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Abstract

With the rapid growth of modern technology, many biomedical studies are being conducted to 

collect massive datasets with volumes of multi-modality imaging, genetic, neurocognitive, and 

clinical information from increasingly large cohorts. Simultaneously extracting and integrating 

rich and diverse heterogeneous information in neuroimaging and/or genomics from these big 

datasets could transform our understanding of how genetic variants impact brain structure and 

function, cognitive function, and brain-related disease risk across the lifespan. Such understanding 

is critical for diagnosis, prevention, and treatment of numerous complex brain-related disorders 

(e.g., schizophrenia and Alzheimer’s disease). However, the development of analytical methods 

for the joint analysis of both high-dimensional imaging phenotypes and high-dimensional genetic 

data, a big data squared (BD2) problem, presents major computational and theoretical challenges 

for existing analytical methods. Besides the high-dimensional nature of BD2, various 

neuroimaging measures often exhibit strong spatial smoothness and dependence and genetic 

markers may have a natural dependence structure arising from linkage disequilibrium. We review 

some recent developments of various statistical techniques for imaging genetics, including massive 

univariate and voxel-wise approaches, reduced rank regression, mixture models, and group sparse 

multi-task regression. By doing so, we hope that this review may encourage others in the statistical 

community to enter into this new and exciting field of research.

Keywords
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1. INTRODUCTION

Despite the numerous successes of genome-wide association studies (GWAS), it has been 

difficult to unravel the genetic basis of many complex neurological diseases since each 

genetic variant may only contribute in a small way to disease risk and such a genetic basis 

can be very heterogeneous (Cannon and Keller, 2006; Marenco and Radulescu, 2010; Peper, 

et al. 2007). The additive and interactive effects of perhaps hundreds of risk genes and 

multiple environmental risk factors, each with small individual effects, may contribute to the 
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abnormal developmental trajectories that underlie neurological and psychiatric disorders 

such as Alzheimer’s Disease. Identifying such risk genes and environmental risk factors 

could transform our understanding of the origins of these conditions and inspire new 

approaches for urgently needed preventions, diagnoses, and treatments. Once such an 

identification has been accomplished, lifestyle and medical interventions can be applied.

A promising approach to understanding the genetic basis of neurological disorders is 

through studies that integrate multi-scale data from genetic/genomic, multimodal brain 

imaging, and environmental risk factors (Hibar, et al., 2011; Thompson, et al., 2013; Hibar, 

et al., 2015), so called imaging genetics studies.

To promote such studies, the Brain Imaging Clinical Research Program at the National 

Institute of Mental Health (NIMH) has called for the investigation of relationships between 

genetic variations and imaging and cognitive findings and phenotypes in adult mental 

disorders. To this end, a number of large-scale publicly available imaging genetic databases 

have been established, including the Human Connectome project (HCP) study, the UK 

biobank (UKbb) study, the Pediatric Imaging, Neurocognition, and Genetics (PING) study, 

the Philadelphia Neurodevelopmental Cohort (PNC), and the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) study, among many others. The ADNI database in 

particular has been used extensively by statisticians working on the development of methods 

for the joint analysis of neuroimaging and genetic data, and this database serves as a good 

starting point for new researchers in the area.

In these imaging genetic studies, the data available for each subject may include multiple 

magnetic resonance imaging (MRI) images, such as structural MRI, diffusion tensor 

imaging (DTI), and functional MRI, cognitive assessments, and genomic data (e.g., single 

nucleotide polymorphism (SNP) array and copy number variations (CNVs)). Jointly 

analyzing neuroimaging and genetic data with clinical variables, however, raises serious 

challenges as existing statistical methods are rendered infeasible for efficiently analyzing 

large-scale imaging genetic data sets with many subjects. These challenges arise from a 

setting where the data involve high-dimensional imaging data × high-dimensional genetic 

data – so-called Big Data squared (BD2), complex correlation and spatial structures within 

both imaging and genetic data, and a potentially large number of subjects.

For many brain-related diseases, since changes in brain structure and function are very 

subtle, it is common to normalize multi-modal neuroimaging data to a common template 

(Xu, et al., 2003; Miller and Younes, 2001). After normalization, various imaging 

phenotypes are commonly calculated from structural and functional imaging data (Friston, 

2009; Zhu, et al., 2007). These normalized neuroimaging phenotypes are functional data 

measured at a very large number (104 – 107) of grid points along space and/or time and 

network data measured among a large number (104 – 106) of region of interest (ROI) pairs 

(Hibar, et al., 2011; Thompson, et al., 2013; Hibar, et al., 2015; Ge, et al., 2015a, 2015b). 

See Figure 1 for a graphical depiction of potential Imaging Phenotypes (IPs).

The earliest methods developed for imaging genetics data analysis are based on significant 

reductions to both data types, for example, restricting the analysis to a specific candidate 
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ROI in the brain and/or a specific candidate genetic marker. This type of univariate analysis 

can be extended to handle full brain-wide genome-wide data based on the application of a 

massive number of pairwise univariate analyses, each based on a standard linear regression 

relating a given voxel/region to a given SNP. In this case the multiple testing problem can be 

on a very large scale and the resulting corrections very stringent, given the large number of 

tests involved. For example, in a full brain-wide genome-wide study involving 106 known 

genetic variants and 106 locations in the brain, this type of analysis will require 1012 

univariate analyses. Furthermore, the resulting p-values are not independent because of 

spatial correlation in the imaging data.

Stein et al. (2010) are the first to consider such an analysis. These authors examine 448, 293 

SNPs in each of 31, 622 voxels of the entire brain across 740 elderly subjects. A total of 300 

computational-cluster nodes are used to carry out the required computations in parallel. 

Hibar et al. (2011) consider a similar analysis but reduce the number of tests by conducting 

the analysis at the gene rather than SNP level. In this case principal component analysis is 

used to summarize the SNP data for each gene, and the resulting ‘eigenSNPs’ are used in the 

massive univariate analysis.

As an alternative to the massive univariate approach, a voxel-wise approach continues to fit 

regression models separately at each location in the brain, but considers a set of genetic 

markers simultaneously rather than just a single genetic marker. Ge et al. (2011) develop 

such an analysis and examine a dataset that is similar to that considered in Stein et al. 

(2010), but a key difference is the use of a multi-locus model based on least squares kernel 

machines (Liu et al., 2007), which is used to combine the effect of multiple genetic variants 

and model their interaction. In addition, the spatial information in the images is accounted 

for through the use of random field theory as an inferential tool (Worsley, 2002). This 

approach is extended in Ge et al. (2015) to allow for potential interactions between genetic 

variables and non-genetic variables such as disease-risk factors, environmental exposures, 

and epigenetic markers.

An alternative fast voxel-wise genome-wide association analysis (FVGWAS) approach is 

that developed by Huang et al. (2015) where the authors focus on reducing the 

computational burden required for a full brain-wide gene-wide study. This objective is 

implemented in part by incorporating a global sure independence screening procedure along 

with inference based on the wild bootstrap. The resulting approach can implement a brain-

wide genome-wide analysis in a relatively small amount of time utilizing only a single CPU.

One drawback of the massive univariate and voxel-wise approaches is that the relationship 

between the different neuroimaging phenotypes (e.g., at different regions of the brain) is not 

explicitly modelled, and therefore, potential efficiency gains arising from the borrowing of 

information across brain regions are not realized. An alternative approach is to base the 

analysis on a single large model, a multivariate high-dimensional regression model that is fit 

to the entire dataset. In this framework the scale of the data must necessarily be reduced, and 

it is common to summarize the entire image using a relatively moderate number of brain 

summary measures across some key ROIs. As an example, Table 1 describes a phenotype of 
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dimension 56 that can be derived from an MRI image, and these data are considered in our 

example application.

One such regression model is the group-sparse multitask regression model proposed by 

Wang et al. (2012) where estimation of the regression coefficients in a multivariate linear 

model is based on penalized least squares. The penalty is chosen to induce a particular form 

of structured sparsity in the solutions based on two nested forms of grouping. The first is at 

the SNP level (grouping the regression coefficients of a given SNP across all phenotypes) 

and the second is at the gene level, which groups all SNPs within a given gene. More 

recently, Greenlaw et al. (2017) have extended this approach to the Bayesian setting which 

allows for inference and uncertainty quantification for the regression coefficients of the 

selected genetic markers.

An alternative multivariate approach is based on approximating the high-dimensional 

regression coefficient matrix with a low rank matrix. Such an approach has been developed 

by Vounou et al. (2010), who construct a sparse reduced-rank regression (SRRR) model 

which is applied to an imaging genetics study involving 111 anatomical ROIs and 437, 577 

SNPs. Using simulation studies, Vounou et al. (2010) show that their SRRR model has 

higher power to detect important genetic variants compared with the massive univariate 

approach. Along similar lines, Zhu et al. (2014) also develop a low rank regression model 

with inference conducted in the Bayesian framework and they apply their approach to an 

imaging genetics study involving 93 ROIs and 1, 071 SNPs. Also in the Bayesian 

framework, Stingo et al. (2013) develop a hierarchical mixture model for relating brain 

connectivity to genetic information for studies involving functional MRI (fMRI) data. The 

mixture components of the proposed model are used to classify the study subjects into 

subgroups, and the allocation of subjects to these mixture components is linked to genetic 

markers with regression parameters assigned spike-and-slab priors. The proposed model is 

used to examine the relationship between functional brain connectivity based on fMRI data 

and genetic variation. We note that the word functional is used here to refer to brain function 

and not to functional data.

Huang et al. (2017) develop a functional genome-wide association analysis (FGWAS) 

framework to efficiently carry out whole-genome analyses of phenotypes measuring brain 

function. Compared with FVGWAS, FGWAS explicitly models the features of these 

phenotypes through the integration of smooth coefficient functions and functional principal 

component analysis. In the latter context the word functional refers to functional data and 

not brain function. Statistically, compared with existing methods for genome-wide 

association studies (GWAS), FGWAS can substantially boost the detection power for 

discovering important genetic variants influencing brain structure and function.

In more recent work, researchers have turned their attention to longitudinal imaging genetics 

studies where study subjects are followed over time with neuroimaging data collected over a 

sequence of time points during a follow-up period. With longitudinal MRI data, changes in 

the structure of the brain over time can be characterized, for example, by examining rates of 

brain deterioration, and these estimated rates of change can be related to genetic markers. 

Szefer et al. (2017) examine the presence of linear association between minor allele counts 
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of 75, 845 SNPs in the Alzgene linkage regions and estimated rates of change of structural 

MRI measurements for 56 brain regions. The authors develop a bootstrap-enhanced sparse 

canonical correlation analysis to create refined lists of SNPs associated with rates of 

structural change over time.

Lu et al. (2017) develop a Bayesian approach to perform longitudinal analysis of 

multivariate neuroimaging phenotypes and candidate genetic markers obtained from 

longitudinal studies. A low rank longitudinal regression model is specified where penalized 

splines are incorporated to characterize an overall time effect, and a sparse factor analysis 

model coupled with random effects is proposed to account for spatiotemporal correlations of 

longitudinal phenotypes. A useful feature of the proposed methodology is the allowance for 

interactions between genetic main effects and time.

In the remainder of the paper, Sections 2 - 4 discuss in more detail some of the methods 

mentioned above. Section 5 presents an example application where data from the ADNI-1 

database are used to examine the association between the 56 neuroimaging phenotypes 

presented in Table 1 and a collection of 486 SNPs from 33 genes belonging to the top 40 

Alzheimer’s Disease (AD) candidate genes listed on the AlzGene database as of June 10, 

2010. Section 6 concludes with a discussion of some ongoing work in this area.

2. MASS UNIVARIATE AND VOXEL-WISE APPROACHES

Mass univariate approaches avoid the complication of jointly modelling all neuroimaging 

phenotypes and genetic markers and simply conduct a test for association at each possible 

pair of voxel and genetic marker. Voxel-wise approaches are similar in that a separate model 

is fit independently at each voxel of the image, but these approaches may include multiple 

genetic markers in each model. The primary advantage of these approaches is that they make 

feasible a full brain-wide and genome-wide search for associations without the need to 

reduce the imaging data to a smaller number of ROIs.

We assume that neuroimaging and genetic data are available on n subjects, where the 

imaging phenotype is denoted as yℓ(v), for the numerical value of the brain image of subject 

ℓ, ℓ = 1, … , n, at voxel v, v = 1, … , V. We denote the set of genetic markers for subject l by 

xℓ = (xℓ1, … , xℓd)T, ℓ = 1, … , n, for a total of d markers, where xℓj ∈ {0, 1, 2} is the number 

of copies of the minor allele for the jth SNP, which takes values xℓj = 0 (homozygotic major 

alleles), xℓj = 1 (heterozygote), and xℓj = 2 (homozygotic minor alleles). Finally, we let zℓ = 

(zℓ1, … , zℓp)T, ℓ = 1, … n, denote a collection of non-genetic variables for subject l.

Stein et al. (2010) is the first voxel-wise genome-wide association study (vGWAS) 

examining genetic influence on brain structure. The authors consider neuroimaging and 

genetic data obtained from n = 818 subjects as part of the ADNI. The neuroimaging data are 

based on brain MRI scans that are processed using an approach known as tensor-based 

morphometry (TBM). TBM (Ashburner et al., 2000) is applied to each of the MRI scans to 

create images representing volumetric tissue differences at each of approximately 31, 000 

voxels for each individual, where the value of the image in a given voxel is obtained by 

calculating the determinant of the Jacobian matrix of a deformation that encodes local 
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volume excess or deficit relative to an image that is representative of the sample, known as 

the mean template image. The analysis relates the value of the image at each voxel to each 

of 448, 293 SNPs.

The statistical methodology considered by Stein et al. (2010) is fairly straightforward, 

though the resulting computation is still extensive due to the total number of tests 

considered. At each voxel v, a linear regression is conducted with response yℓ(v) (volumetric 

tissue difference relative to a mean template image at voxel v) and a separate regression 

model is fit relating this response to each SNP xℓj, assuming an additive genetic model. 

Additional independent variables age and gender are also included in the model,

yℓ(v) = β0 + β1Ageℓ + β2Genderℓ + αxℓ j + eℓ(v, j) .

A standard p-value from this linear regression is obtained for each SNP-voxel pair 

(corresponding to a null hypothesis of α = 0), and these p-values are computed at a given 

voxel as the model is fit repeatedly to all d SNPs.

To conserve memory, Stein et al. (2010) only save the minimum p-value at each voxel. 

Under the null hypothesis that the phenotype at a given voxel is not associated with any of 

the genetic markers, the minimum p-value computed at each voxel is not uniform [0, 1], but 

it is shown to be approximately Beta(1, Meff), with Meff < M, where Meff is the effective 

number of independent tests conducted at each voxel, and M is the total number of genetic 

markers. The inequality Meff < M arises as a result of linkage disequilibrium.

Stein et al. (2010) set the value of Meff equal to the number of principal components 

required to jointly explain 99.5% of the variance in the SNPs. The Beta(1, Meff) distribution 

is used to correct the minimum p-value computed at each voxel via the probability integral 

transform so that the corrected minimum p-value is approximately distributed as uniform[0, 

1]. False Discovery Rate (FDR) procedures (Benjamini and Hochberg, 1995) are then 

applied to adjust for multiple testing across voxels. Under the proposed scheme the 

computations can be carried out in parallel across voxels, and Stein et al. (2010) employ 300 

cluster nodes with a reported 27 hours of total computation time.

Hibar et al. (2011) develop a gene-based association method to complement single-marker 

GWAS for implicating underlying genetic variants in complex traits and diseases. The 

authors focus more broadly on gene-based approaches as they can be more powerful than 

traditional SNP-based approaches, with the relative power depending on how the genetic 

variants affect the phenotype. For example, if a gene contains multiple causal variants with 

small individual effects, SNP-based methods may miss these associations if a very stringent 

significance threshold is used. Gene-based tests also reduce the effective number of 

statistical tests by aggregating multiple SNP effects into a single test statistic.

In Hibar et al. (2011) the SNP data are grouped by gene and SNPs that are not located in a 

gene are excluded. Considering a dataset of the same scale, both in terms of imaging and 

genetics, as that considered in Stein et al. (2010), after grouping SNPs a total of 18, 044 

genes are left for analysis. The authors propose a gene-based association method that is 
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based on principal components regression. Principal component analysis (PCA) is 

performed on the SNP data within each gene, storing all of the orthonormal basis vectors of 

the SNP matrix that explain a majority of the variance in the set of SNPs for a given gene. 

Basis vectors with the highest eigenvalues (higher proportions of explained variance) are 

included until 95% of the SNP variability within the gene is explained, and the rest are 

discarded. The resulting ‘eigenSNPs’ approximate the information in the collection of 

observed SNPs for a given gene.

Hibar et al. (2011) apply their approach by examining associations between 18, 044 genes 

and approximately 31,000 voxel-specific phenotypes. At each voxel, a multiple partial-F test 

is employed to test the the joint effect of all eigen-SNPs for a given gene on the value of the 

image (volume difference) at the given voxel. The test is applied to all genes and the 

minimum p-value is recorded at each voxel. Inference then proceeds using an approximate 

Beta null distribution with FDR procedures applied to adjust for multiple testing as in Stein 

et al. (2010). The required computation across all voxels is parallelized over a cluster of 10 

high performance 8-core CPU nodes and Hibar et al. (2011) report that the total time 

required to complete an analysis with their computational setup is approximately 13 days. 

Summarizing the SNP information in this way may have some disadvantages as well. In 

particular, if a single SNP has a large main effect, then testing the joint effect of all SNPs 

within that gene may dilute this association. However, when one considers the drastic 

reduction in the number of independent tests when comparing SNP-based linear regression 

with gene-specific summaries based on PCA, gene-based testing offers advantages when 

dealing with an extremely large number of voxels in an image phenotype.

In more recent work, Huang et al. (2015) have developed a fast voxel-wise genome-wide 

association analysis with an emphasis on large-scale imaging and genetic data. A key 

advantage of this methodology over the methods developed by Stein et al. (2010) and Hibar 

et al. (2011) is that it requires considerably less computational resources and is feasible to 

run on just a single CPU with reasonable processing time. The proposed approach is based 

on three main components: (1) a heteroscedastic linear model is specified at each voxel-

locus pair; (2) a global sure independence screening procedure is incorporated to eliminate 

many noisy loci; (3) inference is based on wild bootstrap methods. The heteroscedastic 

linear model at voxel v and locus c takes the form

yℓ(v) = zℓ
T β(v) + xℓcα(c, v) + eℓ(v), ℓ = 1, … , n

and the model makes no strong assumptions on V ar[eℓ(v)], in particular, it may vary across 

subjects. The hypothesis test of interest is

H0(c, v) : α(c, v) = 0 versus H1(c, v) : α(c, v) ≠ 0 for each (c, v) .

Huang et al. (2015) introduce a standard Wald statistic W(c, v) that is based on the ordinary 

least squares estimate of α(c, v). Under the heteroscedastic assumption of the regression 

model the standard approximations to the null distribution of W(c, v) based on the χ1
2 (or F) 
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distribution do not apply and a wild bootstrap method is proposed as an alternative. Huang et 

al. (2015) then focus on approximations that make such a procedure computationally 

feasible.

A key aspect of these approximations is that a global sure independence screening procedure 

is used to eliminate many noisy loci. The global aspect of the screening procedure reduces 

the set of SNPs for all voxels simultaneously. The authors define a global Wald statistic 

W(c) for a given locus as the average of W(c, v) taken over all voxels in the image. If, for a 

given locus c, it is the case that H0(c, v) holds for all voxels v, then Huang et al. (2015) 

argue that W(c, v) asymptotically converges to a weighted χ2 distribution. The 

corresponding p-values are then computed for each locus c, and the top N0 loci (e.g. N0 = 

1000) are selected as the candidate set.

Given the candidate set, a wild bootstrap approach is applied to determine significant voxel-

locus pairs, or alternatively, significant cluster-locus pairs, where a cluster refers to a set of 

interconnected voxels each with test statistic exceeding a certain threshold. Allowing for 

cluster-wise inference in this way is an important advantage of this methodology over that 

proposed by Stein et al. (2010) and Hibar et al. (2011), as the voxel-specific tests proposed 

in the latter two articles might miss spatially extended signals that do not achieve 

significance at any isolated voxel. In this sense Huang et al. (2015) take advantage of the 

spatial information in the 3D images.

Ge et al. (2012) develop the first voxel-wise imaging genetics approach that allows for 

interactions between genetic markers. At each voxel the authors propose to fit a multi-locus 

model to associate the joint effect of several SNPs with the imaging trait at that voxel. The 

imaging traits are similar to those considered in Stein et al. (2010) though the model 

specified at each voxel is different. In particular, the semiparametric regression model 

specified at each voxel takes the form

yℓ(v) = zℓ
T β(v) + hv(xℓ) + eℓ(v), ℓ = 1, … , n,

where hv(xℓ) denotes a nonparametric function of the SNPs and the errors are assumed to be 

normally distributed with mean 0 and standard deviation σv. In this case the non-genetic 

covariates (e.g., age, gender, education, handedness, and total intracranial volume) are 

modelled parametrically and the effect of genetic markers is modelled nonparametrically 

using a least squares kernel machines (Liu et al., 2007) approach. The function space 

containing hv (·) is determined by an n × n kernel matrix which is a function of the genetic 

data and must be positive definite. The (j, k) element of this matrix is a function of the SNP 

genotypes of subjects j and k, and Ge et al. (2012) specify the form of this kernel to be

k(x j, xk) = 1
2d ∑

s = 1

d
IBS(x js, xks)

where IBS(xjs, xks) denotes the number of alleles shared identical by descent by subjects j 
and k at SNP s and takes values 0, 1, or 2.

Nathoo et al. Page 8

Can J Stat. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this case the null hypothesis of interest is H0(v) : hv(·) = 0, which examines the effect of 

multiple SNPs at each voxel. Importantly, the model is very flexible and allows for 

interactions between the genetic markers. Ge et al. (2012) exploit a connection between least 

squares kernel machines and linear mixed models to derive a score statistic based on the null 

model (the model with no SNPs) and argue that this statistic follows a mixture of chi-

squares under the null hypothesis. The score statistic has the advantage that its computation 

does not require the estimation of the function h(·). Using the Satterthwaite method, the 

distribution of this statistic under the null hypothesis is approximated by a scaled chi-

squared distribution.

Applying this technique at all voxels produces an image of score statistics and the authors 

assume that this statistic image behaves like a χ2 random field which facilitates inference 

using random field theory (Worsley, 1996). Random field theory (RFT) produces FWE-

corrected p-values for voxel-wise and cluster-wise inference by accounting for the volume 

and smoothness of the statistic image. As RFT requires fairly strong assumptions on the 

statistic image and these assumptions may not be satisfied, the authors also develop voxel-

wise inference based on permutation procedures with a parametric tail approximation based 

on the Generalized Pareto Distribution.

Along with allowing for interactions among genetic variables the work of Ge et al. (2012) is 

the first to use RFT for inference in imaging genetics. Thus while correlation across voxels 

is not accounted for directly within the statistical model, the spatial structure of the imaging 

data is accounted for when computing FWE-corrected p-values using RFT.

In a subsequent paper, Ge at al. (2015) extend the least squares kernel machine approach of 

Ge et al. (2012) to allow interactions between SNPs and further allow interactions between 

SNPs and non-genetic variables such as disease risk factors, environmental exposures, and 

epi-genetic markers. The model specified is of the form

yℓ(v) = zℓ
T β(v) + hv, x(xℓ) + hv, w(wℓ) + hv, x, w(xℓ, wℓ) + eℓ(v), ℓ = 1, … , n,

where zℓ are non-genetic variables with linear effect and wℓ are non-genetic variables with 

nonlinear effect that may interact with the genetic markers. As before a kernel machine 

based method is used to represent the nonparametric effects. In their application, Ge at al. 

(2015) only consider a scalar phenotype derived through MRI, namely, the hippocampal 

volume averaged between the two brain hemispheres; however, combining the voxel-wise 

inference of Ge et al. (2012) with the more flexible kernel machine model of Ge et al. (2015) 

seems feasible for dealing with phenotypes comprising an entire 3D image.

The mass univariate and voxel-wise approaches are appealing because of their simplicity and 

because the required univariate or multi-locus regression models are relatively 

straightforward to fit. Modelling the dependence between different voxels is avoided and this 

makes it feasible to perform large scale searches across many voxels of an image. Despite 

these advantages an important limitation is that these approaches do not exploit the spatial 

structure of phenotype-genotype associations. If a particular SNP is related to one voxel then 
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it will likely be related to the neighbouring voxels as well, and these approaches do not 

allow us to borrow strength across voxels. This borrowing of strength can lead to higher 

power and is thus desired. Multivariate approaches are thus natural to consider, but these 

models typically require a significant reduction in the dimension of the neuroimaging 

phenotype by two orders of magnitude.

3. MULTIVARIATE APPROACHES

With multivariate approaches all of the neuroimaging phenotypes are included in a single 

large model that may account for the dependence structure across the different phenotypes 

while relating each of the phenotypes to all of the genetic markers. As a result, these 

approaches are typically not applied to imaging data at the voxel level as this is 

computationally intractable. A multivariate approach is typically applied to images reduced 

to a much coarser scale where each phenotype corresponds to a summary measure for an 

ROI in the brain. Table 1 provides an example of such summary measures for the 56 ROIs 

considered in our example.

In the work of Wang et al. (2012) an estimator based on group sparse regularization is 

applied to multivariate regression for relating neuroimaging phenotypes to SNPs, where the 

SNPs are grouped by genes and this grouping structure is accounted for in the construction 

of the regression estimator. Let yℓ = (yℓ1, … , yℓc)T denote the imaging phenotype 

summarizing the structure of the brain over c ROIs for subject ℓ, ℓ = 1, … , n The 

corresponding genetic data are denoted by xℓ = (xℓ1, … , xℓd)T, ℓ = 1, … , n, where we have 

information on d SNPs, and xℓj ∈ {0, 1, 2} is the number of minor alleles for the jth SNP. We 

further assume that each SNP can be associated with a gene so that the set of genes 

represents a higher level grouping of the SNPs. Thus the set of SNPs can be partitioned into 

K genes, and we let πk, k = 1, 2, … , K , denote the set containing the SNP indices 

corresponding to the kth group and mk = |πk|. This partitioning is used to allow for gene-

wise association among SNPs. This is done through a regularization in which the 

coefficients of the SNPs within a gene, with respect to all of the imaging phenotypes, are 

penalized as a whole with an l2-norm, while the l1-norm is used to sum up the gene-wise 

penalties to enforce sparsity between genes. The latter is important because in reality only a 

small fraction of genotypes are related to a specific phenotype.

It is assumed that E(yℓ) = WTxℓ, ℓ = 1, … , n, where W is a d x c matrix, with each row 

characterizing the association between a given SNP and the brain summary measures across 

all c ROIs. The estimator proposed by Wang et al. (2012) takes the form

W = arg min
W

∑
ℓ = 1

n
∥ WTxℓ − yℓ ∥2

2 + γ1 ∥ W ∥G2, 1
+ γ2 ∥ W ∥l2, 1

(1)

where γ1 and γ2 are regularization parameters weighting a G2,1-norm penalty 

∥ W ∥G2, 1
= Σk = 1

K Σi ∈ πk
Σ j = 1

c wij
2 and an ℓ2,1-norm penalty ∥ W ∥l2, 1

= Σi = 1
d Σ j = 1

c wij
2

respectively. The G2,1-norm encourages sparsity at the gene level. This regularization differs 
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from group lasso (Yuan and Lin, 2006) as it penalizes regression coefficients for a group of 

SNPs across all imaging phenotypes jointly. As an important gene may contain irrelevant 

individual SNPs, or a less important gene may contain individually significant SNPs, the 

second penalty, an ℓ2,1-norm (Evgeniou and Pontil, 2007), is added to allow for additional 

structured sparsity at the level of SNPs (the rows of W).

The estimator (1) provides a novel approach for assessing associations between 

neuroimaging phenotypes and genetic variations as it accounts for several interrelated 

structures within genotyping and imaging data. Wang et al. (2012) develop an optimization 

algorithm for the computation of (1) and suggest the use of cross-validation for the selection 

of tuning parameters γ1 and γ2. A limitation of the proposed methodology is that it only 

furnishes a point estimate W and techniques for obtaining valid standard errors or interval 

estimates are not provided.

In recent work, Greenlaw et al. (2017) address this limitation and extend the methodology of 

Wang et al. (2012) so that the uncertainty associated with W can be quantified, and their 

methodology allows for formal statistical inference beyond the sparse point estimate W. 

Following the ideas of Park and Casella (2008) and Kyung et al. (2010), Greenlaw et al. 

(2017) develop a hierarchical Bayesian model that allows for full posterior inference. The 

Bayesian model is constructed with a particular prior for W so that the estimator (1) 

corresponds to the posterior mode. The spread of the posterior distribution then provides 

valid measures of posterior variability along with credible intervals and/or posterior 

probabilities for each regression parameter.

Let W(k) = (wij)i∈πk denote the mk × c submatrix of W containing the rows corresponding to 

the kth gene, k = 1, … , K. The hierarchical model of Greenlaw et al. (2017) corresponding 

to the estimator (1) takes the form

yℓ ∣ W, σ2 ∼ind MVNc(W
Txℓ, σ2Ic), ℓ = 1, … , n, (2)

with the coefficients corresponding to different genes assumed conditionally independent

W(k) ∣ λ1
2, λ2

2, σ2 ∼ind p(W(k) ∣ λ1
2, λ2

2, σ2) k = 1, … , K, (3)

and with the prior distribution for each W(k) having a density function given by

p(W(k) ∣ λ1
2, λ2

2, σ2) ∝ exp −
λ1
σ ∑

i ∈ πk

∑
j = 1

c
wij

2 × ∏
i ∈ πk

exp −
λ2
σ ∑

j = 1

c
wij

2 . (4)

By construction, the posterior mode, conditional on λ1
2, λ2

2, σ2, corresponding to the model 

hierarchy (2) - (4) is exactly the estimator (1) proposed by Wang et al. (2012) with γ1 = 
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2σλ1 and γ2 = 2σλ2. This equivalence between the posterior mode and the estimator of 

Wang et al. (2012) is the motivation for the model; however, generalizations that allow for a 

more flexible covariance structure in (2) can also be considered, and an extension of this 

model to allow for spatial correlation is discussed in Section 6.

Greenlaw et al. (2017) develop a Gaussian scale mixture representation of this hierarchical 

model which allows for the implementation of Bayesian inference using a straightforward 

Gibbs sampling algorithm that is implemented in the R package ‘bgsmtr’ (Bayesian Group 

Sparse Multi-Task Regression) which is available for download on CRAN (https://cran.r-

project.org/web/packages/bgsmtr/). The selection of the tuning parameters λ1
2 and λ2

2 for this 

model is investigated in Nathoo et al. (2016), where selection of these tuning parameters 

based on a fully Bayes approach with hyperpriors, an empirical Bayes approach, and the 

WAIC are compared.

Vounou et al. (2010) propose an alternative strategy for multivariate regression modelling 

with imaging genetics data where the high-dimensional regression coefficient matrix is 

approximated by a low rank sparse matrix leading to a sparse reduced rank regression 

(sRRR) model. Suppose that X is the n × d design matrix of genetic markers and Y is the n × 

c matrix of imaging phenotypes. Beginning with the standard multivariate multiple linear 

regression model Y = XC + E, where C is the d × c matrix of regression coefficients, the 

approach proceeds by first imposing a rank condition on this matrix, rank(C) ≤ min(d, c), 

which leads to a decrease in the number of parameters that need to be estimated. In 

particular, if C has rank r then it can be expressed as C = BA where B is d × r and A is r × c 
such that rank(A) = rank(B) = r. The loss function for estimation is based on the weighted 

least squares criterion M = Tr{(Y − XBA)Γ(Y − XBA)T}, where Γ is a c × c positive definite 

weight matrix. Vounou et al. (2010) consider sparse estimation of both B and A through 

penalized estimation incorporating l1-norm penalties. In particular, setting Γ to be the 

identity matrix we have

M = Tr{YYT} − 2Tr{AYTXB} + Tr{AATBTB},

where the first term on the RHS can be ignored as it does not depend on B or A. Assuming r 
= 1 and adding l1-norm penalization yields the following optimization problem

arg min
a, b

{ − 2aYTXb + aaTbTb + λa ∥ aT ∥1 + λb ∥ bT ∥1}

where a is 1 × c corresponding to the phenotypes and b is d × 1 corresponding to the genetic 

markers. The sparsity of the solution depends on the values of λa and λb with the non-zero 

elements of a selecting phenotypes and the non-zero elements of b selecting genetic 

markers.

The optimization problem is biconvex and Vounou et al. (2010) present an iterative 

algorithm for solving it. After the rank-one solution has been found, additional ranks can be 

obtained by applying the algorithm to the residuals of the data matrices. Vounou et al. (2010) 
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suggest a graphical approach based on the residuals at each successive rank that can be used 

to select an optimal rank. As with the Wang et al. (2012) methodology, the methodology of 

Vounou et al. (2010) provides selection and point estimation but does not provide any 

mechanism for uncertainty quantification. This lack of uncertainty quantification can be a 

serious problem as we illustrate in our example application of Section 5.

Zhu et al. (2014) develop a Bayesian reduced rank model for imaging genetics that 

incorporates several enhancements above and beyond the methodology proposed in Vounou 

et al. (2010). First, the Bayesian approach enables uncertainty quantification for the 

regression parameters based on the posterior distribution. Second, in addition to reducing the 

dimension of the regression coefficient matrix with a low rank approximation, Zhu et al. 

(2014) also incorporate a sparse latent factor model to represent the high-dimensional 

covariance matrix of the brain imaging phenotypes, with a multiplicative gamma process 

shrinkage prior assigned to the factor loadings.

As with Vounou et al. (2010) the proposed model is based on the multivariate linear model Y 
= XC + E, where E = (ϵℓk) and the rows of E, each corresponding to a different subject, are 

assumed independent with ϵℓ ∼ MVNc(0,Σ). The rank r decomposition of C with r < < 

min(c, d) takes the form C = Σ j = 1
r C j = Σ j = 1

r δ ju jv j
T where C j = δ ju jv j

T is the j-th layer, 

u j ∈ ℝd and v j ∈ ℝc. The regression errors for each subject are expressed using a latent 

factor model ϵℓ = Ληℓ + ξℓ, where Λ is a d × ∞ factor loading matrix, ηℓ ∼ MVN∞(0, I∞), 

and ξℓ ∼ MVNc(0, Σξ) with Σξ = diag{σ1
2, … , σc

2}. While it is typical to set the dimension of 

the latent factor ηℓ to be much smaller than ϵℓ, the approach followed in Zhu et al. (2014) is 

to choose a multiplicative gamma process prior for Λ that shrinks the elements to zero as the 

column index increases, thereby avoiding the issue of choosing the number of factors (see 

also Bhattacharya and Dunson, 2011). The overall model for the imaging phenotype for a 

given subject can be written as

yℓ = ∑
j = 1

r
Xℓ

Tδ ju jv j
T + Ληℓ + ξℓ,

and Gaussian shrinkage priors are adopted for δj, uj, and vj, j = 1, … , r. Zhu et al. (2014) 

present a Gibbs sampler that can be used to sample the posterior distribution and investigate 

a number of model selection criteria for choosing r. Their simulation studies indicate that the 

BIC outperforms several other model selection criteria in determining the true rank of C.

Overall, the use of multivariate methods over the mass univariate and voxel-wise approaches 

can lead to greater efficiency through the borrowing of information across related brain 

imaging phenotypes. The approach of Wang et al. (2012) scales relatively well but does not 

provide uncertainty quantification. The Bayesian model of Greenlaw et al. (2017) addresses 

this issue at the expense of the greater computation required by the MCMC algorithm. As a 

result, the approach does not scale as well as that of Wang et al. (2012) and it requires 

parallel computation for the selection of tuning parameters. The SRRR approach proposed 

by Vounou et al. (2010) allows for potentially higher dimensional datasets with an 
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appropriate choice of the rank of the regression coefficient matrix, while the Bayesian 

reduced rank approach of Zhu et al. (2014) offers several advantages including uncertainty 

quantification and a sparse latent factor model for the covariance matrix of the response. A 

disadvantage of the multivariate approaches, regardless of which is chosen, is that the 

imaging data must be substantially reduced to a summary measure over a reasonable number 

of ROIs (in the hundreds at most) while the mass univariate and voxel-wise approaches can 

be applied to tens of thousands of voxels.

4. METHODS FOR LONGITUDINAL IMAGING GENETICS STUDIES

Longitudinal imaging genetics studies such as the ADNI study can provide insight into 

different rates of brain deterioration and how change in the structure of the brain over time is 

related to genetics. Szefer et al. (2017) have recently considered a longitudinal analysis of 

the ADNI database examining 75, 845 SNPs in the Alzgene linkage regions and investigated 

associations with estimated rates of change in structural MRI measurements for 56 brain 

regions. Szefer et al. (2017) consider three phases of the ADNI study in their analysis, 

ADNI-1, ADNIGO, and ADNI-2. More information on the ADNI study including 

information on data access is available online at http://adni.loni.usc.edu/about/. The regions 

considered in Szefer et al. (2017) are the same as those considered in Greenlaw et al. (2017), 

and also described in Table 1 which we consider in our example analysis of the next session.

A primary innovation in the analysis of Szefer et al. (2017) is to construct from longitudinal 

MRI data and linear mixed models a set of subject and region specific rates of change over 

time. These estimated rates of change are then related to genetic markers using sparse 

canonical correlation analysis. Szefer et al. (2017) also use inverse probability weighting to 

account for the biased sampling design of the ADNI study, an aspect that has not been 

considered in many previous imaging genetics studies.

Let yℓ(t) = (yℓ1(t), … , yℓc(t))T denote the imaging phenotype summarizing the structure of the 

brain over c ROIs for subject ℓ, ℓ = 1, … , n at time t, where, for the ADNI study considered 

by Szefer et al. (2017) t ∈ {0, 6, 12, 18, 24} months following entry into the study. For the 

jth ROI, Szefer et al. (2017) fit the following standard linear mixed model with random 

intercept and slope for time

yℓ j(t) = β0 j + β1 jMCI + β2 jAD + β3 jt + β4 jMCI × t + β5 jAD × t + γ1ℓ j + γ2ℓ jt + ϵℓ j(t),

(5)

where AD is an indicator for Alzheimer’s Disease, MCI is an indicator for mild cognitive 

impairment, the β terms denote fixed effects and the γ terms denote random effects. The 

estimated rate of change extracted from the fitted linear mixed model is 

β3 j + β4 jMCI + β5 jAD + γ2ℓ j, and these estimates, which are region specific, are used as the 

imaging phenotypes in the second stage of their analysis after adjusting for population 

stratification using multidimensional scaling. The genetic markers are also adjusted for 
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population stratification using the principal coordinates obtained from multidimensional 

scaling.

A sparse linear combination of the SNP genotypes that is most associated with a linear 

combination of the imaging phenotypes (the estimated rates of change) is obtained using 

sparse canonical correlation analysis (SCCA). SCCA is a multivariate method for estimating 

maximally correlated sparse linear combinations of the columns of two multivariate data 

sets. The degree of sparsity in the coefficients of the genotypes is controlled by a 

regularization parameter, and Szefer et al. (2017) choose this parameter so that 

approximately 10% of the SNPs have non-zero coefficients. A bootstrap procedure is then 

used to estimate the relative importance of each SNP. In particular, sampling with 

replacement within each disease category (MCI, AD, Cognitively Normal), if βb = (β1b, … , 

βdb)T denotes the coefficient vector of the sparse linear combination of SNPs estimated from 

the bth bootstrap sample, Szefer et al. (2017) define the complement of the importance 

probability for the kth SNP as

VIPk = 1
B ∑

b = 1

B
I{βkb = 0}

where B is the total number of bootstrap samples. These probabilities are then used to select 

important subsets of SNPs. An interesting aspect of the analysis performed by Szefer et al. 

(2017) is that their procedure is applied to an ADNI-1 training sample to obtain subsets of 

important SNPs, and the authors are then able to validate many of these priority SNPs using 

a validation set from ADNIGO/2.

An alternative model for longitudinal imaging genetics data has been proposed recently by 

Lu et al. (2017). The proposed model extends the Bayesian low rank model of Zhu et al. 

(2014) to the longitudinal setting. Unlike the two-stage longitudinal analysis of Szefer et al. 

(2017), the model of Lu et al. (2017) links the time-varying neuroimaging data directly to 

the genetic markers in a single model that includes the data from all ROIs. Moreover, the 

proposed model allows for gene-age interactions so that the genetic effects on ROI volumes 

can vary across time.

Letting yℓj(t) denote the longitudinal imaging measure obtained from subject ℓ at ROI j and 

time t, the model takes the form

yℓ j(t) = Xℓ
T β j + μ j(t) + wℓ(t)Tγk + zℓ(t)Tbℓ j + ϵℓ j(t), ℓ = 1, … , n; j = 1, … c,

where Xℓ contains the genetic markers; wℓ(t) is a vector of time-varying covariates that may 

include interactions between genetic markers and time; μj(t) is an overall temporal trend for 

the jth ROI; and bℓj is a vector of subject specific Gaussian random effects for ROI j 
corresponding to covariates zℓ(t). Lu et al. (2017) represent the functions μj(t) using 

penalized-splines, and as in Zhu et al. (2014) a low rank approximation is used to 

approximate the regression coefficient matrix. The errors ϵℓj(t) are represented through a 

sparse factor model
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ϵℓ j(t) = Ληℓ(t) + ξℓ(t)

with priors similar to those adopted in Zhu et al. (2014), including a multiplicative gamma 

process prior for Λ. A Gibbs sampling algorithm is used to implement Bayesian inference.

Overall, methods for longitudinal imaging genetics studies are just in their infancy, with very 

few published papers developing statistical methods to date. We believe there is significant 

scope for new work in this sub-area. Regarding the methods discussed here, a primary 

difference in the work of Lu et al. (2017) and that proposed by Szefer et al. (2017) is that the 

regression model on genetic markers in the latter case is built on estimated rates of change of 

the ROI volumes; whereas, Lu et al. (2017) link the genetic data directly to the mean of the 

ROI volumes. Both methods provide useful and complementary techniques for analyzing 

longitudinal imaging genetics data.

5. EXAMPLE APPLICATION

We provide an example application examining an imaging genetics dataset obtained from 

the ADNI-1 database. The analysis presented here is considered in greater detail in 

Greenlaw et al. (2017); however, our objective in this case is simply to provide the reader 

with a simple example illustrating the use of some of the methods discussed in our review.

The dataset includes both genetic and structural MRI data, the latter leading to the 56 

imaging phenotypes presented in Table 1. The data are available for n = 632 subjects (179 

cognitively normal, 144 Alzheimer’s, 309 mild cognitive impairment), and among all 

possible SNPs the analysis includes only those SNPs belonging to the top 40 Alzheimer’s 

Disease (AD) candidate genes listed on the AlzGene database as of June 10, 2010. The data 

presented here are queried from the most recent genome build as of December 2014, from 

the ADNI-1 database.

After the quality control and imputation steps have been carried out, the genetic data used 

for this analysis include 486 SNPs arising from 33 genes. These genes along with the 

number of SNPs included in our analysis from each of these genes is depicted in Figure 2. 

The freely available software package PLINK (Purcell et al., 2007) is used for genomic 

quality control. Thresholds used for SNP and subject exclusion are the same as in Wang et 

al. (2012), with the following exceptions. For SNPs, we require a more conservative 

genotyping call rate of at least 95% (Ge et al., 2012). For subjects, we require at least one 

baseline and one follow-up MRI scan and exclude multivariate outliers. Sporadically 

missing genotypes at SNPs in the HapMap3 reference panel (Gibbs et al., 2003) are imputed 

into the data using IMPUTE2 (Howie et al., 2009). Further details of the quality control and 

imputation procedure can be found in Szefer et al. (2017).

The MRI data from the ADNI-1 database are preprocessed using the FreeSurfer V4 software 

which conducts automated parcellation to define volumetric and cortical thickness values 

from the c = 56 brain regions of interest that are detailed in Table 1. Each of the response 

variables are adjusted for age, gender, education, handedness, and baseline total intracranial 
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volume (ICV) based on regression weights from healthy controls and are then scaled and 

centered to have zero-sample-mean and unit-sample-variance.

We fit the Bayesian model of Greenlaw et al. (2017) and also compute the group sparse 

multi-task regression and feature selection estimator of Wang et al. (2012), both of which 

contain 56 × 486 = 27, 216 regression parameters. For the former approach, we select 

potentially important SNPs by evaluating the 95% equal-tail credible interval for each 

regression coefficient and select those SNPs where at least one of the associated credible 

intervals excludes 0. In total there are 45 SNPs and 152 regression coefficients for which this 

occurs. The 45 selected SNPs and the corresponding brain regions at which we see a 

potential association based on the 95% credible intervals are listed in Table 2.

Three SNPs, rs4311 from the ACE gene, rs405509 from the APOE gene, and rs10787010 

from the SORCS1 gene stand out as being potentially associated with the largest number of 

ROIs. The 95% credible intervals for the coefficients relating rs4311 to each of the c = 56 

imaging measures are depicted in Figure 3. Both the Bayesian posterior mean and the 

estimator of Wang et al. (2012) are indicated in the figure.

In the original methodology of Wang et al. (2012) the authors suggest ranking and selecting 

SNPs by constructing a SNP weight based on the point estimate W and a sum of the absolute 

values of the estimated coefficients of each single SNP over all of the tasks. Doing so, the 

top 45 highest ranked SNPs contain 21 of the SNPs chosen using the Bayesian approach of 

Greenlaw et al. (2017) and these 21 SNPs are highlighted in Table 2 with bold font. The 

number 1 ranked (highest priority) SNP using this approach is SNP rs3026841 from gene 

ECE1. In Figure 4 we display the corresponding point estimates for this SNP along with the 

95% credible intervals obtained from the Greenlaw et al. (2017) Bayesian approach, where 

again the credible intervals and point estimates are relating this SNP to each of the c = 56 

imaging measures. Importantly, we note that all 56 of the corresponding 95% credible 
intervals include the value 0.

This result demonstrates the importance of accounting for posterior uncertainty beyond a 

sparse point estimate and illustrates the potential problems that may arise when estimation 

uncertainty is ignored, as in the approach of Wang et al. (2012). The methodology of 

Greenlaw et al. (2017) complements the estimator of Wang et al. (2012) by providing 

uncertainty quantification, and both approaches may be applied together for such analyses.

While we have focussed on uncertainty quantification using credible intervals, the posterior 

distribution can be summarized through posterior probabilities of the form Pr(|Wij| > δ|Data) 

for known critical value δ > 0, or through kernel density estimation of the posterior density 

for certain regression coefficients. In the former case, adjustments for multiplicity can be 

made using Bayesian FDR procedures (Morris et al., 2008).

6. DISCUSSION

Imaging genetics is an emerging discipline that is based on combining two of the most 

important scientific fields where statistical research has made a major impact, genetics and 

neuroimaging. The resulting studies provide a number of big data challenges for statistical 
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analysis. We have reviewed a variety of approaches for the analysis of such data focussing 

on mass univariate and voxel-wise approaches, multivariate approaches, and methods for 

longitudinal studies. Figure 5 summarizes these three approaches from a graphical 

perspective.

One class of methods that we have not discussed in our review is the class of predictive 

methods for imaging genetics. In this setting the dependent variable is a condition or health 

outcome (such as presence of Alzheimer’s disease), and the imaging and genetic data are 

used for disease classification. These methods typically aim at detecting prognostic markers. 

Typically, regularization methods, boosting algorithms and deep learning methods are 

applied to such problems (see e.g., Wang et al. 2012; Zhang et al. 2014). Within a Bayesian 

setting, a predictive model for imaging genetics with application to schizophrenia has been 

developed by Chekouo et al. (2016).

While our review is not an exhaustive review of existing methods for imaging genetics, our 

aim was to provide the reader with a sample of the existing work and a flavour of the 

challenges for data analysis in this area. Indeed, this is a relatively new area in statistics and 

there is much scope for improving the existing methods.

For example, one current avenue of interest is the extension of the methodology developed 

by Greenlaw et al. (2017) to accommodate a more realistic covariance structure for the 

imaging phenotypes. One approach for doing this is through a sparse latent factor model as 

considered in Zhu et al. (2014) and Lu et al. (2017). An alternative approach that we are 

currently investigating is the use of spatial models based on Markov random fields for the 

regression errors. More specifically, for the data considered in Greenlaw et al. (2017), our 

example in Section 5, and described in Table 1, the MRI-based phenotypes will exhibit two 

forms of correlation: (1) spatial correlation between neighbouring ROIs on the same brain 

hemisphere; and (2) correlation between corresponding measures on opposite brain 

hemispheres (e.g., the volume of the left hippocampus will be highly correlated with the 

volume of the right hippocampus).

Considering the model formulation of Greenlaw et al. (2017), we begin by rearranging the 

imaging phenotypes so that they occur in left-right pairs in the vector yℓ ∈ ℝc. Let 

yℓ, i = (yℓ, i
(L), yℓ, i

(R))T be the brain summary measures obtained at the ith ROI for both the left 

and right hemispheres. Then yℓ = (yℓ, 1
T , … , y

ℓ, c
2

T )T is the imaging phenotype for subject ℓ 

with the elements rearranged so that left-right pairs are adjacent. The regression model is 

specified as yℓ = WTxℓ + eℓ where a spatial model for eℓ is based on a proper bivariate 

conditional autoregressive model (Gelfand and Vounatsou, 2013).

We assume A is an adjacency matrix Aij ∈ {0, 1} representing the spatial neighbourhood 

structure of ROIs on each hemisphere, with DA = diag{Ai·, i = 1, … , c/2}. The conditional 

specification for the regression errors is given by
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eℓ, i ∣ {eℓ, j, j ≠ i}, ρ, Σ ∼ BVN( ρ
Ai ⋅

∑
j = 1

c ∕ 2
Aijeℓ, j,

1
Ai ⋅

Σ), i = 1, … , c ∕ 2,

where ρ ∈ [0, 1) characterizes spatial dependence and Σ12 ∕ Σ11Σ22 ∈ [ − 1, 1] characterizes 

the dependence in the phenotypes across opposite hemispheres of the brain.

The first level of the model can then be expressed as

yℓ ∣ W, ρ, Σ ∼ind MVNc(WTxℓ, (DA − ρA)−1 ⊗ Σ), ℓ = 1, … , n

with higher levels of the model including the shrinkage prior for W specified as in Greenlaw 

et al. (2017) with some minor modifications. To clarify, the neighborhood structure and 

resulting adjacency matrix is used in the model to represent spatial dependence between 

phenotypes on the same hemisphere of the brain, while Σ, a 2-by-2 matrix, is used to 

represent the correlation between the same phenotype on opposite hemispheres of the brain. 

For specification of such a model it is convenient to arrange the phenotypes into left-right 

pairs which is why the rearrangement is needed.

With regards to computation for this model, Greenlaw et al. (2017) and their corresponding 

implementation in the R package ‘bgsmtr’ make use of sparse numerical linear algebra 

routines as the full conditional distributions for W have sparse precision matrices under that 

model. This is essential in order for our Gibbs sampling algorithm to be scalable to imaging 

genetics data of even moderately large size. In the proposed spatial model, so long as the 

adjacency matrix A is sparse the model structure still results in sparse precision matrices 

where required for faster computation. This is an advantage of using the Markov random 

field model over some other possible spatial models. The additional parameters ρ ∼ Unif(0, 

1) and Σ ∼ inv-Wishart(S, ν) are easily added to the existing the Gibbs sampling algorithm. 

In addition to the use of Gibbs sampling, we are also developing a mean-field variational 

Bayes algorithm (see e.g., Nathoo et al., 2014) for the same model which should allow for 

greater scalability. We hope to report on results from this new model including a comparison 

of the different algorithms for Bayesian computation in a follow-up paper. The MCMC and 

variational Bayes algorithms for fitting the new spatial model are available in the current 

release of the ‘bgsmtr’ R package.
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Figure 1: 
Selected Imaging Phenotypes: (a) a cortical parcellation; (b) shape features; (c) features 

derived from diffusion tensor imaging; (d) MRI; (e) correlation matrix obtained from 

functional neuroimaging data.
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Figure 2: 
Each of the 33 genes partitioning the 486 SNPs included in the example data analysis of 

Section 5.
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Figure 3: 
The 95% equal-tail credible intervals relating the SNP rs4311 from ACE to each of the c = 

56 imaging phenotypes. Each imaging phenotype is represented on the x-axis with a tick 

mark and these are ordered in the same order as the phenotypes are listed in the rows of 

Table 1, first for the left hemisphere and then followed by the same phenotypes for the right 

hemisphere.
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Figure 4: 
The 95% equal-tail credible intervals relating the SNP rs3026841 from ECE1 to each of the 

c = 56 imaging phenotypes. Each imaging phenotype is represented on the x-axis with a tick 

mark and these are ordered in the same order as the phenotypes are listed in the rows of 

Table 1, first for the left hemisphere and then followed by the same phenotypes for the right 

hemisphere.
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Figure 5: 
The three approaches discussed in the paper summarized from a graphical perspective: (a) 

mass univariate and voxel-wise approaches; (b) multivariate approaches; (c) methods for 

longitudinal imaging genetics studies.
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Table 1:

Imaging phenotypes defined as volumetric or cortical thickness measures of 28 × 2 = 56 ROIs from automated 

Freesurfer parcellations. Each of the phenotypes in the table corresponds to two phenotypes in the data: one 

for the left hemisphere and the other for the right hemisphere.

ID Measurement Region of interest

AmygVol Volume Amygdala

CerebCtx Volume Cerebral cortex

CerebWM Volume Cerebral white matter

HippVol Volume Hippocampus

InfLatVent Volume Inferior lateral ventricle

LatVent Volume Lateral ventricle

EntCtx Thickness Entorhinal cortex

Fusiform Thickness Fusiform gyrus

InfParietal Thickness Inferior parietal gyrus

InfTemporal Thickness Inferior temporal gyrus

MidTemporal Thickness Middle temporal gyrus

Parahipp Thickness Parahippocampal gyrus

PostCing Thickness Posterior cingulate

Postcentral Thickness Postcentral gyrus

Precentral Thickness Precentral gyurs

Precuneus Thickness Precuneus

SupFrontal Thickness Superior frontal gyrus

SupParietal Thickness Superior parietal gyrus

SupTemporal Thickness Superior temporal gyrus

Supramarg Thickness Supramarginal gyrus

TemporalPole Thickness Temporal pole

MeanCing Mean thickness Caudal anterior cingulate, isthmus cingulate, posterior cingulate, rostral anterior cingulate

MeanFront Mean thickness Caudal midfrontal

rostral midfrontal, superior frontal

lateral orbitofrontal, and medial orbitofrontal gyri

frontal pole

MeanLatTemp Mean thickness Inferior temporal, middle temporal

superior temporal gyri

MeanMedTemp Mean thickness Fusiform, parahippocampal, and lingual gyri, temporal pole and transverse temporal pole

MeanPar Mean thickness Inferior and superior parietal gyri

supramarginal gyrus, and precuneus

MeanSensMotor Mean thickness Precentral and postcentral gyri

MeanTemp Mean thickness Inferior temporal, middle temporal, superior temporal, fusiform, parahippocampal, lingual gyri, temporal 
pole, transverse temporal pole
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Table 2:

The 45 SNPs selected from the Bayesian model along with corresponding phenotypes where (L), (R), (L,R) 

denote that the phenotypes are on the left, right, and both hemispheres respectively. SNPs also ranked among 

the top 45 using the Wang et al. (2012) estimate are listed in bold.

SNP Gene Phenotype ID (Hemisphere)

rs4305 ACE LatVent (R)

rs4311 ACE InfParietal (L,R)

MeanPar (L,R), Precuneus (L,R)

SupParietal (L), SupTemporal (L)

CerebCtx (R), MeanFront (R)

MeanSensMotor (R), MeanTemp (R)

Postcentral (R), PostCing (R)

Precentral (R), SupFrontal (R)

SupParietal (R)

rs405509 APOE AmygVol (L), CerebWM (L), Fusiform (L)

HippVol (L), InfParietal (L,R),SupFrontal (L,R), Supramarg (L,R)

InfTemporal (L), MeanFront (L,R), MeanLatTemp (L,R)

MeanMedTemp (L,R), MeanPar (L,R),

MeanSensMotor (L,R), MeanTemp (L,R)

MidTemporal (L,R), Postcentral (L,R), Precuneus (L,R)

SupTemporal (L,R), Precentral (R), SupParietal (R)

rs11191692 CALHM1 EntCtx (L)

rs3811450 CHRNB2 Precuneus (R)

rs9314349 CLU Parahipp (L)

rs2025935 CR1 CerebWM (R), Fusiform (R), InfLatVent (R)

rs11141918 DAPK1 CerebCtx (R)

rs1473180 DAPK1 CerebCtx (L,R) ,EntCtx (L), Fusiform (L)

MeanMedTemp (L), MeanTemp (L), PostCing (L)

rs17399090 DAPK1 MeanCing (R), PostCing (R)

rs3095747 DAPK1 InfLatVent (R)

rs3118846 DAPK1 InfParietal (R)

rs3124237 DAPK1 PostCing (R), Precuneus (R), SupFrontal (R)

rs4878117 DAPK1 MeanSensMotor (R), Postcentral (R)

rs212539 ECE1 PostCing (R)

rs6584307 ENTPD7 Parahipp (L)

rs11601726 GAB2 CerebWM (L), LatVent (L)

rs16924159 IL33 MeanCing (L), PostCing (L), CerebWM (R)

rs928413 IL33 InfLatVent (R)

rs1433099 LDLR CerebCtx.adj (L), Precuneus (L,R)

rs2569537 LDLR CerebWM (L,R)

rs12209631 NEDD9 CerebCtx (L), HippVol (L,R)

rs1475345 NEDD9 Parahipp (L)
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SNP Gene Phenotype ID (Hemisphere)

rs17496723 NEDD9 Supramarg (L)

rs2327389 NEDD9 AmygVol (L)

rs744970 NEDD9 MeanFront (L), SupFrontal (L)

rs7938033 PICALM EntCtx (R), HippVol (R)

rs2756271 PRNP EntCtx (L), HippVol (L,R), InfTemporal (L), Parahipp (L)

rs6107516 PRNP MidTemporal (L,R)

rs1023024 SORCS1 MeanSensMotor (L), Precentral (L)

rs10787010 SORCS1 AmygVol (L), EntCtx (L,R)

MeanFront (L), Fusiform (L)

HippVol (L,R), InfLatVent (L), InfTemporal (L)

MeanMedTemp (L,R), MeanTemp (L)

Precentral (L), TemporalPole (R)

rs10787011 SORCS1 EntCtx (L,R), HippVol(R)

rs12248379 SORCS1 PostCing (R)

rs1269918 SORCS1 CerebCtx (L), CerebWM (L), InfLatVent (L)

rs1556758 SORCS1 SupParietal (L)

rs2149196 SORCS1 MeanSensMotor (L), Postcentral (L,R)

rs2418811 SORCS1 CerebWM (L,R), InfLatVent.adj (L)

rs10502262 SORL1 MeanCing (L), InfTemporal (R), Supramarg (R)

rs1699102 SORL1 MeanMedTemp (R), MeanTemp (R)

rs1699105 SORL1 MeanCing (L), Precuneus (L)

rs4935774 SORL1 CerebWM (L,R)

rs666004 SORL1 InfTemporal (L)

rs1568400 THRA Precentral (L), TemporalPole (R)

rs3744805 THRA MeanSensMotor (R), Postcentral (R), Precentral (R)

rs7219773 TNK1 MeanSensMotor (L), Precentral (L), Postcentral (R)
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