. In this chapter, we proposed a novel continuous constraint optimization method

for causal discovery. The proposed constraint has better computational complexity compared to the

exponential constraint with an exponential term used in [167].
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Issues with causal discovery in high dimension space

The mainstream causal structure learning with high dimensional dataset is widely acknowledged

challenging [164, 168, 167, 228, 229, 230, 231]. Recall that constraint-based methods start with a

fully connected graph and perform conditional independence tests to remove the edges between

variables if the vertices are not related. The score-based methods, on the contrary, start with an

empty graph and evaluate whether an edge addition, deletion, and direction orientation improves

the fitness of graph using likelihood-based score (e.g., Bayesian Information Criteria). Both the

constraint-based methods and score-based methods face the challenge that the number of directed

acyclic graphs (e.g., DAGs) grows super-exponentially with the number of nodes [164, 229, 230].

The number of directed acyclic graphs with N vertices is lower bounded by the number of undirected

acyclic graphs with N vertices as every DAG can be converted into a corresponding undirected

graph by removing the edge orientation. Given N vertices, the number of distinct undirected edge is(
n
2

)
, and the number of undirected graphs is hereby 2(

n
2). Therefore, the number of DAGs with N

vertices is lower bounded by 2(
n
2), and searching for the best Bayesian network cannot be decided

in polynomial time.

8.2 Methodology

This section introduce the formulation of the causal discovery as a continuous constraint problem

with a polynomial constraint.

8.2.1 Preliminary

The data matrix X ∈ Rn×d contains n observations of a random vector x⃗ = (x1, x2, ..., xd). The

space of directed acyclic graphs (DAGs) is denoted by D, where each DAG is represented by

G =< V,E > with d nodes. This paper focus on learning linear structural equation modeling

(SEM) under additive noise models, which the same data generation method as described in [167].

Specifically, the linear SEM is defined as follows,
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xj = aTj x⃗+ zj (8.1)

where zj is an additive noise. We assume the noises are under Gaussian distribution with zero

mean for simplicity. aj is a column vector of coefficients and A =< a1, a2, ..., ad > is the weighted

adjacency matrix of the linear SEM. To learn this linear causal model, we use least-square loss

function following the work in [232, 167],

F (A) =
1

2n
||X−XA||2F + λ||A||1 (8.2)

The l1 regularization term ||A||1 is added to the least-square loss function for learning a sparse

DAG.

8.2.2 Characterization of acyclicity

In this study, we utilize a non-negative adjacency matrix A to establish a DAG. The presence of

a directed edge between node i and node j is indicated by a non-zero value in the element aij .

Conversely, if aij = 0, it signifies the absence of an edge between node i and node j.

In essence, our objective is to compute the adjacency matrix A, with the added condition that

the resulting graph must be acyclic. Recall the theorem in [233, 167] states that the entry (i, j) in

the k-th power of a non-negative adjacency matrix Ak (i.e., aki,j) says the there is a walk of length k

between nodes i and j. Similarly, the diagonal elements of the adjacency matrix, aki,i, indicates the

number of length-k closed walk starting from and ending at the same vertex i.

Therefore, aki,i = 0(∀i ∈ {1, ..., d}) in Ak(W ∈ Rd×d) guarantees no length-k closed walk

starting at node i in the graph. Equivalently, the constraint of acyclicity for any graph represented

by adjacency matrix A can be written as follows.

trace(A1) + trace(A2) + trace(A3) + ...+ trace(Ad) = 0 (8.3)
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Now we use proof by contradiction to prove that equation 8.3 is sufficient to eliminate any

closed walk in a directed graph with d nodes. Recall in graph theory, a cycle is a closed walk without

repeated interim nodes but the starting node and ending node are the same. Assume equation 8.3 is

not sufficient, and there is a closed walk of length d+ 1 in the graph. Then there must be repeated

interim nodes on that walk. This contradicts the definition of the cycles in the graph theory. Hence

the longest cycle in any directed graph with d nodes is d.

Note that our assumption is that A is non-negative. In order to make this assumption more

general, we can consider a matrix A = W ◦W , where each element of A is the square of the

corresponding element in W . By setting W as an adjacency matrix of a directed graph with

dimensions Rd×d, we can maintain the characteristic of acyclicity that was previously mentioned.

Let A = W ◦W , and we can rewrite equation 8.3 as,

d∑
i=1

tr((W ◦W )i) = tr(W ◦W ) + tr((W ◦W )2) + ...+ tr((W ◦W )d) = 0 (8.4)

Theorem 5. Let W ∈ Rd×d be the weighted adjacency matrix of a directed graph. The graph is

acyclic if and only if,

d∑
i=1

tr((W ◦W )i) = 0 (8.5)

8.2.3 Problem formulation

The causal discovery algorithm is formulated as a continuous constraint optimization problem as

follows,

min
W∈Rd×d

F (W ) (8.6)

subject to:
d∑

i=1

tr((W ◦W )i) = 0 (8.7)

where F (W ) = 1
2n
||X−XW ||2F + λ||W ||1
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Note that the constraint in equation 8.7 is a polynomial term. Compare with the exponential

constraint with exponential term in [167], the proposed constraint could be optimized and have

better computational complexity.

The summation of the geometric series in equation 8.7 can be rewritten as the following,

d∑
i=1

tr((W ◦W )i) = tr(W ◦W ) + tr((W ◦W )2) + ...+ tr((W ◦W )d) (8.8)

= tr([I − (W ◦W )]−1[I − (W ◦W )d+1]) (8.9)

Then the computation optimized problem formulation can be written as follows,

min
W∈Rd×d

F (W ) (8.10)

subject to: h(W ) ≡ tr([I − (W ◦W )]−1[I − (W ◦W )d+1]) = 0 (8.11)

where F (W ) = 1
2n
||X−XW ||2F + λ||W ||1.

Complexity analysis of the proposed constraint

The computational complexity of the constraint with matrix exponetial term (e(W◦W )) in [167] is

O(d3), where d is the dimension of feature space. The computational complexity of equation 8.11

can be optimized to O(d2.37) if W ◦W can be diagonalized [234]. Specifically, the complexity of

(I −W ◦W )−1 is O(d2.37) with two steps: 1) Hadamard product takes O(d2), 2) given (W ◦W ),

computing the inversion takes O(d3) in general. However, this operation can be optimized to

O(d2.37) with optimized CW-like algorithm [234]. Similarly, the complexity of (I − (W ◦W )d+1)

can be optimized to O(d2.37) if (W ◦W ) can be diagnolized using Single Value Decomposition

[235]. Therefore, the overall complexity of computing equation 8.11 can be optimized to O(d2.37).
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8.2.4 Training

In the previous section, we have formulated the causal discovery as a constrained problem in

equation 8.10 - 8.11. Extensive research has been conducted on non-linear equality-constrained

problem, and one commonly employed method for their solution is the augmented Lagrangian

approach. We give a brief summary of the solution in this section and readers are referred to the

textbooks [236, 237].

In this work, we convert the proposed constrained optimization problem into a series of un-

constrained minimization problems using augmented Lagrangian method. The unconstrained

optimization problem can be formed by adding a penalty term to the objective function (equation

8.10). The converted unconstrained problems can be written as follows,

D(α) = min
W∈Rd×d

Lρ(W,α), (8.12)

where Lρ(W,α) = F (W ) + ρ
2
|h(W )|2 + αh(W ), and α is the Lagrange multiplier and ρ is the

penalty term. The penalty term is a measure of violation of the constraint. Its value is non-zero if

the constraint is violated and is zero if the constraint is satisfied [238].

The unconstrained optimization problem 8.12 can be solved efficiently by standard gradient

methods algorithms [239].

8.3 Experimentation

The proposed method is compared against the no-tears method [167] and FGES method [240] in this

study, using both synthetic and real-world datasets. The aim is to showcase superior performance in

terms of metrics such as true positive rate and false positive rate, as well as greater efficiency in

terms of time units such as seconds.
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8.3.1 Synthetic dataset

To generate simulation datasets in this experiment, we follow a series of steps. First, we create

graphs, which also serve as the ground truth, using a random graph model called Erdos-Renyi (ER)

[241]. We then assign random weights to the edges in the graph, generating the adjacency matrix

W . Using W , we sample data points according to X = XW + Z (Z being the Gaussian noise

parameter). The resulting data samples are independent and identically distributed (i.i.d.). The

simulation datasets can be generated with varying data sizes, such as n ∈ {20, 1K}, and feature

dimensions, such as d ∈ {20, 50, 100}. A data size of n = 20 simulates a high-dimension scenario

(d≫ n), while n = 1K simulates a low-dimension case [167, 242].

8.3.1.1 Parameter estimation

This section is a qualitative study of the estimated adjacency matrix obtained from the proposed

method, compared with the ground truth in the form of heatmap side by side. The results in Figure

8.1 are generated with n = 1K and d = 20 for the ease of visualization. This qualitative study

attempts to demonstrate that the proposed model is as accurate as the no-tears while outperforms

the classic causal discovery algorithm FGES.

Figure 8.1: According to the results of the qualitative study, the proposed method exhibits accuracy

that is on par with no-tears, while also outperforming FGES. These results were obtained using a

dataset with a size of n = 1000 and feature dimensions of d = 20.
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Figure 8.2: Results of qualitative study shows the proposed method has comparable accuracy as

no-tears in terms of true positive rate (tpr) and false positive rate (fpr), n = 20, d = {20, 50, 100}

.

8.3.1.2 Structure learning

In this section, we quantitatively investigate how the performance of each model varies as the data

samples and feature dimensions increase. The results in Figure 8.2 are obtained using a synthetic

dataset with a data size of n = 20 and feature dimensions of d ∈ {20, 50, 100}. As the experiments

with FGES can be time-consuming (taking over 12 hours) and memory-intensive when d = 100

even with small sample sizes, we only present the results for the proposed method and no-tears.

8.3.1.3 Model complexity

In this section, we conduct a quantitative analysis (see Figure 8.3) of the computational efficiency

of each model on datasets of different sizes and feature dimensions. Specifically, we compare the

time efficiency of computing the constraints of our proposed method with those of the baseline

model notears. It is worth noting that this comparison serves as an experimental verification of our

proposed constraint (O(n2.37)), which has a faster computation time than the constraint in notears
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with a complexity of O(n3), as reported in [167].

Figure 8.3: Comparison study shows that our proposed constraint (O(n2.37)), which has a faster

computation time than the constraint in notears with a complexity of O(n3).

8.3.2 Real-world dataset

8.3.2.1 Protein Signaling Network Dataset

The Protein Signaling Network Dataset provides measurements of various phosphorylated protein

and phospholipid components in thousands of primary human immune system cells. This data

enables the reconstruction of the fundamental framework of a classical signaling network, which

interconnects several crucial phosphorylated proteins involved in human T cell signaling [243]. The

dataset comprises 7466 data samples, 11 features, and 20 edges.
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Figure 8.4: Comparison study on Protein Signaling Network Dataset

8.3.2.2 Case study

Figure 8.4 demonstrates that the proposed method detects an additional causal link compared to the

baseline model (no-tears). Specifically, the proposed method identifies a causal relationship between

PKC and PAkts, which suggests that these two proteins may be connected. It is worth noting

that the ground truth includes two indirect causal paths from PKC to PAkts, as depicted in Figure

8.4 (A): PKC→PRaf→Pmek→Erk→PAkts and PKC→PKA→PAkts. Additionally, the proposed

method identifies the causal connection between Erk and Akt, which was not well-established in

the literature until confirmed by both machine learning modeling and experimental validation in

this study [243]. Notably, the proposed method identifies this significant causal link automatically,

without any prior domain knowledge.
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8.4 Conclusion

In our research, we present a novel approach to causal discovery through the introduction of a new

continuous constraint optimization method. Unlike previous methods that relied on an exponential

constraint with high computational complexity (as mentioned in [167]), our proposed constraint

offers significantly improved computational efficiency. Through our experimentation, we have

demonstrated that our method achieves comparable performance to existing state-of-the-art causal

discovery methods, while also requiring less computational time.

Building on the current research, our future work aims to enhance the objective function even

further. By refining the underlying optimization process, we seek to unlock additional insights and

improve the accuracy of causal discovery. We anticipate that these advancements will contribute to

the development of more robust and efficient causal discovery techniques, with potential applications

in various domains including healthcare data analytics.

154



CHAPTER 9

Conclusion and future work

9.1 Summary of the Thesis

In this thesis, we have explored various aspects of healthcare analytics and machine learning,

with a particular emphasis on causal inference. In Chapter 1, we provided a brief introduction

to the objectives, motivations, and contributions of this work. In Chapter 2, we discussed the

background of data analytics in healthcare and presented a literature review on imbalanced learning

and arrhythmia classification using deep transfer learning with electrocardiogram datasets.

Chapter 3 provided an overview of the concepts of causality, structural causal models, causal

graphs, and intervention using do-calculus. Additionally, we explored the issues of spurious

correlation and confounding, including the Simpson paradox, and discussed methods for discovering

causal relationships from data.

In Chapter 4, we demonstrated the ability of the Sensing At-Risk Population system to provide

deeper insights into the health conditions of patients by using wearable technology with sophisticated

physical activity tracking algorithms. This study has potential applications in identifying patients

who are at risk of re-admission to the hospital and monitoring the effectiveness of rehabilitation.

Chapter 5 introduced a new approach called WOT-Boost, which combines a Weighted Over-

sampling Technique with an ensemble Boosting method to enhance the accuracy of minority data

classification without compromising the accuracy of the majority class. In Chapter 6, we proposed

a new deep transfer learning framework for arrhythmia classification using limited training data.

In Chapter 7, we proposed two principled, efficient, and highly effective CVR estimators for

industrial CVR estimation from a causal perspective, accounting for the causes of missing not at
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random. These models were based on the multi-task learning framework and mitigated the data

sparsity issue.

Finally, in Chapter 8, we presented a novel approach to identifying causal relations in high-

dimensional space.

In conclusion, this thesis has contributed to the development of advanced techniques for health-

care analytics and machine learning, with a particular emphasis on causal inference. The proposed

methods have potential applications in identifying patients at risk of re-admission, enhancing the

accuracy of minority data classification, and improving CVR estimation. The results of this work

have the potential to make a significant impact on the field of healthcare analytics and machine

learning.

9.2 Future work

Imbalanced learning is a common challenge in constructing medical predictive models. While

the approach presented in Chapter 5 focuses on tabular datasets such as electronic health records,

medical datasets frequently incorporate diverse modalities such as medical imaging and videos. As

a result, it is necessary for new algorithms to be capable of learning from minority data samples that

may not conform to tabular formats. Several techniques have been proposed to improve imbalanced

learning when dealing with medical datasets that include medical imaging and videos. One of the

most promising approaches is the use of generative adversarial networks (GANs). Given the success

of GANs in generating artificial images, it is reasonable to explore their potential in oversampling

minority classes by generating synthetic images.

Chapter 6 discusses arrhythmia classification and detection using a transfer learning model that

fine-tunes a pre-trained model, ResNet-18, with a small dataset. In the future, we aim to develop

a lightweight version of such classifiers that can be deployed on wearables like smartwatches.

This requires an end-to-end predictive model that reads a single-lead ECG signal and generates

outcomes. Such a model can enhance the capabilities of patient remote health monitoring systems

that incorporate wearables.
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Chapter 8 discusses a new approach to identifying causal relations in high-dimensional space.

The proposed method formulates the causal discovery as a continuous constrained problem. A novel

aspect of the approach is the improvement of the constraint formulation from a matrix exponential

term proposed in work [167] to a polynomial term that is more efficient. However, the research

assumes that the causal models are linear. We aim to explore non-linear causal relations. For

instance, [168] has investigated the use of auto-encoders for modeling non-linear causal-effect

relations.
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