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Abstract

Large scale systems are common in applications such as chemical process control,

power generation and distribution and transportation systems, among others. Of par-

ticular interest are multi-agent, scarce resource problems, where a large number of agents

have to make e�cient use of a scarce resource. Here we try to approach the problem of

large scale systems from a hierarchical, hybrid control view point. Our analysis is based

on a new hybrid dynamical system formulation, that allows us to model large scale sys-

tems in a modular fashion. We primarily address the problem of controller design for

multi-agent systems. A design procedure is proposed that naturally leads to hierarchi-

cal, hybrid control schemes, with continuous controllers trying to optimize each agent's

resource utilization at a lower level and discrete controllers resolving inter-agent conicts

at a higher level. An algorithm is presented to design the continuous controllers, as well

as abstractions of their performance in terms of the discrete level. The algorithm makes

use of ideas from game theory, treating the design process as a two player, zero sum

game, between the controller of an agent and the disturbance generated by the actions

of other agents. The resulting abstractions can be thought of as guidelines for the design

of the discrete layer. If the resulting continuous controllers are used and the discrete

controller satis�es the guidelines, the closed loop hybrid system is, by design, guaranteed

to exhibit the desired behavior. We demonstrate our algorithm by application to the

automated vehicle following problem.

1 Introduction

The focus of control theory has traditionally been on what one might call the central control

paradigm. In this setting, the physical process to be controlled is modeled by a set of dynamic

�
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equations describing the evolution of the state of the process (which can be either continuous or

discrete) over time. The process can be observed through outputs (obtained from sensors) and

its evolution can be inuenced by inputs (applied through actuators). The task of the designer

is to produce an algorithm that collects the output data, processes it centrally and applies the

appropriate inputs to guide the process in the desired direction. Controllers designed in this

setting have proved very e�ective for relatively small systems. Formal design techniques have

been developed to guarantee various aspects of the system performance: stability, robustness,

optimality with respect to certain criteria, disturbance rejection, etc.

Recently large scale systems characterized by a large, possibly dynamically changing

number of inputs, outputs, and states have attracted considerable attention. Examples in-

clude chemical plants, power generation and distribution systems and transportation systems.

The renewed interest in these systems has been triggered by economic and environmental

considerations. The size of these businesses is such that even small changes in performance

translate to large amounts of money gained or lost and/or considerable impact to the environ-

ment. At the same time, recent technological advances, such as faster computers, cheaper and

more reliable sensors and the integration of control considerations in the product design and

manufacturing process, have made it possible to extend the practical applications of control

to systems that were too complex to control in the past.

A class of large scale systems of particular interest are multi-agent, scarce resource

systems. Their common characteristic is that a large number of agents, equipped with sensing,

communication and control capabilities, are trying to make optimum use of a congested,

common resource. Examples of such systems are highway systems, (where vehicles compete for

highway space-time), air tra�c management systems (where aircraft compete for air space and

runway space), power generation and distribution systems (where producers and consumers

of power make use of the common distribution grid), computer networks, etc. The design

of controllers for such systems presents a number of di�culties. The number of agents may

be large and dynamically changing (planes take o� and land, vehicles enter and exit the

highway, etc.). Even though the state space of an individual agent may be small, the possible

coupling between the agents leads to a very large number of interacting states. This coupling

is even more pronounced in the presence of faults, as degraded performance of one agent may

adversely e�ect everyone else. Moreover, the desired performance is typically given in terms

of the collective behavior of all the agents (emergent behavior). Unless special measures are

taken, the optimum policy for each agent need not coincide with the \common good" and

compromises may need to be made. Because of the challenging problems associated with the

control of multi-agent, scarce resource systems, this area has attracted considerable attention

both theoretically and in application [1, 2, 3, 4, 5].

The obvious way to apply the central control paradigm to large scale systems is to

design a centralized control scheme. In such a scheme, the information from the entire system

is collected, processed centrally and commands are distributed to all the actuators. The

biggest advantage of such a control scheme is that the designer can try to globally optimize

the system performance. In practice, however, a centralized control scheme may be di�cult

to design and implement:

� The volume of information that needs to be exchanged is large. This can be a severe

drawback if communicating information is expensive and/or the bandwidth is limited.
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� The design process may be too complicated. Especially in multiagent systems, conicting

design goals may make it impossible to pose the controller design as an optimization

problem. Even in cases where this is possible, the resulting calculation is likely to be

very complex.

� The on-line computations needed to implement the controller may require unreasonable

computational power. This problem is especially pronounced in multi-agent systems

where the number of agents may be dynamically changing and therefore the optimal

control calculations may have to be constantly updated.

� The scheme may be unreliable. The cost of hardware ultimately limits the redundancy

built into the control scheme. Because of the size of the system the consequences are

likely to be catastrophic if the central controller is disabled.

These di�culties (especially the complexity of the design process) have limited the practical

applications of fully centralized controllers to highly structured systems, such as the scheduling

of trains.

The central control paradigm can also be applied to large scale systems in a decen-

tralized control scheme. Here the system is �rst split into subsystems. For example, in multi

agent systems natural subsystems are the agents themselves. Local controllers are designed,

that make use of the limited information available to each subsystem to calculate commands

for the subsystem actuators. The coupling between subsystems can be taken care of locally,

by making the controller more conservative and therefore more robust to the actions of the

neighboring subsystems. Decentralized control schemes are easier to design. They have been

shown to work well in problems where the coupling between subsystems is weak and/or the

optimality of the closed loop performance is not crucial [6]. In some cases, however, proofs

of performance claims are di�cult to obtain, since global behavior may be hard to infer from

local interactions. More importantly, the process starts to break down when one tries to push

the system performance to its limit.

If a completely decentralized solution is unacceptable and a completely centralized

solution is prohibitingly complex or expensive, an in-between compromise will have to be

sought. The resulting control scheme will feature some form of multi level hierarchy, with

lower levels dealing with local and higher levels dealing with global aspects of the performance.

Clearly such a solution is likely to be less e�cient than a centralized scheme and harder to

implement than a decentralized scheme; however, it may be the only feasible choice. Di�erent

models of the physical process are likely to be needed in such a hierarchy. The lower levels

need detailed models for precise local control. Typical choices are the standard, continuous

models consisting of di�erential or di�erence equations. On the other hand, the reasons that

make a centralized scheme impractical dictate the use of more abstract models at the higher

layers. Typical choices are discrete statistical or linguistic models. The di�erent levels of

abstraction at the various levels of the controller lead to hybrid systems.

For multi-agent systems, a control hierarchy will involve semiautonomous agent

operation. In this case each agent is trying to optimize its own usage of the resource and

coordinates with neighboring agents if there is a conict of objectives. It should be noted that

semiautonomous agent control is naturally suited for hybrid designs. At the lower levels each
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agent chooses its own optimal strategy, which will be in the form of a continuous control law.

At the higher levels discrete coordination is used to resolve conicts.

As the central control paradigm breaks down in this case, there is a lack of formal

mathematical tools for the design and analysis of hierarchical controllers for large scale systems.

Through the years a number of tools have been developed to deal with purely continuous or

purely discrete systems. None of these tools, however, is capable of fully addressing the issues

arising in hybrid systems. The development of specialized hybrid system tools has recently

attracted the attention of a number of research groups [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

In this paper we summarize one such e�ort [18, 19, 20, 21].

In this paper, we concentrate on the problem of designing hierarchical, hybrid con-

trollers for large scale systems. We start by giving an overview of the proposed design process

in Section 2. The steps of the process are outlined and motivation is given for the detailed

derivations that follow. In Section 3 we introduce a modeling formalism that allows us to

model multiagent systems with hybrid dynamics in a modular fashion. Based on such models

a more detailed algorithm for part of the design process is proposed in Section 4. The algo-

rithm makes use of ideas from game theory to capture the interaction between the agents,

derive continuous controllers and quantify the discrete coordination needed to achieve certain

performance objectives. In Section 5, the application of this algorithm to the problem of

automated vehicle following is presented. Section 6 gives a summary of the proposed scheme

and highlights the major points. For further examples on the applications of these techniques

the reader is referred to [20, 22].

2 Outline of the Design Process

In this section we give an outline of a possible strategy for designing hierarchical controllers

for large scale systems. It involves a number of steps. For most of these steps we will only give

an intuitive discussion of the issues involved and how one can proceed to resolve them. A more

formal analysis of the remaining steps is given in Section 4. The design process can be split

into two phases, a top{down phase where the problem is parsed to a preliminary hierarchy

and the design speci�cations are quanti�ed, and a bottom{up phase where the details of the

hierarchy are �lled in and the resulting closed loop performance is extracted.

2.1 Top{Down Phase

We assume that the starting point for the design is a model of the physical process (given

in the modeling formalism of Section 3) and a description of the desired emergent behavior

of the closed loop system. In most examples the desired behavior is given linguistically; for

example for an automated highway problem the desired emergent behavior could be to achieve

a higher throughput of the highway while maintaining the same level of safety and passenger

comfort. The �rst step is to quantify such a speci�cation. This process is di�cult to formalize

in an abstract setting. The solutions given in applications are typically problem dependent

and rely heavily on the designers intuition about the problem. The reader is referred to [23]

for an outline of this process for the automated highway problem and to [4] for the air tra�c

management problem.
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The di�culties associated with quantifying an emergent behavior speci�cation are

beyond the scope of this paper. We circumvent them by assuming that the process has already

been completed. Following the results of [4, 23] we assume that, at the end of the top down

phase we are presented with a preliminary discrete design, in the form of a set of way points

and a set of logic rules for switching between them. Such a design can be encoded by a �nite

state machine (see for example the design of [24] for the automated highways). The discrete

design is accompanied by a set of cost functions to be used in the continuous controller design.

A number of cost functions may need to be considered to encode di�erent requirements (for

example safety, e�ciency, etc.). It will be assumed that the cost functions can be ranked in

terms of importance (for example safety will be more important than e�ciency). Acceptable

performance can be encoded by means of thresholds on the �nal costs.

2.2 Bottom{Up Phase

The task facing the designer now is to derive continuous control laws and re�nements on the

preliminary discrete design to guarantee the speci�cations encoded by the cost functions and

the thresholds. This process is the main focus of this paper.

2.2.1 Continuous Design

In terms of the continuous controllers we can distinguish two factors that inuence the system

evolution: the control that the designer is called upon to specify and the disturbances that

enter the system, over which the designer has no control. We distinguish three classes of

disturbances:

� Class 1: Exogenous signals, such as unmodeled forces and torques in mechanical sys-

tems, sensor noise, etc.

� Class 2: Unmodeled dynamics.

� Class 3: The actions of other agents, in a multiagent setting.

Disturbances of Class 1 and 2 are standard in classical control theory. Class 3 will be the

most interesting one from the point of view of hybrid control. Recall that at this stage we

are merely modeling the plant, therefore we assume no cooperation between the agents. As a

result, each agent views the actions of its neighbors as uncontrollable disturbances.

The �rst objective is to derive a continuous design for the control inputs that guar-

antees performance despite the disturbances. The design of the continuous laws should be

optimal with respect to the closed loop system requirements. A good tool for this kind of

set up is game theory. In the game theoretic framework the control and the disturbances are

viewed as adversaries in a game. The control seeks to improve system performance while the

disturbance seeks to make it worse. Games like these do not necessarily have winners. If,

however, we set thresholds on the cost functions to distinguish acceptable from unacceptable

performance we can say that the control wins the game if the requirements are satis�ed for

any allowable disturbance, while the disturbance wins otherwise. The principles involved in

game theoretic design are very similar to the ones for optimal control. Roughly speaking,

the designer has to �nd the best possible control and the worst possible disturbance. If the
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requirements are met for this pair, it is possible to obtain a satisfactory design (one such

design is the \best possible" control). If the requirements are not satis�ed the problem can

not be solved as is, since there exists a choice of disturbance for which, no matter what the

controller does, the closed loop system will fail to satisfy the requirements.

Game theoretic ideas have already been applied in this context to problems with

disturbances of Class 1 and 2 and quadratic cost functions. The resulting controllers are the

so called H1 or L2 optimal controllers (see for example [25, 26]). We will try to extend these

ideas to the multiagent, hybrid setting and focus on disturbances of Class 3. The process is

described in Section 4.

2.2.2 Discrete Design

To complete the hierarchical controller the preliminary discrete design needs to be augmented

to account for the performance of the continuous design. The solution to the game theoretic

problem will produce continuous control laws and sets of initial conditions for which perfor-

mance is guaranteed for any disturbance. If the preliminary discrete design dictates switching

between control laws, these sets of initial conditions can be used as guidelines for the switching

(a form of interface between the continuous and discrete domains).

If it turns out that the disturbance is such that the speci�cations can not be met for

any controller the design fails. The only way to salvage the situation is to somehow limit the

disturbance. For disturbances of Class 3 this may be possible by means of communication and

coordination between the agents. The objective is to come up with a discrete design that limits

the disturbance so that a continuous design is feasible. Unfortunately, no formal technique

exists for determining the coordination necessary to solve such a problem. Our work on speci�c

applications [20, 22] suggests that all the requirements imposed on the discrete design by the

continuous controllers can be encoded in terms of timed language speci�cations. The work of

[27] indicates that timed language problems are purely discrete. Therefore, in principle, the

task of completing the hierarchical controller is tractable and can be tackled using standard

computational discrete design tools.

In practice the augmentation of the discrete design is carried out based on heuristics

and the insight gained from the continuous level design. The system is then analyzed to de-

termine whether the coordination provides enough reduction in the disturbance for the game

discussed above have a solution. In this paper we will limit our attention to the design of

continuous control laws and interfaces between these laws and the discrete world. In the exam-

ples we consider (refer to [20, 22]) the requirements on the discrete design follow automatically.

Summarizing the bottom{up phase, our approach can be thought of as an attempt

to add a minimal amount of centralization to an initial decentralized design. The plan is

to locally optimize the system performance and establish bounds on the global performance

under a the resulting control laws. Then we investigate how cooperation can be used to

improve on these bounds. If a limit is set on certain aspects of the performance our analysis

will allow us to determine the minimum amount of coordination needed to achieve those

limits. This approach may be valuable for applications other than controller design, for

example for distributing processes in parallel computers (so that the minimum amount of

communication is needed) and for signal or image transmission (to determine the minimum
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amount of information that an intelligent receiver needs to reproduce the transmitted signal).

2.2.3 Extracting the Emergent Behavior

To complete the bottom{up phase we need to somehow extract the emergent behavior pro-

duced by our design. This will allow us, for example, to compare various designs proposed for

the same problem.

This step is strongly linked to the quanti�cation of emergent behavior attempted at

the top{down phase of the design. In the setting considered here, where the requirements on

the continuous design are encoded by cost functions, a natural way of abstracting the emergent

behavior is by using optimal control. For example, optimal control ideas can be used to obtain

the minimum and maximum times that a hybrid system spends in each discrete state. These

bounds can then be used as a rudimentary timed abstraction of the hybrid system. Similarly,

the sets of initial conditions for which the performance requirements are satis�ed, that are

generated by solving the game theory problems, can be used as a di�erent discrete abstraction

(\safe" vs \unsafe" states for example).

The requirement for designer input limits the complexity of the problems that can

be handled analytically using this approach. A more common approach is to investigate the

system performance using macro-simulation. This approach is especially valuable for multi-

agent problems and has been successfully applied to a number of examples [28, 29].

2.3 Multiagent Design and Veri�cation Environment

Based on the discussion presented above, we envision developing a complete design, simulation

and veri�cation environment for multi-agent, hierarchical, hybrid control systems (Figure 1).

The speci�cations are described by the desired emergent behavior of the collection of agents.

These are simple requirements usually described linguistically: increased throughput and

safety and reduced emissions for Automated Highway Systems, increased frequency of landings

and takeo�s and optimum utilization of air space for Air Tra�c Management Systems, etc.

These requirements have to get parsed into a system architecture. Designing a

control architecture involves decomposing the system into a subsystem hierarchy, specifying

the subsystem interconnections and determining the limits of the environmental inputs. We

will concentrate on partially decentralized architectures, with coordinating semi-autonomous

agent operation. The controller of each agent is described by a multi layer hierarchy. The

control laws and the inter-agent coordination schemes are to be designed using design tools, in

order to satisfy the speci�ed properties such as safety, e�cient resource utilization, etc. The

design tools may be conventional discrete and continuous tools as well as specialized tools for

hybrid control (such as the ones discussed in this paper). Once the control laws for individual

agents are designed, we would like to be able to abstract their detailed behavior so that the

collective emergent characteristics can be evaluated using tools such as macro-simulation.

The process can be customized to a speci�c application, such as Automated High-

way Systems (AHS) or Air Tra�c Management Systems (ATMS). As an example, consider the

case of AHS. The hybrid system description language introduced above can be customized to

the speci�c application domain as shown in [30]. Then controllers for the various maneuvers

required on the AHS can be designed to satisfy safety, comfort and e�ciency requirements
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using the tools presented in Section 4 [20]. To get to the emergent behavior, the various

maneuver control laws of an automated vehicle can then be abstracted into space-time re-

quirements. This information can be used in a tra�c ow model to evaluate the throughput

of the highway. The detailed designs can also be converted into a generic multi-agent hybrid

system simulation language and simulated using a micro-simulator. One such micro-simulator

SmartAHS is being built for AHS applications at Berkeley. Note that the simulation program

should be able to handle dynamically changing inter-connections between di�erent agents. A

language for describing such a dynamically changing network of hybrid systems, called SHIFT,

is described in [31]. SHIFT adds the functionality to dynamically create and destroy new com-

ponents and change input output connections as part of the reset actions. Speci�cations in

SHIFT can be veri�ed or validated using hardware-in-the-loop experiments.

2.4 Related Problems: Veri�cation using Optimal Control

Optimal control and gaming ideas may also prove useful for veri�cation. Standard automatic

veri�cation techniques involve some form of exhaustive search, to verify that all possible runs

of the system satisfy a certain property. An optimal control approach to veri�cation, on the

other hand, involves solving an optimal control problem to obtain the worst possible run with

respect to a given requirement and then verifying that the speci�cation holds for this run. If

this is the case, it will also hold for all other runs. The main advantage is that, by removing the

requirement for an exhaustive search, the limitations of undecidability and computational
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complexity disappear. To guarantee that an automatic veri�cation algorithm will terminate

in a �nite number of steps, the system needs to satisfy very stringent technical requirements.

It can be shown [16] that relaxing any of these requirements makes the problem undecidable.

Moreover, even though e�cient algorithms exist (that make use of formal reduction techniques

as well as heuristics and user input to facilitate the search), the veri�cation task may still be

prohibitively complex for current computers [32].

Veri�cation of closed loop hybrid systems is better suited for optimal control, rather

than game theory, as one of the two players (the controller) has its strategy �xed a-priori.

Therefore only the disturbances, trying to do their worst to upset the design, enter the picture.

An interesting class of disturbances that needs to be considered in this context is:

� Class 4: Commands from the discrete controller

From the point of view of the continuous system (where the optimal control problem is to

be solved) these commands can be viewed as signals that make the continuous system switch

between control laws, �xed points etc. Optimal control can be used to determine the discrete

command sequences that force the continuous system to violate the performance speci�cations.

If the discrete design is such that these command sequences are excluded then the hybrid design

is veri�ed. [33] discusses the application of these ideas to the automated highway example.

In this paper we will concentrate on controller design and will not discuss the prob-

lem of veri�cation further. A more thorough presentation can be found in [19, 21].

3 Hybrid System Modeling

In this section, we present a rather general model for multiagent systems. Each agent is

modeled as a hybrid dynamical system. The modeling framework is modular, in that a

hybrid system can be speci�ed as a composition of subsystems. Each agent speci�cation is a

tree structured hierarchy of subsystems, representing the plant dynamics, sensors, actuators,

communication devices and controllers.

3.1 Hybrid Dynamical Systems

The basic entity of our models will be the hybrid dynamical system or hybrid automaton

(the terms will be used interchangeably). Hybrid automata are convenient abstractions of

systems with phased operation and they appear extensively in the literature in various forms

([11, 14]). The model we consider will be similar to models used primarily in computer science

(in particular the ones in [14] and [15]). However, because we are interested in modeling

di�erent agents and their interaction we will take a more input/output approach, along the

lines of the reactive module paradigm [34]. For an excellent overview of hybrid models from

the dynamical systems point of view see [13].

Variables

A hybrid automaton is a dynamical system which determines the evolution and interaction

of a �nite collection of variables. We consider two distinct kinds of variables, discrete and

continuous.
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De�nition 1 A variable is called discrete if it takes values in a countable set and it is called

continuous otherwise.

We will assume no special algebraic structure for the values of the discrete variables. The only

operations we will allow are assigning a value to a variable and checking whether the value of

a variable and a member of the value set (or the values of two variables that take values in

the same set) are equal. We assume that continuous variables take values in subsets of Rn for

some value of n1.

The variables in our model will be split into three classes: Inputs (external), Out-

puts (interface) and State (private)2. We will denote the input space (set where the input

variables take values) by:

U = UD � UC

the output space by:

Y = YD � YC

and the state space by:

X = XD �XC

The subscripts D and C indicate whether the variable is discrete or continuous. To avoid

unnecessary subscripts we denote an element of U by u, an element of Y by y and an element

of X by (q; x).

Time

Let T denote the set of times of interest. Our models will evolve in continuous time, so we

will assume that T = [ti; tf ] � R. The de�nitions should easily extend to other sets T with

appropriate topological and algebraic structure. The variables will evolve either continuously

as a function of time or in instantaneous jumps. Therefore the evolution of the system will

be over sets of the form:

T = f[� 00; �1][� 01; �2]; : : : [� 0n�1; �n]g (1)

with �i 2 T for all i, � 00 = ti; �n = tf and �i = � 0i � �i+1 for all i = 1; 2; : : : ; n � 1. The

implication is that �i are the times where discrete jumps of the state or input occur. We will

use � to denote an element of T .

Dynamics

The evolution of the variables will be determined by four objects:

I � X (2)

f : X � U �! TXC (3)

E � X � U �X (4)

h : X � U �! Y (5)

1
The de�nitions generalize to weaker conditions, for example continuous variables lying on manifolds.

2
The terms in bold come from the system theory literature while the terms in brackets are more computer

science oriented. They can be used interchangeably, though we stick to the terms in bold most of the time.
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Here TXC represents the tangent space of the space XC . I is the set of possible values of the

initial states, i.e.:

(q(� 00); x(�
0

0)) 2 I

The vector �eld, f , determines the evolution of the continuous state on intervals of the form

[� 0i�1; �i] with � 0i�1 < �i. For every t 2 [� 0i�1; �i]:

_x(t) = f(q(t); x(t); u(t))

Without loss of generality we will assume that f is time invariant3. We make the standard

assumptions on f for existence and uniqueness of solutions to the ordinary di�erential equa-

tion.

The set E determines the discrete evolution of the state. The interpretation is that

the state can keep evolving continuously as long as:

(q(t); x(t); u(t); q(t); x(t)) 2 E

The state can take a discrete jump at time �i from (q(�i); x(�i)) 2 X to (q(� 0i); x(�
0

i)) 2 X if:

(q(�i); x(�i); u(�i); q(�
0

i); x(�
0

i)) 2 E

Finally, h determines the output evolution. For all t 2 � :

y(t) = h(q(t); x(t); u(t))

Collecting the above elements we give the following de�nitions:

De�nition 2 A hybrid dynamical system, H, is a collection (X;U; Y; I; f; E; h), with:

X = XD �XC

U = UD � UC

Y = YD � YC

I � X

f : X � U �! TXC

E � X � U �X

h : X � U �! Y

where XC ; UC ; YC are respectively open subsets of Rn ;Rm ;Rp, for some �nite values of n;m; p

and XD; UD; YD are countable sets.

De�nition 3 A run of the hybrid dynamical system H over an interval T = [ti; tf ] consists

of a collection (�; q; x; y; u) with � 2 T , q : � ! XD, x : � ! XC, y : � ! Y and u : � ! U

which satis�es the following properties:

3
With some additional notation overhead the same de�nition can be given in terms of the ow of the vector

�eld. The advantage to this would be that the de�nition would directly extend to other cases, such as discrete

time systems.
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1. Initial Condition: (q(� 00); x(�
0

0)) 2 I.

2. Discrete Evolution: (q(�i); x(�i); u(�i); q(�
0

i); x(�
0

i)) 2 E, for all i.

3. Continuous Evolution: for all i with � 0i < �i+1 and for all t 2 [� 0i ; �i+1]:

_x(t) = f(q(t); x(t); u(t)) (6)

q(t) = q(� 0i) (7)

(q(t); x(t); u(t); q(t); x(t)) 2 E (8)

4. Output Evolution: for all t 2 �

y(t) = h(q(t); x(t); u(t))

It can be shown [21] that the de�nitions introduced here are rich enough to allow us to model

regular dynamical systems, discrete events, autonomous jumps, controlled jumps, etc.

3.2 Graphical Representation

If the discrete state can assume a �nite number of values it is very convenient to represent

the hybrid automaton by a �nite graph. We can associate a �nite graph to a given hybrid

automaton H using the following construction.

Construction 1 (Graph Generation):

Nodes: the number of nodes in the graph will be equal to the number of possible values of

the discrete state. The nodes will be indexed by a corresponding discrete state value, q 2 XD.

Continuous Evolution: to each node, q, we associate a vector �eld, fq:

fq : XC � U �! TXC (9)

(x; u) 7�! f(q; x; u)

The implication is that while in the node q the continuous state evolves according to fq.

Node Invariants: To each node, q, we associate an invariant:

Invq =
[
f(x; u)jx 2 XC ; u 2 U; (q; x; u; q; x) 2 Eg � XC � U (10)

The interpretation is that the system can remain in node q if and only if (x; u) 2 Invq.

Transition Guards: To the transition from node q to node q0 we associate a guard:

Enqq0 =
[
f(x; u)jx; x0 2 XC ; u 2 U; (q; x; u; q0; x0) 2 Eg � XC � U (11)

The interpretation is that the transition can take place if and only if (x; u) 2 Enqq0 .

Transition Reset: To the transition from node q to node q0 we associate a set valued map:

Resqq0(x; u) =
[
fx0jx0 2 XC ; (q; x; u; q

0; x0) 2 Eg � XC (12)

The interpretation is that if the transition takes place from (x; u) then after the transition the

state �nds itself in (q0; x0) with x0 2 Resqq0(x; u). 2

The above construction allows us to represent a hybrid automaton graphically as

shown in Figure 2. Note that there is no requirement that q 6= q0, i.e. loops to the same node

are allowed. In ensuing sections some of the elements of the graph may be omitted to simplify

the �gures. The interpretation will be that a missing invariant or guard is equal to XC � U

while a missing reset map is the identity in x for all u 2 U .
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Figure 2: Hybrid automaton graph nodes

3.3 Operations on Hybrid Dynamical Systems

We will only de�ne three operations on hybrid dynamical systems: interconnection, renaming

and hiding. Interconnection will allow us to form new hybrid systems out of collections of

existing ones, renaming will allow us to connect systems with their subsystems while hiding

will hide some outputs of a given hybrid system from the rest of the world.

Let fHigNi=1 be a collection of hybrid automata, Hi = fXi; Ui; Yi; Ii; fi; Ei; hig. We

can write the inputs and outputs in vector form as:

ui =

2
664

ui;1
...

ui;mi

3
775 2 Ui yi =

2
664
yi;1
...

yi;pi

3
775 2 Yi

Let:

Û = f(1; 1); (1; 2); : : : ; (1; m1); (2; 1); : : : ; (2; m2) : : : ; (N; 1); : : : ; (N;mN)g
Ŷ = f(1; 1); (1; 2); : : : ; (1; p1); (2; 1); : : : ; (2; p2); : : : ; (N; 1); : : : ; (N; pN)g

De�nition 4 An interconnection, I, of a collection of �nite automata, fHigNi=1, is a partial
map:

I : Û �! Ŷ

An interconnection of hybrid automata can be though of as a pairing (ui;j; yk;l) of inputs and

outputs. An interconnection is only a partial map (i.e. some inputs may be left free), need

not be surjective (i.e. some outputs may be left free) and need not be injective (i.e. an output

may be paired with more than one input). Let Pre(I) be the subset of Û for which the partial

map I is de�ned. Also let �� denote the projection of a vector valued quantity to the element

with index �.

De�nition 5 Given a collection of hybrid automata fHigN1 and an interconnection I, the
symbolic operation substitution, denoted by ;, assigns to each input, ui;j a map on X1 �
: : :�XN � U1 � : : :� UN , according to:

ui;j ;

(
ui;j if (i; j) 62 Pre(I)
hI(i;j) : X�1(I(i;j)) � U�1(I(i;j)) ! Y�1(I(i;j)) if (i; j) 2 Pre(I)

If for all (i; j) 2 Pre(I), YI(i;j) � Ui;j, operation; can be repeatedly applied to the right hand

side by appropriate map compositions. The construction terminates for each ui;j if the right

hand side either contains ui;j itself or contains only uk;l 62 Pre(I). The resulting map will be

denoted by (ui;j ;
�).
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Because there are a �nite number of inputs, the construction of (ui;j ;
�) terminates in a �nite

number of steps.

To ensure that an interconnection is well de�ned as an operation between hybrid

automata we impose the following technical conditions:

De�nition 6 An interconnection, I, of a collection of hybrid dynamical systems, fHigNi=1, is
well posed if:

1. For all (i; j) 2 Pre(I), YI(i;j) � Ui;j,

2. There are no algebraic loops, i.e. for all (i; j) 2 Pre(I) the map (ui;j ;
�) does not

involve ui;j.

These requirements imply that (ui;j ;
�) is well de�ned as a map between the following spaces:

(ui;j ;
�) : X1 � : : :�XN � �ÛnPre(I)(U1 � : : :� UN) �! �i;j(U1 � : : :� UN )

Fact 1 Every well posed interconnection, I, of a collection of hybrid dynamical systems,

fHigNi=1, de�nes a new hybrid dynamical system.

Proof: Let H = fX;U; Y; I; f; E; hg denote the interconnection automaton, de�ned by X =

X1 � : : : � XN , U = �ÛnPre(I)(U1 � : : : � UN ), Y = Y1 � : : : � YN , I = I1 � : : : � IN ,

f = [fi � (ui ;�)]
N

i=1, E � X � U � X with e = (q; x; u; q0; x0) 2 E if and only if for all

i = 1; : : : ; N :

(qi; xi; (ui ;
�)(q; x; u); q0i; x

0

i) 2 Ei

and h = [hi � (ui ;�)]
N

i=1. 2

The expression (ui ;
�) denotes the map generated by applying;� to the elements ui;1; : : : ; ui;mi

.

The terms in square brackets have the obvious interpretation as vectors. The symbol � de-

notes composition of maps. By a slight abuse of notation, we will refer to H itself as the

interconnection of fHigNi=1.

De�nition 7 Consider a hybrid automaton H with input space U = U1� : : :�Um and output

space Y = Y1 � : : :� Yp and variables ûi 2 Ûi � Ui and ŷj 2 Ŷj � Yj. Renameui!ûi(H) is a

new automaton with the same state and output spaces, input space:

Û = U1 � : : : Ui�1 � Ûi � Ui+1 � : : :� Um

the same initial condition set and f̂ ; Ê and ĥ equal to the restrictions of the corresponding

quantities of H to Û . Similarly, Renameyi!ŷi(H) is a new automaton with the same state

and input spaces, output space:

Ŷ = Y1 � : : : Yj�1 � Ŷj � Yj+1 � : : :� Yp

and the same dynamics.

This operation can be used when a hierarchy of hybrid automata is constructed to identify

inputs and outputs of systems and their subsystems.
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De�nition 8 Given a hybrid automaton H with output space Y = Y1 � : : : � Yp and an

output yi taking values in Yi the operation Hideyi(H) produces a new hybrid automaton, with

the same state and input spaces, output space:

Y1 � : : :� Yi�1 � Yi+1 � : : : Yp

the same dynamics as H and output map [h1 : : : hi�1 hi+1 : : : hm]
T .

This operation can be used when hybrid automata are interconnected to form agents to hide

certain local features of an agent from the rest of the world.

3.4 Agent Model

Each agent will be modeled as an interconnection of hybrid dynamical systems. The intuition

is that each subsystem will be used to describe a distinct functionality of the agent. Typically

an agent will contain subsystems modeling the plant dynamics, the sensors, the actuators, the

continuous and discrete controllers and the communication devices.

For the purpose of modeling multiagent systems we will distinguish three kinds of

inputs for each subsystem:

1. Control inputs, that can be speci�ed locally (i.e. within the agent) by interconnections

to the outputs of other subsystems. They reect the actions that the agent may decide

to take.

2. Environmental inputs (or disturbances), that can not be locally speci�ed and reect

actions of the environment (such as sensor noise or the e�ect of unmodeled dynamics)

or actions of other agents.

3. Coordination inputs, that are used for interagent cooperation, for example through

communication protocols.

This classi�cation of inputs is motivated by our approach to the control of multiagent systems

which is based on semiautonomous agent operation.

The agent model will itself be a dynamical system. Within it, it may contain an

entire hierarchy of interconnected subsystems. The agent inputs and outputs will be connected

to the subsystem inputs and outputs according to a set of rules:

� system input and subsystem input

� system output and subsystem output

� subsystem input and subsystem output

The coupling between subsystems can be implemented with the interconnection operation.

The coupling between system and subsystem inputs and outputs can be implemented by

renaming. It is assumed that any redundant subsystem outputs are hidden once the agent is

formed.

The dynamic evolution and the subsystem interconnection rules are de�ned so that

the agent model can be \attened" into a single equivalent hybrid dynamical system. As
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before, let (q; x) 2 X denote the state of the agent (discrete and continuous). Also let

u 2 UD � UC denote the control inputs and d 2 DD � DC denote the environmental inputs.

Here we will concentrate more on the design of the low level controllers, therefore we will not

use special symbols for the coordination inputs.

The dynamics of the attened agent model over a set of times of interest T = [ti; tf ]

will be determined by a set of relations of the form:

Initial condition (q(ti); x(ti)) = (q0; x0) 2 I

Continuous evolution

(
_x(t) = f(q(t); x(t); u(t); d(t))

(q(t); x(t); u(t); d(t); q(t); x(t)) 2 E

Discrete evolution (q; x; u; d; q0; x0) 2 E for jumps (q; x)! (q0; x0)

Output evolution y(t) = h(x(t); u(t); d(t))

Physical considerations (such as actuator saturation) impose certain restrictions on

the system evolution. We encode these restrictions in terms of constraints on the state, input

and disturbance trajectories:

(q(); x()) 2 Q� X � PC(T ; XD)� PC1(T ; XC) (13)

u() 2 U � PC(T ; U) (14)

d() 2 D � PC(T ; D) (15)

PC(T ; �) denotes the set of piecewise continuous maps from T to �, whereas PC1(T ; �) the
set of piecewise di�erentiable maps4. We will use the symbols PC and PC1 to denote these

sets whenever there is no ambiguity about the domain and range.

Of particular interest for continuous variables are constraints that can be encoded

by requiring that the variable lies in a certain set for all times, i.e. for all t 2 � :

x(t) 2 X � R
n

u(t) 2 U � R
m

d(t) 2 D � R
p

It should be noted that this class of constraints excludes certain important cases such as

non-holonomic and \isoperimetric" constraints.

For discrete variables pure \value" constraints play less of a role. A discrete variable

can be though of as a piecewise constant function of time (multi valued at the transition

points). Two aspects of such a function are of interest:

� The order in which the values are observed.

� The times at which the function jumps from one value to the next.

The constraint set will impose limits on these two aspects of the evolution of the discrete

variables. It should be noted that both these constraints can be encoded by the requirement

that the discrete variable sequence is generated/accepted by a timed automaton [27].

4
The de�nitions are straightforward generalizations of the corresponding de�nitions for T = [ti; tf ].
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3.5 Mathematical Tools

The analysis presented in the next section will require concepts from the areas of game theory,

optimal control, dynamical systems and topology. Here we briey introduce only the necessary

game theoretic notions. We will be dealing the following type of two player, zero sum games:

De�nition 9 A two player, zero sum dynamic game involves:

1. A time interval [0; T ].

2. A trajectory space, X with some topological structure. The elements of X , denoted

fx(t); 0 � t � Tg, are the permissible state trajectories of the game.

3. An input space, U , with some topological structure. The elements of U , denoted fu(t); 0 �
t � Tg, are the permissible inputs of player 1.

4. An disturbance space, D, with some topological structure. The elements of D, denoted
fd(t); 0 � t � Tg, are the permissible inputs of player 2.

5. A di�erential equation:

_x(t) = f(t; x(t); u(t); d(t)) (16)

x(0) = x0 (17)

whose solution determines the state trajectory for a given selection of u and d.

6. A cost function:

J : X � U �D �! R
+ (18)

To be consistent with the notation we develop for the multiagent models we will give the

following interpretation: the \reward" of player 1 for a given play is �J(x; u; d) while the

reward of player 2 is J(x; u; d) (hence a zero sum game). In other words, player 1 is trying to

minimize J while player 2 is trying to maximize it.

For our games we will assume the so called closed-loop, perfect state informa-

tion structure. This means that, when called upon to decide their strategy at time t, both

players have access to the entire state fx(s); 0 � s � tg up to that point. For our purposes

we will assume that x(t) 2 X � R
n , u(t) 2 U � R

ni and d(t) 2 D � R
nd for all t 2 [0; T ]

and some n; ni and nd. We will also assume that X (respectively U and D) will be a subset

of the set of piecewise di�erentiable (respectively piecewise continuous) functions of t. Note

that, if the di�erential equation (16) de�nes a unique state trajectory for a given choice of u

and d, we can write the cost function as a function of the initial condition, rather than the

whole state trajectory, i.e. J : X � U � D ! R.

We will be interested in saddle solutions to these games:

De�nition 10 A saddle solution to the two player, zero sum game is a pair of input tra-

jectories (u�; d�) 2 U � D such that for any u 2 U and any d 2 D:

J(x0; u�; d) � J(x0; u�; d�) � J(x0; u; d�)
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In other words, a saddle solution will be such that any unilateral deviation from it will leave

the player who decided to deviate worse o�. The games considered in the examples of this

dissertation will turn out to have unique saddle solutions. Existence and uniqueness of so-

lutions can not be guaranteed for general games, however. For results in this direction the

reader is referred to [35, 36, 37].

The saddle solution is not the only solution concept of interest in dynamic games.

Other types of solution can be de�ned (Nash, Stackelberg, etc.). The solution concept will

depend, among other things, on the nature of the game (discrete vs. continuous, deterministic

vs. stochastic), the number of players and the information structure. The saddle solution used

here is the simplest solution concept and applies only to two player, zero sum games. For

a thorough treatment of dynamic games, solution concepts and applications the reader is

referred to [36, 37, 38].

4 Game Theoretic Framework

In this section we give an algorithm to produce low level controllers for a hierarchical control

scheme for large scale systems. As discussed in Section 2, the algorithm makes use of game

theory to generate continuous controllers and consistent discrete abstractions for the resulting

closed loop system.

4.1 Preliminary Discrete Design

We assume that the top{down phase of the design process has been completed. The discrete

design can then be abstracted for the bene�t of the lower levels in terms of three quantities:

� A sequence of desired way points ydj , j = 1; 2; : : :, that should be tracked.

� For each way point, a set of design speci�cations (Ji; Ci), i = 1; : : : ; N . These are pairs

of cost functions:

Ji : PC � PC1 � PC � PC �! R (19)

mapping a run (q(); x(); u(); d()) of the agent automaton to R, and thresholds Ci 2 R.

An acceptable trajectory must be such that Ji(q; x; u; d) � Ci for all i = 1; : : : ; N

We assume that the design speci�cations are ordered in the order of decreasing importance.

Qualitatively, the most important cost functions encode performance aspects such as safety,

while the least important ones encode performance aspects such as resource utilization. The

design should be such that the most important requirements are not violated in favor of the

less important ones, in other words the design should lead to Ji � Ci whenever possible, even

if this means that Jj > Cj for some j > i.

The cost functions can \penalize" various aspects of the system runs. A typical cost

function will involve a combination of the following elements:

1. Continuous evolution costs, i.e. costs associated with the evolution of the continuous

state under the vector �eld f . These are the kinds of costs usually encountered in

optimal control. A special case of particular interest is when each pair of inputs (u; d)
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generates a unique state trajectory for a given initial condition (q0; x0). Then the cost

function can be thought of as a map:

Ji : I � PC � PC �! R (20)

When the discrete evolution of hybrid automaton may be nondeterministic, it may not

be possible to obtain Ji in the form of equation (20).

2. Discrete evolution costs, i.e. costs associated with jumps of the states, inputs and

disturbances from one value to another. For example, if a jump in the state takes place

at time � the cost associated with it may be thought of as a function:

Ji : X � U �D �X �! R

that maps (q(�); x(�); u(�); d(�); q(� 0); x(� 0)) 2 E to R. Similar costs can be associated

to input and disturbance jumps.

As discussed in Section 2, the question of how emergent behavior objectives, which

are usually given linguistically, get parsed to way points, cost functions and thresholds is a

topic for further research.

4.2 Continuous Layer

We present a technique for systematically constructing controllers which track the way points

determined by the discrete layer and are optimal with respect to the given cost functions. In

this section we restrict our attention to cost functions associated with the continuous state

evolution and in particular functions of the form (20). This restricted class of functions su�ces

for all the examples considered so far in our work [20, 22]. We will also assume that the entire

state of the plant is available for feedback.

4.2.1 Multiobjective Controller Design Algorithm

At the �rst stage we treat the design process as a two player, zero sum, dynamic game with cost

J1. One player, the control u, is trying to minimize the cost, while the other, the disturbance

d, is trying to maximize it. Assume that the game has a saddle point solution, i.e. there exist

input and disturbance trajectories, u�1 and d�1 such that:

J�1 (q
0; x0) = max

d2D
min
u2U

J1(q
0; x0; u; d)

= min
u2U

max
d2D

J1(q
0; x0; u; d)

= J1(q
0; x0; u�1; d

�

1)

The set:

V1 = f(q; x) 2 XjJ�1 (q; x) � C1g
is the set of all initial conditions for which there exists a control such that the objective

on J1 is satis�ed for the worst possible allowable disturbance (and hence for any allowable

disturbance). u�1 can now be used as a control law. It will guarantee that J1 is minimized
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for the worst possible disturbance. Moreover if the initial state is in V1 it will also guarantee

that the performance requirement on J1 is satis�ed. u�1 however does not take into account

the requirements on the remaining Ji's. To include them in the design let:

U1(q0; x0) = fu 2 UjJ1(q0; x0; u; d�1) � C1g (21)

Clearly:

U1(q0; x0)
(
= ; for (q0; x0) 62 V1
6= ; for (q0; x0) 2 V1; as u

�

1 2 U1(q0; x0)
The set U1(q0; x0) is the subset of admissible controls which guarantee that the requirement

on J1 is satis�ed, whenever possible. Within this class of controls we would like to select the

one that minimizes the cost function J2. Again we pose the problem as a zero sum dynamic

game between control and disturbance. Assume that a saddle solution exists, i.e. there exist

u�2 and d�2 such that:

J�2 (q
0; x0) = max

d2D
min

u2U1(q0;x0)
J2(q

0; x0; u; d)

= min
u2U1(q0;x0)

max
d2D

J2(q
0; x0; u; d)

= J2(q
0; x0; u�2; d

�

2)

The set:

V2 = f(q; x) 2 XjJ�2 (q; x) � C2g
contains the initial conditions for which there exists a control such that for any allowable

disturbance the requirements on both J1 and J2 are satis�ed. As the minimax problem can

only be posed when U1(q0; x0) 6= ; we assume that V2 � V1. To introduce the remaining cost

functions to the design we again de�ne:

U2(q0; x0) = fu 2 U1(q0; x0)jJ2(q0; x0; u; d�2) � C2g (22)

i.e. the subset of admissible controls that satisfy the requirements on both J1 and J2 for any

disturbance.

The process can be repeated for the remaining cost functions. At the i + 1st step

we are given a set of admissible controls Ui(q0; x0) and a set of initial conditions Vi such that

for all (q0; x0) 2 Vi there exists u
�

i 2 Ui(q0; x0) that for all d 2 D and for all j = 1; : : : ; i leads

to Jj(q
0; x0; u�i ; d) � Cj. Assume the two player, zero sum dynamic game for Ji+1 has a saddle

solution, u�i+1; d
�

i+1:

J�i+1(q
0; x0) = max

d2D
min

u2Ui(q0;x0)
Ji+1(q

0; x0; u; d)

= min
u2Ui(q0;x0)

max
d2D

Ji+1(q
0; x0; u; d)

= Ji+1(q
0; x0; u�i+1; d

�

i+1)

De�ne:

Vi+1 = f(q; x) 2 XjJ�i+1(q; x) � Ci+1g
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Figure 3: Controller automaton for switching between control objectives

and:

Ui+1(q0; x0) = fu 2 Ui(q0; x0)jJi+1(q0; x0; u; d�i+1) � Ci+1g (23)

The process can be repeated until the last cost function. The result is a control law u�N and

a set of initial conditions VN = V such that for all (q0; x0) 2 V , for all d 2 D and for all

j = 1; : : : ; N , Jj(x
0; u�N ; d) � Cj.

4.2.2 Controller Automaton

The controller can be extended to values of the state in the complement of V using the

following switching scheme:

u�(q; x) =

8>>><
>>>:

u�N(q; x) (q; x) 2 V

u�N�1(q; x) (q; x) 2 VN�1 n V
: : : : : :

u�1(q; x) (q; x) 2 X n V2

(24)

Thus, even for a single set point, the resulting controller given by equation (24) involves

switching due to multiple objective functions Ji. It therefore has to be implemented by a

hybrid automaton. An example of such an automaton in a three cost function situation is

shown in Figure 3. This procedure has to be repeated for each set point provided by the

discrete layer.

4.2.3 Technical Issues

The above algorithm may run into technical di�culties, as there is no guarantee that the

dynamic games will have a saddle solution, there is no straight-forward way of computing

Ui(x0) and there is no guarantee that the sets Vi (and consequently Ui(x0)) will be non-empty.

Fortunately, in our examples thus far, including the most complicated cases of [20], a solution

can be obtained analytically, or using simple numerical calculations. However, we can not
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Figure 4: Hybrid controller for a single agent

expect such luck in general. New and sophisticated optimal control tools [39] will hopefully

make the solution of more general problems feasible, at least numerically.

4.3 Interface and Discrete Design Revisited

The sets V are such that for all initial conditions in them all requirements on system perfor-

mance are guaranteed. These sets impose conditions that the discrete switching scheme needs

to satisfy. The discrete layer should not issue a new command (encoded by a way point) if

the current state does not lie in the set V for the associated controller. Essentially, these sets

o�er a way of consistently abstracting performance of the continuous layer.

It should be noted that, by construction, the sets Vi are nested. Therefore there is

a possibility that an initial condition lies in Vi for some i = 1; : : : ; N 0 < N but not in V . This

implies that certain requirements on the system performance (e.g. safety) can be satis�ed,

while others (e.g. e�cient resource utilization) can not. This allows the discrete design some

more freedom. For example, a new command may be issued if it is dictated by safety, even

though it violates the requirements of e�ciency. This construction provides a convenient way

of modeling gradual performance degradation, where lower priority performance requirements

are abandoned in favor of higher priority ones. It can be particularly useful for operation

under degraded conditions, for example in the presence of faults [40].

The overall continuous design including the interface is shown in Figure 4. Switching

of continuous controllers takes place at two levels. Assume that the discrete layer speci�es two

set points, A and B, and two objectives, for example safety and e�ciency. For each set point,
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the game theoretic framework will produce optimal controllers5 for safety u�1 and e�ciency

u�2 along with the safe sets of initial conditions, V A and V B. As illustrated above, switching

between these two controllers will be carried out depending on the current value of the state

(represented in the �gure as an input u3 to the switching scheme). After receiving the new

set point command from the discrete layer, the interface will switch to a new controller if the

system state belongs to the corresponding safe set. If this requirement is not satis�ed, and

the discrete controller insists on the new way point, the discrete layer needs to coordinate

with other agents. This type of coordination is what makes the operation of the agents semi-

autonomous (as opposed to completely autonomous). It can be viewed as a way of restricting

the domain, D, of the disturbances. This \biases" the game in favor of the control input,

hence enlarges the set of safe states and hopefully makes the transition to the new way point

feasible. A more abstract view of the e�ect of coordination in this setting is as a way of

turning the zero sum, non-cooperative game to a game with partial cooperation between the

players. In extreme cases (for example presence of faults) a fully cooperative game may be

needed to salvage the situation (as can be seen in the algorithms proposed in [40, 41]).

5 The Vehicle Following Example

To illustrate how this design methodology can be useful in applications we consider the prob-

lem of vehicle following on an automated highway. This is one of the problems that arise in

the process of designing controllers for automated highways. Stronger results in this direc-

tion, in particular a complete hybrid controller that supports the formation of platoons with

guaranteed safety, can be found in [20].

Consider three vehicles (labeled A, B and C) moving along a single lane highway

(Figure 5). We will primarily be interested in the interaction between vehicles A and B, vehicle

C will be used, to isolate the system A-B from the rest of the highway. Assume that vehicles

A and B have lengths LA and LB and let xA and xB denote their positions with respect to a

�xed reference on the road. Assume that vehicle B is leading while vehicle C comes last, i.e.

xB > xA > xC > 0. We assume no control over vehicle B and try to control vehicle A. The

dynamics of the trailing vehicle be approximated [42] by a third order ordinary di�erential

equation:
���

xA= bA( _xA; �xA) + aA( _xA)vA

aA and bA are complicated nonlinear functions of the state with aA( _xA) 6= 0. For our purposes

the details of the nonlinear functions bA and aA are not important. Following the design of

[42], we will assume that feedback linearization has already been carried so that:

���

xA= u (25)

The objective is to design a safe, comfortable and e�cient controller for this linear system.

It is assumed that safety takes precedence over the other two requirements. Comfort will

be assumed to be more important than e�ciency. Quantitative de�nitions of these design

requirements will be given in Section 5.2.

5
The controllers may actually depend on the set point. To avoid additional subscripts we will ignore this

dependency in the notation.
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Figure 5: Vehicle Following

5.1 Hybrid Model Formulation

To remove the absolute position from the problem let D = xB � xA � LB denote the spacing

between vehicles A and B. All pertinent information can now be encoded by the state vector

x = [ _xA �xA D _D]T = [x1 x2 x3 x4]
T which evolves according to:

_x =

2
6664
0 1 0 0

0 0 0 0

0 0 0 1

0 �1 0 0

3
7775 x +

2
6664
0

1

0

0

3
7775 u+

2
6664
0

0

0

1

3
7775 �xB = Ax+Bu+D�xB (26)

x(0) = x0

For the vehicle following problem we are interested in regulating the spacing and relative

velocity to a desired �xed point. In addition, whenever possible, a vehicle may be required

to track a certain velocity, vH , calculated by the roadside controllers in order to maximize

throughput. These requirements can be encoded by means of three outputs:

y =

2
64
D
_D

_xA

3
75 =

2
64 0 0 1 0

0 0 0 1

1 0 0 0

3
75 x = Cx (27)

We assume that vehicle A has access to full state information for feedback control (a reasonable

assumption under current sensor technology).

To complete the picture we also need to encode the state and input constraints

imposed by the engine, tire and road conditions:

x(t) 2 XC =
n
x 2 R

4 jx1 2 [vAmin; v
A
max]; x2 2 [aAmin; a

A
max]; x4 + x1 2 [vBmin; v

B
max]

o
u(t) 2 U = [jmin; jmax]

�xB(t) 2 D = [aBmin; a
B
max]

It is assumed that vehicles will not be allowed to go backwards, therefore vAmin = vBmin = 0 will

be used. vAmax is imposed by engine limitations. One of the objectives of the controllers we

design will be fuel e�ciency. As a consequence the engine will not have to be pushed to its

limits for maximum speed and therefore vAmax will not feature in the safety calculations. We
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will assume vAmax = 1 to simplify the analysis. Typical values of aAmin, etc. can be found in

[21].

There are four kinds of exogenous inputs that inuence the system evolution:

1. the jerk input of vehicle A, u(t),

2. the trajectory of �xB(t),

3. collisions of vehicle B with its preceding vehicle (that a�ect _xB(t) and hence x4),

4. collisions of vehicle A with vehicle C (that a�ect x1 and hence x4).

u(t) is assumed to be under the control of the designer. The remaining inputs will be treated

as disturbances. The acceleration disturbance �xB(t) can be modeled as a piecewise continuous

function of time:

�xB : [0;1) �! [dmin; dmax]

In hybrid automaton terminology this is a continuous disturbance.

The collision disturbances can be modeled by an instantaneous jump in the state of

the system. We will assume that the relative velocity of all collisions is bounded in an interval

[va; 0] and all collisions are elastic. Then, a collision of vehicle B with the vehicle in front of

it at time TB with relative velocity �vB will result in a reset of the state:

x4(T
0

B) := x4(TB) + �vB

Similarly a collision between vehicles A and C at time TC and with relative velocity �vC will

result in a reset of the state6:

x1(T
0

C) := x1(TC)� �vC

x4(T
0

C) := x4(TC) + �vC

In the ensuing discussion we will be interested in situations where vehicle B and vehicle C can

experience at most one collision. The requirement that vehicle B does not go backward after

the collision can be encoded by restricting the set of allowable disturbances:

D = fd j �xB(t) 2 [dmin; dmax];

0 � TB; �vB 2 [maxfva; x4(TB) + x1(TB)g; 0] (28)

0 � TC ; �vC 2 [va; 0]g

Collisions between vehicles C and A can not lead to a violation of the state constraints, since

we assume vAmax =1. In hybrid system terminology the collisions are discrete disturbances.

Under these assumptions, the dynamical evolution of vehicle A is determined by a

hybrid dynamical system. It is shown pictorially in Figure 6. The discrete state can take one

of �ve values, 00, 01, 10, 11 and CRASH. The �rst four keep track of whether vehicles B

and C have experienced a collision (1) or not (0). The discrete state CRASH is introduced to

model the situation where vehicle A crashes into vehicle B. There are six continuous states,

two keeping track of when the collision occurred and four keeping track of the state of vehicle

A. The initial conditions, node invariants, transition guards, events and reset maps should be

25



00

10 CRASH 01

11

T :=0
B

T :=0
C

x(0):=x0
x = Ax + Bu + Dx

B

. ..

T = 1
C

.
T = 1
B

.

u ε [u   , u   ]
min max

x ε [d   , d   ]
min maxB

..

x = Ax + Bu + Dx
B

. ..

T = 1
C

.
T = 0
B

.

u ε [u   , u   ]
min max

x ε [d   , d   ]
min maxB

..

x = Ax + Bu + Dx
B

. ..

T = 0
C

.
T = 1
B

.

u ε [u   , u   ]
min max

x ε [d   , d   ]
min maxB

..

x = Ax + Bu + Dx
B

. ..

T = 0
C

.
T = 0
B

.

u e [u   , u   ]min max
x e [d   , d   ]min maxB

..

Coll_B,
δv

B
x := x +  
4 4

δv   [max{v , -x -x }, 0]
B 4 1a

ε

Coll_B,
δv

B
x := x +  
4 4

δv   [max{v , -x -x }, 0]
B 4 1a

ε

Coll_C,
δv

C
x := x -  
1 1

δv   [v , 0]
C a

ε
δv

C
x := x +  
4 4

Coll_C,
δv

C
x := x -  
1 1

δv   [v , 0]
C a

ε
δv

C
x := x +  
4 4

Crash,
x  < 0
3 -

x = 0
.
.
T   {0,1}
B
ε

.
T   {0,1}
C
ε

x  > 0
3 - x  > 0

3 -

x  > 0
3 -

x  > 0
3 -

Crash,
x  < 0
3 -

Crash,
x  < 0
3 -

Crash,
x  < 0
3 -

Figure 6: Hybrid Automaton for Automated Vehicle Operation

obvious from the �gure. The automaton runs can be obtained analytically using the fact that

A is nilpotent (A3 = 0). De�ne the step function:

1T (t) =

(
0 if t < T

1 if t � T

Then:

x(t) =

2
6664

x01 + tx02
x02

�t2x02=2 + x03 + tx04
�tx02 + x04

3
7775+

Z t

0

2
6664

t� �

1

�(t� �)2=2

�t + �

3
7775u(�)d�

6
Note that in the coordinate system de�ned above �vB � 0 and �vC � 0.
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+
Z t

0

2
6664

0

0

t� �

1

3
7775 �xB(�)d� +

2
6664

0

0

t� TB
1

3
7775 1TB(t)�vB +

2
6664

�1
0

t� TC
1

3
7775 1TC(t)�vC

5.2 Design Requirements

The design problem can be viewed as a two player zero sum game, one player being the action

of vehicle A and the other the disturbances (action of vehicle B and possible collisions). The

two players compete over a number of cost functions, Ji, encoding various desirable properties

of the system. All cost functions will be independent of the discrete state of the system

(q 2 f00; 01; 10; 11; CRASHg), therefore only the continuous state, x, will appear in the

expressions.

1. Safety (No Collision):

J1(x
0; u; d) = � inf

t�0
x3(t) (29)

A safe maneuver is one where:

J1(x
0; u; d) � C1 = 0 m

Allowing J1 = 0 meters makes the limiting case (where the vehicles just touch with zero

relative velocity) acceptable.

2. Comfort (Bounded Jerk):

J2(x
0; u; d) = sup

t�0
ju(t)j (30)

A comfortable maneuver is one where:

J2(x
0; u; d) � C2

The value C2 = 2:5ms�3 is suggested in the transportation studies literature.

3. E�ciency (Fast Convergence):

J3(x
0; u; d) =

Z
1

0
(y(�)� yd)

TP (y(�)� yd)d� (31)

where yd is the desired �xed point for a given maneuver and P � 0. For steady state

operation the �xed point used in [42] is:

yLd =

2
64 �vvH + �p

0

vH

3
75

for �v = 1 second, �p = 10 meters.
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5.3 Design for safety

The design of a safe controller can be posed as a reachability question on the hybrid automaton

of Figure 6. To answer the safety question we would like to know under what conditions the

discrete state CRASH is reachable. We will try to answer the question by determining the

saddle solution (u�1; d
�

1) for the two player zero sum game with cost function J1. Because of

the nature of the cost function it is impossible to tackle this problem with conventional game

theoretic techniques (Hamilton-Jacobi-Isaacs equations, Maximum Principle, etc.). Instead,

we will try to guess the saddle solution and then show that it satis�es the de�nition. Consider

the candidate saddle strategy, (u�1; d
�

1), given by:

u�1(t) =

(
jmin if t � T1
0 if t > T1

(32)

d�1(t) = f�x�B; (T �

B; �v
�

B); (T
�

C; �v
�

C)g (33)

where:

�x�B(t) =

(
dmin if t � T2
0 if t > T2

T �

B = 0 (34)

�v�B = maxfva; x4(TB) + x1(TB)g
T �

C = 0

�v�C = va

T1 is the time when the acceleration of vehicle A reaches aAmin under jmin and T2 the time

when vehicle B stops under dmin. Let T3 be the time when vehicle A stops. Then:

T1 =
aAmin � x02

jmin

(35)

T2 = ��v
�

B + x01 + x04
dmin

(36)

T3 =

8><
>:

�x0
2
�

p
(x0

2
)2�2jmin(x

0

1
��v�

C
)

jmin
if 0 � T3 � T1

(aA
min

�x0
2
)2�2jmin(x

0

1
��v�

C
)

2jmina
A

min

if T1 � T3
(37)

Lemma 1 (u�1; d
�

1) is globally a saddle solution for cost J1(x
0; u; d).

Proof: For (u�1; d
�

1) to be a saddle solution we need to show that a unilateral change in

strategy leaves the player who decided to change worse o�. Let x�(t) denote the state at time

t under the inputs (u�1; d
�

1). In particular:

x�3(t) =
h
0 �t2=2 1 t

i
x0 �

Z t

0

(t� �)2

2
u�1(�)d� +

Z t

0
(t� �)�x�B(�)d�

+(�v�B + �v�C)t

x�4(t) =
h
0 �t 0 1

i
x0 �

Z t

0
(t� �)u�1(�)d� +

Z t

0
�x�B(�)d� + (�v�B + �v�C)
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First, �x d = d�1 and let u vary. Let x(t) be the state at time t under the inputs (u; d�1). Then:

x4(t)� x�4(t) =
Z t

0
(t� �)(u�1(�)� u(�))d�

We need to distinguish two cases. If t � T1, the bounds on u imply that u(�) � u�1(�), therefore

x4(t)� x�4(t) � 0. On the other hand, if t � T1, recall that �x
�

B(t) is piecewise constant, with

a discontinuity at T2 (which may be either greater or less than T1). Therefore x4(t) and x�4(t)

are piecewise di�erentiable, with derivatives �x2(t) and �x�2(t) respectively. By de�nition of

T1, x
�

2(t) = aAmin � x2(t) in the interval of interest. Therefore, as x4(0) = x�4(0), x
�

4(t) � x4(t).

In either case _x3(t) = x4(t) � x�4(t) = _x�3(t). Using the fact that x�3(0) = x3(0) = x03 and

integrating we obtain x3(t) � x�3(t) for all t. Therefore:

J1(x
0; u; d�1) � J1(x

0; u�1; d
�

1) (38)

Now �x u�1 and let d vary. Let x(t) be the state at time t under the inputs (u�1; d). Then:

x4(t)� x�4(t) =
Z t

0
(�xB(�)� �x�B(�))d� + (�vB1TB(t)� �v�B) + (�vC1TC � �v�C)

Note that:
�v�C = va
�vC � va
va � 0

9>=
>; =) �vC1TC (t)� �v�C � 0

If �v�B = va, the same is true for the term (�vB1TB(t)��v�B). If �v�B > va, then x
�

4(0)+x
�

1(0) = 0

(recall that T �

B = 0) and therefore x�4(t)+x
�

1(t) � 0 (once vehicle B stops it never starts moving

again under d�1). But, x4(t) + x1(t) � 0 (by the assumed state constraint) and x1(t) = x�1(t)

(as x1(t) does not depend on �vB). Therefore, if �v
�

B > va, x4(t)� x�4(t) � 0 for all t � 0.

Overall, under the assumed constraints on �vB and �vC , either x4(t) � x�4(t) or the

term outside the integral is positive. For the integral term we need to distinguish two cases.

If t � T2, the bounds on �xB imply that �xB(�) � �x�B(�). If on the other hand, t � T2, by

de�nition of T2,
R t
0 �x

�

B(�)d� = �(x01 + x04). The state constraints imply that x1(t) + x4(t) � 0

(vehicle B does not go backwards), therefore
R t
0 �xB(�)d� � �(x01 + x04). Therefore, in either

case
R t
0(�xB(�)��x�B(�))d� � 0. The stopping time for B under d will always be greater than the

stopping time under d�1. We are therefore able to conclude that _x3(t) = x4(t) � x�4(t) = _x�3(t).

Integrating this inequality from 0 to t and using the fact that x�3(0) = x3(0) = x03 leads to:

J1(x
0; u�1; d) � J1(x

0; u�1; d
�

1) (39)

Combining inequalities (39) and (38):

J1(x
0; u�1; d) � J�1 (x

0) � J1(x
0; u; d�1) (40)

for all d and u. By de�nition, (u�1; d
�

1) is globally a saddle solution. 2
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Figure 7: Safe set of initial conditions for x03 = 20; 30 and 40 meters

5.3.1 Safe Set of Initial Conditions

Next we need to determine the set of initial conditions that are rendered safe by u�1. Recall

that x�3(t) is a continuously di�erentiable function of t de�ned on the compact interval [0; T3],

with derivative x�4(t). Therefore:

Lemma 2 There exist T̂ 2 [0; T3] such that J�1 (x
0) = �x�3(T̂ ). Moreover, either T̂ = 0 or

T̂ = T3 or x
�

4(T̂ ) = 0.

The calculations for analytically determining J�1 (x
0) from this lemma are rather

messy. However, as the set of times T where x�4(T ) = 0 is �nite, we can easily carry out the

calculation numerically. Figure 7 shows the set of points where J�1 (x
0) = 0 for some values of

x03. Lemma 1 implies that the surfaces of Figure 7 are 2 dimensional slices of the 3 dimensional

boundary of the safe set V1 for various values of x
0
3. Any initial condition on or above these

surfaces will not lead to a collision, provided u = u�1. The higher surfaces correspond to

smaller initial spacings x03 (the top to 20m, the next to 30m etc.). As expected the safe set

shrinks as x03 decreases.

It should be noted that the safe set depends on the discrete state. Even though J1 is

independent of q, the set of allowable disturbances is larger at q = 00, smaller for q 2 f01; 10g
and even smaller for q = 117. In particular some collision disturbances are excluded in some

discrete states. A simple corollary of Lemma 1 is:

7
Clearly the safe set is empty if q = CRASH .
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Corollary 1 (u�1; f�x�B; (t; 0); (T �

C; �v
�

C)g), (u�1; f�x�B; (T �

B; �v
�

B); (t; 0)g) and (u�1; f�x�B;(t; 0); (t; 0)g)
are globally saddle solutions for J1 if the discrete state becomes q = 10; 01; 11 at time t respec-

tively.

The e�ect of the reduced disturbance is to move the boundary of the safe set \down" (refer

to Figure 7) by jvaj if q 2 f01; 10g and by 2jvaj if q = 11.

We will not investigate these re�nements further. We will de�ne the safe set V1 as

the set of initial conditions for which the system is safe if q = 00, i.e.:

V1 = fx0 2 XCjJ�1 (x0) � C1 = 0g (41)

V1 still guarantees safety as it is contained in the safe sets for all q. It is not the best choice

for a comfortable ride.

5.3.2 The Class of Safe Controls

The above analysis also allows us to determine the class of safe controls U1(x0), i.e. the

controls for which any initial condition x0 2 V1 can not result in a crash. Let @V1 denote the

boundary of V1 in the induced topology of XC as a subset of R4 . De�ne the interior of V1
as:

int(V1) = V1 n @V1
Lemma 3 (Class of Safe Controls) The class of safe controls for a given initial condition

x0 is given by:

U1(x0) = ; if x0 2 XC n V1

u 2 U1(x0) ()
(
u(x) 2 [jmin; jmax] if x 2 int(V1)

u(x) = u�1 if x 2 XC n int(V1)
where u�1 is given by equation (32) with x02 being the acceleration of the vehicle at the time the

boundary is reached.

Lemma 3 follows as a corollary of Lemma 1. The class of safe controls can be fully speci�ed in

feedback form (u�1 is trivially a feedback controller). Notice that, if the discrete disturbances

are removed, the control u�1 is such that if the continuous state starts on the boundary of V1
it will either \slide" along it or cross in the interior of V1, depending on the acceleration of

vehicle B. However, in the presence of discrete disturbances, V1 is not an invariant set under

u�1. A collision of vehicle B and/or C may push the trajectory well outside V1. The e�ect of

these collisions will be to change the discrete state to q = 01 or 10 or 11 (refer to Figure 6).

Corollary 1 indicates that, after the collisions, the continuous state will still be in the safe set

of the new discrete state. Overall, even though the continuous state trajectory crosses outside

V1 the system is still safe, as long as u�1 is applied.

5.4 Design for comfort

Having established conditions for safety we can now improve the design by considering pas-

senger comfort. We seek a saddle solution, (u�2; d
�

2) for J2(x
0; u; d). Consider:

u�2(x) =

(
u�1 if x 2 XC n int(V1)
0 otherwise

(42)
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As neither d nor x enter the cost function J2, (u
�

2; d) will trivially be a saddle solution for every

d. As before we can determine the set of initial conditions, V2, for which the requirement for

comfort can be satis�ed. Assuming C2 < jjminj this set is:

V2 = int(V1)
[
fx 2 @V1jx2 = aAming (43)

Moreover the class of comfortable controls for x0 2 V2 will be:

U2(x0) =
n
u 2 U1(x0)ju(t) 2 [�C2; C2]

o
(44)

5.5 Design for e�ciency

To complete the design the requirement for e�ciency should also be addressed. We will not

go into the details of the e�cient design, as this problem can be approached in a number of

ways and the solution does not a�ect safety in anyway. The saddle solution, (u�3; d
�

3), for cost

function J3 can be sought, for example. The result will be some form of H1 optimal design

for u�3. Other designs (e.g. the one proposed in [42]) are also acceptable.

5.6 The Complete Controller

Consider the following switched feedback law:

u(x) =

8>>><
>>>:

u�3 if x 2 V2 and u�3 2 [�C2; C2]

C2 if x 2 V2 and u�3 > C2

�C2 if x 2 V2 and u�3 < �C2

u�1 if x 2 XC n V2

(45)

Note that the controller u can be easily encoded by a hybrid automaton. The structure

can be directly inferred from equation (45) (Figure 8). This controller guarantees the safety

of the system, provided the initial condition is chosen to be in the set V1. In addition it

guarantees that the vehicle operation will be comfortable and e�cient, as long as safety is not

compromised. The results of the design can be interpreted as saying that in the interconnection

of the hybrid automata of Figures 6 and 8, the states corresponding to the state CRASH are

unreachable.

6 Concluding Remarks

The control of large scale systems is one of the major problems facing control engineers today.

In this paper, we introduced a rather general framework for design and analysis of hierar-

chical hybrid controllers for multi-agent large scale systems. The design algorithm presented

in Section 4 provides a formal way of producing hybrid controllers that guarantee certain

properties of the closed loop system by design, eliminating the need for veri�cation. The

conditions obtained by the application of our algorithm are, in some sense, necessary and

su�cient. They are su�cient from the point of view of design. Any controller that satis�es

the derived conditions is guaranteed to lead to acceptable performance for any disturbance.

On the other hand, the conditions are necessary from the point of view of veri�cation, in the
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sense of being \tight". Given a design that fails to satisfy these conditions, there exists a

disturbance trajectory, d, and an initial condition, (q0; x0), allowed by the design, such that

the trajectory generated by starting at (q0; x0) and applying the given controller and d violates

at least one of the performance requirements.

An advantage of the approach presented here is that the calculations are exible

enough to be used in various contexts, other than controller design and veri�cation. For

example, they can be used to produce technological requirements on the physical plant (in

particular the sensors and actuators) in order to guarantee certain levels of performance.

This point of view is particularly evident in the automated highway problem [20]. There the

solution to the game theory problems can be used to derive minimum sensor ranges, limits on

the braking capability etc. needed to guarantee safe operation under certain requirements on

throughput.

Besides technical conditions on the existence of saddle solutions for the games etc.

the major problem that needs to be addressed in this context is the design of the discrete

layer. The approach proposed here can be used to provide guidelines for the discrete design for

semi-autonomous agent operation. The modi�cations to the initial discrete design, however,

must be carried out by the designer possibly using standard discrete design and veri�cation

tools. The problem of parsing requirements on the emergent behavior (that are usually given

linguistically) into sequences of way points, cost functions and thresholds also needs to be

addressed. This problem is very di�cult to formalize. The solutions given in applications are

usually problem speci�c, require a tremendous amount of e�ort by the designer and are by

no means formal. All these design issues are very interesting and deserve to be the topic of

further research.
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