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Abstract

Antibiotic resistance is one of the greatest public health challenges of our time. International 

efforts to curb resistance have largely focused on drug development and limiting unnecessary 

antibiotic use. However, in areas where water, sanitation, and hygiene infrastructure is lacking, we 

propose that bacterial flow between humans and animals can exacerbate the emergence and spread 

of resistant pathogens. Here, we describe the consequences of poor environmental controls by 

comparing mobile resistance elements among Escherichia coli recovered from humans and meat in 

Cambodia, a middle-income country with substantial human–animal connectivity and unregulated 

antibiotic use. We identified identical mobile resistance elements and a conserved transposon 

region that were widely dispersed in both humans and animals, a phenomenon rarely observed 

in high-income settings. Our findings indicate that plugging leaks at human–animal interfaces 

should be a critical part of addressing antibiotic resistance in low- and especially middle-income 

countries.

Antibiotic resistance is one of the top threats facing humanity (WHO 2021). Antibiotic-

resistant bacterial infections are already responsible for nearly 1.3 million deaths globally 

each year (ARC 2022), and some estimates suggest annual deaths from antimicrobial-

resistant infections could reach 10 million by 2050 if this crisis remains unaddressed 

(O’Neill 2016). Due to a higher infectious disease burden, widespread informal antibiotic 

use, and limited resources for controlling antibiotic-resistant infections (Bebell and Muiru 

2014; Klein et al. 2018), low- and middle-income countries (LMICs) are projected to 

experience the greatest mortality and economic fallout from this looming crisis (O’Neill 

2016).

To address this challenge, global public health organizations are collaborating with countries 

to develop “One Health”-oriented national action plans aimed at improving antibiotic 

stewardship in both humans and animal production (WHO 2016; World Bank Group 2019). 

To date, the importance of environmental controls at the human–animal interface has not 

received the same level of attention as antibiotic use. This lack of prioritization may be 

due to high-income country bias, as studies from the UK (Day et al. 2019) and the EU 

(Mughini-Gras et al. 2019; Martak et al. 2021) have identified only minimal sharing of 

antibiotic-resistant bacteria between humans and food animals. However, the situation could 

be vastly different in low- and especially middle-income countries, where environmental 

controls at the human–animal interface are often deficient or lacking altogether (Figure 1).
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Water, sanitation, and hygiene (WASH) in human communities and in food animal 

production – including on farms, in markets, and along the value chain – aim to control 

the flow of pathogens in and out of these systems. In settings where humans and food 

animals live in close proximity, the absence or breakdown of these controls – hereafter 

referred to as “leakiness” – has profound implications: the continuous, circular exchange of 

resistant bacteria selected through unregulated antibiotic use may facilitate the exchange of 

resistance genes among bacteria in both sectors. To our knowledge, leakiness as a potentiator 

of global antibiotic resistance has not been widely considered by the scientists and public 

health agencies who are driving policy and funding priorities in this field. Here, we provide 

evidence for the consequences of leakiness by describing the spread of mobile resistance 

elements between humans and animals in Phnom Penh, Cambodia, a highly leaky urban 

center in Southeast Asia.

Insufficient environmental controls and unregulated antibiotic use in 

Cambodia

Southeast Asia is a hotspot for emerging zoonotic infectious diseases such as highly 

pathogenic avian influenza H5N1, severe acute respiratory syndrome (SARS-CoV), and 

Nipah virus, all of which have emerged in the past few decades (Coker et al. 2011). 

Cambodia is among the poorest countries in Southeast Asia, and 76% of the estimated 

16 million residents live in rural areas (NIS 2018). As in other Southeast Asian countries, 

Cambodian livestock production is rapidly increasing to support growing demand. Between 

2012 and 2016, domestic poultry production increased by 53%, to 35.7 million chickens 

per year, and pig production by 34%, to 2.9 million pigs per year (MAFF 2017), with 

meat demand projected to increase by another 20% by 2024 (Sen 2018). While commercial 

livestock production has nearly doubled during the past decade (MAFF 2017), at least 80% 

of livestock continues to be raised by resource-constrained households in rural areas (MAFF 

2017; NIS 2018). This distribution of livestock production between commercial farms and 

small-scale, household farms is similar in many LMICs in Asia and sub-Saharan Africa 

(Ikhimiukor et al. 2022).

WASH conditions and animal husbandry practices in Cambodia suggest ample opportunity 

for bidirectional exchange of fecal–oral pathogens between humans and livestock (Figures 

1 and 2). First, Cambodia has the highest rate of open human defecation in the region 

(UNICEF Cambodia 2019), with 26.2% of rural residents and 7.7% of urban residents 

outside the capital continuing to defecate in fields or other open spaces (NIS 2018). Because 

most livestock raised in rural and urban households are allowed to roam freely during the 

day, these animals (especially pigs) may consume human feces (Sikasunge et al. 2007; 

Thomas et al. 2013). Second, nearly half of livestock-owning households report dumping 

untreated animal manure directly into the environment (Ström et al. 2018a), suggesting that 

untreated drinking water may be a source of animal fecal bacteria. Cambodia has the lowest 

access to piped drinking water in Southeast Asia, and nearly 1 in 5 urban residents outside 

the capital and 1 in 2 rural residents cannot reliably access clean water (NIS 2018). Third, 

poor WASH practices along the food supply chain in Cambodia, especially in antiquated 

slaughterhouses (Tum 2015) and crowded live-animal markets, facilitate the contamination 
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of meat and produce by animal and human fecal bacteria. Finally, such behaviors as using 

untreated animal manure to fertilize crops for human consumption (Ström et al. 2018a), 

allowing animals to enter food preparation areas (Osbjer et al. 2015), not removing manure 

from the household environment (Atterby et al. 2019), handling slaughtering byproducts 

(Atterby et al. 2019), and eating undercooked chicken and fish (Osbjer et al. 2015; 

Nadimpalli et al. 2019) likely exacerbate the spread of zoonotic pathogens. With so many 

leaks between human communities and animal production systems, antibiotic use in both 

sectors could lead to the emergence and spread of antibiotic-resistant bacteria.

We compared published lists of antibiotics commonly used in human medicine and food 

animal production in Southeast Asia and found substantial overlap. Antibiotics administered 

to chickens and pigs included all antibiotics that are commonly used in human medicine, 

including third-generation cephalosporins, penicillins, fluoroquinolones, gentamicin, and 

co-trimoxazole (Carrique-Mas et al. 2015; Om et al. 2017; Ström et al. 2018b). Farmers in 

Cambodia reported purchasing human antibiotics for their animals when veterinary drugs 

were ineffective (Ström et al. 2018b), and antibiotics that are critically important for human 

medicine (eg colistin) were used extensively in poultry production (Carrique-Mas et al. 
2015; Coyne et al. 2019). Such practices mean that the same antibiotic resistance genes 

could confer a selective advantage in multiple hosts.

Pathogen and mobile resistance element overlap across humans and food 

animals in Cambodia

We examined overlap among human- and animal-origin extended-spectrum β-lactamase 

(ESBL)-producing Escherichia coli, which are bacteria resistant to third-generation 

cephalosporins and other commonly used antibiotics (Panel 1). In Cambodia, gut 

colonization with ESBL-producing Enterobacterales has steadily increased over the past 

20 years, and more than 90% of healthy community members may now be carrying these 

organisms in their gastrointestinal tract (Singh et al. 2020). This prevalence rate is markedly 

higher than what is observed in high-income countries (Bezabih et al. 2021) like the US 

(<5%; Islam et al. 2018), the UK (11%; Day et al. 2019), and Denmark (12%; Dall et 
al. 2019). Previously, we found that ESBL-producing E coli colonizing healthy community 

members in Phnom Penh were highly similar to strains recovered from meat and fish sold at 

markets (Nadimpalli et al. 2019). For example, one-third of human-origin ESBL-producing 

E coli strains encoded the same ESBL gene type (blaCTX-M-55 gene) that predominated 

among E coli recovered from meat and fish. This sharply contrasts with findings from 

multiple high-income countries with robust WASH infrastructure in human communities and 

along the food value chain (Day et al. 2019; Mughini-Gras et al. 2019); for example, a 

recent study from the UK found only 5% of ESBL-producing E coli strains from healthy 

humans harbored ESBL genes that predominated among meat (Figure 3a; Day et al. 2019). 

Substantial leakiness between humans and animals in Cambodia, combined with similar 

antibiotic pressures in both reservoirs, could result in the synergistic amplification and 

mutual exchange of mobile resistance elements.
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For this case study, we performed long-read DNA sequencing of ESBL-producing E coli of 

human and animal origin and leveraged existing E coli datasets to determine if strains from 

these two sources shared a common pool of mobile resistance elements. Mobile resistance 

elements contain repeat regions that are challenging to assemble using standard, short-read 

DNA sequencing technologies; using long-read sequencing allows for substantially more 

accurate characterization of these elements. First, we used long-read sequencing to assemble 

high-quality draft genomes of five ESBL-producing E coli isolates from the feces of healthy 

humans (n = 2) and from pork meat (n = 2) and chicken (n = 1) sold at Phnom Penh markets 

(WebPanel 1; WebTable 1; WebFigure 1). We identified the ESBL-encoding plasmids they 

harbored and annotated them. Next, we screened for these plasmids among previously 

published Cambodian collections of ESBL-producing E coli from healthy, gut-colonized 

humans (88 positive of 130 humans screened), clinical specimens (n = 15), and meat and 

fish from markets (93 positive of 150 samples screened) (WebTable 2).

We identified four distinct ESBL-encoding plasmids that were shared with slight 

variations among E coli isolates of both human and animal origin (WebPanel 2; 

WebFigure 2). One plasmid (pC27A-CTX-M-55) co-encoding resistance to third-generation 

cephalosporins, fluoroquinolones, phenicols, tetracyclines, sulfonamides, trimethoprim, and 

aminoglycosides was present in E coli from chicken meat (n = 3), fish (n = 12), pork 

meat (n = 2), and healthy humans (n = 2). A second plasmid (pP59A-CTX-M-55) co-

encoding resistance to β-lactams, fluoroquinolones, macrolides, phenicols, sulfonamides, 

and aminoglycosides was prevalent among pork meat isolates (n = 6) and identified in 

a healthy human (n = 1). A third plasmid (pP225M-CTX-M-55) co-encoding resistance 

to third-generation cephalosporins, tetracyclines and aminoglycosides was primarily found 

among isolates from healthy humans (n = 6) but was also carried by E coli from a human 

urinary tract infection (n = 1) and from fish (n = 1). Finally, a fourth, novel plasmid 

type (pP276M-CTX-M-55) co-encoding resistance to third-generation cephalosporins, 

fluoroquinolones, phenicols, and tetracyclines was identified from a healthy human isolate 

(n = 1) and from chicken meat (n = 1). Although we only sequenced five ESBL-producing 

E coli isolates for this case study, which represent only a small fraction of the bacteria 

colonizing the guts of humans and food animals sampled in this setting, the multiple 

instances of overlap that we observed suggest that plasmid sharing among vertebrate hosts is 

not uncommon.

We then compared the four ESBL-encoding plasmids identified in this case study to 

determine whether the ESBL genes themselves shared a common origin. We identified 

a putative, blaCTX-M-encoding transposon region that was integrated across three of the 

four plasmids (WebFigure 3). This ~6-kilobase transposon region, hereafter referred to as 

TnCTX-M/qnrS, also encoded qnrS1, which confers low-level fluoroquinolone resistance. 

Among the three plasmids we sequenced, TnCTX-M/qnrS was flanked by different 

combinations of insertion sequences (IS26/ISEcp1/ISKpn19). Recent studies have described 

this same region, flanked by other combinations of insertion sequences, among E coli and 

Salmonella enterica recovered from retail meats, food animals, healthy humans, and clinical 

specimens across China and Southeast Asia (Zhang et al. 2019; Li et al. 2021; Zeng et al. 
2022). This suggests that TnCTX-M/qnrS has been mobilized by diverse mobile resistance 

elements and is likely under high selection pressure.
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Finally, we examined existing collections of ESBL-producing Enterobacterales 

from Cambodia as well as a global Escherichia/Shigella database (https://

enterobase.warwick.ac.uk/species/index/ecoli) for the TnCTX-M/qnrS region. The blaCTX-

M-55 and blaCTX-M-15 variants of this transposon region, which differed by only a single 

nucleotide polymorphism, were highly prevalent among Enterobacterales, including E coli, 
Klebsiella pneumoniae, and S enterica from human and animal products in Cambodia 

(Figure 3b; WebFigure 4; WebTable 2). Several strains in our existing collections were 

recovered from the same meat samples (Nadimpalli et al. 2019); for seven of 20 samples that 

were co-contaminated with different ESBL-producing species, TnCTX-M/qnrS was detected 

in all recovered species (WebTable 2). Examination of the global database revealed that 

the blaCTX-M-15 variant was broadly dispersed, while the blaCTX-M-55 variant was mainly 

identified in isolates from Asia, including Vietnam, Laos, Thailand, Taiwan, and China 

(WebPanel 2; WebTable 3). The mobilization of the blaCTX-M-55 variant across different 

plasmids, bacterial lineages, and hosts confirms that bacterial exchanges among humans 

and animals are exceptionally frequent in this region. Our findings also underscore that in 

settings with high leakiness, the full scope of antibiotic resistance exchange between humans 

and animals cannot be quantified by measuring bacterial strain overlap alone; rather, the 

exchange of resistance-encoding elements across bacterial lineages must also be considered.

Rebalancing priorities to combat antibiotic resistance

There is no doubt that antibiotics are the greatest selective force for the emergence of 

new antibiotic-resistant bacteria (Lipsitch and Samore 2002); however, poor environmental 

controls may be critically overlooked potentiators for such strains. In this case study, 

detection of the same mobile resistance elements across multiple vertebrate hosts indicates 

that antibiotic stewardship alone may be insufficient to stem the growing problem of 

antibiotic resistance in resource-poor settings. Although our analysis was limited to 

Cambodia, recent surveillance studies in several LMICs in Asia (Tansawai et al. 2019; 

Huang et al. 2020), South America (Murray et al. 2021), and Africa (Falgenhauer et 
al. 2019; Muloi et al. 2022) have also reported overlapping ESBL gene types among 

Enterobacterales from humans and food animals. Although most of these studies did 

not perform resource-intensive long-read sequencing to characterize the mobile resistance 

elements harboring these ESBL genes, as we did here, such consistent findings – again, in 

stark contrast to high-income settings – suggest that dissemination of mobile resistance 

elements across hosts is not unique to Cambodia or Southeast Asia. Overall, these 

data indicate that antibiotic stewardship efforts in LMICs must be complemented by 

implementing environmental controls at the human–animal interface (that is, “plugging 

the leaks”). In addition to stemming the circular flow of antibiotic-resistant bacteria, 

infrastructural WASH improvements in human communities and food animal production 

have the potential to also reduce disease and consequently antibiotic demand in both humans 

and animals (Pickering et al. 2019).

Higher demand for animal-based protein in low- and especially middle-income countries 

suggests that the need to plug leaks is becoming increasingly urgent. Specifically, as 

these countries develop, these dietary changes are driving up food animal production and 

concomitant antibiotic use (Van Boeckel et al. 2015). As a result, several countries that 
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lack universal access to clean water and sanitation are expected to double their antibiotic 

use in animal production over the next 10 years (Van Boeckel et al. 2015). Currently, less 

than 4% of funding through the Joint Programming Initiative for Antimicrobial Resistance 

(https://www.jpiamr.eu) is allocated toward identifying cost-effective environmental controls 

that curb microbial exchange (World Bank Group 2019). Furthermore, of the 70-plus 

countries that have developed national antimicrobial resistance action plans in collaboration 

with global public health organizations, nearly all have omitted commitments to community-

based WASH infrastructure (Essack 2021). This lack of prioritization may reflect a high-

income country bias among scientists and policy makers who accept the generalizability 

of research conducted in settings with strong environmental controls, where the exchange 

of mobile resistance elements between food animals and the broader community is limited 

(Day et al. 2019; Mughini-Gras et al. 2019; Martak et al. 2021).

Conclusion

Overall, in settings with pervasive leakiness between humans and animals, a rebalancing of 

policy and funding priorities is needed if the efficacy of new and existing antibiotics is to 

be preserved. The case study presented here strongly suggests that the lack of environmental 

controls along with widespread antibiotic use is leading to the exchange of resistance 

elements and the evolution of antibiotic-resistant human pathogens in Southeast Asia. 

Additional studies are necessary to determine the impacts of leakiness on the dissemination 

of antibiotic resistance in other settings and to ascertain which leaks are the most critical and 

most cost-effective to plug. We propose that evaluating and implementing WASH initiatives 

in both the community setting and food animal production should be prioritized along with 

antibiotic stewardship to address the antibiotic-resistance crisis in resource-poor settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Panel 1.

The importance of ESBL-producing Enterobacterales

• Third-generation cephalosporins are broad-spectrum antibiotics that are 

generally well-tolerated, affordable, and accessible.

• Bacteria that produce ESBL enzymes can degrade third-generation 

cephalosporins, leading to treatment failure.

• Genes encoding ESBL enzymes spread among bacteria via mobile resistance 

elements.

• Enterobacterales like Escherichia coli and Klebsiella pneumoniae have 

increasingly acquired these genes and now cause >50,000 deaths per year 

globally (ARC 2022).

• ESBL-producing E coli are used as “indicator organisms” by the World 

Health Organization to gauge the magnitude and interconnectedness of 

antibiotic resistance between humans, animals, and the environment, as well 

as the effectiveness of potential interventions.
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In a nutshell:

• Antibiotic resistance is an ecological challenge, with low- and middle-income 

countries bearing the greatest burden

• These countries have many unique interfaces at which bacteria and their 

resistance-encoding elements can be exchanged between humans and food 

animals – including on farms, at markets, and along food value chains – that 

are minimized or non-existent in high-income settings

• We describe evidence for the consequences of poor environmental controls at 

these interfaces on the bidirectional spread of antibiotic resistance between 

humans and animals in Cambodia

• Implementing water, sanitation, and hygiene infrastructure in human 

communities and food animal production must be prioritized to address global 

antibiotic resistance
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Figure 1. 
Unchecked environmental leaks and antibiotic use create myriad opportunities for the 

exchange of bacteria and mobile resistance elements among humans and animals. Potential 

transmission pathways include (1) inadequate sewage treatment infrastructure leads to 

contamination of human and animal drinking water; (2) animal waste contaminates 

drinking water; (3) raising many animals in confinement propagates disease; (4) raw 

sewage fertilizing crops for human consumption; (5) open defecation leads to fecal–oral 

transmission among humans and animals; (6) contact with animal waste; (7) farmed fish 

are fed pig and poultry feces; (8) consumption of undercooked chicken and fish; (9) pests 

contaminate food preparation areas; (10) meat contaminated by feces during processing; 

(11) multiple species in contact in unhygienic conditions; and (12) poor hygiene in markets. 

Layout stylized to indicate connectivity. Asterisks indicate antibiotic inputs.
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Figure 2. 
Frequent mixing of human- and animal-adapted microbes creates opportunities for 

the exchange of antibiotic resistance at multiple scales (ie of bacteria, plasmids, and 

transposable elements).
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Figure 3. 
High antibiotic use and environmental leakiness is associated with the mobilization of 

an extended-spectrum β-lactamase (ESBL)-encoding transposon region across different 

bacterial lineages and hosts in Cambodia. (a) Sankey diagram depicting the flow of ESBL 

genes among Escherichia coli from human and animal origin. ESBL genes flow freely 

among human and animal-origin E coli in the leaky Cambodian ecosystem but are largely 

isolated to specific hosts in the less leaky UK ecosystem. (b) Core-genome phylogenetic 

tree depicting diverse ESBL-encoding E coli lineages circulating in Cambodia. A blaCTX-M-

encoding transposon region has been acquired by multiple E coli sub-lineages from humans 

and meat, underscoring rampant genetic exchange in a highly leaky system with substantial 

antibiotic selective pressure. Tree is mid-point rooted and scale indicates substitutions per 

site.
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