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ABSTRACT OF THE DISSERTATION
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underlying complex phenotypes from heterogeneous data
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Professor Jae Hoon Sul, Co-Chair

Large-scale transcriptomic datasets provide valuable opportunities to better understand the

regulation of gene expression and its role in human health. However, these studies can

be confounded by issues such as cell type heterogeneity. Furthermore, these datasets are

growing extremely large with complex study designs, such as gene expression measured

across a multitude of tissues, that must be accurately and efficiently modeled. Finally, better

understanding of the mechanisms that influence gene regulation are required to integrate

novel associations with biological understanding. In this dissertation, we introduce methods

that address these issues in the analysis of tissue-level gene expression data. We present a

method to accurately estimate cell type composition from these data by integrating single-

cell information, as well as a scalable approach to model multi-tissue expression datasets and

identify expression quantitative trait loci. We also present analyses of bulk expression data

that support a hypothesized mechanism of gene regulation that occurs in the general female

population through non-random X chromosome inactivation. The work presented in this

dissertation allows researchers to perform efficient and accurate analyses of gene expression

data and provides additional insight into the mechanisms that underlie associations between

genetics, transcriptomics, and complex phenotypes.
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CHAPTER 1

Introduction

1.1 Scope of Research

Advances in sequencing technologies have paved the way for the generation of large-scale

genomic datasets capturing genetic and transcriptomic variation across diverse sets of indi-

viduals [1, 2]. These data allow researchers to elucidate the relationship between genetics,

gene expression, and complex phenotypes [3]. Genome-wide association studies have identi-

fied a vast number of genetic loci associated with different traits [4] and the identification of

expression quantitative trait loci (eQTLs) bridges the gap between genotype and phenotype

by elucidating the effects of genetic variation on gene expression [5]. These associations

serve as stepping stones for better understanding of human health and potential therapeu-

tic targets [6, 7]. However, studies involving tissue-level gene expression are hindered by

confounding factors that can both decrease power to detect associations and cause spurious

results.

Many tissues in the human body consist of several cell types. For example, brain tis-

sue often contains an assortment of neuronal and glial cell populations, each with distinct

functions and gene expression profiles. RNA sequencing (RNA-seq) is often performed on

whole tissues and analyses of these data can be confounded by cell-type heterogeneity across

samples [8]. Differences in cell type composition can be misinterpreted as differences in gene

expression levels when measuring RNA across tissues. Furthermore, these mixtures can ob-

scure cell-type-specific gene regulation that may be of interest [9, 10]. Single-cell approaches,

such as single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq), avoid

these issues and provide insight into the gene expression of individual cells. However, these
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experiments remain costly, noisy, and difficult to scale compared to bulk RNA-seq [11]. Given

the continuing utility of tissue-level RNA-seq datasets, it is important to accurately model

variability in cell type proportions in these samples.

Regulation of gene expression also varies significantly across tissues [2]. Moreover, several

tissues can have distinct roles in biological systems underlying a complex phenotype. For

example, analyses of Type II diabetes have observed transcriptomic changes in blood [12],

adipose [13], and brain [14]. Therefore, it is imperative to measure gene expression across

many tissues to fully understand gene regulation and its role in traits of interest. Analyzing

gene expression across tissues, especially with growing sample sizes, requires approaches that

can model this heterogeneity both accurately and efficiently.

Finally, the relationship between gene expression and genetic variation is highly complex

[15] and remains to be fully understood. Many eQTLs have been identified and are thought

to influence gene expression through interactions with regulatory regions of the genome,

such as enhancers and promoters [16]. Alternative mechanisms of genetic influences on

gene regulation have been hypothesized, specifically in the context of selective pressures

causing non-random X chromosome inactivation [17]. To better understand human biology,

it is important to validate these hypotheses and identify the extent of their influence on

regulation of gene expression.

1.2 Contributions and Overview

In this dissertation, we introduce computational and statistical methods to accurately model

tissue-level expression data with heterogeneity in cell composition and tissue identity. Fur-

thermore, we present analyses of expression data that yields further insight into non-random

X chromosome inactivation as an additional mechanism for gene regulation with several

interesting implications in the context of X-linked phenotypes.

There is large interest in estimating cell type proportions from tissue-level RNA-seq data.

These estimates allow researchers to account for this potential confounding factor in analy-
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ses of gene expression data, such as eQTL and differential expression studies. Furthermore,

cell type proportions can be used with additional methods to identify cell-type-specific as-

sociations from tissue-level data [10]. In Chapter 2, we describe Bisque, an approach for

accurately estimating cell type proportions from bulk RNA-seq data. This method utilizes

available single-cell data as a reference for cell-type-specific expression while accounting for

technological biases between bulk and single-cell RNA-seq.

In Chapter 3, we present an efficient linear mixed model (LMM) for the analysis of

massive datasets measuring multiple contexts across a set of individuals. This method,

mcLMM, models all contexts jointly in a meta-analytic framework to improve power to

detect associations. It can be applied to large expression datasets with measurements across

several tissues, such as the GTEx dataset [2], to efficiently identify genetic variants that

influence gene regulation in specific tissues or across several tissues. We further demonstrate

the utility of this method by performing a multi-trait genome-wide association study across

hundreds of thousands of individuals in the UK Biobank [1] using minimal computational

resources.

In Chapter 4, we analyze the GTEx dataset [2] to support the hypothesis of selective

pressures influencing non-random X chromosome inactivation [17] and quantify the extent of

this effect in the female population. We estimate skewing in X inactivation from bulk RNA-

seq data measured across non-diseased tissue samples and identify several genetic factors

that are significantly associated with preferential inactivation of a haplotype, such as varia-

tion associated with increased deleteriousness and decreased proliferation. Furthermore, we

identify common genetic variants in specific loci that contribute to skewed X chromosome

inactivation. We highlight the implications of non-random skew in X chromosome inactiva-

tion, such as decreased penetrance or dampened effects of genetic variation on preferentially

inactivated haplotypes.
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CHAPTER 2

Accurate estimation of cell composition in bulk

expression through robust integration of single-cell

information

2.1 Background

Bulk RNA-seq experiments typically measure total gene expression from heterogeneous tis-

sues, such as tumor and blood samples [18, 19]. Variability in cell type composition can

significantly confound analyses of these data, such as in identification of expression quanti-

tative trait loci (eQTLs) or differentially expressed genes [20]. Cell type heterogeneity may

also be of interest in profiling changes in tissue composition associated with disease, such as

cancer [21] or diabetes [22]. In addition, measures of cell composition can be leveraged to

identify cell-specific eQTLs [9, 10] or differential expression [10] from bulk data.

Traditional methods for determining cell type composition, such as immunohistochem-

istry or flow cytometry, rely on a limited set of molecular markers and lack in scalability

relative to the current rate of data generation [23]. Single-cell technologies provide a high-

resolution view into cellular heterogeneity and cell type-specific expression [24, 25, 26]. How-

ever, these experiments remain costly and noisy compared to bulk RNA-seq [27]. Collection

of bulk expression data remains an attractive approach for identifying population-level as-

sociations, such as differential expression regardless of cell type specificity. Moreover, many

bulk RNA-seq studies that have been performed in recent years resulted in a large body of

data that is available in public databases such as dbGAP and GEO. Given the wide availabil-

ity of these bulk data, the estimation of cell type proportions, often termed decomposition,
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can be used to extract large-scale cell type specific information.

There exist a number of methods for decomposing bulk expression, many of which are

regression-based and leverage cell type-specific expression data as a reference profile [28].

CIBERSORT [29] is a SVM-regression based approach, originally designed for microarray

data, that utilizes a reference generated from purified cell populations. A major limitation

of this approach is the reliance on sorting cells to estimate a reference gene expression

panel. BSEQ-sc [30] instead generates a reference profile from single-cell expression data

that is used in the CIBERSORT model. MuSiC [31] also leverages single-cell expression as a

reference, instead using a weighted non-negative least squares regression (NNLS) model for

decomposition, with improved performance over BSEQ-sc in several datasets.

The distinct nature of the technologies used to generate bulk and single-cell sequencing

data may present an issue for decomposition models that assume a direct proportional re-

lationship between the single-cell-based reference and observed bulk mixture. For example,

the capture of mRNA and chemistry of library preparation can differ significantly between

bulk tissue and single-cell RNA-seq methods, as well as between different single-cell tech-

nologies [32, 33]. Moreover, some technologies may be measuring different parts of the

transcriptome, such as nuclear pre-mRNA in single-nucleus RNA-seq (snRNA-seq) experi-

ments as opposed to cellular and extra-cellular mRNA observed in traditional bulk RNA-seq

experiments. As we show later, these differences may introduce gene-specific biases that

break down the correlation between cell type-specific and bulk tissue measurements. Thus,

while single-cell RNA-seq technologies have provided unprecedented resolution in identifying

expression profiles of cell types in heterogeneous tissues, these profiles generally may not fol-

low the direct proportionality assumptions of regression-based methods, as we demonstrate

here.

We present Bisque, a highly efficient tool to measure cellular heterogeneity in bulk ex-

pression through robust integration of single-cell information, accounting for biases intro-

duced in the single-cell sequencing protocols. The goal of Bisque is to integrate the different

chemistries/technologies of single-cell and bulk tissue RNA-seq to estimate cell type propor-
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tions from tissue-level gene expression measurements across a larger set of samples. Our

reference-based model decomposes bulk samples using a single-cell-based reference profile

and, while not required, can leverage single-cell and bulk measurements for the same samples

for further improved decomposition accuracy. This approach employs gene-specific trans-

formations of bulk expression to account for biases in sequencing technologies as described

above. When a reference profile is not available, we propose BisqueMarker, a semi-supervised

model that extracts trends in cellular composition from normalized bulk expression samples

using only cell-specific marker genes that could be obtained using single cell data. We demon-

strate using simulated and real datasets from brain and adipose tissue that our method is

significantly more accurate than existing methods. Furthermore, it is extremely efficient,

requiring seconds in cases where other methods require hours; thus, it is scalable to large

genomic datasets that are now becoming available.

2.2 Methods

2.2.1 Processing bulk expression data

Paired-end reads were aligned with STAR v2.5.1 using default options. Gene counts were

quantified using featureCounts v1.6.3. For featureCounts, fragments were counted at the

gene-name level. Alignment and gene counts were generated against the GRCh38.p12 genome

assembly. STAR v2.5.1 and GRCh38.p12 were included with CellRanger 3.0.2, which was

used to process the single-nucleus data.

2.2.2 Processing single-nucleus expression data

Reads from single nuclei sequenced on the 10x Genomics Chromium platform were aligned

and quantified using the CellRanger 3.0.2 count function against the GRCh38.p12 genome

assembly. To account for reads aligning to both exonic and intronic regions, each gene

transcript in this reference assembly was relabeled as an exon since CellRanger counts exonic

reads only. We perform this additional step since snRNA-seq captures both mature mRNA
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and pre-mRNA, the latter of which includes intronic regions.

After aggregating each single-nucleus sample with the CellRanger aggr function, the full

dataset was processed using Seurat v3.0.0 [34]. The data were initially filtered for genes

expressed in at least 3 cells and filtered for cells with reads quantified for between 200

and 2,500 genes. We further filtered for cells that had a percentage of counts coming from

mitochondrial genes less than or equal to 5 percent. The data were normalized, scaled,

and corrected for mitochondrial read percentages with sctransform v0.2.0 [35] using default

options.

To identify clusters, Seurat employs a shared nearest neighbor approach. We identified

clusters using the top 10 principal components of the processed expression data with res-

olution set at 0.2. The resolution parameter controls the number of clusters that will be

identified, and suggested values vary depending on the size and quality of the dataset. We

chose a value that produced 6 clusters in the adipose dataset and 13 clusters in the DLPFC

dataset and visualized the clustering results with UMAP [36].

Marker genes were identified by determining the average log-fold change of expression

of each cluster compared to the rest of the cells. We identified marker genes as those with

an average log-fold change above 0.25. The significance of the differential expression of

these genes was determined using a Wilcoxon rank sum test. Only genes that were detected

in at least 25 percent of cells were considered. Clusters with many mitochondrial genes

as markers (nine genes detected in both datasets) were removed from both datasets. In

addition, a cluster with only three marker genes was removed from the DLPFC datasets.

Finally, we remove mitochondrial genes from the list of marker genes for decomposition as

we assume reads aligning to the mitochondrial genome originate from extra-nuclear RNA in

the snRNA-seq dataset (targeting nuclear RNA).

Clusters were labeled by considering cell types associated with the identified marker

genes. Marker genes were downloaded from PanglaoDB [37] and filtered for entries validated

in human cells. For each gene, we count the possible cell type labels. Each cluster was labeled

as the most frequent cell type across all of its marker genes, with each label associated with
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a gene weighted by the average log-fold change. If multiple clusters share a cell type label,

we consider each cluster a subtype of this label.

Exon-aligned reads were processed in the same exact procedure but snRNA-seq data was

aligned to just exonic regions. Cluster names were manually changed for both datasets when

aligned to exons to match the clusters from intronic reads as well. Specifically, for clusters

identified in the exonic data not found in the full data, we relabeled as the label with the

highest score found in the full data. These relabeled clusters were similar in proportion to

the corresponding cluster in the full dataset.

2.2.3 Learning a single-cell based reference and bulk transformation for reference-

based decomposition

We assume that only a subset of genes are relevant for estimating cell type composition.

For the adipose and DLPFC datasets, we selected the marker genes identified by Seurat

as described previously. Moreover, we filter out genes with zero variance in the single-cell

data, unexpressed genes in the bulk expression, and mitochondrial genes. We convert the

remaining gene counts to counts-per-million to account for variable sequencing depth. For

m genes and k cell types, a reference profile Z ∈ Rm×k is generated by averaging relative

abundances within each cell type across the entire single-cell dataset.

Though there is a strong positive correlation between bulk and single-cell based pseudo-

bulk (summed single-cell counts) expression data, we observe that the relationship is not one-

to-one and varies between genes. This behavior indicates that the distribution of observed

bulk expression may significantly differ from the distribution of the single-cell profile weighted

by cell proportions. We propose transforming the bulk data to maximize the global linear

relationship across all genes for improved decomposition. Our goal is to recover a one-to-one

relationship between the transformed bulk and expected convolutions of the reference profile

based on single-cell based estimates of cell proportions. This transformed bulk expression

better satisfies the assumptions of regression-based approaches under sum-to-one constraints.

Cell type proportions p ∈ Rk×n′
are determined by counting the cells with each label in
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the single-cell data for individuals. Given these proportions and the reference profile Z, we

calculate the pseudo-bulk for the single-cell samples as

Y = Zp (2.1)

where Y ∈ Rm×n′
. For each gene j, our goal is to transform the observed bulk expression

across all n bulk samples Xj ∈ Rn to match the mean and variance of Yj ∈ Rn′
; hence, the

transformation of Xj will be a linear transformation.

If individuals with both single-cell and bulk expression are available, we fit a linear

regression model to learn this transformation. Let X ′j denote the expression values for these

n′ overlapping individuals. We fit the following model (with an intercept) and apply the

model to the remaining bulk samples as our transformation:

Yj = βjX
′
j + εj (2.2)

If there are no single-cell samples that have bulk expression available, we assume that the

observed mean of Yj is the true mean of our goal distribution for the transformed Xj. We

further assume that the sample variance observed in Yj is larger than the true variance of

the goal distribution, since the number of single-cell samples is typically small. We use a

shrinkage estimator of the sample variance of Yj that minimizes the mean squared error and

results in a smaller variance than the unbiased estimator:

σ̂2
j =

1

n′ + 1

n′∑
i=1

(Yi,j − Ȳj)2 (2.3)

We transform the remaining bulk as follows:

Xj,transformed =
Xj − X̄j

σXj

σ̂j + Ȳj (2.4)

where a bar indicates the mean value of the observed data and σXj
is the unbiased sample

standard deviation of Xj.
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To estimate cell type proportions, we apply non-negative least squares regression with an

additional sum-to-one constraint to the transformed bulk data. For individual i, we minimize

the following with respect to the cell proportion estimate pi:

‖Zpi −Xi,transformed‖2 s.t. pi ≥ 0,
∑

pi = 1 (2.5)

2.2.4 Simulating bulk expression based on single-nucleus counts

We simulate the base bulk expression as the sum of all counts across cells/nuclei sequenced

from an individual. To introduce gene-specific variation between the bulk and single-cell

data, we sample a coefficient βj and an intercept αj from a half-normal (HN) distributions:

βj ∼ HN(1, σ) (2.6)

αj ∼ HN(0, σ) (2.7)

where the variance of the HN distribution is σ2(1 − 2
π
). At σ = 0, the base simulated bulk

expression remains unchanged. We used a HN distribution to ensure coefficients and inter-

cepts are positive. While our method can handle negative coefficients, this simulation model

assumes expression levels have a positive correlation across technologies. We performed 10

replicates of this data-generating process at each σ in 0, 5, 10, 20. Decomposition perfor-

mance on these data were measured in terms of global R and RMSD and plotted with 95%

confidence intervals based on bootstrapping.

2.2.5 Determining significance of cell proportion associations with measured

phenotypes

Reported associations were measured in terms of Spearman correlation. To determine the

statistical significance of these associations while accounting for possible confounding factors,

we applied two approaches. For the adipose dataset, which consisted entirely of twin pairs,

we applied a linear mixed-effects model (R nlme package) with random effects accounting
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for family. For the DLPFC dataset, we assumed individuals were unrelated and fit a simple

linear model (R base package). In each model, we include cell type proportion, age, age-

squared, and sex as covariates. We introduced an additional covariate for diabetes status

when regressing the Matsuda index due to a known significant association between these

two variables. We test whether the cell proportion effect estimates deviate significantly from

0 using a t-test. Each R method implements the described model fitting and significance

testing.

2.2.6 Estimating relative cellular heterogeneity with a semi-supervised weighted

PCA model

In order to estimate cell type proportions across individuals without the use of a cell-type-

specific gene expression panel as reference, we use a weighted PCA approach. BisqueMarker

requires a set of marker genes for each cell type as well as the specificity of each marker

determined by the fold change from a differential expression analysis. Typical single-cell

RNA-seq workflows calculate marker genes and provide both p-values and fold changes, as

in Seurat [34]. For each cell type, we take statistically significant marker genes (FDR < 0.05)

ranked by p-value. A weighted PCA is calculated on the expression matrix using a subset of

the marker genes by first scaling the expression matrix and multiplying each gene column by

its weight (the log fold-change) XW , where X is the sample by gene expression matrix and

W is a diagonal matrix with entries equal to log fold-change of the corresponding gene. The

bulk expression X should be corrected for global covariates so that the proportion estimates

do not reflect this global variation. The first PC calculated from XW is used as the estimate

of the cell type proportion. This allows cell type-specific genes to be prioritized over more

broadly expressed genes. Alternatively, if weights are not available, PCA can be run on the

matrix X and the first PC can be used.

In order to select marker genes, we iteratively run the above PCA procedure on a specified

range of markers (from 25 to 200) and calculate the ratio of the first eigenvalue to the second.

We then select the number of marker genes to use that maximizes this ratio. This procedure
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is similar to other methods which select the number of markers to use by maximizing the

condition number of the reference matrix [28].

2.3 Results

2.3.1 Overview of Bisque

A graphical overview of Bisque is presented in Figure 2.1. Our reference-based decomposition

model requires bulk RNA-seq counts data and a reference dataset with read counts from

single-cell RNA-seq. In addition, the single-cell data should be labeled with cell types to be

quantified. A reference profile is generated by averaging read count abundances within each

cell type in the single-cell data. Given the reference profile and cell proportions observed

in the single-cell data, our method learns gene-specific transformations of the bulk data to

account for technical biases between the sequencing technologies. Bisque can then estimate

cell proportions from the bulk RNA-seq data using the reference and the transformed bulk

expression data using non-negative least-squares (NNLS) regression.

2.3.2 Evaluation of decomposition performance in adipose tissue

We applied our method to 106 bulk RNA-seq subcutaneous adipose tissue samples col-

lected from both lean and obese individuals, where 6 samples have both bulk RNA-seq and

snRNA-seq data available (Table 2.1). Adipose tissue consists of several cell types, includ-

ing adipocytes which are expected to be the most abundant population. Adipose tissue

also contains structural cell types (i.e. fibroblasts and endothelial cells) and immune cells

(i.e. macrophages and T cells) [38]. These 5 cell type populations were identified from the

snRNA-seq data (Figure 2.2a).

We observed significant biases between the snRNA-seq and bulk RNA-seq data in samples

that had both data available. We found that the linear relationship between the pseudo-bulk

(summed snRNA-seq reads across cells) and the true bulk expression varied significantly by

each gene (Figure 2.4a). Specifically, we observed best fit lines relating these expression
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Figure 2.1: Graphical overview of the Bisque decomposition method. We integrate single-cell
and bulk expression by learning gene-specific bulk transformations (pictured on right) that
align the two datasets for accurate decomposition.

Tissue Number of
Samples

Bulk
RNA-seq
platform

snRNA-
seq
platform

snRNA-
seq
samples

Total
nuclei

Average
nuclei per
individual

Number of
cell types

Subcutaneous
adipose

106 Illumina
NovaSeq

10x
Genomics
Chromium

6 10,947 1,824 5

Dorsolateral
prefrontal
cortex

636 Illumina
HiSeq

10x
Genomics
Chromium

8 68,028 8,503 11

Table 2.1: Summary of snRNA-seq and bulk expression datasets used for benchmarking
Bisque and existing methods.
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ba

Figure 2.2: Cell types quantified in snRNA-seq experiments. (a) UMAP projection of adipose
snRNA-seq data with 5 identified cell type clusters labeled. (b) UMAP projection of cortex
snRNA-seq data with 11 identified clusters.

levels between technologies with a mean slope of roughly 0.30 and a variance in slope of

5.67. In our model, a slope of 1 would indicate no bias between technologies. We further

investigated whether gene expression differences between the bulk and snRNA-seq were the

same across individuals and experiments. Comparing log-ratios of RNA-seq to snRNA-seq

expression levels, we found that the majority of gene biases were preserved across individuals,

tissues, and experiments (R=0.75 across experiments) (Figure 2.3), providing evidence that

technological differences drive consistent gene expression differences across bulk and snRNA-

seq methods.

We performed simulations based on the adipose snRNA-seq data to demonstrate the

effect of technology-based biases between the reference profile and bulk expression on de-

composition performance. In these analyses, we benchmarked Bisque and three existing

methods (MuSiC, BSEQ-sc, and CIBERSORT). Briefly, we simulated bulk expression for 6

individuals by summing the observed snRNA-seq read counts. To model discordance between

the reference and bulk, we applied gene-specific linear transformations of the simulated bulk

expression. For each gene, the coefficient and intercept of the linear transformation were sam-
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Figure 2.3: Consistency of snRNA-seq to bulk RNA-seq expression log-ratios across individ-
uals, tissues, and experiments. (a) Heatmap depicting Pearson correlation between pairs of
individual’s log-ratios of snRNA-seq expression to bulk RNA-seq gene expression measured
in counts per million (CPM). A sample prefix of ‘A’ indicates an individual from the adipose
dataset and ‘C’ indicates an individual from the cortex dataset. Correlation is high between
individuals within experiments as well as between experiments/tissues, indicating the same
genes are over/under-expressed in snRNA-seq when compared to bulk RNA-seq. (b) Scat-
terplot of average snRNA-seq to bulk RNA-seq gene expression log-ratios across individuals
in adipose dataset (x-axis) and cortex dataset (y-axis). Each point corresponds to a gene de-
tected in both experiments, depicting the average ratio across all individuals for that tissue.
The snRNA-seq to bulk RNA-seq ratios vary across genes and correlate (R=0.747) between
these two experiments.
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pled from half-normal distributions with increasing variance. In this model, a higher variance

corresponds to a larger bias between sequencing experiments. While these transformations

closely mirrored the Bisque decomposition model, they utilized the true snRNA-seq counts

for each individual whereas Bisque learned these transformations using the reference profile

generated from averaging these counts across all cells. Hence, this simulation framework

introduced additional noise that Bisque does not entirely model. We evaluated decompo-

sition performance by comparing proportion estimates to the proportions observed in the

snRNA-seq data in terms of global Pearson correlation (R) and root mean squared deviation

(RMSD). Due to the small number of samples, we applied leave-one-out cross-validation to

predict the cell composition of each individual using the remaining snRNA-seq samples as

training data for each method. In these simulations, Bisque remained robust (R ≈ 0.85,

RMSD ≈ 0.07) at higher levels of simulated bias between the bulk and snRNA-seq-based

reference (Figure 2.4b).

Next, we performed this cross-validation benchmark on the observed bulk RNA-seq data

for these 6 individuals and found that Bisque (R = 0.923, RMSD = 0.074) provided signifi-

cantly improved global accuracy in detecting each cell type over existing methods (Table 2.2).

MuSiC (R = -0.111, RMSD = 0.427), BSEQ-sc (R = -0.113, RMSD = 0.432), and CIBER-

SORT (R = -0.131, RMSD = 0.416) severely underestimated the proportion of adipocytes

(the most abundant population in adipose tissue) while overestimating the endothelial cell

fraction. We also benchmarked CIBERSORTx [39], which employs a batch correction mode

to account for biases in sequencing technologies. While CIBERSORTx (R = 0.687, RMSD

= 0.099) outperformed existing methods, Bisque provided improved accuracy. It should be

noted that cell-specific accuracy is more informative than global R and RMSD; however,

these small sample sizes did not provide robust measures of within-cell-type performance

in this cross-validation framework. We were able to slightly improve the number of de-

tected cell populations by MuSiC, BSEQ-sc, and CIBERSORT when we considered only

snRNA-seq reads aligning to exonic regions of the transcriptome, indicating that intronic

reads introduced increasing discrepancy between snRNA-seq and bulk RNA-seq in the con-
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Figure 2.4: The effect of discrepancies between a single-cell based reference and bulk expres-
sion on decomposition. (a) Observed discrepancies in real data between single-nucleus and
bulk expression for selected marker genes (left) for six individuals. Each color corresponds
to a gene. On the left, observed bulk expression on the x-axis is plotted against the pseudo-
bulk expression on the y-axis, where pseudo-bulk expression is calculated by summing the
single-cell based reference with cell proportions as weights. On the right, the Bisque trans-
formation of bulk expression is on the x-axis. Bisque recovers a one-to-one relationship by
transforming the bulk expression for improved decomposition accuracy (right). (b) Sim-
ulation of bulk expression for six individuals based on true adipose snRNA-seq data with
increasing gene-specific differences. These differences are modeled as a linear transformation
of the summed snRNA-seq counts with coefficient and intercept sampled from Half-Normal
distributions with parameter as indicated on the x-axis. At σ = 0, the simulated bulk is
simply the sum of the observed single-cell read counts. Performance on y-axis measured
in global Pearson correlation (R) (left) and root mean squared deviation (RMSD) (right).
Shaded regions indicate 95% confidence intervals based on bootstrapping with central lines
indicate the mean observed value. Bisque remains robust to increasing gene-specific variation
between single-cell and bulk expression levels.
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Method R RMSD

Bisque 0.923 ± 0.064 0.074 ± 0.034

CIBERSORTx 0.687 ± 0.450 0.099 ± 0.046

MuSiC -0.111 ± 0.182 0.427 ± 0.058

BSEQ-sc -0.113 ± 0.180 0.432 ± 0.058

CIBERSORT -0.131 ± 0.176 0.416 ± 0.059

Table 2.2: Leave-one-out cross-validation in subcutaneous adipose using 6 samples with
snRNA-seq and bulk RNA-seq data available. Proportions based on snRNA-seq were used
as a proxy for the true proportions. Performance measured in Pearson correlation (R) and
root-mean-square deviation (RMSD) across all 5 identified cell types in each sample.
Reported values were averaged across the 6 samples with standard deviation indicated.

text of decomposition. However, given that a significant portion of the nuclear transcriptome

consists of pre-mRNA, this filtering process removed over 40 percent of cells detected in the

snRNA-seq data. Moreover, Bisque provided improved accuracy over existing methods using

this exonic subset of the snRNA-seq data.

We then applied these decomposition methods to the remaining 100 bulk samples and

found that the distribution of cell proportion estimates produced by Bisque were most concor-

dant with the expected distribution inferred from the limited number of snRNA-seq samples

and previously reported proportions [40, 41] (Figure 2.5a). While these benchmarks pro-

vided a measure of calibration (i.e. the ability to detect cell populations in expected ranges),

they did not provide measurements of cell-specific proportion accuracy across individuals.

In order to evaluate cell-specific accuracy, we replicated previously reported associations be-

tween cell proportions and measured phenotypes. Specifically, we compared cell proportion

estimates from each method to body mass index (BMI) and Matsuda index, a measure of

insulin resistance. We measured the significance of these association accounting for age,

age-squared, sex, and relatedness.

Obesity is associated with adipocyte hypertrophy, the expansion of the volume of fat

cells [42]; thus, we expected a negative association between adipocyte proportion and BMI.

Bisque, MuSiC and CIBERSORTx produced adipocyte proportion estimates that replicate

this behavior, while BSEQ-sc and CIBERSORT were unable to detect this cell population

(Figure 2.5b). The adipocyte proportion estimates produced by Bisque (p = 0.030) and
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Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque -0.178 0.090 -0.282 0.126 -2.240 0.030

MuSiC 0.038 0.719 -0.081 0.108 -0.754 0.455

BSEQ-sc - - - - - -

CIBERSORT - - - - - -

CIBERSORTx -0.300 0.004 -0.361 0.100 -3.624 0.001

BisqueMarker -0.227 0.030 -0.304 0.096 -3.154 0.003

Table 2.3: Association of adipocyte proportion with BMI. A negative association was ex-
pected.

Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque 0.389 < 0.001 0.460 0.099 4.671 < 0.001

MuSiC 0.065 0.540 0.034 0.110 0.308 0.760

BSEQ-sc 0.238 0.022 0.278 0.092 3.013 0.004

CIBERSORT 0.239 0.022 0.162 0.102 1.597 0.118

CIBERSORTx 0.273 0.009 0.224 0.102 2.192 0.034

BisqueMarker 0.296 0.004 0.253 0.103 2.465 0.018

Table 2.4: Association of macrophage proportion with BMI. A positive association was
expected.

CIBERSORTx (p = 0.001) had a significant negative association with BMI (Table 2.3). In

addition, macrophage abundance has been shown to increase in adipose tissue with higher

levels of obesity, concomitant with a state of low grade inflammation [43]. Each method

detected macrophage populations that positively associated with BMI; however, only Bisque

(p < 0.001), BSEQ-sc (p = 0.004) and CIBERSORTx (p = 0.049) reached significance (Table

2.4).

T cells were the least abundant cell type population identified from the snRNA-seq data,

constituting around 4 percent of all sequenced nuclei. The abundance of T cells has been

observed to positively correlate with insulin resistance [44]. Thus, we compared decomposi-

tion estimates for T cell proportions to Matsuda index. As a lower Matsuda index indicates

higher insulin resistance, we expect a negative association between T cell proportion and

Matsuda index. Proportion estimates produced by Bisque and CIBERSORTx followed this
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Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque -0.195 0.075 -0.387 0.116 -3.328 0.002

MuSiC - - - - - -

BSEQ-sc - - - - - -

CIBERSORT - - - - - -

CIBERSORTx -0.317 0.003 -0.230 0.111 -2.068 0.046

BisqueMarker -0.294 0.007 -0.188 0.100 -1.874 0.069

Table 2.5: Association of T cell proportion with Matusda index, a measure of insulin resis-
tance. A negative association was expected. An additional covariate accounting for diabetes
status was added to the LMM due to previously reported significant associations with Mat-
suda index.

trend while the remaining existing methods did not identify T cells in the bulk samples (Fig-

ure 2.5c). We found this association significant for Bisque (p < 0.001) and CIBERSORTx

(p = 0.047) (Table 2.5) after correcting for diabetes status, since Matsuda index may not be

informative in these individuals [45].

2.3.3 Evaluation of decomposition performance in cortex tissue

We also benchmarked these decomposition methods using expression data collected from the

dorsolateral prefrontal cortex (DLPFC). This dataset was generated by the Rush Alzheimer’s

Disease (AD) Center [46] and includes 636 postmortem bulk RNA-seq samples. The Religious

Orders Study and Rush Memory and Aging Project were approved by an IRB of Rush

University Medical Center. Both bulk RNA-seq and snRNA-seq data were collected from

8 of the individuals (Table 2.1). Using the same pipeline we used to process the adipose

dataset, we identified 11 clusters: 3 neuronal subtypes, 2 interneuronal subtypes, 2 astrocyte

subtypes, oligodendrocytes, oligodendrocyte progenitor cells, and microglia (Figure 2.2b).

We observed a higher overlap in marker genes for these clusters than in those identified in

the adipose dataset (average of 10% of marker genes shared between clusters in DLPFC

compared to 3% in adipose).

We again applied leave-one-out cross-validation on the 8 individuals with both RNA-
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Figure 2.5: Decomposition benchmark in human subcutaneous adipose tissue. (a) Compar-
ison of decomposition estimates from 100 individuals with estimates from 6 individuals with
snRNA-seq data available. (b-c) Scatterplots comparing decomposition estimates with mea-
sured phenotypes in 100 individuals. Reported ‘rho’ corresponds to Spearman correlation
and p-values indicate the significance of these correlations, with an asterisk denoting signif-
icance after correction for covariates (sex, age, age-squared, and relatedness). CIBERSORT
and BSEQ-sc are not shown since they did not detect these cell populations. (b) Adipocyte
proportion has been observed to negatively correlate with BMI so we expected a negative
correlation. (c) T cell proportion has previously been reported to positively correlate with
insulin resistance. Matsuda index decreases with higher insulin resistance so we expected a
negative correlation.
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Method R RMSD

Bisque 0.924 ± 0.062 0.029 ± 0.010

CIBERSORTx 0.671 ± 0.153 0.070 ± 0.019

MuSiC -0.192 ± 0.107 0.173 ± 0.013

BSEQ-sc 0.098 ± 0.216 0.120 ± 0.023

CIBERSORT -0.281 ± 0.049 0.197 ± 0.012

Table 2.6: Leave-one-out cross-validation in dorsolateral prefrontal cortex using 8 samples
with snRNA-seq and bulk RNA-seq data available. Proportions based on snRNA-seq were
used as a proxy for the true proportions. Performance measured in Pearson correlation (R)
and root-mean-square deviation across all 11 identified cell types in each sample. Reported
values were averaged across the 8 samples with standard deviation indicated.

seq and snRNA-seq data available. In this example, randomly sampled 25% of the nuclei

in the snRNA-seq data to accommodate CIBERSORTx (which is currently web-based and

restricts the size of files that can be processed). Bisque was able to detect each cell population

identified from the snRNA-seq data with high global accuracy (R = 0.924, RMSD = 0.029)

while MuSiC (R = -0.192, RMSD = 0.173), BSEQ-sc (R = 0.098, RMSD = 0.120), and

CIBERSORT (R = -0.281, RMSD = 0.197) did not detect a number of cell populations

(Table 2.6). Bisque also provided higher accuracy than CIBERSORTx (R = 0.671, RMSD

= 0.070). However, we found that the performance of the existing methods improved when

estimates with subtypes were summed together. While each method was able to quantify

major cell populations after merging subtypes, Bisque was able to distinguish between these

closely related cell populations. Interestingly, we found that in both adipose and DLPFC,

endothelial cell proportions were overestimated by each of the existing methods.

We applied these decomposition methods to the remaining 628 individuals and compared

the distribution of estimates to the proportions observed in the 8 snRNA-seq samples. We

found that Bisque was able to detect each cell population and produced estimates that were

closest in mean to the snRNA-seq observations (Figure 2.6a). The increased accuracy of

Bisque over existing methods persisted when we merged closely related subtypes. Moreover,

immunohistochemistry (IHC) analyses on 70 of these samples found similar proportions of

major cell populations [47], confirming the relative accuracy of snRNA-seq based estimates

of cell proportions.
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Figure 2.6: Decomposition benchmark in human dorsolateral prefrontal cortex tissue. (a)
Comparison of decomposition estimates from 628 individuals with estimates from 8 individu-
als with snRNA-seq data available. (b-c) Violin plots depicting association of decomposition
estimates aggregated into major cell types with measured phenotypes in 628 individuals. Re-
ported ‘rho’ corresponds to Spearman correlation and p-values indicate the significance of
these correlations, with an asterisk denoting both an expected effect direction and signifi-
cance after correction for covariates. (b) Neuronal degeneration has been observed in patients
diagnosed with Alzheimer’s disease (AD). Cognitive diagnostic category measures a physi-
cian’s diagnosis of cognitive impairment (CI), with 0 indicating no CI and 4 indicating a
confident AD diagnosis. We expected a negative correlation between neuron proportion and
cognitive diagnostic category. (c) Microglia proportion has been observed to positively cor-
relate with increased severity of AD symptoms, such as neurofibrillary tangles. Braak stage
provides a semiquantitative measure of tangle severity, so we expected an overall positive
correlation between microglia proportion and Braak stage.
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Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque -0.167 < 0.001 -0.145 0.039 -3.705 < 0.001

MuSiC -0.167 < 0.001 -0.147 0.039 -3.742 < 0.001

BSEQ-sc -0.142 < 0.001 -0.053 0.039 -1.341 0.180

CIBERSORT -0.173 < 0.001 -0.155 0.039 -3.971 < 0.001

CIBERSORTx -0.162 < 0.001 -0.127 0.039 -3.237 0.001

BisqueMarker -0.141 < 0.001 -0.142 0.039 -3.645 < 0.001

Table 2.7: Association of neuron proportion with cognitive diagnosis category. A negative
association was expected.

Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque 0.094 0.018 0.118 0.037 3.220 0.001

MuSiC 0.057 0.151 0.019 0.037 0.509 0.611

BSEQ-sc -0.190 < 0.001 -0.166 0.037 -4.525 < 0.001

CIBERSORT 0.003 0.943 -0.005 0.037 -0.137 0.891

CIBERSORTx 0.109 0.006 0.056 0.037 1.517 0.130

BisqueMarker 0.092 0.021 0.054 0.037 1.444 0.149

Table 2.8: Association of microglia proportion with Braak stage, a measure of neurofibrillary
tangles. A positive association was expected.

Again, to determine cell-specific decomposition accuracy, we replicated known associa-

tions between cell type proportions and measured phenotypes in the 628 individuals. For

these analyses, we compared cell proportion estimates to each individual’s Braak stage and

physician cognitive diagnostic category at time of death. Braak stage is a semiquantitative

measure of neurofibrillary tangles, ranging in value from 0 to 5 with increasing severity.

The cognitive diagnostic category provides a semiquantitative measure of dementia severity,

where a code of 1 indicates no cognitive impairment and 5 indicates a confident diagnosis

of AD by physicians. We determined the significance of these associations based on t-values

estimated by a linear regression model that accounted for age, age-squared, and sex.

Neuronal death is a hallmark symptom of AD [48]. Therefore, we expected to find a neg-

ative association between cognitive diagnosis and neuron proportion. We found that each

decomposition method provides estimates of total neuron proportion that tend to decrease
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with cognitive diagnostic category (Figure 2.6b). Each method generates proportions with

negative association with cognitive diagnosis. Each method, excluding BSEQ-sc, reached

significance in this model (p ≤ 0.003 for each method) (Table 2.7). As another example,

we compared each individual’s Braak stage to their estimated proportion of microglia, a

relatively small cell population that constituted roughly 5 percent of the sequenced nuclei.

Microglia activation has been observed to increase with AD severity [49]. We used Braak

stage as a proxy for AD severity and expected a positive association between microglia pro-

portion and Braak stage. Bisque and MuSiC provided estimates that follow this expected

trend (Figure 2.6c). Only Bisque produced estimates with a significant positive association

(p = 0.001) (Table 2.8). Interestingly, we observe a decrease in microglia proportions esti-

mated by Bisque in Braak stage 6 individuals which has been previously observed in AD

patients [50].

2.3.4 Runtime comparisons of reference-based decomposition methods

Given the large amounts of transcriptomic data that are becoming available, we also bench-

marked these decomposition methods in terms of runtime. In the subcutaneous adipose

dataset, which included 100 bulk RNA-seq samples and 6 snRNA-seq samples with about

1,800 nuclei sequenced per individual, Bisque was able to estimate cell proportions effi-

ciently compared to existing methods. Bisque (1 second) and MuSiC (1 second) provided

decomposition estimates faster than BSEQ-sc (26 seconds), CIBERSORT (27 seconds), and

CIBERSORTx (389 seconds) (Figure 2.7a). Bisque also provided improved efficiency in

processing the reduced DLPFC dataset, which included 628 bulk RNA-seq samples and 8

snRNA-seq samples with around 2,125 nuclei per individual. Bisque (4 seconds) and Mu-

SiC (10 seconds) estimated cell proportions relatively quickly compared to BSEQ-sc (273

seconds), CIBERSORT (298 seconds), and CIBERSORTx (6,566 seconds) (Figure 2.7b).
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Figure 2.7: Runtime comparisons in log-transformed seconds for benchmarked reference-
based decomposition methods. (a) Runtime for subcutaneous adipose dataset, which in-
cluded 100 RNA-seq samples and 6 snRNA-seq samples with around 1,800 nuclei per indi-
vidual. (b) Runtime for dorsolateral prefrontal cortex dataset, which included 628 RNA-seq
samples and 8 snRNA-seq samples. We benchmarked each method using around 2,125 nuclei
per snRNA-seq sample.

2.3.5 Robustness of the reference-based decomposition model

Our reference-based decomposition method is based on the assumption that cell populations

are equally represented in single-cell and bulk RNA sequencing of the same tissue samples.

Since this assumption may be violated [51], we explored the performance of our model as

we relaxed this assumption in simulations. First, we simulated snRNA-seq data where cell

proportions were increasingly biased. Using the DLPFC snRNA-seq data, we downsampled

or upsampled the cells identified as microglia at varying levels and performed decomposition.

Indeed, the absolute estimates produced by Bisque propagated these shifts in snRNA-seq

proportions. However, we found that our estimates maintained their expected positive asso-

ciation with Braak stage, evidence for the correlation between these estimates and the true

microglia proportions (Figure 2.8a). Given these results, we suggest that users take note of

this behavior if both the mean abundances are important for downstream analysis and the

single-cell reference data is known to be significantly biased against specific cell populations

of interest.

Next, we simulated a situation where an unknown cell population contributes to bulk

expression but is not represented in the snRNA-seq reference data. For situations where
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this unknown contribution varies across the bulk dataset, we simulated bulk expression

by mixing the observed bulk expression for the DLPFC dataset with increasing amounts

of expression observed in the adipose dataset. To determine the effect of unknown cell

populations on our model, we analyzed the distribution of residual norms produced by the

method. These residual norms provide a measure of the difference between the vector of

observed bulk and expression reference weighted by the estimated proportions across all

genes for each individual. As we increased the contribution from unknown cell types, the

residual norm values tend to increase (Figure 2.8b). In our simulation framework, this

variability in unknown cell type contribution could be qualitatively identified by the presence

of a multimodal residual norm distribution.

Given that single-cell datasets still remain relatively small compared to bulk datasets, we

also explored the impact of sample size in the reference single-cell data on the performance

of Bisque. In the DLPFC dataset, we saw a drop in performance when using less than

four randomly selected snRNA-seq samples (Figure 2.8c). This threshold is likely to differ

between experiments, though we recommend at least three single-cell samples to generate

reference data.

Finally, since marker gene selection can vary between studies, we were interested in the

performance of Bisque as we varied the number of marker genes. Again, we measured cell type

proportion estimation performance for microglia in the DLPFC dataset by correlating the

estimates with Braak stage, which is known to have a positive association. We recalculated

this correlation as we removed marker genes for this cell type. We removed marker genes

in order of both decreasing and increasing log-fold-change, which provides a measure of the

importance of marker genes for identifying this cell type. In both procedures, we observe

that as we remove an increasing percentage of the 102 identified marker genes, performance

remains stable until a shared drop off point around 75% (Figure 2.8d). Since we observed this

trend in both marker gene removal schemes, we assume that a relatively few number of marker

genes, regardless of their log-fold-change magnitude, can be used to accurately estimate cell

type proportions. These results suggest that as long as a core set of marker genes are present,
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variations in less important marker genes will have little effect on downstream analyses.

2.3.6 Marker-based decomposition using known cell type marker genes

While a reference profile from snRNA-seq can help to decompose bulk level gene expression,

it may not be available for the same data set. The majority of bulk RNA-seq data sets do

not have corresponding snRNA-seq data in the same set of individuals. However, marker

gene information from prior experiments can still be applied to distinct expression data sets

of the same tissue. The basis of most decomposition methods relies on the logic that as the

proportion of a cell type varies across individuals, the expression of its marker genes will

tend to correlate in the same direction as its cell type proportion. This linear co-variation

can be captured in a principal components analysis (PCA). Under the same argument,

the more cell type-specific a marker gene is, the more its expression will reflect its cell

type proportion. These observations form the basis for BisqueMarker, a weighted PCA-

based (wPCA) decomposition approach. Genes that are more specifically expressed within

a cell type will provide more information than genes with shared expression across cell

types. To estimate cell type proportions without the use of cell type-specific gene expression

information, we applied wPCA to bulk-level adipose tissue expression.

For each cell type, we extracted the first PC from a wPCA of the expression matrix of

its markers. The expression matrix was corrected for the first global expression PC as a

covariate so that wPCA estimates would not reflect technical variation. We first confirmed

that these genes were distinct across cell types. If 2 cell types share a high proportion

of marker genes, the wPCA estimates from bulk RNA-seq will correlate highly. We then

investigated whether the second or third PC could have represented cell type proportions.

The percent of variance explained by the first PC was typically 30-60% across adipose cell

types, and additionally, over 90% of the markers correlated in the same direction as the first

PC. In contrast, roughly 50-70% of markers correlated in the same direction as the second

or third PC. As performed for reference-based decomposition, we correlated phenotypes

with cell type proportions estimated by BisqueMarker. We identified the same associations
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Figure 2.8: Robustness of the reference-based decomposition model. (a) Microglia cells in
the DLPFC snRNA-seq data were upsampled or downsampled at various percentages, de-
noted as bias on the x-axis. Decomposition performance, measured as the estimated effect
size of microglia proportion on Braak stage (which is expected to be positive) on the y-axis
was consistent for each method as the bias in the snRNA-seq reference varied (left). The
simulated bias propagates to the estimated proportions for Bisque(right). Shaded regions
indicate standard error of estimates. (b) In order to model the severity of the sample dis-
cordance due to unknown cell fractions, we compared the amount of adipose contamination,
denoted as unknown proportion on the x-axis, to the residuals from the Bisque model (y-
axis). (c) Leave-one-out cross-validation performance in the DLPFC dataset after utilizing
random subsamples of the snRNA-seq data as a reference. Performance measured in terms
of Pearson correlation (left) and RMSD (right). Shaded regions indicate 95% confidence
interval. (d) At each amount of marker genes removed (x-axis), performance was measured
as the effect size of the estimated microglia proportion on Braak stage (y-axis). Genes were
removed in order of decreasing (left) or increasing (right) log-fold-change. Shaded regions
indicate standard error of estimates.
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as with reference-based decomposition, demonstrating its validity when a reference is not

available (Tables 2.3, 2.4, 2.5). Similarly, we observed the same trends between estimated

cell type abundances and phenotypes as we did using our reference-based method in the

DLPFC cohort (Tables 2.7, 2.8).

2.4 Discussion

Bisque effectively leverages single-cell information to decompose bulk expression samples,

outperforming existing methods in datasets with snRNA-seq data available. In simulations,

we demonstrated that the decomposition accuracy of Bisque is robust to increasing variation

between the generation of the reference profile and bulk expression, which is a significant

issue when comparing snRNA-seq and bulk RNA-seq data. In observed bulk expression,

our reference-based method accurately estimates cell proportions that are consistent with

previously reported distributions and reliably detects rare cell types. We found that these

estimates consistently follow expected trends with measured phenotypes, suggesting that

cell-specific estimates of proportion are sufficiently accurate to extract relevant biological

signals. In addition, differences in tissue structure can lead to significant differences in the

quality of single-cell expression data [52]. We demonstrated the improved performance of

our method in adipose and DLPFC, two distinct tissues, suggesting that Bisque is robust

across different tissue types.

The cell type proportion estimates determined by Bisque may be utilized to effectively

identify cell-type-specific interactions, such as expression quantitative trait loci (eQTLs),

and adjust for confounding effects from variability in cell populations. With this reference-

based approach, single-cell sequencing of a subset of samples from large-scale bulk expression

cohorts can provide high power to detect cell-specific associations in complex phenotypes and

diseases.

However, we note that there are limitations to this reference-based method that users

should consider. First, if the number of individuals with single-cell data available is small,
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the reference profile and gene-specific transformations may become unreliable. In addition,

a key assumption of our transformation framework is that single-cell based estimates of

cell proportions accurately reflect the true proportions we wish to estimate. As a result of

this assumption, Bisque provides estimates of cell proportions reported by the single-cell

technology used to generate the reference data. Given that snRNA-seq can provide less bias

in isolating specific cell types compared to scRNA-seq [53, 54], we expect these estimates to be

useful for downstream analyses such as those previously discussed. Nevertheless, the accuracy

of Bisque may decrease if the proportion of cell types captured by single-cell experiments

differs significantly from the true physiological distributions. Therefore, we advise users to

take caution if there is a known significant bias in the single-cell measurements of a tissue,

such as severe underrepresentation of a cell type of interest, that can affect downstream

analysis. Our results demonstrate that even with these limitations, Bisque can be used to

provide cell-type specific biological insight in relevant datasets.

In cases where these described issues may be significant, BisqueMarker provides cell type

abundance estimations using only known marker genes. While this reference-free method

may be less accurate than reference-based methods, it does not depend on single-cell based

estimates of cell proportions or expression profiles, but rather on the fact that the expression

in certain genes differs across different cell types; moreover, this method also does not model

explicitly the expression level, and it is thus robust to biases in the single cell sequencing

protocol. We found that BisqueMarker estimates followed expected trends with measured

phenotypes; however, it should be noted that this method estimates relative differences

in abundances that cannot be compared across cell types. Also, given the semi-supervised

nature of this method, these cell type abundance estimates may include signals from technical

or other biological variation in the data. Therefore, we highly suggest applying this method

to data that is properly normalized with sources of undesired variation removed. Bisque is

available as an R package on CRAN (BisqueRNA) and at https://github.com/cozygene/

bisque.
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CHAPTER 3

An efficient linear mixed model framework for

meta-analytic association studies across multiple

contexts

3.1 Background

Over the last decade, the scale of genomic datasets has steadily increased. These datasets

have grown to the size of hundreds of thousands of individuals [1] with millions soon to come

[55]. Similarly, datasets for transcriptomics and epigenomics are growing to thousands of

samples [56, 2, 57]. These studies provide valuable insight into the relationship between our

genome and complex phenotypes [4].

Identifying these associations requires statistical models that can account for biases in

study design that can negatively influence results through false positives or decreased power.

Linear mixed models (LMMs) have been a popular choice for controlling these biases in ge-

nomic studies, utilizing variance components to account for issues such as population strati-

fication [58]. These models can also be used to analyze studies with repeated measurements

from individuals, such as replicates or measurements across different contexts. Meta-Tissue

[59] is a method that applies this model in the context of identifying expression quantitative

trait loci (eQTLs) across multiple tissues. In this framework, gene expression is measured

in several tissues from the same individuals and the LMM is utilized to test the association

between these values and genotypes. A meta-analytic approach is used to combined effects

across multiple tissues to increase the power of detecting eQTLs. This approach has also

been applied to increase power in genome-wide association studies (GWAS) by testing the
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association between genotypes and multiple related phenotypes [60].

However, these approaches are computationally intensive. Existing approaches for fitting

these models are cubic in time complexity with respect to the number of samples across all

contexts [58, 61]. Here, we present an ultra-fast LMM framework specifically for multiple-

context studies. Our method, mcLMM, is linear in complexity with respect to the number

of individuals and allows for statistical tests in a manner of hours rather than days or years

with existing approaches. To illustrate the computational efficiency of mcLMM, we compare

the runtime and memory usage of our method with EMMA and GEMMA [58, 61], two

popular approaches for fitting these models. We further apply mcLMM to identify a large

number of eQTLs in the Genotype-Tissue Expression (GTEx) dataset [2] and compare our

results from METASOFT [62], which performs the meta-analysis of the mcLMM output, to

a recent meta-analytic approach known as mash [63]. Finally, to demonstrate the practicality

of mcLMM on modern datasets, we perform a multiple-phenotype GWAS combining over a

million observations sampled from hundreds of thousands of individuals in the UK Biobank

[1] within hours.

3.2 Methods

3.2.1 Linear Mixed Model

For multi-context experiments with n individuals, t contexts, and c covariates, we fit the

following linear mixed model

y = Xβ + u + e (3.1)

where u ∼ N(0, σ2
gK), e ∼ N(0, σ2

eI), y ∈ Rnt is a vectorized representation of the responses,

X ∈ Rnt×tc is the matrix of covariates, β ∈ Rtc is the vector of estimated coefficients,

K ∈ Rnt×nt is a binary matrix where Ki,j = 1 indicates that sample i and sample j in

Y come from the same individual, and I ∈ Rnt×nt is an identity matrix. X is structured
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such that both an intercept and the covariate effects are fit within each context. For sake

of simplicity, dimensions of nt assume that there is no missing data; however, this is not

a requirement for the model. We note that this definition of K models within-individual

variability as a random-effect, while within-context or across-individual variability is not

included.

The full and restricted log-likelihood functions for this model are

lF (y; β, σg, δ) =
1

2

[
−N log (2πσ2

g)− log(|H|)− 1

σ2
g

(y −Xβ)TH−1(y −Xβ)

]
(3.2)

lR(y; β, σg, δ) = lF (y; β, σg, σe) +
1

2

[
tc log(2πσ2

g) + log (|XTX|)− log (|XTH−1X|)
]

(3.3)

where N is the total number of measurements made across the individuals and contexts,

δ = σ2
e

σ2
g
, and H = K+δI [64]. These likelihood functions are maximized with the generalized

least squares estimator β̂ = (XTH−1X)−1XTH−1y and σ̂2
g = R

N
in the full log-likelihood and

σ̂2
g = R

N−tc in the restricted log-likelihood, where R = (y −Xβ̂)TH−1(y −Xβ̂). Our goal is

to maximize these likelihood functions to estimate the optimal δ̂.

3.2.2 Likelihood refactoring in the general case

The EMMA algorithm optimizes these likelihoods for δ by refactoring them in terms of con-

stants calculated from eigendecompositions of H and SHS, where S = I −X(XTX)−1XT ,

that allow linear complexity optimization iterations with respect to the number of indi-

viduals [58]. The GEMMA algorithm further increases efficiency by replacing the SHS

eigendecomposition with a matrix-vector multiplication [61]. Both approaches require the

eigendecomposition of at least one N by N matrix which is typically cubic in complexity.

Here, we show that our specific definition of K as a binary indicator matrix allows us to

refactor these likelihood functions without any eigendecomposition steps. It should be noted

that EMMA and GEMMA can fit this model for any positive semidefinite K, while mcLMM

is restricted to the definition described above.
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We note that previous work has shown similar speedups when the matrix K is low rank

and has a block structure as described here [65]. This work, FaST-LMM, shows that the

likelihood functions can be computed in linear time with respect to the number of individuals

after singular value decomposition of a matrix with complexity that is also linear with respect

to the number of individuals. We improve upon these methods by recognizing that the

eigenvalues of the K matrix are known beforehand, which allows for further efficiency in

fitting this model. Furthermore, the FaST-LMM model assumes that all individuals within

each context share additional covariance while mcLMM assumes that all contexts observed

within an individual share additional covariance.

First, note that H = K + δI is a block diagonal matrix. Specifically, each block cor-

responds to an individual i with ti contexts measured, where ti is less than or equal to

t depending on the number of contexts observed for individual i. Each block is equal to

[1ti + δIti ] ∈ Rti×ti , where 1ti is a ti by ti matrix composed entirely of 1. These properties

of H make its eigendecomposition and inverse directly known.

The eigenvalues of a block diagonal matrix are equal to the union of the eigenvalues of

each block. Moreover, the eigenvalues of [1ti + δIti ] are ti + δ with multiplicity 1 and δ with

multiplicity ti − 1. Therefore, H has eigenvalues δ with multiplicity N − n and ti + δ for

each ti. This provides our first refactoring

log (|H|) = (N − n) log (δ) +
n∑
i=1

log (ti + δ) (3.4)

The inverse of a block diagonal matrix can also be computed by inverting each block

individually. Moreover, using the Sherman-Morrison formula [66], the inverse of [1ti + δIti ]

is known

(1ti + δIti)
−1 = − 1

t+ δ
1ti +

1

δ
Iti (3.5)

Given each entry of H−1, we can show algebraically that
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XTH−1X =
1

δ
(E −D) (3.6)

Ei,j =


∑

ind∈f(i)
xind,g(i)xind,g(j) if f(i) = f(j)

0 if f(i) 6= f(j)

(3.7)

Di,j =
∑

g∈groups

1

tg + δ

∑
ind∈f(i),f(j),g

xind,g(i)xind,g(j) (3.8)

where f(i) = i%t (modulo operator) provides the context of a given 0-indexed column of

X, g(i) = i//t (integer division) provides the covariate of a given index. A group g defines

the set of individuals that share the same number of measured contexts tg. The expression

“ind ∈ f(i), f(j), g” indicates the set of all individuals that have tg measured contexts that

include context i and j.

Note that with all values independent of δ pre-computed, specifically the sum of covariate

interactions within the sets of individuals indicated above, E is constant with respect to δ

and each entry of the symmetric matrix D can be calculated in linear time with respect to

the number of groups, which is less than or equal to the number of contexts t. For a given

δ, we can compute XTH−1X in O(t(tc)2) time complexity. Both the restricted and full log-

likelihoods require the calculation of (XTH−1X)−1. The restricted log-likelihood requires

the additional calculation of log (|XTH−1X|). To calculate both of these terms, we perform

a Cholesky decomposition of XTH−1X = LL∗, where ∗ indicates the conjugate transpose.

Given this decomposition, we can compute

log (|XTH−1X|) =
tc∑
i=1

2 log(Li,i) (3.9)

(XTH−1X)−1 = (L∗)−1L−1 (3.10)

These operations can be done in O((tc)3) time complexity.

Let P (X) denote a projection matrix and M(X) = (I − P (X)). Note that both P (X)
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and M(X) are idempotent. The term remaining term in the likelihood functions, R, can be

reformulated as follows

y −Xβ̂ = y −X(XTH−1X)−1XTH−1y

= (I −X(XTH−1X)−1XTH−1)y

= (I − P (X))y

= M(X)y

(3.11)

M(X)TH−1 = (I −X(XTH−1X)−1XTH−1)TH−1

= (I −H−1X(XTH−1X)−1XT )H−1

= H−1 −H−1X(XTH−1X)−1XTH−1

= H−1(I −X(XTH−1X)−1XTH−1)

= H−1M(X)

(3.12)

R = (y −Xβ̂)TH−1(y −Xβ̂)

= yTM(X)TH−1M(X)y

= yTH−1M(X)M(X)y

= yTH−1M(X)y

= (yTH−1y)− (yTH−1X(XTH−1X)−1XTH−1y)

= a− bT (XTH−1X)−1b

= a− bT (L∗)−1L−1b

(3.13)

The scalar a and vector b are a function of δ and can be algebraically formulated as

a =
1

δ

((
N∑
i=1

y2
i

)
−

( ∑
g∈groups

1

tg + δ

∑
ind∈g

(
∑

yind)2

))
(3.14)
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bi =
1

δ

 ∑
ind∈context(i)

xind,g(i)yind,f(i)

−
 ∑
g∈groups

1

tg + δ

∑
ind∈f(i),g

xind,g(i)(
∑

yind)


(3.15)

where
∑

yind indicates the sum of responses across all contexts for an individual. With

values independent of δ pre-calculated, a and b can be calculated in linear time with respect

to the number of groups.

Note that Equations 3.16 and 3.17 remove terms that are independent of δ since they are

not required for finding its optimal value, indicated by the ≈ symbol. We can reformulate

the entire likelihood functions as follows

lF (y; β, σg, δ) =
1

2

[
−N log (2πσ2

g)− log(|H|)− 1

σ2
g

(y −Xβ)TH−1(y −Xβ)

]
=

1

2

[
−N log (2π

R

N
)− log(|H|)−N

]
=

1

2

[
−N log (2π

R

N
)−

(
(N − n) log (δ) +

n∑
i=1

log (ti + δ)

)
−N

]

≈ −N log (a− bT (L∗)−1L−1b)−

(
(N − n) log (δ) +

n∑
i=1

log (ti + δ)

)
(3.16)

lR(y; β, σg, δ) = lF (y; β, σg, σe) +
1

2

[
tc log(2πσ2

g) + log (|XTX|)− log (|XTH−1X|)
]

≈ (tc−N) log (a− bT (L∗)−1L−1b)

−

(
(N − n) log (δ) +

n∑
i=1

log (ti + δ)

)
−

tc∑
i=1

2 log(Li,i)

(3.17)

These likelihoods are maximized using the optimize function in R. Each likelihood eval-

uation has a time complexity of O((tc)3 + n).
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3.2.3 Likelihood refactoring with no missing data

When there is no missing data, the likelihood functions can be further simplified. Note that

in this case, N = nt and all ti = t. Hence,

log (|H|) = (N − n) log (δ) +
n∑
i=1

log (ti + δ)

= (nt− n)log(δ) + n log (t+ δ)

(3.18)

If the input terms y, X, and K are permuted resulting in samples being sorted in order

of context, and the covariates in X are sorted in order of context, we can decompose H and

X into

H = (1t + δIt)⊗ In (3.19)

X = It ⊗Xdense (3.20)

where ⊗ indicates the Kronecker product and Xdense ∈ Rn×c is a typical representation of the

covariates for each individual without multiple contexts (i.e. samples as rows and covariates

as columns). Utilizing the properties of Kronecker products, we can perform the following

reformulation

(XTH−1X)−1 = ((It ⊗XT
dense)((1t + δIt)⊗ In)−1(It ⊗Xdense))

−1

= ((1t + δIt)
−1 ⊗XT

denseXdense)
−1

= (1t + δIt)⊗ (XT
denseXdense)

−1

(3.21)
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log
(
|(XTH−1X)−1|

)
= log (|(1t + δIt)⊗ (XT

denseXdense)
−1|)

= log (|(1t + δIt)|c|(XT
denseXdense)

−1|t)

= c log (|(1t + δIt)|) + t log (|(XT
denseXdense)

−1|)

= c log

(
1

(t+ δ)δt−1

)
+ t log (|(XT

denseXdense)
−1|)

= c (− log (t+ δ)− (t− 1) log (δ)) + t log (|(XT
denseXdense)

−1|)

(3.22)

Note that the remaining determinant in Equation 3.22 will not need to be calculated since

it is independent of δ. Next, we show that β̂ is independent of δ.

β̂ = (XTH−1X)−1XTH−1y

=
(
(1t + δIt)⊗ (XT

denseXdense)
−1)XTH−1y

=
(
(1t + δIt)⊗ (XT

denseXdense)
−1) (It ⊗XT

dense)((1t + δIt)
−1 ⊗ In)y

=
(
(1t + δIt)⊗ (XT

denseXdense)
−1XT

dense

)
((1t + δIt)

−1 ⊗ In)y

=
(
(1t + δIt)(1t + δIt)

−1 ⊗ (XT
denseXdense)

−1XT
dense

)
y

=
(
It ⊗ (XT

denseXdense)
−1XT

dense

)
y

(3.23)

This form of β̂ shows that the optimal coefficients are equivalent to fitting separate

ordinary least squares (OLS) models for each context. We compute β̂ by concatenating

these OLS estimates. Given this term, we can also compute the residuals of this model

s = (y −Xβ̂) and reformulate R as follows.
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R = (y −Xβ̂)TH−1(y −Xβ̂)

= sTH−1s

=
nt∑
i=1

si

nt∑
j=1

sjH
−1
j,i

=
1

δ

(
nt∑
i=1

s2i

)
+

1

δ(t+ δ)

(
−

n∑
i=1

(∑
sind(i)

)2)
(3.24)

The term
∑

sind(i) denotes the sum of residuals for an individual across all contexts. Let

u =
∑nt

i=1 s2i and v = −
∑n

i=1

(∑
sind(i)

)2
.

R =
1

δ
u+

1

δ(t+ δ)
v (3.25)

Now we can reformulate the log-likelihoods, omitting terms that do not depend on δ.

lF (δ) = −nt log (R)− log(|H|)

= −nt log

(
1

δ
u+

1

δ(t+ δ)
v

)
− (nt− n) log (δ)− n log (t+ δ)

= −nt log

(
u+

1

t+ δ
v

)
+ n log

(
δ

t+ δ

) (3.26)

lR(δ) = (tc− nt) log (R)− log(|H|)− log (|(XTH−1X)−1|)

= (tc− nt) log

(
u+

1

t+ δ
v

)
+ (c− n) log

(
t+ δ

δ

) (3.27)

Both functions are differentiable with respect to δ. Moreover, both derivatives have the

same root
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δ̂ =
−tu− v
u+ v

(3.28)

The scalar values u and v can be calculated by performing a separate OLS regression for

each context, which can be completed in O(t(nc2+c3)) time for a naive OLS implementation.

Compared to the methods described above, this approach requires no iterative optimization

and the estimate is optimal. Our implementation has a time complexity of O(c3 +nc2 + tcn).

3.2.4 Resource requirement simulation comparison

We installed EMMA v1.1.2 and manually built GEMMA from its GitHub source (genetics-

statistics/GEMMA.git, commit 9c5dfbc). We edited the source code of GEMMA to prevent

the automatic addition of intercept term in the design matrix (commented out lines 1946 to

1954 of src/param.cpp).

Data were simulated using the mcLMM package. Sample sizes of 100, 200, 300, 400, and

500 were simulated with 50 contexts. Context sizes of 4, 8, 16, 32, and 64 were simulated

with 500 samples. Data were simulated with σ2
e = 0.2 and σ2

g = 0.4 and a sampling rate of

0.5. Memory usage of each method was measured using the peakRAM R package (v 1.0.2).

3.2.5 False positive rate simulation

We simulated gene expression levels in multiple tissues for individuals where there were

no eQTLs. In other words, gene expression levels were not affected by any SNPs. We

considered 10,000 genes and 100 SNPs resulting in one million gene-SNP pairs. We simulated

1,000 individuals. We also examined false positive rates with 500 and 800 individuals. We

generated 49 such datasets where the number of tissues varied from 2 to 50. To simulate

the genotypes for each subject, we randomly generated two haplotypes (vectors consisting

of 0 and 1) assuming a minor allele frequency (MAF) of 30%. To simulate gene expression

levels from multiple tissues among the same individuals, we sampled gene expression from

the following multivariate normal distribution:

42



y ∼ N(0, σ2
gK + σ2

eI) (3.29)

where y is an N × T vector representing the gene expression levels of N individuals in

T tissues and K is an NT ×NT matrix corresponding the correlation between the subjects

across the tissues. Ki,j = 1 when i and j are from two tissues of the same individuals,

Ki,j = 0 otherwise. Here, we let σg = σe = 0.5. We used a custom R function (included with

the mcLMM package) to simulate data from this distribution, which is based on sampling

with a smaller covariance matrix for each block of measurements from an individual.

After generating the simulation datasets, we first ran mcLMM to obtain the estimated

effect sizes and their standard errors, as well as the correlation matrices. The results from

mcLMM were used as the input of METASOFT for meta-analysis to evaluate the significance.

False positive rate was calculated as the proportion of gene-SNP pairs with p-values smaller

than the significance level (α = 0.05).

3.2.6 True positive simulations

We developed the true positive simulation framework based on a previous study describing

mash [63]. We simulated effects for 20,000 gene-SNP pairs in 44 tissues, 400 of which have

non-null effects (true positives) and 19,600 of which have null effects. Let βjr denote the

effects of the gene-SNP pair j in context/tissue r and βj is a vector of effects across various

tissues, including null effects and non-null effects. We simulated the gene expression levels

for 1,000 individuals as:

y = βTjrX + e (3.30)

where X denotes the genotypes of the individuals that were simulated as described in the

false positive rate simulation. e ∼ N(0, σ2
gK +σ2

eI), which is similar to the simulation in the

false positive rate simulation. For βj, we defined two types of non-null effects and simulated

them in different ways:

• Shared, structured effects: non-null effects are shared in all tissues and the sharing is
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structured. The non-null effects are similar in effect sizes and directions (up-regulation

or down-regulation) across all tissues, and this similarity would be stronger among

some subsets of tissues. For 19,600 null effects, we set βj = 0. For 400 non-null effects,

we assumed that each βj independently followed a multivariate normal distribution

with mean 0 and variance ωUk, where k is an index number randomly sample from

1, . . . , 8. ω = |ω′|, ω′ ∼ N(0, 1) represents a scaling factor to help capture the full

range of effects. Uk are 44 × 44 data-driven covariance matrices learned from the

GTEx dataset, which are provided in [63].

• Shared, unstructured effects: non-null effects are shared in all tissues but the sharing

is unstructured or independent across different tissues. For 19,600 null effects, we set

βj = 0. For 400 non-null effects, we sampled βj from a multivariate normal distribution

with mean of 0 and variance of 0.01I, where I is a 44× 44 identity matrix.

After simulating the gene expression levels y, we first ran mcLMM on the simulated

datasets to acquire the estimated effect sizes and their standard errors, as well as the corre-

lation matrices. We then applied METASOFT for meta-analysis with mcLMM outputs to

evaluate the significance. For mash, we first performed simple linear regression to get the

estimates of the effects and their standard errors in each tissue separately. These estimates

and standard errors were used as the inputs for mash, which returned the measure of signif-

icance for each effect, the local false sign rate (lfsr). Finally, we employed the “pROC” R

package [67] to calculate the receiver operating characteristic (ROC) curve and area under

the ROC curve with the significance measures (p-values for mcLMM and METASOFT, lfsr

for mash) and the correct labels of null effects and non-null effects.

3.2.7 Analysis of the GTEx dataset

The Genotype-Tissue Expression (GTEx) v8 dataset [2] was used in this study. We down-

loaded the gene expression data, the summary statistics of single-tissue cis-eQTL data using

a 1 MB window around each gene, and the covariates in the eQTL analysis from GTEx
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portal (https://gtexportal.org/home/datasets). The subject-level genotypes were acquired

from dbGaP accession number phs000424.v8.p2. The GTEx v8 dataset includes 49 tissues

from 838 donors. We selected 15,627 genes that were expressed in all 49 tissues. We only

included SNPs with minor allele frequency (MAF) greater than 1% and missing rate lower

than 5%. We applied mash and mcLMM plus METASOFT to the GTEx v8 dataset in our

analysis.

Since mash requires observation of the correlation structure among non-significant tests

and data-driven covariance matrices before fitting its model, we prepared its input by select-

ing the top SNP with the smallest p-value and 49 random SNPs (or all other SNPs if there

were fewer than 49 SNPs left in a gene) in every gene from the eQTL analysis in the GTEx

v8 dataset. There were 560,475 gene-SNP pairs in total. mash uses the estimated effect sizes

and standard errors of these gene-SNP pairs to learn the correlation structure of different

conditions/tissues. We used the top significant SNPs to set up the data-driven covariances.

We then fit mash to the random set of gene-SNP pairs with the canonical and data-driven

covariances. With the fitted mash model, we computed the posterior summaries including

local false sign rate (lfsr) [68] for the selected gene-SNP pairs to estimate the significance.

We defined significant gene-SNP pairs as those with lfsr < 0.05 in any tissues.

We applied mcLMM to the same set of gene-SNP pairs. We regressed out unwanted con-

founding factors in gene expression levels for each tissue with a linear model using covariates

provided by GTEx. Covariates of each sample included top 5 genotyping principal compo-

nents, PEER factors [69] (15 factors for tissues with fewer than 150 samples, 30 factors for

those with 150-250 samples, 45 factors for those with 250-350 samples, and 60 factors for

those with more than 350 samples), sequencing platform, and sex. We ran mcLMM with the

genotypes and processed gene expression levels of all 838 individuals across 49 GTEx tissues

for each gene-SNP pair. Missing values in gene expression were included in the mcLMM

input. The effect sizes, standard errors, and correlation matrices estimated by mcLMM were

meta-analyzed with METASOFT to evaluate the significance under both the fixed effects

(FE) and random effects (RE2) models. The resulting p-values were converted to q-values
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[70] to control false discovery rates. A gene-SNP pair was considered significant if its false

discovery rate (FDR) was smaller than 5%.

3.2.8 Analysis of the UK Biobank dataset

This work was conducted using the UK Biobank Resource under application 33127. Samples

were filtered for Caucasian individuals (Data-Field 22006)). Hard imputed genotype data

from the UK Biobank were LD pruned using a window size of 50, step size of 1, and correlation

threshold of 0.2. SNPs were further filtered for minor allele frequency of at least 0.01 and

a Hardy-Weinberg equilibrium p-value greater than 1e-7 using Plink 2 [71]. Samples were

filtered for unrelated individuals with KING using a cutoff value of 0.125 [72]. Genotype data

were split by chromosome and converted to bigsnpr format (v 1.4.4) for memory efficiency

[73].

The following data fields were retrieved: age at recruitment (Data-Field 31), sex (Data-

Field 21022), BMI (Data-Field 23104), body fat percentage (Data-Field 23099), 10 genetic

principal components (Data-Field 22009), HDL Cholesterol (Data-Field 30760), LDL Di-

rect (Data-Field 30780), Apolipoprotein A (Data-Field 30630), Apolipoprotein B (Data-

Field 30640), and Triglycerides (Data-Field 30870). Continuous phenotypes were visually

inspected and triglycerides were log-transformed due to skewness. Data were filtered for

complete observations. All fields were scaled to unit variance and centered at 0.

HDL cholesterol, LDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglycerides

were combined as response variables in the LMM and age, sex, BMI, body fat percentage,

and the top 10 genetic principal components were used as additional covariates in the model.

Each SNP was marginally fit with mcLMM. The coefficients output by this model for each

phenotype were meta-analyzed to calculate FE p-values using METASOFT as packaged with

Meta Tissue v 0.5. The top GWAS hits for five different chromosomes (one per chromosome)

were validated using the NHGRI-EBI GWAS catalog [74] and compared to studies for LDL

and HDL cholesterol (GCST008035 and GCST008037).
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3.3 Results

3.3.1 Multi-context linear mixed models

We implement the statistical model described in Meta-Tissue [59], where we model the

multi-context data as follows:

y = Xβ + u + e (3.31)

where u ∼ N(0, σ2
gK) and e ∼ N(0, σ2

eI). For n individuals and t contexts, y is a vector

of nt responses, K is an nt by nt binary matrix where a value of 1 indicates that the

observations were sampled from the same individual. Compared to a standard regression

model, the variance component u accounts for within-individual variation that may occur

with repeated sampling. The design matrix X fits coefficients β for each feature within

each context independently. These coefficients, which describe the effect of the feature on

the response within each context, can be used in a meta-analytic framework to combine

the results. In our pipeline, we utilize the random effects model (RE2) from METASOFT,

which assumes that effect sizes may be different across contexts and was shown to outperform

existing meta-analysis methods [62].

Fitting this LMM requires estimation of the parameters σ2
g and σ2

e , which can be estimated

with traditional likelihood or restricted-likelihood approaches or through various optimized

methods that have been developed, such as EMMA and GEMMA [58, 61]. These approaches

require an eigendeomposition of the matrix K with is traditionally considered to be an

O((nt)3) operation. mcLMM utilizes the block structure of the matrices in this model to

perform matrix operations within contexts and avoids any eigendecomposition operations.

This approach provides massive speedups with runtime complexities that are linear with

respect to sample size n rather than cubic. As a note, mcLMM is not an approximation and

fits identical models to these existing approaches.
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3.3.2 mcLMM is computationally efficient

To demonstrate the efficiency of mcLMM compared to existing approaches, we applied our

method to simulated data of varying sample sizes and number of contexts. For these sim-

ulations, we simulated a sampling rate of 0.5, which indicates that only half of all possible

individual-context pairs of observations are expected to be sampled.

We first applied our method to simulations with a fixed number of 50 contexts and varied

the sample size from 100 to 500. From these experiments, we observed that mcLMM requires

computational time orders of magnitude less than EMMA and GEMMA. Similarly, when we

fixed the number of samples at 500 and varied the context sizes from 4 to 64, we observed

dramatically reduced runtimes for mcLMM.

In these experiments, mcLMM also significantly reduces the memory footprint compared

to EMMA and GEMMA, since we avoid creating any nt by nt matrices. In these simulations,

existing approaches quickly grow memory requirements, with usages that grow to dozens of

gigabytes for modestly sized datasets in the thousands of samples. mcLMM allows large-scale

studies to be performed on relatively little computational resources (Figure 3.1).

In cases where there is no missing data, mcLMM allows for further speedups. We ran

similar simulations to compare mcLMM with no missing data (optimal model) and mcLMM

with missing data (iterative model). We observed a dramatic speedup, with sample sizes of

500,000 individuals across 10 contexts completed in under 10 seconds for the optimal model

compared to around 15 minutes for the iterative model (Figure 3.2).

3.3.3 mcLMM enables powerful meta analyses to detect eQTLs

We utilized mcLMM to reduce the computational resource requirements of the Meta-Tissue

pipeline, which fits a multiple-context LMM and combines the resulting effect sizes using

METASOFT [59]. While powerful, the existing approach utilizes EMMA to fit the LMM.

For a recent release from the GTEx consortium [2], each pair of genes and single nucleotide

polymorphisms (SNPs) required over two hours to run. Across hundreds of thousands of
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Figure 3.1: Resource requirements of mcLMM, GEMMA, and EMMA across various sim-
ulated individual and context sizes with missing values (sampling rate of 0.5). For varying
individuals, contexts were fixed at 50. For varying contexts, individuals were fixed at 500.
(A-B) Runtime with log10(seconds) on the y-axis and number of individuals or contexts
simulated on the x-axis. (C-D) Memory usage (GB) on the y-axis and number of individuals
or contexts simulated on the x-axis.
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no missing values. For varying individuals, contexts were fixed at 10. For varying contexts,
individuals were fixed at 10,000. (A) Runtime across varying individuals. (B) Runtime
across varying contexts.

gene-SNP pairs, this method would require years of computational runtime to complete.

Utilizing mcLMM, we were able to complete this analysis in 3 days parallelized over each

chromosome.

We compared our approach to a method known as mash [63]. This approach utilizes

effect sizes estimated within each context independently and employs a Bayesian approach

to combine their results for meta-analysis. In order to estimate the power of these methods,

we performed simulations as described in the methods. In null simulations, we observed

well-controlled false positive rates at α = 0.05 for mcLMM coupled with METASOFT (Fig-

ure 3.3). In our simulation with true positives, we observed an increased area under the

receiver operating characteristic (AUROC) for mcLMM coupled with the random effects

(RE2) METASOFT model compared to mash (Figure 3.4).

Next, we compared the number of significant associations identified in the GTEx dataset.

The mash approach utilized gene-SNP effect sizes estimated by the GTEx consortium within

each tissue independently. Concordant with our simulations, we observed that the Meta-

Tissue approach, utilizing mcLMM for vast speedup, identified more significant eQTLs than
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Figure 3.3: False positive rates of mcLMM + METASOFT in simulated data with 2-50
tissues. We estimated false positive rates with the p-values from METASOFT fixed effects
(FE) model on the simulated data with (A) 1000 individuals, (B) 800 individuals, and (C)
500 individuals. Also, we estimated false positive rates with the p-values from METASOFT
random effects (RE2) model on the simulated data with (D) 1000 individuals, (E) 800
individuals, and (F) 500 individuals.
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Figure 3.4: AUROC curves of mcLMM+METASOFT and mash in simulated data, assuming
the effects of gene-SNP pairs are (A) shared and unstructured, and (B) shared and structured.

mash (Figure 3.5). These associations allow researchers to better understand the link between

genetic variation and complex phenotypes through possible mediation of gene expression.

3.3.4 mcLMM scales to millions of samples across related phenotypes

As a practical application of the efficiency of mcLMM, we performed a multiple phenotype

GWAS in the UK Biobank. A multiple phenotype GWAS associates SNPs with several

related phenotypes in order to increase the effective sample size for greater power, under the

assumption that the phenotypes are significantly correlated. For our analysis, we combined

HDL and LDL cholesterol, Apolipoprotein A and B, and triglyceride levels across 323,266

unrelated caucasian individuals in the UK Biobank. In total, 1,616,330 observations of these

related phenotypes were fit as responses in the LMM.

The mcLMM approach completed this analysis over 211,642 SNPs with an additional 14

covariates, parallelized over each chromosome, within a day. Each chromosome was analyzed

on a single core machine with 32 GB of memory, with each test taking around 2 seconds

to complete. We identified several significant loci, a subset of which replicate previous
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Figure 3.5: Venn diagram of significant eQTLs identified by meta-analysis methods in the
GTEx dataset. We compared mcLMM using the random effects and fixed effects models
in METASOFT (RE2 and FE, respectively) to mash. Note that areas are not proportional
to the number of eQTLs in each region. mcLMM+METASOFT (RE2) identified a total of
321,117 significant associations that contained 225,818 eQTLs identified by mash.

findings for specific phenotypes included in the model, such as HDL cholesterol [75] (Figure

3.6). Existing approaches, namely EMMA and GEMMA, require orders of magnitude more

memory to begin this analyses and could not be run on the available computational resources.

3.4 Discussion

We presented mcLMM, an efficient method for fitting LMMs used for multiple-context asso-

ciation studies. Our method provides exact results and scales linearly in time and memory

with respect to sample size, while existing methods are cubic. This efficiency allows mcLMM

to process hundreds of thousands of samples over several contexts within a day on minimal

computational resources, as we showed in simulation and in the UK Biobank. The associa-

tion parameters learned by mcLMM can further be utilized with the METASOFT framework

to provide powerful meta-analysis of the associations, as we showed in the GTEx dataset.
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Figure 3.6: Multiple phenotype GWAS results from UK Biobank. Five phenotypes (LDL
cholesterol, HDL cholesterol, Apolipoprotein A, Apolipoprotein B, and triglyceride levels)
were used as responses in the mcLMM framework. The model was fit with 1,616,330 obser-
vations from 323,266 unrelated Caucasian individuals. In total, 211,642 SNPs were tested
with an additional 14 covariates. Each test required around 2 seconds to run on a 32GB
machine and was parallelized over each chromosome. The -log10 of the p-values are plot
on the y-axis and genomic positions on the x-axis. The horizontal dashed line indicates the
genome wide significance level at p = 0.05/1e6. The top hit for 5 different chromosomes is
annotated with the gene containing the SNP. These genes have been previously identified as
associated with a subset of these phenotypes.
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Previous approaches have derived related speedups for LMMs when the matrix K is

low rank, such as in the case when multiple samples are genetically identical or clustered

in genome wide association studies as described in FaST-LMM [65]. In this approach, the

authors show that the likelihood function can be evaluated in linear time with respect to the

number of individuals after singular value decomposition of a matrix that is also linear with

respect to the number of individuals. Other work has similarly used block structures and

Kronecker refactorizations in studies with structured designs, such as multi-trait GWAS, to

significantly speed up these approaches as well [76, 77].

Our approach builds upon these findings and we optimize the method specifically for

the low rank matrix with known eigenvalues described in the model, thus avoiding any

spectral or singular value decompositions. Furthermore, when there is no missing data, our

method can compute the optimal model parameters with a closed form solution requiring no

iterative optimization of likelihood functions. We also note that mcLMM models covariance

across contexts within an individual while the FaST-LMM approach, described above, models

covariance across individuals within each context. This specific model fit by mcLMM arises in

multiple-context association studies, such as the approach employed by Meta Tissue [59] for

identifying eQTLs across tissues utilizing the cubic EMMA algorithm. Applied within this

framework for eQTL and multi-trait genome wide association studies, our method provides

exact results and scales to hundreds of thousands of samples with minimal computational

resources. mcLMM is available as an R package at https://github.com/brandonjew/

mcLMM.
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CHAPTER 4

Selection contributes to skewed X chromosome

inactivation across human tissues

4.1 Background

X chromosome inactivation (XCI) occurs in blastocysts during embryonic development. Un-

der no external pressures, the process is assumed to be random and is established in about a

dozen cells and all daughter cells will inherit the XCI status of these cells [78]. Skew in XCI

has been widely observed in female mammals and is accepted to be common across individ-

uals [79]. Selective pressures have been implicated in contributing to XCI skew, especially

in the context of diseases such as cancer [80, 17, 81]. In addition, XCI skew was found to

be heritable and correlated with age based on a twin study [82]. Recent work argued that

observed XCI skew in the general female population is the result of expected randomness in

early development [79].

Here, we show that estimated XCI skew in a general female population in the GTEx

dataset [2] is associated with genetic scores related to deleteriousness and proliferative poten-

tial. We hypothesize that differences in the fitness of maternal and paternal X chromosomes

may contribute to skewed XCI across tissues into adulthood (Figure 4.1a). Furthermore,

we perform a scan of common variants across the X chromosome to identify specific loci

associated with overall XCI skew in these individuals.
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Figure 4.1: Measuring XCI skew across tissues a, Schematic overview of selection hypothesis.
An individual inherits one haplotype (red) that is more fit than the other (blue) due to
genetic variation. Given equal population sizes in embryonic development, we hypothesize
that fitness differences will produce skewed populations in fully developed tissues. b, Violin
plot of absolute XCI skew on the y-axis. Tissues are sorted by mean on the x-axis. Dots
indicate mean of the absolute skew with vertical lines indicating one standard deviation.

4.2 Methods

4.2.1 Transcriptomic and genetic data

The following data were processed and made available by the GTEx consortium [2]. GEN-

CODE v26 and the GRCh38 human reference genome was used to process both WGS

and RNA-seq data. RNA-seq data was aligned using STAR with WASP filtering. Allele-

specific read counts at heterozygous sites were quantified with GATK ASEReadCounter.

Genetic variants were called from whole genome sequencing data and phased with read-

aware SHAPEIT2. All analyses were restricted to caucasian samples.

4.2.2 Quantifying XCI skew

Allele-specific read counts were matched to haplotypes from the phased WGS data. Only het-

erozygous sites within fully inactivated genes reported by Carrel and Willard [83] and Cotton

et al [84] were considered. We further selected genes where no females were observed to escape

inactivation in Cotton et al. This filtering yielded heterozygous sites within 117 genes con-
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sidered to be fully inactivated. LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) was

used to convert these reported gene windows from GRCh37 to GRCh38 positions. Moreover,

we only considered variants that had at least 10 overlapping reads. XCI skew was calculated

at each heterozygous site in the gene windows as the number of reads coming from one hap-

lotype divided by the total number of reads at the site. The final XCI skew measurement for

each sample was the median of these per-site observations as done in previous work [79]. The

haplotypes were arbitrarily labeled as H1 and H2, and skew was calculated as the number

of reads mapping to H1 divided by the total reads at each site. Since haplotypes are not

readily distinguishable as maternal or paternal, we also calculated the absolute XCI skew

as the absolute deviation of this value from 0.5. Correlation between skewing in tissues was

calculated as the Pearson correlation of pairwise-complete observations between tissue pairs

where 25 or more individuals had both tissues sampled.

We also calculated skew in the same manner in autosomes. Specifically, if m heterozygous

sites were used to calculate XCI in a sample, we randomly selected m heterozygous sites with

at least 10 overlapping RNA-seq reads on the q-arm of each non-acrocentric autosome. We

used these sites to calculate skew for each autosome as the median value. Since extreme XCI

skewing was observed in EBV-transformed lymphocytes, we removed these samples from all

downstream analyses for both X and autosomal chromosomes.

4.2.3 Genetic score association

Four scores were defined to measure genetic burden of X chromosome haplotypes in females.

Each score was calculated using SNPs and indels in the SHAPEIT2 phased VCF files pro-

vided by GTEx [2]. Each score was calculated using all heterozygous variants with physical

positions that did not fall within the 117 genomic windows corresponding to fully inactivated

genes used to calculate skew. First, we considered the difference in average SNP CADD score

[85] between the two haplotypes. A higher CADD score corresponds to an increased likeli-

hood of deleteriousness. CADD Phred scores for SNPs were retrieved using VEP [86]. The

CADD score associated with all alternate SNP alleles occuring on a haplotype was averaged.

58



CADD burden scores were defined as the average CADD score of haplotype H1 subtracted

from the average CADD score of haplotype H2.

The remaining scores were proportions of different types of mutations carried by the

H1 haplotype. We considered the proportion of alternate alleles (both SNPs and indels),

missense SNPs, and synonymous SNPs carried by a haplotype. This proportion is calculated

as the count of the variant-type on haplotype H1 divided by the total number of these variants

found across both haplotypes. Annotations indicating the coding consequence of variants

were obtained using VEP.

We associated these scores with XCI skew using a linear mixed model. Specifically, we

used the lmer function from the lmerTest package [87] to fit the following model across

all tissues, where the (1|Grouping) notation indicates a random intercept for the specified

grouping:

H1 XCI Skew ∼ H1 Burden + Age + (1|Individual) + (1|Tissue) (4.1)

In this model, we include random intercepts for the individual and tissue of origin for each

sample. The significance of these associations were determined using a one-sided t-test, under

the assumption that increased burden will decrease skewing towards a haplotype. The p-

values were calculated as the value of the cumulative density function of the t-distribution

given the t-values and degrees of freedom returned by the lmer function.

Blood-related polygenic scores were retrieved from PGS Catalog [88]. We used scores

for the following cell counts: platelet (PGS000186), red blood cell (PGS000187), basophil

(PGS000163), neutrophil (PGS000182), eosinophil (PGS000165), monocyte (PGS000177),

and lymphocyte (PGS000172) [89]. GRCh38 positions of the variants used for these scores

were retrieved from SNP Nexus [90]. We calculated each polygenic score for both haplotypes

as the linear combination of the score weights and the corresponding effect alleles if they

occur on the haplotype. We modeled the difference in polygenic scores as follows:

H1 XCI Skew ∼ (H1 PGS - H2 PGS) + Age + (1|Individual) + (1|Tissue) (4.2)
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The significance of these associations were determined by using a one-sided t-test, under

the assumption that increased proliferative potential will increase skewing towards a haplo-

type. Specifically, p-values were calculated by subtracting the cumulative density function

of the t-distribution given the t-values and degrees of freedom from one.

Each of the scores described above were calculated for autosomal haplotypes using vari-

ants that occur on the p-arm of each non-acrocentric chromosome. As controls, we repeated

the association tests for these autosomes with the following model:

H1 XCI Skew ∼ (H1 PGS - H2 PGS) + Age +

(1|Individual) + (1|Tissue) + (1|Chromosome)
(4.3)

where “H1 score” refers to the burden and proliferation polygenic scores defined above and

“Chromosome” refers to the autosome used to generate the sample. A Bonferroni-corrected

significance threshold of 0.05/8 was used for the 4 burden scores and 0.05/14 was used for

the 7 blood-related polygenic scores.

4.2.4 Identifying significant XCI loci

The phased X chromosome variants were filtered with PLINK 2 [71]. SNPs were extracted

with a minor allele frequency threshold of 0.01 and Hardy-Weinberg equilibrium p-value

threshold of 1e-6. LD pruning was performed with a window size of 100 kilobases, step size

of 5 variants, and r2 threshold of 0.5.

These filtered variants were marginally tested in a linear mixed model to measure asso-

ciation with absolute XCI skew. We fit the following linear mixed model:

Absolute XCI Skew ∼ Heterozygous + Age + (1|Individual) + (1|Tissue) (4.4)

where Heterozygous is 1 if the sample is heterozygous for the variant and 0 if the sample

is homozygous. We modeled absolute skewing under the assumption that heterozygosity

will lead to differences in fitness and consequently increased overall skewing. Given this
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assumption, we determined the significance of these associations using a one-sided t-test

under this hypothesis of a positive effect size if one exists. The resulting p-values were

converted to q-values [91] and considered significant using a threshold corresponding to a

0.05 local false discovery rate.

At the two significant loci, this linear mixed model was also used to determine the

significance of the difference in skewing between homozygous samples and groups defined

by the phasing of the variant in heterozygous individuals. For these associations, we fit the

following model separately for individuals with the variant on H1 and on H2:

H1 XCI Skew ∼ Heterozygous + Age + (1|Individual) + (1|Tissue) (4.5)

Since we do not assume the direction of individual variant effects on XCI skewing, we per-

formed a two-sided t-test to determine significance of these associations.

4.2.5 Associating XCI-linked genetics in males

To address the possibility that the burden and proliferation scores are capturing regulatory

effects, such as downregulation of a haplotype rather than increased inactivation, we cal-

culated these scores within males. Like in the female samples, we utilized variants with

physical positions that did not fall within the windows of the 117 fully inactivated genes

used to calculate skew. For each individual, only variants reported as homozygous in the

VCF files were considered, since heterozygous calls should not occur in the males with one X

chromosome. Given that males have one X chromosome, we associated these scores with the

expression of each gene on the X chromosome. We fit a model similar to those used for identi-

fying expression quantitative trait loci. Specifically, we performed a linear regression within

each tissue independently, correcting for the top 5 genetic principal components, PCR, and

platform. We also corrected for PEER factors [92], using 15 factors for sample sizes less than

150 and adding an additional 15 factors for each 100 samples. The resulting p-values from

the linear regression across all tissues were converted to q-values and considered significant
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at a local false discovery rate threshold of 0.05.

4.3 Results

4.3.1 Estimating XCI skew from RNA-seq data

We analyzed data generated by the GTEx consortium [2], which included RNA-seq and

phased whole genome sequencing data measured across 243 caucasian female samples and

472 caucasian male samples. We measured XCI skew in females as the difference in expres-

sion measured from each X chromosome in an RNA-seq experiment. Since XCI does not

completely silence the entire X chromosome, we restricted our analysis to genes that have

been previously observed to be fully inactivated [83, 84, 93]. Read counts at heterozygous

sites in these regions were assigned to haplotypes determined with phased whole genome

sequencing data. The skew in RNA-seq reads was calculated at each site as the number of

reads coming from one haplotype divided by the total number of reads. XCI skew for a sam-

ple was calculated as the median of these values as done by previous work [79]. A median of

45 heterozygous sites were used for this calculation across the samples (Figure 4.2). We ob-

served variability in XCI skew across tissues, with EBV-transformed lymphocytes exhibiting

nearly complete skew in many samples (Figure 4.1b). Given this extreme skewing likely due

to culture conditions, we removed these samples from downstream analyses. Furthermore,

we observed correlation of XCI skew across the different tissues (Figure 4.3).

Inferring XCI skew from expression data can be confounded by both technological and

biological factors that may lead to similar associations with our genetic burden scores. Refer-

ence bias, the tendency for RNA-seq reads with reference alleles to better map to a reference

genome than non-reference alleles [94], may be a significant confounding variable. This bias

is especially relevant to the genetic burden defined by the proportion of alternate alleles

carried by a haplotype. For example, an alternate allele may have lower observed expression

than the reference allele simply due to reference bias rather than XCI skew. To account

for this source of bias, we utilized RNA-seq reads that were aligned with a filter utilizing
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Figure 4.2: Histogram of number of heterozygous sites with coverage of 10 or more RNA-seq
reads and within fully inactivated genes used to calculate XCI skew for each sample. We
observed a mean of 46.805 and median of 45 variants used to calculate skew (the median of
per-site skew).

WASP, a method that accounts for reference bias by mapping reads with swapped genotypes

[95]. Regulatory effects of genetic variation may also lead to imbalances in expression [96]

measured from each X chromosome that may be erroneously attributed to skew in X chromo-

some inactivation. To address this source of confounding, we performed similar experiments

using the non-acrocentric autosomes (chromosomes with arms of roughly equal size) of the

female samples. In short, we calculated skewing at heterozygous sites that were captured by

RNA-seq reads on the q or long arm of the autosome. We observed no significant level of

average ‘skewing’ in these chromosomes (Figure 4.4).

We also performed an analysis of the male GTEx samples to test the possibility of regu-

latory effects rather than skewing in inactivation. Since males only have one X chromosome,

we associated genetic features with expression of each gene on the X chromosome. If our

genetic scores are associated with downregulation of expression rather than XCI skew, we

anticipated this experiment to show a significant negative association with the expression of

X chromosome genes across males.

4.3.2 Genetic burden is associated with XCI skew

We defined the following genetic burden scores for this analysis: the proportion of missense

and synonymous mutations carried by each haplotype, and the difference in average CADD

score [85] between the two haplotypes. CADD scores provide a quantitative measure of
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Figure 4.3: Pearson correlation of XCI skew between tissues. a, Correlation matrix of tissue-
specific XCI skew. White boxes with ’X’ symbol indicate that less than 25 observations were
available for the tissue pair. b, Histogram of correlation between 1,017 non-identical tissue
pairs. We observed a mean correlation of 0.3663 and median of 0.3992.

the predicted deleteriousness of a variant. Only genetic variation with genomic positions

outside of the gene windows that were used to calculate XCI skew were considered in these

scores to avoid capturing cis regulatory effects. To associate these burden measures with

XCI skew, we fit a linear mixed model with random intercepts accounting for the individual
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Figure 4.4: Estimated absolute skew in expression at heterozygous sites on the X chromosome
and non-acrocentric autosomes. On the X chromosome, this value is used as the estimate
of inactivation skewing since heterozygous sites are within fully inactivated genes. On the
autosomes, an equal number of heterozygous sites used on the X chromosome for each sample
were randomly selected from the q-arm to estimate the median skew in expression. Dots
indicate mean of absolute skew with vertical lines indicating one standard deviation.

of origin for each tissue sample and tissue type. In this model, the difference in CADD score

between haplotypes had a significant negative effect on XCI skew (coefficient = -0.1289

± 0.0451, p = 0.0023) (Figure 4.5a). This result suggests that a higher genetic burden in

terms of deleterious variation is associated with higher rates of inactivation of the haplotype.

We found that this association was not significant across the non-acrocentric autosomes

(Table 4.1). In addition, these burden scores were not associated with the regulation of gene

expression on the X chromosome in male samples.

4.3.3 Variation in proliferation-related polygenic scores is associated with XCI

Skew

We utilized publicly available polygenic risk score weights to calculate the proliferative poten-

tial of each haplotype in the female samples. Specifically, we used various blood cell counts

as phenotypes under the assumption that these scores are concordant with hematopoiesis
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Figure 4.5: Association between genetic scores and skew estimated from expression at het-
erozygous sites on X chromosome (chrX) and non-acrocentric autosomes (Auto.). Colors
indicate the relative t-score from a linear mixed model association test with an asterisks
(*) indicating significance at α = 0.05 and double asterisks (**) indicating significance af-
ter Bonferroni correction. a, Association results of genetic burden scores with estimated
skew. A one-sided t-test was performed under the assumption that increased genetic burden
decreases skew towards the haplotype. CADD indicates difference in mean CADD score
of each haplotype. The remaining scores compare the number of the indicated mutations
on each haplotype. b, Association results of proliferative polygenic scores with estimated
skew. Counts of different blood cell types were used as a proxy for proliferative potential.
A one-sided t-test was performed under the assumption that increased proliferation genetic
scores will increase skew towards the haplotype.

and proliferative cell activity [97]. We found that the haplotype with the higher red blood

cell polygenic score (coefficient = 0.1116 ± 0.0462, p = 0.0082) and basophil polygenic score

(coefficient = 0.1355 ± 0.0460, p = 0.0018) tends to be overrepresented in terms of XCI

skewing (Figure 4.5b). These results imply that higher proliferative-related polygenic scores

are associated with an enrichment for cells with this haplotype active across tissues. We also

ran similar autosomal and male analyses to test the alternative hypothesis that these poly-

genic scores may be capturing gene regulatory effects. We found no significant associations

between these scores in the female non-acrocentric autosomes (Table 4.2). In the analysis

of male samples, the basophil polygenic score was significantly associated with increased

expression of AFF2 in 4 tissues (Table 4.3). However, this gene is considered a variable XCI

escape gene and therefore was not used to calculate XCI skew in the female samples.
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Table 4.1: Burden associations with skewing in XCI and autosomal q-arm expression

Burden Score Chromosome(s) β (s.e.) df t P

CADD chrX -0.1289 (0.0451) 240.6684 -2.8579 0.0023

Auto. 0.0024 (0.0037) 60762.2663 0.6516 0.7427

Minor Allele # chrX 0.0097 (0.0453) 240.5593 0.2141 0.5847

Auto. -0.0034 (0.0037) 58076.8103 -0.9263 0.1772

Missense # chrX -0.0355 (0.0476) 238.7277 -0.7452 0.2285

Auto. -0.0009 (0.0037) 59330.7798 -0.2314 0.4085

Synonymous # chrX -0.0202 (0.0463) 239.3741 -0.4356 0.3318

Auto. -0.0018 (0.0037) 39637.5931 -0.4748 0.3175

Table 4.2: Proliferation-related polygenic score associations with skewing in XCI and auto-
somal q-arm expression

Polygenic Score Chromosome(s) β (s.e.) df t P

Platelet # chrX -0.1093 (0.0456) 240.8663 -2.3997 0.9914

Auto. -0.0079 (0.0037) 58466.4918 -2.1498 0.9842

Red cell # chrX 0.1116 (0.0462) 238.7682 2.4172 0.0082

Auto. -0.0006 (0.0037) 54155.3786 -0.1623 0.5645

Basophil # chrX 0.1355 (0.0460) 237.3432 2.9487 0.0018

Auto. -0.0113 (0.0037) 60017.3402 -3.0875 0.9990

Neutrophil # chrX 0.0451 (0.0469) 238.1159 0.9606 0.1689

Auto. -0.0059 (0.0037) 57022.3082 -1.6151 0.9469

Eosinophil # chrX -0.0224 (0.0475) 238.1788 -0.4710 0.6810

Auto. 0.0014 (0.0037) 60407.8660 0.3883 0.3489

Monocyte # chrX -0.1209 (0.0463) 237.1836 -2.6126 0.9952

Auto. 0.0055 (0.0037) 50177.1222 1.4848 0.0688

Lymphocyte # chrX -0.0560 (0.0473) 238.1101 -1.1834 0.8811

Auto. -0.0031 (0.0037) 57465.9629 -0.8419 0.8001

4.3.4 Variation in specific loci is significantly associated with XCI skew

While the previous analyses suggest that genetic burden and proliferative potential is as-

sociated with skewed XCI, they do not provide specific variants or loci that contribute to

this association. We performed an association study on the X chromosome to address this

question. Specifically, we associated variants on the X chromosome with the absolute XCI

skew measurements (Figure 4.6a). We found 2 variants that were significant at a FDR of

0.05 (Table 4.4). The first variant (rs141680486) is an intronic SNP found within the DMD

gene, also known as dystrophin, and was significantly associated with increased absolute
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Table 4.3: Covariates associated with chromosome X gene regulation in males.

Covariate Gene Name Gene ID XCI status Tissue β (s.e.) P Q

Basophil # AFF2 ENSG00000155966.13 Variable Adipose (Subc.) 0.1522 (0.0329) 5.701e-06 0.0490

Lung 0.1825 (0.0374) 1.841e-06 0.0317

Skin (Sup.) 0.1616 (0.0344) 4.353e-06 0.0490

Thyroid 0.1499 (0.0296) 7.902e-07 0.0272

rs141680486 TMEM187 ENSG00000177854.7 Inactive EBV lymphocytes -0.3917 (0.0696) 8.734e-07 0.0302

XCI skew (coefficient = 0.0203 ± 0.0041, p=7.978e-07). We observed large absolute skew

in samples that were heterozygous for this variant compared to those who were homozy-

gous (Figure 4.6b). Moreover, we found that the haplotype with the minor allele tends to

be more inactivated than the other haplotype in heterozygous samples (Figure 4.6c). The

second variant (rs73227260) is an intronic SNP in LOC101928359, a non-coding transcript,

and was also associated with increased absolute XCI skew (coefficient = 0.0199 ± 0.0041,

p = 1.265e-06). We observed a high level of skewing in heterozygous individuals with no

clear difference in directional skewing depending on the haplotype carrying the minor allele

(Figure 4.7).

Since eQTLs may also cause skewing in expression within cells, we tested the association

between these variants and gene expression on the X chromosome in males. We found that

the DMD variant (rs141680486) is a significant eQTL for TMEM187 expression in EBV-

transformed lymphocytes (coefficient = -0.3917 ± 0.0696, p=8.734e-07). However, we note

that these lymphocyte samples were excluded from our female analyses due to extreme XCI

skewing.

4.4 Discussion

These analyses support the hypothesis that differences in genetic variation on the mater-

nal and paternal X chromosomes influences skewed inactivation through selection [80, 17].

Specifically, these results demonstrate a significant association between higher CADD scores

of a haplotype and estimated skewing away from this haplotype. Furthermore, we showed

that higher polygenic scores related to proliferation, specifically red blood cell and basophil
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Figure 4.6: Associating specific variation on the X chromosome with inactivation skew. a,
Manhattan plot of -log10(q-values) generated from a linear mixed model associating abso-
lute XCI skew with heterozygous status, accounting for age as well as individual and tissue
groupings of samples. A one-sided test was performed under the hypothesis that heterozy-
gous status increases absolute skew. Dotted horizontal line indicates local false discovery
rate of 0.05. b, Boxplot of absolute XCI skew in samples that are homozygous (n = 4,232)
or heterozygous (n = 230) for the DMD variant (rs141680486). Indicated p-value is from the
model described above. c, Boxplot of skewing toward haplotype 1 (H1), where the grouping
on the x-axis describes individuals without the DMD variant (Homozygous, n = 4,232), with
the variant on haplotype 1 (H1, n = 190), and with the variant on haplotype 2 (H2, n =
40). Indicated p-values are from the model described above but with a two-sided test, since
we do not assume the direction of skewing associated with a specific variant.

counts, tend to be associated with skewing towards the haplotype. These results imply that

skewing in X inactivation may arise from higher proliferation or reduced deleteriousness of

cells with one haplotype activated compared to the other subpopulation. We also identified

common variation within specific loci on the X chromosome, such as the dystrophin gene,
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Figure 4.7: Association of LOC101928359 variant (rs73227260) with XCI skew. Indicated
p-values are from a linear mixed model accounting for individual and tissue of origin. a,
Boxplot of absolute XCI skew in homozygous samples (n = 4,230) and heterozygous samples
(n = 232). Indicated p-value is from a one-sided t-test. b, Boxplot of skewing toward
haplotype 1 (H1), where the grouping on the x-axis describes individuals without the LOC
variant (Homozygous, n = 4,230), with the variant on haplotype 1 (H1, n = 92), and with
the variant on haplotype 2 (H2, n = 140). Indicated p-values are from a two-sided t-test.

associated with XCI skew that may also contribute to these differences in proliferation or

deleteriousness.

Several confounding factors could influence the results of this study. First, haplotype

estimation by phasing algorithms may be inaccurate. Phasing errors would reduce the power

of these analyses, since genetic scores may include variants from both haplotypes. In our

analyses, we observed phase switches in EBV-transformed lymphocyte samples with extreme

XCI skewing that suggests some phasing errors had occurred. Second, mapping biases may

cause artificially higher observed expression of reference alleles compared to alternate alleles.

This issue is addressed by the WASP filtering [95] used in the alignment of RNA-seq reads.

Third, differences in eQTL effects across haplotypes may lead to skewed expression in RNA-

seq experiments that may be incorrectly attributed to skewed XCI. We consider this source

of confounding by taking the median of expression skew measured across heterozygous sites

in 117 fully inactivated genes and by testing whether our features of interest are significant
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Table 4.4: Top 10 variants associated with absolute skewing in XCI

Locus SNP Position Alleles AF β (s.e.) Pone-sided

DMD rs141680486 32794582 C/G 0.0179 0.0203 (0.0041) 7.978e-07

LOC101928359 rs73227260 122471389 C/T 0.0203 0.0199 (0.0041) 1.265e-06

DMD rs144615018 32355895 C/G 0.0328 0.0175 (0.0039) 4.891e-06

None rs140456300 116700067 A/T 0.0316 0.0157 (0.0036) 9.868e-06

None rs113265091 16560720 T/C 0.0185 0.0177 (0.0041) 1.21e-05

ZNF157 rs140428205 47388509 G/A 0.0215 0.0174 (0.0041) 1.782e-05

None rs60102760 9394922 T/G 0.0263 0.0168 (0.0041) 2.917e-05

FUNDC2 rs782070621 155057031 T/G 0.0369 0.0169 (0.0042) 3.742e-05

None rs139564137 155434572 C/T 0.0358 0.0169 (0.0042) 3.742e-05

None rs6623805 78439230 A/T 0.9475 0.0159 (0.004) 4.263e-05

in the non-acrocentric autosomes or as eQTLs in the male samples. These issues could be

circumvented with sufficiently large single-cell RNA-seq datasets. Haplotype phasing, as well

as inactivation status, could be estimated within each cell individually and XCI skew could

be calculated by simply counting cells. Furthermore, these data would allow cell-type-specific

analysis of the relationship between genetics and skewed XCI.

The influence of genetics on XCI skewing across the general female population highlights

interesting mechanisms that should be further explored. For example, the effect of a specific

variant on a complex phenotype may be dampened or amplified depending on the haplotype

that carries it in females. For example, if an individual homozygous for a disease-related

variant carries it on a haplotype with reduced proliferation, its effect may be dampened

since a majority of cells will be expressing the wild-type variant. Epistatic effects and

reduced penetrance due to allele-specific expression has been previously reported in the

context of allele-specific gene regulation [96, 98]. Here, these effects would arise from skewed

X inactivation across a tissue rather than skewed expression within individual cells. This

effect on penetrance has been described in the context of X-linked disorders, where skewed

inactivation blurs the distinction of dominant and recessive traits across males and females

[99]. The results shown here imply that selective pressures on genetic differences across

the female population can influence skewing and consequently influence the penetrance of

variation across the X chromosome.
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[76] Arthur Korte, Bjarni J. Vilhjálmsson, Vincent Segura, Alexander Platt, Quan Long,
and Magnus Nordborg. A mixed-model approach for genome-wide association studies
of correlated traits in structured populations. Nature Genetics, 44(9):1066–1071, Sep
2012.

[77] Barbara Rakitsch, Christoph Lippert, Karsten Borgwardt, and Oliver Stegle. It is all in
the noise: Efficient multi-task gaussian process inference with structured residuals. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013.

80



[78] N Takagi and M Sasaki. Preferential inactivation of the paternally derived X chro-
mosome in the extraembryonic membranes of the mouse. Nature, 256(5519):640–642,
August 1975.

[79] Ekaterina Shvetsova, Alina Sofronova, Ramin Monajemi, Kristina Gagalova, Harmen
H M Draisma, Stefan J White, Gijs W E Santen, Susana M Chuva de Sousa Lopes,
Bastiaan T Heijmans, Joyce van Meurs, Rick Jansen, Lude Franke, Szymon M Kie lbasa,
Johan T den Dunnen, Peter A C ’t Hoen, BIOS consortium, and GoNL consortium.
Skewed x-inactivation is common in the general female population. Eur. J. Hum. Genet.,
27(3):455–465, March 2019.

[80] C J Brown. Skewed x-chromosome inactivation: cause or consequence? J. Natl. Cancer
Inst., 91(4):304–305, February 1999.

[81] Susan S Brooks, Alissa L Wall, Christelle Golzio, David W Reid, Amalia Kondyles, Ja-
son R Willer, Christina Botti, Christopher V Nicchitta, Nicholas Katsanis, and Erica E
Davis. A novel ribosomopathy caused by dysfunction of RPL10 disrupts neurodevelop-
ment and causes x-linked microcephaly in humans. Genetics, 198(2):723–733, October
2014.

[82] Antonino Zito, Matthew N Davies, Pei-Chien Tsai, Susanna Roberts, Rosa Andres-
Ejarque, Stefano Nardone, Jordana T Bell, Chloe C Y Wong, and Kerrin S Small.
Heritability of skewed x-inactivation in female twins is tissue-specific and associated
with age. Nat. Commun., 10(1):5339, November 2019.

[83] Laura Carrel and Huntington F Willard. X-inactivation profile reveals extensive vari-
ability in x-linked gene expression in females. Nature, 434(7031):400–404, March 2005.

[84] Allison M Cotton, Bing Ge, Nicholas Light, Veronique Adoue, Tomi Pastinen, and
Carolyn J Brown. Analysis of expressed SNPs identifies variable extents of expression
from the human inactive X chromosome. Genome Biol., 14(11):R122, November 2013.

[85] Philipp Rentzsch, Daniela Witten, Gregory M Cooper, Jay Shendure, and Martin
Kircher. CADD: predicting the deleteriousness of variants throughout the human
genome. Nucleic Acids Res., 47(D1):D886–D894, January 2019.

[86] William McLaren, Laurent Gil, Sarah E Hunt, Harpreet Singh Riat, Graham R S
Ritchie, Anja Thormann, Paul Flicek, and Fiona Cunningham. The ensembl variant
effect predictor. Genome Biol., 17(1):122, June 2016.

[87] Alexandra Kuznetsova, Per B Brockhoff, and Rune H B Christensen. lmertest package:
Tests in linear mixed effects models, 2017.

[88] Samuel A Lambert, Laurent Gil, Simon Jupp, Scott C Ritchie, Yu Xu, Annalisa
Buniello, Aoife McMahon, Gad Abraham, Michael Chapman, Helen Parkinson, John
Danesh, Jacqueline A L MacArthur, and Michael Inouye. The polygenic score cata-
log as an open database for reproducibility and systematic evaluation. Nat. Genet.,
53(4):420–425, April 2021.

81



[89] Dragana Vuckovic, Erik L Bao, Parsa Akbari, Caleb A Lareau, Abdou Mousas, Tao
Jiang, Ming-Huei Chen, Laura M Raffield, Manuel Tardaguila, Jennifer E Huffman,
Scott C Ritchie, Karyn Megy, Hannes Ponstingl, Christopher J Penkett, Patrick K Al-
bers, Emilie M Wigdor, Saori Sakaue, Arden Moscati, Regina Manansala, Ken Sin Lo,
Huijun Qian, Masato Akiyama, Traci M Bartz, Yoav Ben-Shlomo, Andrew Beswick,
Jette Bork-Jensen, Erwin P Bottinger, Jennifer A Brody, Frank J A van Rooij, Ku-
maraswamy N Chitrala, Peter W F Wilson, Hélène Choquet, John Danesh, Emanuele
Di Angelantonio, Niki Dimou, Jingzhong Ding, Paul Elliott, Tõnu Esko, Michele K
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Linneberg, Yongmei Liu, Leo-Pekka Lyytikäinen, Ani Manichaikul, Koichi Matsuda,
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