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A mitotic kinase scaffold depleted in
testicular seminomas impacts spindle
orientation in germ line stem cells
Heidi Hehnly1,2†, David Canton1†, Paula Bucko1, Lorene K Langeberg1, Leah Ogier1,
Irwin Gelman3, L Fernando Santana4, Linda Wordeman4, John D Scott1*

1Department of Pharmacology, Howard Hughes Medical Institute, University of
Washington, Seattle, United States; 2Department of Cell and Developmental Biology,
State University of New York Upstate Medical University, Syracuse, United States;
3Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, United
States; 4Department of Physiology and Biophysics, University of Washington, Seattle,
United States

Abstract Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle

abnormalities correlate with cancer progression in germ line-derived tumors. We discover a

macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases,

Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with

an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution

imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the

mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis

prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote

spindle misorientation. These pathological responses are conserved in seminiferous tubules from

Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized

orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and

Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

DOI: 10.7554/eLife.09384.001

Introduction
Mitotic cell division is a process whereby genetic material is duplicated, separated, and packaged to

yield two daughter cells (Nigg and Raff, 2009). This process relies heavily on the spatial and temporal

synchronization of protein kinase activity at the mitotic spindle, a macromolecular machine that

segregates the chromosomes and guides them towards the daughter cells (Lowery et al., 2004; Nigg

and Stearns, 2011; Langeberg and Scott, 2015). Correct orientation of the mitotic spindle during

cell division combined with local kinase signaling is crucial for cell fate determination, tissue

organization, and development (Yamashita et al., 2007; Lesage et al., 2010; Gillies and Cabernard,

2011; Kiyomitsu and Cheeseman, 2012; Pelletier and Yamashita, 2012; Joukov et al., 2014).

The mitotic spindle is constrained by two spindle poles that nucleate microtubules. The mother

spindle pole contains the oldest centriole and remains anchored near the stem-cell niche, while the

daughter spindle pole migrates to the opposite side of the cell to complete spindle formation

(Yamashita et al., 2007; Izumi and Kaneko, 2012). Recently, a spindle orientation complex has been

identified at the mother spindle pole containing protein components that promote maturation

(Yamashita et al., 2007; Izumi and Kaneko, 2012; Chen et al., 2014). Several disease-linked genes

encode these proteins and their loss causes mitotic delays and spindle misorientation phenotypes

(Buchman et al., 2010; Gruber et al., 2011; Tan et al., 2014; Chen et al., 2014; Kim and Rhee, 2014).
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Spindle orientation defects that promote an imbalance between symmetric and asymmetric cell

divisions have been implicated in the progression of germ line-derived cancers such as teratomas,

seminomas, and ovarian carcinomas (Neumüller and Knoblich, 2009). These cancers can be

exacerbated by mislocalization or misregulation of mitogenic and mitotic protein kinase cascades

(Carnegie et al., 2009; Scott and Pawson, 2009). The A-kinase anchoring protein Gravin/AKAP12/

SSeCKS has been implicated in the control of mitotic progression (Xia et al., 2001; Gelman, 2010;

Canton et al., 2012; Canton and Scott, 2013). We now report that Gravin is depleted in proliferating

germ line-derived tumors from several patients diagnosed with testicular seminoma. Mechanistic

studies show that Gravin is required to spatially coordinate the activities of Aurora A and polo-like

kinase 1 (Plk1), two kinases that act in concert to promote spindle orientation.

Results

Depletion of Gravin is linked to proliferation in germ line-derived tumor
samples (seminomas)
Mutation or amplification of Gravin has been linked to melanoma, prostate, and ovarian cancers, yet

nothing is known about the role of this kinase-anchoring protein in solid tumors (Xia et al., 2001;

Bateman et al., 2015; Finger et al., 2015). Testicular germ line tumors are the most frequently

diagnosed solid cancers in men aged 15–40 years. Currently, 200,000 men develop seminoma

annually (Fung et al., 2007; Burum-Auensen et al., 2010; Singh et al., 2011). Although seminoma

screening and treatment is well understood, much less is known about the molecular events in germ

line stem cells that underlie oncogenesis. Surprisingly, immunoblot analysis of clinical samples from

three seminoma patients detected a 9.15-fold reduction in Gravin protein compared to adjacent

tissue (Figure 1A,B). Interestingly, the loss of Gravin was accompanied by a decrease in two

essential cell cycle regulator kinases, Aurora A and Plk1 (Figure 1A, mid panels, and Figure 1B).

Similar trends were observed in four additional clinical samples from seminoma patients

(Figure 1—figure supplement 1A).

eLife digest The genetic material inside our cells is contained within structures called

chromosomes. When a cell divides, these chromosomes are copied and then must be correctly

divided between the two daughter cells so that each cell has a complete set of genetic material. The

correct separation of the chromosomes depends on a structure called the mitotic spindle whose

location in the cell also determines where the point of division will be.

Two structures called centrioles are associated with the mitotic spindle and help to organize and

direct cell division. The cell carefully controls how these structures are inherited by the daughter

cells. For example, when a stem cell divides to produce one stem cell and one cell of a different type,

the older centriole can be inherited by the new stem cell. Incorrect placement of the spindle can

disrupt this process and is linked to the progression of cancers that affect reproductive organs, such

as testicular seminomas.

Here, Hehnly, Canton et al. used biochemical and microscopy techniques to study how the spindle

is positioned in cells from patients with testicular seminoma tumors. The experiments reveal that a

protein called Gravin is found in lower amounts in the tumor cells than in normal cells. In mice that

lack Gravin, the cells in a region of the testicle called the seminiferous tubule divide more rapidly,

which is a hallmark of cancer. Gravin accumulates at the end of the spindle where the older centriole

is present. This protein acts as a scaffold that holds two enzymes called kinases that regulate cell

division in place at the end of the spindle. In the stem cells of the testicle, these kinases also appear

to help to correctly position the spindle by organizing the proteins that anchor this end of the spindle

to the membrane.

Hehnly, Canton et al.’s findings suggest that Gravin helps to guard against errors occurring during

cell division by recruiting two particular kinase enzymes to the mitotic spindle. A future challenge will

be to identify the proteins that these kinases affect while anchored to the spindle.

DOI: 10.7554/eLife.09384.002
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Figure 1. Loss of Gravin correlates with perturbed mitosis in human seminomas and mouse seminiferous tubules. (A) Immunoblot analysis of tissue lysates

from resected seminomas (lanes 2, 4, and 6) and normal adjacent tissue (lanes 1, 3, and 5). Proteins were identified using antibodies against (top) Gravin,

(upper-mid) Aurora A, (lower-mid) Plk1, and (bottom) GAPDH loading control. (B) Quantification of immunoblot data (A) by densitometry (n = 3 ± SEM).

(C, D) Representative testis sections from (C) a 30-year-old individual and (D) a 26-year-old seminoma patient. Immunofluorescent staining shows Gravin

(green), p-H3B (red), and DNA (DAPI, blue). Scale bar, 40 μm. (E, F) Magnified insets from C and D are included. Scale bar, 40 μm. (G) Gravin signal

intensity per mitotic cell was quantified from normal and seminoma sections of testis (p-H3B positive, n-values are indicated, ***p < 0.001). The number of

cells used in each analysis is indicated. (H) The mitotic index was calculated for (normal; n = 4) and (seminoma; n = 6) tissue sections by determining the

percentage of pH3B-positive cells. (*p < 0.05). (I, J) Related experiments were conducted on testis sections from 7-week-old wild-type (I), and Gravin

knockout (J) mice. Immunostaining with antibodies against Par3 (green), p-H3B (red), and DAPI (blue) is presented. Scale bar, 40 μm. (K) Calculation of the

mitotic index in testis sections from wild-type (gray) and Gravin knockout (orange) mice. The number of tissue sections measured is indicated below each

Figure 1. continued on next page
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Immunofluorescent screening of seminoma tumor sections confirmed a reduction in Gravin

(Figure 1C–G). In normal testis, Gravin is uniformly distributed throughout all cell types of the

seminiferous tubules (Figure 1C, green). In contrast, the anchoring protein is regionally distributed in

seminoma sections and the fluorescent intensity of the Gravin signal is markedly reduced (Figure 1D,

green). These differential protein expression patterns are clearly evident in magnified images of the

indicated insets (Figure 1E,F). Moreover, counterstaining with the mitotic marker phospho-Ser 10-

Histone 3B (p-H3B) indicated that a 4.88-fold decrease in Gravin was observed in mitotic cells

(Figure 1E–G). The mitotic index was elevated in seminoma compared to normal tissue (3.78-fold,

Figure 1H).

Further evidence that Gravin loss alters mitotic progression was obtained from knockout mice

(Akakura et al., 2008). Seminiferous tubule sections were stained for a cytoplasmic marker, PAR6

(green), a nuclear marker, DAPI (blue), and the mitotic marker p-H3B (Figure 1I,J). Under these

conditions, Gravin knockout mice displayed a 3.39-fold increase in the mitotic index compared to

wild-type seminiferous tubule sections (Figure 1I–K). Gravin knockout mice also exhibited a 3.07-fold

reduction in the number of cells undergoing apoptosis (TUNEL-positive cells; Figure 1L,

Figure 1—figure supplement 1B,C). In primary cultures of mouse embryonic fibroblasts (MEFs),

Gravin null cells displayed a slower rate of proliferation compared to wild type ([Akakura et al., 2010];

Figure 1—figure supplement 1D) with a concomitant increase in senescent morphology

(Figure 1—figure supplement 1E). Collectively, the data in Figure 1 implicate reduced Gravin

expression with changes in cell cycle progression that are observed in germ line-derived solid tumors.

Phospho-Gravin anchors Aurora A with Plk1 during metaphase
Our initial findings postulate that Gravin loss contributes to the mitotic abnormalities observed in

seminoma. One plausible explanation is that loss of Gravin uncouples the location of protein kinases

that drive the cell cycle. Phosphorylation of Gravin on Threonine 766 promotes recruitment of Plk1, a

kinase that prompts mitotic progression and appropriate spindle formation (Canton et al., 2012). A

key advance in our studies came with the discovery that Gravin also anchors an upstream mitotic

kinase, Aurora A (Figure 2A).

To test this concept, four complementary approaches were used. First, immunoblot analysis

detected Aurora A and Plk1 in Gravin immune complexes isolated from mitotic cell lysates (Figure 2A,

lane 6). Control experiments confirmed that the closely related Aurora B kinase does not interact with

Gravin (Figure 2B, lane 4). Conversely, the RII subunit of protein kinase A (PKA) constitutively interacts

with Gravin throughout the cell cycle (Figure 2A, lanes 4 and 6). Second, conventional

immunofluorescent techniques demonstrate that Aurora A (red), Plk1 (green), and p766-Gravin

(blue) are concentrated at mitotic spindle poles (Figure 2C). Control experiments confirmed that total

Gravin (red) organizes at mitotic spindle poles with a subpopulation dispersed throughout the cell

(Figure 2—figure supplement 1A), whereas Aurora B localizes to the metaphase plate

(Figure 2—figure supplement 1B). Third, structured illumination microscopy (SIM, resolution ∼100
nm) revealed that p-Gravin, Aurora A, and Plk1 decorated a higher-order lattice-like structure at

mitotic spindle poles reminiscent of pericentriolar material (PCM (Lawo et al., 2012); Figure 2D,

Figure 2—figure supplement 1C). Lastly, a proximity ligation assay (PLA) was used to pinpoint p766-

Gravin association with either kinase during the cell cycle (Figure 2E–H). This approach combines

antibody recognition with amplification of a DNA hetero-duplex to mark discrete protein–protein

interaction pairs that reside within 40–60 nm of each other (Samelson et al., 2015). Quantification of

PLA puncta indicated that p766-Gravin/Aurora A sub-complexes was enhanced 3.86-fold during

metaphase when compared to interphase cells (Figure 2E,F). The p766-Gravin-Plk1 sub-complex was

Figure 1. Continued

column (*p < 0.05). (L) TUNEL staining was used to monitor apoptosis in seminiferous tubule sections from wild-type (gray) and Gravin knockout (orange)

mice. Data are presented as TUNEL-positive cells per seminiferous tubule. The number of sections is depicted below each column. (**p = 0.01).

DOI: 10.7554/eLife.09384.003

The following figure supplement is available for figure 1:

Figure supplement 1. Loss of Gravin in human summons and mouse tissues, and correlation with altered mitosis.

DOI: 10.7554/eLife.09384.004
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Figure 2. Phospho766-Gravin interacts with Plk1 and Aurora A during mitosis. (A) Endogenous Gravin complexes were immunoprecipitated from non-

mitotic HEK293 cell lysates (lanes 3 and 4) and mitotic cell lysates (lanes 5 and 6). Samples were immunoblotted for (top) Gravin, (upper-mid) Aurora A,

(lower-mid) Plk1, and (bottom) RII subunit of protein kinase A (PKA). Control immunoprecipitations (mIgG) are included (lanes 3 and 5). (B) Endogenous

Gravin complexes were immunoprecipitated from mitotic lysate (lane 4) and immunoblotted for (top) Gravin, (mid) Aurora B, and (bottom) Aurora A.

Control immunoprecipitations (mIgG) are included (lane 3). (C) Metaphase cells were immunostained for Aurora A (red), Plk1 (green), and p766-Gravin

(blue). Confocal micrographs are presented as maximum projections. A composite image is included. Scale bar, 5 μm. (D) A structured illumination

microscopy (SIM) maximum projection of a single mitotic spindle pole decorated with antibodies to Aurora A (blue), p766-Gravin (red), and Plk1

(green). Scale bar, 1 μm. (E–H) A proximity ligation assay (PLA) was used to detect in situ interaction between (E, F) Aurora A/p766-Gravin and

Figure 2. continued on next page
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enriched 10.34-fold (Figure 2G,H). Thus, we conclude that p766-Gravin scaffolds Aurora A with Plk1

at a PCM-like structure on mitotic spindle poles during metaphase.

Clustering Aurora A and Plk1 at spindle poles requires Gravin
Since p766-Gravin, Aurora A, and Plk1 decorate mitotic spindle poles, we reasoned that the anchoring

protein may actively constrain both enzymes at this location. To test this hypothesis, the subcellular

distribution of both kinases was evaluated in MEFs from wild-type and Gravin knockout mice

(Figure 3A–H). Metaphase cells were identified by the presence of a bipolar microtubule spindle

(Figure 3A, top panel, green). Aurora A (red) and Plk1 (blue) were enriched at mitotic spindle poles

(Figure 3A, top panels); however, both kinases were less evident at mitotic spindle poles of Gravin

null MEFs (Figure 3A, bottom panels). Signal intensity measurements at mitotic spindle poles

provided a quantitative analysis of this phenomenon (Figure 3B–E). Gravin null MEFs exhibited a loss

of p766-Gravin (Figure 3B), a 3.05-fold reduction in Aurora A (Figure 3C), and a 1.87-fold reduction in

Plk1 (Figure 3D) when compared to wild-type MEFs. Signal intensities for the spindle pole marker

pericentrin were equivalent in cells from both genotypes (Figure 3E).

Aurora A and Plk1 are required for spindle pole maturation (Joukov et al., 2014). One aspect of

this vital process is the formation of astral microtubules that project out from mitotic spindle poles to

the cell cortex to regulate spindle orientation (Kotak and Gönczy, 2013). Super-resolution analysis by

SIM revealed a near complete loss of astral microtubules protruding from the spindle poles of Gravin

null MEFs when compared to wild-type controls (Figure 3F,G). This phenomenon is perhaps most

clearly demonstrated upon comparison of magnified sections of spindle pole regions from

representative cells of both genotypes (Figure 3F, right panels).

Mitotic spindle poles are classified as either the mother spindle pole that contains material that

formed the original centriole or the more recently assembled daughter spindle pole (Bornens, 2012).

Upon closer inspection, we noted that p766-Gravin was unequally distributed between the spindle

poles of metaphase cells (Figure 4A). A technique known as ground state depletion microscopy

followed by individual molecule return (GSDIM) was used to rigorously evaluate this phenomenon

(Fölling et al., 2008). On the basis of signal overlap with the mother centriole marker Cenexin, we

were surprised to discover that components of the Gravin kinase scaffold were selectively enriched at

this location (Figure 4B,C, and Figure 4—figure supplement 1A–E). This observation was

corroborated by proximity ligation as p766-Gravin/Aurora A PLA puncta were 4.16-fold more

prevalent at mother spindle poles than at daughter spindle poles (Figure 4—figure supplement 1F,

G). Likewise, p766-Gravin/Plk1 PLA pairs were enriched 2.35-fold at the mother spindle pole

(Figure 4—figure supplement 1G). Thus, Gravin and both kinases are tethered within 20–40 nm of

each other and form a locally anchored signaling complex at mother spindle poles.

GSDIM was also employed to test whether the asymmetric distribution of Plk1 to the mother

spindle pole required Gravin (Figure 4D,E). Surprisingly, the location of Plk1 changed upon shRNA-

mediated gene silencing of Gravin (Figure 4—figure supplement 1H). Plk1 now predominated at the

daughter spindle pole (Figure 4E,F). This unexpected finding demonstrates that Gravin governs the

preferential recruitment of Aurora A and Plk1 to mother spindle poles, one of their appropriate sites

of action during mitosis. Additional control experiments in HEK293 cells revealed that cellular levels of

both kinases were unaltered in absence of Gravin (Figure 4—figure supplement 1H). This latter

observation argues that ablation of Gravin in tissue culture cell lines instigates the displacement of

both kinases from the spindle pole but may not affect the cellular levels of each enzyme. However, on

Figure 2. Continued

(G, H) Plk1/p766-Gravin during the cell cycle. (F, H) The integrated PLA signal intensity per cell was calculated for different stages of the cell cycle. Each

value was normalized to the signal obtained in interphase cells (n = 3 experiments ± SEM). Phospho-Gravin interaction with Aurora A (F, **p < 0.001)

and Plk1 (H, ***p < 0.0005) was maximal during metaphase as compared to interphase or other phases of the cell cycle.

DOI: 10.7554/eLife.09384.005

The following figure supplement is available for figure 2:

Figure supplement 1. Subcellular location of Gravin complex components during mitosis.

DOI: 10.7554/eLife.09384.006
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the basis of our analysis of clinical samples in Figure 1, we propose that unidentified mitigating factors

contribute to the mislocalization and depletion of both kinases in human tissue.

We reasoned that one consequence of the aforementioned result could be that differential

localization of the Gravin scaffold to the mother spindle pole favors more robust assembly of astral

microtubules. In order to test this hypothesis, we evaluated astral microtubule abundance, length, and

ultrastructure at super-resolution using SIM (Figure 4F–I). Pericentrin served as a universal spindle

pole marker (Figure 4F and Figure 4—figure supplement 1I). Centrobin staining was selectively

detected daughter spindle poles (Figure 4F and Figure 4—figure supplement 1J). In wild-type

MEFs, we observed protrusion of astral microtubules from both spindle poles (Figure 4F). However,

upon quantification of three-dimensional (3D) reconstructed SIM images, it was evident that astral

microtubules protruding from the mother spindle pool were longer than those emanating from the

daughter spindle pole (Figure 4G). Next, we investigated this process in Gravin null MEFs to ascertain

whether the anchoring protein or its binding partners influence this phenomenon. Notably in Gravin

null MEFs, the length of astral microtubules protruding from the mother spindle pool was reduced

(Figure 4H). Therefore, on the basis of these findings, we can propose that Gravin or elements of its

Figure 3. Gravin impacts the protrusion of astral microtubules. (A) Confocal micrographs of metaphase primary MEFs derived from wild-type (top) and

Gravin knockout (bottom) mice are presented as maximum projections. MEFs from each genotype were immunostained for tubulin (MTs, green), Aurora A

(red), and Plk1 (blue). Composite images are included. Scale bar, 5 μm. (B–E) Quantification of immunofluorescent signal at mitotic spindle poles in wild-

type (gray) and Gravin null (orange) MEFs is presented for (B) p766-Gravin, (C) Aurora A, (D) Plk1, and (E) a spindle pole marker pericentrin. Total cell

numbers used in calculation are indicated below each column. Data are from three independent experiments, **p-values <0.01, ±SEM. (F) Astral

microtubules are imaged at metaphase using SIM. Maximum projection images of wild-type (top) and Gravin null (bottom) MEFs immunostained with

antibodies for tubulin (MTs, green) and pericentrin (red) show microtubules and spindle poles in these cells. Insets depict a magnified view of the astral

microtubules protruding from the spindle pole in each genotype. (G) Quantitation of astral microtubule (MT) length in wild-type (gray) and Gravin null

(orange) metaphase MEFs. Total cell numbers used in calculation are indicated below each column (***p < 0.0001, amalgamated data from three

independent experiments).

DOI: 10.7554/eLife.09384.007
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Figure 4. Gravin-Aurora A-Plk1 scaffold is preferentially sequestered at mother spindle poles. (A) Spinning disc confocal micrograph (maximum

projection) of a metaphase wild-type MEF depicts asymmetric enrichment of p766-Gravin (red) at one spindle pole. Counterstaining with tubulin (MTs,

green) and DAPI (DNA, blue) are shown. Composite image is shown. Bar, 5 μm. (B) Ground state depletion microscopy (GSDIM) was performed on

prometaphase HEK293 cells (top). Cells were immunostained for a mother spindle pole marker, Cenexin (green) and p-Gravin (red). Quantification of

Figure 4. continued on next page
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signaling scaffold contribute to the assembly of astral microtubules. Additional rescue experiments

with a Gravin mutant (T766A) that is unable to interact with Plk1 (Canton et al., 2012) were achieved

at a low frequency but did not restore robust protrusion of astral microtubules (Figure 4—figure

supplement 1K). Nonetheless, we contend that Gravin-mediated anchoring of Plk1 to the mother

spindle pole contributes to the assembly or maintenance of astral microtubules.

Gravin scaffolds a mitotic kinase cascade
We propose that Aurora A and Plk1 are assembled into a kinase cascade at the mother spindle pole

through their simultaneous association with p766-Gravin. Cellular and molecular validation of this

model was conducted in three phases. First, Aurora A/Plk1 PLA pairs were localized throughout the

cell with a subpopulation accumulating at one mitotic spindle pole (Figure 5A). Importantly, a 1.77-

fold reduction in the PLA signal was measured upon shRNA depletion of Gravin (Figure 5B). This

implies that Gravin is necessary to co-localize both kinases.

Second, we tested whether Gravin-associated Aurora A was active. Kinase activity toward a

heptapeptide substrate (Kemptide) was measured in Gravin immune complexes isolated from mitotic

lysates. Aurora A kinase activity was defined as the number of counts (cpm x 103/IP) blocked by the

inhibitor drug VX-680 (Tyler et al., 2014). Incubation with VX-680 reduced Kemptide phosphorylation

by 33.5% (Figure 5C, n = 3). The remaining kinase activity was blocked by the PKA inhibitor peptide

PKI and can be attributed to Gravin-associated PKA ([Lester et al., 1996]; Figure 5C). Third, phospho-

peptide antibodies served as an independent index to detect active Aurora A (p-288) and active Plk1

(p-210). Both active kinases were prominent in mitotic lysates from cells treated with control shRNA

(Figure 5D, lane 3). Gravin-depletion resulted in a twofold reduction in the p288-Aurora A and p210-

Plk1 signals as detected by immunoblot (Figure 5D lane 4, Figure 5E). The active kinases were absent

from lysates prepared from interphase cells (Figure 5D, lanes 1 and 2). Collectively, these

experiments indicate that Gravin constrains active Aurora A and Plk1 to facilitate signal relay from

one kinase to the next (Figure 5F).

Gravin anchoring of Aurora A and Plk1 is required for mitotic
progression
Mechanistic studies examined whether a Gravin-Aurora A-Plk1 scaffold manages mitotic progression.

As a prelude to these studies, it was necessary to generate reagents that displace Aurora A and Plk1

from Gravin. In vitro binding studies using purified GST-Gravin fragments mapped a central region of

the anchoring protein (amino acids 451 to 900) that directly interacts with Aurora A (Figure 6A top

panel, lane 4). More detailed mapping studies defined at least two extended Aurora A-binding

sequences within this region, thus eliminating site-directed mutagenesis as the most direct approach

to disrupt the Aurora A-Gravin interaction. As an alternate approach, we employed ectopic

Figure 4. Continued

these signals is shown below micrographs. Integrated intensity profiles for (top) cenexin and (bottom) p-Gravin at the mother spindle pole (left). Intensity

profiles for both proteins at the daughter spindle pole are also presented (right). Scale bar, 1 μm. (C) Relative GSD signals for p766-Gravin, Aurora A, Plk1,

and Cenexin at the mother spindle pole (red). Centrobin (gray) was used as a daughter spindle pole marker. Cell numbers used in each calculation are

indicated on graph (n = 3 experiments ± SEM). (D) GSDIM micrographs showing the distribution of Plk1 at spindle poles in (top, left) control and (top,

right) Gravin-depleted HEK293 cells. Densitometric analyses depict the asymmetric distribution of Plk1 at mother and daughter spindle poles in (bottom,

left) control and (bottom, right) Gravin knockdown cells. (E) Amalgamated data are shown in graph. Cell numbers used in each calculation are indicated on

graph (n = 3 experiments ± SEM). (F) SIM maximum projection of (top) wild-type and (bottom) Gravin null MEFs at metaphase. Immunostaining for tubulin

(green), centrobin (red), and pericentrin (blue) are presented. The daughter spindle pole was decorated with centrobin (red) and marked on the

micrograph with D, whereas the mother spindle pole is denoted with M. Composite images are included. Dashed line (white) depicts path of line-scan

used to determine which pole contained the most centrobin (see Figure 4—figure supplement 4I and J). Scale bar, 2 μm. (G) Comparison of astral

microtubule (MT) length (μm) protruding from the mother (red; n = 64) and daughter spindle poles (gray, n = 62) in wildtype MEFs (n = 5 cells, ±SEM, ***p

< 0.0001). (H–I) Quantitation of astral microtubule (MT) length protruding from the mother (red; n = 34) and daughter spindle poles (gray, n = 35) in Gravin

null MEFs (n = 5 cells, ±SEM, ns depicts not significant).

DOI: 10.7554/eLife.09384.008

The following figure supplement is available for figure 4:

Figure supplement 1. Super-resolution microscopy identifies p-Gravin, Plk1, and Aurora A location and codistribution in mitotic cells.

DOI: 10.7554/eLife.09384.009
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expression of a Gravin fragment as the primary means of displacing Aurora A from the scaffold.

Mutation of Thr766 to Ala in the context of the Gravin 451-900 fragment (Figure 6—figure

supplement 1A) created a cell-based ‘Aurora A disruptor’ that antagonizes Aurora A anchoring

(Figure 6B) without impacting Plk1 (Canton et al., 2012). Cells stably expressing histone 2B-Green

Fluorescent Protein (GFP) and transfected with the ‘Aurora A disruptor’ were monitored by live-cell

video microscopy (Figure 6C–F). A completed cell cycle was defined as the time from chromatin

condensation to the initiation of cytokinesis. Expression of the Aurora A disruptor caused a mitotic

delay (mean time 85.17 ± 3.77 min, n = 55) when compared to control cells (64.57 ± 4.09 min, n = 95;

Figure 6C,D). Perhaps, the best depiction of this mitotic defect is upon comparison of time-lapse

videos (Video 1). Thus, correct targeting of Aurora A facilitates efficient mitosis.

To define the Gravin-Plk1 interface during mitosis, we monitored cells depleted of Gravin and

rescued with kinase-binding mutants of the anchoring protein. Metaphase was delayed in Gravin

shRNA depleted cells (78.04 ± 3.06 min, n = 29) compared to control (45.86 ± 1.27 min, n = 28,

Figure 6E,F). This defect was corrected upon rescue with murine Gravin (57.41 ± 3.63 min n = 37;

Figure 6E–G and Figure 6—figure supplement 1B). In contrast, rescue with Gravin T766A, a Plk1-

binding defective mutant, was unable to restore normal mitotic progression (90.32 ± 6.33 min, n = 31;

Figure 6E,F,H). Experiments with a GravinΔPKA mutant that cannot anchor PKA (Nauert et al., 1997)

Figure 5. Gravin scaffolds an Aurora A and Plk1 kinase-network. (A) PLA (red) to identify the frequency and subcellular distribution of the in situ interaction

between Aurora A and Plk1 in mitotic HEK293 cells. Staining of microtubules (green) is indicated. (Top) Cells treated with control shRNA, and (bottom)

cells treated with Gravin shRNA. Bar, 5μm. (B) Quantitation of PLA signal intensity in (light gray) control and (dark gray) Gravin-depleted cells. One

hundred fifty cells were analyzed for each condition from three independent experiments (±SEM, **p < 0.01). (C) Gravin immune complexes isolated from

mitotic lysates were assayed for protein kinase activity using Kemptide (300 μM) as a substrate. Quantitation of 32P phosphate incorporation was measured

by scintillation counting (n = 3 ± SEM, *p < 0.05). Total kinase activity (gray) is compared to enzyme activity in the presence of the Aurora A inhibitor alone

(VX-680, red) or VX-680 and a PKA inhibitor (PKI, black). (D) Phospho-peptide antibodies were used as an index of Aurora A and Plk1 activity in Gravin

immune complexes. Immunoblots show levels of (top) p766-Gravin, (mid) p288-Aurora A, and (lower) p210-Plk1 upon shRNA mediated depletion of

Gravin from HEK293 cells. (Bottom) GAPDH loading controls are indicated. (E) Densitometric analysis of amalgamated data from three experiments as

shown in (D) (±SEM). (F) A model depicting the proposed flow of phosphorylation signals through a Gravin associated Aurora A and Plk1 cascade.

DOI: 10.7554/eLife.09384.010
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Figure 6. Gravin-scaffolding of Aurora A and Plk1 facilitates metaphase progression. (A) Direct binding of purified

Gravin GST-fusion proteins (first and last amino acid number of each fragment is denoted above each lane) with

recombinant V5-tagged Aurora A kinase (generated by in vitro transcription and translation). (Top) Immunoblot

detection of Aurora A in complex with GST-Gravin fragments. (Bottom) Ponceau stained blot shows protein

expression levels. (B) Spinning disc confocal image (maximum projection) of a metaphase cell (control vector, left)

Figure 6. continued on next page

Hehnly et al. eLife 2015;4:e09384. DOI: 10.7554/eLife.09384 11 of 22

Research article Biochemistry | Cell biology

http://dx.doi.org/10.7554/eLife.09384


restored normal cell cycle progression, thereby excluding a role for Gravin-associated-PKA in this

process (55.69 ± 3.41 min, n = 29; Figure 6E,F,I). Collectively, these studies propose a mechanism

where Aurora A proximity to Plk1 facilitates efficient mitotic progression, as both kinases are

constrained by Gravin.

The Gravin macromolecular complex is required for spindle orientation
The orientation of the mitotic spindle during cell division determines whether a polarized epithelium will

expand symmetrically (Gillies and Cabernard, 2011; Williams et al., 2014). Orientation is influenced by

the distribution of molecular components at mitotic spindle poles (Yamashita et al., 2007; Lesage et al.,

2010; Januschke et al., 2011; Chen et al., 2014). Therefore, we reasoned that manipulation of the Gravin

scaffold could affect spindle orientation during cell division. To test this hypothesis, we used a spindle tilt

assay to measure the angle of each mitotic spindle relative to the substratum ((Delaval et al., 2011;

Hehnly and Doxsey, 2014) Figure 7A). Ectopic expression of the Aurora A disruptor perturbed spindle

orientation. Mislocalization of Aurora A promoted a 20˚ misalignment of the mitotic spindle when

compared to control cells transfected with empty vector (Figure 7B,C). Most control spindles were parallel

to the substratum (averaging around 5–10˚; Figure 7D,E). Yet in Gravin-depleted cells, the perturbation of

spindle orientation was 40˚ (Figure 7D,E). Notably, these more severe spindle angle defects were rescued

upon expression of the mouse Gravin ortholog (Figure 7D,E). In contrast, spindle angle defects were only

partially rescued upon expression of the Plk1-

binding defective Gravin T766A mutant (angles

averaging around 20˚; Figure 7D,E). The magni-

tude of this partial rescue is reminiscent of the

results obtained upon mislocalization of Aurora A

(Figure 7C). Further support was provided upon

analysis of 3D reconstructed images collected from

wild-type and Gravin null MEFs. In wild-type MEFs,

the alignment of the mitotic spindle was parallel to

the substratum as assessed by the positioning of

the spindle poles (Figure 7F and Video 2, left). In

contrast, abnormal orientation and positioning of

mitotic spindles were observed in Gravin null MEFs

(Figure 7G and Video 2, right). Thus, we propose

that Gravin, through its interaction with Aurora A

and Plk1, ensures correct spindle orientation during

mitosis.

Figure 6. Continued

stained for (green) Aurora A and (blue) DNA. The subcellular rearrangement of Aurora A following over-expression

of the Aurora A disruptor fragment (right). DNA is shown in blue (DAPI). (C) Live cell imaging of HeLa cells stably

expressing H2B-GFP were monitored through mitosis from the time of DNA condensation until anaphase exit.

Shown are (top panels) a representative control cell and (bottom panels) a cell expressing the Aurora A disruptor

fragment. Bar, 5 μm. (D) Amalgamated data from multiple cells stably expressing H2B-GFP and monitored for time

spent in mitosis. Control cells (n = 95 cells) and Aurora A disruptor expressing cells (n = 55 cells) were from three

independent experiments (**p < 0.001 ). (E–I) Live cell imaging time courses (0–40 min) of cells stably expressing

H2B-GFP transfected with (top) control shRNA and (second) Gravin shRNA. Rescue experiments as indicated with

(third) murine Gravin; (fourth) murine Gravin T766A; and (fifth) murine GravinΔPKA. Bar, 5 μm. (F) Amalgamated data

from multiple cells treated with control or Gravin shRNA, and rescued with murine Gravin as shown in E. These cells

were stably expressing H2B-GFP and monitored for time spent in mitosis. Total cell numbers are indicated on graph

(from three independent experiments, **p-values <0.001). (G–I) Models depicting the kinase-binding properties of

the Gravin mutants used in time course experiments E and F: rescue with intact Gravin (G), Gravin T766A (H), and

GravinΔPKA (I).

DOI: 10.7554/eLife.09384.011

The following figure supplement is available for figure 6:

Figure supplement 1. Biochemical validation of reagents used in analysis of cell cycle progression.

DOI: 10.7554/eLife.09384.012

Video 1. Comparison of mitotic progression in control

and Gravin-depleted cells. Time-lapse video of HeLa

cells stably expressing Histone H2B-GFP. Frame by

frame comparison of mitotic progression in cells trans-

fected with (left) control shRNA and (right) Gravin

shRNA.

DOI: 10.7554/eLife.09384.013
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Gravin contributes to spindle orientation of germ line stem cells during
spermatogenesis
In vivo analyses of seminiferous tubules tested whether the Gravin scaffold determines spindle orientation

of germ line stem cells during spermatogenesis. Initially, we examined the morphology of tissue sections

from wild-type and Gravin knockout mice. Seminiferous tubules are organized into ascending cellular

layers with germ line stem cells (spermatogonia, magenta) residing on the inner face of the basement

membrane (Figure 8A). Appropriate cellular layer-

ing was observed in wild-type sections stained for

Gravin (green) and nuclei (white) (Figure 8B, left).

Parallel sections stained for acetylated tubulin

established the correct lumenal organization of

elongating spermatids (Figure 8C, left). In contrast,

the cellular layering of seminiferous tubules and

lumenal organization of spermatids are disrupted

in Gravin knockout mice (Figure 8B,C; right). Of

note, the diameter of the lumen is significantly

decreased in seminiferous tubules from Gravin

knockout mice (Figure 8D). In addition, the

elongating spermatids are haphazardly dispersed

throughout the lumen (Figure 8C, right). We

postulate that both morphological changes are a

consequence of abnormal spindle orientation

within dividing germ line stem cells.

Figure 7. The Gravin-Aurora A-Plk1 scaffold regulates appropriate spindle orientation. (A) Diagram depicting how spindle angle was calculated for

treatments in (B–E). The z-axis of a metaphase cell with a defined spindle angle α [˚] in relation to the cover glass. (B) A representative z-axis confocal

projection for HeLa cells expressing an empty vector (left) or the Aurora A disruptor fragment. Cells were stained with tubulin (green, MTs) and

centrosomes (red, pericentrin). The dashed line connects the two spindle poles and is used to determine the spindle angle relative to the cover glass. Bar

denotes 3 μm. (C) Spindle angles between cover glass and line bisecting spindle poles in z-axis projections were measured. The amalgamated data from

three independent experiments show mean spindle angles ([˚]; total cell numbers are denoted above each column, ±SEM, **p-values <0.001). (D) A

representative z-axis confocal projection for HeLa cells treated with control shRNA and Gravin shRNA and rescue experiments with murine Gravin and the

murine Gravin T766A. Cells were stained with tubulin (green, MTs) and centrosomes (red, pericentrin). The dashed line connects the two spindle poles and

is used to determine the spindle angle relative to the cover glass. Bar denotes 3 μm. (E) Spindle angle quantification for each treatment (cell numbers

depicted on graph ± SEM, **p-vales < 0.001). (F, G) Single frames from z-axis confocal 3-dimensional videos of (F) wild-type and (G) Gravin null MEFs in

metaphase. Staining with tubulin (green) and pericentrin (red). Full videos are presented in Video 2.

DOI: 10.7554/eLife.09384.014

Video 2. Comparison of mitotic spindles formed in

wild-type and Gravin null MEFs. Reconstructed z-axis

confocal 3-dimensional movies mitotic spindles from

(left) wild-type and (right) Gravin null MEFs. The mitotic

spindles (tubulin, green) and spindle poles (pericentrin,

red) are indicated. Related to Figure 7F,G.

DOI: 10.7554/eLife.09384.015
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Figure 8. Gravin contributes to spindle orientation of germ line stem cells during spermatogenesis. (A) Schematic depicting the cross-sectional topology

of a seminiferous tubule. The organization of the basement membrane (black), spermatogonia (magenta), spermatocytes (blue), round spermatids

(orange), and elongating spermatids (yellow) is indicated. (B) Testis sections from (left) wild-type and (right) Gravin knockout mice stained for Gravin

(green) and DAPI (white). (C) Parallel sections were stained for flagellum (acetylated tubulin) revealing a loss in polarized organization of seminiferous

Figure 8. continued on next page
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During self-renewal, a mitotic cell chooses to orient its spindle either parallel or perpendicular to

the basement membrane (Lagos-Cabré and Moreno, 2008; Neumüller and Knoblich, 2009). Self-

renewing, parallel stem cell division produces two daughter stem cells, whereas perpendicular stem

cell division yields one differentiating daughter cell and one stem cell ([Siller and Doe, 2009]

Figure 8E). Basement membrane sections of the seminiferous tubules were identified with the stem

cell marker Oct3/4 to investigate the angle of spindle orientation in germ line stem cells (Figure 8F,

magenta). Mitotic spindle orientation was established by counterstaining with tubulin (Figure 8F,

green). Indeed, two populations of dividing stem cells were observed: those with a mitotic spindle

perpendicular (∼90˚) to the basement membrane and those with a mitotic spindle parallel (∼10˚) to the

basement membrane (Figure 8F). Staining for p766-Gravin (green) and DNA (blue) confirmed that the

phosphorylated anchoring protein was present in the few cells undergoing mitosis (Figure 8G, top

and lower left panels). In contrast, mitotic cells from Gravin knockout mice displayed a randomized

mitotic spindle orientation (Figure 8G, lower right panel). Importantly, this increased incidence of

spindle angle randomization was evident in mitotic Gravin knockout germ line stem cells (average

angle of 47.67˚, n = 98; Figure 8H). These findings indicate that interrupting spindle polarity may

adversely affect the development within seminiferous tubules in Gravin knockout mice.

On the basis of our cell-based and biochemical studies in Figures 3, 4, we postulated that the

spindle misorientation phenotype observed in vivo is a consequence of displacing Plk1 from mitotic

spindle poles. Therefore, we established the subcellular distribution of this kinase in seminiferous

tubule sections from wild-type and Gravin knockout mice (Figure 8I–L). Acetylated tubulin was used

as a marker for mitotic spindle poles (Figure 8I, left panels; red). In wild-type sections, the Plk1 signal

was prominent at mitotic spindle poles (Figure 8I, top mid panel; green). Conversely, in Gravin

knockout sections, the Plk1 signal was more disperse (Figure 8I, lower mid panel; green). Examination

of representative cells from both genotypes at higher magnification best illustrates this phenomenon

(Figure 8J). Line scan analysis detected an asymmetric distribution of Plk1 at one spindle pole in

wild-type cells (Figure 8K, top panel). Conversely, a more uniform distribution of this kinase was

detected in Gravin knockout cells (Figure 8K, lower panel). Quantitative analysis of multiple cells

confirmed these findings further suggesting that Gravin functions to preferentially anchor Plk1 at one

spindle pole in vivo (Figure 8L). Unfortunately, antibody compatibility issues precluded counter-

staining with mother spindle pool markers.

Two possible outcomes can arise from the loss of Gravin expression in stem cells. Existing stem cell

populations that undergo misoriented division may expand exponentially. Alternatively, germ line

Figure 8. Continued

tubules in Gravin knockout mice. Bar denotes 10 μm. (D) Lumen diameter was measured within seminiferous tubules of wild-type and Gravin knockout

mice (total number of lumen measured are indicated on graph, and data are from three independent experiments, ***p < 0.001, ±SEM). (E) Close-up of

model in A showing germ line stem cells (spermatogonia, magenta) can undergo either self-renewing (parallel spindle angle, left) or differentiating

divisions (perpendicular spindle angle, right). (F) Representative cross-section of wild-type mouse seminiferous tubule. Germ line stem cells are stained for

Oct3/4 (magenta) and microtubules (green). Dashed line in the composite image that bisects both spindle poles was used to determine spindle angle

orientation in relation to basement membrane. Two distinct spindle angle orientations are evident. Bar, 5 μm. (G) Representative images of mouse

seminiferous tubule sections stained for p766-Gravin (green) and DNA (DAPI, blue). (Top and bottom left) wild-type and (bottom right) Gravin knockout

tissue. Dashed line bisects both spindle poles and was used to identify spindle angle orientation in relation to basement membrane. Bar, 5 μm.

(H) Quantitation of spindle angle orientation in germ line stem cell sections from seminiferous tubule (examples presented in F and G). Spindle angles

relative to basement membrane were identified for wild-type and Gravin knockout mitotic cells. Wild-type mitotic cells fall into two spindle angle

populations between 0 and 30˚ (self-renewing) and between 60 and 90˚ (differentiating). However, Gravin null mitotic cells had a more randomized

distribution of spindle angles. Total mitotic cell numbers in each genotype are indicated on graph. Experiments were conducted on tissue sections from 3

mice of each genotype. (I) Cross-sections of (top) wild-type and (bottom) Gravin knockout mouse seminiferous tubules were stained for acetylated tubulin

(red, left) and Plk1 (green, middle). Composite images (right) are shown. White boxes identify the regions that are magnified in J. Bar, 5 μm. (J–K) Insets

from (I) are shown for (top) wild-type and (bottom) Gravin knockout sections at higher magnification. Dashed white line in composite image identifies line-

scan measured to determine the distribution of Plk1 intensity at each spindle pole. (K) Line plot graphs show integrated intensity values for Plk1 for (top)

wild-type and (bottom) Gravin knockout dividing cells. (L) Amalgamated data presented as area under the curve from line scans of wild-type (n = 15 cells)

and Gravin knockout mitotic cells (n = 25 cells). For Box and Whiskers plot, the box extends from the 25th to 75th percentiles using a standard method of

computation via Prism software. The line in the middle of the box is plotted as the median. (M) Representative (left) wild-type and (right) Gravin knockout

mouse seminiferous tubule sections stained for Oct3/4 (magenta) to identify germ line stem cells. (N) Relative abundance of Oct3/4-positive cells per

seminiferous tubule section from (gray) wild-type and (orange) Gravin knockout mice. Number of seminiferous tubules analyzed per genotype is denoted

on graph (±SEM, n = 3 mice each genotype, **p < 0.001).

DOI: 10.7554/eLife.09384.016
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stem cells may prematurely differentiate thereby diminishing the total stem cell population. In order

to delineate between these two possibilities, we counted the number Oct3/4-positive cells in

seminiferous tubule sections (Figure 8M). A 3.82-fold increase in Oct3/4-positive cells was observed

in Gravin knockout sections (n = 4; Figure 8M,N). Thus, randomized spindle angles and the concomitant

over-proliferation of germ line stem cells may underlie the pathological abnormalities observed in

Gravin knockout seminiferous tubule organization as well as human seminoma (Figures 1, 8).

Discussion
Aurora A and Plk1 are two kinases generally considered to act together to promote spindle pole

maturation (Hannak et al., 2001; Soung et al., 2009; Lee and Rhee, 2011; Joukov et al., 2014;

Kong et al., 2014). We have discovered an additional role for both kinases in the establishment of

spindle orientation during mitotic progression. A key element of our finding is that both active kinases

must be associated with the scaffolding protein Gravin to fulfill this ancillary function. By combining

biochemical approaches (Figure 2) with quantitative super-resolution imaging and enzymology

(Figures 3, 4), we have uncovered a unique kinase complex that assembles at the mother spindle pole

during metaphase. Formation of a Gravin-Aurora A-Plk1 scaffold at this location may facilitate signal

relay as depicted in Figure 5F to drive the spatial and temporal phosphorylation pattern of as yet

unknown mitotic substrates.

Spindle maturation occurs during the transition from prophase to metaphase when dynein-

mediated transport of PCM along the microtubules culminates in the formation of a mitotic spindle

(Purohit et al., 1999; Mahen and Venkitaraman, 2012). Surprisingly, we observed an asymmetric

distribution of the Gravin kinase scaffold at the mother spindle pole (Figure 4 and Figure 4—figure

supplement 1). Clustering of these enzymes at this location can either catalyze the efficient assembly

of the PCM or alternatively coordinate the assembly of astral microtubules that orient the mitotic

spindle. The super-resolution imaging analysis of Gravin null MEFs in Figure 3F argues strongly for the

latter as these cells are deficient in astral microtubules but contain equal amounts of a canonical PCM

protein, pericentrin ((Doxsey et al., 1994); Figure 3E,G). This notion is also consistent with the

anomalous spindle tilt angles that were measured in cultured cells (Figure 7). These observations were

further validated in vivo upon analysis of murine seminiferous tubule sections lacking Gravin

(Figure 8).

One new concept that emerges from our studies is that Gravin-mediated clustering of Aurora A

and Plk1 at the mother spindle pole provides a means to more precisely regulate symmetric cell

division. We offer four lines of inquiry to support this new mechanism. First, data presented in

Figure 3F,G indicate that loss of Gravin impacts the protrusion of astral microtubules. Second, data

presented in Figure 8 show that symmetric cell division is lost in Gravin null MEFs. Third, we measure

increased mitotic spindle angles (>20˚) in Gravin shRNA-treated cells compared to controls

(Figure 7A–E). Fourth, a logical and important mechanistic extension of this latter observation is

our finding that astral microtubules are lost from the mother spindle poles in Gravin null MEFs.

Moreover, we postulate that the sequestering these enzymes at the mother spindle pole ensures that

each kinase is optimally positioned to play a role in the regulation of astral microtubule protrusion, a

process that influences the correct orientation of mitotic spindles during cell division. This mechanism

is compatible with two recent reports indicating that signaling events downstream Plk1 modulate the

correct orientation mitotic spindles (Hanafusa et al., 2015; Yan et al., 2015). However, a vital new

piece of this puzzle, uncovered solely from our work, is that Gravin functions as the anchor for these

enzymes.

Another theme emerging from the data in Figure 8 is that the orientation of the mitotic spindle

becomes increasingly important during stem cell division. These events influence cell fate

determination and tissue organization (Siller and Doe, 2009; Gillies and Cabernard, 2011). In

keeping with this notion, Gravin knockout mice exhibit an increase in Oct3/4, a marker for stem cells

within the seminiferous tubule (Figure 8M,N). This is evocative of clinical studies that detect a marked

increase in Oct3/4-positive cells in solid-state tumors including seminoma (Singh et al., 2011). These

clinical results are entirely consistent with the data presented in Figure 1 depicting a loss in tissue

morphology observed in tissue sections from seminoma patients (Figure 1C,D). At the molecular

level, we also detect decreased Gravin, Aurora A, and Plk1 levels in several samples collected from

seminoma patients (Figure 1A,B). Therefore, we postulate that abnormalities in Gravin expression

that promote mislocalization of Aurora A and Plk1 contributes to defects in orientation of mitotic
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spindles to potentiate seminoma progression. However, Gravin knockout mice do not develop

seminomas, yet some of the aforementioned abnormalities are evident in these animals. For example,

these animals have difficultly breeding and upon aging display a tendency to develop prostate

hyperplasia (Akakura et al., 2008). Both of these phenotypes may be indicative of developmental

defects in polarized cell division. Therefore, we speculate that perturbation of Gravin-mediated

signaling events during mitosis may promote a chronic decrease in organization of the seminiferous

tubules with concomitant impairment of reproductive viability. Finally, when the mouse studies are

considered in the context of our biochemical analysis and imaging of clinical samples, we can conclude

that Gravin constrains Aurora A and Plk1 in an asymmetric manner to control spindle orientation

during mitosis. Thus, we identify and define a new macromolecular signaling scaffold that drives stem

cell maintenance and cell differentiation in seminiferous tubules.

Materials and methods

Reagents
The following antibodies were used: mouse α-tubulin, FITC-conjugated α-tubulin (Sigma, St. Louis,

MO, United States), rabbit anti-pericentrin [M8; (Doxsey et al., 1994)], goat anti-Aurora A (Sigma),

rabbit anti-p-Aurora A T288 (Cell Signaling Technology, Danvers, MA, United States), mouse anti-

Aurora B (Abcam, Cambridge, MA, United States), human anti-CREST (Antibodies Incorporated,

15–234), rabbit anti-cenexin (Protein Tech Group, Chicago, IL, United States), rabbit p-Gravin T766A

(Canton et al., 2012), mouse Gravin (Sigma; clone JP74), mouse anti-GAPDH (Sigma; GAPDH71.1),

mouse anti-phospho-S10 Histone H3 (abcam; ab14955), rabbit anti-Plk1 (Cell Signaling Technology),

mouse anti-Plk1 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, United States), mouse anti-Plk1

(Millipore; 35–206, Billerica, MA, United States), rabbit anti p-Plk1T210 (Cell Signaling Technology),

mouse anti-Flag and Flag-HRP (Sigma), mouse anti-Par3 (Sigma), rabbit anti-Oct3/4 (Santa Cruz

Biotechnology, Inc.), mouse anti-centrin (clone 20H5, EMD Millipore), mouse anti-acetylated tubulin

(Sigma), mouse anti-centrobin (Abcam). Anti-rabbit, anti-mouse, and anti-goat HRP-conjugated

secondary antibodies were purchased from GE Healthcare. Anti-rabbit, anti-mouse, and anti-goat

secondary antibodies were purchased from Life technologies conjugated to Alexa Fluor 488, 647, and

568. DAPI (prolong anti-fade diamond, Invitrogen, Carlsbad, CA, United States) and phalloidin (Alexa

Fluor 568, Invitrogen) were purchased from Life Technologies. The Gravin knockout (encoded by

Akap12 locus) mice were generated as described in (Akakura et al., 2008) and obtained from Irwin

Gelman (Roswell Park Cancer Institute).

Cell culture, transfection, and generation of stable Cell lines
Hela cells, U2OS, and MEFs (primary and immortalized) were maintained in D (Dulbecco’s)-minimal

essential medium (MEM) and retinal pigment epithelial cells (RPE) were maintained in DMEM:F12. All

media was supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin/streptomycin, and

1% Glut-MAX (Invitrogen). Infections for generation of stable knockdowns were performed with

shRNA lentiviral particles (Santa Cruz Biotech) or retroviral particles (for immortalization). Transient

gene expression was performed by transfection using TransIT-LTI reagent (Mirus) for Hek293 cells,

Hela monster (Mirus) for Hela cells, or by nucleofection using Ingenio (mirus) for RPE cells.

Generation of MEFs
MEFs were isolated following the protocol provided by (Chen et al., 2014). Briefly, a timed pregnant

female was sacrificed at embryonic day 12–13. Under sterile conditions, embryos were dissected from

their placenta and surrounding membranes, and their organs and head were removed. Fibroblasts were

isolated by trypsinization of minced tissue (0.25% trypsin in DMEM). Cells were grown in DMEM, 10%

FBS, and penicillin/streptomycin at 37˚C and used for immunofluorescence analysis immediately at

passage 0–2. Immortalized MEF lines were established following standard protocols (Chen et al., 1997).

Histological analysis
All human specimens were purchased from BioChain Institute, Inc. Reproductive age male mice (∼7
weeks of age) were sacrificed, testes were removed, fixed in formalin for >24 hr at 4˚, and embedded

in paraffin. Samples were sectioned at 5 μm, mounted onto slides, and subjected to H&E or

Hehnly et al. eLife 2015;4:e09384. DOI: 10.7554/eLife.09384 17 of 22

Research article Biochemistry | Cell biology

http://dx.doi.org/10.7554/eLife.09384


conventional antigen retrieval through deparaffination followed by immunostaining. Sections were

deparaffinized, rehydrated, and incubated with antibodies as labeled.

Microscopy

Spinning disk confocal microscopy
Images for spindle tilt, tissue sections, and general spindle morphology were acquired using primarily

a Yokogawa CSU10 spinning disk mounted on a DM16000B inverted microscope (Leica, ×63 Plan-

Apocromat NA 1.4 Oil Objective) with an Andor ILE laser launch with 50 mW Coherent OBIS lasers

(405, 488, 561, and 642) unless otherwise noted in the manuscript. Two separate cameras were used

depending on whether it was live-cell acquisition (Hamamatsu ImagEM EM-CCD Camera C9100-13)

or fixed samples (CoolSnap HQ camera, Photometrics). Z-stacks were shown as 2D maximum

projections or processed for 3-dimensional rendering (Metamorph). Fluorescence range intensity was

adjusted identically for each series of panels. Intensity profiles and fluorescence intensity

quantification were obtained from sum projections of Z stacks using either Metamorph or ImageJ/

Fiji software. Fluorescence intensity quantification of spindle poles was carried out as previously

described (Chen et al., 2014; Hehnly and Doxsey, 2014). In short, computer-generated concentric

circles of 60 (inner area) or 80 (outer area) pixels in diameter were used to measure spindle pole (inner

area) and calculate local background (difference between the outer and inner area) fluorescence

intensity. Spindle angle measurements were carried out as previously described (Chen et al., 2014;

Hehnly and Doxsey, 2014).

GSDIM microscopy
Coverslips that were fixed and stained with primary antibodies towards Plk1, Aurora A, Cenexin,

Centrobin, p-Gravin (T766A), and Gravin for 1 hr and followed with secondary antibodies (Alexa Fluor

647 or Alexa Fluor 568). Coverslips were mounted with MEA-GLOX imaging buffer (50 mM Tris pH

8.0, 10 mM NaCl, 0.56 mg/ml glucose oxidase, 34 μg/ml catalase, 10% wt/vol glucose, 100 mM MEA)

on glass depression slides (neoLab, Heidelberg, Germany) and sealed with Twinsil (Picodent,

Wipperfurth, Germany). Ground state depletion (GSD) super-resolution images of mitotic spindle

poles were generated using a Leica SR GSD 3D system. The system is built around a Leica DMI6000 B

TIRF microscope and is equipped with a Leica oil-immersion HC PL APO 160×/1.43 NA super-

resolution objective, four laser lines (405/30 mW, 488 nm/300 mW, 532 nm/500 mW, and 642 nm/500

mW), and an Andor iXon3 EM-CCD. Images were collected in epifluorescent mode at a frame rate of

100 Hz for 50,000–100,000 frames using Leica Application Suite (LAS AF) software. Intensity

calculations and 3-dimensional heatmaps were done in ImageJ/Fiji.

SIM
Super-resolution 3D-SIM images were acquired on a DeltaVision OMX V4 (GE Healthcare) equipped

with a 60×/1.42 NA PlanApo oil immersion lens (Olympus), 405-, 488-, 568-, and 642-nm solid-state

lasers and sCMOS cameras (pco.edge). Image stacks of 5–6 μm with 0.125-μm thick z-sections and 15

images per optical slice (3 angles and 5 phases) which were acquired using immersion oil with a

refractive index 1.518. Images were reconstructed using Wiener filter settings of 0.003 and optical

transfer functions measured specifically for each channel with SoftWoRx 6.1.3 (GE Healthcare) to

obtain super-resolution images with a twofold increase in resolution both axially and laterally. Images

from different color channels were registered using parameters generated from a gold grid

registration slide (GE Healthcare) and SoftWoRx 6.1.3 (GE Healthcare).

Immunofluorescence
Staining procedures for cultured cells were performed as previously described (Hehnly et al., 2006;

Hehnly and Doxsey, 2014).

Immunoprecipitation, in vitro kinase assays, and immunoblotting
Procedures were performed as described in (Canton et al., 2012).

Live-cell imaging
Cells were cultured on 35-mm dishes containing a central 14 mm 1.5 glass coverslip (MatTek). The cells

were imaged in DMEM without phenol plus 20 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic
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acid) and 10% FBS at 37˚C. Spinning disk confocal microscopy was performed on the above system

attached to a Hamamatsu ImagEM, EM-CCD Camera C9100-13. For GFP imaging, frames were acquired

every 2 to 5 min with an exposure time of 100 ms.

Spindle orientation assay
Determination of spindle orientation relative to the horizontal plane or basement membrane in

seminiferous tubules was performed as previously described (Chen et al., 2014; Hehnly and Doxsey,

2014). Briefly, spindle angle was estimated using inverse trigonometric functions, specifically, arctan

(Kuo et al., 2011). Thus, if two spindle poles are in focus at the same z-plane, the estimated spindle

orientation would be 0˚. For cultured cells, at least 25 mitotic spindles were scored for each category

in each experiment. For asymmetric divisions in the seminiferous tubules of the testis, a total of 5–10

tissue sections were analyzed per mouse. For each tissue sample, a z-series with depths of 5 μm (0.2

μm per step) were collected.

PLA
Procedures were done as described in Samelson et al. (2015).

Statistical analysis
Statistics were performed using paired Student’s t-test or unpaired with Welch’s correction or

Mann–Whitney U-test, for two-group comparisons using Prism’s Graph Pad. p-values less than 0.05

were considered statistically significant.
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