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Müller cell activation, proliferation and migration following laser
injury

Mark A. Tackenberg,1,3 Budd A. Tucker,1 Jesse S. Swift,1 Caihui Jiang,1 Stephen Redenti,1

Kenneth P. Greenberg,5 John G. Flannery,4 Andreas Reichenbach,2 Michael J. Young1

1Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA; 2Paul-Flechsig Institute
of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany; 3Interdisciplinary Center of Clinical Research
(IZKF) Leipzig, Faculty of Medicine, University of Leipzig, Leipzig, Germany; 4Helen Wills Neuroscience Institute, University of
California, Berkeley, CA; 5MCB Neurobiology, University of California, Berkeley, CA

Purpose: Müller cells are well known for their critical role in normal retinal structure and function, but their reaction to
retinal injury and subsequent role in retinal remodeling is less well characterized. In this study we used a mouse model
of retinal laser photocoagulation to examine injury-induced Müller glial reaction, and determine how this reaction was
related to injury-induced retinal regeneration and cellular repopulation.
Methods: Experiments were performed on 3–4-week-old C57BL/6 mice. Retinal laser photocoagulation was used to
induce small, circumscribed injuries; these were principally confined to the outer nuclear layer, and surrounded by
apparently healthy retinal tissue. Western blotting and immunohistochemical analyses were used to determine the level
and location of protein expression. Live cell imaging of green fluorescent protein (GFP)-infected Müller cells (AAV-
GFAP-GFP) were used to identify the rate and location of retinal Müller cell nuclear migration.
Results: Upon injury, Müller cells directly at the burn site become reactive, as evidenced by increased expression of the
intermediate filament proteins glial fibrillary acidic protein (GFAP) and nestin. These reactive cells re-enter the cell cycle
as shown by expression of the markers Cyclin D1 and D3, and their nuclei begin to migrate toward the injury site at a rate
of approximately 12 μm/hr. However, unlike other reports, evidence for Müller cell transdifferentiation was not identified
in this model.
Conclusions: Retinal laser photocoagulation is capable of stimulating a significant glial reaction, marked by activation
of cell cycle progression and retinal reorganization, but is not capable of stimulating cellular transdifferentiation or
neurogenesis.

Müller cells, the major glial cell type in the mammalian
retina, were once considered to be nothing more than the
“glue” between retinal neurons. The name “glia” is derived
from the Greek word for glue. In recent years, many studies
have shown that Müller glia function as more than mere
structural support. They have been demonstrated to play
essential roles in maintaining homeostasis in the inner retina,
clearing the extracellular space of “used” neurotransmitters,
aiding in forming the blood-retinal barrier, protecting retinal
neurons against free radicals, providing metabolic support,
and even transmitting light through the retina by acting as
optical fibers [1-6]. Furthermore, recent studies have
suggested that Müller cells are capable of re-entering the cell
cycle, dedifferentiating, adopting certain characteristics of
progenitor and stem cells that migrate to the damaged retinal
tissue, and producing new neurons following specific types of
retinal injury (a process collectively known as
transdifferentiation) [7-9]. Driven by these findings, various
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groups have begun to investigate ways to increase the
regenerative capacity of these glial cells through the use of
molecules such as sonic hedgehog (shh), wnt, and notch, as
they play important roles in developing nervous tissue and are
in part responsible for determining cell fate [10-12]. Although
studies claim to have successfully increased the number of
Müller cells expressing neuronal progenitor cell markers
following administration of a pan-retinal toxin [13], there is
limited information on the ability of these cells to respond to
other types of injury by undergoing transdifferentiation and
directed migration. As such, in the present study, we have
focused on the use of retinal laser photocoagulation to study
the responses of local Müller glia to a defined local mode of
injury.

Retinal photocoagulation is FDA-approved and currently
in use to treat several severe degenerative (diabetic
retinopathy) and acute (retinal detachment) human eye
diseases [14]. More importantly for the present study, laser
photocoagulation produces a local circumscribed area of
damage, surrounded by relatively healthy tissue, which allows
us to study Müller cell behavior, including the ability to
undergo transdifferentation without affecting the entire retina.
It is hypothesized that retinal injury, induced by laser

Molecular Vision 2009; 15:1886-1896 <http://www.molvis.org/molvis/v15/a201>
Received 3 April 2009 | Accepted 14 September 2009 | Published 17 September 2009

© 2009 Molecular Vision

1886

http://www.molvis.org/molvis/v15/a201


photocoagulation, will stimulate Müller glia cycle
progression, dedifferentiation, stem cell marker expression,
and cellular transdifferentation.

METHODS
Animals: C57BL/6 mice were obtained from and maintained
in the animal facility of the Schepens Eye Research Institute
and used at the age of two to six months, with the exception
of the live imaging experiments, which included controls of
age postnatal day 1–10. Animals were maintained in standard
cages with a 12:12 light dark cycle and provided water and
food ad libitum. All experimental procedures were approved
by the Institute’s Animal Care and Use Committee and
adhered to the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research. Experimental groups
consisted of n=5 for each time point of all experiments.
Laser photocoagulation and euthanasia: A diode laser at a
wavelength of 810 nm was used to create 12 laser burns per
eye (three per quadrant) at the region of the posterior pole.
Each burn was 350 µm in diameter and produced with
100 mW of power for 100 ms. Spot size, laser duration, and
laser intensity were chosen based on the normal range of FDA-
approved treatments used to treat diseases such as diabetic
retinopathy and diabetic macular edema [15-18]. Mice were
euthanized after one through seven days post-laser burn by
CO2 inhalation.
Histology and immunohistochemistry: Eyes were enucleated,
fixed with 4% paraformaldahyde (PFA) for 24 h,
cryoprotected in sucrose (10% and 30% sucrose in distilled
water [DW], 24 h each), and embedded in optical coherence
tomography (OCT; Sakura Finetek, Torrence, CA). Tissue
was then frozen on dry ice and sliced into 16 µm sections using
a Minotome Plus cryostat (Triangle Biomedical Sciences,
Durham, NC). Sections were permeabilized using 0.1% Triton
X-100 in 10% goat serum (or 3% bovine serum albumin
[BSA]) for 1 h. Samples were incubated overnight (12 h) at
4 °C with primary antibodies directed against glial cell
markers, which included 1:250 glial fibrillary acid protein
(GFAP, monoclonal), 1:250 glutamine synthetase (GS,
monoclonal; Chemicon, Billerica, MA), 1:250 vimentin
(polyclonal; Sigma, St. Louis, MO), 1:250 cellular
retinaldehyde-binding protein (CralBP, monoclonal; Abcam,
Cambridge, MA), and 1:100 Cyclin D3 (polyclonal; Santa
Cruz, Santa Cruz, CA). The activated Müller cell markers
used included 1:250 nestin (monoclonal) and 1:100 PAX-6
(monoclonal; Chemicon). We also used the cell cycle marker
1:250 Cyclin D1 (polyclonal; NeoMarkers, Fremont, CA),
and progenitor and stem cell markers, which included 1:250
SOX-2 (monoclonal), 1:100 MASH-1 (monoclonal; R&D
Systems, Minneapolis, MN), 1:200 OTX-2 (monoclonal;
Abcam), and 1:100 CHX-10 (polyclonal; Chemicon).
Samples were then rinsed 3×10 min in PBS (8 g of NaCl, 0.2
g of KCl, 1.44 g of Na2HPO4, 0.24 g of KH2PO4) and incubated
with either Cy2 or Cy3- conjugated secondary antibodies for

1–2 h (Jackson ImmunoResearch, West Grove, PA) at room
temperature. Finally, samples were rinsed for 3×10 min in
PBS and sealed in mounting media (Vector Laboratories,
Burlingame, CA) for imaging, using a Leica confocal
microscope.
Müller cell virus preparation: The AAV8-mGFAP-eGFP
vector was packaged in AAV293 (Stratagene, La Jolla, CA)
cell cultures grown in standard growth media that contained
the following ingredients: Dulbecco’s Modified Eagle
Medium (DMEM), 10% heat inactivated fetal bovine serum
(FBS), and 4 mM L-glutamine. Cells were transfected with
three plasmids using Lipofectamine 2000 transfection reagent
(Invitrogen, Carlsbad, CA). The three plasmids used in the
transfection were: 1) Ad helper plasmid; 2) AAV helper; and
3) the AAV transfer vector containing the mouse GFAP
promoter followed by the enhanced green fluorescent protein
(eGFP) cDNA, and the woodchuck hepatitis virus post-
transcriptional regulatory element (WPRE) flanked by AAV2
inverted terminal repeats. The mouse GFAP promoter was
subcloned from the vector pFmGFAPGW previously
described in detail [19]. The virus was isolated from AAV293
cells through three freeze–thaw cycles. It was then incubated
for 30 min at 37 °C with 50 U benzonase (Novagen, Madison,
WI) and further purified by iodixanol density gradient
centrifugation, buffer exchange, and concentration as
previously reported [20]. The titer in vector genomes/ml (vg/
ml) of final virus isolate was determined by a quantitative real
time-polymerase chain reaction.
Live imaging: Mouse eyes were injected subretinally with
1 μl of a Müller cell specific adeno-associated vector,
containing a GFP tag. After two weeks, these eyes underwent
laser injury and were then enucleated two to three days later.
The retina was isolated and securely attached to a membrane
filter (Whatman, Dassel, Germany) with the photoreceptor
layer facing down (the membrane filter was used to stabilize
the tissue and prevent movement when imaging), cut into 120
μm-thick sections, and mechanically stabilized in a perfusing
chamber with the cut side up. The tissue was constantly
perfused with an extracellular solution that consisted of the
following ingredients: 110 mM NaCl, 3 mM KCl, 2 mM
CaCl2, 1 mM MgCl2, 1 mM Na2HPO4, 0.25 mM glutamine,
10 mM N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic
acid (HEPES), 11 mM glucose, and 25 mM NaHCO3, adjusted
to pH 7.4 with Tris-(hydroxymethyl) aminomethane (Tris-
base) and bubbled with carbogen (95% O2, 5% CO2). The
slices were then imaged every 15 min with a Leica confocal
microscope for 3 h, and cell movement was measured by
creating and comparing projections of each time point using
the Leica confocal imaging software. As the preparation
procedure used for live imaging itself may stimulate
additional cues for Müller cell migration, we were careful to
ensure that the site of retinal laser burn was located in the
center, away from the cut edges of the retinal section being
imaged. Unlike using a standard epi-fluorescence setup,
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which would require thin tissue sections through the injury
site to achieve a focused image, the confocal microscope
allowed us to zoom into the tissue directly on the laser injury
without disruption of surrounding structures.
Western blotting: For western blot analysis, retinas from laser-
burned eyes were homogenized in lysis buffer: 50 mM Tris-
HCl, pH 7.6, 150 mM NaCl, 10 mM CaCl2, 0.1% Triton
X-100, and 0.02% NaH3. The mixture was centrifuged,
supernatants were isolated, and protein concentrations were
determined using a bicinchoninic acid (BCA) protein assay
(Pierce Chemical, Rockford, IL). Equivalent amounts of
protein (50 µg) were subjected to SDS–PAGE (8%–10%
acrylamide), transferred to nitrocellulose, and probed with the
following antibodies: 1:1,000 GFAP (monoclonal), 1:1,000
GS (monoclonal) and 1:1,000 PAX-6 (monoclonal;
Chemicon), 1:1,000 Cral-BP (monoclonal), 1:1,000 vimentin
(polyclonal), 1:1,000 beta-actin (monoclonal; Abcam),
1:1,000 Cyclin D1 (polyclonal; Thermo Scientific, Wyman,
MA), 1:1,000 Cyclin D3 (polyclonal; Santa Cruz), 1:1,000
nestin (monoclonal; DSHB, Iowa City, IA), and 1:1,000
SOX-2 (monoclonal; R&D Systems). Blots were cut and
reprobed sequentially, visualized with ECL reagents (NEN,
Boston, MA), and exposed to X-ray film (Kodak/Carestream
Health, Bio Max Light Film, Rochester, NY). Developed
films were subsequentially digitized and densitometrically
analyzed with ImageJ software (National Institutes of Health,
Washington, DC). Digital images of western blots were used
to make composite figures with graphics software (Adobe
Photoshop, Adobe Corp., San Jose, CA).
Statistical analysis: The data were plotted as mean±standard
deviation, with significance 161 noted only if p≤0.05, as
determined by an unpaired t-test. Asterisks denote the
following levels of confidence: *≤0.05, **≤0.01, and ***≤0.
001.

RESULTS
Laser burn-induced Müller cell activation and cell cycle
progression: To study the glial response to retinal laser injury,
we performed immunohistochemical analysis for the glial cell
markers GS, Cral-BP, GFAP, nestin, and vimentin. Cral-BP,
evident in the normal retina, was upregulated within 24 h of
laser burn and stayed elevated for at least 48 h postinjury
(Figure 1A-C). Unlike Cral-BP, GFAP was not detectable in
Müller cells within the normal retina, and was only seen at 48
h postinjury (Figure 1D-F, presence of GFAP is indicated by
positive staining of cellular processes in Figure 1F,
arrowheads). Nestin was upregulated within 24 h after injury
and increased further by 48 h (Figure 1G-I). Like GFAP,
nestin was most prominent in Müller cell processes directly
adjacent to the laser burn (Figure 1H,I arrowheads). Unlike
the markers mentioned above, expression of both vimentin
and GS were detected in control-uninjured animals and
maintained at a similar level across all time points (Figure 1J-

O). This suggests that unlike nestin, GFAP and Cral-BP,
vimentin, and GS are not indicative of Müller cell activation.

The cyclins are key regulators of the cell cycle and are
therefore upregulated in proliferative cells. Cyclin D1,
upregulated in the G1-phase of the cell cycle, could be found
within 24 h after laser burn at the injury site only and remained
upregulated until three days postinjury (Figure 2A-E). Cyclin
D3 is closely related to Cyclin D1 and also expressed in the
G1 phase of the cell cycle. However, this molecule has been
shown to also act as a normal Müller cell nuclear marker and
as such can be used to track Müller cell movement and nuclear
location [21]. Cyclin D3 showed slight increases in expression
at both 2 and 3 days post injury (Figure 2F-J). Interestingly,
some of the Müller cell nuclei that stain positive for Cyclin
D3 were found to be located within the injured outer nuclear
layer (Figure 2H,I). As shown in other injury models, these
findings suggest that Müller cells have the potential to migrate
away from their original location toward the sight of retinal
injury.

To further confirm our immunohistochemical results, we
performed western blotting analysis of lysates isolated from
laser-injured retina taken at times 0 through day 3. Although
slight alterations and elevations in the levels of GS and
vimentin expression were detected, these changes were not
statistically significant (Figure 3E,D). Cral-BP and nestin
were upregulated significantly at day 1 following laser burn
and remained elevated above control throughout the
remaining time points (Figure 3A,C). Although a significant
increase in GFAP expression was not detected
immunocytochemically until 48 h postinjury, a significant
increase in this marker was detected at 24 h following laser
burn when western blot analysis was used (Figure 3B). This
could either be due to increased sensitivity of this analysis as
compared to immunostaining, or because retinal astrocytes
also express this marker.

As demonstrated in Figure 2, expression of the cell cycle
marker Cyclin D1 and the cell cycle-Müller cell marker Cyclin
D3 were both upregulated one day following laser burn
(Figure 3F,G). More specifically, both markers showed at
least a fourfold increase in expression that was maintained
across all of the time points tested.

To determine if retinal laser injury was inducing
progenitor and developmental marker expression, we
performed immunohistochemical analysis directed against
SOX-2, CHX-10, OTX-2, and MASH-1. These experiments
were performed at days 1 through 3 following laser injury,
with postnatal pups P1 through P10 used as positive controls,
and adult uninjured mice as negative controls. SOX-2 and
CHX-10 are transcription factors expressed by a variety of
developing retinal cell types, whereas OTX-2 and MASH-1
have been shown to be characteristic for developing
photoreceptors [22-26]. Although SOX-2, CHX-10, OTX-2,
and MASH-1 could all be detected in developing retina, their
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Figure 1. Müller cell activation following laser burn injury. Following retinal laser burn, eyes were enucleated, cryosectioned, and
immunostained using the glial markers Cral-BP (A-C), GFAP (D-F), nestin (G-I), vimentin (J-L), and GS (M-O). Cral-BP was upregulated
at 24 and 48 h within the injury site (A-C). GFAP was upregulated at 48 h postinjury (F). Nestin was upregulated at 24 h and 48 h (G-I)
postinjury. Vimentin and GS did not show a significant increase in expression at any time point (J-O). The scale bar represents 75 μm.
Abbreviation: outer nuclear layer (ONL). Arrowheads indicate Muller cell processes.
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presence was not identified either before or after laser injury
at any of the studied time points (data not shown). This
suggests that, at least in this model, Müller cell
transdifferentiation or induction of endogenous stem and
progenitor cells did not occur.

Laser injury induced migration of Muller cell nuclei: To
determine if the proliferative cells identified were truly Müller
glia, we performed double labeling at days 1 through 4
following laser injury, using antibodies directed against GS
(Figure 4A,C) and GFAP (Figure 4B,D), Cyclin D1 (Figure
4A,B), and Cyclin D3 (Figure 4C,D). At two days following

Figure 2. Expression of cell cycle markers. Cell bodies in the inner nuclear layer (INL) reentered the cell cycle, began to proliferate, and
migrated to the ONL following laser injury. The cell cycle marker Cyclin D1 and the Müller cell nuclear marker and cell cycle marker Cyclin
D3 were used to identify proliferative cells. Cyclin D1 staining was elevated within 24 h after laser injury and localized within the injury site
only. Cyclin D3 expression was increased at days 2 and 3 postinjury (H,I). Positive cells normally found in the INL were now located in the
outer nuclear layer, indicated by arrows H and I (ONL; H-J). The scale bars represent 75 μm.

Figure 3. Western blot analysis of
Müller cell- and cell cycle marker
expression. Western blots were
performed and analyzed to confirm our
immunohistochemical findings.
Antibodies, targeted against Cral-BP
(A), GFAP (B), nestin (C), vimentin
(D), GS (E), Cyclin D1 (F), and Cyclin
D3 (G), were used. A significant
increase in the expression of the markers
Cral-BP, GFAP, nestin, Cyclin D1, and
Cyclin D3 was observed. Asterisks
denote the following levels of
confidence: *≤0.05, **≤0.01, and
***≤0.001.
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laser burn injury, cells were detected in the inner nuclear layer
that stained positive for GS and Cyclin D1 (Figure 4A), GS,
and Cyclin D3 (Figure 4C), GFAP and Cyclin D1 (Figure 4B),
and GFAP and Cyclin D3 (Figure 4D). This indicates that
retinal laser injury stimulates Müller cell activation, cell cycle
progression and subsequent proliferation. Further analysis

performed two to three days after the laser burn identified the
presence of cell bodies positive for Cyclin D3 located in the
outer nuclear layer within the injured area of the retina only
(Figure 5A,B and ii arrows). As in Figure 2, these results are
indicative of Müller cell activation and subsequent injury-
induced migration. However, it is possible that instead of

Figure 4. Laser injury stimulates Müller glia proliferation. Antibodies, targeted against GS (A, C; green), GFAP (B, D; green), Cyclin D1
(A, B; red), and Cyclin D3 (C, D; red) were applied at two days postretinal injury. Müller glia within the injury site stain positive for the cell
cycle markers Cyclin D1 and D3, indicating that laser burn induces a reentry into the cell cycle and subsequent glial cell proliferation. The
scale bar represents 75 μm. Abbreviation: outer nuclear layer (ONL). Insets are higher power views of the indicated region. Arrows point to
positively labeled nuclei in A, B i, and ii, C, and D.
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stimulating active injury-induced migration, laser
photocoagulation may be leading to passive cellular
displacement. To determine whether retinal laser injury can
truly stimulate active Müller cell migration, a series of live
imaging experiments were performed. To carry out this
analysis, Müller cell labeling via in vivo injection of a GFAP-
GFP-tagged adeno-associated virus was performed. AAV-
serotype 8 specifically labels Müller glia when used at the
specific concentration and injection location we employed.

Live cell imaging revealed that a portion of the Müller
cell nuclei within the injury site started migrating within the
outer processes of individual cells toward the outer nuclear
layer at approximately two days postinjury (note that in non-
injury controls, similar translocation events were not
detected). Of these, Müller cell nuclei were identified that
traveled upward of 30 μm over the 150 min time span imaged,
indicating that a migration rate of approximately 12 μm/h can
be achieved (Figure 6A-L). The distance traveled was
determined by measuring from the leading edge of the cell
body indicated above the yellow line in Figure 6A to the
leading edge of the same cell body below the line in Figure
6K. All measurements were performed using NIHimage/
Image J software. These results correspond with the
aforementioned immunocytochemical data and indicate that
active injury-induced migration occurs following retinal laser
burn. Unlike other cell types it should be noted that Müller
glia are positioned within the retina via connections formed

at the inner and outer limiting membranes. Although the outer
limiting membrane has been disrupted during laser injury in
these studies, the inner limiting membrane appears to remain
intact; as such the migratory behavior identified here is
predominantly manifested as movement of the Müller glial
cell nuclei within its radial process (Figure 6).

DISCUSSION
Müller cells play an important role in the maintenance of
normal retinal structure and function. However, their
responses to pathological conditions, such as those induced
by laser photocoagulation, are poorly understood. Injury in
many central nervous system locations is known to stimulate
a “triple glial reaction,” consisting of cellular hypertrophy,
cellular proliferation, and targeted cellular migration.
Moreover, many groups have suggested that activation of glial
cells, particularly of Müller glia, may be an initial regenerative
response to injury. More specifically, it has been suggested
that injury-induced Müller glial activation may encourage
Müller cells to adopt stem cell characteristics, providing an
endogenous source of new functioning cell types that can be
integrated into damaged areas of the retina [9,13,27]. In the
case of laser photocoagulation, this would require the
capability of Müller cell bodies to migrate away from their
original location in the inner nuclear layer, across the outer
plexiform layer, and eventually into the outer nuclear layer of
the retina at the site of the photoreceptor cell somata. Although

Figure 5. Cyclin-D3 positive cell bodies in the ONL suggested Müller cell migration. Representative examples of Cyclin D3-positive cell
bodies in the outer nuclear layer (ONL) at two days following laser burn injury, suggesting possible Müller cell migration. A: The injury site
is shown at day 2 post injury, stained with vimentin (green) and Cyclin D3 (red). B: The injury site is shown at day 2 post injury, stained with
nestin (green) and Cyclin D3 (red). Arrows indicate Cyclin D3-positive cell bodies in the ONL localized around the injury site. The scale bar
represents 75 μm. Insets are higher power views of the indicated region. Abbreviations: GCL represents ganglion cell layer.
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similar reports of injury-induced Müller cell migration have
been made (based on identification of displaced Müller glia
at discreet points in time) [7,9,13], detection of this process in

real time had not been performed. Thus, this study was aimed
at tracking Müller cell responses to an acute localized retinal
injury (induced by laser photocoagulation), in an attempt to

Figure 6. Laser injury stimulates directed Müller cell body migration. GFP-positive Müller cells were imaged for 150 min following laser
burn injury. A-K shows the same area every 15 min at day 2 post injury. L is an overlay of the first (0 min, green) and the last (150 min, red)
time point to present a comparison of the position of the cell bodies directly. The live imaging data indicated that the cell bodies of selected
Müller cells were translocated 30 μm toward the injury site within those 150 min of imaging, suggesting that Müller cell bodies are able to
migrate with a speed of approximately 12 μm/h. The scale bar represents 50 μm. Abbreviations: GCL represents ganglion cell layer.
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identify the steps of injury-induced Müller cell activation
including targeted migration and the potential for cellular
transdifferentiation and neurogenesis.

As expected, we were able to show that retinal laser injury
stimulates Müller cell activation as indicated by upregulation
of the intermediate filament proteins GFAP and nestin. For
instance, increased GFAP expression was detected as early as
48 h post- injury and was confined to the area of retinal laser
burn. Interestingly, Müller cell activation coincided with cell
cycle progression, as revealed by a local upregulation of the
cell cycle marker Cyclin D1 and the cell cycle and Müller cell
marker Cyclin D3. These findings are in accordance with
findings from Kohno et al., who reported similar expression
of both Cyclin D1 and Ki67 within the rat retina post laser
injury [28]. This injury induced Muller cell proliferation could
potentially provide a larger pool of cells to be employed in the
process of retinal regeneration, including enhanced
phagocytosis of cellular debris, restoration of retinal
homeostasis, biochemical support of neuronal process (re-)
growth, and, potentially, generation of new lost cell types
[29]. Finally, we were able to show via live cell imaging of
AAV/GFP-infected Müller cells that laser injury stimulates
migration of activated Müller cell nuclei within its own radial
processes. This migration was found to occur at a speed of
approximately 12 μm/h and directed toward the injury site. A
wide range of migration speeds for various mammalian cell
types have been reported-i.e., astrocytes travel roughly15 μm/
h [30], cerebeller granular neurons go approximately 9.6–
16 μm/h [31], and oligodendrocyte precursor cells move
roughly 40 μm/h [32]); these cells typically move as a
complete unit from one location to another. Although the rate
of migration identified here is similar to that of the
aforementioned cell types, the type of migration that we have
identified is more akin to that of nuclear translocation within
neurogenic radial glia during cortical development. For
instance, during cortical neurogenesis radial glia (a cell type
which, much like Müller cells, extend processes between both
basal and apical surfaces of the developing organ), undergo a
series of nuclear movements known as interkinetic migration
[33]. During this process, nuclear location is indicative of the
stage of cellular division e.g., DNA replication occurs while
the nuclei are at the basal surface and mitosis occurs while the
nuclei are at the apical surface [34]. Unlike whole cell
movement, nuclear migration has been reported to occur at
much greater speeds. For instance, Szabo et al. were able to
show that bipolar cell nuclei could move at a rate of up to
100 μm/hr [35].

Irrespective of type and speed of migration, it is important
to note that injury-induced nuclear movement was directed
toward the injury site. This observation supports the view that
Müller glial cells are playing an active role in retinal
reorganization, and potentially regeneration, following injury.
Transdifferentiation is a process characterized by a loss of
Müller cell phenotype, subsequent stem cell marker

expression, and generation of retinal neurons [9,13]. We were
unable to identify such a process in this study using the injury
model of laser photocoagulation. For instance, injury-induced
expression of stem and photoreceptor precursor markers,
typically found in both newly generated and developing
photoreceptors (photoreceptor cells are the initial and primary
cell type affected by this type of injury), could not be detected
at any of the time points tested in this study. Several
explanations as to why we did not observe similar results as
those mentioned can be provided, the most obvious being the
size and type of retinal injury inflicted. For instance, as
demonstrated by Takeda et al. [13], it may be necessary to
induce a milder pan-retinal injury, e.g., by using a glutamate
analog, α-aminoadipate, to induce photoreceptor toxicity.
Unlike laser photocoagulation, glutamate excitotoxicity does
not destroy the outer nuclear layer, but rather leaves the
photoreceptor layer intact to provide support and inductive
signals for potential Müller cell transdifferentiation. It is also
possible that the different results seen here are due to species
variations. For instance, unlike our experiments on mice, the
aforedescribed studies have used rat or rabbit animal models.

In any case, one has to ask whether inducing stem cell
properties in mammalian Müller cells is a reasonable
approach for retinal repopulation following cell loss. For
example, photoreceptors outnumber Müller glia in the mouse
retina by a ratio of approximately 30:1 [36]. Thus, for
transdifferentiation to be effective in a small laser wound,
about 100 Müller cells would have to replace up to 3,000
photoreceptors to completely restore the cell numbers
originally found in the normal retina; this is a low estimate
since it requires that every single Müller cell in the affected
area adopt stem cell capabilities and exclusively generate
photoreceptor cells. As shown in recent studies this is not the
case: the number of Müller cells capable of
transdifferentiation is quite small and far from what would be
required for retinal reconstruction. Thus, to provide even
slight visual improvements, the number of functioning
photoreceptor cells produced from Müller glia would have to
be significantly enhanced.

In conclusion, although we have shown that retinal laser
injury is capable of stimulating a significant glial reaction
within the retina (marked by cellular reactivity, proliferation,
and targeted Müller cell nuclear migration), we have not been
able to identify the existence of Müller cell
transdifferentiation in this model.
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