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Abstract

Hardness of Approximation Across Different Models of Computation

By

Seri Khoury

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Shafi Goldwasser, Co-chair

Professor Amir Abboud, Co-chair

A graph is a mathematical construct that models pairwise relations between ob-
jects through nodes (or vertices) and edges (also known as links) that connect
these nodes. Due to the capacity of graphs to encapsulate a wide range of com-
binatorial structures, there has been a vibrant pursuit of developing fast and ef-
ficient graph algorithms to address a broad spectrum of graph-related problems,
including covering and packing problems, clustering problems, distance compu-
tation, and symmetry breaking.

This thesis explores approximation algorithms for graph problems. The first part
is dedicated to distance computation problems, where we present several new
hardness of approximation results across different models of computation, includ-
ing the centralized, distributed, and dynamic models.

The second part focuses on symmetry-breaking problems in Distributed Comput-
ing. Here, we devise efficient approximation algorithms for Maximum Indepen-
dent Set and Maximum Matching in regular graphs, and introduce new hardness
of approximation results for Maximum Independent Set.
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Chapter 1

Introduction

Graph Theory is one of the most studied areas in Computer Science and Math-
ematics, with its roots tracing back to Leonhard Euler’s fascinating work on the
Seven Bridges of Königsberg in 1736 [143]. Over time, graph algorithms have be-
come integral to our daily lives, powering applications such as routing algorithms
(e.g., Google Maps and Waze) [129, 251], internet networks [59, 200], neural net-
works [199, 253], bioinformatics [256, 278], and social network analysis [138, 226].

Traditionally, graph algorithms are designed for the classical centralized com-
putation model, where the graph of interest is provided as input to one computer,
and the goal is to solve a graph problem on that computer while minimizing re-
sources.

In recent decades, the rise of computer networks has necessitated the explo-
ration of new computational paradigms, such as Distributed Computing [213, 235]
and Dynamic Networks [141,177,257]. These models address a wide range of appli-
cations for graph problems, particularly those involving communication systems
and computation in constantly changing environments. For instance, in the dis-
tributed model, the input graph is not available on a centralized computer; rather,
the graph itself acts as a communication network of computers that collabora-
tively solve a graph problem while minimizing communication. In the dynamic
model, the input graph changes over time, and the goal is to maintain an up-to-
date solution with few updates (i.e., without recomputing the entire solution from
scratch).

While each of these models has its unique challenges that guide our problem-
solving strategies within that model, to truly understand the inherent challenges
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in solving graph problems, it is essential to investigate the common challenges
that persist across different models of computation. This motivates the following
question:

What are some of the common challenges in solving graph problems that are shared
across different models of computation?

Understanding the challenges in solving graph problems has been a funda-
mental concern for researchers for decades. The theory of NP-completeness has
provided numerous hardness results that demonstrate what cannot be solved ef-
ficiently (i.e., in polynomial time) in the centralized model [193]. Additionally, the
field of fine-grained complexity has offered insights into why certain problems
do not admit linear or quadratic time algorithms, as well as hardness results for
the dynamic model [12, 250]. For the distributed model, a successful framework
of reductions from communication complexity has been instrumental in yielding
several hardness results [237, 252].

Hardness of Approximation: In many applications, obtaining a satisfactory so-
lution doesn’t require solving the problem exactly; rather, some degree of error is
permissible, and an approximate solution suffices. Therefore, when demonstrat-
ing a challenge in solving a problem by proving a hardness result, we aim for
the hardness result to be robust, in the sense that the provable challenge persists
even when some degree of error is allowed. Achieving robust hardness results,
or hardness of approximation, is one of the most central and challenging goals in
several models of computation (see, for instance, the open questions in [250] and
the discussions in [9, 43]).

Our main goal in this thesis is to understand the challenges in obtaining ap-
proximate solutions to graph problems, particularly those that persist across dif-
ferent models of computation.

Our Contribution: We explore two categories of graph problems: distance com-
putation and symmetry breaking. In the first part, we present several new hard-
ness of approximation results for distance computation problems across various
models of computation, including the centralized, distributed, and dynamic mod-
els. These results rely on a connection between short cycles in graphs and distance
approximation. At a very high level, the absence of short cycles in a graph makes
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it difficult to identify shortcuts hidden among much longer detours. This chal-
lenge persists across the aforementioned models.

The second part turns to symmetry breaking problems in the distributed model.
We demonstrate that, in some cases, approximate versions of these problems en-
able the development of faster algorithms, thereby reducing their time complexity.
Additionally, we present new hardness of approximation results for finding large
independent sets in the distributed model.

In Section 1.2, we discuss the first part of the thesis and elaborate on the con-
nection between short cycles and distance approximation. In Section 1.3, we dis-
cuss the second part of the thesis and elaborate on our results for symmetry break-
ing. In the following subsection, we start by describing our models of interest.

1.1 Models and Basic Notations

Centralized Model: In the classical centralized model, the input graph is pro-
vided to one computer, and is represented by a nested list. In this representation,
there is one master list containing all the nodes of the graph, and each entry in
this master list is itself a list containing all the neighbors of that node. This rep-
resentation results in an input size of Θ(n + m) words of memory, where n is the
number of nodes and m is the number of edges in the graph.1 This differs from the
adjacency matrix representation, where the graph is depicted by an n× n Boolean
matrix that indicates the presence of an edge between each pair of nodes. Observe
that the input size in the adjacency matrix representation is Θ(n2) bits. Therefore,
the nested list representation proves particularly useful and more compact for
sparse graphs where m = o(n2).

Distributed Models: The standard models of distributed graph algorithms are
the LOCAL and CONGEST models [213, 235]. In both models, there is a synchro-
nized communication network of n nodes that can communicate via communi-
cation rounds. In each round, each node can send and receive a message from
each of its neighbors and perform some local computation. The goal is for the
nodes to collaboratively solve a graph problem while minimizing the number of
communication rounds. The difference between the two models is the size of the
messages. In the LOCAL model, the size of the messages is unbounded, allowing

1Here, we assume that each node’s name can be represented by a single word of memory.
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for extensive data exchange. Conversely, in the CONGEST model, the size of each
message is bounded by log n bits, which restricts the amount of information that
can be transmitted in each round.

Dynamic Networks: The dynamic model [141,177,257] is a variation of the cen-
tralized model where the graph can change over time. In each step, either no
changes occur, an edge is added to the graph, or an edge is removed from the
graph. The goal is to maintain an up-to-date solution to a graph problem while
handling each change as efficiently as possible. The time required to handle each
change is often referred to as the update time.

1.2 Part I: On the Role of Short Cycles in Hardness of
Approximation

In this section, we summarize our hardness of approximation results for distance
computation problems. We start with a simple example that illustrates the con-
nection between short cycles and distance approximation in Section 1.2.1. Then,
in Section 1.2.2, we summarize our results for the centralized and dynamic mod-
els, and in Section 1.2.3, we summarize our results for the distributed model.

1.2.1 A Simple Example

A cycle in a graph is a closed loop that starts at a node v, travels along a series of
nodes and edges, and returns to the starting node v without traversing any node
or edge more than once (except for the starting node v which also closes the cycle).

To illustrate the role of short cycles in computing approximate distances, con-
sider the following simple example. Let G be an unweighted, undirected bipartite
graph with sides L and R, that contains a perfect matching between them. That is,
the i-th node ℓi in L is connected to the i-th node ri in R by an edge. Furthermore,
assume that there are some additional edges in the graph, but we don’t have much
information about them.

Now, if we’re interested in the shortest path to get from ℓi to ri, we can simply
use the edge between them, which forms a path of length one. However, suppose
the edge between ℓi and ri is blocked and cannot be used—perhaps the graph G
represents a network of roads, and the direct road from ℓi to ri is closed. In this
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Figure 1.1: On the left, we can replace the edge between ℓi and ri with a zigzag
path of length three. However, if the graph is four-cycle free, as shown on the
right, then the length of any such zigzag path must be at least five. This increase
in path length illustrates the impact of short-cycle freeness on the cost of replacing
shortcut edges.

case, to get from ℓi to ri, we could use a zigzag path such as ℓi → r′ → ℓ′ → ri, if
the corresponding edges are available. In other words, if our preferred direct path
from ℓi to ri is unavailable, we could hope to replace it with a path of length three.
Here, we say that the cost of replacing the direct path ℓi → ri is three.

Unfortunately, in some cases, that cost can be much higher than three. For
instance, if the underlying graph G does not contain four-cycles, then we can’t
hope to replace an edge with a zigzag of length three, as this would imply the
existence of a four-cycle. In this case, the length of the zigzag must be at least five.
In general, since G is a bipartite graph, if the length of the shortest cycle (a.k.a.
the girth of the graph) is at least k > 2 for some even k, then the cost of replacing
an edge must be at least k− 1. For instance, in four-cycle free graphs, the girth is
at least six, and the cost is at least five, as discussed. The higher the length of the
shortest cycle, the larger the cost becomes. See also Figure 1.1 for illustration.

Interestingly, this connection also works in the other direction. Assume that
some edges have been removed from our original graph, and we no longer have
access to the updated graph. If we are interested in determining whether the
edge {ℓi, ri} still exists, we can use a black-box algorithm for computing distances
to find out. Indeed, we can simply ask our algorithm to compute the distance
between ℓi and ri. Moreover, if the girth of the original graph is k, it suffices for
the algorithm to tell us whether the distance between ℓi and ri is less than k− 1.
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If it is, we know that the edge {ℓi, ri} still exists, as otherwise, the existence of
an alternative path of length at most k − 2 would imply the existence of a cycle
of length at most k − 1 in the original graph, which contradicts the fact that the
length of the shortest cycle in the original graph is k.

This is exactly the main idea behind our hardness of approximation results. If
we can show that it is hard to determine whether the edges {ℓi, ri} exist in the
updated graph, we can deduce that computing distances is also hard, even when
some approximation error is permissible.

Obviously, since in our models of computation we have access to the edges of
the graph, determining whether the edges {ℓi, ri} exist isn’t difficult, even if the
graph has been updated. To achieve meaningful hardness results, we extend this
idea and show that distances can recover not only edges, but also other structures
that are hard to identify. Specifically, we show that approximate-distance com-
putation algorithms can be used to recover all the edges that participate in trian-
gles—a problem that is impossible to solve efficiently under popular conjectures
(we elaborate on finding triangles in Section 1.2.2). Additionally, we show that a
fast distributed algorithm for approximating the maximum distance in the graph
(a.k.a. the diameter of the graph) can be used to solve the Set-Disjointness prob-
lem with little communication, which is known to be impossible (we elaborate on
diameter computation in Section 1.2.3). In these reductions, we use the high girth
- high cost idea discussed above to show that by using high girth graphs, we can
obtain improved hardness of approximation results.

We remark that a conceptually similar idea was used by Feigenbaum et al. [146]
to show hardness of diameter approximation in the single-pass streaming model.
Applying the high girth - high cost idea to other computational models requires
substantially different techniques, which we develop in this thesis.

1.2.2 Finding Triangles via Distance Oracles and Friends

In a joint work with Amir Abboud (thesis co-advisor), Karl Bringmann, and Or
Zamir [6], we prove new hardness results for distance computation problems in
the centralized and dynamic models. Our results are described in detail in Chap-
ter 2. Here, we provide a brief overview of the main technique, with a particular
focus on the Approximate Distance Oracles problem. Let us first discuss the prob-
lem and some related work.
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Problem Description: In the Approximate Distance Oracles problem, we are
given a graph in the centralized model, and the goal is to design a data struc-
ture that can preprocess the graph efficiently and then answer distance (i.e., short-
est path) queries between pairs of nodes with approximate accuracy. Ideally, the
preprocessing step should be completed in linear time relative to the number of
nodes and edges, and the response time for each query should be constant or poly-
logarithmic. The answers provided by the oracle do not need to precisely match
the actual distances between the nodes; instead, a constant-multiplicative error is
permissible. This allowable error is also referred to as the stretch of the requested
distances. In this thesis, we explore the possibility of a near-linear preprocessing
time for Approximate Distance Oracles, formally given in the following question.
Recall than m and n denote the number of edges and nodes in the graph, respec-
tively.

Open Question 1.2.1 (Approximate Distance Oracles). Can we preprocess a graph
in m1+o(1) time and answer shortest path queries in mo(1) time with O(1) stretch?

Related Work: This Open Question has been extensively studied (see, for in-
stance, [38, 65, 68, 115, 116, 131, 232, 233, 261, 264, 265] and references within). In
2005, Thorup and Zewick [265] made some progress on resolving this question by
providing a data structure with the following properties. For any constant value
k > 0, the preprocessing step of the data structure runs in m · n1/k time, and the
queries are answered in n1/k time with 2k − 1 stretch. While their solution does
not resolve Open Question 1.2.1, it represents a crucial step toward addressing
this challenge.

Intriguingly, in a subsequent work by Patrascu, Roditty, and Thorup [233],
the authors showed that the upper bound by [265] is optimal for small values of
k < 2. This implies that for any stretch factor smaller than 3, there is no solution
to Approximate Distance Oracles with nearly-linear preprocessing time. How-
ever, Open Question 1.2.1 specifically seeks solutions that achieve an arbitrarily
constant stretch, and the hardness result presented in [233] does not eliminate the
possibility of achieving near-linear preprocessing time for a constant stretch of 3
or greater.

Our Contribution: In this work, we fully resolve Open Question 1.2.1 nega-
tively. Our result is based on the widely recognized 3SUM or APSP conjectures,
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details of which are differed to Chapter 2.

Theorem 1.2.2. (Informal) Let k ⩾ 4 be an integer. Assuming either the 3SUM or APSP
conjectures, there is a positive constant c such that no algorithm can preprocess a graph
in O(m1+ 1

ck ) time and answer shortest path queries in O(m
1
ck ) time with stretch smaller

than k.

Technical Discussion - The Main Idea Behind the Proof of Theorem 1.2.2: We
show that a black-box algorithm for Approximate Distance Oracles can help us
recover triangles and solve the All-Edge Triangle problem.

In the All-Edge Triangle problem, we are given a tripartite graph G with parts
A, B, C and want to detect all edges that are in a triangle a ∈ A, b ∈ B, c ∈ C. It
is well-known that the 3SUM and APSP conjectures imply that there is no o(n2)

time algorithm for the All-Edge Triangle problem, even in sparse graphs with
m = Θ(n3/2) edges [201, 231, 268]. Hence, to prove Theorem 1.2.2, it suffices to
reduce All-Edge Triangle to Approximate Distance Oracles.

The standard reduction would do the following. We define a graph G′ that is
obtained from G by removing the B×C edges. Then, we query for the distance in
G′ for any pair {b, c} ∈ E(G) ∩ B× C that used to be an edge in G. If the distance
is small, namely 2, we conclude that {b, c} is in a triangle in G, because there must
be an a ∈ A that is connected to both b and c; this is the yes-case. Otherwise, if the
distance is larger, namely ⩾ 3, then we conclude that {b, c} is not in any triangle
in G because there is no node a ∈ A that is connected to both b and c; this is the
no-case. Given the quadratic lower bound for the All-Edge Triangle problem we
conclude that no distance oracle with subquadratic preprocessing time and mo(1)

query time can distinguish between distance = 2 and ⩾ 3.
However, to resolve Open Question 1.2.1 negatively, we must amplify the gap

between the distances in the yes-case vs. the no-case. Since the graph G′ is bi-
partite (which is implied by the assumption that G is tripartite) we can readily
observe that the distance in the no-case is actually ⩾ 4, not just ⩾ 3, so the above
construction rules out any (2 − ϵ)-approximate answers in the aforementioned
time bounds.

Unfortunately from a hardness of approximation perspective, it is rather dif-
ficult to argue that the distance in the no-case must be any larger than 4. This
is because for any pair {b, c} the graph G′ is extremely likely to contain a 4-path
that makes one zigzag, b → a → b′ → a′ → c, i.e. after the first step from b to
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a ∈ N(b) ∩ A, it goes back and forth once from a ∈ A to b′ ∈ B and back to a
different node in a′ ∈ A, and only then goes to c. (See Figure 1.2.) This path does
not imply that a′ ∈ N(b) nor that a ∈ N(c) and therefore does not correspond to a
triangle in G. Indeed, it only corresponds to a 5-cycle in G that contains the {b, c}
edge.

This is exactly where the connection to short cycles comes into play: a short cy-
cle allows a path to make a short detour (a zigzag) and prevents us from achieving
a larger gap between the yes- and no-cases. We refer to this challenge as the Short
Cycle Barrier.

In FOCS 2010, Pătraşcu and Roditty [232] devised an ingenious graph-products
technique (conceptually similar to [44]) to push the lower bound to approximation
factors beyond 2. Thinking of their construction in the terminology of triangles,
their idea is to make G′ have k > 3 layers by adding k− 2 layers between B and
C that together represent A. In the yes-case where {b, c} is in a triangle, the dis-
tance is now k − 1, but the main advantage is that in the no-case they manage
to force any path from b to c to make a zigzag in each of the k − 1 layers, mak-
ing the distance 3k− 2. For large enough k this shows that distance oracles with
(3− ϵ)-approximations cannot meet the aforementioned time bounds. In the orig-
inal paper [232], they could only make this approach work for small k and could
only prove inapproximability for factors 22

3 − ϵ, but in a follow-up paper with
Thorup [233] the full potential of this approach was realized, and they established
a lower bound for any (3− ϵ)-approximations. Alas, it is clear that 3 is the limit
of this approach. (We remark that this is a barrier even in weighted graphs.2)

The natural and more promising approach for circumventing this barrier is
to somehow ensure that there are no ⩽ k-cycles in the original graph G. Then,
any effective zigzag must be long, and even the natural two-layered construc-
tion would give us a lower bound of Ω(k). Indeed, the distance for a pair b, c
would be = 2 if the pair is in a triangle, versus ⩾ k − 1 otherwise. This would
be reminiscent of the use of the girth conjecture in lower bounds for multiplicative
spanners [31,238], whereas the aforementioned graph-products technique is rem-
iniscent of lower bounds for additive spanners [3, 4, 273].3 All we have to do is to

2The case of directed graphs is different however. For some of these problems even deciding if
the distance is finite has strong lower bounds. The reason is that the directed edges can prevent
zigzags.

3The Girth Conjecture and the techniques for additive spanners were already used, of course,
for lower bounds against distance oracles as well. However, such lower bounds (and any
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Figure 1.2: If {b, c} belongs to a triangle in G, then the distance between b, c in G′

is 2. If {b, c} does not belong to a triangle in G, then the distance between b, c in G′

can be as small as 4. This corresponds to a 5-cycle in G.

prove this gap amplification result for All-Edge Triangle, amplifying the no-case
from triangle-free to k′-cycle free, for all 4 ⩽ k′ ⩽ k (without unintentionally re-
moving a triangle in the yes-case). This is the main idea behind our proof. We
show that triangle finding doesn’t become easy in short cycle-free graphs, which
allows us to prove Theorem 1.2.2.

Our hardness of approximation result for distance oracles extends to dynamic
shortest paths, girth approximation, and cycles listing.

Follow-Up Work: In two follow-up works by Abboud, Bringmann, and Fis-
cher [5], and Jin and Xu [189], the authors optimize our short-cycle removal tech-
nique and get better lower bounds on the preprocessing time for Approximate
Distance Oracles. Specifically, they show that instead of showing that triangle
finding doesn’t become easy in short-cycle free graphs, they show that 3SUM
doesn’t become easy even when the input doesn’t contain some specific addi-
tive structure. Interestingly, without this additive structure, the reduction from
3SUM to triangle finding [231] leaves the graph without many short cycles to be-
gin with. This finding helps the authors of [5,189] improve our bounds and get the
complexity of Approximate Distance Oracles closer to the known upper bounds.

information-theoretic arguments) cannot prove lower bounds higher than m; rather, they are in-
teresting for understanding how much dense graphs can be compressed. Thus, the similarity can
only be in spirit.
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1.2.3 Hardness of Approximation for Distributed Diameter

In this section, we briefly summarize our results for the hardness of approxima-
tion of the diameter in the distributed CONGEST model. These results were pub-
lished in a paper co-authored with Ofer Grossman and Ami Paz [170]. We present
the full details of these results in Chapter 3.

Problem Description and Related Work: The diameter D of a graph is the maxi-
mum distance between any two nodes in it, which is one of the most fundamental
parameters in Graph Theory. In Distributed Computing, the diameter is of utmost
importance, as it captures the minimal number of rounds needed for a message to
traverse all the nodes in the network. The complexity of computing the exact or
approximate value of the diameter has been extensively studied in the distributed
setting [7, 100, 101, 155, 178, 179, 181, 184, 207, 236].

In the CONGEST model, the complexity of computing the exact diameter is
Θ(n/ log n+ D) rounds [155,184]. On the other hand, there is a folklore algorithm
yielding a 1/2-approximation for the diameter in O(D) rounds: running a BFS
(from an arbitrary node) and returning its depth. Moreover, a simple indistigu-
ishability argument shows that no constant-approximation factor is achievable in
o(D) rounds.

This raises the following natural question: For values of 1
2 < α < 1, how hard is

it to α-approximate the diameter of a graph? Conversely, what is the best approxi-
mation factor α that can be achieved in sub-linear time with respect to the number
of nodes, and what approximation factors are achievable in sub-polynomial time?

Open Question 1.2.3. For which values of α does there exist a sub-polynomial
time α-approximation algorithm for the diameter in the CONGEST model?

Open Question 1.2.4. For which values of α does there exist a truly sub-linear
time α-approximation algorithm for the diameter in the CONGEST model?

Our Contribution: We make progress on both these questions. For the first, we
show that α must be at most 6/11. For the second, we show that α must be at most
3/5. The previous best known upper bound on α, for both cases, was 2/3 [7]. All
the results that are presented in this work, as well as the ones we compare with,
are for unweighted and undirected graphs.
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Our proofs use the technique of reductions from the Set-Disjointness problem
in Communication Complexity to the CONGEST model. At a high level, we show
that the Set-Disjointness problem can be embedded into hard instances for diame-
ter computation. These hard instances are short cycle-free, allowing us to leverage
a concept similar to the zigzag idea previously described in Sections 1.2.1 and 1.2.2
to obtain improved hardness of approximation.

1.3 Part II: Distributed Symmetry Breaking

In this section, we briefly summarize our results for distributed symmetry break-
ing. We start with our results for Maximum Independent Set in Section 1.3.1.
Then, in Section 1.3.2, we discuss our results for Maximum Matching. Our results
for Maximum Independent Set are described in full detail in Chapters 4 and 6,
and our results for Maximum Matching are detailed in Chapter 5.

1.3.1 Approximate Maximum Independent Set

One of the most fundamental problems in distributed graph algorithms is the max-
imal independent set problem (MIS), where given an input graph, we need to find
a maximal subset of the nodes such that no two nodes in the subset are adjacent.
This problem has received a great amount of attention in various distributed mod-
els (see for example [21, 39, 48, 61–63, 157–159, 204, 209, 213, 216, 225, 228, 229, 247]).
It is considered one of the four classic problems of local distributed algorithms,
along with edge coloring, vertex coloring, and maximal matching [60, 148, 228].

Independent sets are critical in both practical and theoretical aspects of com-
puter science, particularly large independent sets. Applications span various fields
including economics [79], computational biology [94, 269], coding theory [81, 95],
and experimental design [46]. In unweighted graphs, a maximum independent
set is an independent set of the largest size. In weighted graphs, a maximum-
weight independent set (MaxIS) is an independent set with the maximum total
weight.

In an unweighted graph, any MIS constitutes a ∆-approximation for MaxIS,
where ∆ is the maximum degree of a node in the graph. This implies that MIS
is no easier than ∆-approximation for MaxIS in unweighted graphs, regardless of
the computational model.
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This raises a natural question of whether ∆-approximation for MaxIS is easier
than MIS. In the classical sequential setting, finding an MIS has the same com-
plexity as finding a ∆-approximation for MaxIS (even in weighted graphs) as both
problems admit simple linear-time greedy algorithms.

Our Contribution: In collaboration with Ken-ichi Kawarabayashi, Aaron Schild,
and Gregory Schwartzman [197], we show that in the distributed setting, find-
ing a (1 + ϵ)∆-approximation for MaxIS is exponentially easier than solving MIS.
Specifically, we have developed an algorithm that takes O(poly log log n) rounds
in the CONGEST model, applicable even to weighted graphs. This running time is
impossible for MIS, given the Ω(

√
log n/ log log n) lower bound by Kuhn, Mosci-

broda, and Wattenhofer [204].

Faster Algorithm for Sparse Graphs: Moreover, we show that if the degree of
the graph is less than n/ log n, then finding a (1 + ϵ)∆-approximation for MaxIS
requires only O(1/ϵ) rounds. This results relies on a novel martingales-based
analysis of the classical algorithm by Luby [216]. This analytical approach is also
integral to the results for Maximum Matching discussed in the subsequent section.

Impossibility Result for Dense Graphs: Finally, we show that the fast running
time for sparse graphs cannot be achieved in dense ones. Specifically, we show
that any algorithm for finding an O(∆)-approximation in high-degree graphs must
spend at least Ω(log∗ n) rounds.

Impossibility Results for Constant-Approximation: Finally, in a joint work with
Yuval Efron and Ofer Grossman [139], we show linear and quadratic lower bounds
for≈ 2 and≈ 4/3-approximation to Maximum Independent Set in the CONGEST
model. We elaborate of these results in Chapter 6.

1.3.2 Approximate Matching in Regular Graphs

As discussed in the previous subsection, we show that approximate MaxIS can be
solved much more easily than MIS in distributed environments. This raises the
question of whether a similar advantage exists for matching problems. A match-
ing in a graph is a set of edges where no two edges share a common endpoint. A
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maximal matching is a matching that cannot be extended by adding more edges,
whereas a maximum matching is a matching of the largest possible size.

Our Contribution: In a joint work with Manish Purohit, Aaron Schild, and Joshua
Wang [198], we found that in regular graphs, it is possible to find a (1 + ϵ)-
approximation to Maximum Matching within poly(1/ϵ) rounds in the CONGEST
model. Notably, this runtime is independent of the number of nodes n. Such ef-
ficiency is unachievable for Maximal Matching, even in regular graphs, due to a
lower bound of min{log log n, ∆} by Balliu et al. [48].

Furthermore, we show that in sufficiently dense regular graphs, where the
degree is poly(1/ϵ), a (1+ ϵ)-approximation to Maximum Matching can be found
in only O(log(1/ϵ)) rounds.

Interestingly, by a simple argument, we show this runtime cannot be general-
ized to sparse regular graphs. We prove that any algorithm must take Ω(1/(ϵ∆))
rounds in such graphs, where ∆ is the degree of the graph. These results under-
scores the variability in algorithmic efficiency dependent on graph density and
structure.

Our main technical contribution is a new lemma, which we refer to as the
Recursive Regularity Lemma. In this lemma, we show that running Luby’s algo-
rithm on the the line graph of a sufficiently dense ∆-regular graph and removing
the matched edges together with their incident nodes results in a (∆/2)-regular
graph.
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Part I

On The Role of Short Cycles in
Hardness of Approximation



16

Chapter 2

Hardness of Approximation in P via
Short Cycle Removal

This chapter is adapted from [6], a joint work with Amir Abboud (thesis co-
advisor), Karl Bringmann, and Or Zamir. In this work, we present several new
hardness of approximation results in the centralized and dynamic models through
reductions from Triangle Finding.

Triangle finding is at the base of many conditional lower bounds in the central-
ized and dynamic models, and the existence of many 4- or 5-cycles in a worst-case
instance has been an obstacle towards resolving major open problems.

We present a new technique for efficiently removing almost all short cycles in
a graph without unintentionally removing its triangles. Consequently, triangle
finding problems do not become easy even in almost k-cycle-free graphs, for any
constant k ⩾ 4. This finding allows us to make progress on major open problems
in the field of fine-grained complexity, including Approximate Distance Oracles,
Dynamic Shortest Paths, Girth Approximation, and Cycle Listing.

2.1 Introduction

One of the most central and challenging goals in fine-grained complexity is to
prove hardness of approximation results for the many fundamental problems that
we already know are hard to compute exactly. With the exception of few results
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that follow from simple gadget reductions,1 understanding the time vs. approx-
imation trade-off seems to require specialized fine-grained gap amplification tech-
niques. As we know from the quest for NP-hardness of approximation that started
in the early 90’s, such techniques are not easy to come by, and the fine-grained
restrictions on the reductions can only make matters worse.

Two notable success stories, highlighted in a recent survey by Rubinstein and
Vassilevska Williams [250], are the Distributed PCP framework [11] based on al-
gebraic error-correcting codes that has lead to strong results for many pair-finding
type of problems [1, 111–113, 195, 196, 249], and a graph-products technique [44]
that has lead to impressive inapproximability results for computing the diame-
ter of a graph [83, 84, 125, 126, 128, 210]. Nevertheless, we are still far away from
satisfactory results for many problems (see the open questions in [11, 250]). Even
distance computations in graphs, an extensively studied subject in fine-grained com-
plexity, exhibits many huge gaps.

As a case in point, consider the open questions below for three of the most
basic problems in the area, each of them with a long list of upper bounds span-
ning several decades: distance oracles [38,65,68,115,116,131,232,233,261,264,265],
dynamic shortest paths [67, 74, 75, 108, 130, 153, 175, 176, 246, 258], and shortest cycle
(girth) [123, 133, 186, 190, 212, 243].

Open Question 1.2.1 (Approximate Distance Oracles). Can we preprocess a graph
in m1+o(1) time and answer shortest path queries in mo(1) time with O(1) stretch?

No known constant-approximation algorithm can achieve the desirable time
bounds in the open question. The above references take m1+Θ(1/k) preprocess-
ing time to answer queries with a k-approximation in mo(1) time. Meanwhile,
the best conditional lower bound by Pătraşcu, Roditty, and Thorup [233] only
rules out a (3− ε)-approximation with such time bounds under a set-intersection
conjecture.2 Existing inapproximability results higher than the 3− ε barrier are ei-
ther information-theoretic incompressibility arguments [86,219,265] and therefore

1Similar to saying that the NP-hardness of 3-coloring implies a 4/3− ε-hardness of approxi-
mation for the chromatic number.

2Their conjecture and hardness result apply even for preprocessing algorithms with m1+o(1)

space (and unbounded time), but higher lower bounds are not known even when restricting the
time complexity.
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only rule out o(m) space bounds, or in the cell-probe model [261] and therefore
only apply for query times up to log n.3

Open Question 2.1.1 (Dynamic Shortest Paths). Can we preprocess a graph in
O(mn) time, then support edge-updates in mo(1) amortized time, and answer
shortest path queries in mo(1) time with an O(1)-approximation?

Again, no known constant factor approximation meets these desirable require-
ments on the update and query times. It is known how to achieve update and
query time O(m1/k) with approximation factor O(k) in the partially dynamic (dele-
tions only) case [108] and approximation factor (log n)O(k) in the fully dynamic
case [153]. The only conditional lower bounds are for (2− ε)-approximation al-
gorithms and they follow directly from the lower bounds for the exact setting [12,
176, 245], where it is shown that distinguishing distance 2 from 4 is hard.4

Open Question 2.1.2 (Girth). Can we return an O(1)-approximation to the girth
(i.e. the length of the shortest cycle) in m1+o(1) time?

The best known approximation with m1+o(1) running time is super-constant;
very recently, Kadaria et al. [190] obtained an O(k)-approximation in O(m1+1/k)

time. A lower bound for (4/3− ε)-approximation follows from assuming hard-
ness of triangle finding, as deciding if a graph has a triangle is equivalent to dis-
tinguishing between girth 3 vs 4. No better lower bound is known.

Trying to answer the above questions negatively by establishing a lower bound
leads to a common barrier, known as the short cycle barrier, discussed in Sec-
tion 1.2.2. Overcoming this barrier is related to Open Question 5 in the distributed
PCP paper [11], which asks for gap amplification techniques based on conjectures
other than SETH. This is because the exact versions of our distance computation
problems are not SETH-hard; their hardness arises from reductions from (detect-
ing or) listing triangles in a graph—a problem that is hard under the 3SUM or APSP
conjectures, but not under SETH. If the hard instances for triangle finding include

3The latter is due to the well-known barrier of proving higher unconditional lower bounds
for any problem (see [232, 233]). To prove inapproximability even with the more satisfying mo(1)

restriction on the query time, we seem to need the conditional lower bounds approach of fine-
grained complexity.

4The lower bounds hold even against much higher O(n1−ε) update and query times, but in-
approximability results with higher multiplicative factors are not known even if we demand mo(1)

update and query times.
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short cycle-free graphs, it would imply a negative answer to the open questions
above. Hence, understanding these questions boils down to the following open
question.

Open Question 2.1.3 (Main Open Question). Can we prove hardness for finding
a triangle in a 4-cycle free graph? What if it is k-cycle free for all 4 ⩽ k ⩽ O(1)?

Any progress on Question 2.1.3 carries over to progress on the aforementioned
three open questions, by standard reductions. But it is far from clear why such a
gap amplification should be possible. The needle-in-a-haystack flavor (and in-
tuitive hardness) of triangle finding stems from the possibility of a triangle hiding
amidst plenty of 4- or 5-cycles. In a 4-cycle free graph no two nodes can have more
than one common neighbor; doesn’t that restrict the search space by too much?5

Clearly, we do not expect the triangle finding problem to remain equally hard in
k-cycle-free graphs as in general graphs, already because k-cycle-free graphs for a
large even k are very sparse. Moreover, one can apply a standard reduction, e.g.
the one to distance oracles sketched above, and then use an existing upper bound
(e.g. [233]) to find a triangle in m1+O(1/k) time. Therefore, the main open question
is whether or not the problem becomes very easy: Can we find a triangle in a 4-
cycle free graph in linear time? This contemplation touches upon a well-known
hole in our understanding of graph problems. Indeed, by a simple reduction, even
this latter most restricted form of Question 2.1.3 is at least as hard as resolving one
of the most infamous open questions in fine-grained complexity:

Open Question 2.1.4. Can we determine if a graph contains a 4-cycle in m1+o(1)

time?

In 1994, Yuster and Zwick [276] put forth the conjecture that one cannot de-
tect a 4-cycle in a graph in subquadratic time. The longstanding upper bound is
O(m4/3) via a high-degree low-degree argument [30]. The running time can also
be bounded by O(n2) because when m ⩾ 200 · n1.5 we can simply output “yes”:
by the Bondy-Simonovitz Theorem [82], a graph with such density must contain
a 4-cycle. Frustratingly, to this date, the field of fine-grained complexity has not

5Such high-girth assumptions can indeed reduce the complexity of some problems from
almost-quadratic to almost-linear. In particular, in the Orthogonal Vectors problem with dimen-
sion d = no(1) (at the core of the Diameter lower bounds, and many others), if no two vectors can
have two common coordinates that are non-zero, there is an O(nd2) algorithm.
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managed to show any hardness for this problem. “What hope do we have to under-
stand more complex problems if we cannot settle the complexity of this simple one, even
conditionally?”6

We give answers to all of the above questions, some full and some partial,
based on fine-grained complexity assumptions. It turns out that Triangle (detec-
tion or listing) requires super-linear time even when the graph has very few short
cycles.

2.1.1 First Result: Removing Most k-Cycles

Our first main result is a fine-grained self-reduction for Triangle from worst-case√
n-degree graphs to graphs with few k′-cycles for all 4 ⩽ k′ ⩽ k. For concreteness,

consider the All-Edge version where we want to report for each of the m = O(n1.5)

edges in the graph whether it is in a triangle. This problem is known to require
n2−o(1) time, under the 3-SUM Conjecture [201, 231] or under the APSP Conjec-
ture [268], and this holds even for graphs of maximum degree

√
n. Thus it is a

very plausible conjecture that n2−o(1) is required. (See Theorem 2.4.1 and the dis-
cussion in Section 2.7.) A worst-case input graph to this problem might have up
to nk/2+1/2 k-cycles. Given such a graph, for a sufficiently small constant α > 0
depending on k, the following theorem constructs many subgraphs such that: (1)
solving All-Edge-Triangle on all of these subgraphs suffices to solve the origi-
nal problem, (2) the total number of edges in all these subgraphs is subquadratic
n2−Ω(1), and (3) the total number of k-cycles in all these subgraphs is subquadratic
n2−Ω(1). The latter implies that a linear-time algorithm for All-Edge-Triangle in
graphs with few short cycles implies a subquadratic algorithm for the starting
problem and refutes the popular conjectures.

Theorem 2.1.5 (Removing Most k-Cycles). For any choice of constants k ⩾ 4, α ∈
(0, 1

2), and ε ∈ (0, 3−ω
4 ) the following holds. Given a graph G with n vertices and

maximum degree at most
√

n, there is a randomized algorithm, running in time O(n2−ε),
that returns a subset of the edges E′ ⊆ E(G) and a collection of s = n3/2−3α subgraphs
G1, . . . , Gs ⊆ G such that:

• Every edge e ∈ E′ participates in a triangle of G.
6This is a quote from the survey by Rubinstein and Vassilevska Williams [250] where it is

referring to the approximability of the graph diameter problem. We find it no less poignant when
considering the 4-cycle problem.
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• If an edge e ∈ E(G) participates in a triangle of G, then it is either in E′ or it
participates in a triangle in at least one subgraph Gi.

• With high probability, each Gi has O(n1/2+α) vertices and maximum degree O(nα).

• For every i, the expected total number of k′-cycles of sizes 4 ⩽ k′ ⩽ k in Gi is at
most O(n

ω−1
4 +kα+ε).

This result achieves a weaker statement than that asked by Question 2.1.3 be-
cause it does not remove all short cycles. Still, it is sufficient for fully resolving
Questions 1.2.1 and 2.1.1 above. Intuitively, by applying the standard reductions
(as described above), each of the few remaining short cycles might result in a false
positive: a pair {b, c} that has short distance even though it is not in a triangle.
But since the number of such cycles is small (and the degrees in the Gi graphs are
small), they can all be filtered in a post-processing stage in subquadratic time.

Before giving the inapproximabilty results, let us briefly explain why the ma-
trix multiplication exponent 2 ⩽ ω < 2.37286 [19] appears in our statements.
Perhaps counter-intuitively, our lower bounds get higher the closer ω gets to 2.
Roughly speaking, this is because our results follow from reductions that em-
ploy several procedures, including fast matrix multiplication, to extract these sub-
graphs with few short cycles from a given graph. In any case, our results are new
and meaningful for any 2 ⩽ ω < 2.37286 (or even any 2 ⩽ ω < 3); the only
difference is in the constants.

Applications Our first corollary improves the≈ 3 hardness of Pătraşcu, Roditty,
and Thorup [233] all the way up to ω(1), showing that O(k)-approximation with
O(m1+1/k) preprocessing is indeed the right tradeoff for distance oracles with
O(m1/k) query time. Our lower bound is comparable to that of Sommer, Verbin,
and Yu [261] in the cell-probe model, except that we allow much higher query
time: mΩ(1) vs. their O(1). Moreover, our lower bound applies to the easier offline
version of the problem where all the queries are given in advance; previous lower
bounds [232, 233, 261] do not apply to this restricted setting.7 If ω = 2 our lower
bound becomes m1+ 1

4k−2−o(1) time for a (k− δ)-approximation; with the current ω

it is Ω(m1+ 1
6.3776k−4.3777 ).

7In the stronger models that these papers consider, where we measure space/probes rather
than time, this offline problem becomes trivially easy.
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Corollary 2.1.6 (Hardness of Approximation for Offline Distance Oracles). Let
k ⩾ 4 be an integer, and let ε, δ > 0. Define c = 4

3−ω and d = 2ω−2
3−ω . Assuming

either the 3-SUM Conjecture or the APSP Conjecture, no algorithm can return a (k− δ)-
approximation to the distance between m pairs of nodes in a simple graph with m edges in
time O(m1+ 1

ck−d−ε). Consequently, there is no (k− δ)-approximate distance oracle with
O(m1+ 1

ck−d−ε) preprocessing and O(m
1

ck−d−ε) query time.

The Offline Distance Oracle problem in the above corollary is at the core of the
dynamic shortest paths problem as well. By a straightforward reduction it im-
plies that Chechik’s decremental APSP k-approximation algorithm in total time
O(m1+1/αk) is tight up to the constant α. For fully dynamic algorithms, we can
strengthen the result further by ruling out algorithms that start with a cubic-time
preprocessing phase (which is natural as it gives the algorithm enough time to pre-
compute all the distances). However, in this fully dynamic case, the best known
upper bound only achieves a (log n)O(k)-approximation in O(m1+1/k) time.

Corollary 2.1.7 (Hardness of Approximation for Dynamic APSP). Let k ⩾ 4 be an
integer, and let ε, δ > 0, c = 4

3−ω and d = 2ω−2
3−ω . Assuming either the 3-SUM Conjecture

or the APSP Conjecture:

• No algorithm can maintain a simple graph through a sequence of edge-deletion up-
dates in a total of O(m1+ 1

ck−d−ε) time, while answering distance queries between a
given pair of nodes with a (k− δ)-approximation in O(m

1
ck−d−ε) time.

• No algorithm can preprocess a simple graph in O(n3) time and then support (fully
dynamic) updates and queries in O(m

1
ck−d−ε) time, where an answer to a query is a

(k− δ)-approximation to the distance between a given pair of nodes.

We next go back to the 4-Cycle problem. A direct corollary of our theorem
is that the All-Edge version has a super-linear lower bound, finally extending the
m3/2 lower bound for triangle enumeration from Pătraşcu’s seminal paper [231] to
a hardness result for 4-cycle enumeration.8 If ω = 2 the lower bound is m5/4−o(1),
and with the current ω it is Ω(m1.1927).

8Pătraşcu’s lower bound is presented as a lower bound for the listing problem, rather than
enumeration, where we are required to list m triangles (and the lower bound is m4/3−o(1)). Our
lower bound also extends to this version, but the exponent is smaller.
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Corollary 2.1.8 (Hardness for k-Cycle Enumeration). Let k ⩾ 3 be an integer, and let
ε > 0. Assuming either the 3-SUM Conjecture or the APSP Conjecture, no algorithm

can process an m-edge graph in O(m1+ 3−ω
2(4−ω)

−ε
) time and then enumerate k-cycles with

mo(1) delay.

Unlike our two previous corollaries, the lower bound in Corollary 2.1.8 does
not get weaker with k. This is because for all k > 4 we can simply apply The-
orem 2.1.5 with k = 4 and then use known simple gadget reductions that show
that k-cycle (detection or enumeration) for any k is at least as hard as either the
k = 3 or k = 4 case (see [122]).9 Either way, we separate k-cycle from the class
DELAYClin of problems solvable with linear time preprocessing and constant de-
lay [137]. This class has received significant attention in recent years from the
enumeration algorithms community (see e.g. [96,97,152,255]). Our result is some-
what surprising because enumerating all cycles (without restricting k) is in the
class DELAYClin [78].

Theorem 2.1.5 does not fully resolve the Main Open Question 2.1.3, because it
does leave nΩ(1) short cycles in the graph. This is not an issue for all of the ap-
plications above because the application problem returns multiple answers (that
can be filtered afterwards). Unfortunately, this cannot be done for problems with
a single output, such as our most basic 4-Cycle detection problem. Nonetheless,
with a bit more work we can actually get rid of all k-cycles in the k = 4 case, as we
discuss next.

2.1.2 Second Result: Removing all 4-Cycles

Our most technical result is a strengthening of Theorem 2.1.5, giving a reduction
to graphs that are completely 4-cycle-free. The following theorem is analogous to
Theorem 2.1.5 and should be thought of in the same way; as a self-reduction from
Triangle. The main two differences are that it only works for k = 4, but it achieves
the much stronger property of 4-cycle freeness in the subgraphs it produces.

Theorem 2.1.9. For any choice of constant α ∈ (0, 3−ω
8 ) and ε ∈ (0, 3−ω

4 − 2α) the
following holds. Given a graph G with n vertices and maximum degree at most

√
n, there

9The reduction simply subdivides some of the edges. Note that this trick is not useful in the
hardness of approximation context because subdividing edges increases the distances even in the
yes-case.
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is a randomized algorithm, running in time O(n2−ε), that returns a subset of the edges
E′ ⊆ E(G) and a collection of s = n3/2−3α subgraphs G1, . . . , Gs ⊆ G such that:

• Every edge e ∈ E′ participates in a triangle of G.

• If an edge e ∈ E(G) participates in a triangle of G, then it is either in E′ or it
participates in a triangle in at least one subgraph Gi.

• With high probability, each Gi has O(n1/2+α) vertices and maximum degree O(nα).

• With probability larger than 0.99, no subgraph Gi contains a 4-cycle.

This result fully resolves the main Open Question 2.1.3 in the k = 4 case. Con-
sequently, we improve the lower bound for girth approximation in m1+o(1) time
from 4/3− δ to 5/3− δ; thus making the first non-trivial step towards Open Ques-
tion 2.1.2. And most importantly, we establish the first conditional lower bound
for 4-Cycle detection, resolving Open Question 2.1.4. If ω = 2 the lower bound
is m7/6−o(1), and with the current ω it is Ω(m1.1194). Note, however, that Corol-
lary 2.1.10 uses a less standard conjecture compared to our previous results.

Corollary 2.1.10 (Hardness for Triangle in 4-Cycle-Free Graphs). Assuming that
triangle detection in graphs with maximum degree at most

√
n requires n2−o(1) time, no

algorithm can solve any of the following problems in O(m1+ 3−ω
2(5−ω)

−ε
) time, for any ε > 0:

• Decide if an m-edge graph has a 4-cycle.

• Decide if an m-edge 4-cycle-free graph has a triangle.

• Compute a (5/3− δ)-approximation to the girth of an m-edge graph, for any δ > 0.

As mentioned already, folklore gadget reductions show that either Triangle or
4-Cycle can be reduced to a single instance of k-Cycle detection on the same num-
ber of edges, for any k ⩾ 3 (we add a proof of this statement in Appendix 2.8.1,
similar reductions appear, for example, in [122]). Thus, we establish a super-linear
Ω(m1.1194) lower bound for k-Cycle detection for all constant k ⩾ 3.

Breaking the hardness assumption at the base of our conditional lower bound
would be a major breakthrough. The longstanding upper bound for triangle de-
tection is O(min{m2ω/(ω+1), nω}) [30]. Even if an optimal matrix multiplication
algorithm exists (ω = 2) no algorithm breaks the quadratic barrier when m = n1.5.
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This continues to be the case in the natural setting where the maximum degree
(rather than the average degree) is

√
n. Note that we cannot base these lower

bounds on 3SUM or APSP, as we did in the results above for problems with mul-
tiple outputs, until we know how to base the hardness of Triangle detection itself
on these assumptions. See Section 2.7 for further discussion.

2.2 Technical Overview

The goal of this section is to give an overview of the main new ideas that go into
our short cycle removal technique. As discussed in the introduction, the technical
barriers are most prominently apparent in the challenge of proving a hardness re-
sult for 4-Cycle (detection). For this reason, we choose to focus this section on this
result, giving a tour of the reduction from Triangle (detection) to 4-Cycle. All of
our conceptually new ideas go into this result and can be appreciated more clearly
in this simple context. Afterwards, in Section 2.2.2 we point out how these ideas
lead to Theorems 2.1.5 and 2.1.9. The additional required ideas are either standard
tricks (e.g. for the applications) or technical but unsurprising generalizations (e.g.
for the k > 4 case); we briefly mention them in Section 2.2.2. While this presen-
tation of results goes in the reverse order to that of the introduction, it has the
advantage of presenting all important ideas while the reader needs to only think
about the following deceptively simple goal: solve Triangle in

√
n-degree graphs in

subquadratic time, given a linear-time algorithm for 4-Cycle.

Some notation: We assume that the input graph G = (V, E) for the triangle
finding and all-edge triangle problems is tripartite with sides A, B, and C.10 We
denote the set of neighbors of a node u by N(u). We use [k] to denote the set of
integers {1, 2, · · · , k}, and we use the notation “{4, .., k}-cycles” to denote the set
of cycles of length at least 4 and at most k. We say that an event happens with
high probability if it happens with probability at least 1− 1/nc, for an arbitrarily
large constant c. We denote by ω the matrix multiplication exponent. The term
“subquadratic” refers any bound of the form O(n2−ε), for any constant ε > 0.
Moreover, we always treat k as a constant.

10If not, let A = B = C = V and copy each edge in E three times.
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2.2.1 Triangle to 4-Cycle

To reduce Triangle to 4-Cycle, we want to convert a hard instance for Triangle in
a way such that any triangle becomes a 4-cycle. Since a hard instance for Triangle
is a tripartite graph with sides A, B, and C, perhaps the first idea that one may try
to use is to subdivide the edges between B and C, by adding a dummy node bc
on each {b, c} edge. Indeed, if the original graph doesn’t contain a 4-cycle, then a
4-cycle in the new graph must use a dummy node, and therefore, the existence of
a 4-cycle in the new graph implies the existence of a triangle in the original graph.

However, the original graph may have up to n2.5 4-cycles.11 In particular, even
after adding the dummy nodes between B and C, there could still be up to n2.5

4-cycles between A and B (4-cycles that use two nodes from A and two nodes
from B), up to n2.5 4-cycles between A and C, and up to n2.5 4-cycles that use two
nodes from A and one node from each of B and C. None of these 4-cycles uses a
dummy node, and therefore, the existence of a 4-cycle in the new graph doesn’t
necessarily imply the existence of a triangle in the original graph. We call these
false 4-cycles. Notably, this issue does not arise when reducing to k-cycle detection
for odd k (see [122]) and it can be side-stepped easily in harder contexts such as
the directed12 or counting13 versions or in other models [8,45]14. Alas, such simple
tricks do not work in the most basic case. As discussed in the introduction, this is
not a mere technicality but the obstacle for gap amplification results.

To overcome this, one may try to remove all the 4-cycles from the graph before
applying the reduction, perhaps by finding a set of edges that intersects all of
them, checking whether there is a triangle that uses one of these edges, and then
removing these edges from the graph. Indeed, this would leave the graph without
any 4-cycles. However, even if we can efficiently check for each of these edges
whether it is in a triangle, finding n2.5 4-cycles is impossible in subquadratic time.

Hitting Cycles Faster Than Triangles: Random Slicing At a high-level, our first
main idea is simple: since a 4-cycle uses one more node than a triangle, a random
subsampling reduces the number of 4-cycles at a higher rate than it reduces the

11This is because each edge may be in up to n 4-cycles.
12Where the directions can prevent the existence of false cycles.
13By counting the number of 4-cycles in the induced graph on subsets of the three parts we can

find out the exact number of false 4-cycles and then subtract it from the total number.
14E.g. in databases a cycle can be forced by definition to use one node from each of the three

parts and one dummy node.
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number of triangles. Indeed, suppose that we subsample nodes, leaving each
node in the graph with probability p. A triangle survives with probability p3

while a 4-cycle only survives with a smaller probability p4. To implement this
idea we use the following random slicing approach.

Roughly speaking, instead of reducing Triangle to 4-Cycle in the original tri-
partite graph, we break the graph into triangle-disjoint tripartite subgraphs,15

which we refer to as slices, and reduce Triangle to 4-Cycle in each of these slices.
This way, we would only need to remove 4-cycles that are fully contained in the
slices, and not 4-cycles across the slices. In more detail, we partition each of A, B
and C randomly into n1/2−α sets, each of size n1/2+α (where each node joins one
of the sets uniformly at random). In order to solve Triangle in the original graph,
it suffices to solve Triangle in each (Aj, Bk, Cℓ) slice, for j, k, ℓ ∈ [n1/2−α]. For each
such slice, we want to reduce Triangle to 4-Cycle by first removing all the 4-cycles
in the slice, and then subdividing the edges between Bk and Cℓ. This time, the
expected total number of 4-cycles in all the slices is smaller than n2.5, for α < 1/2.
This is because each slice is expected to have n1/2+4α 4-cycles, and in total, over
all slices, we have n3/2−3α+1/2+4α = n2+α 4-cycles in expectation.

Unfortunately, n2+α 4-cycles is still too much. If the number of 4-cycles is
super-quadratic, then finding and removing all of them in subquadratic time is
hopeless. In other words, while we can hit 4-cycles at a higher rate than we hit
triangles with random slicing, this higher rate is not fast enough to get the num-
ber of 4-cycles down from the worst-case n2.5 to subquadratic without essentially
deleting all edges.

Nevertheless, observe that if we started with fewer than n2.5 4-cycles in the
original graph, then the expected number of 4-cycles over all the slices following
the random slicing would be subquadratic. Can we prove that graphs with too
many 4-cycles are not actually hard for Triangle?16

Structure vs. Randomness: Dense-Piece Removal Our next main observation
is that random

√
n-regular graphs only have O(n2) 4-cycles. So if a graph has

the worst-case n2.5 number of 4-cycles, then it must have a lot of structure that
15By triangle disjoint we mean that each triangle appears in exactly one of these tripartite sub-

graphs.
16It is natural but perhaps a bit surprising that our goal switched from proving the hardness

of Triangle in 4-cycle free graphs to showing the easiness of Triangle in graphs with a maximal
number of 4-cycles.
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one could potentially exploit for solving Triangle faster. A priori, this may not
sound like a promising approach because we know that Triangle is very easy in
random graphs,17 and its hardness arises from structure that existing algorithms
cannot exploit. Fortunately, we identify a connection between the existence of
many 4-cycles and the existence of dense subgraphs that we do know how to
exploit algorithmically. This is based on the fact that the savings from using fast
matrix multiplication for Triangle are greater in denser graphs. This is a novel use
of the structure vs. randomness paradigm [263] in the context of Triangle.18

In a bit more detail, we show that in subquadratic time we can find a set of
edges Ẽ, with an answer to each edge in the graph to whether it participates in a
triangle containing an edge in Ẽ, such that the graph induced by E \ Ẽ has fewer
than n2+γ 4-cycles, for some 0 ⩽ γ < 1/2 to be chosen later. This is based on the
connection between 4-cycles and dense subgraphs. One can show that an n-node
graph with maximum degree

√
n and at least n2+γ 4-cycles must contain at least

n1+γ dense subgraphs, each with 2
√

n nodes and roughly n1/2+γ edges.19 We
refer to such subgraphs as dense pieces. In particular, each of these dense pieces
lies between two neighborhoods N(u) and N(v) where {u, v} is an edge. We can
use this property to find a dense piece efficiently: we sample ≈ n1/2−γ edges
{u, v}, and for each of them we sample ≈ n1/2−γ pairs of nodes between N(u)
and N(v) to estimate the number of edges in N(u)× N(v). With high probability,
for one of the sampled edges {u, v}, there are at least ≈ n1/2+γ edges between
N(u) and N(v), and it will be detected when we estimate the number of edges
between N(u) and N(v). After finding the dense piece N(u) ∪ N(v), we use a
matrix multiplication approach, together with a high-degree low-degree analysis,
to efficiently check whether there is a triangle that uses an edge from the dense
piece. Hence, by removing all the dense pieces gradually, where in each step we
find a new dense piece, check whether there is a triangle that uses an edge from
the dense piece, and then remove it, we obtain a graph with fewer than n2+γ 4-
cycles. Since in each step we remove a dense piece of Ω(n1/2+γ) edges, and the
number of edges is O(n3/2), the number of steps is bounded by O(n1−γ). For

17In a random
√

n-regular graph, any edge is in a triangle with constant probability, so we can
find a triangle in O(

√
n) expected time.

18The other two examples that come to mind are the mildly subcubic combinatorial algorithm
of Bansal and Williams [54] using the Freize-Kannan regularity lemma, and the distributed algo-
rithms (see [107]) that exploit an expander decomposition of the graph.

19This is because there are n3/2 edges, and each edge participates in at most n 4-cycles.
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an appropriate choice of γ = ω−1
4 + ε′ < 0.345, for an arbitrarily small constant

ε′ > 0, we show that the total running time for removing all the dense pieces is
subquadratic.

Hence, we first remove all dense pieces in subquadratic time, which leaves
only n2+γ 4-cycles to begin with. Then, we apply the random slicing, and reduce
Triangle to 4-Cycle in each of the (Aj, Bk, Cℓ) slices where we know that the total
number of false 4-cycles is subquadratic. This brings us to the final task of remov-
ing all of the remaining 4-cycles in subquadratic time. Let us remark at this point
that for Theorem 2.1.5 and its applications where we can tolerate the existence of
few cycles, this extra step is not necessary.

Output-Sensitive False Cycle Removal Following the dense-piece removal and
the random slicing, the total number of 4-cycles in all the slices is n3/2+γ+α, which
for some choice of α < 0.155, is subquadratic. It may still seem challenging to list
all of them efficiently, even when their number is subquadratic: we do not even
know how to find one 4-cycle in a general

√
n-degree graph in subquadratic time.

By exploiting a special property of 4-cycles in tripartite graphs, together with
the small degree property of each slice, we design an algorithm that lists all false
cycles in time that is linear in their number. The crux of our idea is that all the
4-cycles in a slice can be found by looking only at one part of the slice at a time. For
instance, to list all the 4-cycles that use two nodes from Aj, it suffices to list all
the {a, u, a′} two-paths in the slice, where {a, a′} ⊆ Aj. For this, we can list all
the two-paths between Aj and Bk, and all the two-paths between Aj and Cℓ, and
then find all the 4-cycles that use a pair {a, a′} ⊆ Aj (by looking at all the two-
paths that the pair {a, a′} participates in). At first sight, since we have n3/2−3α

slices, each containing n1/2+3α pairs {a, a′} that can be connected by a two-path,
this approach may seem to take quadratic time inevitably. Yet, with an additional
trick, and a more sophisticated global analysis that takes into account all the slices
at once, we are able to charge the running time to the total number of 4-cycles in
all the slices, which is subquadratic.

As a final clean-up step before subdviding the edges between Bk and Cℓ and
making a call to the 4-Cycle algorithm, we delete an edge from each of the n3/2+γ+α

4-cycles that were found. But first, we must check whether any of them is in a tri-
angle, and we cannot afford to spend the trivial

√
n time for each. Fortunately,

we only need to look for a triangle in the slice where nodes only have degree nα,
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making the total time n3/2+γ+2α still subquadratic for α < 0.0775.

Thus, in subquadratic time we can make sure that all calls that we make to
the 4-Cycle algorithm are made on graphs without false 4-cycles. To conclude,
we point out that the total sizes of all the 4-Cycle instances that our reduction
produces is also subquadratic, so if we could solve 4-Cycle in linear time (or even
m1.01) we would get a subquadratic algorithm for Triangle. Indeed, the number of
slices is n3/2−3α and each has n1/2+2α edges.

2.2.2 The Theorems and Corollaries

First, let us clarify the connection between the above reduction and our Theorems
for the k = 4 case. The slices are precisely the Gi subgraphs with few cycles that
our theorems produce, and the set of edges E′ are those edges that we identify
(and remove) in the dense-piece removal process as participating in a triangle.
For Theorem 2.1.5 the final process of removing all false 4-cycles is not necessary;
the number of remaining 4-cycles in the slices is small enough. For Theorem 2.1.9
we do list all remaining 4-cycles and remove an edge from each, while placing it
in E′ if it participates in a triangle. The slices that result after this clean-up are the
4-cycle free Gi subgraphs that we return.

The k > 4 Case To remove most k′-cycles for all 4 ⩽ k′ ⩽ k we follow a similar
route. Even though the number of k′-cycles in a worst-case (or random) graph be-
comes larger as k′ grows, the random slicing method also becomes more effective
at reducing their number. The intuition is that a k′ > 4 cycle uses even more nodes
than a triangle does, and so it is even less likely to survive a random subsampling;
i.e. longer cycles can be hit at an even higher rate. This leads to the same situa-
tion where we would be done if the number of k′-cycles was lower than the worst
case, e.g. if the graph was random. With more careful combinatorial arguments
we manage to obtain a similar structure vs. randomness result: if a graph has
too many k′-cycles then it must have a dense subgraph, and moreover such dense
subgraphs can be found efficiently. Once we have that, reducing the number of
k′-cycles by removing the dense pieces proceeds in exactly the same way as in the
k = 4 case.

Roughly speaking, we show that if a graph with maximum degree
√

n has at
least nk′/2+γ k′-cycles, then it must contain many O(

√
n)-node dense subgraphs
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(pieces), each with at least Ω(n1/2+γ) edges. In particular, each of these dense
pieces lies between two neighborhoods of a pair of nodes {u, w} that are con-
nected by a simple (k′ − 2)-path (a path of k′ − 2 nodes, including u and w). In
more detail, for a simple path of k′ − 2 nodes, {u, u1, · · · , uk′−4, w}, we say that it
is γ-dense if the number of k′-cycles that use it is Ω(n1/2+γ). Thus, a γ-dense path
implies that the number of edges between N(u) and N(w) is Ω(n1/2+γ). We show
that if a graph with maximum degree

√
n has at least nk′/2+γ k′-cycles, then it must

contain at least 1
2 nk′/2−1+γ simple (k′ − 2)-paths that are γ-dense. Since there are

at most nk′/2−1/2 (k′ − 2)-paths in the graph, we can use this property to find a
dense piece efficiently, by sampling paths and estimating the density between the
neighborhoods of the extreme nodes. Similar path counting arguments were also
employed in the cell-probe lower bound of Sommer, Verbin, and Yu [261], but the
overall argument and set-up is completely different.

This suffices for proving Theorem 2.1.5. Substantially new ideas are required
if one wishes to remove all k′-cycles, extending Theorem 2.1.9 to k > 4, because
our output-sensitive enumeration strategy no longer applies.

The Applications The corollaries follow from Theorems 2.1.5 and 2.1.9 in rather
standard ways, as suggested in the introduction. See Sections 2.5.3 and 2.6.2 for
the full details.

A road-map for the technical parts: In Section 2.5 we prove Theorem 2.1.5, as
well as its hardness consequences for distance oracles, dynamic APSP, and k-cycle
enumeration. In Section 2.6, we prove Theorem 2.1.9, as well as its hardness con-
sequences for triangle finding in 4-cycle free graphs, 4-cycle finding, and girth
approximation.

2.3 Further Related Work

Many previous works derive consequences from high-girth graphs for distance
computation problems. For example, in lower bounds for graph sparsification
(spanners) [31,238] or compression (distance oracles) [86,219,261,265], and for the
number of rounds in a distributed setting [132,170] the lower bound constructions
are built on constructions of a high-girth graph, either explicit (see [182]) or hy-
pothetical under the Girth Conjecture [142]. Unfortunately, no one has managed
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to make such an approach work for conditional lower bounds in P, because such
constructions are too structured to be worst-case graphs and cannot encode a hard
worst-case instance of another problem such as 3SUM. Our approach is diamet-
rically opposed: we start from a worst-case graph and efficiently turn it into an
(almost) high-girth graph by our short cycle removal technique (albeit with worse
parameters than the best explicit constructions).

Countless papers in fine-grained complexity and graph algorithms study tri-
angles and short cycles. Let us mention a few that are more relevant for this
work. Roditty and Vassilevska Williams [243] proved a conditional lower bound
for a particular approach for approximating the girth of a graph, but left proving
hardness (for any algorithm) as a main open question. Dahlgaard, Knudsen, and
Stöckel [122] prove the hardness of k-cycle detection for all k ⩾ 5 assuming the
hardness of the k = 3 and k = 4 cases. Dudek and Gawrychowski prove that
counting 4-cycles is equivalent to computing the quartet distance on trees [134]
and to counting 4-patterns in permutations [135]. Unlike in undirected graphs
where the k-Cycle detection problem tends to become easier as k grows (because
the graph gets sparser), this is not the case in directed graphs where it is conjec-
tured that n2−o(1) is required for large enough k ⩾ 3, and this conjecture is implied
by other conjectures on the k-Clique problem [14, 211].

Besides the two general techniques mentioned above for hardness of approxi-
mation in P, and their applications, there are also results that follow from problem-
specific tweaks to the exact-lower-bound constructions. In the context of distance
computations in graphs, some examples are for APSP [18, 131], Diameter and re-
lated problems (without the use of graph-products) [13, 109, 244], for the Girth in
directed graphs [127] (see [110, 227] for recent upper bounds for this problem),
and for dynamic near-additive spanners [73]. A more general result talks about
the possibility of avoiding the log W factor that comes from the standard scaling
trick in (1 + ε)-approximations for a problem with weights up to W by reduction
to an unweighted problem [91]. Moreover, there is a connection between determin-
istic approximation algorithms and circuit complexity that has lead to strong in-
approximability results [2,10,112] but the hardness assumptions underlying such
barriers are known to be breakable with randomized algorithms.

Finally, we mention that we are not aware of previous papers studying the
complexity of problems when the input is restricted to have a high girth, but such
questions were already studied in the context of graph spanners [4, 66].
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2.4 Preliminaries

Most of our lower bounds rely on the following theorem, which establishes hard-
ness of a triangle finding problem based on either of the standard conjectures
about 3-SUM or All Pairs Shortest Paths (for background on these conjectures see
e.g. [267, 270]).

Theorem 2.4.1 (All-Edges-Triangle is 3-SUM and APSP hard [268]). Let ε > 0.
Assuming the 3-SUM conjecture or the APSP conjecture, no O(n2−ε)-time algorithm
can answer for each edge whether it participates in a triangle in a given n-node graph
with maximum degree at most

√
n.

For some background on this theorem, we mention that reductions from 3-
SUM to triangle listing were initiated by Pătraşcu [231] and further refined in [201].
Recently, Vassilevska Williams and Xu [268] showed that the 3-SUM conjecture
can be replaced by the APSP conjecture, obtaining the same result under either
of these conjectures. They also showed a variant of this lower bound which re-
places triangle listing by asking for every edge whether it is part of a triangle [268,
Corollary 3.9]; this variant is more useful in our context and stated above (slightly
rephrased).

2.5 Removing Most k-Cycles

In this section we prove Theorem 2.1.5.

Theorem 2.1.5 (Removing Most k-Cycles). For any choice of constants k ⩾ 4, α ∈
(0, 1

2), and ε ∈ (0, 3−ω
4 ) the following holds. Given a graph G with n vertices and

maximum degree at most
√

n, there is a randomized algorithm, running in time O(n2−ε),
that returns a subset of the edges E′ ⊆ E(G) and a collection of s = n3/2−3α subgraphs
G1, . . . , Gs ⊆ G such that:

• Every edge e ∈ E′ participates in a triangle of G.

• If an edge e ∈ E(G) participates in a triangle of G, then it is either in E′ or it
participates in a triangle in at least one subgraph Gi.

• With high probability, each Gi has O(n1/2+α) vertices and maximum degree O(nα).
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• For every i, the expected total number of k′-cycles of sizes 4 ⩽ k′ ⩽ k in Gi is at
most O(n

ω−1
4 +kα+ε).

The proof of Theorem 2.1.5 is provided in Section 2.5.2. We start with the
dense-piece removal step, which is described in Section 2.5.1. Then, in Section 2.5.2,
we use a randomized slicing together with the dense-piece removal step to deduce
the theorem. In Section 2.5.3, we prove hardness results that are consequences of
the theorem.

2.5.1 Dense Piece Removal

In this section we prove the following lemma.

Lemma 2.5.1. Let γ = (ω− 1)/4+ ε for an ε ∈ (0, 3−ω
4 ), and let k ⩾ 4. Given a graph

G = (V, E) with maximum degree at most
√

n, there is an O(n2−ε)-time algorithm that
returns a subset of the edges Ẽ ⊆ E and reports all the edges in E that are in a triangle
using an edge from Ẽ, such that the graph G̃ = (V, E \ Ẽ) has at most O(nk/2+γ) k-
cycles.

That is, Lemma 2.5.1 implies that in order to solve All-Edge Triangle in G
in subquadratic time, it suffices to solve All-Edge Triangle in the graph G̃ =

(V, E \ Ẽ) in subquadratic time. This is because after reporting all the edges in
the graph that are in a triangle using an edge from Ẽ, it is safe to remove Ẽ from
the graph (without unintentionally removing triangles with unreported edges)
and solve All-Edge Triangle in the obtained graph G̃. The advantage of reduc-
ing the problem to solving All-Edge Triangle in G̃ is that G̃ is guaranteed to have
significantly less k-cycles compared to a worst-case instance.

A road-map for the proof of Lemma 2.5.1: We start with the useful definition of
a γ-dense piece and a γ-dense path (Definition 2.5.2). In Lemma 2.5.3, we show
that a graph that has many k-cycles must contain many dense paths, a property
that we use in Lemma 2.5.5 to show that a dense subgraph can be found efficiently.
In Lemma 2.5.6, we show that given a

√
n-node subgraph, we can check for all

edges e in the graph, whether there is a triangle that uses e and an edge from this
subgraph efficiently. After the proof of Lemma 2.5.6, we put everything together
and present the formal proof of Lemma 2.5.1. Finally, in Theorem 2.5.7, we use the
same ideas to show that All-Edge Triangle is 3SUM and APSP hard even when
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the graph contains a subquadratic number of triangles, a property that we need
in one of our applications in Section 2.5.3 (namely, the lower bound for k-cycle
enumeration).

Definition 2.5.2 (γ-Dense Pieces and γ-Dense Paths). Given an n-node graph
with maximum degree at most

√
n, we say that a set of nodes of size at most 2

√
n

is a γ-dense piece if the subgraph induced by these nodes has at least n1/2+γ/2
edges. Furthermore, we say that a simple (k − 2)-path, {u, u1, · · · , uk−4, w}, is
γ-dense if the number of k-cycles that use it is at least n1/2+γ/2.

Hence, a γ-dense (k− 2)-path {u, · · · , w} implies that there are n1/2+γ/2 edges
between N(u) and N(w), which implies that N(u) ∪ N(w) is a γ-dense piece. In
the following lemma, we show that if there are many k-cycles in the graph then
there are many γ-dense (k− 2)-paths, which implies that there are many γ-dense
pieces.

Lemma 2.5.3. Let k ⩾ 4. For every 0 ⩽ γ < 1/2, every n-node graph with maximum
degree at most

√
n that has at least nk/2+γ k-cycles must contain at least 1

2 nk/2−1+γ

simple γ-dense (k− 2)-paths {u, u1, · · · , uk−4, w}.

Proof. Let c be the number of k-cycles in the graph, and for a simple path p of k− 2
nodes, let cp be the number of k-cycles that use p as a subpath. Observe that

c ⩽ ∑
(k−2)-paths p

cp

Furthermore, the number of (k− 2)-paths in the graph is at most n · (
√

n)k−3 =

n
k−1

2 , because there are n ways to pick the first node in the path, and (
√

n)k−3 ways
to extend this node to a (k − 2)-path. Moreover, observe that each (k − 2)-path,
{u, u1, · · · , uk−4, w}, participates in at most n k-cycles, because there are at most n
edges between N(u) and N(w). Hence, since each (k− 2)-path that is not γ-dense
participates in at most 1

2 n1/2+γ k-cycles, if we have fewer than 1
2 nk/2−1+γ γ-dense

(k− 2)-paths, this implies that the number of k cycles is bounded by

c <
1
2

n · nk/2−1+γ +
1
2

n1/2+γ · n k−1
2 = nk/2+γ,

which is a contradiction.
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The remainder of this section is devoted to showing that there is a subquadratic-
time algorithm that removes all dense pieces, leaving the obtained graph with
fewer than nk/2+γ k-cycles by Lemma 2.5.3. We start with the following proposi-
tion that follows by a standard Chernoff argument.

Proposition 2.5.4. Let X and Y be two
√

n-size sets of nodes (not necessarily different).
Sample S = 200n1/2−γ log n pairs in X×Y independently and uniformly at random. It
holds that:

1. If the number of edges between X and Y is at least n1/2+γ/2, then at least 50 log n
of the sampled pairs are edges, with probability at least 1− 1/n10.

2. If the number of edges between X and Y is smaller than n1/2+γ/200, then fewer
than 50 log n of the sampled pairs are edges, with probability at least 1− 1/n10.

In the following lemma, we show that if the graph has at least nk/2+γ k-cycles,
then a dense subgraph can be found efficiently.

Lemma 2.5.5. Let k ⩾ 4. Given an n-node graph of maximum degree at most
√

n that
contains at least nk/2+γ k-cycles, there is an O(n1−2γ log2 n)-time algorithm that finds
a pair of nodes {u, w}, such that the number of edge between N(u) and N(w) is at least
n1/2+γ/200, with high probability.

Proof. First, we show that we can sample a γ-dense (k − 2)-path efficiently. Ob-
serve that in O(1)-time, we can sample a (k− 2)-path, such that each simple path
{u, u1, · · · , uk−4, w} is sampled with probability at least 1/n(k−1)/2. This can be
done by first sampling a starting node, and in each step we sample a node from
the neighborhood of the previously sampled node, until we sample a (k − 2)-
path. Hence, by Lemma 2.5.3, the probability mass of the simple (k − 2)-paths
that are γ-dense is at least n

k
2−1+γ/n(k−1)/2 = nγ−1/2. Therefore, by sampling

100n1/2−γ log n such (k− 2)-paths, one of them is a simple γ-dense path with high
probability. Moreover, for each sampled (k − 2)-path, {u, u1, · · · , uk−4, w}, we
sample 200n1/2−γ log n pairs in N(u)× N(w), and check how many of the sam-
pled pairs are edges. If the number is at least 50 log n, we output the pair of nodes
{u, w}. By Proposition 2.5.4, the algorithm finds at least one pair {u, w} with the
desired property with high probability. Furthermore, by Proposition 2.5.4, for any
pair {u, w} that the algorithm outputs there are at least n1/2+γ/200 edges between
N(u) and N(w), with high probability.
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Next, we show that given two
√

n-size sets of nodes X and Y (not necessarily
disjoint), there is an efficient algorithm that reports all the edges in the graph that
are in a triangle using an edge from X×Y.

Lemma 2.5.6. Given an n-node graph with maximum degree at most
√

n, and two
√

n-
size sets of nodes X and Y, there is an O(n

3+ω
4 )-time algorithm that finds all the edges in

the graph that are in a triangle using an edge from X×Y.

Proof. Let β > 0 be a constant to be chosen later, Vh be the set of nodes that have
at least n1/2−β neighbors in X ∪Y, and Vℓ be the set of nodes that have fewer than
n1/2−β neighbors in X ∪ Y. Observe that for any edge e that is in a triangle that
uses an edge from X × Y, it holds that either the triangle uses a node from Vℓ (in
which case either e ∈ Vℓ × (X ∪Y) or e ∈ X×Y and the third node is in Vℓ), or it
uses a node from VH (in which case either e ∈ VH × (X ∪Y) or e ∈ X×Y and the
third node is in VH). We start with the low-degree case, in which we find all the
triangles that use a node from Vℓ.

Low-degree nodes: First, observe that we can find the set of nodes Vℓ in linear
time, as follows. We go over the nodes in X ∪Y, and for each of them we mark its
neighbors. Then, we go over all the nodes in the graph and take those that were
marked fewer than n1/2−β times to Vℓ.

To find the triangles involving nodes in Vℓ, we go over all the nodes in Vℓ

and for each of them we go over all pairs of neighbors in X ∪ Y, and for each
such pair we check whether it is an edge. To analyse the time complexity of this
step, we bucket the set of nodes in Vℓ by their degrees in X ∪ Y, where the i’th
bucket contains every node v ∈ Vℓ of degree |N(v) ∩ (X ∪ Y)| ∈ [2i, 2i+1), for
0 ⩽ i ⩽ log(n1/2−β). Observe that the time it takes to process the i’th bucket is
O( n

2i · (2i+1)2). This is because there are O(n/2i) nodes with degrees in [2i, 2i+1),
since the number of edges incident to X∪Y is O(n). Hence, in total for all buckets,
this takes time

O
(

∑
i

n
2i · (2

i+1)2
)
= O(n · n1/2−β) = O(n3/2−β).

High-degree nodes: Observe that the set Vh can be found in linear time in a
similar way that we used to find the set Vℓ. Furthermore, the size of Vh is at most
O(n1/2+β) since the total number of edges incident to nodes in X ∪ Y is at most
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O(n). It remains to find all the edges e that are in a triangle that uses a node from
Vh and an edge from X × Y. Hence, either e ∈ X × Y (in which case we want
to check whether it is in a triangle that uses a node from Vh), e ∈ Vh × X (in
which case we want to check whether it is in a triangle that uses a node from Y),
or e ∈ Vh ×Y (in which case we want to check whether it is in a triangle that uses
a node from X). To find these edges, we use a matrix multiplication approach, as
follows.

e ∈ X × Y: To find all the edges in X × Y that are in a triangle that uses a node
from Vh, we use a matrix multiplication algorithm. Consider the Boolean matri-
ces X × Vh and Vh × Y, where 1-entries indicate edges. By multiplying the two
matrices, we get all the pairs u ∈ X, w ∈ Y for which there is a 2-path between u
and w through Vh. Hence, by going over all the edges in X × Y, we can check for
each of them whether it participates in a triangle that uses a node from Vh. Multi-
plying an n1/2× n1/2+β matrix by an n1/2+β× n1/2 matrix takes time O(nw/2 · nβ),
because we can split it into nβ many matrix products on n1/2 × n1/2 square ma-
trices.20 Furthermore, going over all the edges in X × Y takes O(n) time. Hence,
finding all the edges in X×Y that are in a triangle that uses a node from Vh takes
time O(nw/2+β).

e ∈ Vh × X or e ∈ Vh × Y: To find the edges in Vh × X that are in a triangle
that uses a node from Y, we use a similar matrix multiplication algorithm. This
time, consider the matrices Vh × Y and Y× X, where 1-entries indicate edges. By
multiplying the two matrices, we get all the pairs u ∈ Vh, x ∈ X for which there is
a 2-path between u and x through Y. Hence, by going over all the edges in Vh×X
(which takes O(n1+β) time), we can check for each of them whether it participates
in a triangle that uses a node from Y. Multiplying an n1/2 × n1/2+β matrix by an
n1/2 × n1/2 matrix takes O(nw/2 · nβ) time as well.

Finding the edges in in Vh ×Y that are in a triangle that uses a node from X is
done in a similar way. Hence, in total, the high degree case takes O(nω/2+β) time.

Putting everything together To optimize the time complexity in total for the
high-degree and the low-degree cases, we set β = (3 − ω)/4, which implies a

20This step could be improved using rectangular matrix multiplication, which for the current
value of ω would yield better constants in our lower bounds. Since in the limit for ω = 2 + o(1)
our lower bounds are unaffected, we omit the details.
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total running time of O(n(3+ω)/4), as desired.

Now we are ready to prove Lemma 2.5.1.

Proof of Lemma 2.5.1. We iteratively run the following algorithm that has a 3-step
structure: (1) Find a pair {u, w}with at least n1/2+γ/200 edges between N(u) and
N(w) by using the algorithm from Lemma 2.5.5 (if the algorithm from Lemma 2.5.5
fails to find such a pair, we know that the graph has fewer than nk/2+γ k-cycles,
and we stop), (2) report all the edges that are in a triangle that uses an edge from
N(u) × N(w) by using the algorithm from Lemma 2.5.6, and (3) remove all the
edges between N(u) and N(w) from the graph. Since the number of edges in the
graph is at most n3/2, and in each step we remove at least n1/2+γ/200 edges,
the algorithm has at most O(n1−γ) iterations. Furthermore, in each iteration,
step (1) takes O(n1−2γ log2 n) time, step (2) takes O(n(3+ω)/4) time, and step (3)
takes linear time. Hence, in total, the running time is O(n1−γ · n(3+ω)/4). For
γ = (ω − 1)/4 + ε, where ε ∈ (0, 3−ω

4 ), this is O(n2−ε), as desired (the upper
bound on ε is needed so that we have γ < 1/2).

Finally, we finish this section with the following remark and theorem on the
number of triangles in the All-Edge Triangle problem.

A remark on the All-Edge Triangle problem: One of our lower bound results
in Section 2.5.3 requires the total number of triangles in the All-Edge Triangle
instance to be subquadratic, specifically the lower bound for 4-cycle enumeration
in Theorem 2.5.8. Interestingly, we can use the same ideas that we presented in
this section to show that the All-Edge Triangle problem is still (3-SUM and APSP)
hard even when the number of triangles is O(n3/2+γ), for γ = ω−1

4 + ε.

Theorem 2.5.7. Let ε ∈ (0, 3−ω
4 ) and γ = ω−1

4 + ε. Assuming the 3-SUM conjecture
or the APSP conjecture, no O(n2−ε)-time algorithm can answer for each edge whether it
participates in a triangle in a given n-node graph with maximum degree at most

√
n, and

O(n3/2+γ) triangles.

Proof. By Theorem 2.4.1, assuming the 3-SUM conjecture or the APSP conjecture,
no O(n2−ε)-time algorithm can answer for each edge whether it participates in a
triangle in a given n-node graph with maximum degree at most

√
n. Hence, it

suffices to show that we can reduce the number of triangles in the input graph to
n3/2+γ in subquadratic time.
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For this, we use the same dense piece removal trick that we introduced in
this section. Observe that an n-node graph with at least n3/2+γ triangles must
contain at least 1

2 n1/2+γ nodes that each participate in at least 1
2 n1/2+γ triangles.

Otherwise, since each node can be in at most n triangles, the number of triangles
would be smaller than 1

2 n · n1/2+γ + 1
2 n1/2+γ · n = n3/2+γ, which is a contradic-

tion. Hence, there are at least 1
2 n1/2+γ nodes v for which the number of edges

between the nodes in N(v) is at least 1
2 n1/2+γ.

Therefore, as long as the number of triangles is at least n3/2+γ, we can find
a
√

n-node subgraph with Ω(n1/2+γ) edges efficiently: sample 100n1/2−γ log n
nodes v, and for each of them sample 200n1/2−γ log n pairs in N(v)× N(v) and
check how many of the sampled pairs are edges. If the number of edges is at
least 50 log n, we output N(v). By a similar analysis to the one in Lemma 2.5.5,
as long as long as the number of triangles is at least n3/2+γ, this algorithm finds
a
√

n-node subgraph with Ω(n1/2+γ) edges, with high probability. Moreover, by
Lemma 2.5.6, we report all the edges in the graph that participate in a triangle that
uses an edge from the subgraph in O(n

3+ω
4 ) time.

Therefore, by iteratively finding a dense subgraph, checking for each edge in
the subgraph whether there is a triangle that uses it, and removing these edges
from the graph, we obtain a graph with fewer than n3/2+γ triangles. By a similar
analysis to the one provided in the proof of Lemma 2.5.1, this takes subquadratic
time, as desired.

2.5.2 Hitting k-Cycles Faster than Triangles: A Proof of
Theorem 2.1.5

Proof of Theorem 2.1.5. Let γ = (ω − 1)/4 + ε, where ε ∈ (0, 3−ω
4 ). Recall that

we can assume without loss of generality that the input graph is tripartite. Let
A, B, and C be the three parts. First, we run the algorithm from the dense piece
removal step (Lemma 2.5.1) for every 4 ⩽ k′ ⩽ k, and we set E′ to be the set of
reported edges that are in a triangle that uses an edge from a dense piece Ẽ. This
takes O(kn2−ε) = O(n2−ε) time. Furthermore, the obtained graph has fewer than
nk′/2+γ k′-cycles for every 4 ⩽ k′ ⩽ k.

We break the obtained graph into tripartite subgraphs, which we refer to as
slices, such that each triangle appears in exactly one slice, as follows. We ran-
domly partition each of the sets A, B and C into n1/2−α sets, each of expected size
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n1/2+α, where each node joins each of the sets uniformly at random, and indepen-
dently of the choices for the other nodes. We denote these sets by {Aj}j∈[n1/2−α],
{Bk}k∈[n1/2−α], and {Cℓ}ℓ∈[n1/2−α]. That is21,

A = A1∪̇ . . . ∪̇An1/2−α , B = B1∪̇ . . . ∪̇Bn1/2−α , C = C1∪̇ . . . ∪̇Cn1/2−α .

By a standard Chernoff argument, for every slice (Aj, Bk, Cℓ), the number of
nodes is O(n1/2+α) and the maximum degree is O(n1/2/n1/2−α) = O(nα) with
high probability. It remains to show that the expected number of {4, .., k}-cycles
in each slice is O(nγ+αk). Observe that the probability that a given k′-cycle is
fully contained in the slice (Aj, Bk, Cℓ) is 1/(n1/2−α)k′ = 1/(nk′/2−k′α). Hence,
the expected number of k′-cycles that are fully contained in the slice (Aj, Bk, Cℓ)

is nk′/2+γ/(nk′/2−kα) = nγ+k′α. Over all 4 ⩽ k′ ⩽ k, the expected number of
{4, .., k}-cycles is at most knγ+kα = O(nγ+kα) (since k is constant), as desired.

2.5.3 Consequences of Theorem 2.1.5

We start with a hardness result for 4-cycle enumeration.

Theorem 2.5.8. For every ε > 0 there is a δ > 0 such that if there is an algorithm that

can preprocess an m-edge graph in O(m1+ 3−ω
2(4−ω)

−ε
) time and then enumerate 4-cycles

with mo(1) delay, then there is an n2−δ+o(1)-time algorithm that given an n-node graph
with maximum degree at most

√
n and O(n2−δ) triangles answers for every edge whether

it participates in a triangle with probability at least 9/10.

Proof. Let G be an n-node tripartite graph with sides A, B, and C. First, we run the
subquadratic-time algorithm from Theorem 2.1.5 with ε′, α to be chosen later, and
k = 4. Since the expected number of 4-cycles in each Gi is O(n

ω−1
4 +ε′+4α), it follows

that the total number of 4-cycles in all the Gi’s is at most O(n3/2+ω−1
4 +α+ε′) with

probability at least 99/100 (by linearity of expectation and Markov). Furthermore,
since each edge that is in a triangle is either in E′ or is in a triangle in one of the
Gi’s, in order to find the remaining edges in E \ E′ that are in a triangle, it suffices
to enumerate the triangles in all the Gi’s.

For this, we subdivide the edges in B×C by adding a dummy node bc on each
edge {b, c}. Hence, any triangle {a, b, c} in some Gi becomes a 4-cycle {a, b, bc, c};

21We use the notation ∪̇ to denote a disjoint union of sets.
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these are the only newly introduced 4-cycles. We refer to the other 4-cycles that
are not a result of subdividing triangles as false 4-cycles; note that each false 4-
cycle already was a 4-cycle before subdividing the edges. For each Gi, we run
a 4-cycles enumeration algorithm on the subdivided graph. Let P(m) = mx be
the preprocessing time and D(m) = mo(1) be the delay. Since each Gi has n1/2+2α

edges with high probability, the total preprocessing time for all Gi’s is

O(n3/2−3α · P(n1/2+2α)) = O(n3/2−3α+x(1/2+2α)),

with high probability. For x < 1 + α/(1/2 + 2α) this is subquadratic. On the
other hand, the total delay we spend on false 4-cycles is O(n3/2+ω−1

4 +α+ε′+o(1))

with probability at least 99/100. The remaining delay is spent on enumerating
subdivided triangles, and there is only a subquadratic number of them. Hence,
for α = 3−ω

4 − ε′′, for ε′′ > ε′, the total delay is subquadratic. Furthermore, since

1 + α/(1/2 + 2α) = 1 +
3−ω

4 − ε′′

1/2 + 2(3−ω
4 − ε′′)

> 1 +
3−ω−4ε′′

4
4−ω

2

> 1 + (3−ω)/(2(4−ω))− 2ε′′,

when we set x = 1 + (3− ω)/(2(4− ω))− ε, for ε = 2ε′′, the total preprocessing
time and the total delay are both subquadratic, as desired.

Corollary 2.5.9 follows immediately by combining Theorem 2.5.8 and Theo-
rem 2.5.7.

Corollary 2.5.9. Assuming either the 3-SUM or APSP Conjectures, no algorithm can

process an m-edge graph in O(m1+ 3−ω
2(4−ω)

−ε
) time and then enumerate 4-cycles with mo(1)

delay.

By simple gadget reductions that show that k-cycle (detection, enumeration,
or listing) for any k is at least as hard as either the k = 3 or k = 4 case (see
Appendix 2.8) the following corollary follows:

Corollary 2.5.10 (Hardness for k-Cycle Enumeration). Let k ⩾ 3 be an integer, and
let ε > 0. Assuming either the 3-SUM Conjecture or the APSP Conjecture, no algorithm
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can process an m-edge graph in O(m1+ 3−ω
2(4−ω)

−ε
) time and then enumerate k-cycles with

mo(1) delay.

Next, we show a hardness result for Approximate Distance Oracles.

Theorem 2.5.11. For every ε, δ′ > 0 there is a δ > 0 such that if there is an algo-

rithm running in O(m1+ 3−ω
2(k+1−ω)

−ε
) time that can (k/2− δ′)-approximate the distances

between m given pairs of nodes in a given m-edge graph, then there is an O(n2−δ)-time
algorithm for n-node graphs with maximum degree at most

√
n that with probability at

least 9/10 answers for every edge whether it participates in a triangle.

Proof. First, we run the subquadratic-time algorithm from Theorem 2.1.5 with ε′

and α to be chosen later. For each of the returned Gi’s, we show how to check for
every edge in B× C whether it participates in a triangle. (Checking the edges in
A × B ∪ A × C is symmetric.) For every Gi, we remove the edges in (B × C) ∩
E(Gi), and we denote the obtained graph by G′i . We run a (k/2− δ′)-approximate
distance oracle algorithm on G′i , where we query all the {b, c} pairs that corre-
spond to the removed edges. We refer to the pairs {b, c} for which the algorithm
returned an estimate that is smaller than k as the candidates of Gi. For each such
candidate pair, we check whether the corresponding edge is in a triangle in Gi,
which takes O(nα) time per edge. If the edge is found to be in a triangle, we re-
move it from the set of candidates of Gj for every j > i. This ensures that we don’t
spend too much time on checking whether the same edge is in many different
triangles.

Observe that for every edge {b, c} that is in a triangle in Gi, the (k/2 − δ′)-
approximation algorithm must return an estimate that is smaller than k when we
query the pair {b, c}, as there is a two-path between b and c in G′i . Furthermore,
for every pair {b, c} for which the algorithm returns an estimate that is smaller
than k, it holds that there is a path between b and c of length at most k− 1 in G′i ,
and therefore the edge {b, c} is in a cycle of length at most k in Gi. We refer to the
edges {b, c} for which the algorithm returns an estimate < k but {b, c} is not in a
triangle in Gi as false edges.

Running time: Let T(m) = mx be the running time of the distance oracle algo-
rithm (specifically, the total time for preprocessing an m-edge graph and answer-
ing m approximate distance queries that are given in advance). In total, running
this algorithm for all the G′i ’s takes time
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O(n3/2−3α+x(1/2+2α)).

For x < 1 + α/(1/2 + 2α) this is subquadratic. Furthermore, the total number
of {4, .., k}-cycles in all the Gi’s is O(n3/2−3α+(ω−1)/4+ε′+αk) with probability at
least 99/100. Therefore, this is also the total number of times we check whether a
false edge is in a triangle, over all the Gi’s. For an edge {b, c} that participates in
a triangle, we run a single check - the first time it was found to be in a triangle in
some Gi. Hence, the total running time for this step is O(n3/2+(ω−1)/4+ε′+α(k−3) ·
nα) = O(n3/2+(ω−1)/4+ε′+α(k−2)). This is subquadratic when we set

α =
1
2 −

ω−1
4

k− 2
− ε′′ =

3−ω

4(k− 2)
− ε′′

for ε′′ > ε′. For this choice of α, we have that

1 + α/(1/2 + 2α) = 1 +
3−ω

4(k−2) − ε′′

1
2 + 2( 3−ω

4(k−2) − ε′′)

> 1 +
3−ω−4(k−2)ε′′

4(k−2)
k+1−ω
2(k−2)

= 1 +
3−ω

2(k + 1−ω)
− 4(k− 2)ε′′

2(k + 1−ω)

> 1 +
3−ω

2(k + 1−ω)
− 4(k− 2)ε′′

2(k + 1− 3)

= 1 +
3−ω

2(k + 1−ω)
− 2ε′′

Thus, when we set x = 1 + 3−ω
2(k+1−ω)

− ε, for ε > 2ε′′, the total running time is
subquadratic, as desired.

Corollary 2.1.6 follows immediately by combining Theorem 2.5.11 with Theo-
rem 2.4.1.

Corollary 2.5.12 (Hardness of Approximation for Offline Distance Oracles). Let
k ⩾ 4 be an integer, and let ε, δ > 0. Define c = 4

3−ω and d = 2ω−2
3−ω . Assuming
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either the 3-SUM Conjecture or the APSP Conjecture, no algorithm can return a (k− δ)-
approximation to the distance between m pairs of nodes in a simple graph with m edges in
time O(m1+ 1

ck−d−ε). Consequently, there is no (k− δ)-approximate distance oracle with
O(m1+ 1

ck−d−ε) preprocessing and O(m
1

ck−d−ε) query time.

Finally, we prove a hardness result for dynamic approximate All Pairs Shortest
Paths.

Theorem 2.5.13. For every ε, δ′ > 0 and integer k ⩾ 4 there is a δ > 0 such that if
there is a dynamic algorithm for (k/2− δ′)-approximate APSP with preprocessing time

O(N3) and update/query time O(m
3−ω

2(k+1−ω)
−ε
) in N-node and m-edge graphs, then there

is an O(n2−δ)-time algorithm for n-node graphs with maximum degree at most
√

n that
with probability at least 9/10 answers for every edge whether it participates in a triangle.

Proof. First, we run the subquadratic-time algorithm from Theorem 2.1.5 with ε′

and α to be chosen later. We show how to use a dynamic algorithm to check
for each edge {b, c} ∈ B× C whether it participates in a triangle. (Checking the
edges in A× B ∪ A× C is symmetric.) For each Gi, we remove the B× C edges,
obtaining a graph G′i . We let G′1 be the input graph to be preprocessed by the
dynamic algorithm in O((n(1/2+α))3) = O(n3/2+3α) time, and we consider the
following sequence of updates and queries we feed into the dynamic algorithm.

Sequence of updates and queries: For 1 ⩽ i ⩽ n3/2−3α phases, in each phase
i we make the following queries and updates. Queries: For each edge {b, c} ∈
(B×C)∩ E(Gi), we query the pair {b, c}. This takes O(n1/2+2α) queries. Updates:
we delete all the edges in G′i and add all the edges in G′i+1, by using O(n1/2+2α)

updates.

Postprocessing: We use the distance estimations returned by the queries to find
for each edge {b, c} in each Gi whether it in a triangle in Gi, as follows. For each
G′i , we collect all the pairs {b, c} for which the answer to the query is < k, and
we refer to the corresponding edges as the candidates of Gi. For each candidate
edge, we check whether it is in a triangle in Gi by iterating over all neighbors of
the endpoints, and if so, we remove the edge from the set of candidates of Gj for
every j > i. This finishes the reduction.
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Running time: In total, for all phases, the number of queries and updates is
O(n2−α). Hence, if each update and query takes time O(nx(1/2+2α)), we have that
the total query and update time is O(nx(1/2+2α) · n2−α), for all updates and queries.
For x < α

1/2+2α , this is subquadratic.
For the postprocessing the analysis is similar to the one in Theorem 2.5.11:

Checking whether a candidate edge forms a triangle takes time O(nα), and there
are O(n3/2+(ω−1)/4+ε′+α(k−3)) candidate edges in total, so the postprocessing takes
total time O(n3/2+(ω−1)/4+ε′+α(k−2)). For α = 3−ω

4(k−2) − ε′′, for ε′′ > ε′, this is sub-
quadratic. Since ω ⩾ 2 and k ⩾ 4, this choice of α satisfies α < 1/6, so also the
preprocessing time of O(n3/2+3α) is subquadratic.

Furthermore, by a similar calculation to the one provided in Theorem 2.5.11,
we have that α

1/2+2α > 3−ω
2(k+1−ω)

− 2ε′′. For ε > 2ε′′, we set x = 3−ω
2(k+1−ω)

− ε <
α

1/2+2α . Hence, since the number of edges at any time of the dynamic process is
m = O(n1/2+2α), as a function of the number of edges m, if the update time is

O(mx) = O(m
3−ω

2(k+1−ω)
−ε
), the total running time of the above algorithm is sub-

quadratic, as desired.

The following corollary follows immediately by combining Theorem 2.5.11,
Theorem 2.5.13, and Theorem 2.4.1, where the first bullet follows by a straight-
forward reduction from the Offline Distance Oracles problem to Decremental Dy-
namic APSP (just preprocess the graph and answer the queries without ever mak-
ing edge deletions).

Corollary 2.5.14 (Hardness of Approximation for Dynamic APSP). Let k ⩾ 4 be
an integer, and let ε, δ > 0, c = 4

3−ω and d = 2ω−2
3−ω . Assuming either the 3-SUM

Conjecture or the APSP Conjecture:

• No algorithm can maintain a simple graph through a sequence of edge-deletion up-
dates in a total of O(m1+ 1

ck−d−ε) time, while answering distance queries between a
given pair of nodes with a (k− δ)-approximation in O(m

1
ck−d−ε) time.

• No algorithm can preprocess a simple graph in O(n3) time and then support (fully
dynamic) updates and queries in O(m

1
ck−d−ε) time, where an answer to a query is a

(k− δ)-approximation to the distance between a given pair of nodes.
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2.6 Removing All 4-Cycles

In this section we prove Theorem 2.1.9 (Section 2.6.1), as well as some hardness
consequences of it (Section 2.6.2).

2.6.1 A proof of Theorem 2.1.9

Theorem 2.1.9. For any choice of constant α ∈ (0, 3−ω
8 ) and ε ∈ (0, 3−ω

4 − 2α) the
following holds. Given a graph G with n vertices and maximum degree at most

√
n, there

is a randomized algorithm, running in time O(n2−ε), that returns a subset of the edges
E′ ⊆ E(G) and a collection of s = n3/2−3α subgraphs G1, . . . , Gs ⊆ G such that:

• Every edge e ∈ E′ participates in a triangle of G.

• If an edge e ∈ E(G) participates in a triangle of G, then it is either in E′ or it
participates in a triangle in at least one subgraph Gi.

• With high probability, each Gi has O(n1/2+α) vertices and maximum degree O(nα).

• With probability larger than 0.99, no subgraph Gi contains a 4-cycle.

Proof. Let α ∈ (0, 3−ω
8 ) and ε, ε′ ∈ (0, 3−ω

4 − 2α) to be chosen later. First, we run the
subquadratic-time algorithm from Theorem 2.1.5 with ε′, α, and k = 4. Recall that
this algorithm returns a set of edges E′ and n3/2−3α subgraphs, such that each edge
that is in a triangle is either in E′ or in a triangle in one of the subgraphs, where
each subgraph is a slice (Aj, Bk, Cℓ), for j, k, ℓ ∈ [n1/2−α]. Furthermore, each slice
has O(n(ω−1)/4+ε′+4α) 4-cycles in expectation, and therefore the overall number of
4-cycles in all the slices is at most O(n3/2+α+(ω−1)/4+ε′) with probability at least
99/100. Our algorithm adds more edges to E′ such that the obtained slices are
4-cycle-free, as follows.

We show that it is possible to list all the 4-cycles in all the slices in time that
is linear in their number, see Lemma 2.6.1 below. After listing all the 4-cycles, we
denote by Sj,k,ℓ the set of edges that participate in 4-cycles in the slice (Aj, Bk, Cℓ).
Note that after removing the edges Sj,k,ℓ from the slice (Aj, Bk, Cℓ) it becomes 4-
cycle-free, as desired. It remains to check for each edge in Sj,k,ℓ whether it partic-
ipates in a triangle in the slice, and if so we add it to E′. Since the degree of each
node in a slice is with high probability at most O(nα), this takes O(|Sj,k,ℓ| · nα)

time per slice with high probability. Hence, in total, for all slices, this takes time
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∑j,k,ℓ O(|Sj,k,ℓ| · nα) = O(n3/2+2α+(ω−1)/4+ε′) with constant probability. By setting
α = (3−ω)/8− (ε+ ε′)/2, this takes time O(n2−ε), as desired. It remains to show
how to efficiently list all the 4-cycles in all the slices in time that is linear in their
number:

Lemma 2.6.1. We can enumerate all 4-cycles in any of the slices (Aj, Bk, Cℓ), for all
j, k, ℓ ∈ [n1/2−α], in total time O(n3/2+α + c) where c is the output size, that is, c is the
total number of such 4-cycles.

Proof. Observe that for any slice, any 4-cycle uses exactly two nodes from one of
the sides of the slice. In the following, we show how to list all the 4-cycles that use
two nodes from Aj, for all the slices (Aj, Bk, Cℓ). Listing all the 4-cycles that use
two nodes from Bk or two nodes from Cℓ is symmetric.

We start with the following useful notations. For each slice (Aj, Bk, Cℓ), we
think about Aj as being the center of the slice, Bk being the left side of the slice,

and Cℓ being the right side of the slice. For a set Aj and a pair {a, a′} ⊆ Aj, let La,a′
k

be the set of nodes b ∈ Bk for which {a, b, a′} is a two-edge path. Similarly, let Ra,a′
ℓ

be the set of nodes c ∈ Cℓ for which {a, c, a′} is a 2-path. Furthermore, for a set
Aj and a pair {a, a′} ⊆ Aj, let Ia,a′

L be the set of coordinates k ∈ [n1/2−α] for which

La,a′
k is not empty. Similarly, Ia,a′

R is the set of coordinates ℓ ∈ [n1/2−α] for which
Ra,a′
ℓ is not empty. Finally, for every pair of sets Aj, Bk, let PL

j,k be the set of pairs

{a, a′} ⊆ Aj for which |La,a′
k | ⩾ 2. Similarly, PR

j,ℓ is the set of pairs {a, a′} ⊆ Aj for

which |Ra,a′
ℓ | ⩾ 2.

Our algorithm has a preprocessing step that computes all the sets Ia,a′
L , Ia,a′

R , all
the nonempty sets La,a′

k , Ra,a′
ℓ , and all the sets PL

j,k, PR
j,ℓ (for every j, k, ℓ ∈ [n1/2−α]

and every pair {a, a′} ∈ Aj). Then we show that given the sets Ia,a′
L , Ia,a′

R , La,a′
k , Ra,a′

ℓ
we can list all the 4-cycles that use two nodes from Aj and one node from each

of Bk and Cℓ, and given the sets PL
j,k, PR

j,ℓ, La,a′
k , Ra,a′

ℓ we can list all 4-cycles between
every pair Aj, Bk, and every pair Aj, Cℓ. The details follow.

Preprocessing step: Recall that we denote by N(u) the set of neighbors of a node
u in the original graph. For each pair Aj, Bk, we go over all the nodes b ∈ Bk, and
for each such node, we go over all the pairs {a, a′} ⊆ N(b) ∩ Aj, and we add k
to Ia,a′

L and b to La,a′
k . If |La,a′

k | ⩾ 2, then we also add {a, a′} to PL
j,k. Since the size
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of Bk is O(n1/2+α), and the maximum degree of a node b ∈ Bk in Aj is O(nα), for
a pair Aj, Bk, this takes time O(n1/2+α · n2α) = O(n1/2+3α). Hence, in total, for

all pairs Aj, Bk, this takes time O(n1−2α · n1/2+3α) = O(n3/2+α). The sets Ia,a′
R , the

nonempty sets Ra,a′
ℓ , and the sets PR

j,ℓ are computed symmetrically, for all j, ℓ, and
{a, a′} ⊆ Aj.

Listing all 4-cycles between all pairs Aj, Bk and all pairs Aj, Cℓ: We show how
to list all 4-cycles between all pairs Aj, Bk. Listing all the 4-cycles between all pairs
Aj, Cℓ is symmetric. Observe that the total number of 4-cycles between all pairs
Aj, Bk is

∑
j,k∈[n1/2−α]

∑
{a,a′}∈PL

j,k

(|La,a′
j |
2

)
To list them, we go over all pairs Aj, Bk, and for each such pair we list all tuples

(a, b, a′, b′), where {a, a′} ∈ PL
j,k, and {b, b′} ⊆ La,a′

k . Since all the sets PL
j,k and La,a′

k
were already computed in the preprocessing step, this takes an amount of time
which is linear in the number of 4-cycles. We list all the 4-cycles between all pairs
Aj, Cℓ in a similar way.

Listing all 4-cycles that use two nodes from Aj and one node from each of Bk, Cℓ,
for every j, k, ℓ: Observe that the number of such 4-cycles is

∑
j∈[n1/2−α]

∑
{a,a′}⊆Aj

∑
(k,ℓ)∈Ia,a′

L ×Ia,a′
R

|La,a′
k | · |R

a,a′
ℓ | (1)

Our goal is to list all these 4-cycles in an amount of time that is linear in their
number. For this, we go over all sets Aj, and for each such set, we go over all pairs

{a, a′} ⊆ Aj, and for each such pair, we go over all pairs (k, ℓ) ∈ Ia,a′
L × Ia,a′

R , and

list all the tuples (a, b, a′, c), where b ∈ La,a′
k and c ∈ Ra,a′

ℓ . The amount of time for
this step is proportional to

∑
j∈[n1/2−α]

∑
{a,a′}⊆Aj

(
1 + ∑

(k,ℓ)∈Ia,a′
L ×Ia,a′

R

|La,a′
k | · |R

a,a′
ℓ |
)

.
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This is because for the pairs {a, a′} that don’t contribute any 4-cycle to the sum
(1) we spend constant time. For the other pairs, the amount of time we spend
is proportional to the number of 4-cycles they participate in. Note that the sum-
mand 1 contributes O(n1/2−α · |Aj|2) = O(n1/2−α · (n1/2+α)2) = O(n3/2+α) to the
running time. The other summand is simply the total number of 4-cycles as in (1).
We thus obtain total time O(n3/2+α + c), as desired.

This finishes the proof of Theorem 2.1.9.

2.6.2 Consequences of Theorem 2.1.9

We start with a reduction from triangle detection to 4-cycle detection.

Theorem 2.6.2. For every δ > 0 there is a δ′ > 0 such that if there is an O(m1+ 3−ω
2(5−ω)

−δ
)-

time algorithm for 4-cycle detection, then there is an O(n2−δ′)-time algorithm for triangle
detection in n-node graphs with maximum degree at most

√
n.

Proof. First, we run the subquadratic-time algorithm from Theorem 2.1.9 with an
arbitrarily small constant ε > 0 and α < (3−ω)/8− ε/2 to be chosen later. Since
the algorithm already checked for each edge in E′ whether it participates in a
triangle, and since each triangle either uses an edge from E′ or is in one of the
Gi’s, it remains to solve triangle detection in each Gi.

For this, we add a dummy node bc on each edge {b, c} ∈ B×C, which converts
any triangle {a, b, c} to a 4-cycle {a, b, bc, c}. Furthermore, since none of the Gi’s
had a 4-cycle before adding the dummy nodes, the existence of a 4-cycle in Gi
implies the existence of a triangle. Therefore, to solve triangle detection, it suffices
to run a 4-cycle detection algorithm in all the obtained Gi’s. Let T(m) = mx be
the time complexity for 4-cycle detection in m-edge graphs. Since each Gi has
O(n1/2+2α) edges with high probability, the total running time for all the Gi’s is

O(n3/2−3α · (n1/2+2α)x) = O(n
3
2−3α+x(1/2+2α))

For x < 1 + α/(1/2 + 2α), this is subquadratic. Hence, by setting α = (3−
ω)/8− ε′, for some ε′ > ε/2, the running time from Theorem 2.1.5 is subquadratic,
and

1 + α/(1/2 + 2α) = 1 +
3−ω

8 − ε′

1/2 + 2(3−ω
8 − ε′)
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> 1 +
3−ω

2(5−ω)
− 8ε′

2(5−ω)

By setting x = 1 + 3−ω
2(5−ω)

− δ, for δ > 8ε′, the total running time for 4-cycle
detection in all the Gi’s is subquadratic, as desired.

Corollary 2.1.10 follows immediately from Theorem 2.6.2. The second and
third bullets follow by essentially the same proof as the one provided for The-
orem 2.6.2. Instead of running a 4-Cycle detection algorithm, we run a triangle
detection in 4-cycle free graphs for the second bullet, and a girth approximation
algorithm for the third bullet.

Corollary 2.6.3 (Hardness for Triangle in 4-Cycle-Free Graphs). Assuming that tri-
angle detection in graphs with maximum degree at most

√
n requires n2−o(1) time, no

algorithm can solve any of the following problems in O(m1+ 3−ω
2(5−ω)

−ε
) time, for any ε > 0:

• Decide if an m-edge graph has a 4-cycle.

• Decide if an m-edge 4-cycle-free graph has a triangle.

• Compute a (5/3− δ)-approximation to the girth of an m-edge graph, for any δ > 0.

2.7 On the Hardness of Triangle

The conditional lower bounds in our work are based on the n2−o(1) time hardness
of two versions of triangle finding in

√
n-degree graphs: The all-edge version of

reporting for each of the n1.5 edges whether it is in a triangle, and the more basic
detection version of just deciding if there is any triangle in the graph. The former is
already known to be hard under either the 3SUM or APSP conjectures [268], two
of the most central conjectures in fine-grained complexity [267, 270], and there-
fore does not need further justification (see also [136] for equivalences to range
reporting problems). The goal of this section is to discuss the latter assumption.

Abboud and Vassilevska Williams [12] introduced the following Triangle Con-
jecture and used it to prove hardness result for dynamic problems; the conjecture
has also been used elsewhere, e.g. in databases [96].

Conjecture 2.7.1 (The Triangle Conjecture [12]). Triangle detection requires m4/3−o(1)

time, for some density regime m = Ω(n). In other words, there exists a constant 1 ⩽ α ⩽
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2 such that for all ε > 0 there is no algorithm that given a graph with n nodes and
m = Θ(nα) edges detects whether it contains a triangle in O(m4/3−ε) time.

They also considered a weaker form of the conjecture where only some Ω(m1+δ)

lower bound is assumed, and a stronger form with an m
2ω

ω+1−o(1) lower bound
even when ω > 2. However, the above m4/3−o(1) is the more natural and popular
hypothesis and it continues to hold even if ω = 2.

While the conjecture does not specify the density for which m4/3−o(1) time is
required, by a simple high-degree low-degree analysis, one can show that the
hardest regime is m = n1.5:

Observation 2.7.2. The Triangle Conjecture is equivalent to the hypothesis that
Triangle detection requires n2−o(1) time in graphs with average degree Θ(

√
n).

Proof. One direction is trivial: If Triangle detection requires n2−o(1) time in graphs
with average degree Θ(

√
n), then for the density regime m = Θ(n3/2) Triangle

detection requires m4/3−o(1) time, so the Triangle Conjecture holds.
For the other direction, suppose that Triangle in graphs with N nodes and

Θ(N1.5) edges can be solved in O(N2−ε) time, for some ε > 0. Given a graph
on n nodes and m edges as input to Triangle, let H be the set of nodes of degree
⩾ m1/3−δ, and let L = V \ H be the nodes of degree at most m1/3−δ.

• To find a triangle that uses any node from L, iterate over all m edges {u, v}
and if one of the endpoints is in L, e.g. u, scan its neighborhood and for each
w ∈ N(u) check if u, v, w is a triangle. This takes O(m ·m1/3−δ) time.

• To find a triangle that only uses nodes from H consider the induced graph
on these N = m/m1/3−δ = m2/3+δ nodes. This graph has only m = O(N1.5)

edges. If the number of edges happens to be o(N1.5) we can artificially turn
it into Θ(N1.5) by simply adding a bipartite graph on N nodes and N1.5

edges (this does not introduce any new triangles). Then, by assumption,
we can find a triangle in this graph in time O(N2−ε) = O((m2/3+δ)2−ε) =

O(m4/3+2δ−2/3ε) = O(m4/3−δ) for δ < ε/10.

In both cases we can solve Triangle detection in time O(m4/3−δ), which refutes the
Triangle Conjecture.
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This does not quite prove an equivalence between our hardness assumption
and the Triangle Conjecture because we do not know how to reduce the average
degree ⩽

√
n case to the maximum degree

√
n case.

Indeed, this issue arises also in the all-edge version where we do not know
how to reduce the general m = n1.5 case to the

√
n-degree case. There, we side-

stepped this discussion by starting from other popular conjectures (3SUM and
APSP) rather than from a hardness assumption about All-Edges-Triangle itself.
Can we do the same here? Unfortunately, basing the Triangle Conjecture on other
popular conjectures such as 3SUM and APSP is a major open question:

Open Question 2.7.3. Can we prove the Triangle Conjecture under other hardness
assumptions such as 3SUM or APSP?

Ever since Pătraşcu’s [231] 3SUM-hardness for the all-edge and listing ver-
sions of Triangle, it has been a pressing open question to prove the same for de-
tection. APSP has been connected to Triangle detection in the work of Vassilevska
Williams and Williams [271] but only in a restricted sense: the two problems are
subcubic-equivalent for combinatorial algorithms in dense graphs. Extending such
results to general algorithms or to sparse graphs is a well-known challenge.

As a side result of independent interest, we make progress towards this goal.
We prove the first conditional lower bound for Triangle detection that is based
on the hardness of a problem of a very similar flavor to 3SUM and APSP: the
Zero-Triangle problem. Importantly, this hardness continues to hold under the
restriction to

√
n-degree graphs, justifying our belief that this is the hard case for

triangles.

Definition 2.7.4 (Zero-Triangle). Given a tripartite graph G = (A× B×C, E) with
integral edge weights w : E → [−W,+W] decide if there is a triangle (a, b, c) ∈
A× B× C with total weight w(a, b) + w(b, c) + w(a, c) = 0.

Ignoring subpolynomial improvements, there are only two algorithms for this
problem. The first is a brute force over all triples and its running time is O(|A| ·
|B| · |C|). In the symmetric setting where |A| = |B| = |C| = n/3 this is O(n3)

and it is optimal under both 3-SUM and APSP conjectures, as long as W = Ω(n3)

[231, 272]. The second algorithm is faster when W is small enough: It applies the
standard exponentiation trick (encoding w as 2w) to reduce summation to multi-
plication and then uses fast matrix multiplication. In the symmetric setting the
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running time is O(W · nω) and otherwise it is a complicated expression that de-
pends on the rectangular matrix multiplication exponent. Assuming ω = 2, the
upper bound simplifies to (W ·N)1+o(1) where N = (|A| · |C|+ |A| · |B|+ |B| · |C|)
is an upper bound on the size of the graph. It is natural to conjecture that these
bounds cannot be broken for Zero-Triangle.

Conjecture 2.7.5 (The Strong Zero-Triangle Conjecture). Solving Zero-Triangle re-
quires (min{WN, |A| · |B| · |C|})1−o(1) time, for any parameters W, |A|, |B|, |C| =
nΘ(1) and where N = (|A| · |C|+ |A| · |B|+ |B| · |C|).

While this conjecture is not known to be implied by the 3-SUM and APSP con-
jectures (because the existing reductions change the ratio of weight W to number
of nodes n) its plausibility has the same source. In fact, it is analogous to the
stronger version of the APSP conjecture recently studied by Chan, Vassilevska,
and Xu [106]. Notably, Zero-Triangle is a problem that is hard due to the weights
and the addition operator and not due to the graph structure: the input graph may
be assumed to be complete. Thus, we find it surprising that it explains the hard-
ness of our purely structural subgraph detection problems; in particular it gives a
tight lower bound for Triangle:

Theorem 2.7.6. If Triangle detection in graphs with maximum degree
√

n can be solved
in O(n2−ε) time, for some ε > 0, then Zero-Triangle with |A| = n, |B| = |C| =

√
n

and W =
√

n can be solved in O(n2−ε) time, and the Strong Zero Triangle Conjecture is
false.

Proof. Given an instance of Zero-Triangle with |A| = n, |B| = |C| =
√

n and
W =

√
n we construct an unweighted graph as follows. Each node in u ∈ B∪C is

copied 6W + 1 times u−3W , . . . , u3W where ui represents both the node u and the
integer value i. A node a ∈ A has a single copy in the new graph.

An edge of weight x from a ∈ A to b ∈ B becomes an edge from a to bx. An
edge of weight y from a ∈ A to c ∈ C becomes an edge from a to c−y. On the other
hand, an edge of weight z from b ∈ B to c ∈ C becomes a matching between the bi
and cj nodes such that there is an edge between bi and ci+z for all i ∈ [−2W, 2W].

A zero-triangle (a, b, c) with weights w(a, b) = x, w(a, c) = y, w(b, c) = z be-
comes a triangle a, bx, c−y. The edges (a, bx) and (a, c−y) exist by definition, and
the third edge exists because −y = x + z. By a reverse argument, any triangle in
the new graph corresponds to a zero-triangle in the original graph.
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The reduction is rather simple but we find the statement quite interesting.
First, it bases the Triangle Conjecture (and our hardness for 4-Cycle) on a hard-
ness assumption of a very different nature. Second, it makes a substantial step
towards establishing the Triangle Conjecture under the more central 3-SUM or
APSP Conjectures. And third, assuming ω = 2, it pinpoints a challenge that one
must resolve before making any further progress on Triangle, the lower bound is
completely tight for all density regimes (due to Observation 2.7.2).

2.8 Reduction from Triangle or 4-Cycle to any k-Cycle

For completeness, we include a proof of the following statement. The components
of this proof are considered folklore.

Theorem 2.8.1. For any integer k ⩾ 3 one of the following is true:

• There is a reduction that given an m-edge tripartite graph G runs in O(m) time
and constructs a graph G⋆ such that the k-cycles in G⋆ are in 1-to-1 correspondence
with the triangles in G.

• There is a reduction that given an m-edge graph G runs in O(m) time and con-
structs a graph G⋆ such that the k-cycles in G⋆ are in 1-to-1 correspondence with
the 4-cycles in G.

Recall that in Triangle detection we can assume without loss of generality that
the input graph is tripartite, so this condition makes no big difference.

By Theorem 2.8.1, if k-Cycle detection can be solved in time O(mα), for some
α ⩾ 1, then either Triangle or 4-Cycle detection can also be solved in time O(mα).
Moreover, if after O(mα) preprocessing we can enumerate k-cycles with mo(1) de-
lay, then the same is true for enumerating either triangles or 4-cycles.

Lemma 2.8.2. Let r | k be two positive fixed integers such that r divides k. There is a
reduction that given an m-edge graph G runs in O(m) time and constructs a graph G⋆

such that the k-cycles in G⋆ are in 1-to-1 correspondence with the r-cycles in G.

Proof. We can assume that 3 ⩽ r < k, as otherwise the claim is straightforward.
Let G be a graph with m edges, we construct the graph G⋆ by replacing each edge
of G with a path of length k

r (that is, each edge of G is subdivided by k
r − 1 vertices).
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The number of edges in G⋆ is k
r m = O(m), and constructing G⋆ from G takes O(m)

time. We prove the claim by showing that G⋆ contains a k-cycle if and only if G
contains an r-cycle.

If G contains an r-cycle, then after the subdivision of its edges this r-cycle cor-
responds to a k-cycle in G⋆. On the other hand, any simple cycle in G⋆ can be
partitioned into paths of length k

r corresponding to the full subdivision of edges
from G. This holds as the degree of every subdividing vertex is exactly 2. Hence,
every cycle in G⋆ is of size divisible by k

r and such cycle of size k
r · x must cor-

respond to a cycle of size x in G. In particular, if G⋆ contains a k-cycle then G
contains an r-cycle.

Lemma 2.8.3. Let k ⩾ 3 be any odd fixed integer. There is a reduction that given an
m-edge tripartite graph G runs in O(m) time and constructs a graph G⋆ such that the
k-cycles in G⋆ are in 1-to-1 correspondence with the triangles in G.

Proof. Let G be a tripartite graph with m edges and vertex sets V = A ∪ B ∪ C.
We construct G⋆ by replacing every edge of G with endpoints in B and C with a
path of length k− 2 (that is, we subdivide each edge of E(G) ∩ (B× C) by k− 3
vertices). The number of edges in G⋆ and the time to construct it are O(m). If G
contains a triangle then G⋆ clearly contains a corresponding k-cycle. It is left to
prove that if G⋆ contains a k-cycle then G contains a triangle.

Denote by D(i) for 1 ⩽ i ⩽ k− 3 the set of all i-th vertices in a subdivision of
some subdivided edge. The graph G⋆ is homomorphic to the k-cycle by the parti-
tion A, B, D(1), . . . , D(k−3), C. Any k-cycle in G⋆ must include exactly one vertex in
each of the parts A, B, D(1), . . . , D(k−3), C, since the k-cycle is not bipartite yet after
the removal of any of these parts the remaining graph is homomorphic to a path
and hence bipartite. Due to the degree of each vertex in a part D(i) being exactly 2,
such a cycle is necessarily a triangle of G with one subdivided edge. This follows
in a similar manner to the proof of Lemma 2.8.2.

Proof of Theorem 2.8.1. Let k ⩾ 3. If k is not a power of 2, then it has an odd prime
divisor p and hence we can apply Lemma 2.8.3 to reduce from Triangle detection
to p-Cycle detection, and then apply Lemma 2.8.2 to reduce from p-Cycle detec-
tion to k-Cycle detection, to prove the theorem. Otherwise, k ⩾ 3 is a power of 2
and in particular is divisible by 4. Then we can use Lemma 2.8.2 to reduce from
4-Cycle detection to k-Cycle detection.
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We note that the components in the proof of Theorem 2.8.1 (and any other pre-
viously known technique) do not show that if 4-Cycle detection is linear then so
is Triangle detection. The reason that a similar argument fails is that as a bipartite
graph, a 4-cycle can appear between any of the three pairs of parts in G. On the
other hand, we observe that if the original graph G contains no 4-cycle, then a
similar reduction does work.
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Chapter 3

Hardness of Approximation for
Distributed Diameter

This chapter is based on a joint work with Ofer Grossman and Ami Paz [170], in
which we show improved hardness of approximation results for diameter com-
putation in the CONGEST model.

3.1 Introduction

We study the problem of computing the exact or approximate value of the diame-
ter D in the distributed CONGEST model [7,100,101,155,178,179,181,184,207,236].

As discussed in Chapter 1, Section 1.2.3, computing the exact diameter takes
Θ(n/ log n + D) rounds [155,184], whereas a 1/2-approximation takes only O(D)

rounds by running a BFS from some node v and returning the depth of the BFS
tree. Moreover, a simple indistinguishability argument shows that there is no
o(D)-round algorithm for any constant approximation.

This leads to the following natural question: What is the best approximation
value 1/2 < α < 1 for which there is a time-optimal distributed CONGEST algo-
rithm that finds an α-approximation? In other words, what’s the best approxima-
tion factor that we can find in O(D) rounds?

Our main result in this work is that there is no algorithm that finds better than a
6/11-approximation in O(D) rounds. Specifically, we show that even for constant
values of D, any such algorithm must take Ω(n1/6/ log n) rounds.
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Approx. Bound Ref. and Comments

Exact Θ̃(n) [155, 184]
2 vs. 3 Ω̃(n) [181]
⌊2/3D⌋ < D̃ ⩽ D O(n1/2 + D) [178]
2/3 + ϵ Ω̃(n) [7]
3 vs. 5 Ω̃(n) This work (Theorem 3.1.4)
3/5 + ϵ Ω̃(n1/3) This work (Theorem 3.1.3)
4/7 O(n1/3 + D) [32]
4/7 + ϵ Ω̃(n1/4) This work (Theorem 3.1.2)
6/11 + ϵ Ω̃(n1/6) This work (Theorem 3.1.1)
1/2 O(D) Folklore

Table 3.1: A summary of the state of the art results for diameter approximation.

3.1.1 Our Contribution

Our main result is the following theorem.

Theorem 3.1.1. For any constant 0 < ϵ < 5/11, any algorithm for finding a (6/11 +

ϵ)-approximation for the diameter in the CONGEST model requires Ω(n1/6/ log n) rounds.

We prove analogous theorems for (4/7 + ϵ)-approximation and (3/5 + ϵ)-
approximation, with lower bounds of Ω(n1/4/ log n) and Ω(n1/3/ log n), respec-
tively.

Theorem 3.1.2. For any constant 0 < ϵ < 3/7, any algorithm for finding a (4/7 + ϵ)-
approximation for the diameter in the CONGEST model requires Ω(n1/4/ log n) rounds.

Theorem 3.1.3. For any constant 0 < ϵ < 2/5, any algorithm for finding a (3/5 + ϵ)-
approximation for the diameter in the CONGEST model requires Ω(n1/3/ log n) rounds.

These results hold even against constant diameter graphs and even against
randomized algorithms that succeed with probability at least 2/3. Prior to our
work, besides the near-linear lower bound of Frischknecht et al. [155] for exact
diameter, only a lower bound for (2/3 + ϵ)-approximation was known: In the
same work by Frischknecht et al., they showed an Ω(

√
n/ log n) lower bound

for this approximation factor, and Abboud et al. [7] improved their result all the
way up to Ω(n/ log3 n) lower bound. Theorems 3.1.1, 3.1.2, and 3.1.3, as well as
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the aforementioned lower bounds, also apply for algorithms that allow a constant
additive error, in addition to the multiplicative one, as we explain in Section 3.1.2.

Diameter 3 vs 5: Next, we prove that distinguishing graphs of diameter 3
from graphs of diameter 5 requires a near-linear number of rounds.

Theorem 3.1.4. Any algorithm for distinguishing graphs of diameter 3 from graphs of
diameter 5 in the CONGEST model requires Ω(n/ log n) rounds.

We find this result rather surprising. There exists an algorithm [178] running
in O(

√
n log n + D) rounds and returning an estimate ⌊2D

3 ⌋ ⩽ D̃ ⩽ D. While the
rounding in this equation might seem like an artifact of the proof, Theorem 3.1.4
shows that it is actually necessary.

That is, an algorithm for finding an estimate 2
3 D ⩽ D̃ ⩽ D can be used to

distinguish diameter 3 from diameter 5, and we show that such a distinction must
require Ω(n/ log n) rounds — much more than the O(

√
n log n+ D) running time

of the algorithm of [178].
Our proofs use the well-established technique of reductions from Communi-

cation Complexity to the CONGEST model [7, 43, 99, 103, 119, 132, 140, 150, 155,
162, 168, 180, 224, 237, 252]. Our main technical novelty is an interesting connec-
tion between extremal combinatorics, and specifically the existence of generalized
polygons [156], and diameter approximation. This extends prior work connecting
extremal combinatorics and distributed computing [102, 132, 150].

3.1.2 Robust Approximation

When dealing with diameter approximation, an important distinction to make is
between robust and non-robust lower bounds. For example, as discussed above, an
algorithm that finds an approximation D̃ of the diameter satisfying ⌊2D

3 ⌋ ⩽ D̃ ⩽ D
does not in general imply a 2

3 -approximation.
However, as the diameter gets larger, the approximation ratio does approach

2/3. One way to view this is by saying that our 3 vs 5 lower bound is not a “ro-
bust” lower bound for (3/5+ ϵ)-approximation. To show a “robust” lower bound
for (3/5 + ϵ)-approximation, we need a stronger result, i.e., that for any constant
β, it is hard to distinguish between graphs of diameter (3/5)D− β and graphs of
diameter D. This would show that finding a (3/5 + ϵ)-approximation of the di-
ameter is hard not only in some low-diameter graphs, but also more generally. We
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formally define the notions of α-approximation for diameter and robust diameter
lower bound.

Definition 3.1.5 (α-approximation for diameter). We say that an estimate D̃ is an
α-approximation for diameter if

αD ⩽ D̃ ⩽ D.

Definition 3.1.6 (Robust diameter lower bound). We say that α-approximating the
diameter is robustly T(n)-hard if for any constant β, there is no algorithm which
returns a value D̃ satisfying

αD− β ⩽ D̃ ⩽ D

in o(T(n)) rounds in the CONGEST model.

In this work, we prove both robust and non-robust lower bounds. The lower
bounds presented in Theorems 3.1.1, 3.1.2, and 3.1.3 are robust, while the lower
bound that is presented in Theorem 3.1.4 is not robust.

Notably, for a (3/5+ ϵ)-approximation, we give a robust Ω(n1/3/ log n) lower
bound, and a non-robust lower bound of Ω(n/ log n). The work of [178] rules out
a robust lower bound better than Ω(

√
n log n), even for 2/3-approximation. This

shows that there is an inherent, and large, gap between the robust and non-robust
lower bounds.

This distinction between robust and non-robust approximation has been noted
before, though not using this terminology. Holzer and Wattenhofer [181] showed
that distinguishing diameter 2 from diameter 3 requires Ω(n/ log n) rounds, a re-
sult that can be viewed as a non-robust (2/3+ ϵ)-approximation lower bound. As
discussed earlier, a robust lower bound of Ω(n/ log3 n) for the same approxima-
tion factor was later proven by Abboud et al. [7].

3.1.3 Further Related Work

The lower bound of Abboud et al. [7] for (2/3 + ϵ)-approximation follows from
a lower bound for distinguishing between diameter 4ℓ+ 2 and 6ℓ+ 1, for some
constant ℓ > 1. Bringmann and Forster improved this result by showing the same
hardness for distinguishing diameter 2ℓ+ 1 and 3ℓ+ 1 [90].
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In a concurrent work [32], the authors show an upper bound of O(n1/3 + D)

for computing a 4/7-approximation for diameter.
All the results that are presented in this work are for unweighted graphs. For

weighted graphs, Holzer and Pinsker [179] showed that (1/2+ ϵ)-approximation
requires Ω(n/ log n) rounds. For (1/2)-approximation in the weighted case, one
can compute single source shortest paths. The state of the art algorithm for single
source shortest paths in the CONGEST model is by Forster and Nanongkai [154],
who showed two algorithms for the problem. The first running in Õ(

√
nD) rounds

and the second running in Õ(
√

nD1/4 + n3/5 + D) rounds.

Road-map: In Section 3.2 we start with some basic definitions. The technical
heart of this chapter is in Sections 3.3 and 3.4. Theorem 3.1.4 is proved in Sec-
tion 3.3, and Theorems 3.1.1, 3.1.2, and 3.1.3 are proved in Section 3.4.

3.2 Preliminaries

3.2.1 Basic Notations

For a graph H that is not the input graph, we denote its set of nodes and edges
by VH and EH, respectively. The distance between two nodes u, v in a graph G is
denoted by dG(u, v), and is the minimum number of hops in a path between them
in G. The diameter D of the graph is the maximum distance between two nodes
in it. The girth of the graph g is the minimum length of a cycle in it.

3.2.2 Communication Complexity

In the two-party communication setting [205,274], two players, Alice and Bob, are
given two input strings, x, y ∈ { 0, 1 }K, respectively, and need to jointly compute
a function f : { 0, 1 }K × { 0, 1 }K → { TRUE, FALSE } of their inputs, using a pre-
defined communication protocol. The communication complexity of a function f is
defined as follows. Definition 3.2.1 is a special case of Definition 6.2.1 that will be
used later in Chapter 6.

Definition 3.2.1. [Communication Complexity]
Let K ⩾ 1 be an integer, f be a function f : {0, 1}K × {0, 1}K → {TRUE, FALSE},
andQ be the family of protocols that compute f correctly with probability at least
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2/3. Given 2 inputs x, y ∈ {0, 1}K, denote by πQ(x, y) the transcript of a protocol
Q on the inputs x, y, i.e., the sequence of bits that are exchanged between Alice
and Bob. The cost of a protocol Q is Cost(Q) = maxx,y∈{0,1}k |πQ(x, y)|.

The communication complexity of f , denoted by CC f (K), is defined to be the
minimum cost over all the possible protocols that compute f correctly with prob-
ability at least 2/3: CC f (K) = minQ∈Q Cost(Q).

Definition 3.2.2. [Set-Disjointness] The Set-Disjointness function is defined as
follows. For two strings x, y ∈ {0, 1}K, we say that x and y are not disjoint if and
only if there is some index i ∈ [K] such that xi = yi = 1. Otherwise we say that
the strings are disjoint.

It is well known that the communication complexity of Set-Disjointness is
Ω(K) [254].

Remark 3.2.3. Adding 0 bits to both input strings in matching locations does not
change the output. Thus, we can assume a constant fraction of both input strings
is 0 without affecting the asymptotic communication complexity. We use this fact
in Section 3.4.

3.2.3 Lower Bound Graphs

Our lower bounds use the standard notion of family of lower bound graphs (see,
e.g., [103]).

Definition 3.2.4. (Family of Lower Bound Graphs)
Let K > 1 be an integer, f : { 0, 1 }K × { 0, 1 }K → { TRUE, FALSE }, and P be
a graph predicate. A family of graphs {G(x,y) = (V(x,y), E(x,y)) | x, y ∈ { 0, 1 }K }
where each G(x,y) has a partition of the set of nodes V(x,y) = VA∪̇VB is said to be a
family of lower bound graphs w.r.t. f and P if the following properties hold:

1. Only the existence of nodes in VA or edges in VA ×VA may depend on x;

2. Only the existence of nodes in VB or edges in VB ×VB may depend on y;

3. G(x,y) satisfies the predicate P iff f (x, y) = TRUE.
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For such a family, we denote by cut(A, B) the the set of edges between VA
and VB. We use the following theorem, which is standard in the context of re-
ductions to communication complexity (see, for example [7,103,132,155,179]). Its
proof is by a standard simulation argument and appears in [103].

Theorem 3.2.5. Fix a function f : { 0, 1 }K × { 0, 1 }K → { TRUE, FALSE } and a predi-
cate P. If there is a family of lower bound graphs w.r.t. f and P, then any algorithm for

deciding P in the CONGEST model requires at least Ω
(

CC f (K)
|cut(A,B)| log n

)
rounds.

d

3.2.4 Generalized Polygons

Our proofs in Section 3.4 use the existence of generalized polygons [156]. A gen-
eralized polygon is an incidence relation whose incidence graph has several nice
properties. In our context, we use the following key property of a a generalized
polygon’s incidence graph: its girth is twice its diameter. For the sake of simplify-
ing the presentation, we also use the fact that the incidence graphs are balanced.

We use the notation H = (L, R, EH) to denote a bipartite graph H, where the
bi-partition of the vertex set of H is L and R, and the set of edges of H is EH. When
|L| = |R| = p, we say that H is a balanced bipartite graph of size 2p.

Definition 3.2.6. For two integers p ⩾ t ⩾ 3, we denote by Ex(p, t) the maximum
number of edges in a balanced bipartite graph of size 2p, diameter t, and girth 2t.

For t ∈ {3, 4, 6}, there are generalized polygons whose incidence graph has 2p
nodes, diameter t, girth 2t, and Θ(p1+ 1

t−1 ) edges. The cases of t = 3 and t = 4 were
shown by Singelton [259], and Benson [72] gave a simplified proof and extended
the result for t = 6. This is summarized in the following theorem, which will be
used later without explicitly re-mentioning generalized polygons.

Theorem 3.2.7 ( [72, 259]). For t ∈ {3, 4, 6}, it holds that Ex(p, t) = Ω(p1+ 1
t−1 ).

3.3 Diameter 3 vs 5

In this section we prove the following theorem.
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Theorem 3.1.4 Any algorithm for distinguishing graphs of diameter 3 from graphs of
diameter 5 in the CONGEST model requires Ω(n/ log n) rounds.

To prove Theorem 3.1.4, we show a family of lower bound graphs {G(x,y) |
x, y ∈ {0, 1}K} with respect to the Set-Disjointness function and the graph pred-
icate that distinguishes between graphs of diameter 3 and graphs of diameter 5.
That is, the predicate is defined only on a graph G with either 3 or 5, and is TRUE

if and only if G has diameter 5. We start with the fixed graph construction G and
then we show how to get the graph G(x,y) given two strings x, y ∈ {0, 1}K.

The Fixed Graph Construction G: The fixed graph construction is defined
as follows. There are 8 sets of nodes S, C1, A1, B1, C2, A2, B2, T, each of size p =

n/8. Each of the sets S, A1, B1, A2, B2, T is an independent set, and C1 and C2 are
cliques. The nodes in the sets are denoted S = {si | i ∈ [p]}, T = {ti | i ∈ [p]}, and
for h ∈ {1, 2}, Ah = {ah

i | i ∈ [p]}, Bh = {bh
i | i ∈ [p]}, and Ch = {Ch

i | i ∈ [p]}.
The connections between the sets are defined as follows. Each pair of sets

H1 ̸= H2 ∈ {S, C1, A1, B1} is connected by a perfect matching, where we connect
the i’th node in H1 to the i’th node in H2. For example, the sets S and C1 are
connected by the perfect matching {(si, c1

i ) | i ∈ [p]}. Similarly, each pair of sets
in {T, C2, A2, B2} is connected by a perfect matching. This concludes the fixed
graph construction G. Let K = p2. We define the graph G(x,y), given two strings
x, y ∈ {0, 1}K, as follows.

Obtaining G(x,y) from G and x, y ∈ {0, 1}K: For each of the strings x and
y, we index the K = p2 positions by x(i,j) and y(i,j) for i, j ∈ [p]. The set of nodes
of G(x,y) is exactly as in G. The set of edges of G(x,y) contains all the edges in G,
and the following edges between pairs of nodes in A1 × A2 and between pairs of
nodes in B1 × B2.

{(a1
i , a2

j ) | x(i,j) = 0}; {(b1
i , b2

j ) | y(i,j) = 0}.

That is, if x(i,j) = 0, we add an edge between a1
i and a2

j , and if y(i,j) = 0, we
add an edge between b1

i and b2
j . This concludes the definition of G(x,y) (See also

Figure 3.1, for an illustration). Next, we prove that G(x,y) has diameter 3 if the
strings x and y are disjoint, and otherwise it has diameter at least 5. We prove this
in Lemmas 3.3.1 and 3.3.2.
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Lemma 3.3.1. If the strings x and y are disjoint, then the diameter of G(x,y) is 3.

Proof. We show that for any two nodes u, v, dG(x,y)
(u, v) ⩽ 3. Let L = S ∪ C1 ∪

A1 ∪ B1, and let R = T ∪ C2 ∪ A2 ∪ B2 The proof is by the following case analysis.

1. u, v ∈ L or u, v ∈ R: We prove the claim for the case in which u, v ∈ L. The
case for which u, v ∈ R is similar. Observe that any node in L is connected
by an edge to some node in C1. Hence, since C1 is a clique, this implies that
dG(x,y)

(u, v) ⩽ 3.

2. u ∈ L and v ∈ R: Hence, u belongs to one of the sets in {S, C1, A1, B1} and
v belongs to one of the sets in {T, C2, A2, B2}. We assume that u ∈ S and
v ∈ T; the proof for the other cases is similar. Let i be such that u = si, and
j such that v = tj. Since the sets are disjoint, it holds that either x(i,j) = 0, or
y(i,j) = 0 (or both). Hence, either there is an edge between a1

i and a2
j , or there

is an edge between b1
i and b2

j (or both), and assume the former without loss
of generality. Since si is connected to a1

i and tj is connected to a2
j , we have

dG(x,y)
(si, tj) ⩽ 3. Furthermore, one can verify that the distance between si

and tj cannot be smaller than 3, which implies that the diameter of the graph
is 3.

Lemma 3.3.2. If the strings x and y are not disjoint, then the diameter of G(x,y) is at
least 5.

Proof. As the sets are not disjoint, there are i, j ∈ [p] for which it holds that x(i,j) =
y(i,j) = 1. We show that in this case, any path P from si to tj is of length at least 5,
i.e., dG(si ,tj)

(u, v) ⩾ 5. Observe that any path P from si to tj must either pass from a

node in A1 to a node in A2, or from a node in B1 to a node in B2. We assume that
former case; the latter is similar. The proof is by the following case analysis.

1. The path P visits a node a2
j′ ∈ A2 for which j′ ̸= j: Observe that dG(x,y)

(si, a2
j′) ⩾

2, and that dG(x,y)
(a2

j′ , tj) = 3. Hence, dG(x,y)
(si, tj) ⩾ 5.

2. The path P visits a2
j . Since x(i,j) = 1, there is no edge between a1

i and a2
j . This

implies that dG(x,y)
(si, a2

j ) ⩾ 4, and hence dG(x,y)
(si, tj) ⩾ 5.
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Figure 3.1: Diameter 3 vs 5: An example for the graph construction G(x,y) for
p = 3: There are 8 sets of nodes S, C1, A1, A2, C2, B1, B2, T, each of size p = 3.
Each of the sets S, A1, A2, B1, B2, T forms an independent set, and the sets C1 and
C2 are cliques. In this diagram, an edge between two sets represents a perfect
matching connecting them. For example, the edge between S and C1 represents
all the edges in {(si, c1

i ) | i ∈ [p]}. The dashed edges between A1 and A2 are the
input edges which depend on the input sting x. Recall that we index the p2 = 9
positions of x by pairs of indices (i, j) ∈ [p]× [p]. In this example, we have that
x(1,3) = x(2,2) = 0, and all the other bits of x are 1’s. Hence, the only edges between
A1 and A2 are (a1

1, a2
3) and (a1

2, a2
2). Similarly, the dashed edges between B1 and B2

represent the input edges which depend on the string y. Since in this example we
have y(1,3) = y(3,1) = 0, and all the other bits of y are 1’s, the only edges between
B1 and B2 are (b1

1, b2
3) and (b1

3, b2
1).

Proof of Theorem 3.1.4. First, we define VA = S∪ T∪ A1∪ A2∪C1∪C2, and VB =

B1 ∪ B2. Lemmas 3.3.1 and 3.3.2 imply that {G(x,y) | x, y ∈ {0, 1}K} is a family of
lower bound graphs with respect to the Set-Disjointness problem and the graph
predicate that distinguishes between graphs of diameter 3 and graphs of diameter
5. Observe that the cut size is E(VA, VB) = Θ(p), and p = Θ(n). Hence, since the
length of the input strings is K = p2, and since the communication complexity of
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Set-Disjointness is Ω(K) = Ω(p2), Theorem 3.2.5, implies that any algorithm for
deciding whether a graph has diameter 3 or 5 in the CONGEST model requires
Ω(p2/p log p) = Ω(p/ log p) = Ω(n/ log n) rounds.

The connectivity of G(x,y): One may wonder about the connectivity of G(x,y).
If the graph G(x,y) is not connected, then the construction wouldn’t be meaningful
as there is a trivial lower bound of Ω(D), where D is the diameter of the graph,
which is ∞ in graphs that are not connected. Observe that the only case in which
G(x,y) is not connected is when x = y = 1K. To ensure connectivity (and in fact
constant diameter, due to the cliques C1 and C2), we can assume that at least one
of the strings x or y has a zero bit. Clearly, the communication complexity of Set-
Disjointness doesn’t change under this assumption. In fact, Remark 3.2.3 allows
to make an even stronger assumption, which we only need in the next section.

3.4 Robust Lower Bounds

In this section we prove robust lower bounds for (6/11+ ϵ)-approximation, (4/7+
ϵ)-approximation, and (3/5 + ϵ)-approximation of the diameter.

Theorem 3.4.1. Let t ∈ {3, 4, 6}. For any constant 0 < ϵ < 1− t
2t−1 , any algorithm for

computing a ( t
2t−1 + ϵ)-approximation to the diameter in the CONGEST model requires

Ω
(
n1/t/ log n

)
rounds, where n is the number of nodes in the input graph.

The theorem has the following consequences, when plugging in t = 6, t = 4
and t = 3, in this order.

Theorem 3.1.1 For any constant 0 < ϵ < 5/11, any algorithm for finding a (6/11 +

ϵ)-approximation for the diameter in the CONGEST model requires Ω(n1/6/ log n) rounds.

Theorem 3.1.2 For any constant 0 < ϵ < 3/7, any algorithm for finding a (4/7 + ϵ)-
approximation for the diameter in the CONGEST model requires Ω(n1/4/ log n) rounds.

Theorem 3.1.3 For any constant 0 < ϵ < 2/5, any algorithm for finding a (3/5 + ϵ)-
approximation for the diameter in the CONGEST model requires Ω(n1/3/ log n) rounds.

Recall that Ex(p, t) is the maximum number of edges of a balanced bipartite
graph of size 2p, diameter t, and girth 2t (see Definition 3.2.6). Let t ∈ {3, 4, 6}, p ⩾
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t and let K = Ex(p, t). To prove Theorem 3.4.1, we show a family of lower bound
graphs {G(x,y) | x, y ∈ { 0, 1 }K } with respect to the Set-Disjointness function and
the graph predicate that distinguishes between graphs of diameter t(b + 1) + 1
and graphs of diameter (2t− 1)b, for some integer b = Θ(1/ϵ) that will be chosen
later.

The rest of this section is organized as follows. In section 3.4.1, we start with
the description of G(x,y) given two strings x, y ∈ {0, 1}K. In section 3.4.2, we show

that {G(x,y) | x, y ∈ { 0, 1 }K } is a family of lower bound graphs with the required
properties. In Section 3.4.3, we deduce Theorem 3.4.1. While the graphs G(x,y)
need to be connected, we ignore this fact in Section 3.4.1; in Section 3.4.4 we show
how to slightly modify the construction so that the graphs become connected (and
even of constant diameter) for any x and y.

3.4.1 Description of G(x,y)

Given two strings x, y ∈ { 0, 1 }K, we describe the graph G(x,y) in three steps. In
the first step, given a string z ∈ {0, 1}K, we define a bipartite graph Hz. Roughly
speaking, Hz is obtained from a densest possible balanced bipartite graph H of
size 2p, diameter t and girth 2t, where we keep only some of the edges of H in
Hz according to the string z. In the second step, we define a graph H̃z, which is
obtained form Hz by stretching each edge to a path of length b. In the third step,
we describe how to get G(x,y) from H̃x and H̃y.

Description of Hz: Let H = (L, R, EH) be a balanced bipartite graph of size
2p, diameter t, girth 2t, and a maximum number of edges. That is, the number of
edges of H is |EH| = Ex(p, t) = K. We denote the nodes of H by L = {ℓ1, · · · , ℓp}
and R = {r1, · · · , rp}. Furthermore, let π : EH → [K] be an enumeration of
EH, that is, π is an arbitrary ordering over the set of pairs EH ⊆ L × R. By this
mapping, each bit of a string z ∈ {0, 1}K corresponds to a unique edge in EH.

Given a string z ∈ {0, 1}K, the graph Hz is defined as follows. Hz is a version of
H where we keep only the edges for which the corresponding bits in z are 0. More
formally, Hz = (Lz, Rz, EHz) is a balanced bipartite graph with |Lz| = |Rz| = p,
where Lz = {ℓz

1, · · · , ℓz
p} and Rz = {rz

1, · · · , rz
p}. A pair of nodes (ℓz

i , rz
j ) ∈ Lz × Rz

is connected by an edge in Hz if (ℓi, ri) is an edge of H and zπ(ℓi,ri)
= 0, that is,
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Figure 3.2: An example for H and Hz. In this example t = p = 3 and there-
fore H is a bipartite graph of diameter t = 3 and girth 2t = 6. For these pa-
rameters, we have K = Ex(3, 3) = 6. Recall that π : EH → [K] is an arbitrary
1 : 1 mapping from the set of pairs (ℓi, rj) ∈ EH to [K]. In this example, we
choose π(ℓ1, r1) = 1, π(ℓ1, r2) = 2, π(ℓ2, r1) = 3, π(ℓ2, r3) = 4, π(ℓ3, r2) = 5 and
π(ℓ3, r3) = 6. Furthermore, in this example we have z = 010010. Hence, since Hz

is obtained from H by keeping only the edges that correspond to the 0 bits in z,
we have that the only edges in Hz are (ℓz

1, rz
1), (ℓ

z
2, rz

1), (ℓ
z
2, rz

3) and (ℓz
3, rz

3).

EHz = {(ℓz
i , rz

j ) | (ℓi, rj) ∈ EH ∧ zπ(ℓi,rj)
= 0}. See Figure 3.2 for an illustration of

obtaining Hz from H and an input string z ∈ {0, 1}K.

Description of H̃z: H̃z is obtained from Hz by replacing each edge (ℓz
i , rz

j ) ∈
EHz with a path of b + 1 nodes and b edges, starting at ℓz

i and ending at rz
j , where

b is some positive integer to be chosen later. We denote this path by Pz
(ℓz

i ,rz
j )

. We

slightly abuse notation and denote the set of nodes on this path also by Pz
(ℓz

i ,rz
j )

. We

sometimes treat Pz
(ℓz

i ,rz
j )

as a set of nodes, and sometimes as a path, but this will be

clear from the context. Hence, the set of nodes of H̃z is

VH̃z = Lz ∪ Rz ∪
⋃

(ℓz
i ,rz

j )∈EHz

Pz
(ℓz

i ,rz
j )

and the edges of H̃z are only the ones on the paths in {Pz
(ℓz

i ,rz
j )
| (ℓz

i , rz
j ) ∈ EHz}.

Observe that H̃z is not necessarily bipartite. See also Figure 3.3 for an illustration
of how to obtain H̃z from Hz.
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Figure 3.3: An illustration of how to obtain H̃z from Hz for b = 3. The other
parameters in this example are exactly as the ones chosen for Figure 3.2. That is,
t = p = 3 and π(ℓ1, r1) = 1, π(ℓ1, r2) = 2, π(ℓ2, r1) = 3, π(ℓ2, r3) = 4, π(ℓ3, r2) =

5 and π(ℓ3, r3) = 6. H̃z is obtained from Hz by simply stretching each edge in Hz

to a path of length b.

Obtaining G(x,y) from H̃x and H̃y: Given two input strings x, y ∈ {0, 1}K,
G(x,y) is composed of H̃x and H̃y where we add a perfect matching between Lx and
Ly, {(ℓx

i , ℓy
i ) | i ∈ [p]}, and a perfect matching between Rx and Ry, {(rx

i , ry
i ) | i ∈

[p]}. This concludes our construction. See also figures 3.4 and 3.5 for illustrations
of G(x,y). In these figures, we also illustrate H̃z for z = x ∧ y, where the string
x∧ y ∈ {0, 1}K is defined by (x∧ y)h = xh · yh for any h ∈ [K]. That is, (x∧ y)h = 1
if and only if xh = yh = 1. The reason that we illustrate H̃z in the same figures is
that our proof heavily relies on comparing distances in G(x,y) to distances in H̃z for
z = x ∧ y. Figure 3.4 is an illustration of the two graphs when the strings are not
disjoint, while Figure 3.5 is an illustration of the two graphs when the strings are
disjoint. Before we prove that {G(x,y) | x, y ∈ {0, 1}K } is a family of lower bound
graphs, we show the following two useful properties of the balanced bipartite
graph H = (L, R, EH) that was described above.

Property 1. If t is odd, then the distance between any two nodes u, v ∈ L in H is at most
t− 1. Similarly, the distance between any two nodes u, v ∈ R in H is at most t− 1.

Proof. The distance between every two nodes in H is at most its diameter t, but
the distance between every two nodes in the same side of the bi-partition is even,
so it is at most t− 1.
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Property 2. If t is even, then the distance between any pair of nodes u ∈ L and v ∈ R in
H is at most t− 1.

Proof. The distance between every two nodes in H is at most its diameter t, and
the distance between two nodes in different sides of the bi-partition is odd, so it is
at most t− 1.

3.4.2 G(x,y) is a family of lower bound graphs

Our goal in this section is to prove that {G(x,y) | x, y ∈ {0, 1}K} is a family of lower
bound graphs with respect to the Set-Disjointness function and the graph predi-
cate that distinguishes graphs of diameter t(b + 1) + 1 from graphs of diameter
(2t− 1)b. Let z = x ∧ y. Our proof relies on comparing distances between nodes
in G(x,y) to distances between nodes in H̃z. While the proof contains many techni-
cal details that require some care, it follows from the following simple intuition.

Intuition and overview of the proof: First, it is not very hard to see that the
diameter of G(x,y) is roughly equal to the diameter of H̃z (up to an additive t + 1).
Hence, it suffices to argue that if the strings x and y are disjoint, then the diameter
of H̃z is at most tb, and otherwise the diameter of H̃z is at least (2t − 1)b. The
main idea is to note that Hz is isomorphic to H if and only if the strings x and y
are disjoint. Hence, if the strings are disjoint, the diameter of Hz is equal to the
diameter of H which is t, and since H̃z is obtained from Hz by stretching each
edge to a path of length b, the diameter of H̃z is tb.

On the other hand, if Hz is not isomorphic to H, then there is an edge in H
for which the corresponding edge in Hz doesn’t exist. Since the girth of H is 2t,
it implies that there are two nodes in Hz at distance at least (2t − 1) from each
other. Hence, the distance between the corresponding two nodes in H̃z is at least
(2t− 1)b. Next, we formalize these ideas and give a more detailed proof. The non-
disjointness case is proved in Lemma 3.4.5, which uses claims 3.4.2, 3.4.3 and 3.4.4.
The disjointness case is proved in Lemma 3.4.9, which uses claims 3.4.6, 3.4.7,
and 3.4.8. Recall that given a graph G and two nodes u, v in it, we denote by
dG(u, v) the distance between u and v in G.
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Non-disjointness case:

Claim 3.4.2. If x and y are not disjoint, then the diameter of Hz is at least 2t− 1
and the diameter of H̃z is at least (2t − 1)b. In particular, there are ℓz

i ∈ Lz and
rz

j ∈ Rz such that dH̃z(ℓz
i , rz

j ) ⩾ (2t− 1)b.

Proof. Observe that if the strings x and y are not disjoint, then there is an h ∈ [K]
for which it holds that xh = yh = 1. Hence, zh = 1. Since Hz is obtained from H
by keeping only the edges that correspond to the 0 bits in z, it follows that there
is an edge (ℓi, rj) ∈ H such that there is no edge between the corresponding pair
(ℓz

i , rz
j ) in Hz. Hence, since H has girth 2t, if follows that the distance between ℓz

i

and rz
j in Hz is at least 2t− 1. Since H̃z is obtained from Hz by replacing each edge

with a path of length b, it follows that the diameter of H̃z is at least (2t− 1)b.

Claim 3.4.3. For any (ℓi, rj) ∈ EH, if one of the paths Px
(ℓx

i ,rx
j )

and Py
(ℓ

y
i ,ry

j )
exists in

G(x,y), then the path Pz
(ℓz

i ,rz
j )

exists in H̃z. Similarly, if Pz
(ℓz

i ,rz
j )

exists in H̃z, then either

Px
(ℓx

i ,rx
j )

exists in G(x,y) or Py
(ℓ

y
i ,ry

j )
exists in G(x,y).

Proof. Let h = π(ℓi, rj). Observe that if one of the paths Px
(ℓx

i ,rx
j )

and Py
(ℓ

y
i ,ry

j )
exists

in G(x,y), then it must be the case that either xh = 0 or yh = 0. Hence, zh = 0.
Therefore there is an edge between ℓz

i and rz
j in Hz, which is stretched to a path

Pz
(ℓz

i ,rz
j )

in H̃z. The other direction of the claim is proved similarly.

Claim 3.4.4. For any ℓx
i ∈ Lx and rx

j ∈ Rx, it holds that dG(x,y)
(ℓx

i , rx
j ) ⩾ dH̃z(ℓz

i , rz
j ).

Proof. Consider a shortest path between ℓx
i and rx

j in G(x,y). Observe that this

path is composed of edges crossing from H̃x to H̃y or vice versa (i.e., edges in
(Lx × Ly) ∪ (Rx × Ry)), and of paths of length b crossing from Lx ∪ Ly to Rx ∪ Ry

or vice versa. Let q be the number of paths of length b crossing from Lx ∪ Ly

to Rx ∪ Ry (or vice versa) that are used by the shortest path. And denote these
paths by P1, P2, · · · , Pq. Clearly, dG(x,y)

(ℓx
i , rx

j ) ⩾ qb. Hence, it suffices to show that
qb ⩾ dH̃z(ℓz

i , rz
j ).

For this, observe that for any h ∈ [q], there are ih, jh ∈ [p] and w ∈ {x, y}, for
which Ph = Pw

(ℓw
ih,rw

jh)
(That is, Ph is connecting either a pair (ℓx

ih, rx
jh) ∈ Lx × Rx or a

pair (ℓw
ih, rw

jh) ∈ Ly × Ry). Hence, by Claim 3.4.3, this implies that for any h ∈ [q],
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the path Pz
(ℓz

ih,rz
jh)

exists in H̃z. Therefore, by starting at ℓz
i and following these q

paths of length b in H̃z we reach rz
j . Hence, qb ⩾ dH̃z(ℓz

i , rz
j ).

Lemma 3.4.5. If x and y are not disjoint, then the diameter of G(x,y) is at least (2t− 1)b.

Proof. By Claim 3.4.2, if the strings are not disjoint, then there are ℓz
i ∈ Lz and

rz
j ∈ Rz such that dH̃z(ℓz

i , rz
j ) ⩾ (2t − 1)b. Furthermore, by Claim 3.4.4, it holds

that dG(x,y)
(ℓx

i , rx
j ) ⩾ dH̃z(ℓz

i , rz
j ). Hence, there are two nodes in G(x,y) at distance at

least (2t− 1)b from each other.

Disjointness case:

Claim 3.4.6. If x and y are disjoint, then Hz is isomorphic to H. In particular, this
implies:

1. Hz has diameter t.

2. for odd values of t, and for any two nodes u, v ∈ VH̃z , if u, v ∈ Lz or u, v ∈ Rz,
then dH̃z(u, v) = (t− 1)b.

3. for even values of t, and for any two nodes u, v ∈ VH̃z such that u ∈ Lz and
v ∈ Rz, it holds that dH̃z(u, v) = (t− 1)b.

Proof. Observe that if the strings x and y are disjoint, then for any h ∈ [K], either
xh = 0 or yh = 0, so z = x ∧ y is the all-zero string. Therefore, since Hz is obtained
from H by keeping the edges that correspond to the 0 bits in z, Hz is isomorphic
to H. Since H has diameter t, Hz also has diameter t.

Moreover, since Hz is isomorphic to H, by Property 1, it holds that for odd
values of t, and for u, v that are on the same side (i.e., u, v ∈ Lz or u, v ∈ Rz), it
holds that dHz(u, v) = t− 1, and therefore dH̃z(u, v) = (t− 1)b.

Similarly, by Property 2, it holds that for even values of t, and for u, v that are
not on the same side (i.e., u ∈ Lz and v ∈ Rz), it holds that dHz(u, v) = t− 1, and
therefore dH̃z(u, v) = (t− 1)b.

For two nodes u, v ∈ Lx ∪ Ly ∪ Rx ∪ Ry in G(x,y), we say that u and v are on the
same side if u, v ∈ Lx ∪ Ly or u, v ∈ Rx ∪ Ry. Similarly, we say that u and v are on
different sides if u ∈ Lx ∪ Ly and v ∈ Rx ∪ Ry.
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Claim 3.4.7. For odd values of t, if x and y are disjoint then for any two nodes
u, v ∈ Lx ∪ Ly ∪ Rx ∪ Ry that are on the same side (i.e., either u, v ∈ Lx ∪ Ly or
u, v ∈ Rx ∪ Ry) it holds that dG(x,y)

(u, v) ⩽ (t− 1)b + t.

Proof. We prove the claim for u, v ∈ Lx. The other cases have a similar proof. If
u, v ∈ Lx, there is some i ∈ [p] for which u = ℓx

i , and some j ∈ [p] for which v = ℓx
j .

By the second item of Claim 3.4.6, it holds that dH̃z(ℓz
i , ℓz

j ) = (t− 1)b. Hence, there

is a shortest path between ℓz
i and rz

j in H̃z composed of exactly (t − 1) paths of
length b in {Pz

(ℓz
i′ ,r

z
j′ )
| (ℓz

i′ , rz
j′) ∈ EHz}. Denote these paths by P1, P2, · · · , Pt−1.

Observe that for any h ∈ [t − 1], there are ih, jh ∈ [p] such that Ph = Pz
(ℓz

ih,rz
jh)

,

where i1 = i. Therefore, by Claim 3.4.3, it holds that either Px
(ℓx

ih,rx
jh)

exists in G(x,y)

or Py
(ℓ

y
ih,ry

jh)
exists in G(x,y) for any h ∈ [t− 1].

Hence, one can use these t− 1 paths in G(x,y) to reach from ℓx
i to ℓx

j as follows.
We start at ℓx

i and if Px
(ℓx

i ,rx
j1)

exists in G(x,y), then we use it to move to rx
j1. Otherwise,

it must be the case that Py
(ℓ

y
i ,ry

j1)
exists in G(x,y) (Recall that i1 = i). Hence we can

use the edge (ℓx
i , ℓy

i ) to move to ℓ
y
i and then we can use the path Py

(ℓ
y
i ,ry

j1)
to move

to ry
j1.

We can keep alternating in this way between H̃x and H̃y to reach ℓx
j , where the

total number of edges in (Lx × Ly) ∪ (Rx × Ry) that we use is at most t. And the
number of paths of length b that we use is exactly t− 1. Hence, in total, the length
of this path is at most (t− 1)b + t.

Claim 3.4.8. For even values of t, if x and y are disjoint then for any two nodes
u, v ∈ Lx ∪ Ly ∪ Rx ∪ Ry that are on different sides (i.e., u ∈ Lx ∪ Ly and v ∈
Rx ∪ Ry) it holds that dG(x,y)

(u, v) = (t− 1)b + t.

Proof. We prove the claim for u ∈ Lx and v ∈ Rx. The other cases have a similar
proof. Hence, there are i, j ∈ [p] such that u = ℓx

i and v = rx
j . The proof is almost

identical to the proof of Claim 3.4.7. The only difference is that in the proof of
Claim 3.4.7 we used the second item of Claim 3.4.6 to argue that dH̃z(ℓz

i , ℓz
j ) = (t−

1)b. Here, we are dealing with even values of t. Therefore, instead of the second
item of Claim 3.4.6, we use the third item of the same claim which deals with even
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value of t. By the third item of Claim 3.4.6, it holds that dH̃z(ℓz
i , rz

j ) = (t− 1)b. The
rest of the proof is identical to the proof of Claim 3.4.7.

Lemma 3.4.9. If x and y are disjoint, then the diameter of G(x,y) is at most tb + t + 1.

Proof. Let u, v be two nodes in G(x,y). Let aℓu be the distance from u to the closest
node in Lx ∪ Ly, and let ar

u be the distance from u to the closest node in Rx ∪ Ry.
aℓv and ar

v are defined similarly for v. For example, if u ∈ Lx ∪ Ly then aℓu = 0. The
key point to note is that either aℓu + aℓv ⩽ b + 1, or ar

u + ar
v ⩽ b + 1. That is, either

taking the two nodes to the left side of G(x,y) (i.e., to Lx ∪ Ly) costs at most b+ 1, or
taking the two nodes to the right side costs at most b + 1. Similarly, it holds that
either aℓu + ar

v ⩽ b + 1, or ar
u + aℓv ⩽ b + 1. The rest of the proof is by the following

case analysis.

1. t is odd: By Claim 3.4.7, the distance between any two nodes in Lx ∪ Ly

and the distance between any two nodes in Rx ∪ Ry is at most (t− 1)b + t.
Furthermore, we can either move u and v to Lx ∪ Ly by using at most b + 1
steps (in total, for moving both u and v), or we can move u and v to Rx ∪
Ry by using at most b + 1 steps (in total, for moving both u and v). After
moving u and v to one of the sides, we can use Claim 3.4.7 and deduce that
dG(x,y)

(u, v) ⩽ (t− 1)b + t + b + 1 = tb + t + 1.

2. t is even: By Claim 3.4.8, the distance between any u′ ∈ Lx ∪ Ly and v′ ∈
Rx ∪ Ry is at most (t− 1)b + t. Furthermore, we can either move u to Lx ∪ Ly

and v to Rx ∪ Ry by using at most b + 1 steps (in total, for moving both u
and v), or we can move u to Rx ∪ Ry and v to Lx ∪ Ly by using at most b + 1
steps (in total, for moving both u and v). Hence, we can use Claim 3.4.8 and
deduce that dG(x,y)

(u, v) ⩽ (t− 1)b + t + b + 1 = tb + t + 1.

3.4.3 Proof of Theorem 3.4.1

Proof. First, we define the following partition V = VA∪̇VB of the set of nodes of
G(x,y). VA = VH̃x , and VB = VH̃y . Hence, the size of the cut C = E(VA, VB) is Θ(p).
This is because the only edges connecting between nodes in H̃x and nodes in H̃y

in G(x,y) are the 2p edges of the matching between Lx and Ly, and the matching
between Rx and Ry.
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Since our goal is to show a lower bound as a function of the number of nodes
n in the input graph G(x,y), we need to analyze the size of the cut and the size
of the input strings with respect to n. By Theorem 3.2.7, we have that for t ∈
{3, 4, 6}, K = Ex(p, t) = Ω(p1+ 1

t−1 ). Furthermore, by Remark 3.2.3 we can assume
that a constant fraction of the bits in the strings x and y are 0. Hence, these 0
bits are translated to paths of length b in G(x,y). This implies that the number of

nodes in G(x,y) is n = Θ(Kb) = Ω(p1+ 1
t−1 b) = Ω(p1+ 1

t−1 ) for constant values of b.

Therefore, the size of the cut C is Θ(p) = O(n
t−1

t ).
Lemmas 3.4.5 and 3.4.9 imply that {G(x,y) | x, y ∈ {0, 1}K} is a family of lower

bound graphs with respect to the Set-Disjointness function and the graph pred-
icate that distinguishes between graphs of diameter tb + t + 1 and graphs of di-
ameter (2t − 1)b. Hence, by Theorem 3.2.5 and the fact that the communication
complexity of Set-Disjointness is Ω(K), we have that any algorithm for distin-
guishing between these two cases in the CONGEST model requires Ω

(
K

|C| log n

)
=

Ω
(

n
n(t−1)/t log n

)
= Ω

(
n1/t

log n

)
rounds.

To get this lower bound for ( t
2t−1 + ϵ)-approximation for diameter, we need

that
( t

2t−1 + ϵ
)
(2t − 1)b > tb + t + 1. Hence, we can pick b = Θ

(
t+1

ϵ(2t−1)

)
=

Θ
(

1
ϵ

)
.

3.4.4 Handling connectivity

One may wonder about the connectivity of the graph G(x,y). As the construction
was described so far, there could be some values of x and y such that G(x,y) is
not connected. In this section, we show how to slightly modify the construction
of G(x,y) so that it is always connected, and in fact of constant diameter, without
changing the analysis. Observe that it suffices to make H̃x always connected. This
is because any node in H̃y has some path connecting it to a node in H̃x. Since H̃x

is obtained from Hx by stretching each edge in Hx to a path of length b, it suffices
to make Hx always connected, regardless of the input string x.

Recall that given a string x ∈ {0, 1}K, we defined Hx to be the graph obtained
from H where we keep only the edges that correspond to the 0 bits in x. Recall that
H is a balanced bipartite graph of size 2p, diameter t and girth 2t. Of course, H is
always connected. But since some of the edges of H may not exist in Hx, Hx may
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not be connected. To ensure that Hx is connected, let S be a shortest paths tree
starting from an arbitrary node in H. Of course, the number of edges in S is O(p),
which is small with respect to the size of the input string x which is K = Ex(p, t).

We modify the definition of Hx such that the edges that correspond to the span-
ning tree S always exist in Hx. In particular, their existence in Hx doesn’t depend
on x. For this, we need to modify the size of the string x to K − |S| = Θ(K), so
that only the edges that are not in S depend on x. The proof that {G(x,y) | (x, y) ∈
{0, 1}K−|S| × {0, 1}K} is a family of lower bound graphs remains exactly the same
as in Section 3.4.2. Furthermore, since the size of x didn’t change asymptotically,
the deduced lower bound from Section 3.4.3 doesn’t change asymptotically. Ob-
serve that under the new definition of Hx, the diameter of Hx is at most 2t. Hence,
the diameter of H̃x is at most 2tb. It is not very hard to verify that the diameter of
G(x,y) in this case is at most 2tb + 2b + 2, which is constant for constant values of
t and b.
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Figure 3.4: An Illustration of G(x,y) (on the left) and H̃z for z = x ∧ y (on the right).
G(x,y) is composed of H̃x and H̃y, where we add a perfect matching between Lx

and Ly, {(ℓx
i , ℓy

i ) | i ∈ [p]}, and a perfect matching between Rx and Ry, {(rx
i , ry

i ) |
i ∈ [p]}. The edge between Lx and Ly in this figure represents the matching
between them. Similarly, the edge between Rx and Ry in this figure represents the
matching between them. The parameters in this example are exactly as the ones
chosen for Figures 3.2 and 3.3. That is, t = p = 3, b = 3, π(ℓ1, r1) = 1, π(ℓ1, r2) =
2, π(ℓ2, r1) = 3, π(ℓ2, r3) = 4, π(ℓ3, r2) = 5 and π(ℓ3, r3) = 6. Furthermore, we
have x = 010010, y = 001010 and z = x ∧ y = 000010. Hence, the only paths of
length b that we have in H̃x are Px

(ℓx
1 ,rx

1)
, Px

(ℓx
2 ,rx

1)
, Px

(ℓx
2 ,rx

3)
and Px

(ℓx
3 ,rx

3)
. And the only

paths of length b that we have in H̃y are Py
(ℓ

y
1,ry

1)
, Py

(ℓ
y
1 ,ry

2)
, Py

(ℓ
y
2,ry

3)
and Py

(ℓ
y
3,ry

3)
. Observe

that the path Px
(ℓx

3 ,rx
2)

doesn’t exist in H̃x, and that the path Py
(ℓ

y
3,ry

2)
doesn’t exist in

H̃y. This is because xπ(ℓ3,r2) = x5 = 1 and yπ(ℓ3,r2) = y5 = 1. This implies that
zπ(ℓ3,r2) = z5 = 1 as well, and therefore the path Pz

(ℓz
3,rz

2)
doesn’t exist in H̃z. It is

easy to see that the distance between ℓz
3 and rz

2 in H̃z is 5b = (2t− 1)b. One can
verify that the distance between ℓx

3 and rx
2 in G(x,y) is at least 5b = (2t − 1)b as

well. This illustrates that when the strings x and y are disjoint, the diameter of
G(x,y) is at least (2t− 1)b.
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Figure 3.5: An illustration of G(x,y) and H̃z for z = x ∧ y. The parameters in this
example are exactly as the ones chosen for Figures 3.2, 3.3, and 3.4. The only
difference in this example compared to the one in Figure 3.4 is that the strings x
and y are disjoint. Hence, z = x ∧ y is an all zeros string. It is easy to see that in
this case the diameter of H̃z is tb. The key point of the proof is that the diameter
of G(x,y) is not very much larger than the diameter of H̃z (in fact, it is larger by at
most t + 1, which is negligible compared to tb for values of b ≫ t). To illustrate
this in this example, we show a path of length tb + t = 3b + 3 from ℓx

1 and ry
3. We

start by moving from ℓx
1 to ℓ

y
1 using the edge (ℓx

1 , ℓy
1) that is part of the matching

between Lx and Ly. Then, we use the path of length b from ℓ
y
1 to ry

2, and the path
of length b from ry

2 to ℓ
y
3. After that, we use the edge (ℓ

y
3, ℓx

3) to move to ℓx
3 , and

the path of length b from ℓx
3 to rx

3 . Finally, we use the edge (rx
3 , ry

3) to reach ry
3. This

example illustrates that the diameter of G(x,y) is relatively small if the strings are
disjoint.
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Part II

Distributed Symmetry Breaking
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Chapter 4

Distributed Approximate Maximum
Independent Set

This chapter is based on joint work with Ken-ichi Kawarabayashi, Aaron Schild,
and Gregory Schwartzman [197], in which we show new upper and lower bounds
for approximate Maximum Independent Set in the distributed model.

4.1 Introduction

We study the problem of finding an approximately maximum independent set
(MaxIS) in the LOCAL and CONGEST models of Distributed Computing [43, 80,
103,121,145,163,173,208]. In unweighted graphs, one can find a ∆-approximation
for MaxIS by finding a maximal independent set (MIS), where ∆ is the maximum
degree of a node in the graph. In recent years, our understanding of the com-
plexity of MIS has been substantially improving [63, 157, 158, 247], leading to a
remarkable breakthrough by Rozhon and Ghaffari [247], where they show a de-
terministic poly(log n)-round algorithm for finding an MIS, even in the CON-
GEST model [104]. This result also implies a randomized algorithm that suc-
ceeds with high probability in O(log ∆+poly(log log n)) rounds in the CONGEST
model1 [104, 158, 247].

In a weighted graph, an MIS doesn’t necessarily constitute a ∆-approximation
for MaxIS. For the weighted case, Bar-Yehuda et al. [56] showed a ∆-approximation

1We say that an algorithm succeeds with high probability if it succeeds with probability 1−
1/nc for an arbitrary constant c > 1.
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algorithm in the CONGEST model that takes O(MIS(n, ∆) · log W) rounds, where
MIS(n, ∆) is the running time for finding an MIS in graphs with n nodes and max-
imum degree ∆, and W is the maximum weight of a node in the graph (which can
be as high as poly(n)). Whether their algorithm is deterministic or randomized
depends on the MIS algorithm that is used as a black box.

In this work, we present faster algorithms compared to [56], by paying only
a (1 + ϵ) multiplicative overhead in the approximation factor. Our main result
(Theorem 4.1.2) is a randomized algorithm that achieves an exponential speed-up
compared to [56].

Theorem 4.1.1. There is an O(MIS(n, ∆)/ϵ)-round algorithm in the CONGEST model
that finds a (1 + ϵ)∆-approximation for maximum-weight independent set. Whether the
algorithm is deterministic or randomized, depends on the MIS algorithm that is run as a
black-box.

Theorem 4.1.2. There is a randomized (poly(log log n)/ϵ)-round algorithm in the CON-
GEST model that finds, with high probability, a (1 + ϵ)∆-approximation for maximum-
weight independent set.

Due to a lower bound of Ω(
√

log n/ log log n) that was given by Kuhn, Mosci-
broda and Wattenhofer [204], against any (possibly randomized) algorithm that
finds an MIS, even in the LOCAL model, Theorem 4.1.2 implies that finding a
(1 + ϵ)∆-approximation for MaxIS is exponentially easier than MIS.

Results for unweighted graphs: It is easy to see that a single round of Luby’s
algorithm [216] yields a solution with an expected weight at least w(V)/(∆ + 1),
where w(V) is the total weight of nodes in the graph.2 In this algorithm, each node
v picks a number rv uniformly at random in [0, 1]. If rv > ru for any neighbor u
of v, then v joins the independent set. Since every node joins the independent
set with probability at least 1/(∆ + 1), the expected weight of the independent
set is at least w(V)/(∆ + 1). However, algorithms that work well in expectation
don’t necessarily work well with good probability. In fact, for a single-round of
Luby’s algorithm, it is not very hard to construct examples in which the variance of
the solution is very high, in which case the algorithm doesn’t return the expected

2This single-round algorithm is also known as the ranking algorithm. To the best of our knowl-
edge, the classical ranking algorithm has first appeared in the book of Alon and Spencer [29] and
is due to Boppana (see also the references for this algorithm in [85]).
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value with high probability. In this work we prove the following stronger theorem
for any algorithm.

Theorem 4.1.3. In the LOCAL model, assuming that the nodes don’t know the exact
value of n, but only a polynomial upper bound on it, any algorithm that finds an in-
dependent set of size Ω(n/∆) in unweighted graphs of n nodes and maximum degree
∆ ∈ {Θ(n/ log n), Θ(n/ log∗ n)}, with success probability p ⩾ 1− 1/(10 log n), must
spend Ω(log∗ n) rounds. The lower bound holds even if the nodes know the exact value
of ∆.

In our lower bound, we exploit the fact that a general algorithm must suc-
ceed on any input graph (with the desired success probability). In particular, it
must succeed on graphs of maximum degree Θ(n/ log∗ n), and it must succeed
on graphs of maximum degree Θ(n/ log n) (since a general algorithm must suc-
ceeds on any graph, it must also succeed on graphs with maximum degree in
{Θ(n/ log n), Θ(n/ log∗ n)}). One may wonder whether the lower bound still ap-
plies when the input graph is guaranteed to have a smaller maximum degree (as
a function of n). We rule out this possibility, with the following theorem. The
proof of Theorem 4.1.4 relies on a novel idea for analyzing the classical ranking
algorithm using martingales and the local-ratio technique, on which we elaborate
in the technical overview.

Theorem 4.1.4. For unweighted graphs of maximum degree ∆ ⩽ n/ log n, there is an
O(1/ϵ)-round algorithm in the CONGEST model that finds, with high probability, an
independent set of size at least n

(1+ϵ)(∆+1) .

Road-map: In Section 4.2 we provide a technical overview. Section 4.3 contains
some basic definitions and useful inequalities. In Section 4.4, we prove our first
two results (Theorems 4.1.1 and 4.1.2). Our results for low-degree graphs are pre-
sented in Sections 4.5. Our lower bound result is presented in Section 4.6.

4.2 Technical Overview

Results for weighted graphs: Our first two results (Theorems 4.1.1 and 4.1.2)
share a similar proof structure. First, we show that there are fast algorithms for
O(∆)-approximation. Then we use the local-ratio technique [55] to prove a general
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boosting theorem that takes a T-round algorithm for O(∆)-approximation, and
use it as a black-box to output a (1 + ϵ)∆-approximation in O(T/ϵ) rounds. An
overview of the local-ratio technique and the boosting theorem is provided in
Section 4.2.2. The key ingredient to show a fast O(∆)-approximation algorithm is
a new weighted sparsification technique, where we show that it suffices to find an
independent set of a good approximation in a sparse subgraph. An overview of
the weighted sparsification technique is provided in Section 4.2.1.

Results for unweighted graphs: Our upper bound for unweighted graphs of
maximum degree ∆ ⩽ n/ log n (Theorem 4.1.4) has a similar two-step structure as
the first two results. We first show an O(∆)-approximation algorithm, and then
we use the local-ratio technique to boost the approximation factor. For the O(∆)-
approximation part, we show that running the classical one-round of Luby’s algo-
rithm for c rounds already returns an O(∆)-approximation for unweighted graphs
of maximum degree ∆ ⩽ n/ log n, with probability ≈ 1− 1/nc. The main techni-
cal ingredient for showing this result is a new analysis of the classical ranking al-
gorithm using martingales. An overview of this result is provided in Section 4.2.3.
Finally, in Section 4.2.4, we provide an overview of the lower bound result (Theo-
rem 4.1.3).

4.2.1 Weighted Sparsification for O(∆)-Approximation

Let us first consider the unweighted case for simplicity. Let G = (V, E) be an
unweighted graph. We can find an O(∆)-approximation for MaxIS in G as fol-
lows. First, we sample a sparse subgraph H of G with the following proper-
ties. (1) The maximum degree ∆H of H is small (O(log n)). (2) The ratio be-
tween the number of nodes (nH) and the maximum degree of H is at least as
in G, up to a constant multiplicative factor. That is, nH/∆H = Ω(n/∆). Since
any MIS in H has size at least nH/∆H = Ω(n/∆), it suffices to find an MIS
in H, which take MIS(nH, ∆H) ⩽ MIS(n, log n) rounds (recall that MIS(n, ∆)
is the running time of finding an MIS in graphs of n nodes and maximum de-
gree ∆). By the breakthrough of Rozhon and Ghaffari [247], MIS(n, log n) =

O(log log n) + poly(log log n) = poly log log n rounds. Furthermore, sampling
a subgraph with the aforementioned properties is almost trivial. Each node joins
H with probability min{log n/∆, 1}, independently. It is not very hard to show,
via standard Chernoff (Theorem 4.3.1) and Union Bound arguments, that H has
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the desired properties. While this approach is straightforward for the unweighted
case, it runs into challenges when trying to apply it for the weighted case, as we
explain next.

The challenge in weighted graphs: Perhaps the first thing that comes into mind
when trying to extend the sampling technique to weighted graphs is to try to
sample a sparse subgraph H with the following properties. (1) The maximum
degree ∆H = O(log n). (2) The ratio between the total weight in H and the max
degree of H is the same as in G, up to a constant multiplicative factor. That is
w(VH)/∆H = Ω(w(V)/∆), where w(VH) is the total weight of nodes in H and
w(V) is the total weight of nodes in G. However, this approach runs into two
challenges. The first challenge is that in the weighted case, an MIS doesn’t nec-
essarily constitute a ∆-approximation for MaxIS. Therefore, even if we are able to
sample a subgraph H with the desired properties, running an MIS algorithm on
H might result in an independent set of a very small weight. To overcome this
challenge, we show a very simple MIS(n, ∆)-round algorithm that finds an O(∆)-
approximation. This algorithm runs an MIS algorithm on the subgraph induced
by nodes that are relatively heavy, compared to their neighbors. Specifically, a
node is considered relatively heavy compared to its neighbors, if it is of weight at
least Ω(1/∆)-fraction of the sum of weights of its neighbors. It is not very hard to
show that this algorithm returns an independent set of total weight Ω(w(V)/∆),
where w(V) is the total weight of nodes in the graph. The proof of this argument
is provided in Section 5.4.

Furthermore, another challenge is that the same sampling procedure doesn’t
work for the weighted case. In particular, if we sample each node with probabil-
ity p = min{(log n)/∆, 1}, then light-weight nodes will have the same probability
of joining H as heavy-weight nodes. Intuitively, we need to take the weights into
account. For this, we boost the sampling probability of a node v by an additive
factor of w(v) log n/w(V), where w(v) is the weight of v and w(V) is the total
weight of nodes in the graph. In order to show that the sampled subgraph has the
desired properties, it doesn’t suffice to use standard Chernoff and Union-Bound
arguments. Instead, we present a more involved analysis that uses Bernstein’s
inequality (Theorem 4.3.2). Observe that the nodes don’t know the value w(V).
Therefore, we define a notion of weighted degree of a node, which is the sum of
weights of its neighbors. We show that it suffices for a node v to use the maxi-
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mum weighted degree in its neighborhood, instead of w(V). The full argument is
provided in Section 4.4.2.

4.2.2 Boosting the Approximation Factor using Local-Ratio

A useful technique for approximation algorithms is the local-ratio technique [55].
In recent years, the local-ratio technique has been found to be very useful for
the distributed setting [56, 58], and the ∆-approximation algorithm of [56] also
uses this technique. In this work we use local-ratio to boost the approximation
guarantee for MaxIS. We start with stating the local-ratio theorem for maximiza-
tion problems. Here, we state it specifically for MaxIS. Given a weighted graph
Gw = (V, E, w), where w is a node-weight function w : V → R, we say that an
independent set I ⊆ V is r-approximate with respect to w if it is r-approximate for
the optimal solution in Gw.

Theorem 4.2.1. [Theorem 9 in [55]]
Let Gw = (V, E, w) be a weighted graph. Let w1 and w2 be two node-weight functions
such that w = w1 + w2. If an independent set I is r-approximate with respect to w1 and
with respect to w2 then it is r-approximate with respect to w as well.

Theorem 4.2.1 already gives a simple linear-time sequential algorithm for ∆-
approximation for MaxIS, as follows. Pick an arbitrary node v of positive weight,
push it onto a stack, and reduce the weight of any node in the inclusive neigh-
borhood of v (v and its neighbors) by w(v). Continue recursively on the obtained
graph, until there are no nodes of positive weight. When there are no remaining
nodes of positive weight, pop out the stack, and construct an independent set I
greedily, as follows. For each node v that is popped out from the stack, add v to I,
unless it already contains a neighbor of v.

The reason that this simple algorithm gives a ∆-approximation is as follows.
Consider the first iteration, when the algorithm picks an arbitrary node v, pushes
it onto a stack, and reduces the weight of any node in the inclusive neighborhood
of v by w(v). This first iteration implicitly defines two weight functions: the re-
duced weight function w1, and the residual weight function w2, where w = w1 +w2.
That is, the reduced weigh of a node u in the first step is w1(u) = w(v) if it be-
longs to the inclusive neighborhood of v, and w1(u) = 0 otherwise. The residual
weight of a node u is the remaining weight w2(v) = w(v)− w1(v). To prove that
the algorithm returns a ∆-approximation, we can assume by reverse induction
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that I is a ∆-approximation with respect to the residual weight function w2. Fur-
thermore, the independent set is constructed in a way such that it must contain at
least one node in the inclusive neighborhood of v, where the weight of this node
with respect to w1 is w(v). Since the degree of v is at most ∆, and the value of
the optimal solution with respect to w1 is at most ∆w(v), it follows that I is also
∆-approximation with respect to the reduced weight function w1. Hence, by the
local-ratio theorem, the independent set is also a ∆-approximation with respect to
w = w1 + w2.

One can extend this idea, and rather than picking a single node in each step,
the algorithm can pick an arbitrary independent set I′, push all the nodes in I′

onto a stack, and perform local weight reductions in the inclusive neighborhood
of any node in I′. The algorithm continues recursively on the obtained graph
after the weight reductions, until there are no remaining nodes of positive weight.
Then, the algorithm constructs an independent set I by popping out the stack and
adding nodes in the stack to I greedily. Using a similar local-ratio argument, one
can show that this algorithm also returns a ∆-approximation for MaxIS. The idea
of picking an independent set rather than a single node in each step was used
by [56] to show a ∆-approximation algorithm in O(MIS(n, ∆) log W) rounds.

In this work, we prove a simple yet powerful property about the local-ratio
technique. Specifically, we show that the total weight of the independent set I
that is constructed in the pop-out stage (with respect to the original input weight
function w), is at least the total weight of the nodes in the stack (with respect to the
residual weight function at the time they were pushed onto the stack). That is, let
S be set of nodes that are pushed onto the stack. For v ∈ S, let wiv be the residual
weight of v at the time it was pushed onto the stack. We prove (Proposition 4.4.12
in Section 4.4.3) that w(I) ⩾ ∑v∈S wiv(v). We refer to this property as the stack
property.

The stack property allows us to show a general boosting theorem, as follows.
We use the local-ratio algorithm described above, where in each step we pick an
independent set I′ that is (c∆)-approximation for MaxIS, for some constant c > 1.
Hence, intuitively, after≈ c/ϵ steps, the total weight in the stack should be at least
OPT(Gw)
(1+ϵ)∆ , where OPT(Gw) is the value of an optimal solution in the input graph

Gw. The full argument of the boosting theorem is provided in Section 4.4.3.
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Low-arboricity graphs: Moreover, the stack property allows us to show an im-
proved approximation algorithm for low-arboricity graphs, as follows. In each
step, we run a (1+ ϵ)∆-approximation algorithm on the subgraph induced by the
nodes of degree at most 4α, where α is the arboricity of the graph. We push the
nodes in the resulting independent set I′ onto the stack, and perform local weight
reduction in the neighborhoods of the nodes in I′. Then, we delete all the nodes
of degree at most 4α, and continue recursively on the resulting graph. Finally,
we construct an independent I by popping out the stack greedily. By a standard
Markov argument, after log n push steps, the graph becomes empty. Furthermore,
since in each step the algorithm finds a (1 + ϵ)4α approximation in the subgraph
induced by the nodes of degree at most 4α, and this independent set is pushed
onto the stack, we are able to use the stack property to show that the constructed
independent set I is roughly of the same approximation for Gw. We refer the
reader to [197] for our results for low-arboricity graphs.

4.2.3 Analysis of the Ranking Algorithm using Martingales

In this section we provide an overview of our result for unweighted graphs of
maximum degree ∆ ⩽ n/ log n (Theorem 4.1.4). First, we find an O(∆) approxi-
mation, and then we use the boosting theorem to get a (1 + ϵ)∆-approximation.
To find an O(∆)-approximation, we use the classical ranking algorithm. Recall
that in the ranking algorithm, each node v picks a number rv uniformly at ran-
dom in [0, 1]. If rv > ru for any neighbor u of v, then v joins the independent set.
Let I be the independent set that is returned by the ranking algorithm. The crux of
the analysis is in using concentration inequalities to get a high-probability lower
bound on the number of nodes in I. However, it is unclear how to make this ap-
proach work, as the random variables Xv = 1v∈I are not independent. While these
random variables are not independent, one can obtain a weaker result in this di-
rection. Specifically, for graphs of maximum degree at most n1/3/poly(log n), one
can get a useful bound on the maximum dependency among these variables. In par-
ticular, one can show that each Xv is dependent on at most (n1/3/poly(log n))2 =

n2/3/poly(log n) other Xus, which makes it possible to show concentration using
the bounded dependence Chernoff bound given in [239]. However, it is unclear
how to use this approach for higher degree graphs.

The main idea of our approach is to view the ranking algorithm from a se-
quential perspective. Instead of picking ranks for the nodes and including a node



CHAPTER 4. DISTRIBUTED APPROXIMATE MAXIMUM INDEPENDENT
SET 90

in I if its rank is higher than that of its neighbors, we draw nodes v from V uni-
formly at random one at a time and add v to I if it is not adjacent to any previously
drawn node. We show that the resulting independent set is identical in distribu-
tion to the independent set produced by the ranking algorithm (Proposition 4.5.1
in Section 4.5). Note that this is not the same as a sequential greedy algorithm for
maximal independent set, which would add v to I if it is not adjacent to any node
in I (a weaker condition). The sequential perspective of the ranking algorithm
allows us to think about the size of I incrementally. One could directly show con-
centration if the family of random variables {It}t was a martingale. However, this
is not the case, as |It+1| ⩾ |It| so it is not possible for expected increments to be 0.
Instead, we create a martingale by shifting the increments so that they have mean
0. More formally, let It be the independent set I after the first t nodes have been
drawn. Let vt be the tth node drawn. The random variable

Yt = |It| − |It−1| − Pr[vt ∈ I|It−1]

has mean 0 conditioned on It−1. Therefore, the Yts are increments for the martin-
gale Xt = ∑t

i=1 Yt. Using Azuma’s Inequality, one can show that Xt concentrates
around its mean, which is 0. To lower bound the size of the obtained indepen-
dent set I, one therefore just needs to get a lower bound on the sum of the in-
crement probabilities Pr[vt ∈ I|It−1]. This can be lower bounded by 1/2 when
t = o(n/∆) because when a node is drawn, it eliminates at most ∆ other nodes
from inclusion into I. But when t = Θ(n/∆), the sum of these probabilities is
already 1/2(Θ(n/∆)) = Θ(n/∆), so the independent set is already large enough,
as desired. The reason that this technique works for ∆ ⩽ n/ log n is that the suc-
cess probability is roughly exponential in n/∆. Hence, by having ∆ ⩽ n/ log n,
we get a high probability success, as desired. The full argument is provided in
Section 4.5.

4.2.4 An Overview of the Lower Bound

In this section we give an overview of our lower bound (Theorem 4.1.3). For the
deterministic case, one can show a lower bound for finding an independent set of
size Ω(n/∆) in a cycle, by a reduction from the classical lower bound of Linial for
finding an MIS in a cycle [213]. However, for the randomized case, this approach
becomes more challenging. In fact, the cycle graph cannot be a hard instance for
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finding an independent set of size Ω(n/∆), as there is a constant-round algorithm
for low degree graphs (as we show in Theorem 4.1.4). In order to show hardness
for the randomized case, we use a cycle of cliques graph. We are able to reduce the
problem of finding an independent set of size Ω(n/∆) in a cycle of cliques, to the
problem of finding an MIS in a cycle. And we use Naor’s lower bound [225] for
finding an MIS in a cycle, which holds even against randomized algorithms. We
start by stating Naor’s lower bound.

Theorem 4.2.2. (Lower bound for the cycle [225]). Any randomized algorithm in the
LOCAL model for finding a maximal independent set that takes fewer than 1

2(log∗ n)− 4
rounds, succeeds with probability at most 1/2, even for a cycle of length n.

Perhaps a good way to understand our reduction from Naor’s lower bound is
to first consider deterministic algorithms. Let A be a deterministic algorithm for
approximate MaxIS. Suppose that it takes T(n) rounds in graphs of n nodes. We
can useA to find a maximal independent set in a cycle C of n nodes, as follows. We
start by running A on C to produce an independent set I. Since C is a cycle, there
is a natural clockwise ordering for the nodes of I. Between any two consecutive
nodes of I, there may be nodes along the cycle that are not adjacent to a node in I.
We informally call these nodes the “gaps” between consecutive nodes in I. We can
obtain a maximal independent set in C by “filling in” the gap between every two
consecutive nodes in I with a maximal independent set (sequentially). To bound
the runtime of this algorithm, we need to bound the maximum length of a gap.
Since A is deterministic, it is not very hard to show that the maximum length of a
gap is O(T(n)). This is because from a local perspective, the nodes cannot distin-
guish between C and a path of length ω(T(n)), by a standard indistinguishability
argument. Hence, one can show that if there is a gap of length ω(T(n)), then A
doesn’t return the required approximation on a path of length ω(T(n)). As a re-
sult, filling in the gaps between nodes in I takes O(T(n)) rounds. Therefore, by
runningA on C and then filling in the gaps sequentially, we get an MIS in O(T(n))
rounds. And by Linial’s lower bound [213], we have that T(n) = Ω(log∗ n).

However, the argument above fails if A is a randomized algorithm. The main
issue is that when running a randomized algorithm on a cycle, the maximum
length of a gap between two consecutive nodes in the independent set can be
larger than O(T(n)). This is because randomized algorithms that succeed with
high probability can fail with probability 1/poly(n), where n is the number of
nodes in the graph. Hence,A can fail on a path of length O(T(n)) with probability
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1/poly(T(n)) which is non-negligible when T(n) ≪ n. In particular, since there
are Ω(|C|/T(n)) = Ω(n/T(n)) subpaths of length O(T(n)) in C, it is likely that
A fails on at least one of these subpaths. If on the the other hand the number of
nodes in the O(T(n))-radius neighborhood of a node was larger, then one could
hope to get around this issue, as it would amplify the “local" success probability
in the neighborhood of a node.

Hence, instead of running A on C, we run it on a cycle of cliques C1, which
is obtained from C as follows. Each node v ∈ C is replaced with a clique of size
≈ 2|C|, denoted by D(v), where every two adjacent cliques are connected by a
bi-clique (see also Figure 4.1, for an illustration). By runningA on C1 instead of C,
it boosts the success probability ofA in a small-radius neighborhood of any given
node. As a result, a small-radius neighborhood of any node in C1 must contain a
node in the independent set. Using the independent set I1 that was found in C1,
we can map it to an independent set I in C, as follows. Every v ∈ C joins I if and
only if I1 contains a node in D(v). Due to the approximation guarantee ofA in C1,
we can prove that the maximum distance between two consecutive nodes in I1 is
small and therefore, the maximum length of a gap in I is small. Finally, we can run
a greedy sequential MIS algorithm to fill the gap between every two consecutive
nodes in I and find an MIS in C. Hence, if we can find an approximate-MaxIS in C1
in o(log∗ |C1|) rounds, then we can find an MIS in C in o(log∗(2|C|)) = o(log∗ |C|)
rounds, contradicting Naor’s lower bound (Theorem 4.2.2). An illustration of the
reduction with all the steps is provided in Figure 4.1 Section 4.6. A detailed reduc-
tion is provided in Section 4.6, together with the full proof of the lower bound.

4.3 Preliminaries

Some of our proofs use the following standard probabilistic tools. An excellent
source for the following concentration bounds is the book by Alon and Spencer [29].
These bounds can also be found in many lecture notes about basic tail and con-
centration bounds.

Theorem 4.3.1 (Chernoff Bound). Let X = ∑n
i=1 Xi, where the Xis are independent

random variables with value 0 or 1. Let µ = E[X]. Then

1. P[X ⩾ (1 + δ)µ] ⩽ e−
δ2µ
2+δ for all δ > 0.
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2. P[X ⩽ (1− δ)µ] ⩽ e−µδ2/2 for all 0 < δ < 1.

3. P[|X− µ| ⩾ δµ] ⩽ 2e−µδ2/3 for all 0 < δ < 1.

Theorem 4.3.2. (Bernstein’s Inequality). Let X1, ..., Xn be independent random vari-
ables such that ∀i, Xi ⩽ M. Let X denote their sum and let µ = E[X] denote the sum’s
expected value. Then for any positive t, it holds that:

Pr[|X− µ| ⩾ t] ⩽ 2 exp
(
− t2/2

Mt/3 + ∑n
i=1 Var(Xi)

)
Theorem 4.3.3. (One-sided Azuma’s Inequality). Suppose {Xi : i = 0, 1, 2, . . .} is a
martingale and that |Xi − Xi−1| ⩽ ci almost surely. Then, for all positive integers N and
all positive reals t,

Pr[XN − X0 ⩽ −t] ⩽ exp

(
− t2

2 ∑N
i=1 c2

i

)

Assumptions: In all of our upper and lower bounds in this Chapter, we don’t
assume that the nodes have any global information. In particular, they don’t know
n or ∆. The only information that each node has before the algorithm starts is its
own identifier, and some polynomial upper bound on n (Since the nodes can send
c log n bits in each round to each of their neighbors, naturally, they know some
polynomial upper bound on n).

Some notations: The input graph is denoted by Gw = (V, E, w), where V is
the set of nodes, E is the set of edges, and w is the weight function. The reason
that we choose to add the weight function in a subscript is that some parts of the
analysis deal with graphs that have the same sets of nodes and edges as the input
graph, but a different weight function. Hence, such a graph will be denoted by
Gw′ = (V, E, w′), to indicate that it is the same as the input graph, but with weight
function w′ rather than w.

We denote by N+(v) the inclusive neighborhood of v, which consists of N(v)∪
{v}, where N(v) is the set of neighbors of v. Furthermore, we denote by deg(v) =
|N(v)| the number of neighbors of a node v. Finally, we denote by w(V′) the total
weight of nodes in V′ ⊆ V. That is, w(V′) = ∑v∈V′ w(v).
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4.4 Improved Algorithm for General Graphs

In this section we prove Theorems 4.1.1 and 4.1.2.

Theorem 4.1.1 There is an O(MIS(n, ∆)/ϵ)-round algorithm in the CONGEST model
that finds a (1 + ϵ)∆-approximation for maximum-weight independent set. Whether the
algorithm is deterministic or randomized, depends on the MIS algorithm that is run as a
black-box.

Theorem 4.1.2 There is a randomized (poly(log log n)/ϵ)-round algorithm in the CON-
GEST model that finds, with high probability, a (1 + ϵ)∆-approximation for maximum-
weight independent set.

Theorems 4.1.1 and 4.1.2 share a similar proof structure. First, we present
algorithms for O(∆)-approximation in Sections 5.4 and 4.4.2. Then, by using
a general boosting theorem (Theorem 4.4.10 in Section 4.4.3), we get (1 + ϵ)∆-
approximation algorithms.

4.4.1 An O(MIS(n, ∆))-Round Algorithm for
O(∆)-Approximation

In this section we show a very simple O(MIS(n, ∆))-round algorithm that finds
an O(∆)-approximation for MaxIS.

Theorem 4.4.1. Given a weighted graph Gw = (V, E, w), there is an O(MIS(n, ∆))-
round algorithm that finds an independent set of weight at least w(V)

4(∆+1) , in the CONGEST
model. Whether the algorithm is deterministic or randomized depends on the MIS algo-
rithm that is used as a black-box.

Algorithm For every v ∈ V, let δ(v) be the maximum degree of a node in the
inclusive neighborhood of v. That is, δ(v) = max{deg(u) | u ∈ N+(v)}. A node
v is called good if w(v) ⩾ 1

2(δ(v)+1) ∑u∈N+(v) w(u). The algorithm finds a maximal
independent set I in the subgraph induced by the set of good nodes. We prove
the following lemma.

Lemma 4.4.2. w(I) ⩾ w(V)/4(∆ + 1)
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Proof. Let Vgood be the set of good nodes, and let V = V \Vgood. Observe that,

∑
v∈V

w(v) ⩽ ∑
v∈V

1
2(δ(v) + 1) ∑

u∈N+(v)
w(u) ⩽ ∑

v∈V

deg(v) + 1
2(deg(v) + 1)

w(v) = w(V)/2

⇒∑
v∈I

w(v) ⩾ ∑
v∈I

1
2(δ(v) + 1) ∑

u∈N+(v)
w(u) ⩾ ∑

v∈I

1
2(∆ + 1) ∑

u∈N+(v)∩Vgood

w(u)

⩾
1

2(∆ + 1) ∑
v∈Vgood

w(v) ⩾ w(V)/4(∆ + 1)

as desired. Since the value of an optimal solution in Gw is at most w(V), the
algorithm returns an O(∆)-approximation for MaxIS.

Success with high probability: Given a graph of n nodes, an algorithm that
finds a maximal independent set in the graph with high probability is an algo-
rithm that succeeds with probability at least 1 − 1/nc for some constant c > 1.
In the algorithm above, the black box can be a randomized algorithm that is run
on a subgraph H = (VH, EH) of Gw. Since nH = |VH| is potentially much smaller
than n, one may wonder whether the algorithm above actually succeeds with high
probability with respect to n. The main idea is to use an algorithm that is intended
to work for graphs with n nodes, rather than nH nodes. We prove the following
lemma, whose proof is by a simple padding argument.

Lemma 4.4.3. LetA be an MIS(n, ∆)-round algorithm that finds a maximal independent
set with success probability p in a graph of n nodes and maximum degree ∆. Let H =

(VH, EH) be a graph of nH ⩽ n nodes with (c log n)-bit identifiers, for some constant c,
and let ∆H be the maximum degree in H. There is an O(MIS(n, ∆H))-round algorithm
A′ that finds a maximal independent set in H with success probability p.

Proof. The idea is to pad H with more vertices and then to run an algorithm for
maximal independent set on the new graph. In fact, the easiest way to see this is to
argue that A finds a maximal independent set with high probability on the graph
H′ obtained by adding n− nH isolated nodes to H with unique identifiers. Since
any maximal independent set in H′ induces a maximal independent set in H, the
claim follows. However, some of the algorithms in the CONGEST model assume
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that the input graph is connected3. To get around the connectivity issue, we define
the graph H′ obtained by adding a path of poly(n) nodes with unique Θ(log n)-bit
identifiers to each node that is local minimum in H (with respect to the identifiers).
Each node that is added to a path connected to a local minimum u ∈ VH, is given
a unique identifier starting with the c log n bits of the identifier of u as the LSB’s
(least significant bits), followed by another c log n bits to ensure that the identifier
is unique with respect to the other nodes on the same path. Observe that H′ is
a graph of poly(n) nodes, with unique identifiers of Θ(log n) bits. Hence, H′ is
an appropriate input to the CONGEST model. Furthermore, given a maximal
independent set I′ of H′, one can easily find a maximal independent set in H, as
follows. Let I = I′ ∩ VH. Each node that is a local minimum in H joins I if none
of its neighbors in H is in I. It holds that I (after adding the additional nodes)
is a maximal independent set in H. Since the nodes in H can easily simulate a
maximal independent set algorithm in H′, without any additional communication
cost, it follows that the total running time is MIS(|VH′ |, ∆H′) + 1, where VH′ and
∆H′ are the set of nodes and maximum degree in H′, respectively. Since ∆H′ ⩽
∆H + 1, and |VH′ | = poly(n), it holds that MIS(|VH′ |, ∆H′) = MIS(poly(n), ∆H).
Moreover, for any n we know that for the specific problem of finding a maximal
independent set it holds that MIS(poly(n), ∆) = O(MIS(n, ∆)). This is because
the round-complexity of finding a maximal independent set is at most logarithmic
in the number of nodes. Finally, since a maximal independent set algorithm in H′

succeeds with probability 1− 1/poly(|V′H|) ⩾ 1− 1/poly(n), the claim follows.

4.4.2 A poly(log log n)-Round Algorithm for
O(∆)-Approximation

In this section we show a poly(log log n)-round algorithm that finds an O(∆)-
approximation.

3This assumption is usually made for global problems such as computing the diameter or all-
pairs-shortest-paths. This is because global problems admit an Ω(D) lower bound, where D is the
diameter of the network, which is ∞ for disconnected graphs. While assuming connectivity might
not seem reasonable for the MIS problem, for completeness, we want our reduction to hold even
for algorithms that make this assumption.
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Theorem 4.4.4. Given a weighted graph Gw = (V, E, w), there is a constant c > 1
and a poly(log log n)-round algorithm in the CONGEST model that finds, with high
probability, an independent set of weight at least w(V)

c∆ .

Our algorithm has the following two-step structure.

1. First, we sample a sparse subgraph Hw = (VH, EH, w) of Gw with the follow-
ing two properties:

a) The maximum degree ∆H of Hw is at most O(log n).

b) w(VH)/∆H = Ω(w(V)/∆). That is, the ratio between the total weigh
and maximum degree in Hw is at least, up to a constant factor, as in Gw.

2. Then, we use Theorem 4.4.1 to find an independent set in Hw of size at least
w(VH)

4(∆H+1) = w(V)
c∆ , in O(MIS(n, ∆H)) = O(MIS(n, log n)) = poly(log log n)

rounds.

The first step: sampling a subgraph with the desired properties. Recall that
w(N(v)) is the sum of weights of the neighbors of v, which we call the weighted
degree of v. For each node v ∈ V, let wmax(v) = max{w(N(u)) | u ∈ N+(v)}. It
is useful to think about wmax(v) as the maximum weighted degree of a node in the
inclusive neighborhood of v. We sample a subgraph Hw = (VH, EH, w), as follows.
Let λ ⩾ 1 be a constant to be chosen later. Recall that δ(v) is the maximum degree
of a node in the inclusive neighborhood of v. Each node v ∈ V joins VH with
probability

p(v) = min{λ log n · ( 1
δ(v)

+
w(v)

wmax(v)
), 1}

In Lemma 4.4.5, we show that the maximum degree of Hw is ∆H = O(log n).
In Lemma 4.4.9, we show that w(VH) = Ω(min{w(V), w(V) log n/∆}).

Lemma 4.4.5. The maximum degree ∆H in Hw is O(log n), with high probability.

Proof. Let V+ = {v ∈ V | p(v) ⩾ 1}. We show that each node u has at most
O(log n) neighbors in V+ ∩VH, and at most O(log n) neighbors in (V \V+)∩VH.
Let NH(v) be the set of neighbors of v in H.
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1. For every v ∈ V, |NH(v) ∩V+| ⩽ 2λ log n: Assume towards a contradiction
that there are more than 2λ log n nodes in NH(v) ∩ V+. Since each node
v ∈ V+ has p(v) ⩾ 1. it holds that

∑
u∈N(v)∩V+

p(u) ⩾ ∑
u∈NH(v)∩V+

p(u) > 2λ log n

On the other hand,

∑
u∈N(v)∩V+

p(u) ⩽ ∑
u∈N(v)

p(u) = ∑
u∈N(v)

λ log n · ( 1
δ(v)

+
w(v)

wmax(v)
)

Since deg(v) = |N(v)| and w(N(v)) = ∑u∈N(v) w(u) are lower bounds on
δ(v) and wmax(v), respectively, we have that

∑
u∈N(v)

λ log n · ( 1
δ(u)

+
w(u)

wmax(u)
) ⩽ ∑

u∈N(v)
λ log n · ( 1

deg(v)
+

w(u)
w(N(v))

)

= 2λ log n

which is a contradiction.

2. |NH(v) ∩ (V \V+)| ⩽ 2λ log n: Observe that the expected number of neigh-
bors of v in NH(v) ∩ (V \V+) is

∑
u∈N(v)

p(u) ⩽ 2λ log n

Since |NH(v)∩ (V \V+)| is a sum of independent random variables, one can
apply Chernoff’s bound (Theorem 4.3.1) to achieve that this number concen-
trates around its expectation with high probability.

By applying a standard Union-Bound argument over all the nodes, we conclude
that the maximum degree in Hw is ∆H = O(log n) with high probability.

The rest of this section is devoted to showing that

w(VH) = Ω(min{w(V), w(V) log n/∆})

This is proved in Lemma 4.4.9. First, we start by proving a slightly weaker lemma,
that assumes that for all v ∈ V, p(v) ⩽ 1.

Lemma 4.4.6. Assume p(v) ⩽ 1, for all v ∈ V. It holds that w(VH) = Ω(w(V) log n/∆),
with high probability.
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Main idea of the proof of Lemma 4.4.6: Let w1 ⩾ w2 ⩾ ... ⩾ wn be a sorting of
the weights of nodes in V in a decreasing order (where ties are broken arbitrarily).
Let Vhigh = {u ∈ V | w(u) ∈ {w1, ..., w∆}}, and let Vlow = V \ Vhigh = {u ∈
V | w(u) ∈ {w∆+1, ..., wn}}. That is, Vhigh contains the ∆ heaviest nodes, and Vlow
contains all the other nodes. The proof is split into the following two cases that
are proven separately in Claims 4.4.7 and 4.4.8.

1. w(Vhigh) ⩾ w(V)/2: In this case, at least half of the total weight is distributed
among high-weight nodes. Intuitively, we need to make sure that we get
many of these high-weight nodes. Since the number of high-weight nodes
that are sampled is a sum of independent random variables, we are able to
use Chernoff’s bound to prove that many of them are sampled, with high
probability. The full proof for this case is presented in Claim 4.4.7.

2. w(Vlow) ⩾ w(V)/2: In this case, at least half of the total weight is dis-
tributed among low-weight nodes. Therefore, it is sufficient to show that
w(VH) = Ω(w(Vlow) log n/∆). The key property here is that we can bound
the maximum weight of a node in Vlow by w(V)/∆. We show how to use
this property together with Bernstein’s inequality to prove Lemma 4.4.6 for
this case. The full proof for this case is presented in Claim 4.4.8.

Claim 4.4.7. Assume that for all v ∈ V, p(v) ⩽ 1. Let Vhigh = {u ∈ V | w(u) ∈
{w1, ..., w∆}}. If w(Vhigh) ⩾ w(V)/2, then w(VH) = Ω(w(V) log n/∆), with high
probability.

Proof. Let S = {v ∈ Vhigh | w(v) ⩾ w(V)/4∆}. We start by showing that at least
a constant fraction of the total weight in Gw is distributed among nodes in S. Let
S = Vhigh \ S, we start by showing that w(S) ⩽ w(V)/4:

w(S) ⩽ ∑
v∈S

w(v) ⩽ ∑
v∈S

w(V)

4∆
⩽

w(V)

4

where the last inequality holds because |S| ⩽ |Vhigh| = ∆. Therefore, w(S) =
w(Vhigh \ S) = w(Vhigh) − w(V(S)) ⩾ w(V)/4. Next, we show that |S ∩ VH| =
Ω(log n), by using Chernoff’s bound. Let xv be a {0, 1} random variable indicat-
ing whether v ∈ VH, and let X = ∑v∈S xv. We show that the expectation of X is at
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least c log n/4.

E[X] = ∑
v∈S

E[xv] = ∑
v∈S

p(v) = ∑
v∈S

λ log n · ( 1
δ(v)

+
w(v)

wmax(v)
)

⩾ ∑
v∈S

w(v)λ log n
w(V)

⩾
λ log n
w(V)

· ∑
v∈S

w(v) =
w(S)λ log n

w(V)
⩾

λ log n
4

Furthermore, sine X is a sum of independent {0, 1} random variables with
expectation Ω(log n), by applying Chernoff’s bound (Theorem 4.3.1), we conclude
that there are at least Ω(log n) nodes in S ∩VH, with high probability. Since each
node in S has weight at least w(V)/4∆, this implies that the total weight in VH is
w(VH) ⩾ w(S ∩VH) = Ω(w(V) log n/∆), with high probability, as desired.

Claim 4.4.8. Assume that for all v ∈ V, p(v) ⩽ 1. Let Vlow = {v ∈ V | w(v) ∈
{w∆+1, ..., wn}}. If w(Vlow) ⩾ w(V)/2, then w(VH ∩ Vlow) = Ω(w(V) log n/∆),
with high probability.

Proof. Let xv be a {0, 1} random variable indicating whether v ∈ VH, let yv =

xv · w(v), and let Y = ∑v∈Vlow
yv. We prove the following 3 properties:

1. E(Y) ⩾ w(V)λ log n
2∆ : this is because

E[Y] = ∑
v∈Vlow

p(v) · w(v) = ∑
v∈Vlow

λ log n · ( 1
δ(v)

+
w(v)

wmax(v)
) · w(v)

⩾ ∑
v∈Vlow

w(v)λ log n
∆

=
w(Vlow)λ log n

∆
⩾

w(V)λ log n
2∆

where the last equality holds since w(Vlow) ⩾ w(V)/2.

2. For any v ∈ Vlow, it holds that w(v) ⩽ w(V)/∆: Recall that {w1, · · · , wn} is
an ordering of the weight of nodes by a decreasing order. Hence, for any j,
it holds that

wj · j ⩽
j

∑
i=1

wj ⩽ w(V)

where the first inequality holds because wj is the minimum among {w1, ..., wj}.
Hence, since each node v ∈ Vlow has weigh wj where j > ∆, we have that
w(v) ⩽ w(V)/∆ for any v ∈ Vlow.
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3. It holds that ∑v∈Vlow
E[y2

v] ⩽ w(V) ·E[Y]/∆: First, observe that

∑
v∈Vlow

E[y2
v] ⩽ max{w(v) | v ∈ Vlow} · ∑

v∈Vlow

E[yv]

= max{w(v) | v ∈ Vlow} ·E[Y] ⩽
w(V) ·E[Y]

∆

where the last inequality holds by the second property.

By proving these three properties, we have satisfied all the prerequisites of
Bernstein’s inequality. A direct application of the inequality yields:

Pr
[
|Y−E[Y]| ⩾ E[Y]/2

]
⩽ 2 exp

(
− E[Y]2/8

M ·E[Y]/6 + ∑v∈Vlow
Var(yv)

)
By the second and third properties, we have that

∑
v∈Vlow

Var(yv) = ∑
v∈Vlow

E(y2
v)−E[yv]

2 ⩽ ∑
v∈Vlow

E(y2
v) ⩽

w(V) · E[Y]
∆

⇒ Pr
[
|Y−E[Y]| ⩾ E[Y]/2

]
⩽ 2 exp

(
− E[Y]2/8

w(V)·E[Y]
6∆ + w(V)·E[Y]

∆

)

⩽ 2 exp
(
−6∆ ·E[Y]/8

7w(V)

)
Furthermore, by the first property, we have that

E[Y] ⩾ w(V)λ log n/2∆

⇒2 exp
(
−6∆ ·E[Y]/8

7w(V)

)
⩽ 2 exp

(
−6w(V)λ log n

56w(V)

)
= 2 exp

(
−6λ log n

56
)

)
Finally, choosing λ = 112/6 implies that:

Pr
[
|Y−E[Y]| ⩾ E[Y]/2

]
⩽

1
n2 log e <

1
n2

as desired. Furthermore, we can boost the success probability to 1− 1/nk for
any constant k > 1, by setting λ = 112k

3 .
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Having proved claims 4.4.7 and 4.4.8, this finishes the proof of Lemma 4.4.6.
Lemma 4.4.6 makes the assumption that p(v) ⩽ 1 for all v ∈ V. We remove this
assumption in the proof of the following lemma.

Lemma 4.4.9. It holds that w(VH) = Ω(min{w(V), w(V) log n/∆}), with high prob-
ability.

Proof. Let V+ = {u ∈ V | p(w) ⩾ 1}. The proof is split into two cases:

1. w(V+) ⩾ w(V)/2: Since all the nodes in V+ join VH deterministically, this
implies that w(VH) ⩾ w(V+) ⩾ w(V)/2.

2. w(V+) < w(V)/2: This implies that w(V \ V+) ⩾ w(V)/2. Since each
node w ∈ V \ V+ has p(w) < 1, we can apply Lemma 4.4.6 directly on
the nodes in V \ V+ to conclude that w(VH) = Ω(w(V \ V+) log n/∆) =

Ω(w(V) log n/∆), with high probability, as desired.

Now we are ready to finish the proof of Theorem 4.4.4.

Proof of Theorem 4.4.4. Since both Lemma 4.4.5 and 4.4.9 above hold with high
probability, we can apply another standard Union-Bound argument to conclude
that both of them hold with high probability (simultaneously). Hence, by run-
ning the algorithm from Section 5.4 on Hw, we get an independent set of weight
Ω(w(VH)/∆H) = Ω(w(V)/∆), in MIS(n, ∆H) = MIS(n, log n) = poly(log log n)
rounds, with high probability, as desired.

4.4.3 Boosting for (1 + ϵ)∆-Approximation

In this section we prove the following theorem.

Theorem 4.4.10. Let A be a T-round algorithm that finds an independent set of weight
at least ( 1

c∆ )-fraction of the total weight in the graph, in the CONGEST model. There is
a (2Tc

ϵ )-round algorithm A′ that finds a (1 + ϵ)∆-approximation for maximum-weight
independent set in the CONGEST model.
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Description of algorithm A′: Our algorithm consists of two stages. In the first
stage we iteratively call algorithm A, which returns an independent set, and per-
form weight reductions based on the independent set. Then, we push all nodes in
the independent set onto a stack. The next time we invokeA in the first stage, it is
invoked on the graph with the reduced weight. In the second stage we iteratively
pop the independent sets from the stack and greedily construct another indepen-
dent set which we return as the solution. A′ is formally given in Algorithm 1. We
continue with a formal description of our algorithm.

Let t = c/ϵ. As stated before, there are two stages in A′, each consists of t
phases.

First Stage: For i = 1 to t phases, in each phase, we first run algorithm A to find
an independent set Ii in Gwi , where w1 = w, and Gw1 = Gw = (V, E, w) is the
original input graph. Then, we insert the nodes in Ii to a stack S that is initially
defined to be empty, and continue to Gwi+1 = (V, E, wi+1), where wi+1 is defined
as follows. For each v ∈ V,

wi+1(v) =

{
0 if v ∈ Ii

wi(v)−∑u∈N(v)∩Ii
wi(u) otherwise

That is, wi+1 is a weight function which results from weight reductions to wi, as
follows. For each v ∈ Ii, we reduce its total current weight, wi(v), and therefore its
weight becomes zero. For each v /∈ Ii, we reduce its current weight, wi(v), by the
total weight of its neighboring nodes in Ii. This concludes the first stage. Before
we proceed to the second stage, let us define the following weight functions w′i,
for every i ∈ [t], that are used in the analysis. For each v ∈ V,

w′i(v) = wi(v)− wi+1(v)

Hence, w′i(v) is the reduced weight from v at the end of phase i. We define another
weight function w′, which is the total reduced weight function. For each v ∈ V,

w′(v) =
t

∑
i=1

w′i(v)

Second Stage: We construct an independent set I as follows. For i = 0 to t− 1
phases, we pop out It−i from the stack, and insert each v ∈ It−i to I unless I
already contains a neighbor of v.
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In Lemma 4.4.13, we prove that I is a (1 + ϵ)∆-approximation for maximum-
weight independent set for Gw. First, let us start with the following helper propo-
sitions. Recall that given a weight function ŵ we denote by Gŵ = (V, E, ŵ) the
same graph as the input graph Gw but with weight function ŵ rather than w. For
every set of nodes, V′ ⊆ V, we define ŵ(V′) = ∑v∈V′ ŵ(v).

Proposition 4.4.11. Ii is a ∆-approximation for maximum-weight independent set in
Gw′i

.

Proof. First, observe that for every v ∈ Ii, it holds that w′i(v) = wi(v)− wi+1(v) =
wi(v), and for every v /∈ Ii, it holds that w′i(v) = w′i(N(v) ∩ Ii). Let I∗i be an
optimal maximum-weight independent set in Gw′i

. We can assume that I∗i contains
only nodes in Ii ∪ N(Ii), as all the other nodes in Gw′i

have zero weight4. We have
that,

w′i(I∗i ) = w′i(I∗i ∩ Ii) + w′i(I∗i \ Ii) = w′i(I∗i ∩ Ii) + ∑
v∈I∗i \Ii

w′i(N(v) ∩ Ii)

= w′i(I∗i ∩ Ii) + ∆w′i(Ii \ I∗i ) ⩽ ∆w′i(Ii)

as desired.

In the following proposition we draw a connection between w(I), the final
value of our solution, and the total value stored in our stack. Formally, we show
the following.

Proposition 4.4.12. It holds that w(I) ⩾ ∑t
i=1 w′i(Ii) = ∑t

i=1 wi(Ii).

Proof. We assume without loss of generality that A never picks nodes of non-
positive weight to the independent set, as we can always remove them and in-
crease the size of the solution. Observe that for every v ∈ I, it holds that v ∈ Ii for
some i ∈ [t]. Let iv be the phase for which v ∈ Iiv . It holds that,

w(v) = wiv(v) +
iv−1

∑
i=1

wi(N(v) ∩ Ii) = wiv(v) + ∑
u∈(N(v)∩(⋃iv−1

i=1 Ii))

wiu(u)

The first equality is because the weight of v at phase iv was positive, as otherwise it
wouldn’t be in Iiv , and, until phase iv, the total amount of weight that was reduced

4Recall that N(Ii) denotes the set of neighbors of all nodes in Ii.
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from v is ∑iv−1
i=1 wi(N(v) ∩ Ii). And the second equality is because for every u

which contributes to the sum ∑iv−1
i=1 wi(N(v)∩ Ii), its contribution is exactly wiu(u).

Hence, we have that,

w(I) = ∑
v∈I

(
wiv(v) +

iv−1

∑
i=1

wi(N(v) ∩ Ii)

)

=

(
∑
v∈I

wiv(v)

)
+

∑
v∈I

∑
u∈(N(v)∩(⋃iv−1

i=1 Ii))

wiu(u)


⩾

(
∑
v∈I

wiv(v)

)
+

 ∑
u∈(⋃t

i=1 Ii)\I

wiu(u)


=

t

∑
i=1

wi(Ii)

where the last inequality holds because for every u ∈ (∪t
i=1 Ii) \ I, there is at least

one neighbor v of u in I, with iv > iu. Finally, since for every i ∈ [t] and for every
v ∈ Ii, w′i(v) = wi(v), the claim follows.

Now we are ready to show that I is a (1 + ϵ)∆-approximation for maximum-
weight independent set in the original input graph Gw.

Lemma 4.4.13. I is a (1 + ϵ)∆-approximation for maximum-weight independent set in
Gw.

Proof. Let OPT(Gw) be the value of an optimal solution in Gw. The proof is by the
following case analysis.

1. wt(V) ⩽ ϵ
1+ϵOPT(Gw):

Recall that for all v ∈ V, w′(v) = ∑t
i=1 w′i(v). First, observe that,

w′(V) ⩾ ∑
v∈V

t−1

∑
i=1

w′i(v) = ∑
v∈V

t−1

∑
i=1

wi(v)− wi+1(v)

= w(V)− wt(V) ⩾ w(V)− ϵ

1 + ϵ
OPT(Gw)

Therefore, the value of an optimal solution in Gw′ cannot be very small com-
pared to the value of an optimal solution in Gw. Namely, OPT(Gw′) ⩾
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(1− ϵ
1+ϵ )OPT(Gw) = OPT(Gw)/(1 + ϵ). Finally, by Propositions 4.4.11, Ii

is a ∆-approximation to OPT(Gw′i
), and by Proposition 4.4.12, we have that,

w(I) ⩾
t

∑
i=1

w′i(Ii) ⩾
t

∑
i=1

OPT(Gw′i
)

∆
⩾

OPT(Gw′)

∆
⩾

OPT(Gw)

(1 + ϵ)∆

as desired.

2. wt(V) ⩾ ϵ
1+ϵOPT(Gw):

Observe that for any i < t, it holds that wi(V) ⩾ wt(V). Therefore, since A
returns an independent set of weight at least ( 1

c∆ )-fraction of the total weight
in the graph, for each phase i ∈ [t], it holds that wi(Ii) ⩾

ϵ
(1+ϵ)c∆OPT(Gw),

which implies:

t

∑
i=1

wi(Ii) ⩾ t
ϵ

(1 + ϵ)c∆
OPT(Gw) =

1
(1 + ϵ)∆

OPT(Gw)

By Proposition 4.4.12, we have that w(I) ⩾ ∑t
i=1 wi(Ii) ⩾ 1

(1+ϵ)∆OPT(Gw).
Which completes the proof.

Remark: One can show that the same algorithm also returns an independent
set of weight at least w(V)

(1+ϵ)(∆+1) . The proof of this argument similar to the proof
above. The only difference is that the case analysis in Lemma 4.4.13 is with respect
to ϵ

1+ϵ w(V). That is, the first case is in which wt(V) ⩽ ϵ
1+ϵ w(V), and the second

case is in which wt(V) ⩾ ϵ
1+ϵ w(V). It is straightforward to show that in both cases

I is of weight at least w(V)
(1+ϵ)(∆+1) , by using the stack property (Proposition 4.4.12).

Corollary 4.4.14. Let A be a T-round algorithm that finds an independent set of weight
at least ( 1

c∆ )-fraction of the total weight in the graph, in the CONGEST model. There is a
(2Tc

ϵ )-round algorithm A′ that finds an independent set I of weight at least w(V)
(1+ϵ)(∆+1) in

the CONGEST model.
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Algorithm 1 (1 + ϵ)∆-approx
Data: a graph G = (V, E, w)
Result: an independent set I

1 I ← ∅
S← ∅ // S is the Stack

2 w1 = w

3 for i = 1 to t = c/ϵ phases do
4 Run A on Gwi

Let Ii ← A(Gwi)
Insert all the nodes in Ii into S
∀v ∈ V : wi+1(v)← wi(v)−∑u∈N+(v)∩Ii

wi(u)

5 end
6 for i = 0 to t− 1 phases do
7 Pop It−i from S

8 for v ∈ It−i do
9 if N(v) ∩ I = ∅ then

10 add v to I
11 end
12 end
13 end
14 return I

4.5 Even Faster Algorithm for Low-Degree Graphs

In this section we show that there is an O(1)-round algorithm that finds an inde-
pendent set of size Ω(n/∆) for graphs in which ∆ ⩽ n/ log n. Using the boosting
theorem that is presented in the previous section (in particular, Corollary 4.4.14),
this implies that there is an O(1/ϵ)-round algorithm that finds an independent set
of size at least n

(1+ϵ)(∆+1) in unweighted graphs of maximum degree ∆ ⩽ n/ log n,
proving Theorem 4.1.4.

The algorithm is based on a new analysis of one round of Luby’s algorithm.
This classical algorithm finds an independent set in a graph by independently
selecting a rank for each vertex and including a vertex in the output independent
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set if its rank is greater than the ranks of its neighbors (Algorithm 22).

Algorithm 2 Luby
Data: an unweighted graph G = (V, E)
Result: an independent set I

15 I ← ∅
16 for each vertex u ∈ V do
17 ru ← uniformly random number in {1, 2, . . . , 100nc+2}
18 end
19 for each vertex u ∈ V do
20 Add u to I if ru > rv for all neighbors v of u in G
21 end
22 return I

In discussion, notice that Luby can be implemented in O(c) rounds in the
CONGEST model. We analyze this algorithm by considering a sequential view.
The independent set I returned by the algorithm only depends on the order of
the rvs. We could run Luby instead by picking a uniformly random permutation
of the vertices and include a vertex v in I if no neighbor of v has a higher rank
in the permutation. Furthermore, we can sample the permutation by repeatedly
selecting uniformly random vertices without replacement. Equivalently, sample a
permutation by repeatedly selecting vertices with replacement, but reject samples
seen before (Algorithm 32).

To analyze Luby(G), it suffices to analyze SeqLuby(G):

Proposition 4.5.1. For any unweighted graph G and constant c > 0, SeqLuby(G) pro-
duces a distribution over sets I with total variation distance at most 1/nc from the distri-
bution produced by Luby(G); in particular

∑
sets I0

| Pr
I∼SeqLuby(G)

[I = I0]− Pr
I∼Luby(G)

[I = I0]| ⩽ 1/nc

Proof. Let n = |V| and D0 be the uniform distribution over {1, 2, . . . , 100nc+2}n.
This is the distribution over rank tuples (ru)u∈V used by algorithm Luby. Let D1
be the uniform distribution over tuples in {1, 2, . . . , n}n with distinct coordinates.
Let Luby1 denote the algorithm with the tuple (ru)u∈V sampled from D1 instead
of D0:
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Algorithm 3 SeqLuby
Data: an unweighted graph G = (V, E)
Result: an independent set I

23 I ← ∅
24 U ← V
25 while U ̸= ∅ do
26 u← uniformly random element of the set V
27 U ← U \ {u}
28 if all neighbors v of u are in U then
29 Add u to I
30 end
31 end
32 return S

Algorithm 4 Luby1
Data: an unweighted graph G
Result: an independent set I

33 I ← ∅
34 (rv)v∈V ← sample from D1
35 for each vertex v ∈ V do
36 Add v to I if rv > ru for all neighbors u of v in G
37 end
38 return I

By a union bound over all pairs of vertices, ru ̸= rv for all u, v ∈ V(G) with
probability at least 1− (n

2)
1

100nc+2 > 1− 1/(2nc). Let E denote the event {ru ̸=
rv∀u, v ∈ V(G)} and let E denote the negation. Conditioned on ru ̸= rv for all
u, v ∈ V(G), the output of Luby is identically distributed to the output of Luby1.
Therefore,

∑
sets I0

| Pr
I∼Luby(G)

[I = I0]− Pr
I∼Luby1(G)

[I = I0]|

= ∑
sets I0

| Pr
I∼Luby(G)

[I = I0]− Pr
I∼Luby(G)

[I = I0|E]|

= ∑
sets I0

|Pr[I = I0|E]Pr[E] + Pr[I = I0&E]− Pr[I = I0|E]|
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⩽ ∑
sets I0

(Pr[I = I0|E]Pr[E] + Pr[I = I0&E])

= 2 Pr[E]
⩽ 1/nc

so the total variation distance between the output distributions of Luby and Luby1
is at most 1/nc. Next, we show that Luby1(G) produces the same distribution over
sets as the following algorithm, SeqLuby0(G):

Algorithm 5 SeqLuby0(G)

Data: an unweighted graph G
Result: an independent set I

39 I ← ∅
40 for r = n, n− 1, . . . , 1 do
41 ur ← uniformly random element of the set V \ {un, un−1, . . . , ur+1}
42 if ur does not have a neighbor v for which v = us for some s > r then
43 Add ur to I
44 end
45 end
46 return I

Since the urs are selected without replacement from V, the distribution over
tuples (un, un−1, . . . , u1) is a uniform distribution over permutations of V. Let
R ⊆ {1, 2, . . . , n}n and U ⊆ Vn denote the families of {1, 2, . . . , n} and V-tuples
with distinct coordinates respectively. Fix an ordering v1, v2, . . . , vn of vertices in
G and let τ : R → U be the map

τ(r1, r2, . . . , rn−1, rn) = (vr1 , vr2 , . . . , vrn−1 , vrn)

τ is a bijection. Furthermore, for any tuple r ∈ R, Luby1(G) with vi-rank ri out-
puts the same set S as SeqLuby0(G) with vertex ordering u = τ(r). Therefore,
Luby1(G) outputs the same distribution over sets as SeqLuby0(G).

Finally, SeqLuby0(G) produces the same distribution over independent sets
as SeqLuby(G), because the permutation can be sampled with replacement and
rejection of previous samples (as in SeqLuby) rather than without replacement (as
in SeqLuby0). Therefore, SeqLuby(G) and Luby(G) produce distributions over
sets S with total variation distance at most 1/nc, as desired.
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To lower bound the size of the independent set produced by SeqLuby(G), we
use an exposure martingale. We start by stopping the SeqLuby algorithm early:
we only consider the first k = n/(2(∆ + 1)) iterations. Each iteration samples
1 vertex, which precludes at most ∆ other vertices from joining the independent
set in the future. Therefore, after k iterations, a randomly sampled vertex has a
probability of at least n−(∆+1)k

n ⩾ 1/2 of still being able to join the independent
set. Thus, I has size at least (1

2)(
n

2(∆+1)) =
n

8(∆+1) in expectation. To obtain a high-
probability lower bound on the size of I, we use the following proposition, which
we prove using Azuma’s Inequality:

Proposition 4.5.2. Consider a setX , a distributionD overX , a collection X1, X2, . . . , Xk
of independent, identically distributed random variables sampled from D, and a collec-
tion of functions f1, f2, . . . , fk, where fi : X i → R. Suppose that there are numbers
M0, M1 > 0 such that for all i ∈ {1, 2, . . . , k− 1} and all tuples x1, x2, . . . , xi ∈ X , the
following conditions hold:

1. (Max change) | fi+1(x1, x2, . . . , x)− fi(x1, x2, . . . , xi)| ⩽ M0 and | f1(x)| ⩽ M0
for all x ∈ X

2. (Expected increase) EX∼D[ fi+1(x1, x2, . . . , xi, X)] ⩾ M1 + fi(x1, x2, . . . , xi) and
EX∼D[ f1(X)] ⩾ M1.

Then

Pr[ fk(X1, X2, . . . , Xk) < kM1 − t] ⩽ exp

(
−t2

8M2
0k

)
Proof. Set up a martingale {Yi : i = 0, 1, . . . , k} based on the sequence of function
values. Let Y0 = 0 and for all i ∈ {1, 2, . . . , k}, let

Yi = fi(X1, X2, . . . , Xi)−E[ fi(X1, X2, . . . , Xi)|X1, . . . , Xi−1] + Yi−1

For all integers i ⩾ 1, E[Yi|X1, . . . , Xi−1] = Yi−1, so the Yis are a martingale. Let f0
denote the constant function f0 = 0. By the Max change condition,

|Yi −Yi−1| = | fi(X1, X2, . . . , Xi−1, Xi)−E[ fi(X1, X2, . . . , Xi−1, Xi)|X1, . . . , Xi−1]|
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⩽ max
a,b∈X

| fi(X1, X2, . . . , Xi−1, a)− fi(X1, X2, . . . , Xi−1, b)|

⩽ max
a,b∈X

(| fi(X1, X2, . . . , Xi−1, a)− fi−1(X1, . . . , Xi−1)|

+ | fi−1(X1, . . . , Xi−1)− fi(X1, X2, . . . , Xi−1, b)|)
⩽ 2M0

Therefore, by Theorem 4.3.3,

Pr[Yk < −t] ⩽ exp

(
− t2

8kM2
0

)
By the Expected increase condition, for all integers i ⩾ 1,

Yi = fi(X1, X2, . . . , Xi)−E[ fi(X1, X2, . . . , Xi)|X1, . . . , Xi−1] + Yi−1

= fi(X1, X2, . . . , Xi)− fi−1(X1, . . . , Xi−1)

+ fi−1(X1, . . . , Xi−1)−E[ fi(X1, X2, . . . , Xi)|X1, . . . , Xi−1] + Yi−1

⩽ fi(X1, X2, . . . , Xi)− fi−1(X1, . . . , Xi−1)−M1 + Yi−1

As a result,

Yk ⩽ fk(X1, . . . , Xk)− kM1

which means that

Pr[ fk(X1, . . . , Xk) < kM1 − t] ⩽ Pr[Yk < −t] ⩽ exp

(
− t2

8kM2
0

)
as desired.

We now prove our main result by letting fi denote the size of the independent
set after i iterations of SeqLuby:

Theorem 4.5.3. For any c > 1, there is an (c)-round CONGEST algorithm Luby(G)

that, given a parameter p ∈ (0, 1) and an n-vertex graph G with max degree ∆ ⩽
n/(256 log(1/p)) − 1, returns an independent set I for which |I| ⩾ n/(8(∆ + 1))
with probability at least 1− p− 1/nc.
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Proof. Luby(G) is an O(c)-round algorithm in the CONGEST model. Further-
more, the set I returned is an independent set because each vertex v ∈ I has a
strictly higher rank rv than its neighbors, which is not simultaneously possible
for two adjacent vertices. Therefore, to prove the theorem, we just need to lower
bound the size of the set I returned by Luby(G). By Proposition 4.5.1, it suffices
to show that the set I returned by SeqLuby(G) has size at least n/(8(∆ + 1)) with
probability at least 1− p.

To lower bound the size of I, we apply Proposition 4.5.2 with the following
parameter settings:

• k = n/(2(∆ + 1))

• X = V(G)

• D: the uniform distribution over X

• Xi: u is sampled during the ith iteration of the while loop in SeqLuby(G).

• fi(x1, x2, . . . , xi): the function that maps a set of vertices x1, . . . , xi to |Ii|,
where Ii is the set I between the i and (i + 1)th iterations of the while loop
of SeqLuby(G) with u being xj in the jth while loop iteration.

• M0 = 1

• M1 = 1/2

• t = k/4

We now check the conditions of Proposition 4.5.2 with each of these parameters.
The Max change condition follows immediately from the fact that Ii+1 = Ii or
Ii+1 = Ii ∪ {Xi+1} for all i ⩾ 1 and the fact that |I1| ⩽ 1, so we focus on the
Expected increase condition. Consider a set of choices x1, x2, . . . , xi of the first i
while loop vertices u and let Vi = {x1, x2, . . . , xi} for all i ∈ {0, 1, . . . , k}. Let X be
a random variable denoting the (i + 1)th vertex u selected by the while loop from
U. X is uniformly chosen from V. By the if statement of the SeqLuby algorithm, X
is added to I if and only if X is not equal to or adjacent to any vertex in Vi. There
are at most (∆ + 1)|Vi| such vertices, so

Pr
X∼D

[ fi+1(x1, x2, . . . , xi, X) ̸= fi(x1, . . . , xi)] ⩾ 1− (∆ + 1)|Vi|
n
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Since i ⩽ k ⩽ n/(2(∆ + 1)) and |Vi| = i, we get that

Pi,i+1 = Pr
X∼D

[ fi+1(x1, x2, . . . , xi, X) ̸= fi(x1, . . . , xi)] ⩾ 1/2

for all i ∈ {0, 1, . . . , k− 1}. Furthermore, we have that

EX∼D[ fi+1(x1, x2, . . . , xi, X)] = Pi,i+1 + fi(x1, x2, . . . , xi)

⩾ 1/2 + fi(x1, x2, . . . , xi)

Plugging in our lower bound on the probability shows that the Expected increase
condition is satisfied. Therefore, Proposition 4.5.2 applies and shows that

Pr[|Ik| < k/4] ⩽ exp
(
− (k/4)2

8k

)
= exp(−k/128)

In particular, since |I| ⩾ |Ik|,

Pr[|I| < n/(8(∆ + 1))] ⩽ exp(−n/(256(∆ + 1))) ⩽ p

Therefore, the independent set I returned by SeqLuby has the desired size with
probability at least 1− p, as desired.

4.6 Lower Bound

In this section, we prove Theorem 4.1.3. We do this by a reduction from Naor’s
[225] lower bound (Theorem 4.2.2). We point out that Naor’s lower bound holds
even under the assumption that the nodes know the exact value of the number of
nodes in the cycle. Our reduction is given in Lemma 4.6.1.

A road-map for this section: This section is organized as follows. We start
with Lemma 4.6.1 below, following a description of the reduction. Then, in Sec-
tion 4.6.1, we point out two important properties of the reduction, which we view
as the main intuition behind the proof of Lemma 4.6.1. In Section 4.6.2, we give
the formal proof of Lemma 4.6.1. Section 4.6.3 contains the proof of Theorem 4.1.3.
Finally, in Section 4.6.4, we improve the probability guarantee in our lower bound,
ruling out even algorithms that succeed less often.
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Some notations: We say that an algorithm is size-oblivious if it doesn’t know
the exact value of the number of nodes, but only a polynomial upper bound on it.
Similarly, we say that an algorithm is size-conscious if it knows the exact value of
the number of nodes.

In Lemma 4.6.1, we show that if there is a size-oblivious algorithm for ap-
proximate MaxIS, then there is a size-conscious algorithm that finds a maximal
independent set in a cycle.

Lemma 4.6.1. Suppose that there exists a size-oblivious T(n)-round algorithm A(G) in
the LOCAL model that outputs an independent set containing at least n/(c∆) nodes in
an n-node graph G, with probability at least 1− p(n), where p is a decreasing function.
Then, there is a constant α > 0 such that for any two integers n1 ⩾ n0 there is a size-
conscious αT(n0n1)-round algorithm RANDMIS(C) in the LOCAL model that outputs
a maximal independent set of an n0-node cycle graph C with probability at least 1 −
n0p(n1).

We now proceed to describing the reduction of Lemma 4.6.1.

The reduction: Let C be a cycle graph of n0 nodes. The algorithm RANDMIS(C)
runs A on a graph C1 which is a cycle of cliques, and will be formally defined
shortly. After A finds an independent set in C1, it uses the resulting independent
set to find a maximal independent set in C. We now formally define the graph
C1. For an n0-node cycle C consisting of vertices u1, u2, . . . , un0 in that order, let C1
be a graph on n0n1 vertices {{vij}n1

j=1}
n0
i=1. There is an edge between two vertices

vij, vi′ j′ in C1 if and only if |i′ − i| ⩽ 1 or i′ = n0 and i = 1. The ID of a node vij
in C1 is the concatenation of the ID for ui in C and the number j. Notice that these
IDs have length at most log(n0n1). C1 is a cycle of cliques, with a biclique between
two adjacent cliques. This graph is depicted in Figure 4.1.

RANDMIS(C) starts by computing an independent set I1 in C1 using A(C1),
which can be implemented in the LOCAL model on C, with each node ui simulat-
ing all of the actions performed by A(C1) on the vertices {vij}n1

j=1. Then, the set I1
is mapped to an independent set I in C, as follows. For each node u ∈ C, it joins I
if and only if the corresponding clique in C1 contains a node in I1.

Finally, the nodes in I are removed from the cycle together with their neigh-
bors, and RANDMIS(C) finds a maximal independent set in each of the resulting
connected components.
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Figure 4.1: An illustration for our reduction to prove the lower bound. To find
a maximal independent set in a cycle C, the nodes run an approximate-MaxIS
algorithm to find an independent set I1 in C1, which is obtained from C as follows.
Each node v ∈ C is replaced by a large clique of size 2|C|, denoted by K(v), where
every two adjacent cliques are connected by a bi-clique. Using the independent
set I1 in C1, the nodes map it to find an independent set I in C, as follows. Every
v ∈ C joins I if and only if K(v) contains a node in I1. Due to the approximation
guarantee, the gap between any two nodes in I1 in C1 is small, and therefore the
gap between any two nodes in I in C is also small. Finally, the nodes run a greedy
MIS algorithm to “fill in" the gaps, and find an MIS in C.
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Algorithm 6 RANDMIS(C)
Data: an n0-node cycle graph C
Result: a maximal independent set S of C

47 S← ∅
48 I1 ← A(C1) (implemented in LOCAL model on C as stated in Proposition 4.6.8

proof) // step (1)
49

50 I ← {ui ∈ V(C) for which there exists j with vij ∈ I1} // step (2)
51 Add I to S
52 J ← {u ∈ V(C) : u ∈ I or u is adjacent to a node in I}
53 C2 ← C \ J
54 for each connected component D of C2 in parallel do
55 Add a fixed maximal independent set of D to S // step (3)
56 end
57 return S

4.6.1 Two Key Properties of The Reduction and An Intuitive
Explanation

In the proof of Lemma 4.6.1, we crucially exploit two properties of the algorithm
A. The first property is important for the correction of our reduction, and the
second is important for bounding the run-time of the reduction.

First Property: Global Success. A is globally consistent in the sense thatA returns
an independent set in the cycle of cliques C1 with high probability. This property
helps us to argue that the returned set for the cycle C is also an independent set.
See also Lemma 4.6.2. Observe that the max-degree of C1 is 3n1, which as a func-
tion of the number of nodes in C1 is Θ(|V(C1)|/ log |V(C1)|). This is the reason
that in the statement of Theorem 4.1.3 we require the algorithm to be able to suc-
ceed on such max-degree graphs.

Second Property: Local Success. The algorithm A is locally present in the sense
that an O(T(n0n1))-neighborhood of any node intersects I1 with high probabil-
ity. Since Algorithm A is size-oblivious, which means that it doesn’t have the
exact value of the number of nodes in C1 but only a polynomial approximation
of it, it follows that A doesn’t distinguish between the cycle of cliques C1 and
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an O(T(n0n1))-length path of cliques of the same structure. That is, for a node
v ∈ C1, when v runs A for T(n0n1) rounds on C1, the algorithm behaves ex-
actly the same as if C1 was a short path of cliques of length O(T(n0n1)) centered
at v, assuming that the ID’s of the nodes in the T(n0n1)-neighborhood of v in
the two graphs are the same. We are able to use this observation to show that
the O(T(n0n1))-neighborhood of each node in C1 must contain a node in I1 with
probability at least 1− p(n1), as otherwise, the algorithm would fail on a short
path of cliques of length O(T(n0n1)). This in turn implies that the O(T(n0n1))-
neighborhood of any node in the cycle C must contain a node in I with probability
at least 1− p(n1). By a union bound over nodes in C, the distance between any
two consecutive nodes in I along the cycle is at most O(T(n0n1)) with probabil-
ity at least 1− n0p(n1). Therefore, all connected components of C \ I have size
at most O(T(n0n1)), so sequentially finding a maximal independent set in each
component simultaneously takes O(T(n0n1)) time to extend I to an MIS for C.
See also propositions 4.6.4, 4.6.5, 4.6.7, and 4.6.8.

Later, in the proof of Theorem 4.1.3, we set T(n) = log∗ n. Hence, when we
say that the algorithm succeeds on a path of cliques H of length O(T(n0n1)), this
graph has maximum-degree Θ(|V(H)|/ log∗(|VH)|). This is exactly why the state-
ment of Theorem 4.1.3 requires the algorithm to succeed also on graph with such
maximum-degree.

Interestingly, the second property does not hold for one round of Luby’s algo-
rithm and the first property does not hold for a o(log∗ n)-time greedy algorithm.
This perhaps provides another intuitive explanation to why these two properties
are manifested to a lower bound proof.

4.6.2 The Proof of Lemma 4.6.1

We start by showing the correctness of the algorithm.

Lemma 4.6.2. RANDMIS(C) outputs a maximal independent set of the n0-node cycle
graph C with probability at least 1− p(n1).

Proof. By definition of the algorithm A, I1 is an independent set of C1 with proba-
bility at least 1− p(n0n1) ⩾ 1− p(n1). For the rest of the proof, assume that I1 is an
independent set C1 (the complement happens with probability at most p(n1)). We
now show that I is an independent set. Suppose, instead, that there exist adjacent
ui, ui+1 ∈ I. By definition of I, there exist vertices vij, v(i+1)j′ ∈ I1. By construction



CHAPTER 4. DISTRIBUTED APPROXIMATE MAXIMUM INDEPENDENT
SET 119

of C1, vij and v(i+1)j′ are adjacent vertices in C1, a contradiction to the fact that I1
is an independent set in C1. Therefore, I must be an independent set in C.

No vertices in C2 are adjacent to vertices in I within C by definition of C2.
Therefore, S is an independent set in C. Furthermore, each node in J is adjacent
to a node in I, while each node in V(C) \ J is adjacent to a node in the maximal
independent set computed for C2. Therefore, S is also maximal at the end of the
algorithm. Therefore, S is a maximal independent set if I is an independent set,
which happens with probability at least 1− p(n1), as desired.

Remark 4.6.3. Lemma 4.6.2 holds even if we restrict our attention to algorithms
that succeed only on graphs of maximum-degree Θ(n/ log n). This is because the
maximum degree in C1 is 3n1, which as a function of the number of nodes in C1 is
|V(C1)|/ log |V(C1)|.

The rest of the analysis focuses on the runtime. To bound the runtime, we need
to exploit the fact that A is a size-oblivious distributed algorithm to show that the
independent set returned has small gaps with high probability. This is shown by
using the fact thatA, in the neighborhood of a node v, cannot distinguish between
C1 and an O(T(n0n1))-length path of cliques containing v. We formalize this in
Proposition 4.6.4. Let Rlarge = (100c + 1)T(n0n1) + 2 and Rsmall = 100cT(n0n1)

(recall that c is the constant from the approximation guarantee, where the algo-
rithm returns an IS of size n/(c∆)). Let Lv denote the set of vertices u ∈ V(C1) for
which the distance from u to v is at most Rlarge. Let Sv denote the set of vertices
u ∈ V(C1) for which the distance from u to v is at most Rsmall. Let Cv denote the
induced subgraph of C1 with respect to the set of vertices Lv. Recall that A is a
randomized algorithm that outputs a distribution over sets of vertices in the input
graph. We now show the following property of this distribution:

Proposition 4.6.4. For any node v ∈ V(C1), Sv ∩ A(C1) has the same distribution as
Sv ∩A(Cv).

Proof. For any node u ∈ V(C1), let fu(C1) = 1u∈A(C1)
; that is, the indicator func-

tion of u’s presence in the independent set A(C1). Let Uu be the set of vertices
in C1 with distance at most T(n0n1) from u. Since A is a size-oblivious T(n0n1)-
round algorithm in the LOCAL model, fu is only a function of the randomness,
IDs, and edges incident with vertices in Uu for any u ∈ V(C1). By definition of fu,

Sv ∩A(C1) = {u ∈ Sv : fu(C1) = 1}
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The set Sv ∩A(C1) is therefore only a function of the randomness, IDs, and edges
incident with vertices in ∪u∈SvUu. All of this information is contained in the
graph Cv, since any node in the set ∪u∈SvUu is within distance Rsmall + T(n0n1) =

Rlarge − 2 of v. Therefore, Sv ∩ A(C1) is only a function of randomness, IDs, and
edges in the graph Cv, which means that Sv ∩ A(C1) is identically distributed to
Sv ∩A(Cv), as desired.

As a result, to show that Sv contains a node of the independent set with high
enough probability, it suffices to think about Cv instead of C1.

Proposition 4.6.5. For any node v ∈ V(C1), Sv ∩A(C1) ̸= ∅ with probability at least
1− p(n1).

Proof. By Proposition 4.6.4, Sv ∩ A(Cv) is identically distributed to Sv ∩ A(C1),
so it suffices to lower bound the probability that Sv ∩ A(Cv) is empty. Let Iv :=
A(Cv). The maximum degree of vertices in Cv is 3n1. Furthermore, |V(Cv)| =
(2Rlarge + 1)n1 ⩾ 200cT(n0n1)n1. By the output guarantee of A, Iv is an inde-
pendent set and |Iv| ⩾ |V(Cv)|/(c(3n1)) ⩾ 60T(n0n1) with probability at least
1− p(n1). The vertices on V(Cv) \ Sv are a union of 2(Rlarge − Rsmall) ⩽ 4T(n0n1)

cliques on n1 vertices. Therefore, since Iv is an independent set, |Iv ∩ (V(Cv) \
Sv)| ⩽ 4T(n0n1). Therefore, |Iv ∩ Sv| ⩾ 60T(n0n1)− 4T(n0n1) > 0 with probabil-
ity at least 1− p(n1), as desired.

Remark 4.6.6. In the proof of Theorem 4.1.3, we set T(n) = β log∗ n, for a small
enough constant β. Under this definition of T(n), Proposition 4.6.5 holds even if
we restrict our attention to algorithms that succeed only for graphs of maximum-
degree Θ(n/ log∗ n). This is because the maximum-degree in Cv is 3n1, which is
as a function of the number of nodes in Cv is Θ(|Cv|/ log∗ |C(v)|).

Now, we union bound to prove the desired property for all intervals with
width 2Rsmall:

Proposition 4.6.7. Let I be the output of A(C1). With probability at least 1− n0p(n1),
Sv ∩ I ̸= ∅ for all v ∈ V(C1).

Proof. By Proposition 4.6.5 and a union bound over all i ∈ {1, 2, . . . , n0}, Svi1 ∩
I ̸= ∅ for all i ∈ {1, 2, . . . , n0} with probability at least 1 − n0p(n1). For any
j ∈ {1, 2, . . . , n1}, Svij = Svi1 . Since every node in C1 is equal to vij for some i ∈
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{1, 2, . . . , n0} and j ∈ {1, 2, . . . , n1}, Sv ∩ I ̸= ∅ for all v ∈ V(C1) with probability
at least 1− n0p(n1), as desired.

We now prove a runtime bound:

Proposition 4.6.8. Given an n0-node cycle graph C, RANDMIS(C) runs in O(T(n0n1))

time with probability at least 1− n0p(n1).

Proof. We go through the RANDMIS algorithm line by line. The call to A(C1) can
be implemented in the LOCAL model on C as follows. Any T-round LOCAL al-
gorithm can be viewed as independently flipping coins at each node and sending
the IDs and randomness of a node u to each node v in its T-neighborhood, fol-
lowed by no additional communication. This communication can be done in C by
having ui generate the randomness used by all vijs in A(C1). Then, ui sends this
randomness and the IDs of all vijs to each node in the T(n0n1)-neighborhood of
ui in C. Finally, the A algorithm’s execution on vij can be run on ui instead. Thus,
the call to A(C1) takes at most T(n0n1) rounds.

I, J, and C2 can each be computed in at most two rounds. By Proposition
4.6.7, C2 has connected components with size at most O(T(n0n1)) with probability
at least 1− n0p(n1). Thus, for each connected component D of C2, the vertices
u ∈ D can be sent D in O(T(n0n1)) rounds. With no futher communication, the
vertices u ∈ D each use the same algorithm to compute a maximal independent
set of D. This completes all lines of the algorithm. Therefore, the algorithm takes
O(T(n0n1)) time with probability at least 1− n0p(n1), as desired.

Proof of Lemma 4.6.1. Follows immediately from Lemma 4.6.2 (S is an MIS) and
4.6.8 (for runtime).

4.6.3 The Proof of Theorem 4.1.3

Theorem 4.1.3 In the LOCAL model, assuming that the nodes don’t know the exact
value of n, but only a polynomial upper bound on it, any algorithm that finds an in-
dependent set of size Ω(n/∆) in unweighted graphs of n nodes and maximum degree
∆ ∈ {Θ(n/ log n), Θ(n/ log∗ n)}, with success probability p ⩾ 1− 1/(10 log n), must
spend Ω(log∗ n) rounds. The lower bound holds even if the nodes know the exact value
of ∆.
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Proof. Let α be the constant from Lemma 4.6.1. Suppose, for the sake of contra-
diction, that there exists a LOCAL algorithm A(G) that, when given an n-node
graph G with maximum-degree ∆ ∈ {Θ(n/ log n), Θ(n/ log∗ n)}, takes at most
T(n) = 1

100α (log∗ n) time and outputs an Ω(n/∆)-node independent set of G with
probability at least 1− 1/(10 log n). For some value of n0, define n1 = 2n0 . By
Lemma 4.6.1 there is a 1

100(log∗(n0n1)) << (1/2(log∗ n0)− 4)-round LOCAL al-
gorithm RANDMIS(C) that, given an n0-node cycle graph C, outputs a maximal
independent set of C with probability at least 1− n0(1/(10 log(n1))) = 9/10. The
existence of such an algorithm contradicts Theorem 4.2.2, as desired.

Furthermore, by Remarks 4.6.3 and 4.6.6, it suffices to restrict our attention to
graphs of maximum-degree in {Θ(n/ log n), Θ(n/ log∗ n)}.

Finally, observe that the max degree in the two hard instances is 3n1. Hence,
the lower bound holds even if the nodes know the value of the maximum-degree.

4.6.4 A Note on The Success Probability

In this section we improve the success probability in our lower bound, and show
that even algorithms that succeed less often don’t exist.

Theorem 4.6.9. For any constant b, any randomized o(log∗ n)-time algorithm that com-
putes an independent set with size greater than Ω(n/∆) in an n-node graph succeeds
with probability at most 1− 1/(10 log(b) n), where log(b)(x) is the function defined re-
cursively as log(0)(x) = x and log(b)(x) = log log(b−1)(x).

Proof. The proof is similar to the proof of Theorem 4.1.3. The only difference
is that we define n1 as follows. For some value of n0, let n(0)

1 = n0, n(i)
1 =

2n(i−1)
1 for all i > 0, and n1 = n(b)

1 . By Lemma 4.6.1 and the fact that n1 ⩾ n0,
there is an o(log∗(n0n1)) = o(b + log∗ n0) = o(log∗ n0)-round LOCAL algorithm
RANDMIS(C) that, given an n0-node cycle graph C, outputs a maximal indepen-
dent set of C with probability at least 1− n0(1/(10 log(b)(n1))) = 9/10. The exis-
tence of such an algorithm contradicts Theorem 4.2.2, as desired.
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Chapter 5

Distributed Approximate Maximum
Matching in Regular Graphs

This chapter is adapter from a joint work with Manish Purohit, Aaron Schild,
and Joshua Wang [198], in which we present new upper and lower bounds for
approximate Maximum Matching in regular graphs in the distributed model.

5.1 Introduction

The problem of finding a large matching in a graph has garnered significant at-
tention across several central computational models, including the classical se-
quential model [165,183,218,266,275], dynamic networks [33,76,77,169,172,260],
streaming algorithms [36, 37, 93, 149, 221, 234], online algorithms [92, 171, 192, 194,
222], and distributed computing [16, 17, 56, 71, 120, 144, 147, 161, 164, 174, 187, 214,
215].

In the classical LOCAL model of distributed computing, there is a network of
n nodes that can communicate via synchronized communication rounds. In each
round, a node can send an unbounded-size message to each of its neighbors. The
goal in the LOCAL model is to solve some task (e.g., find a large matching) while
minimizing the number of communication rounds. A simple algorithm by Israeli
and Itai [185] finds a maximal matching (MM) in O(log n) rounds in the LOCAL
model with high probability, which constitutes a 2-approximation to maximum
matching in unweighted graphs.1 This matching can be amplified into a (1 + ϵ)-

1This algorithm uses bounded-size messages, so it works even in the more restricted CON-
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approximate matching by incurring a poly(1/ϵ) factor in the running time, as
shown by Lotker, Patt-Shamir, and Pettie [214].

Later, in a breakthrough, Barenboim, Elkin, Pettie, and Schneider [64] pre-
sented a faster algorithm for Maximal Matching in sparse graphs, running in
O(log ∆ + poly log log n) rounds, where ∆ is the maximum node degree. Fur-
thermore, Harris [174] showed that the same running time (up to a multiplicative
poly(1/ϵ) factor) applies for finding a (1 + ϵ)-approximate matching with high
probability. If one is content with a matching that is only large in expectation,
then we can combine recent algorithms for fractional matching, rounding, and
amplification to shave a log log ∆ factor from the running time [56, 57, 149, 160].

While these algorithms imply a running time of o(log n) rounds for approxi-
mate matching in sparse graphs, achieving a truly sub-logarithmic running time
(log1−δ n for some constant δ > 0) in general graphs remains one of the most fas-
cinating mysteries of distributed graph algorithms.2 On the other hand, the only
known lower bound (as a function of n) is Ω(

√
log n/ log log n) rounds, which

was shown by Kuhn, Moscibroda, and Wattenhofer [204], and it applies all the
way up to a (poly log n)-approximation.

Regular Graphs: We say that a graph is regular if all the nodes have the same de-
gree. The family of regular graphs has received much attention as a natural bench-
mark for studying the complexity of various fundamental problems (e.g., [22–27,
40–42, 98, 167, 202, 262, 277]). It is particularly interesting in the context of ap-
proximate matching, as regular graphs admit nearly perfect matchings (see for
instance [151]) and have been appealing to researchers in various theoretical com-
puter science models [15, 20, 117, 118, 124, 165, 166, 191, 223, 275].

For many problems, the complexity in regular graphs is the same as in general
graphs, while for others it becomes significantly lower. Interestingly, as we discuss
next, in the LOCAL model, Maximal Matching seems to be of the former kind,
while O(1)-approximate matching is provably of the latter kind.

In more detail, the hard instances of [204] for approximate matching are very
far from being regular. In fact, these instances are also hard for finding an approx-
imate fractional matching, a problem that admits a trivial zero-round solution in
regular graphs by simply setting the fractional value for each edge to be 1/∆. This

GEST model, where message size is bounded by O(log n) bits.
2Even only for a (poly log n)-approximation.
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fractional matching can be rounded to an O(1)-approximate integral matching by
using a simple sampling technique [160].

In contrast, for Maximal Matching, the approximately 40-year-old O(log n)
bound by Israeli and Itai [185] remains the best known even for regular graphs.
Moreover, the recent development of the Round Elimination technique for regu-
lar graphs [47, 49–53, 87–89] has established a lower bound for Maximal Match-
ing of Ω(min{∆, log log n/ log log log n}) rounds for randomized algorithms and
Ω(min{∆, log n/ log log n}) rounds deterministically [49]. For low-degree regular
graphs (e.g., cycles), Maximal Matching still requires at least Ω(log∗ n) rounds [213,
225], even when using randomness.

This raises the question: where does (1 + ϵ)-approximate matching fall on
the spectrum of round complexity in regular graphs? Is it closer to approximate
fractional matching, or does it require some dependence on n similar to Maximal
Matching?3 At first glance, the requirement of finding a matching that is nearly
perfect may be at least as challenging as finding a matching that is only maximal
(which guarantees only a constant approximation).

In this work, our first result is an algorithm that finds a (1 + ϵ)-approximate
matching in regular graphs4 with no dependency on n or ∆. This algorithm im-
plies that (1 + ϵ)-approximate matching is strictly easier than Maximal Matching
in regular graphs, for an arbitrarily small5 constant ϵ > 0 (and even for some o(1)
values of ϵ).

Theorem 5.1.1. Let n be a positive integer, and let ϵ ∈ (n−1/20, 1/2) be an accuracy pa-
rameter. There is an O(ϵ−5 log(1/ϵ))-round algorithm in the LOCAL model that finds a
(1+ ϵ)-approximate maximum matching in n-node regular graphs, with high probability.
The algorithm works in the CONGEST model for constant values of ϵ.

3Note that the amplification technique of [149] cannot be used to amplify the constant-
approximation factor to (1 + ϵ) in regular graphs while using poly(1/ϵ) phases of amplification.
This is because the technique is designed for general graphs, and applying it to a regular graph
can result in a non-regular graph after the first step. Consequently, the amplification algorithm
might need to use an algorithm for constant-approximate matching in general graphs, which re-
quires some dependence on n or ∆.

4All our upper bounds apply also to almost regular graphs, where the degrees of all the nodes
are within a (1± o(1))-multiplicative factor from each other.

5The case where ϵ ⩽ n−1/20 can be handled in poly(1/ϵ) rounds by transmitting the entire
graph to all nodes.
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While this result advances our understanding of (1 + ϵ)-approximate match-
ing in regular graphs, a better dependence on ϵ in the runtime is desirable for
small values of ϵ. For instance, for ϵ ≈ 1/ log ∆, the algorithm of Harris [174]
for general graphs takes Õ(log4 ∆ + log log n) rounds, while the algorithm from
Theorem 5.1.1 takes Õ(log5 ∆) rounds.6 In our next result, we present an expo-
nentially faster algorithm, provided that ϵ > 1/∆c for some constant c > 0. In
other words, we present an exponentially faster (1 + ϵ)-approximation algorithm
for graphs that are not extremely sparse, i.e., when ∆ > poly(1/ϵ). We note that
the constant c in Theorem 5.1.2 has not been optimized and can be improved sub-
stantially with a more careful analysis.

Theorem 5.1.2 (Main Result). Let c = 105 and let 0 < ϵ < 1 be a parameter. For ∆-
regular graphs with ∆ > (1/ϵ)c, there is an O(log(1/ϵ))-round CONGEST algorithm
that finds a (1 + ϵ)-approximate maximum matching with high probability.

The restriction in the theorem about the graph being dense enough may sound
bizarre: shouldn’t we expect the complexity to increase with the density? In-
deed, this is the case for nearly all problems in nearly all models of computation.
In particular, for our same (1 + ϵ)-approximate matching problem in LOCAL in
general graphs (not regular ones) the ≈ log ∆ upper bounds by [174] are per-
fectly consistent with this expectation.7 Thus, one may think that the restriction
for ∆ > poly(1/ϵ) in the theorem is a mere technicality that is an artifact of a
suboptimal analysis. To our surprise, this is not the case. The following (sim-
ple) lower bound shows that our main result of Theorem 1.2 must have benefited
from the density of the graph, thus establishing a counter-intuitive separation be-
tween sparse and dense regular graphs by which dense graphs are easier! Note that,
for the same problem, the opposite separation holds in general graphs (due to the
Ω(min{log ∆/ log log ∆,

√
log n/ log log n}) lower bound by [204], and the upper

bounds by [174]).

Theorem 5.1.3 (Informal version of Theorem 5.7.1). For any degree ∆ ⩾ 2 and error
ϵ = O(∆−1), any LOCAL algorithm that computes a (1 + ϵ)-approximate maximum
matching in bipartite ∆-regular graphs with at least n ⩾ Ω(∆−1ϵ−1) nodes requires
Ω(∆−1ϵ−1) rounds.

6Õ(x) hides poly log x factors.
7Specifically, the upper bounds of [174] are Õ(log ∆/ϵ3 + poly log(1/ϵ, log log n)) and

Õ(log2 ∆/ϵ4 + log∗ n/ϵ).
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One intuition behind this separation is that in ∆-regular graphs, the num-
ber of nearly optimal solutions to maximum matching scales with ∆ (see for in-
stance [35]). This abundance of nearly optimal solutions intuitively facilitates the
rapid identification of one using randomness.

At the heart of the proof of our main result (Theorem 5.1.2) is a new lemma
which we refer to as the Recursive Regularity Lemma (Lemma 5.2.2). This lemma
shows that running a single round of Luby’s algorithm [217] on the line graph of
a sufficiently dense ∆-regular graph and removing the matched nodes together
with their incident edges yields an almost ≈ ∆/2-regular graph.

In Section 5.1.1, we explain how improving our O(log(1/ϵ)) runtime in The-
orem 5.1.2 (even only for very dense graphs where ∆ ⩾ 2log1−δ n for some con-
stant δ > 0) might break the≈40-year-old O(log n)-barrier for Maximal Matching
in regular graphs. Furthermore, Theorem 5.1.2 implies that regular graphs with
∆ ⩾ poly(1/ϵ) are substantially easier than general graphs in the closely related
LCA model, which is also discussed in Section 5.1.1.

Outline of this chapter: In the subsequent section, we discuss some implications
of our results. Then, in Section 5.1.2 we provide some basic definitions and nota-
tion. In Section 5.2 we provide a brief technical overview of our results. Section 5.4
provides a poly(1/ϵ)-round algorithm for approximate matching in general reg-
ular graphs. Section 5.5 and Section 5.6 contain the technical details of our main
result (Theorem 5.1.2). Finally, Section 5.7 has the details of our lower bound con-
struction. We defer some basic definitions and concentration inequalities to Sec-
tion 5.3, as well as a new concentration inequality for sums of random variables
using shifted martingale analysis.

5.1.1 Further Implications

We discuss two additional implications of our results. The first is for the related
LCA model, and the second is for (1− 1/poly(∆))-approximation in the LOCAL
model, an approximation guarantee that is interesting in the context of Maximal
Matching, as we discuss below.

The LCA model: A closely related model to distributed graph algorithms is the
Local Computation Algorithms (LCA) model, introduced by Alon et al. [28] and
Rubinfeld et al. [248]. In the LCA model, we access a graph via adjacency list
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queries, where each query can ask for the identifier of the i-th neighbor of a node
v. The goal of an LCA algorithm is to answer output queries consistently. For
instance, in α-approximate matching, an output query involves a node v, and the
LCA must determine whether v is in the matching and return the matched neigh-
bor if it is. All the algorithm’s answers for all nodes v should be consistent with
a single matching, which needs to be α-approximate to the maximum matching.
The complexity measure is defined by the maximum number of access queries
made by the LCA per output query.

By using a known transformation from the LOCAL model to the LCA model
due to Parnas and Ron [230], our main result (Theorem 5.1.2) implies an LCA al-
gorithm for (1 + ϵ)-approximate matching with ∆O(log(1/ϵ)) queries, in ∆-regular
graphs where ∆ ⩾ poly(1/ϵ). This stands in sharp contrast with the recent
∆Ω(1/ϵ) lower bound of Behnezhad, Roghani, and Rubinstein [69] for general
graphs with maximum degree ∆ ⩾ log4 n. Observe that our algorithm returns
a matching that matches all but an ϵ-fraction of the nodes, which is consistent
with the lower bound of [69]. We note that in extremely dense graphs where
∆ ⩾ n1/ log(1/ϵ), the trivial algorithm of gathering the entire graph has the same
query complexity. The following Corollary implies this query complexity for a
much wider regime of ∆.

Corollary 5.1.4. Let c = 105 and let 0 < ϵ < 1 be a parameter. For ∆-regular graphs
with ∆ > (1/ϵ)c, there is an LCA algorithm with ∆O(log(1/ϵ)) queries that finds a (1 +

ϵ)-approximate maximum matching with high probability.

Nearly perfect matching: It is well-known that any ∆-regular graph contains a
matching that matches all but at most a (1/(∆ + 1))-fraction of the nodes. The-
orems 5.1.1 and 5.1.2 imply that we can get a matching that matches all but a
1/poly(∆)-fraction of the nodes in O(log ∆) rounds in any ∆-regular graph. This
is because if ∆ is a sufficiently large constant, we can use Theorem 5.1.2 with
ϵ = 1/poly(∆). Otherwise, in sparse graphs where ∆ is bounded by a constant,
we can use Theorem 5.1.1 with ϵ = 1/∆, which is a constant. We note that in
general graphs, the best known algorithms for this approximation guarantee take
at least poly(∆) rounds [149, 174].

An algorithm that finds such a large matching can be of particular interest to
Maximal Matching. Next, we explain how improving our O(log ∆) runtime for
finding a matching that matches all but a 1/poly(∆)-fraction of the nodes, even
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only in very dense graphs where the maximum degree ∆ ⩾ 2log1−δ n for some
constant δ > 0, could lead to truly sublogarithmic-time algorithm for Maximal
Matching in regular graphs. Intuitively, this is because such an algorithm matches
all but ∆1−γ neighbors of a node v on average (for some constant γ > 0). If
this algorithm also has a recursive regularity property similar to the one used to
prove Theorem 5.1.2 (i.e., if removing the matched nodes and their incident edges
results in an approximately ∆1−γ-regular graph), we can repeat this algorithm
for log log ∆ rounds and achieve a sublogarithmic-time algorithm for Maximal
Matching. Recently, regular graphs have attracted considerable attention in the
context of Maximal Matching and Maximal Independent Set, where lower bounds
for regular graphs have been shown using the Round Elimination technique [47,
49–53, 87–89].

5.1.2 Model and Basic Definitions

Basic Graph Notations: For a graph G, we denote by V(G) the set of nodes in G
and by E(G) the set of edges. Given a node u ∈ V(G), we denote by NG(u) the set
of neighbors of u in G, and by Nd

G(u) the set of nodes at distance exactly d from
u. When G is clear from the context, we omit the letter G from the notation and
use V, E and N(u) for brevity. In ∆-regular graphs, all the nodes have the same
degree ∆. In this work, we are interested in unweighted and undirected graphs.

Maximum Matching: A matching M in a graph G is a set of edges in E(G),
where no two edges inM share a node. A maximum matching in G is a matching
of maximum possible size. A (1 + ϵ)-approximate matching in G is a matching
M satisfying OPT ⩽ (1 + ϵ)|M|, where OPT is the size of a maximum matching.

5.2 Technical Overview

5.2.1 Warmup: A poly(1/ϵ)-Round Algorithm for General
Regular Graphs

To prove Theorem 5.1.1, we use a two stage algorithm. We begin with a ∆-regular
graph on n vertices with target error parameter ϵ > n−1/20. The first stage (sam-
pling) involves uniformly and independently sampling edges from the graph with
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the goal of reducing the degree from ∆ to poly(1/ϵ), plus some post-processing.
After this stage, we have an (irregular) graph on at most n vertices with degree at
most d = poly(1/ϵ) and have used up a constant fraction of our error parameter
ϵ (i.e. this restricted graph still has an almost-perfect matching). Our second stage
(matching) involves actually finding a matching in this restricted graph, and its
runtime only depends on the error parameter ϵ and the max degree d.

For the sampling stage, uniformly sampling to degree approximately ϵ−2 log n
would result in a graph that retains a near-perfect matching with high probability
(via a Chernoff bound plus a union bound). Unfortunately, we do not want the
degree to depend whatsoever on n for the sake of the matching stage, so we need
to find a way to reduce this degree even further. Instead, we sample down to
degree Θ(ϵ−4). The resulting subgraph can be very irregular, but we manage to
tease out enough structure to make our argument go through. In particular, some
small fraction of vertices may have degree exceeding our target Θ(ϵ−4) by more
than a factor two. We use Chernoff with bounded dependence and the matching
polytope to argue that stripping out these problematic high-degree vertices still
leaves an almost-perfect matching.

For the matching stage, we find a matching in the constructed low-degree sub-
graph from the sampling stage. The state-of-the-art algorithms of Harris [174] fit
our task, but they have a small runtime dependence on n. Instead, we combine
some of the ideas from [174] with some ideas from [160], as follows. In poly(1/ϵ)

phases, we increase the size of the matching in each phase by poly(ϵ) · n edges.
The algorithm for each phase finds a large set of disjoint augmenting paths. This
is done by first constructing a hypergraph H with the same set of nodes as in the
low-degree subgraph, where each hyperedge corresponds to a 1/ϵ-length aug-
menting paths. Then, we find an O(1/ϵ)-approximate fractional matching in the
hypergraph by using the algorithms of [70, 174, 203], and we round this fractional
matching by sampling each hyperedge with probability proportional to its frac-
tional value. By using a similar McDiarmid-type argument as in [160], we can
show that this rounding produces an integral O(1/ϵ)-approximate matching in
the hypergraph H with high probability. Furthermore, observe that the the max-
imum degree of a node in the hypergraph H is exppoly(1/ϵ). Therefore, the algo-
rithms of [70, 174, 203] for finding a fractional matching in this hypergraph take
O(poly(1/ϵ)) rounds, as desired.
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5.2.2 Exponentially Faster Algorithm in Dense Graphs

In this section, we give a brief technical overview for our main result. On bipartite
graphs, our algorithm for proving Theorem 5.1.2 simply runs O(log(1/ϵ)) rounds
of Luby’s algorithm [217] that finds a large matching in each round. On general
graphs, we first run a color coding step to find a large bipartite almost regular
subgraph. While the algorithm is very simple, the main challenge is its analysis.
In this work, we provide a new martingale-based analysis for Luby’s algorithm.

Since our analysis relies on martingale concentration inequalities, it is more
convenient to work with the sequential view of Luby’s algorithm that was dis-
cussed in Chapter 4 Section 4.5. Our key lemma (Lemma 5.2.2) shows that after
applying one round of Luby’s algorithm (and removing the matched nodes along
with incident edges), the remaining graph remains almost regular, i.e., almost all
nodes have very similar degrees. Even with the sequential view, classical mar-
tingale concentration inequalities are not sufficient to provide the high probabil-
ity bounds that we require. We use two techniques, a shifted martingale trick and
scaled martingale trick, in order to provide the requisite bounds. Roughly speaking,
we show that the number of matched neighbors of a node behaves similarly to a
martingale. Finally, we show that a constant fraction of the nodes are matched in
each iteration of Luby’s algorithm when the graph is almost regular. Combined
with our key lemma, this implies that after O(log(1/ϵ)) rounds at most ϵ fraction
of nodes remain unmatched. We now present a deeper overview of each of the
above components in the subsections below.

Sequential view of Luby’s algorithm

The sequential view of Luby’s algorithm was discussed in Chapter 4, Section 4.5,
in the context of independent sets. For completeness, in this chapter, we will
briefly revisit this view, this time for matching. In the traditional distributed im-
plementation of one round of Luby’s algorithm, each edge f picks a uniformly
random number r f and some edge e is chosen into the matching if and only if
re < re′ for all neighboring edges e′.

We consider the following sequential view - the edges of the graph arrive se-
quentially in a uniformly random order and an edge e is chosen into the matching
if and only if it arrives before any of its neighboring edges.

Assuming that there are no collisions (i.e. each edge chooses a different ran-
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dom number from its neighbors), it can be readily seen that the two algorithms
above produce exactly the same distribution over matchings. For CONGEST algo-
rithms, we restrict the range of the random numbers to be integers in {1, 2, . . . , M}
for some polynomially large M. In this case, we showed that the two algorithms
are identical up to a vanishingly small failure probability in Proposition 4.5.1.

Martingale Techniques

Our analysis of a single round of Luby’s algorithm relies on analyzing certain
associated martingales and using martingale concentration inequalities.

Shifted Martingale Consider a collection X1, X2, . . . , Xt of boolean random vari-
ables and let E[Xi | X1, . . . , Xi−1] = pi. We are interested in obtaining high prob-
ability bounds on the sum St = ∑t

i=1 Xi. For example, consider Xi to be the indi-
cator random variable for the event that the ith edge is chosen into the matching.
Now clearly, the random variables {Xi} are not independent, so we cannot use
standard Chernoff bounds. If we let Si = ∑i

j=1 Xj, then one could hope to use
martingale inequalities to get a concentration result for Si. The challenge here is
that the sequence S1, . . . , St is not necessarily a martingale. Nevertheless, when
the pi are bounded, then we can still utilize martingale concentration inequali-
ties to show that St does not deviate too much from its mean by considering the
following shifted random variables:

Yi = Si −E[Si | Y0, . . . , Yi−1] + Yi−1

Since the sequence Y1, . . . , Yt is a martingale and further has bounded variance,
we can use bounded variance martingale concentration bounds on Yt to give good
concentration on St as well. This shifting idea was implicitly used in Chapter 4,
in the context of approximate-maximum independent set in low-degree graphs.
In this chapter, we generalize this shifting idea to broader scenarios in Theo-
rems 5.3.11 and 5.3.12.

Scaled Martingale In some parts of our analysis, the shifted martingale trick
doesn’t suffice for our purposes. Consider a sequence of random variables de-
noted by S1, . . . , St such that E[Si | S1, . . . , Si−1] = (1 − p)Si−1 for some fixed
0 < p < 1. In this scenario, we expect the difference Si − Si−1 to decrease as i in-
creases. It is challenging for the shifted martingale trick to exploit such dynamics.
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The main reason is that in order for the shifted martingale to give a concentration
result, we need the expected value of Si− Si−1 to be bounded by some fixed num-
ber, which wouldn’t exploit the property that the difference is decreasing over
time. To get a concentration result in such scenarios, we use another trick which
we refer to as the scaling trick. We can obtain a concentration bound for St by
considering the following scaled random variables:

Fi =
Si

(1− p)i−1

Observe that Fi is a martingale. This is because E[Fi | F1, · · · , Fi−1] =
1

(1−p)i−1 E[Si |
F1, · · · , Fi−1] =

1
(1−p)i−1 E[Si | S1, · · · , Si−1] =

Si−1
(1−p)i−2 = Fi−1. Therefore, we can

get a concentration result for St by getting a concentration result for Ft. The main
intuition behind the scaling trick is that it exploits the decreasing difference be-
tween Si and Si−1 over time. This is exactly the reason for dividing Si by (1− p)i.
For instance, since F1 = S1, if we get that Ft doesn’t deviate too far from F1, it
would imply that Si = (1 − p)iFi ≈ (1 − p)iF1 = (1 − p)iS1, which is exactly
where we’re expecting Si to be at step i.

Local Recursive Regularity Lemma

We analyze a single round of Luby’s algorithm using the above martingale based
techniques. First, we show a lemma with the following local guarantee.

Lemma 5.2.1 (Local Recursive Regularity Lemma - Informal). Let G be a bipartite
∆-regular graph and suppose we run one round of Luby’s algorithm on G and let u be an
arbitrary node in G. Then, with probability at least 1− exp(−poly(∆)), ∆/2± o(∆)
neighbors of u get matched.

Recall that N(u) is the set of neighbors of node u and N2(u) is the set of nodes
at distance exactly 2 from u. Let Au be the set of edges between N(u) and N2(u).
To prove Theorem 5.2.1, we show that roughly ∆/2 edges from Au are chosen into
the matching with probability at least 1− exp(−poly(∆)). While the claim holds
trivially in expectation, it is challenging to obtain high probability bounds due to
the dependencies between u’s neighbors.

To simplify exposition, let Eu denote the set of edges that are at most 3 hops
away from u, i.e. Eu = E∩

{
({u} × N(u)) ∪ (N(u)× N2(u)) ∪ (N2(u)× N3(u))

}
.
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Clearly edges not in Eu do not affect any of the edges in Au and hence can be ig-
nored, so we restrict the analysis to assume that only edges from Eu arrive in the
sequential view of Luby’s algorithm.

Let Mu ⊂ Au be the set of matching edges chosen from Au and our goal is
to get high probability upper and lower bounds on |Mu|. Let Xi ∈ {0, 1} be an
indicator random variable for the event that the ith arriving edge belongs toMu.
Let qi = E[Xi | X1, . . . , Xi−1] be the probability that the ith edge is from Au and
none of its neighboring edges have already arrived. One could try now to uti-
lize the shifted martingale trick described above to obtain concentration bounds
on |Mu| = ∑i Xi. However, the main challenge here is that qi itself is a random
variable. Our goal is to analyze qi using martingales analysis. Roughly speaking,
we use the scaled martingale trick discussed above to get concentration results
for qi for all i, which enables us to apply the shifted martingale trick (i.e., Theo-
rems 5.3.11 and 5.3.12) to get the desired bounds on |Mu|.

Analyzing qi To analyze qi, we need to understand how many edges survive after
the first i − 1 edges have already arrived. Intuitively, an edge is still surviving
in iteration i if neither it nor any of its neighbors was not sampled in the first
i− 1 iterations. Let Ei be the set of surviving edges in Au at the beginning of the
ith iteration. Then we have, qi =

|Ei|
|Eu|−(i−1) = |Ei|

∆(|N2(u)|+1)−(i−1) since a sampled
surviving edge is always added to the matching.

The final key property towards the proof: To get high probability bounds on
|Ei|, we first prove that E[|Ei| | Ei−1] ≈ (1− 2/k)|Ei−1|. This is exactly the setting
where the scaled martingale trick can help us to get a concentration result for |Ei|,
which paves the way for proving Lemma 5.2.1.

Recursive Regularity Lemma

We use Theorem 5.2.1 to show that applying a single round of Luby’s algorithm
on a regular graph and removing the matched nodes along with incident edges
results in a graph that is still almost regular.

Lemma 5.2.2 (Recursive Regularity Lemma - Informal). Let G be a bipartite ∆-
regular graph and let G′ be the graph obtained by running one round of Luby’s algorithm
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on G and deleting matched nodes and their incident edges. Then all but o(1) fraction of
nodes in G′ have their degree in the range ∆/2± o(∆) with high probability.

When ∆ is large enough (∆ ⩾ poly log n), Theorem 5.2.1 followed by a union
bound suffices to show that all nodes have their degree in the range ∆/2± o(∆)
with high probability. On the other hand, when ∆ is small, then by Theorem 5.2.1,
the expected number of nodes that do not have the requisite degree is only n ·
exp(−poly(∆)). Further, the degree of a node after a round of Luby’s algorithm
only depends on O(poly(∆)) other nodes. So, we can use a Chernoff-Hoeffding
with bounded dependence inequality to argue that all but an n · exp(−poly(∆))
nodes have the required degree.

Proof Sketch of Theorem 5.1.2

We first argue that running one round of Luby’s algorithm on an almost regular
graph matches a constant fraction of the nodes with high probability. We note that
while this claim is easy to see in expectation, obtaining a high probability bound
requires the use of our shifted martingale technique, particularly when the graph
becomes only almost regular (instead of fully regular, as in the first iteration).
Combined with Theorem 5.2.2 that states that the resulting graph remains almost
regular, we get that after O(log 1/ϵ) rounds, at most ϵ-fraction of nodes remain
unmatched.

5.2.3 Overview of Lower Bounds

To prove lower bounds against LOCAL algorithms, we use some ideas from a
lower bound construction of Ben-Basat, Kawarabayashi, and Schwartzman [71]
that gave Ω(1/ϵ) lower bounds in the LOCAL model for (1+ ϵ) maximum match-
ing as well as other approximate graph problems. The critical idea in that proof is
that when an r-round LOCAL algorithm is deciding what to do with a node v (e.g.
who to match it with), it can only use the local structure of the graph around v; in
particular, it can only see the r-hop neighborhood around v. This means that we
could cut out this r-hop neighborhood from the graph, put it back in differently,
and the algorithm would have to make the same decision on v (or for randomized
algorithms, the same distribution on decisions). The proof revolves around de-
signing these r-hop neighborhoods as (symmetrical) gadgets, then showing that a
constant number of gadgets will (with constant probability) induce an unmatched



CHAPTER 5. DISTRIBUTED APPROXIMATE MAXIMUM MATCHING IN
REGULAR GRAPHS 136

node between them. The BKS proof uses a simple path as their gadget which in-
volves O(r) nodes. Hence the algorithm can be shown to have an overall error rate
of one error per O(r) nodes, so the critical round threshold to allow for (1 + ϵ)-
multiplicative approximations is Ω(1/ϵ) rounds.

Relative to their result, the main upgrade we want to make is that the coun-
terexample graph(s) should be ∆-regular. It is relatively straightforward to take
BKS path gadgets and stick them into a large cycle, recovering their Ω(1/ϵ) round
lower bound for 2-regular bipartite graphs. The main technical hurdle we over-
come is generalizing to higher degree. We know from our upper bounds that there
must be some degradation as the degree ∆ increases, so the main question is, how
much efficiency do we need to lose to burn our excess degree? We design gadgets
with O(∆r) nodes and asymptotically maintain the original error rate of one error
per constant number of gadgets (the cycle proof argues about the outcome of two
gadgets inducing a mistake, but for the general case we reason about the outcome
of five gadgets), yielding Ω(1/(∆ϵ)) round lower bounds.

5.3 Preliminaries

5.3.1 Matchings

We use the following well-known characterization of the matching polytope.

Theorem 5.3.1 (Folklore, e.g. [242]). Let G be an undirected graph and letM denote
the matching polytope for G; that is the convex hull of all 0-1 vectors in Rm that are
indicator vectors of matchings in G. Then, M can also be written as the intersection of
the following families of halfspaces:

1. xe ⩾ 0 for all e ∈ E(G).

2. ∑
e∼v

xe ⩽ 1 for all v ∈ V(G).

3. ∑
e∈E(G[S])

xe ⩽
|S| − 1

2
for all sets S ⊆ V(G) with odd size.

For a matching M of graph G, an augmenting path P is a path in G that alter-
nates between edges in M and those not in M with the additional property that
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both its end points are unmatched in M. Let P be a collection of vertex disjoint
augmenting paths, then M′ = M ∪ {P \M} \ {M ∩ P} is a new matching of size
|M|+ |P| and we say that M′ is obtained by augmenting M with P .

Proposition 5.3.2 (Theorem 2.1 of [240], statement from Proposition 7.1 of [174]).
Let M be an arbitrary matching of G, and OPT be the size of a maximum weight matching
in G. For any ℓ ⩾ 1, there exists a collection P with |P| ⩾ 1

2 (OPT(1− 1/ℓ)− |M|) of
vertex disjoint augmenting paths where each path consist of at most 2ℓ+ 1 edges.

5.3.2 Bounded Dependence Concentration Inequality

We utilize the following concentration bound for sums of random variables with
limited dependence.

Theorem 5.3.3 (Inequality (3) of [206], derived from Theorem 2.1 of [188]). Con-
sider n random variables A = {X1, X2, . . . , Xn} with the property that 0 ⩽ Xi ⩽ 1 for
all i almost surely. Then

P

[
n

∑
i=1

Xi −
n

∑
i=1

E[Xi] > λ

]
⩽ exp

(
− 2λ2

n · χ(A)

)
where χ(A) is the chromatic number of the dependency graph of A.

5.3.3 Martingales

We start with the following useful folklore observations about the conditional ex-
pectation of a function of a random variable, and conditional variance.

Observation 5.3.4. Let Y and Z be two random variables such that each is a func-
tion of the other. For any random variable X, we have that:

E[X | Y] = E[X | Z]

Observation 5.3.5. Let X and Y be random variables. It holds that Var[X | Y] =
Var[X + f (Y) | Y] where f (Y) is a function of Y.

Next, we define martingales, supermartingales, and submartingales.
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Definition 5.3.6. [Martingale, Supermartingale, and Submartingale]
A sequence of random variables X1, · · · , Xt is called a martingale if for any i ⩾ 2

E[Xi | X1, · · · , Xi−1] = Xi−1

Furthermore, the sequence is called a supermartingale if E[Xi | X1, · · · , Xi−1] ⩾
Xi−1 for any i ⩾ 2, and a submartingale if E[Xi | X1, · · · , Xi−1] ⩽ Xi−1 for any
i ⩾ 2.

We note that in the above definition of super/submartingales, we follow the
definition of Chung and Lu [114]. In some other textbooks, the terms are reversed
and the condition E[Xi | X1, · · · , Xi−1] ⩾ Xi−1 corresponds to a submartingale,
and the condition E[Xi | X1, · · · , Xi−1] ⩽ Xi−1 corresponds to a supermartingale.
We now state some known martingale inequalities.

Theorem 5.3.7. (Theorem 6.1 in [114])
Let X1, · · · , Xt be a martingale sequence satisfying:

1. Var[Xi | X1, · · · , Xi−1] ⩽ ϕi

2. |Xi − Xi−1| ⩽ M

∀i ⩾ 2, where ϕi and M are non-negative constants. Then for λ > 0,

P[Xt −E[Xt] ⩾ λ] ⩽ exp

(
− λ2

2
(
(∑t

i=1 ϕi) + Mλ/3
))

Theorem 5.3.8. (Theorem 6.5 in [114])
Let X1, · · · , Xt be a martingale sequence satisfying:

1. Var[Xi | X1, · · · , Xi−1] ⩽ ϕi

2. Xi−1 − Xi ⩽ M

∀i ⩾ 2, where ϕi and M are non-negative constants. Then for λ > 0,

P[Xt −E[Xt] ⩽ −λ] ⩽ exp

(
− λ2

2
(
(∑t

i=1 ϕi) + Mλ/3
))

Theorem 5.3.9. (Theorem 7.5 in [114]) Bounded Variance Supermartingale
Let X1, · · · , Xn be a supermartingale satisfying:
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1. Var[Xi | X1, · · · , Xi−1] ⩽ ϕi

2. E[Xi | X1, · · · , Xi−1]− Xi ⩽ M

∀i ⩾ 2, where ϕi and M are non-negative constants. Then for any 0 < λ ⩽ X1,

P[Xt ⩽ X1 − λ] ⩽ exp

(
− λ2

2
(
(∑t

i=1 ϕi) + Mλ/3
))

Theorem 5.3.10. (Theorem 7.3 in [114]) Bounded Variance Submartingale
Let X = X1, · · · , Xn be a submartingale satisfying:

1. Var[Xi | X1, · · · , Xi−1] ⩽ ϕi

2. Xi −E[Xi | X1, · · · , Xi−1] ⩽ M

∀i ⩾ 2, where ϕi and M are non-negative constants. Then for λ > 0,

P[Xt ⩾ X1 + λ] ⩽ exp

(
− λ2

2
(
(∑t

i=1 ϕi) + Mλ/3
))

5.3.4 The Shifted Martingale

In this Section we prove the following two theorem by using the shifted martin-
gale trick (that was briefly discussed in Section 5.2.2).

Theorem 5.3.11. [The Shifted Martingale Upper Bound]
For t > 0, let X1, · · · , Xt be non-negative random variables, Si = ∑i

j=1 Xj, and pi =

E[Xi | X1, · · · , Xi−1]. Let P1, · · · , Pt and M be fixed non-negative numbers, and assume
that Xi ⩽ M and pi ⩽ Pi for all i ∈ [t]. For P = ∑t

i=1 Pi and λ > P, it holds that:

P[St ⩾ λ] ⩽ exp
(
− (λ− P)2

8 ·M · P + 2M(λ− P)/3

)
Proof. First, we define the random variable Yi as follows.

Yi =

{
0 i = 0

Si −E[Si | Y0, · · · , Yi−1] + Yi−1 i > 0
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Roadmap of the proof: Our goal is to show that the sequence Y0, · · · , Yt is a
martingale, prove a concentration result for Yt by using Theorem 5.3.7, and then
deduce a concentration result for St. To use Theorem 5.3.7, we need to bound the
variance Var[Yi | Y0, · · · , Yi−1] and the value of |Yi − Yi−1|. The proof is divided
into four steps. In the first step, we show that the sequence Y1, · · · , Yt is a mar-
tingale. In the second step we show that Yi − Yi−1 = Xi − pi, which implies that
|Yi − Yi−1| ⩽ 2M. In the third step, we use the property from the second step
to bound the variance Var[Yi | Y0, · · · , Yi−1]. Finally, in the fourth step, we plug
these bounds into Theorem 5.3.7 to get a concentration result for Yt, and deduce
the desired concentration result for St.
First step: the sequence Y0, · · · , Yt is a martingale. We show that for any i ⩾ 1,
E[Yi | Y0, · · · , Yi−1] = Yi−1. Observe that:

E[Yi|Y0, · · · , Yi−1] = E[Si | Y0, · · · , Yi−1]−E[Si | Y0, · · · , Yi−1] + E[Yi−1 | Yi−1]

= Yi−1

where the second equality follows since for any two random variables X, Y, we
have that E[E[X | Y] | Y] = E[X | Y].

Second step: Yi − Yi−1 = Xi − pi. The claim trivially holds for i = 1. For i > 1,
observe that:

Yi −Yi−1 = Si −E[Si−1 | Y0, · · · , Yi−1] (1)

= Si −E[Si − Si−1 + Si−1] | Y0, · · · , Yi−1] (2)

= Si −E[Si − Si−1 | Y0, · · · , Yi−1]−E[Si−1 | Y0, · · · , Yi−1] (3)

= Si −E[Si − Si−1 | S1, · · · , Si−1]−E[Si−1 | S1, · · · , Si−1] (4)

= Si − Si−1 −E[Xi | X1, · · · , Xi−1] (5)

= Xi −E[Xi | X1, · · · , Xi−1] (6)

= Xi − pi (7)

where (3) follows from linearity of expectation, (4) follows from Observation 5.3.4
(5) follows since E[Si−1 | S1, · · · , Si−1] = E[Si−1 | Si−1] = Si−1, and from an-
other application of Observation 5.3.4 since (X1, · · · , Xi−1) and (S1, · · · , Si−1) are
functions of each other, so conditioning on either of them is equivalent.
Third step: Var[Yi | Y0, · · · , Yi−1] ⩽ 4MPi. Observe that

Var[Yi | Y0, · · · , Yi−1] = Var[Yi −Yi−1 | Y0, · · · , Yi−1] (1)
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⩽ E[(Yi −Yi−1)
2 | Y0, · · · , Yi−1] (2)

⩽ 2M ·E[|Xi − pi| | Y0, · · · , Yi−1] (3)

⩽ 2M · (E[Xi | Y0, · · · , Yi−1] + E[pi | Y0, · · · , Yi−1]) (4)

= 2M · (E[Xi | X1, · · · , Xi−1] + E[pi | X1, · · · , Xi−1]) (5)

⩽ 2M(pi + E[pi | X1, · · · , Xi−1]) (6)

⩽ 4MPi (7)

where (1) follows from Observation 5.3.5, (2) follows from the definition of vari-
ance, (3) follows since we showed that Yi − Yi−1 = Xi − pi in the second step,
which also implies that |Yi − Yi−1| ⩽ |Xi| + |pi| ⩽ 2M, (4) follows from the tri-
angle inequality, linearity of expectation, and since the Xi’s are non-negative, (5)
follows from Observation 5.3.4, and (7) follows since pi ⩽ Pi for all i.

Fourth step: concentration of Yt and St. First, observe that Y0 = E[Yt] = 0. More-
over, having proved that the sequence Y1, · · · , Yt is a martingale, |Yi−Yi−1| ⩽ 2M,
and Var[Yi | Y0, · · · , Yi−1] ⩽ 4MPi, we can plug these bounds into Theorem 5.3.7
to that for λ′ > 0 and P = ∑t

i=1 Pi:

P[Yt ⩾ λ′] ⩽ exp
(
− λ′2

8 ·M · P + 2M · λ′/3

)
Furthermore, since Yi − Yi−1 = Xi − pi for all i ∈ [t], it implies that Yt = St −
∑t

i=1 pi. Hence, Yt ⩾ St − P, which implies that for λ > P:

P[St ⩾ λ] ⩽ P[Yt + P ⩾ λ] = P[Yt ⩾ λ− P] ⩽ exp
(
− (λ− P)2

8M · P + 2M(λ− P)/3

)
as desired.

Theorem 5.3.12. [The Shifted Martingale Lower Bound]
For t > 0, let X1, · · · , Xt be non-negative random variables, Si = ∑i

j=1 Xj, and pi =

E[Xi | X1, · · · , Xi−1]. Let Pℓ
1 , · · · , Pℓ

t , Ph
1 , · · · , Ph

t and M be fixed non-negative num-
bers, and assume that Xi ⩽ M and Pℓ

i ⩽ pi ⩽ Ph
i for all i ∈ [t]. Let Pℓ = ∑t

i=1 Pℓ
i and

Ph = ∑t
i=1 Ph

i . For Pℓ > λ, it holds that:
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P[St ⩽ λ] ⩽ exp

(
− (Pℓ − λ)2

8 ·M · Ph + 2M · (Pℓ − λ)/3

)
Proof. The proof is very similar to the proof of Theorem 5.3.11. We start with
defining the shifted random variable Yi similarly to how we defined it in the proof
of Theorem 5.3.11.

Yi =

{
0 i = 0

Si −E[Si | Y0, · · · , Yi−1] + Yi−1 i > 0

We showed in the proof of Theorem 5.3.11 that the sequence Y1, · · · , Yt is a mar-
tingale. Next, we would like to use Theorem 5.3.8 to get a concentration result for
Yt, which would imply a concentration result for St. Recall that in the proof of
Theorem 5.3.11 we showed that Var[Yi | Y0 · · · , Yi−1] ⩽ 4MPh

i (which was shown
in the third step in the proof of Theorem 5.3.11), and that Yt = St−∑t

i=1 pi (which
was shown at the end of the proof of Theorem 5.3.11). Furthermore, recall that
E[Yt] = 0. Hence, we can plug these bounds into Theorem 5.3.8 to get that:

P[St ⩽ λ] ⩽ P[Yt + Pℓ ⩽ λ] = P[Yt ⩽ −(Pℓ − λ)]

⩽ exp

(
− (Pℓ − λ)2

8 ·M · Ph + 2M · (Pℓ − λ)/3

)

as desired.

5.4 Warmup: A poly(1/ϵ)-Round Algorithm

In this we show a simple randomized algorithm that finds a (1 + ϵ)-approximate
matching in a number of rounds which only depends on the accuracy ϵ and not
the graph size or degree.

Theorem 5.1.1. Let n be a positive integer, and let ϵ ∈ (n−1/20, 1/2) be an accuracy pa-
rameter. There is an O(ϵ−5 log(1/ϵ))-round algorithm in the LOCAL model that finds a
(1+ ϵ)-approximate maximum matching in n-node regular graphs, with high probability.
The algorithm works in the CONGEST model for constant values of ϵ.
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While the runtime in Theorem 5.1.1 is constant for constant ϵ, the dependence
on ϵ is rather high. We can obtain better dependencies on ϵ by leveraging the
(1+ ϵ)-approximate matching algorithms given by Harris [174] at the cost of small
dependencies on n. This may be preferable for certain pairs of ϵ and n.

Our algorithm for proving this result runs in two stages. In the first stage, we
reduce the degree ∆ to poly(1/ϵ) by sampling edges independently with proba-
bility Θ(1/(∆ϵ4)) and then only consider the subgraph induced by nodes whose
degree is approximately Θ(1/ϵ4). In Theorem 5.4.1, we show that the resulting
subgraph retains a large matching with high probability.

In the second stage, we need to find an almost perfect matching in the sampled
graph. For the second stage of Theorem 5.1.1, we design a novel algorithm with-
out any dependencies on n which finds an almost perfect matching in the sampled
graph. Our algorithm runs in rounds; each round extends an existing matching
by finding augmenting paths of limited length.

We now handle each stage in separate subsections: Section 5.4.1 for the sam-
pling stage and Section 5.4.2 for the matching stage.

5.4.1 Sampling Stage

In this subsection, we give our sampling stage algorithm and prove that the re-
sulting graph retains an almost perfect matching. Algorithm 7 gives a formal
description of the algorithm.

Algorithm 7 SamplingStage(G)
Input: A ∆-regular unweighted graph G = (V, E); an accuracy parameter ϵ ∈

(n−1/20, 1/2)
Output: An unweighted graph G′ = (V′, E′) and a max degree d which is

min{6000
ϵ4 , ∆} with the guarantee the max degree of G′ is at most d

58 if ∆ ⩽ 6000
ϵ4 then

59 Return G′ ← G and max degree d← ∆.
60 end
61 E1 ⊆ E← each edge in E is included independently with probability p′ = 3000

∆ϵ4

62 G1 ← (V, E1)
63 V2 ← all vertices in V with degree at most 2p′∆ in G1
64 G2 ← G1[V2]
65 Return graph G′ ← G2 and max degree d← (2p′∆).
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The main goal of this subsection is to prove the following result about Algo-
rithm 7.

Lemma 5.4.1. Let OPT(H) denote the size of the maximum matching in graph H. Then,
when we run Algorithm 7, we have that OPT(G2) ⩾ (1− 5ϵ)OPT(G) with probability
at least 1− 5/n30.

We observe that if ∆ ⩽ 6000
ϵ4 , then Theorem 5.4.1 follows trivially (keeping the

entire graph means we preserved the original matching). Thus, in the rest of this
section, we assume that we used the sampling probability p′ = 3000

∆ϵ4 < 1. Our plan
is to show that the intermediate graph G1 has an almost-perfect matching and that
there are not many high-degree vertices so removing them does not significantly
reduce the size of the matching.

More formally, we plan to invoke the following folklore result about almost-
regular graphs admitting an almost-perfect matching. The result requires the fol-
lowing notation. Let κ ∈ (0, 1/2) and D ⩾ 1 be fixed. We say an edge e is (κ, D)-
balanced if and only if both its endpoints have degree in ((1− κ)D, (1 + κ)D).

Lemma 5.4.2 (Folklore). Let G = (V, E) be an undirected, unweighted graph and
τe, τv, κ ∈ (0, 1/2) and D ⩾ 1 be fixed such that -

(a) At least (1− τe)|E| edges are (κ, D)-balanced.
(b) At least (1− τv)|V| vertices have degree in ((1− κ)D, (1 + κ)D).

Then G has a matching of size at least (1− τe − τv − 2κ − 1
D+1)

|V|
2 consisting only of

(κ, D)-balanced edges.

Proof. Let X be the set of vertices in G with degrees in ((1− κ)D, (1 + κ)D). Re-
stricting the graph to these vertices yields H = G[X]. Then by definition, we have
|V(H)| ⩾ (1− τv)|V(G)| and |E(H)| ⩾ (1− τe)|E(G)|. Let D = (1 + κ)D. Our
goal is to find a large matching in H, which we plan to do by providing a fractional
point in the matching polytope and deducing that some integral point (matching)
is at least as good.

Our fractional point is x ∈ RE(H) where xe = 1
D+1 , ∀e ∈ E(H). We first

claim that x belongs to the matching polytope of H by verifying that it satisfies the
conditions of Theorem 5.3.1. The first set of inequalities is true as xe =

1
D+1 > 0.

Since the degree of any vertex in H is at most D by definition, the second set of
inequalities is satisfied as well. For the third set of inequalities, let S ⊆ X be an
arbitrary odd sized set of vertices. Note that |E(H[S])| ⩽ |S|(|S|−1)

2 and further
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since each vertex in H has degree at most D, |E(H[S])| ⩽ 1
2 ∑v∈S D = |S|D

2 . Thus
we have,

∑
e∈E(H[S])

xe = |E(H[S])| · 1
D + 1

⩽
|S|min(|S| − 1, D)

2(D + 1)

=
|S|min(|S| − 1, D) + (D + 1)

2(D + 1)
− 1

2

⩽
max(|S|, D + 1)min(|S| − 1, D) + max(|S|, D + 1)

2(D + 1)
− 1

2

=
max(|S|, D + 1)min(|S|, D + 1)

2(D0 + 1)
− 1

2

=
|S|(D + 1)
2(D + 1)

− 1
2
=
|S| − 1

2

and thus the third set of inequalities is also satisfied. Thus, by Theorem 5.3.1, x is
in the convex hull of indicator vectors of matchings in H, which implies that there
exists an integral matching M in H with size at least ∑e∈E(H) xe. In particular,

|M| ⩾ ∑
e∈E(H)

xe =
|E(H)|
D + 1

⩾
(1− τe)|E(G)|

D + 1

But we have |E(G)| ⩾ 1
2 · (∑v∈V(H)(1− κ)D) ⩾ 1

2 · ((1− τv)|V(G)|(1− κ)D)

⩾
(1− τe)(1− τv)(1− κ)|V(G)|D

2(D + 1)
⩾

(1− τe)(1− τv)(1− κ)|V(G)|D
2(1 + κ)(D + 1)

⩾ (1− τe)(1− τv)(1− 2κ)(1− 1/(D + 1))
|V(G)|

2

⩾ (1− τe − τv − 2κ − 1/(D + 1))
|V(G)|

2

as desired.

Now we just need to show that we can make the subgraph G1 sampled in Algo-
rithm 7 fit the conditions of Theorem 5.4.2. We expect vertices to have degree p′∆.
Since we are going to need κ to be on the order of ϵ, we are aiming to have a lot of
vertices with degree in the range ((1− ϵ)p′∆, (1 + ϵ)p′∆). Unfortunately, as each
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edge is sampled independently with probability p′ = Θ( 1
∆ϵ4 ), a standard Cher-

noff bound followed by a union bound attempting to guarantee that all vertices
have degree between ((1− ϵ)p′∆, (1+ ϵ)p′∆) results in too much failure probabil-
ity. Instead, for the sake of analysis, we sample the edges in two separate phases
and utilize concentration bounds for random variables with limited dependence
to show that most of the vertices have approximately the correct degree. Formally,
we show the following lemma.

Lemma 5.4.3. With probability at least 1− 4/n30, both of the following conclusions hold:
(a) At most (4e−1500/(27ϵ2))n vertices have degree outside of ((1− ϵ)p′∆, (1+ ϵ)p′∆)

in G1.
(b) At most (12e−1500/(27ϵ2))p′m edges in G1 are not (ϵ, p′∆)-balanced.

In order to prove Theorem 5.4.3, we break up the sampling stage into two
phases as follows. Let p = min{ 1000 log n

∆ϵ2 , 1} and q = p′/p. For the sake of analysis,
we assume that the set E1 in Algorithm 7 is constructed as follows: let E0 ⊆ E be
such that each edge e is included in E0 independently with probability p, and
let E1 ⊆ E0 be such that each edge is chosen independently with probability q.
Let G0 = (V, E0). The following two propositions are simple consequences of
Chernoff bounds.

Proposition 5.4.4. With probability at least 1− 1/n30, every vertex in G0 has degree
between (1− ϵ/3)p∆ and (1 + ϵ/3)p∆.

Proof. Note that if p = 1, then the claim follows trivially. So suppose p =
1000 log n

∆ϵ2 <

1. Consider a vertex v ∈ V. For each neighbor u of v in G, let Xuv denote the in-
dicator variable of the presence of the edge {u, v} in G0. Let Xv = ∑u∈NG(v) Xuv
be the degree of v in G0. Note that E[Xv] = ∑u∈NG(v) E[Xuv] = ∑u∈NG(v) p = p∆.
Thus, by Theorem 4.3.1 with δ← ϵ/3,

P[|Xv − p∆| ⩾ ϵ/3p∆] ⩽ 2e−ϵ2 p∆/27 ⩽ 2/n1000/27

Thus, by a union bound over all v ∈ V(G), the probability that there exists a
vertex with degree outside of the desired range is at most 2n/n1000/27 ⩽ 1/n30, as
desired.

Proposition 5.4.5. With probability at least 1− 1/n30, G1 has between (1− ϵ)p′m and
(1 + ϵ)p′m edges.
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Proof. For an edge e ∈ E(G), let Xe = 1 if e ∈ E(G1) and Xe = 0 otherwise.
Note that P[Xe = 1] = pq = p′ for all e and that the Xes are independent. Let
X = ∑e∈E(G) Xe. Since G is ∆-regular, E[X] = p′m = p′(∆n/2). By Theorem 4.3.1,

P[|X− p′m| ⩾ ϵp′m] ⩽ 2e−(p′∆n/2)ϵ2/3 = 2e−500n/ϵ2
< 1/n30

as desired.

We are now ready to prove Lemma 5.4.3.

Proof of Theorem 5.4.3. For any v ∈ V, let dv denote the degree of v in G0. We
say G0 is good if and only if dv ∈ ((1− ϵ/3)p∆, (1 + ϵ/3)p∆) for all v ∈ V. By
Theorem 5.4.4, P[G0 is good] ⩾ 1− 1/n30.

Let Yv be a random variable denoting the degree of v in G1. Since every edge
in G0 is included in G1 independently with probability q, by Theorem 4.3.1, we
have

P[|Yv − qdv| ⩾ (ϵ/3)qdv | G0 is good] ⩽ 2e−ϵ2qdv/27

⩽ 2e−ϵ2(1−ϵ/3)pq∆/27

⩽ 2e−1500/(27ϵ2)

where we used dv ⩾ (1− ϵ/3)p∆) since G0 is good in the second inequality. Un-
fortunately we note that this probability is not low enough to allow us to union
bound over all vertices in V. However, as G0 has bounded maximum degree
(when G0 is good), the random variables {Yv} exhibit limited number of depen-
dencies. We thus utilize concentration bounds for sums of dependent random
variables to show that most vertices have the appropriate degree.

Let Zv be an indicator variable denoting the event |Yv − qdv| ⩾ (ϵ/3)qdv. For
convenience, let δ0 := 2e−1500/(27ϵ2). Then the previous inequality is equivalent
to P[Zv | G0 is good] ⩽ δ0. Consider the collection of random variables Z =

{Zv}. Given a graph G0, variables Zu and Zv are dependent only when they are
adjacent in G0. Thus, if G0 is good, then the dependency graph ofZ has maximum
degree at most (1 + ϵ/3)p∆; which implies that it has chromatic number at most
1 + (1 + ϵ/3)p∆ ⩽ 4000 log n/ϵ2. Thus, applying Theorem 5.3.3 with λ ← nδ0,
we have

P

[
∑

v∈V
Zv − ∑

v∈V
E[Zv

∣∣∣∣∣ G0 is good] > nδ0 | G0 is good

]
⩽ exp

(
−

2nδ2
0

χ(Z)

)
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P

[
∑

v∈V
Zv > 2nδ0

∣∣∣∣∣ G0 is good

]
⩽ exp

(
−

2nδ2
0

χ(Z)

)
⩽ exp

(
−

2nδ2
0ϵ2

4000 log n

)

Which is at most 1/n100. In particular, this implies that the probability that the
number of vertices whose degree in G1 is outside the range

(
(1± ϵ/3)2pq∆

)
⊂

((1± ϵ)p′∆) exceeds 2nδ0 is at most 1
n100 whenever G0 is good. Let B denote the

bad event that at least 2nδ0 nodes in G1 have degree outside the range ((1± ϵ)p′∆).
Then we have P[B | G0 is good] ⩽ 1/n100. Overall, without the conditioning, we
have P[B] ⩽ P[B | G0 is good] + P[G0 is not good] ⩽ 1/n100 + 1/n30 ⩽ 2/n30.
This completes the proof of the first statement in the lemma.

For the second part of the lemma, consider an arbitrary edge e = {u, v} ∈
E(G0) and let We be an indicator variable for the event that e ∈ G1 and at least one
of its end points u or v have their degree outside the range ((1− ϵ)p′∆, (1+ ϵ)p′∆).
Once again, let us condition on the event that G0 is good. We note that P[We |
G0 is good] ⩽ P[e ∈ E(G1) and max{Zu, Zv} = 1 | G0 is good]. Further, the
dependency graph of the collection of random variables W = {We}e∈E(G0) has
maximum degree at most (2(1 + ϵ/3)p∆)2 since We only depends on edges in
the 2-neighborhood of edge e. Thus the chromatic number, χ(W) ⩽ 1 + (2(1 +

ϵ/3)p∆)2 ⩽ 16(106)(log2 n)/ϵ4. Once again, applying Theorem 5.3.3 with λ ←
δ0q|E(G0)|, we have

P

 ∑
e∈E(G0)

We > δ0q|E(G0)|+ ∑
e∈E(G0)

E[We|G0 is good]

∣∣∣∣∣∣ G0 is good


⩽ exp(−2|E(G0)|q2δ2

0ϵ4/(16(10)6(log2 n))) ⩽ 1/n100

where we used |E(G0)| ⩾ n in the last inequality. Finally, we note that

E[We|G0 is good]

⩽P[max(Zu, Zv) = 1|e ∈ E(G1), G0 is good] ·P[e ∈ E(G1)|G0 is good]

⩽2P[Zu = 1|e ∈ E(G1), G0 is good] ·P[e ∈ E(G1)|G0 is good] ⩽ 2δ0q

Substituting into the inequality above, we get

P

 ∑
e∈E(G0)

We > 3δ0q|E(G0)|

∣∣∣∣∣∣ G0 is good

 ⩽ 1/n100
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But, when G0 is good, |E(G0| ⩽ (1 + ϵ/3)p∆n/2 < 2p∆n/2, so

P

 ∑
e∈E(G0)

We > 6δ0pq∆n/2

∣∣∣∣∣∣ G0 is good

 ⩽ 1/n100

Overall, without the conditioning we have,

P

 ∑
e∈E(G0)

We > 6δ0pq∆n/2


⩽P

 ∑
e∈E(G0)

We > 6δ0pq∆n/2

∣∣∣∣∣∣ G0 is good

+ P[G0 is not good]

⩽
1

n100 +
1

n30 ⩽
2

n30

The lemma now follows from a union bound over the two statements.

Theorem 5.4.1 now follows directly from Theorem 5.4.2 and Theorem 5.4.3.

Proof of Theorem 5.4.1. If ∆ ⩽ 6000
ϵ4 , then we have G2 = G and the lemma fol-

lows trivially. Thus, we assume that ∆ > 6000
ϵ4 . By Theorem 5.4.5, |E(G1)| ⩾

(1− ϵ)p′m with probability at least 1− 1/n30. Thus, by the second statement of
Theorem 5.4.3, the number of edges in G1 that are not (ϵ, p′∆) balanced is at most
(12e−1500/27ϵ2

)/(1− ϵ) · |E(G1)| ⩽ 24e−1500/27ϵ2 |E(G1)| < ϵ|E(G1)|. At the same
time, by the first statement of Theorem 5.4.3, at most (4e−1500/(27ϵ2))n ⩽ ϵ|V(G1)|
vertices of G1 have degree not in ((1− ϵ)p′∆, (1 + ϵ)p′∆).

Substituting τv = τe = κ = ϵ in Theorem 5.4.2, we get that restricting to just
the nodes with degrees in ((1− ϵ)p′∆, (1 + ϵ)p′∆) must have a matching of size
at least (1− 4ϵ− 1

D+1)
n
2 ⩾ (1− 5ϵ)n

2 where the last inequality used ∆ > 6000
ϵ4 . The

probability bound follows from a union bound over the two lemmas. G2 includes
all these nodes because ϵ < 1/2.

5.4.2 Matching Stage

In this subsection, we give our matching stage algorithm which accepts a (low-
degree) possibly-non-regular graph and returns an almost-perfect matching in a
number of rounds which depends only on the maximum degree d and the desired
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accuracy ϵ > 0, not on the number of nodes n. Combined with our sampling stage
algorithm, which ensures that the maximum degree is a function of ϵ, we will be
able to achieve an end-to-end number of rounds which depends only on ϵ and not
the original degree ∆ or the (original) number of nodes n. Our main result for this
subsection is the following.

Lemma 5.4.6. For ϵ > n−1/20, there is an O(ϵ−5 log d)-round randomized LOCAL al-
gorithm where each vertex knows d and ϵ that returns a matching of size at least (OPT−
ϵn) on n-vertex graphs with maximum degree d with probability at least 1− 1/n30. Fur-
thermore, this algorithm is a CONGEST algorithm if ϵ and d are constant.

To prove Theorem 5.4.6, we give an algorithm that improves a matching over
many iterations; in each iteration, the algorithm attempts to find a large set of dis-
joint augmenting paths for the current matching. The algorithm finds these paths
by constructing a hypergraph whose hyperedges each represent an augmenting
path for the current matching. The algorithm finds an approximately maximum
fractional matching in this hypergraph and then rounds that matching via inde-
pendent random sampling and removing collisions. When the current matching
is far from optimality, Theorem 5.3.2 certifies that this procedure actually finds a
large matching. The algorithm is formally given by Algorithm 8, and it relies the
following fractional matching algorithm for hypergraphs.

Theorem 5.4.7 (Theorem 4.8 of [70] with α = 2 and using the δ(e)s computed
in the algorithm). In any f -bounded hypergraph G = (V, E) with ϵ ∈ (0, 1) with
maximum degree ∆, there is an O(log ∆ + f log( f /ϵ))-round deterministic CONGEST
algorithm for computing an ( f + ϵ)-approximate fractional hypergraph matching in G.
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Algorithm 8 ConstantMatch(G)
Input: An unweighted graph G = (V, E); an accuracy parameter ϵ ∈

(n−1/20, 1/2)
Output: A matching M in G

66 M0 ← ∅
67 k← 4/ϵ + 1
68 T ← 104/ϵ4 + 1
69 τ ← 1/(4k2)
70 for i ∈ {1, 2, . . . , T} do
71 Ei ← the set of all Mi−1-augmenting paths P with |P| ⩽ k
72 Hi ← (V, Ei), where each P ∈ Ei yields a hyperedge between the vertices in P
73 xi ← the fractional matching in Hi given by Theorem 5.4.7 with ϵ = 1/2

/* Pi will contain disjoint Mi−1-augmenting paths we are choosing
*/

74 Pi ← ∅
75 for each vertex v ∈ V independently do
76 Xv ← {P ∀P ∈ Ei for which v ∈ P} ∪ {⋆}
77 Yv ← a randomly chosen member of Xv, with P ∈ Xv chosen with proba-

bility τxi(P), and ⋆ chosen with probability 1− τ ∑Q ̸=⋆∈Xv xi(Q)

78 end
79 for each hyperedge P ∈ Ei do
80 Add P to Pi if (a) there exists a v ∈ P for which Yv = P and (b) for any

u ∈ V for which Yu ∩ P ̸= ∅, Yu = P
81 end
82 Mi ← augmentation of Mi−1 by Pi
83 end
84 return MT

The remainder of this subsection is a proof of Theorem 5.4.6. We begin by
verifying the following property of Pi:

Proposition 5.4.8. Pi is a collection of vertex-disjoint Mi−1-augmenting paths.

Proof. By definition of Ei, Pi is a collection of Mi−1-augmenting paths, so it suffices
to check that they are vertex-disjoint. Suppose, for the sake of contradiction, that
there is a vertex v ∈ V for which there exist P0, P1 ∈ Pi with P0 ̸= P1 for which
v ∈ P0 and v ∈ P1. By part (a) of the definition of Pi, there exist v0 ∈ P0 and
v1 ∈ P1 for which Yv0 = P0 and Yv1 = P1. By part (b) of the membership of P0,
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since P0 ∩ Yv1 ̸= ∅, Yv1 = P0, a contradiction to the fact that P0 ̸= P1. Thus, the
sets in Pi are vertex-disjoint, as desired.

Note, first, that |Mi| ⩾ |Mi−1|, since all paths in Pi are augmenting paths. Let
OPT denote the size of a maximum matching in G. If |MT| ⩾ OPT − ϵn, then
we are done, so assume for the sake of contradiction that |MT| < OPT − ϵn. This
means that |Mi| ⩽ OPT − ϵn for all i ∈ [T]. We use this to show the following:

Proposition 5.4.9. For any i ∈ {1, 2, . . . , T}, if |Mi−1| ⩽ OPT− ϵn, then it holds that
∑P∈Ei

xi(P) ⩾ ϵn
4(k+1) .

Proof. By Proposition 5.3.2 applied to M ← Mi−1 and ℓ ← (k− 1)/2, there exists
a collection P of Mi−1-augmenting paths with length at most k in G for which

|P| ⩾ 1
2
(OPT(1− 2/(k− 1))− |Mi−1|)

⩾
1
2
(OPT(1− ϵ/2)− (OPT − ϵn)) =

ϵ

2
(n−OPT/2) ⩾

ϵn
4

When the sets in P are viewed as hyperedges in Hi, P is a hypergraph match-
ing thanks to the vertex disjointness of the sets. Thus, Hi has a hypergraph match-
ing with at least ϵn

4 hyperedges. Since Hi is a k-bounded hypergraph, Theorem
5.4.7 implies that the total size of the fractional matching xi is at least |P|/(k +
1/2) ⩾ ϵn

4(k+1) as desired.

We then use this lower bound to show that the rounding part of Algorithm 8
finds a large collection of augmenting paths. To analyze the sampling steps, we
use McDiarmid’s Inequality:

Theorem 5.4.10 ( [220]). Let X1,X2, . . . ,Xn be sets, c1, c2, . . . , cn ∈ R, and f : X1 ×
X2 × . . .×Xn → R be a function with the property that, for any i ∈ [n], x1 ∈ X1, x2 ∈
X2, . . . , xn ∈ Xn, and x′i ∈ Xi,

| f (x1, . . . , xi−1, xi, xi+1, . . . , xn)− f (x1, . . . , xi−1, x′i, xi+1, . . . , xn)| ⩽ ci

Then, for any δ > 0,

P[| f (X1, X2, . . . , Xn)−E[ f (X1, X2, . . . , Xn)]| ⩾ δ] ⩽ 2 exp

(
− 2δ2

∑n
i=1 c2

i

)
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Fix an i ∈ {1, 2, . . . , T} for the rest of this section. Define the function f :
∏v∈V Xv → R to be f (Y) := |Pi|, where Y is the n-tuple of Yvs for all v ∈ V.
This choice of function is inspired by Lemma 5.1 of [160]. We now prepare to use
Theorem 5.4.10 by showing the following two results:

Proposition 5.4.11. Let Y and Y′ be two different tuples indexed by V for which there
exists exactly one v ∈ V for which Yv ̸= Y′v. Then | f (Y)− f (Y′)| ⩽ 2k ⩽ 10/ϵ.

Proof. Let Pi and P ′i be the sets resulting from Y and Y′ respectively. It suffices
to show that ||Pi| − |P ′i || ⩽ k when Yv = ⋆ and Y′v = P ̸= ⋆, as all remaining
cases can be covered by the triangle inequality. Let p1, p2, . . . , pℓ with ℓ ⩽ k be the
members of P. By part (b) of the definition, for all j ∈ {1, 2, . . . , ℓ}, there exists at
most one Pj ∈ Pi ∪ {⋆} for which pj ∈ Pj. Every other set in Pi does not intersect
P, so Pi ⊆ P ′i ∪ {P1, P2, . . . , Pℓ}. Furthermore, P ′i ⊆ Pi ∪ {P}. Therefore,

|Pi| − ℓ ⩽ |P ′i | ⩽ |Pi|+ 1

as desired (since ℓ ⩽ k).

Proposition 5.4.12. If |Mi−1| ⩽ OPT − ϵn, then

EY[ f (Y)] ⩾
(1− 2k2τ)τϵn

4(k + 1)
⩾

ϵ4n
5000

Proof. We start by lower bounding the probability that any P = {p1, p2, . . . , pℓ} ∈
Ei is added to Pi. First, note that

PY[there exists j ∈ {1, 2, . . . , ℓ} for which both Ypj = P and Ypj′ = ⋆ for all j′ ̸= j]

=
ℓ

∑
j=1

τxi(P) ∏
j′ ̸=j

1− τ ∑
Q ̸=⋆∈Xpj′

xi(Q)


⩾

ℓ

∑
j=1

τxi(P)(1− τ)ℓ−1

⩾ τ(1− τ)kxi(P)

since the Ypjs are independent. For any u, w ∈ V, let Ei(u, w) denote the set of
all hyperedges Q ∈ Ei for which u, w ∈ Q. Note that for any j ∈ {1, 2, . . . , ℓ}
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PY[for all u ∈ V \ P, pj /∈ Yu] = ∏
u∈V\P

PYu [pj /∈ Yu]

= ∏
u∈V\P

1− τ ∑
Q∈Ei(u,pj)

xi(Q)


⩾ 1− τ ∑

u∈V
∑

Q∈Ei(u,pj)

xi(Q)

= 1− τ ∑
Q∈Ei :pj∈Q

∑
u ̸=pj∈Q

xi(Q)

⩾ 1− kτ ∑
Q∈Ei :pj∈Q

xi(Q)

⩾ 1− kτ

By a union bound,

PY[for all u ∈ V \ P, P ∩Yu = ∅] ⩾ 1− k2τ

The first event only depends on V \ P, while the second only depends on P.
Let E∗ be the event in which there exists j ∈ {1, 2, . . . , ℓ} for which both Ypj = P
and Ypj′ = ⋆ and for all u ∈ V \ P, P ∩Yu = ∅. Thus, by independence,

PY[E∗] ⩾ (1− k2τ)τ(1− τ)kxi(P)

Such P are added to Pi, as Ypj = P (satisfying condition (a)), Yu = ⋆ for all
u ∈ P with u ̸= vj, and Yu ∩ P = ∅ for all u ∈ V \ P, so condition (b) is never
triggered. Thus,

PY[P ∈ Pi] ⩾ (1− k2τ)τ(1− τ)kxi(P) ⩾ (1− 2k2τ)τxi(P)

and

EY[ f (Y)] = ∑
P∈Ei

PY[P ∈ Pi]

⩾ (1− 2k2τ)τ ∑
P∈Ei

xi(P)
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⩾
(1− 2k2τ)τϵn

4(k + 1)

by Proposition 5.4.9, as desired.

We are now ready to use McDiarmid’s Inequality to lower bound the improve-
ment in each iteration:

Proposition 5.4.13. |Pi| ⩾ ϵ4n
10000 with probability at least 1− 2 exp

(
−ϵ6n/1010)

Proof. By Theorem 5.4.10, Proposition 5.4.11, and Proposition 5.4.12, with δ ←
ϵ4n

10000 ,

PY[ f (Y) ⩽
ϵ4n

10000
] ⩽ 2 exp

(
− 2δ2

(10/ϵ)2n

)
⩽ 2 exp

(
−ϵ6n/1010

)
as desired.

Proof of Lemma 5.4.6. Let T′ be the minimum value for which |Mi| ⩾ OPT− ϵn, or
T′ = T + 1 if no such T′ exists. T′ is a random variable. We now upper bound the
probability that T′ = T + 1. Since |Mi| = |Pi|+ |Mi−1| for all i, |MT| ⩽ n, and
|M0| = 0, there must exist an i for which |Pi| ⩽ n

T < ϵ4n/104. Thus,

P[T′ = T + 1] = P

[
T′ = T + 1 and ∃i ∈ {1, 2, . . . , T} for which |Pi| <

ϵ4n
104

]
⩽

T

∑
i=1

P

[
T′ = T + 1 and |Pi| <

ϵ4n
104

]
⩽

T

∑
i=1

P

[
|Mi−1| < OPT − ϵn and |Pi| <

ϵ4n
104

]
⩽

T

∑
i=1

P

[
|Pi| <

ϵ4n
104

∣∣∣∣ |Mi−1| < OPT − ϵn
]

⩽ 2T exp(−ϵ6n/1010)

⩽
1

n30

where the second to last inequality follows from Proposition 5.4.13. Thus, with
the desired probability, T′ < T + 1, in which case the algorithm finds a matching
with the desired size.
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The maximum degree of Hi is at most dk, so each iteration of the for loop takes
log(dk) + k log(k/ϵ) = O((log(d/ϵ))/ϵ), as all other operations takes a constant
number of rounds in LOCAL, and a constant number of rounds in CONGEST
when d and ϵ are constant. Thus, multiplying by T gives the desired runtime.

5.4.3 The End-to-End Algorithm

In this subsection, we are finally ready to show that Theorem 5.1.1 follows from
Theorem 5.4.1 and Theorem 5.4.6.

Proof of Theorem 5.1.1. We show that SamplingStage(G) (Algorithm 7) followed by
Algorithm 8 returns the desired output in the desired runtime (for ϵ > n−1/20).
By definition, the maximum degree of G2 is at most 2p′∆ = 6000/ϵ4. We use this
fact to bound both the runtime and the approximation error:

Runtime: Theorem 5.4.6 is applied to the G2 produced by Algorithm 7, so d =

6000/ϵ4 in this case and O(ϵ−5 log d) = O(ϵ−5 log(1/ϵ)) as desired. Since the
runtime of Algorithm 7 is a constant number of rounds, the overall runtime is
still just O(ϵ−5 log(1/ϵ)). Note that the algorithm for Theorem 5.4.6 can be used,
as each vertex in G2 knows both d (which only depends on the original regular
graph’s degree ∆ and ϵ) and ϵ.

Approximation: Let OPT denote the size of the maximum matching in the input
graph G. By Theorem 5.4.1, we have that OPT(G2) ⩾ (1− 5ϵ)OPT with probabil-
ity at least 1− 5

n30 . We note that since G is ∆-regular, we have OPT ⩾ (1− 1
∆+1)

n
2 ⩾

n
3 .

Therefore, applying Lemma 5.4.6 results in a matching with size at least (1−
5ϵ)OPT − ϵn ⩾ (1− 5ϵ)OPT − 3ϵOPT = (1− 8ϵ)OPT with probability at least
1− 5/n30− 1/n30 > 1− 6/n30. The theorem now follows by replacing ϵ with ϵ/8,
which only changes run time by a constant factor.

5.5 Exponentially Faster Algorithm in Dense Graphs

In this section, we show that there is an O(log(1/ϵ))-round algorithm to find a
(1+ ϵ)-approximate maximum matching in ∆-regular graphs when ∆ ⩾ (1

ϵ )
c for a

large constant c. We note that the proof makes no attempt to optimize the constant
c and we expect that it can be reduced significantly by a more careful analysis.
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Theorem 5.1.2 (Main Result). Let c = 105 and let 0 < ϵ < 1 be a parameter. For ∆-
regular graphs with ∆ > (1/ϵ)c, there is an O(log(1/ϵ))-round CONGEST algorithm
that finds a (1 + ϵ)-approximate maximum matching with high probability.

A Roadmap for the Proof of Theorem 5.1.2 The algorithm for proving Theo-
rem 5.1.2 first runs a simple color coding step to find a bipartite almost regular
subgraph, and then runs Luby’s algorithm for O(log(1/ϵ)) rounds. Since our
analysis for Luby’s algorithm uses several martingale inequalities, it is cleaner
to work with the sequential view of Luby that we present in Section 5.5.1. In
Section 5.5.2 we show that a single round of Luby’s algorithm in an almost reg-
ular graph matches a constant fraction of the nodes, with high probability.8 In
Section 5.5.3, we state our key recursive regularity lemma that shows that run-
ning one round of Luby’s algorithm on an almost regular graph and deleting
the matched nodes yields an almost regular graph. The Local Recursive Regularity
lemma that bounds the probability that the degree of a particular node u almost
exactly halves after each round is the most technical part of the proof and we de-
vote Section 5.6 for its proof. Finally, in Section 5.5.4, we put these components
together to finish the proof.

5.5.1 Sequential View of Luby’s Algorithm

In the traditional distributed implementation of one round of Luby’s algorithm,
each edge e picks a uniformly random integer re in the set {1, 2, . . . , M} for an
appropriately chosen polynomially large M. An edge e is chosen to be in the
matching if re < re′ for all neighboring edges e′. This distributed view was given
in Chapter 4 in the context of independent sets. We given it here again in the
context of matchings for convenience (Algorithm 9).

8In fact, we prove a more general claim where it suffices that a constant fraction of the edges
are balanced.
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Algorithm 9 Luby
Input: An unweighted graph G = (V, E), where |E| = m and a constant c′ > 0
Output: A matchingM

85 I ← ∅ for each edge e ∈ E do
86 re ← uniformly random number in {1, 2, . . . , 100mc′+2}
87 end
88 for each edge e ∈ E do
89 Add e toM if re < re′ for all neighboring edges e′ of e in G (i.e., for edges e′

where e ∩ e′ ̸= ∅)
90 end
91 returnM

Algorithm 10 SeqLuby
Input: an unweighted graph G = (V, E)
Output: a matchingM

92 M← ∅ U ← E while U ̸= ∅ do
93 e ← uniformly random element of the set U U ← U \ {e} if {e′ ∈ E | e′ ∩ e ̸=

∅} ⊆ U then
94 M←M∪{e}
95 end
96 end
97 returnM

It is convenient for our analysis to work with a sequential view of Luby’s algo-
rithm. In the sequential view, the edges are sequentially sampled independently
without replacement. When an edge e is sampled, it is added to the matching
only if none of its neighboring edges had been sampled earlier. Crucially, unlike
the greedy matching algorithm, a sampled edge e is blocked by a neighboring edge
e′ that was previously sampled even if e′ itself is not in the matching. This sequen-
tial view was presented in Chapter 4, Section 4.5, and we present it here again in
Algorithm 10 for convenience. In Chapter 4, Proposition 4.5.1, we showed that
the two algorithms are equivalent by showing that they produce the same distri-
bution over matchings with high probability9.

9The Proposition was stated in the context of independent sets, but trivially extends to match-
ings.
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Hence, in this chapter we focus on analyzing the sequential view of Luby
whenever we want to make claims about a single round of Luby’s algorithm. This
incurs an additional tiny 1/poly(n) failure probability, which we can tolerate.

5.5.2 Analyzing One Round of Luby’s Algorithm on Almost
Regular Graphs

In this section we show that a single round of Luby’s algorithm on almost regular
graphs matches a constant fraction of the nodes with high probability. In fact, we
prove this claim for a more general family of graphs in the following theorem.

Theorem 5.5.1. Let G be an undirected graph with n nodes and m edges, and let d =

2m/n be the average degree. Let Elow = {(u, v) ∈ E(G) | deg(u) ⩽ 2d, deg(v) ⩽ 2d}
be the set of edges induced by nodes with degree at most 2d. If |Elow| ⩾ m/2, then one
round of Luby’s algorithm (Algorithm 9) finds a matching in G of size at least n/288 with
high probability.

Proof. For analysis, we’ll focus on the sequential view of Luby’s algorithm. By
Proposition 4.5.1, the result holds for the distributed version as well.

Consider the first t = n/24 iterations of the while loop in Algorithm 10. We
first claim that in each of these t = n/24 iterations, we add the sampled edge
to the matching with probability at least 1/6 (irrespective of previous random
outcomes). Formally, for each i ∈ [t], let Xi ∈ {0, 1} be a random variable in-
dicating whether we add an edge to the matching in the ith iteration, and let
pi = E[Xi | X1, . . . Xt−1]. We now show that pi ⩾ 1/6, ∀i ∈ [t].

We say that an edge e is blocked if during any of the first t iterations we sample
some neighboring edge e′. By definition, if we sample some edge e in an itera-
tion i ∈ [t] and it isn’t blocked, then e is always added to the matching. Next,
we show that the number of blocked edges in Elow is at most nd/6. Assume for
contradiction, that there is an iteration where edge e = {u, v} is sampled that
blocks more than 4d edges in Elow. This implies that either u or v is incident on
more than 2d edges from Elow. But that’s a contradiction since no edge from Elow

can be incident on a node with degree > 2d. Thus, in each iteration, at most 4d
edges from Elow can be blocked. Hence, in the first t = n/24 iterations, at most
(n/24) · (4d) = nd/6 edges are blocked in total.

Therefore, even at the end of the first t iterations, at least |Elow| − nd/6 ⩾
nd/4− nd/6 = nd/12 edges from Elow remain unblocked. In any fixed iteration
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i ∈ [t], if we sample any of these edges, it will be added to the matching. Hence,
the probability that we add an edge to the matching in iteration i is at least:

pi ⩾
nd/12

nd/2− n/24
⩾

nd/12
nd/2

= 1/6

Finally, to prove the theorem we use the shifted martingale trick (that was
discussed in the preliminaries, and is formally presented in Section 5.3.4) in a
black-box fashion, as follows. Let St = ∑t

i=1 Xi, and let pi = E[Xi | X1, · · · , Xi−1].
Since pi ⩾ 1/6 for all i ∈ [t], then by plugging in Pℓ

i = 1/6 for all i and Pℓ =

∑t
i=1 Pi = t/6 and Ph = t in Theorem 5.3.12, we get that:

P[St < n/288] ⩽ exp
(
− (t/6− n/288)2

16t

)
⩽ e−n/96

5.5.3 Recursive Regularity

We first define some notation to facilitate the rest of the discussion. Intuitively, we
say a node (α, ∆)-regular if all nodes in its two hop neighborhood have the same
degree.

Definition 5.5.2 ((α, ∆)-regular node). Let ∆ be an integer and α ∈ [0, 1] be a real
number. Given a graph G, we say that a node u is (α, ∆)-regular in G if for any
v ∈ {u} ∪ N(u) ∪ N2(u), we have ∆(1− α) ⩽ deg(v) ⩽ ∆(1 + α).

We can now present our main technical lemma that states that if u is a (α, ∆)-
regular node, then its degree becomes almost exactly ∆/2 after running one round
of Luby’s algorithm, with failure probability exponentially small in ∆. The proof
of Lemma 5.5.3 is the most technical part of this chapter and is deferred to Sec-
tion 5.6.

Lemma 5.5.3 (Local Recursive Regularity Lemma). Let ∆ ⩾ 210 be an integer, and
α ∈ [0, 1/10] be a real number. Let G be a bipartite graph and u be an (α, ∆)-regular
node in it. Let deg′(u) be the number of unmatched neighbors of u after running SeqLuby
(Algorithm 10) on G. With probability at least 1− exp(−∆1/16), it holds that:

∆
2

(
1− (10α + ∆−1/600)

)
⩽ deg′(u) ⩽

∆
2

(
1 + (10α + ∆−1/600)

)
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As long as ∆ is large enough (≈ log n), Theorem 5.5.3 followed by a union
bound suffices to show that an almost regular graph remains almost regular with
their degrees halved after one round of Luby’s algorithm. However, for smaller
∆, we can no longer rely on a simple union bound. In the following lemma, we
use the Chernoff-Hoeffding concentration inequality with bounded dependence
to show that even for small ∆, almost all nodes halve their degree.

Lemma 5.5.4 (Recursive Regularity Lemma). Let n ⩾ K ⩾ ∆ ⩾ 210 be integers, and
let α ∈ [0, 1/10], δ ∈ [0, 1/100] be real numbers. Let G be a bipartite graph with n nodes
and max degree K and let G′ be the graph obtained by running SeqLuby (Algorithm 10)
on G and removing all matched nodes together with their incident edges.

If at least (1 − δ)-fraction of nodes in G are (α, ∆)-regular, then at least (1 − δ′)-
fraction of nodes in G′ are (α′, ∆/2)-regular with probability at least

1− exp
(
−n/(K10 exp (∆1/99))

)
where δ′ = K2 · (δ + 2 exp (−∆1/100) and α′ = 10α + ∆−1/600.

Proof. We say that a node v is good if its degree in G′ is in the range ∆
2 (1± α′). Any

node that’s not good is called bad. Let R be the set of nodes that are (α, ∆)-regular
in G. By Lemma 5.5.3, each (α, ∆)-regular node in G that remains unmatched is
good with probability at least 1− exp (−∆1/16). Hence, the expected number of
nodes from R that are bad is at most |R| · exp (−∆1/16) ⩽ n. To obtain a high prob-
ability bound, we use Chernoff-Hoeffding inequality with bounded dependence
as follows.

For each node u ∈ R, let Bu ∈ {0, 1} be an indicator random variable that
indicates whether u is bad. We have ∑u∈R E[Xu] ⩽ |R| · exp (−∆1/16) ⩽ n ·
exp (−∆1/16). Since the maximum degree in G is K, each Xu depends on fewer
than K10 nodes. Hence we apply Theorem 5.3.3 (with λ = |R| · exp (−∆1/16)) to
get:

P

[
∑

u∈R
Xu > 2n exp(−∆1/100)

]
⩽ P

[
∑

u∈R
Xu > 2|R| exp(−∆1/16)

]

⩽ P

[
∑

u∈R
Xu > ∑

u∈R
E[Xu] + |R| exp(−∆1/16)

]

⩽ exp

(
−2(|R| · exp(−∆1/16))2

|R| · K10

)
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= exp
(
− 2|R|

K10 exp (2∆1/16)

)
⩽ exp

(
− 2|R|

K10 exp (∆1/99)

)
⩽ exp

(
− n

K10 exp (∆1/99)

)
where the last line used ∆ > 210 and |R| ⩾ (1− δ)n ⩾ n/2. We say that a node
v poisons a node u if v prevents u from being (α′, ∆/2)-regular, i.e., v poisons u if
v is bad and is at distance at most 2 from u. We note that each bad node poisons
at most K2 nodes. Let B be the set of bad nodes, i.e., we have |B| = ∑u∈R Xu and
let B̃ = V(G) \ R be the set of nodes that are not (α, ∆) regular in G. For nodes in
B̃, we have no guarantee on the probability of whether they become good, so we
always assume that they poison K2 nodes. In total, the number of nodes that are
not (α′, ∆/2)-regular in G′ is at most (|B̃|+ |B|)K2 which is at most:

(|B̃|+ 2n · exp (−∆1/100)) · K2 ⩽ (δn + 2n · exp (−∆1/100)) · K2

= n · K2 · (δ + 2 exp (−∆1/100))

with probability at least 1− exp
(
−n/(K10 exp (∆1/99))

)
, as desired.

Theorem 5.5.4 shows that after each round of Luby’s algorithm, the remaining
graph still satisfies the requirement that most vertices remain almost regular, al-
beit with worsening parameters. The following technical claim shows that these
parameters remain small enough after O(log(1/ϵ) rounds.

Claim 5.5.5. Let ∆ be an integer, c = 1/105, and ϵ be a real number satisfying
1 > ϵ ⩾ 1/∆c. Furthermore let:

1. α0 = ∆−1/600 and αi = 10αi−1 + ∆−1/600 for i ⩾ 1,

2. δ0 = exp(−∆1/200), and δi = ∆2(δi−1 + 2 exp(−(∆/2i)1/100)) for i ⩾ 1.

It holds that αi ⩽ 1/10 and δi ⩽ exp(−∆1/300) for 1 ⩽ i ⩽ 10 log(1/ϵ).

Proof. We start with bounding αi, observe that:

αi = 10αi−1 + ∆−1/600 (1)
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= 10(10αi−2 + ∆−1/600) + ∆−1/600 (2)
... (3)

⩽
i

∑
j=0

10j+1 · ∆−1/600 (4)

⩽ i · 10i+1 · ∆−1/600 (5)

⩽ 100 log(1/ϵ) · 1010 log(1/ϵ) · ∆−1/600 (6)

⩽
100

c
log ∆ · ∆40/c · ∆−1/600 (7)

⩽ ∆41/c−1/600 (8)

⩽ ∆41/98400−1/600 (9)

⩽ ∆1/2400−1/600 (10)

= ∆−1/800 ⩽ 1/10 (11)

where (4) follows since α0 = ∆−1/600, (6) follows since i ⩽ 10 log(1/ϵ), and (7)
follows since ϵ ⩾ 1/∆1/c. Next, we bound δi. Let ∆i = ∆/2i. Since ϵ ⩾ 1/(∆1/c)

and i ⩽ 10 log(1/ϵ), we have that ∆i = ∆/2i ⩾ ∆/210 log 1/ϵ ⩾ ∆0.9. Therefore,
2 exp(−∆1/100

i ) ⩽ 2 exp(−∆9/1000) ⩽ exp(−∆1/200). Hence, we get that:

δi ⩽ ∆2(δi−1 + exp(−∆1/200)) (1)

⩽ ∆2(∆2(δi−2 + exp(−∆1/200)) + exp(−∆1/200)) (2)
... (3)

=
i

∑
j=0

∆2(j+1) · exp(−∆1/200) (4)

⩽ 2 exp(−∆1/200)∆2(i+1) (5)

⩽ 2 exp(−∆1/200) · exp(log2 ∆) (6)

⩽ exp(−∆1/300) (7)

where (5) holds since 1/∆2 ⩽ 1/2, and (7) holds since i ⩽ 10 log(1/ϵ) ⩽ log(∆)/10.

We now extend Lemma 5.5.4 to a multi-round argument, showing that most of
nodes’ degrees after running Luby’s algorithm for i rounds become ≈ ∆/2i.
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Lemma 5.5.6 (Multi-Round Recursive Regularity). Let (∆, ϵ, (αi), (δi)) be as de-
fined in Theorem 5.5.5. Let G be a bipartite n-node graph, where all but δ = δ0 =

exp (−∆1/200)-fraction of the nodes are (α0, ∆)-regular. For i ⩽ 10 log(1/ϵ), let Gi
be the graph obtained after running Luby’s algorithm (Algorithm 9) for i rounds on G,
where in each round we remove the matched nodes together with their incident edges. If
|V(Gi)| ⩾ ϵn, then with high probability, at least (1− δi)-fraction of the nodes in Gi are
(αi, ∆/2i)-regular.

Proof. The idea is to use a recursive argument where we apply Lemma 5.5.3 with
a simple union bound in the dense case, and Lemma 5.5.4 in the sparse case. For
convenience of notation, let ∆i = ∆/2i. Since we apply Lemmas 5.5.3 and 5.5.4
recursively for i rounds, we need to ensure that αi ⩽ 1/10 and δi ⩽ 1/100, which
follows from Claim 5.5.5. The proof is split into two cases, a dense case where
∆ ⩾ log50 n, and a sparse case. We start with the dense case.

Dense case where ∆ ⩾ log50 n: By Lemma 5.5.3 and a simple union bound ar-
gument, in the case where ∆ ⩾ log50 n, all the nodes are (αi, ∆/2i)-regular after
running Luby’s algorithm (Algorithm 9) for i rounds with high probability. This
is because the failure probability of Lemma 5.5.3 is at most exp (−∆1/16

i ) at round
i, and ∆i ⩾ ∆0.99 for any i (since ϵ ⩾ 1/∆1/c and i ⩽ 10 log(1/ϵ)).

Sparse case where ∆ ⩽ log50 n: The idea is to apply Lemma 5.5.4 recursively for
i rounds and the proof follows by induction.

Induction base i=1: By Proposition 4.5.1 Algorithms 9 and 10 produce the same
distributions over matchings in the graph G, up to 1/poly(n) total variation dis-
tance. Hence, for i = 1 the claim follows directly from Lemma 5.5.4, since the
failure probability of Lemma 5.5.4 is only exp

(
−n/∆10 exp (∆1/99)

)
< 1/n1000,

for ∆ ⩽ log50 n.

Induction step: Assume that the claim is true for i, i.e., assume that all but
|V(Gi)| · δi nodes in Gi are (αi, ∆/2i)-regular with high probability. We show that
the claim is true for i + 1. Again, by Proposition 4.5.1, Algorithms 9 and 10 pro-
duce the same distributions over matchings in the graph Gi, up to a 1/|E(Gi)|c ⩽
1/(|V(Gi)|)c ⩽ 1/(ϵn)c ⩽ (1/n0.99)c total variation distance, for an arbitrarily
large constant c. Since the max degree in Gi is at most ∆, by Lemma 5.5.4 it holds
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that all but |V(Gi+1)| · δi+1 nodes in Gi+1 are (αi+1, ∆/2i+1)-regular in Gi+1 with
probability at least

1− exp

(
− |V(Gi)|

∆10 exp (∆1/99
i )

)
⩾ 1− exp

(
− ϵn

∆10 exp (∆1/99)

)
⩾ 1− 1

n1000

where the first inequality holds since ∆i ⩽ ∆ and |V(Gi)| ⩾ ϵn, and the second
inequality holds since ϵ ⩾ 1/∆1/100 ⩾ 1/n1/100 and ∆ ⩽ log50 n. Hence, by a
union bound on all i’s, we get that as long as V(Gi) has at least ϵn nodes, it holds
that all but |V(Gi)| · δi nodes are (αi, ∆i)-regular in Gi with probability at least
1− 1/n100.

5.5.4 Putting it together

Theorem 5.5.6 shows that the graph remains almost regular after i ≈ log(1/ϵ)

repeated applications of Luby’s algorithm, and Theorem 5.5.1 showed that each
round of Luby’s on an almost regular graph matches a constant fraction of nodes.
We can now combine these two results to show that as long as the remaining graph
is large enough, each application of Luby’s algorithm matches a constant fraction
of nodes.

We first present a corollary of Theorem 5.5.1 to formalize that the almost regu-
lar graphs implied by Theorem 5.5.6 do indeed satisfy the requirements of Theo-
rem 5.5.1.

Corollary 5.5.7. Let ∆ ⩾ C, where C is a large enough constant, and let G′ be a graph
with n′ nodes and max degree ∆. Suppose at least (1− exp(−∆1/300))-fraction of the
nodes are (α′, ∆′)-regular for α′ ⩽ 1/10. It holds that Luby’s algorithm matches n′/288
nodes in G′ with high probability.

Proof. To apply Theorem 5.5.1, we need to show that at least 1/2 of the edges in G′

are incident with nodes of degree smaller than 2d̄, where d̄ is the average degree
in G′. We start with bounding d̄. Let R be the set of nodes that are (α′, ∆′)-regular
in G′.

Upper bounding d̄: Observe that:
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d̄ =
∑v∈V(G′) degG′(v)

|V(G′)|

⩽
|R| · ∆′(1 + α′) + exp(−∆1/300)|V(G′)| · ∆

n′

⩽ ∆′(1 + α′) + exp(−∆1/300) · ∆
⩽ ∆′(1 + 2/10)

Lower bounding d̄: Observe that:

d̄ =
∑v∈V(G′) deg(v)
|V(G′)| ⩾

|R| · ∆′(1− α′)

|V(G′)|
⩾ (1− exp(−∆1/300))∆′(1− α′) ⩾ (1− 1/10)∆′(1− 1/10)

⩾ ∆′(1− 2/10)

where we used that exp(−∆1/300) < 1/10 for ∆ larger than C (which is a suffi-
ciently large constant).

Hence, all the nodes that are (α′, ∆′)-regular in G′ have degree within a factor
of 2 from the average degree. Furthermore, the only edges that are incident to
nodes with degree larger than 2d̄ are the edges incident to the nodes that are not
(α′, ∆′)-regular, and these are only a ∆ · exp (−∆1/300)) << 1/2-fraction of the
edges. The claim follows.

We are now ready to prove Theorem 5.1.2.

Proof of Theorem 5.1.2. We first provide a proof that assumes that the graph in
bipartite, and then we lift this assumption by a simple sampling argument. We
simply run Luby’s algorithm in G for i = 10 log(1/ϵ) rounds. By Lemma 5.5.6,
all but an exp (−∆1/300)-fraction of the nodes in the graph are (αi, ∆i)-regular at
round i with high probability. Hence, by Theorem 5.5.7, in each of these rounds
we match at least a (1/288)-fraction of the nodes. Therefore, after O(log(1/ϵ)),
all but ϵ-fraction of the nodes are matched, as desired.
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Overcoming bipartiteness: Lemma 5.5.6 assumes that the input graph is bipar-
tite. To overcome this, we apply a simple color-coding trick. Before running
Luby’s algorithm, each node picks a uniformly random color independently in
{0, 1}. This naturally defines a bipartite subgraph graph G′ by ignoring all mono-
colored edges. Observe that for a given node u ∈ G, the degree of u in G′ is
∆(1± ∆−0.4) with probability at least 1− exp (−∆0.2/6) by a standard Chernoff-
Hoeffding bound (Theorem 4.3.1). Hence, if ∆ ⩾ log50 n, then all the nodes de-
grees in G′ are ∆(1 ± ∆−0.4) with high probability. Therefore, all the nodes are
also (∆−0.4, ∆)-regular in that case. Otherwise, if ∆ < log50 n, then we can use a
bounded dependence Chernoff-Hoeffding (Theorem 5.3.3) type argument, as fol-
lows. By a union bound, the probability that a node u isn’t (∆−0.4, ∆)-regular
is at most ∆2 · exp (−∆0.2/6) ⩽ exp (−∆0.1). Hence, the expected number of
nodes that aren’t (∆−0.4, ∆)-regular is at most n · exp (−∆0.1). Furthermore, the
event of whether a node is (∆−0.4, ∆)-regular depends only on < ∆10 other nodes.
Hence, by applying Theorem 5.3.3 with λ = n · ∆−0.1, we get that with high
probability, all but n · exp (−∆1/200) nodes are (∆−0.4, ∆)-regular in G′. Hence,
since ∆−0.4 ⩽ ∆−1/600, it suffices to apply Lemma 5.5.6 on G′. This concludes the
proof.

5.6 Local Recursive Regularity

We devote this section to the proof of Theorem 5.5.3 that we restate here for con-
venience.

Lemma 5.6.1 (Local Recursive Regularity Lemma). Let ∆ ⩾ 210 be an integer, and
α ∈ [0, 1/10] be a real number. Let G be a bipartite graph and u be an (α, ∆)-regular
node in it. Let deg′(u) be the number of unmatched neighbors of u after running SeqLuby
(Algorithm 10) on G. With probability at least 1− exp(−∆1/16), it holds that:

∆
2

(
1− (10α + ∆−1/600)

)
⩽ deg′(u) ⩽

∆
2

(
1 + (10α + ∆−1/600)

)
5.6.1 Notation and Preliminaries

For the entirety of this section, let u be some fixed (α, ∆)-regular node in G. Recall
that N(u) is the set of neighbors of u and Nd(u) is the set of nodes at distance
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Figure 5.1: We focus on a node u that has ∆ neighbors. The set of neighbors of u is
denoted by N(u), and the set of nodes at distance 2 from u is denoted by N2(u).
We denote the size of N2(u) by k. The set of edges between N(u) and N2(u) is
denoted by A. Observe that each v ∈ N(u) has exactly ∆− 1 edges incident to it
in Au. However, this is not necessarily the case for the nodes in N2(u), that can
have anywhere between 1 to ∆ incident edges in Au.

exactly d from u. Let k = |N2(u)|. Let Eu denote the set of edges that are at most
3 hops away from u, i.e,

Eu = E ∩
{
({u} × N(u)) ∪ (N(u)× N2(u)) ∪ (N2(u)× N3(u))

}
and let Au = E ∩ {N(u) × N2(u)}. The lemma states that almost exactly ∆/2
edges from Au are matched with high probability.

It is easy to observe that only edges from Eu can affect the insertion of edges
in Au in the matching, and hence in this section, we restrict our attention to only
edges in the set Eu. In other words, instead of SeqLuby (Algorithm 10), it suffices
to show the lemma for Algorithm 11. We formalize this in the following observa-
tion.

Observation 5.6.2. Let D0 and D1 be the distributions over the matching edges
picked from Au = N(u)× N2(u) by Algorithms 10 and 11, respectively. It holds
that for any matchingM⊆ Au:

PM′∼D0 [M
′ =M] = PM′∼D1

[M′ =M]
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Throughout this section, by iteration i we mean the ith iteration of the while
loop in Algorithm 11. We say an edge e ∈ Au survives in iteration i if neither it nor
any of its neighbors have been sampled in the first i − 1 iterations. Intuitively, a
surviving edge that gets sampled gets added to the resulting matching.

Algorithm 11 SeqLubyu - SeqLuby in the neighborhood of u
Input: an unweighted graph G = (V, E) and a node u ∈ V
Output: a matchingMu ⊆ N(u)× N2(u)

98 M′
u ← ∅ Eu ← {(u×N(u))∪ (N(u)×N2(u))∪ (N2(u)×N3(u))} ∩ E U ← Eu

while U ̸= ∅ do
99 e ← uniformly random element of the set U U ← U \ {e} if {e′ | e′ ∩ e ̸=

∅} ⊆ U then
100 M′

u ←M′
u ∪ {e}

101 end
102 end
103 Mu =M′

u ∩ (N(u)× N2(u)) returnMu

Definition 5.6.3 (The set of surviving edges Ei). For i ⩾ 1, we say that an edge
e ∈ Au is still surviving at the beginning of the ith iteration of the while loop in
Algorithm 11, if it holds that

{e} ∪ {e′ | e′ ∩ e ̸= ∅} ⊆ U

where U is the set of edges that haven’t been sampled so far. Let Ei be the set of
surviving edges at the beginning of the ith iteration.

The Stopping Time: Since our proofs involve martingales analysis, one impor-
tant aspect of it is the stopping time t of our martingales. In several applications
of martingale inequalities, we need to stop the martingale earlier than its final
termination point. This concept is standard in martingales analysis, and in most
cases, without stopping the martingale early, one wouldn’t be able to apply the
black-box martingale inequalities conveniently. In our context, t is the number of
iterations of the while loop in Algorithm 11 that we consider for our analysis. We
set t = k log ∆/100 (recall that k = |N2(u)|). For the lower bound on |Mu|, we
show that the size of |Mu| is already large enough after t iterations of the while
loop. For the upper bound, we show that |Mu| doesn’t change substantially after
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the first t iterations (this is formally proven in Lemma 5.6.11), which allows us to
“stop" the analysis after t iterations.

For easy reference, we include a table of notations that we use throughout the
proof in Table 5.1.

Table 5.1: Table of Notations

Notation Meaning
V The set of nodes in the input graph.
E The set of edges in the input graph.
u The fixed node throughout Section 5.6.

N(u) The set of neighbors of u.
Nd(u) The set of nodes at distance d from u.

k The size of N2(u), i.e., k = |N2(u)|.
∆ The degree of the original input regular graph. In the Local Recur-

sive Regularity Lemma, all the nodes in {u} ∪ N(u) ∪ N2(u) have
degree in the range ∆(1± α).

α A parameter in [0, 1/200] used to lower and upper bound the de-
grees of the nodes in {u} ∪ N(u) ∪ N2(u) by ∆(1± α).

Eu The set of edges in (u×N(u))∪ (N(u)×N2(u))∪ (N2(u)×N3(u)).
Au The set of edges in N(u)× N2(u).
Mu The returned set of matching edges in Au, i.e., |Mu| is the number

of matched neighbors of u.
U The set of edges that weren’t sampled so far in Algorithm 11.
Zi A boolean random variable indicating whether we add an edge

from Au to the matching in the ith iteration.
qi The probability that Zi = 1 given Z1, · · · , Zi−1. Since the Zi’s are

boolean, qi = E[Zi | Z1, · · · , Zi−1].
Ei The set of surviving edges in Au at the beginning of the ith iteration.
t The stopping time t = k log ∆/100.

5.6.2 Analyzing Number of Surviving Edges |Ei|
Our first goal is to obtain tight bounds on the number of surviving edges at the
beginning of the ith iteration. Towards this goal, we first bound the total number
of edges adjacent to any node that are sampled by the first t iterations. We setup
some additional notation to facilitate this discussion.
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Definition 5.6.4 (Labeled Edges). We say that an edge e is labeled at iteration
i ∈ [t] if e has been sampled in one of the first i iterations, i.e., if e /∈ U at the end
of ith iteration of the while loop in Algorithm 11. If e is labeled at iteration i then
it also labeled at any iteration j > i.

Claim 5.6.5. With probability at least 1− exp
(
−∆1/11), every node in {u}∪N(u)∪

N2(u) has at most ∆1/9 labeled edges incident to it at any iteration i ∈ [t =

k log ∆/100].

Proof. Fix a node v ∈ {u} ∪ N(u) ∪ N2(u). We would like to prove the claim by
applying Theorem 5.3.11. For this, let Xi ∈ {0, 1} be a random variable indicating
whether we sample an edge incident to v at iteration i, and let pi(v) = E[Xi |
X1, · · · , Xi−1] = P[Xi = 1 | X1, · · · , Xi−1]. Furthermore, let Sj = ∑

j
i=1 Xi be the

number of labeled edges incident to v at iteration j. Since Sj ⩾ Si for any j > i,
it suffices to prove the claim for j = t. Observe that since the degree of any node
in {u} ∪ N(u) ∪ N2(u) is at least (1− α)∆, it holds that |Eu| ⩾ (1− α)∆(k + 1).
Hence, we have that:

pi(v) ⩽
(1 + α)∆

(1− α)∆(k + 1)− (i− 1)

This is because v has at most (1 + α)∆ edges incident to it, and at the i’th iteration
we’re sampling an edge out of |Eu| − (i− 1) ⩾ (1− α)∆(k+ 1)− (i− 1) remaining
edges. Therefore, we have that:

pi(v) ⩽
(1 + α)∆

(1− α)∆(k + 1)− (i− 1)

⩽
(1 + α)∆

(1− α)∆(k + 1)− t + 1

=
(1 + α)∆

(1− α)∆(k + 1)− k log ∆/100 + 1

⩽
8

k + 1

Let Pi = 8/(k + 1), and let P = ∑t
i=1 Pi = 8t/(k + 1) ⩽ log ∆. By plugging these

values into Theorem 5.3.11 with λ = ∆1/9 and M = 1, we get that:
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P[St ⩾ ∆1/9] ⩽ exp

(
− (∆1/9 − log ∆)2

8 log ∆ + 2(∆1/9 − log ∆)/3

)
⩽ exp

(
−∆1/10

)
as desired.

The claim now follows by a union bound over all vertices in {u} ∪ N(u) ∪
N2(u).

We say that node a v is labeled at iteration i if the edge sampled during the ith
iteration is adjacent to v. We now utilize Theorem 5.6.5 to argue that any iteration,
every node v is equally likely to be labeled with probability ≈ 1/k.

Lemma 5.6.6. Let pi(v) be the probability that we label a node v in the ith iteration.
With probability at least 1− exp

(
−∆1/11), for any node v ∈ {u} ∪ N(u) ∪ N2(u) and

for any iteration i ∈ [t = k log ∆/100], it holds that the probability that v is labeled at
iteration i is:

(1− α)

(1 + α) · k · (1− ∆−7/8) ⩽ pi(v) ⩽
(1 + α)

(1− α) · k · (1 +
log ∆
25∆

)

Proof. We start with the upper bound. The probability that we label an edge inci-
dent to v at any iteration i is at most:

pi(v) ⩽
(1 + α)∆

(1− α)∆(k + 1)− (i− 1)
⩽

(1 + α)∆
(1− α)∆(k + 1)− t + 1

⩽
(1 + α)∆

(1− α)∆k− k log ∆/100
=

(1 + α)∆
(1− α)∆k(1− log ∆/(100(1− α)∆))

⩽
(1 + α)

(1− α) · k · (1 +
log ∆
25∆

)

where the last inequality follows since:

1
1− log ∆/(100(1− α)∆)

=
1− log ∆/(100(1− α)∆) + log ∆/(100(1− α)∆)

1− log ∆/(100(1− α)∆)

⩽ 1 +
log ∆/(100(1− α)∆)

1/2
⩽ 1 +

log ∆
25∆
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For the lower bound, we apply Corollary 5.6.5, which says that with probability
at least 1− exp (−∆/11), every node v ∈ {u} ∪ N(u) ∪ N2(u) has at most ∆1/9

labeled edges incident to it at any of the first t iterations. Hence, any node v has
at least (1− α)∆− ∆1/9 unlabeled edges incident to it at any iteration i ∈ [t]. The
probability that we label v at iteration i is exactly the probability that we pick one
of these unlabeled edges out of the |Eu| − (i− 1) remaining edges. Hence:

pi(v) ⩾
(1− α)∆− ∆1/9

|Eu| − (i− 1)
(1)

⩾
(1− α)∆− ∆1/9

(1 + α)∆(k + 1)− (i− 1)
(2)

⩾
(1− α)∆ · (1− 1/((1− α)∆8/9))

(1 + α)∆(k + 1)
(3)

⩾
(1− α)∆ · (1− 2/∆8/9)

(1 + α)∆(k + 1)
(4)

⩾
(1− α)

(1 + α) · k · (1− ∆−7/8) (5)

where (1) holds since the degree of v is at least (1− α)∆ − ∆1/9, (2) holds since
|Eu| ⩽ (1 + α)∆(k + 1), (4) holds since α ⩽ 1/10, which implies that (1− 1/((1−
α)∆8/9)) ⩾ (1− 2∆−8/9), and (5) holds since 1/(k + 1) ⩾ (1/k)(1− 1/k), and
since k ⩾ ∆/7. The latter holds since u has at least (1− α)∆ neighbors, and each
of them has at least (1− α)∆− 1 edges incident to it in |Au|. Hence:

k = |N2(u)| ⩾ |Au|
(1 + α)∆

⩾
(1− α)2∆2 − (1− α)∆

(1 + α)∆
⩾ ∆/7

where the last inequality holds since α ⩽ 1/10.

The above bounds on pi(v) allow us to show that the expected number of
surviving edges drops by a constant factor in each iteration. Recall that an edge
e ∈ Au is said to be surviving at iteration i if neither it or any of its neighbors have
been sampled before that iteration. Informally, we show that E[|Ei| | Ei−1] ≈
(1− 2/k)|Ei−1|.

Lemma 5.6.7. With probability at least 1 − exp
(
−∆1/11), for any 1 < i ⩽ t =

k log ∆/100, it holds that:
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1. E[|Ei| | E1, · · · , Ei−1] ⩾
(

1− 2
k
(1+α)
(1−α)

(
1 + ∆−6/7) ) · |Ei−1|.

2. E[|Ei| | E1, · · · , Ei−1] ⩽
(

1− 2
k
(1−α)
(1+α)

(
1− ∆−6/7) ) · |Ei−1|.

Proof. We say that an edge e′ is killed at the (i − 1)’th iteration if e′ ∈ Ei−1, and
either e′ or a neighboring edge is sampled in the (i− 1)th iteration. That is, i− 1
is the first iteration in which e′ is no longer surviving. We denote the number of
killed edges at the (i− 1)’th iteration by Ki−1. Observe that |Ei| = |Ei−1| − Ki−1.
We analyze E[Ki−1 | Ei−1] to derive E[|Ei| | Ei−1].

Some notation: For an edge e = {v, w}, let pi−1(e) be the probability that e is
sampled at the (i− 1)th iteration. Similarly, for a set of edges S, let pi−1(S) be the
probability that some edge in S is sampled in the (i − 1)th iteration. We slightly
abuse notation and we also denote by pi−1(v) the probability that a node v is
labeled in the (i− 1)th iteration. That is, pi−1(v) is the probability that the sampled
edge in the (i − 1)th iteration is incident to v. Since the graph is bipartite, we
assume without loss of generality that v ∈ L and w ∈ R when we refer to an
edge {v, w}, where L and R are the left and right sides of the graph, respectively.
Furthermore, we assume without loss of generality that N(u) ⊆ L and N2(u) ⊆ R.
Observe that when an edge e is sampled, it kills the set of edges {e′ ∈ Ei−1 |
e ∩ e′ ̸= ∅}. Let Ye ∈ {0, 1} be 1 if and only if e ∈ Ei−1, and let di−1(v) ⊆ Ei−1
be the number of surviving edges incident to a node v at the (i − 1)th iteration.
Observe that:

E[Ki−1 | Ei−1] = ∑
e={v,w}

pi−1(e) · |{e′ ∈ Ei−1 | e ∩ e′ ̸= ∅}| (1)

= ∑
e={v,w}

pi−1(e) ·
(
di−1(v) + di−1(w)−Ye

)
(2)

=

(
∑
v∈L

pi−1(v) · di−1(v)

)
+

(
∑

w∈R
pi−1(w) · di−1(w)

)
− pi−1(Ei−1) (3)

=

 ∑
v∈N(u)

pi−1(v) · di−1(v)

+

 ∑
w∈N2(u)

pi−1(w) · di−1(w)

− pi−1(Ei−1) (4)
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where (2) follows by a simple inclusion/exclusion argument, since the number of
edges that are killed by e = {v, w} is the number of edges killed that are incident
to v, plus the number of edges killed that are incident to w, minus the number of
edges killed that are incident to both (which could only be e itself if happens to
be surviving at the beginning of the (i− 1)th iteration), and (4) follows since the
only nodes in L that are incident to edges in Ei−1 are the nodes in N(u) and the
only nodes in R that are incident to edges in Ei−1 are the nodes in N2(u). Now we
are ready to derive an upper and lower bounds on E[Ki−1 | Ei−1].

Upper Bound on E[Ki−1 | Ei−1]: By plugging the upper bound on pi−1(v) and
pi−1(w) from Lemma 5.6.6 into equation (4) above, we get that:

E[Ki−1 | Ei−1] ⩽
2(1 + α)

(1− α) · k · |Ei−1| · (1 +
log ∆
25∆

) ⩽
2(1 + α)

(1− α) · k · |Ei−1| · (1 + ∆−6/7)

Lower Bound on E[Ki−1 | Ei−1]: First, observe that since i ⩽ t = k log ∆/100,
we have that:

pi−1(Ei−1) ⩽
|Ei−1|

(1− α)∆(k + 1)− (i− 2)

⩽
|Ei−1|

(1− α)(∆k)− t

⩽
|Ei−1|

(1− α)(∆k)/2

⩽
4|Ei−1|

∆k

where the last inequality holds since α ⩾ 1/2. Hence, by plugging the lower
bound on pi−1(v) and pi−1(w) from Lemma 5.6.6 into equation (4) above, we get
that:

E[Ki−1 | Ei−1] ⩾
2(1− α)

(1 + α) · k · |Ei−1| · (1− ∆−7/8)− 4|Ei−1|
∆k

⩾
2(1− α)

(1 + α) · k · |Ei−1| · (1− ∆−6/7)
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Deriving Upper and Lower Bounds on E[|Ei| | Ei−1]: Since |Ei| = Ei−1 − Ki−1,
we get that:

E[|Ei| | Ei−1] ⩾
(

1− 2(1 + α)

(1− α) · k

(
1 + ∆−6/7

))
· |Ei−1|

and that:

E[|Ei| | Ei−1] ⩽
(

1− 2(1− α)

(1 + α) · k

(
1− ∆−6/7

))
· |Ei−1|

as desired. Finally, the lemma follows since E[|Ei| | E1, · · · , Ei−1] = E[|Ei| |
Ei−1].

Now we are ready to give concentration results for |Ei| for any i ∈ [t =

k log ∆/100]. We start with showing a lower for |Ei| in Lemma 5.6.8 and then
we show an upper bound on |Ei| in Lemma 5.6.9.

Lemma 5.6.8. Let γℓ =
(

1 − 2
k
(1+α)
(1−α)

(
1 + ∆−6/7) ). With probability at least 1 −

exp (−∆1/13), it holds that for every i ∈ [t = k log ∆/100].

|Ei| ⩾ γi−1
ℓ · ((1− α)∆)2 · (1− ∆−1/5)

Proof. The idea of the proof is to use the scaled martingale trick that was briefly
discussed in Section 5.2.2. LetB be the event in which the upper and lower bounds
on E[|Ei| | Ei−1] from Lemma 5.6.7 hold. By Lemma 5.6.7, the event B happens
with probability at least 1 − exp (−∆1/11). Our analysis next is conditioned on
the event B happening. For i ⩾ 1, we define the following random variable Fi as
follows.

Fi =
|Ei|
γi−1
ℓ

Observe that Fi is a supermartingale (see also Definition 5.3.6) with a starting point
F1 = |E1| = |Au| (recall that Au = (N(u)× N2(u))∩ E is the set of edges between
u’s neighbors and their neighbors). This is because:
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E[Fi | F1, · · · , Fi−1] =
1

γi−1
ℓ

E[|Ei| | E1, · · · , Ei−1] ⩾
|Ei−1|
γi−2
ℓ

= Fi−1

where the first equality follows from Observation 5.3.4, and the inequality follows
from Theorem 5.6.7. Hence, to get a lower bound on |Ei|, we would like to apply
the supermartingale inequality from Theorem 5.3.9. For this, we analyze Var[Fi |
Fi−1] and E[Fi | Fi−1]− Fi for i ⩾ 2. First, observe that for any i ∈ [t], we have that:

γi
ℓ ⩾ γt

ℓ =
(

1− 2
k
(1 + α)

(1− α)

(
1 + ∆−6/7

) )t
⩾
(

1− 8
k

)k log ∆/100
⩾ ∆−1/10

where the second to last inequality follows from the fact that 1− x ⩾ e−2x for any
0 ⩽ x ⩽ 1/2. Next, for i ⩾ 2, we analyze Var[Fi | Fi−1] and then E[Fi | Fi−1]− Fi.
Observe that:

Var[Fi | Fi−1] = Var
[

Fi− Fi−1

γℓ
| Fi−1

]
(1)

= Var

[
|Ei|
γi−1
ℓ

− |Ei−1|
γi−1
ℓ

| Ei−1

]
(2)

⩽
1

γi−1
ℓ

E
[
(|Ei| − |Ei−1|)2 | Ei−1

]
(3)

⩽
2∆

γi−1
ℓ

E
[∣∣|Ei| − |Ei−1|

∣∣ | Ei−1
]

(4)

=
2∆

γi−1
ℓ

(
E[|Ei−1| | Ei−1]−E[|Ei| | Ei−1]

)
(5)

⩽
2∆

γi−1
ℓ

(
|Ei−1| − |Ei−1|+ 12|Ei−1|/k

)
(6)

⩽
2∆

γi−1
ℓ

· 12|Ei−1|
k

(7)

⩽
96∆3.1

k
(8)

where (1) follows from Observation 5.3.5, (3) follows by the definition of vari-
ance, (4) follows since the maximum value of |Ei − Ei−1| is (1 + α)∆ ⩽ 2∆, (5)
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follows since |Ei−1| ⩾ |Ei|, (6) follows since E[|Ei| | Ei−1] ⩾ (1 − 12/k)|Ei−1|
by Lemma 5.6.7, and (8) follows since γi−1

ℓ ⩾ ∆−1/10 and |Ei−1| ⩽ |E1| ⩽ (1 +

α)2∆2 ⩽ 4∆2.
Next, we analyze E[Fi | Fi−1]− Fi for any i ⩾ 2. Observe that:

E[Fi | Fi−1]− Fi =
1

γi−1
ℓ

(E[|Ei| | Ei−1]− |Ei|) (1)

⩽
1

γi−1
ℓ

(|Ei−1| − |Ei|) (2)

⩽ 4∆1.1 (3)

where (2) holds since |Ei| ⩽ |Ei−1| (as there are more surviving edges at iteration
i− 1 compared to iteration i), and (3) holds since |Ei−1| − |Ei| ⩽ 2(1 + α)∆ ⩽ 4∆
(as we kill at most 2(1 + α)∆ − 1 edges in each iteration), and γi−1

ℓ ⩾ ∆−1/10.
Furthermore, observe that F1 = |E1| = |Au| ⩾ ((1− α)∆)2 − (1− α)∆, as u has at
least (1− α)∆ neighbors, and each of them has at least (1− α)∆− 1 edges incident
to it in Au. Hence, we can plug our bounds on Var[Fi | Fi−1] and E[Fi | Fi−1]− Fi
into Theorem 5.3.9 to get that for a given i ∈ [t], conditioned on the event B
happening, we have that:

P[Fi ⩽ ((1− α)∆)2 − (1− α)∆− ∆7/4 | B] ⩽ P[Fi ⩽ F1 − ∆7/4 | B) (1)

⩽ exp
(
− ∆3.5

2∆3.1 log ∆ + 8∆2.85

)
(2)

⩽ exp
(
−∆3/10

)
(3)

where (2) follows since i ⩽ t = k log ∆/100, and therefore ∑i
j=1 96∆3.1/k ⩽ t ·

96∆3.1/k ⩽ ∆3.1 log ∆. Furthermore, observe that P[Fi ⩽ ((1− α)∆)2(1−∆−1/5)] ⩽
P[Fi ⩽ ((1− α)∆)2 − (1− α)∆− ∆7/4]. This is because ((1− α)∆)2(1− ∆−1/5) ⩽
((1− α)∆)2 − (1− α)∆− ∆7/4. Hence, to get rid of the conditioning on the event
B happening, we just use a union bound argument to get that for a given i ∈ [t]:

P[Fi ⩽ ((1− α)∆)2 · (1− ∆−1/5)] ⩽ P[Fi ⩽ ((1− α)∆)2 − (1− α)∆− ∆7/4 | B]

⩽ exp
(
−∆3/10

)
+ exp

(
−∆1/11

)
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⩽ exp
(
−∆1/12

)
By another simple union bound argument, we get that with probability at least
1 − exp (−∆1/13), for every i ∈ [t], Fi ⩾ ((1 − α)∆)2 · (1 − ∆−1/5). Hence, the
lemma follows since Fi = |Ei|/γi−1

ℓ

Lemma 5.6.9. Let γh =
(

1 − 2
k
(1−α)
(1+α)

(
1− ∆−6/7) ). With probability at least 1 −

exp (−∆1/13), it holds that for every i ∈ [t = k log ∆/100].

|Ei| ⩽ γi−1
h · ((1 + α)∆)2(1 + ∆−1/5)

Proof. The proof is very similar to the proof of Lemma 5.6.8. As in the proof on
Lemma 5.6.8, we define the random variable:

Fi =
|Ei|
γi−1

h

Observe that Fi is a submartingale (see also Definition 5.3.6) with starting point
F1 = |E1| = |Au|. This is because for any i ⩾ 2, we have that:

E[Fi | F1, · · · , Fi−1] =
1

γi−1
h

E[|Ei| | E1, · · · , Ei−1] ⩽
|Ei−1|
γi−2

h

= Fi−1

Hence, we would like to use Theorem 5.3.10 to get a concentration result for Fi.
For this, we need to analyze Var[Fi | Fi−1] and Fi −E[Fi | Fi−1]. Observe that by a
similar calculation to the one that we provided for γi

ℓ in the proof of Lemma 5.6.8,
it holds that γi

h ⩾ ∆−1/10, for any i ∈ [t]. Hence, by the exact same calculation of
Var[Fi | Fi−1] in the proof of Lemma 5.6.8, it holds that Var[Fi | Fi−1] ⩽ 96∆3.1/k.
It remains to analyze Fi −E[Fi | Fi−1]. Observe that:

Fi −E[Fi | Fi−1] =
1

γi−1
h

(|Ei| −E[|Ei| | Ei−1]) (1)

⩽
1

γi−1
h

(|Ei−1| − |Ei−1|+ 12|Ei−1|/k) (2)

⩽
48∆2

kγi−1
h

(3)

⩽ 336∆1.1 (4)
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where (2) follows since |Ei| ⩽ |Ei−1| and E[|Ei| | Ei−1] ⩾ 1− 12|Ei−1|/k, where the
latter follows from Lemma 5.6.7, (3) follows since |Ei−1| ⩽ |E1| ⩽ ((1 + α)∆)2 ⩽
4∆2, and (4) follows since k ⩾ ∆/7 and γi−1

h ⩾ ∆−0.1.
The rest of the proof is exactly as the proof of Lemma 5.6.8, where instead of using
Theorem 5.3.9, we use Theorem 5.3.10 to get concentration for Fi, and then deduce
the desired bound for |Ei|. Observe that our analysis above is conditioned on the
event B happening, where B is the event in which the bounds on E[|Ei| | Ei−1]

hold. By Theorem 5.3.10, we have that:

P[Fi ⩾ ((1 + α)∆)2 + ∆7/4 | B] ⩽ P[Fi ⩾ F1 + ∆7/4 | B]

⩽ exp
(
−∆3/10

)
Finally, by two simple applications of a union bound argument, the probabil-
ity that there exists an i ∈ [t] for which Fi ⩾ ((1 + α)∆)2 + ∆7/4 is at most
exp (−∆1/13).
Hence, with probability at least 1 − exp (−∆−1/3) for every i ∈ [t], Fi ⩽ ((1 +

α)∆)2 + ∆7/4 ⩽ ((1 + α)∆)2(1 + ∆−1/5). The proof of the lemma follows since
Fi = |Ei|/γi−1

h

5.6.3 A Lower Bound on |Mu|
Recall that by definition, whenever a surviving edge gets sampled at some itera-
tion i, it gets added to the matchingMu. We can now utilize the sharp concentra-
tion bounds on the number of surviving edges to obtain concentration bounds on
the size of the matchingMu. We first give a lower bound on |Mu| in this section
and give an upper bound in the next.

Lemma 5.6.10. With probability at least 1− exp (−∆−1/15) it holds that:

|Mu| ⩾
∆
2
· (1− α)3

(1 + α)2 · (1− ∆−1/300)

Proof. It suffices to show that the size ofMu is large enough after t = k log ∆/100
iterations of the while loop in Algorithm 11, as the size ofMu can only increase
after the tth iteration. Let B be the event in which the upper and lower bounds
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on |E1|, · · · , |Et| from Lemma 5.6.8 and Lemma 5.6.9 hold. Observe that the event
B happens with probability at least 1− exp (−∆1/14). We prove the lemma con-
ditioned on the event B happening and then get rid of this condition by a sim-
ple union bound argument. To prove the lemma in the case where the event B
happens we apply Theorem 5.3.12, as follows. Recall that Zi is an indicator ran-
dom variable indicating whether we add an edge toMu in the ith iteration of the
while loop in Algorithm 11, and recall that qi is a random variable representing
the probability that we add an edge in the ith iteration given the randomness so
far. In other words: qi = P[Zi = 1 | Z1, · · · , Zi−1] = E[Zi | Z1, · · · , Zi−1]. As
discussed in Section 5.2.2, we have that:

qi =
|Ei|

|Eu| − (i− 1)

This is because the probability that we add an edge to the matching in the ith
iteration is the probability that we pick a surviving edge among the remaining
|Eu| − (i − 1) edges. Next, we show an upper and a lower bound on ∑t

i=1 qi,
conditioned on the event B happening. Observe that |Eu| ⩽ ((1 + α)∆)(k + 1),
as the number of edges in Eu is exactly the number of edges touching the nodes
in N2(u) plus the number of edges touching u itself. Since each node has degree
at most (1 + α)∆, we get at most (1 + α)∆(k + 1) edges in total in Eu (recall that
|N2(u)| = k).

A lower bound on ∑t
i=1 qi. Let γℓ =

(
1− 2

k
(1+α)
(1−α)

(
1 + ∆−6/7) ). Observe that:

t

∑
i=1

qi ⩾
t

∑
i=1

|Ei|
(1 + α)∆(k + 1)− (i− 1)

(1)

⩾
t

∑
i=1

γi−1
ℓ · ((1− α)∆)2 · (1− ∆−1/5)

(1 + α)∆(k + 1)
(2)

=
((1− α)∆)2 · (1− ∆−1/5)

(1 + α)∆(k + 1)

t

∑
i=1

γi−1
ℓ (3)

=
(1− α)2∆ · (1− ∆−1/5)

(1 + α)(k + 1)
·

1− γt
ℓ

1− γℓ
(4)
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=
(1− α)2∆ · (1− ∆−1/5)

(1 + α)(k + 1)
·

1−
(

1− 2
k
(1+α)
(1−α)

(
1 + ∆−6/7) )t

1−
(

1− 2
k
(1+α)
(1−α)

(
1 + ∆−6/7

) ) (5)

⩾
(1− α)2∆ · (1− ∆−1/5)

(1 + α)(k + 1)
· 1− ∆−1/100

2
k
(1+α)
(1−α)

(
1 + ∆−6/7

) (6)

⩾
(1− α)3∆ · k

2(1 + α)2(k + 1)
· (1− ∆−1/5)(1− ∆−1/100)

(1 + ∆−6/7)
(7)

⩾
∆
2
· (1− α)3

(1 + α)2 · (1− ∆−1/200) (8)

where (2) follows from Lemma 5.6.8, (4) follows from the geometric series for-
mula, (6) follows since γt

ℓ ⩽ ∆−1/100, and (8) follows since k ⩾ ∆/7 and from a
simple arithmetic. Now we show an upper bound on ∑t

i=1 qi.

An upper bound on ∑t
i=1 qi. Let γh =

(
1− 2

k
(1−α)
(1+α)

(
1− ∆−6/7) ). Observe that

|Eu| ⩾ ((1− α)∆)k, by just counting the degrees of the nodes in N2(u). Hence, we
have that:

t

∑
i=1

qi =
t

∑
i=1

|Ei|
|Eu| − (i− 1)

(1)

⩽
t

∑
i=1

γi−1
h · ((1 + α)∆)2(1 + ∆−1/5)

(1− α)∆k− t
(2)

=
((1 + α)∆)2(1 + ∆−1/5)

(1− α)∆k− k log ∆/100

t

∑
i=1

γi−1
h (3)

⩽
((1 + α)∆)2(1 + ∆−1/5)(1 + ∆−8/10)

(1− α)∆k

t

∑
i=1

γi−1
h (4)

=
(1 + α)2∆(1 + ∆−1/5)(1 + ∆−8/10)

(1− α)k
1− γt

h
1− γh

(5)

⩽
(1 + α)2∆(1 + ∆−1/5)(1 + ∆−8/10)

(1− α)k
· 1

1−
(

1− 2
k
(1−α)
(1+α)

(
1− ∆−6/7

) ) (6)
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⩽
(1 + α)2∆(1 + ∆−1/5)(1 + ∆−8/10)

(1− α)k
· 1

2
k
(1−α)
(1+α)

(
1− ∆−6/7

) (7)

⩽
∆
2
· (1 + α)3

(1− α)2 ·
(1 + ∆−1/3)(1 + ∆−8/10)

(1− ∆−6/7)
(8)

⩽
∆
2
· (1 + α)3

(1− α)2 · (1 + ∆−1/100) (9)

where (2) follows from Lemma 5.6.9 and the rest follows from simple arithmetic.
Having proved the upper and lower bounds on ∑t

i=1 qi, we apply Theorem 5.3.12

with Xi = Zi, St = ∑t
i=1 Zi ⩽ |Mu|, pi = qi, Pℓ = ∆

2 ·
(1−α)3

(1+α)2 · (1 − ∆−1/200),

Ph = ∆
2 ·

(1+α)3

(1−α)2 · (1 + ∆−1/100), M = 1, and λ = Pℓ − ∆0.6 to get that:

P(|Mu| ⩽ λ | B) ⩽ exp
(
− ∆1.2

100∆

)
⩽ exp (−∆1/10)

Finally, since the event B happens with probability at least 1− exp−∆1/14, by a

simple union bound, we get that |Mu| ⩾ Pℓ − ∆0.6 ⩾ ∆
2 ·

(1−α)3

(1+α)2 · (1− ∆−1/300)

with probability at least 1− exp (−∆1/15), as desired.

5.6.4 An Upper Bound on |Mu|
Observe that all our analysis takes into consideration only the first t = k log ∆/100
iterations of the while loop in Algorithm 11. To show an upper bound on |Mu|, it
doesn’t suffice to consider only the first t iterations as we also need to make sure
that not too many edges are added to |Mu| after the tth iteration. Our proof for the
upper bound on |Mu| is split into two parts. First, in Lemma 5.6.11, we show that
Algorithm 11 doesn’t add too many more edges to |Mu| after the tth iteration.
Then, in Lemma 5.6.12, we show an upper bound on the number of edges that
are added to |Mu| up to the tth iteration, and deduce the upper bound on |Mu|.
Recall that we say that a node is labeled at iteration i if one of its incident edges
was sampled in one of the first i iterations. Observe that a labeled node at iteration
i can’t be matched at iteration j > i, as all of its incident edges are non-surviving
at iteration j (see also Definition 5.6.3). In the following lemma, we show that the
number of unlabeled neighbors of u after the t’s iteration is small.
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Lemma 5.6.11. With probability at least 1 − exp (−∆1/12), the number of unlabeled
nodes in N(u) after the tth iteration is processed is at most ∆0.9975.

Proof. We use the scaled martingale. Let B be the event in which the upper and
lower bounds on the probability that a node is labeled from Lemma 5.6.6 hold.
We first provide an analysis conditioned on the event B happening, and then we
remove this assumption by a simple union bound argument. By Lemma 5.6.6, the
event B happens with probability at least 1− exp (−∆1/11). Let Wi be the number
of unlabeled nodes in N(u) after the ith iteration is processed. Observe that by
Lemma 5.6.6, we have that:

E[Wi |Wi−1] ⩽
(

1− 1− α

(1 + α)k
· (1− ∆−7/8)

)
Wi−1

This is because by Lemma 5.6.6, each node v is labeled with probability at least
1−α

(1+α)k · (1− ∆−7/8) at any iteration. Therefore, the total probability mass that the

unlabeled nodes have at the beginning of the ith iteration is Wi−1 · 1−α
(1+α)k · (1−

∆−7/8)..
Next, let γ =

(
1− 1−α

(1+α)k · (1− ∆−7/8)
)

, we define the following random vari-
able:

Fi =
Wi

γi−1

Observe that Fi is a submartingale with a starting point F1 = W1 = |N(u)|. This is
because for any i ⩾ 2:

E[Fi | Fi−1] =
1

γi−1 E[Wi |Wi−1] ⩽
Wi−1

γi−2 = Fi−1

Hence, we would like to use Theorem 5.3.10 to get a concentration result for Fi
and then deduce a concentration result for Wi. For this, we analyze Var[Fi | Fi−1]

and then Fi −E[Fi | Fi−1]. Observe that:

Var[Fi | Fi−1 | Fi−1] = Var[Fi − Fi−1/γ | Fi−1] (1)

=
1

γi−1 Var[Wi −Wi−1 |Wi−1] (2)
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=
1

γi−1 E[(Wi −Wi−1)
2 |Wi−1] (3)

⩽
1

γi−1 E[|Wi −Wi−1| |Wi−1] (4)

⩽
1

γi−1

(
E[Wi−1 |Wi−1]−E[Wi |Wi−1]

)
(5)

⩽
1

γi−1

(
Wi−1 − (1− 8/k)Wi−1

)
(6)

⩽
8Wi−1

kγi−1 (7)

⩽
16∆1.1

k
(8)

where (1) follows from Observation 5.3.5, (3) follows from the definition of Vari-
ance, (4) follows since the maximum value of |Wi −Wi−1| is 1, (5) follows since
Wi−1 ⩾ Wi, (6) follows from Lemma 5.6.6 which implies that E[Wi | Wi−1] ⩾
(1− 8/k)Wi−1, and (8) follows since Wi ⩽ W1 ⩽ (1 + α)∆ ⩽ 2∆ and γi−1 ⩾ ∆−0.1.
Next, we analyze Fi −E[Fi | Fi−1].

Fi −E[Fi | Fi−1] =
1

γi−1

(
Wi −E[Wi |Wi−1]

)
(1)

⩽
1

γi−1

(
Wi−1 − (1− 8/k)Wi−1

)
(2)

=
8Wi−1

kγi−1 (3)

⩽ 112∆0.1 (4)

where (2) follows since by Lemma 5.6.6, E[Wi | Wi−1] ⩾ (1− 8/k)Wi−1, and (4)
follows since Wi−1 ⩽ 2∆, k ⩾ ∆/7, and γi−1 ⩾ ∆0.1. Therefore, by plugging the
bounds on Var[Fi | Fi−1] and Fi −E[Fi | Fi−1] into Theorem 5.3.10 for λ = ∆, we
get that:

P[Ft ⩾ (1 + α)∆ + λ] ⩽ P[Ft ⩾ F1 + λ | B]

⩽ exp

(
− λ2

2
(
(∑t

i=1 16∆1.1/k) + 112∆0.1λ
))
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= exp

(
− ∆2

2
(
16∆1.1 log ∆/100 + 224∆1.1)

)
= exp−(∆0.8)

where the first inequality holds since F1 ⩽ (1 + α)∆. By a union bound over the
event in which the event B doesn’t happen we get that:

P[Ft ⩾ 3∆] ⩽ exp−(∆1/12)

Finally, since

Wt = Ft · γt−1 ⩽ 3∆ ·
(

1− 1− α

(1 + α)k
· (1− ∆−7/8)

)t−1

⩽ 3∆ · exp

(
− (k log ∆/100)(1− ∆−7/8)

3k

)
⩽ ∆1−1/400

the claim follows.

Now we are ready to give an upper bound on |Mu|.

Lemma 5.6.12. With probability at least 1− exp (−∆−1/15) it holds that:

|Mu| ⩽
∆
2
· (1 + α)3

(1− α)2 · (1 + ∆−1/500)

Proof. Let B be the event in which the statement from Lemma 5.6.9 holds. That is,
in the event B we have upper bounds on |E1|, · · · , |Et|. As usual, we first prove
the lemma conditioned on the event B happening. The proof is similar to the
proof of Lemma 5.6.10 where we showed a lower bound on |Mu|. Recall that Zi
is an indicator random variable indicating whether we add an edge toMu in the
ith iteration of the while loop in Algorithm 11, and qi = E[Zi | Z1, · · · , Zi−1]. In

the proof of Lemma 5.6.10 we showed that ∑t
i=1 qi ⩽ ∆

2 ·
(1+α)3

(1−α)2 · (1 + ∆−1/100).

Let |Mt
u| be the size of Mu after the first t iterations were processed. We apply

Theorem 5.3.11 with Xi = Zi, St = |Mt
u|, pi = qi, M = 1, P = ∆

2 ·
(1+α)3

(1−α)2 · (1 +

∆−1/100), and λ = P + ∆0.6 to get that:
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P[|Mt
u| ⩾ λ | B] ⩽ exp

(
−∆1.2

8∆

)
⩽ exp (−∆0.1)

By a simple union bound argument (to get rid of the conditioning on B), we get

that |Mt
u| ⩽ P + ∆0.6 ⩽ ∆

2 ·
(1+α)3

(1−α)2 · (1 + ∆−1/200) with probability at least 1 −
exp (−∆1/14). Finally, by Lemma 5.6.11, with probability at least 1− exp (−∆1/12),
we can’t add more than ∆0.9975 edges to Mu after the tth iteration. Hence, with

probability at least 1− exp (−∆1/15), it holds that |Mu| ⩽ ∆
2 ·

(1+α)3

(1−α)2 · (1+∆−1/500),
as desired.

5.6.5 Finishing the Proof

SinceMu is exactly the matching adjacent to nodes in N(u), the bounds on |Mu|
suffice to prove Theorem 5.5.3.

Proof of Lemma 5.5.3. First, by Observation 5.6.2, Algorithm 10 and Algorithm 11
produce the same distributions over matchings in (N(u)× N2(u)) ∩ E. Further-
more, by Lemma 5.6.12, with probability at least 1− exp (−∆1/15), it holds that

|Mu| ⩽ ∆
2 ·

(1+α)3

(1−α)2 · (1 + ∆−1/500). Hence, the number of unmatched neighbors of
u is at least:

deg′(u) ⩾ (1− α)∆− |Mu| (1)

⩾ (1− α)∆− ∆
2
· (1 + α)3

(1− α)2 · (1 + ∆−1/500) (2)

=
∆
2

(
2− 2α− (1 + α)3

(1− α)2 · (1 + ∆−1/500)

)
(3)

⩾
∆
2

(
2− 2α− (1 + 8α) · (1 + ∆−1/500)

)
(4)

⩾
∆
2

(
2− 2α− (1 + 8α + ∆−1/600)

)
(5)

=
∆
2

(
1− (10α + ∆−1/600)

)
(6)

where (4) follows since (1+α)3

(1−α)2 ⩽ (1 + 8α) for α ⩽ 1/10, and rest follows from sim-
ple arithmetic. For the upper bound on deg′(u), we use Lemma 5.6.10, which says
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that with probability at least 1− exp (−∆1/15), it holds that |Mu| ⩾ ∆
2 ·

(1−α)3

(1+α)2 ·
(1− ∆−1/300). Hence, we have that:

deg′(u) ⩽ (1 + α)∆− |Mu| (1)

⩽ (1 + α)∆− ∆
2
· (1− α)3

(1 + α)2 · (1− ∆−1/300) (2)

=
∆
2

(
2 + 2α− (1− α)3

(1 + α)2 · (1− ∆−1/300)

)
(3)

⩽
∆
2

(
2 + 2α− (1− 8α) · (1− ∆−1/300)

)
(4)

⩽
∆
2

(
2 + 2α− (1− 8α− ∆−1/600)

)
(5)

⩽
∆
2

(
1 + (10α + ∆−1/600)

)
(6)

where (4) follows since (1−α)3

(1+α)2 ⩾ 1− 8α, for α ⩽ 1/10. Hence, by a simple union
bound argument, we get the desired bounds on deg′(u) with probability at least
1− exp (−∆1/16).

5.7 Lower Bounds

In this section, we complement our algorithms by giving lower bounds for bi-
partite regular graphs of low degree. Our bounds are based on a lower bound
construction of Ben-Basat, Kawarabayashi, and Schwartzman (BKS), who proved
Ω(1/ϵ) lower bounds for a variety of problems in the LOCAL model, including
maximum matching [71]. The high-level idea from that construction is as follows.
First, design a symmetric subgraph gadget (for them, a path sufficed) with ra-
dius roughly equal to the number of rounds so that no matter how the gadget’s
boundary nodes are hooked up to the surrounding graph, the innermost node(s)
can never hope to learn about anything outside of the gadget. Next, due to the
symmetrical design of the gadget, we can choose to randomly insert it either for-
wards or backwards. No matter how an algorithm (even randomized) originally
chooses to match that innermost gadget node(s), this equalizes the probability of
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matching it with its forward neighbor and backwards neighbor. Finally, there is
now a constant probability that a constant number of these innermost matching
edges are now locked in a way that induces a single error, meaning we expect
there to be roughly one error per (gadget size) number of nodes. Against Monte
Carlo algorithms, there is an additional step where the independence of our for-
wards/backwards insertion decisions can be used to execute a Chernoff bound
that makes it exponentially unlikely that the number of mistakes can be signifi-
cantly lower than expected.

The efficiency of this argument hinges on the number of nodes in the gadget.
Let r be the number of rounds available to the algorithm. In the original con-
struction [71], the path gadgets had O(r) nodes, so roughly ϵ−1 rounds winds up
translating into a (1 + ϵ) multiplicative error. Our main technical contribution
is showing that we can match this efficiency when constructing a cycle (a bipar-
tite regular graph of degree two) and that as the degree ∆ scales up, we can de-
sign gadgets with only O(∆r) nodes. We make the following observations about
this dependence on ∆: (i) any lower bound, whether it uses this particular gad-
get framework or not, must eventually worsen as ∆ increases because our upper
bounds establish that higher degree regular graphs are easy and (ii) for this par-
ticular gadget framework, Θ(∆r) is asymptotically the best possible gadget size
dependence on ∆ and r. The latter can be observed by considering a breadth-first
search (BFS) tree rooted at one of the innermost nodes; this tree must have r levels
before we ever reach any node outside the gadget. There must be a path from the
root to a node at level r, otherwise the root will not be connected to the outside
graph; this path is a witness to the fact that there is at least one node at every
level. Next, observe that the node at level i ∈ [1, r] must have ∆ unique neighbors,
which must be either in levels i− 1, i, or i + 1 (otherwise the BFS tree is incorrect);
this holds even for non-bipartite graphs and for bipartite graphs they can only be
in levels i − 1 or i + 1. In any case, this means we can partition the r levels into
groups of three (if non-bipartite) or two (if bipartite) such that each group must
have at least ∆ nodes. Hence there are Ω(∆r) nodes in such a gadget.

Our gadgets formally yield the following lower bounds against deterministic
and Monte Carlo algorithms.

Theorem 5.7.1. For any degree ∆ ⩾ 2 and error ϵ ∈ (0, 1
160∆+32), any deterministic

LOCAL algorithm that computes a (1+ ϵ)-multiplicative approximation for MAXIMUM-
MATCHING on bipartite ∆-regular graphs with at least n ⩾ Ω(∆−1ϵ−1) nodes requires
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Ω(∆−1ϵ−1) rounds.
For any degree ∆ ⩾ 2, error ϵ ∈ (0, 1

320∆+64), and failure probability δ ∈ (0, 1), any
Monte Carlo LOCAL algorithm that computes a (1 + ϵ)-multiplicative approximation
with probability at least 1− δ for MAXIMUMMATCHING on bipartite ∆-regular graphs
with at least n ⩾ Ω(∆−1ϵ−1 ln(1− δ)−1) nodes requires Ω(∆−1ϵ−1) rounds.

The complexity of our proof and the resulting constant factors heavily depend
on the degree, so we will split our analysis and gadget design into the follow-
ing cases, from easiest to hardest: degree two (Section 5.7.1), even degree (Sec-
tion 5.7.2), and finally general degree (Section 5.7.3). The first two subsections
prove specializations of Theorem 5.7.1 with better bounds.

5.7.1 Bipartite Regular Graphs of Degree Two (Cycles)

As a warm-up, we consider the (easy difficulty) degree two case. This case is
also covered by Section 5.7.2, which handles even degree, but the construction
here will be simpler, be useful for building intuition (especially for readers less
familiar with the original BKS construction), and yield a better constant factors.
We will prove the following subresult in this subsection.

Theorem 5.7.2. For any error ϵ ∈ (0, 1
16), any deterministic LOCAL algorithm that

computes a (1 + ϵ)-multiplicative approximation for MAXIMUMMATCHING on bipar-
tite 2-regular graphs with at least n ⩾ Ω(ϵ−1) nodes requires Ω(ϵ−1) rounds.

For any error ϵ ∈ (0, 1
32), and failure probability δ ∈ (0, 1), any Monte Carlo LO-

CAL algorithm that computes a (1 + ϵ)-multiplicative approximation with probability
at least 1 − δ for MAXIMUMMATCHING on bipartite 2-regular graphs with at least
n ⩾ Ω(ϵ−1 ln(1− δ)−1) nodes requires Ω(ϵ−1) rounds.

Proof. The overall proof plan is to use the BKS path gadget (with slightly different
notation), but embed it a little differently to get an even-length cycle. We give all
the proof details here so it is not necessary for a reader to be familiar with the BKS
proof.

We want our gadget to help guard against LOCAL algorithms which run for
some r rounds (which will be one round fewer than the Ω(ϵ−1) rounds we require
in the theorem statement). Figure 5.2 depicts the gadget design, which we now
formally describe. For the ith copy of our (path) gadget, let us label the nodes
vi

0, vi
1, ..., vi

2r and connect vi
j with vi

j+1 for j ∈ {0, 1, ..., 2r − 1}. Our gadget will
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u vi
0 vi

1 · · · vi
r−1 vi

r vi
r+1 · · · vi

2r−1 vi
2r u′

Innermost Node and NeighborsGadget gi, Forwards

u vi
2r vi

2r−1 · · · vi
r+1 vi

r vi
r−1 · · · vi

1 vi
0 u′

Innermost Node and NeighborsGadget gi, Backwards

Figure 5.2: (Degree Two Case) These are the two ways to our (path) gadget may
be inserted between u and u′. In r rounds, the shaded innermost node vi

r can only
learn about the internal contents of the gadget and nothing else in the surrounding
graph, no matter whether the gadget was inserted forwards or backwards. The
gadget is connected to two anchor nodes via the blue curved edges.

uk,1 g1 u1,2 g2 u2,3 · · · gk

Gadget Pair

Figure 5.3: (Degree Two Case) For even k, we generate a distribution of counterex-
amples by inserting k gadgets between k anchor nodes u1,2, u2,3, · · · , uk−1,k, uk,1.
Each gadget is independently and uniformly at random chosen to be inserted for-
wards or backwards. We then pair up gadgets, starting with {g1, g2}.

also have two external edges coming out of the path endpoints vi
0 and vi

2r. These
will connect to some external nodes u, u′. Let’s say that the gadget is inserted
forwards if vi

0 is connected to u and vi
2r is connected to v and the gadget is inserted

backwards if vi
2r is connected to u and vi

0 is connected to v. Importantly, for the
innermost node vi

r, it is impossible to tell whether the gadget is inserted forwards
or backwards within r rounds.

Now that we have described our gadget, we are ready to discuss how to use it.
Let k be the number of gadgets that we use; since we will pair them up later, we
know that k is even. A constant number of gadgets will suffice against determin-
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istic LOCAL algorithms, but we will require on the order of ln(1− δ)−1 gadgets
against Monte Carlo LOCAL algorithms to establish an failure probability of δ.
We introduce k additional anchor nodes, outside of any gadget, and label them
u1,2, u2,3, . . . , uk−1,k, uk,1, with the intention that anchor node ui,j is connected to
gadgets gi and gj. We then insert each gadget independently and uniformly at
random either forwards or backwards between its two anchor nodes. The final re-
sult is a distribution over (counterexample) graphs; see Figure 5.3 for a depiction.

As a preliminary observation, each graph in the support of distribution is a
cycle on k(2r + 2) nodes. Since this is an even number of nodes, the graphs in our
distribution are indeed bipartite.

We are now ready to begin reasoning about the algorithm’s performance on
this distribution. Let us focus our attention on some innermost gadget node vi

r
(note that each gadget pair has two of these). The algorithm may do one of the
following to this gadget node (a deterministic LOCAL algorithm does one of them
deterministically, and a Monte Carlo LOCAL algorithm will produce some distri-
bution over these three possibilities):

• leave the node vi
r unmatched,

• match vi
r with vi

r−1,

• or match vi
r with vi

r+1.

For technical reasons, we will post-process the algorithm’s output to make the
first case impossible. Whenever vi

r is unmatched, we will match it with vi
r+1, un-

matching vi
r+1 with its previous match. This can only improve the size of the

matching, so if we can show that the post-processed matching is not a (1 + ϵ)-
approximation, the algorithm’s matching is also not a (1 + ϵ)-approximation.

Next, we say that vi
r is matched to the right if it is matched with vi

r+1 and its
gadget is inserted forwards, or if it is matched with vi

r−1 and its gadget is inserted
backwards. Similarly, we say that it is matched to the left if it is matched with
vi

r−1 and its gadget is inserted forwards, or if it is matched with vi
r+1 and its gad-

get is inserted backwards. Our post-processing has guaranteed that exactly one
of these possibilities occurs, and our random insertions guarantee each innermost
node is independently and uniformly at random matched to the right or left (we
have essentially XOR’d the algorithm’s decision pattern with a random bit string).
Interestingly, this means that we can even guard against a Monte Carlo algorithm
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whose computation at various nodes all have access to some shared public ran-
domness.

We now pair up adjacent gadgets; each pair will have an independent chance
of creating an unmatched node. For i ∈ {1, 2, ..., k/2}, the ith gadget pair in-
cludes the nodes of g2i−1, the nodes of g2i, as well as the anchor node between
them, namely u2i−1,2i. We know that there is a 1/2 probability that the two inner-
most gadget nodes v2i−1

r and v2i
r have one match left and one match right. When

this event occurs, there are an odd number of nodes between these two matching
edges, so one of the nodes between these two innermost gadget nodes must be
unmatched. Furthermore, this 1/2 failure chance occurs independently across all
our gadget pairs.

Against deterministic LOCAL algorithms, we are essentially done. We now
choose the minimum number of gadgets possible: k = 2. We also choose r =

⌊1
9(ϵ
−1− 7)⌋which is Ω(ϵ−1); since ϵ < 1/16 this guarantees r ⩾ 1 and hence vi

r−1
and vi

r+1 actually exist. Furthermore, our overall construction has n = k(2r + 2) =
4r + 4 = Ω(ϵ−1) nodes, which the algorithm was guaranteed to be able to handle.
Observe that in expectation (over the randomness of our counterexample distri-
bution) the algorithm leaves half a node unmatched across these two gadgets. It
must get performance at least this bad on some specific graph in the support of
this distribution. On that counterexample, its multiplicative approximation is at
least:

n
n− 1/2

= 1 +
1

2n− 1

= 1 +
1

8r + 7

= 1 +
1

8⌊1
9(ϵ
−1 − 7)⌋+ 7

⩾ 1 +
1

8
9(ϵ
−1 − 7) + 7

> 1 + ϵ (since ϵ < 1/16 =⇒ ϵ < 1/7)

This contradicts the (1 + ϵ)-multiplicative approximation guarantee of the deter-
ministic LOCAL algorithm, completing that half of the proof.

We now consider Monte Carlo LOCAL algorithms. We now need additional
gadgets to force the failure probability to δ, so we will be choosing a new value
for k. Since each gadget pair is independent, we can use a Chernoff bound to
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control the probability that the algorithm fails on too few gadget pairs; it will be
exponentially small in the total number of gadgets.

Due to linearity of expectation, the expected number of gadget pairs which fail
is µ = k

2 ·
1
2 = k

4 . We need some additional multiplicative error to run our Chernoff
bound argument, so let us consider the likelihood that at most half as many, k

8 fail.
Let X be a random variable for the total number of gadget pair failures; since X is
a sum of independent Bernoulli variables we know that:

Pr[X ⩽ (1− γ)µ] ⩽ e−γ2µ/2 ∀γ ∈ (0, 1)

Pr[X ⩽ k/8] ⩽ e−(1/2)2(k/4)/2

Pr[X ⩽ k/8] ⩽ e−k/32

To arrive at a contradiction, we want to show that the left-hand side is strictly less
than 1− δ. Hence it suffices to show that:

e−k/32 < 1− δ

−k/32 < ln(1− δ)

k > 32 ln(1− δ)−1

We can easily satisfy this by choosing k = 2⌈16 ln(1− δ)−1⌉+ 2; note that this
is guaranteed to be even and will contribute an asymptotic factor of Ω(ln(1 −
δ)−1). Since we have now forced Pr[X ⩽ k/8] < 1− δ, we know that the comple-
ment probability is Pr[X > k/8] > δ. When this many failures occur, our Monte
Carlo algorithm will have an approximation ratio which is strictly larger than:

n
n− k/8

= 1− k/8
n− k/8

= 1− k/8
k(2r + 2)− k/8

= 1− 1
16r + 15

Similar to the deterministic case, we can choose r = ⌊ 1
17(ϵ

−1 − 15)⌋ which is
Ω(ϵ−1) and since ϵ < 1/32 this guarantees r ⩾ 1 which ensures vi

r−1 and vi
r+1

exist. Additionally our construction has n = k(2r + 2) = Ω(ϵ−1 ln(1 − δ)−1)

nodes which the algorithm was guaranteed to be able to handle. We now finish
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the approximation ratio analysis; the ratio is strictly larger than:

n
n− k/8

= 1− 1
16⌊ 1

17(ϵ
−1 − 15)⌋+ 15

⩾ 1− 1
16
17(ϵ

−1 − 15) + 15

> 1 + ϵ (since ϵ < 1/32 =⇒ ϵ < 1/15)

Hence with probability strictly greater than δ, the approximation ratio is strictly
worse than (1 + ϵ). This contradicts the approximation guarantee of the Monte
Carlo LOCAL algorithm, completing the second part of the proof.

Remark 5.7.3. In addition to being able to guard against Monte Carlo algorithms
with access to shared public randomness, it also does not matter if the algorithms
know the graph size n upfront. It is also possible to improve the upper bounds on
allowed ϵ with additional observations, e.g. removing anchor nodes or arguing
that in the deterministic case at least two nodes must actually be unmatched. At
some point, this hinges on what a LOCAL algorithm is actually allowed to do in
zero rounds.

5.7.2 Bipartite Regular Graphs of Even Degree

We now consider the (medium difficulty) even degree case. We prove the follow-
ing subresult in this subsection.

Theorem 5.7.4. For any even degree ∆ ⩾ 2 and error ϵ ∈ (0, 1
16∆+9), any deterministic

LOCAL algorithm that computes a (1+ ϵ)-multiplicative approximation for MAXIMUM-
MATCHING on bipartite ∆-regular graphs with at least n ⩾ Ω(∆−1ϵ−1) nodes requires
Ω(∆−1ϵ−1) rounds.

For any even degree ∆ ⩾ 2, error ϵ ∈ (0, 1
32∆+17), and failure probability δ ∈ (0, 1),

any Monte Carlo LOCAL algorithm that computes a (1 + ϵ)-multiplicative approxima-
tion with probability at least 1 − δ for MAXIMUMMATCHING on bipartite ∆-regular
graphs with at least n ⩾ Ω(∆−1ϵ−1 ln(1− δ)−1) nodes requires Ω(∆−1ϵ−1) rounds.

Proof. In order to support larger degree than the degree two proof, we plan to
replace each node v from that construction with a “node subgadget” hv. Just as
each node used to be connected to two other nodes, we will be able to connect
each node subgadget to two other node subgadgets.
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ℓv
1

ℓv
2

ℓv
3

ℓv
4

rv
1

rv
2

rv
3

rv
4

rv
5

Subgadget hv

rv′
1 rv′′

1

rv′
2 rv′′

2

Figure 5.4: (Even Degree Case) This is our node subgadget hv for degree ∆ =
4, which takes on the role of a node v from the original construction. The red
dashed lines emphasize missing edges (if they were not missing, the gadget would
internally look like biclique K∆,∆+1). The subgadget is connected to two other
subgadgets hv′ , hv′′ via blue curved edges to correspond with the original node
being connected to two other nodes v′ and v′′. To maintain the bipartiteness of the
resulting graph, the nodes being replaced by these node subgadgets must all be
from even-length cycles.

Informally, our subgadget will offer ∆/2 nodes that are each missing two de-
gree and hence can be connected to adjacent node subgadgets, for a total of ∆
outgoing edges. We will then expect the typical solution to use exactly one of
these external edges, which simulates the behavior of a node in the original proof.
The fact that we have ∆ outgoing edges is not a coincidence; a combination of reg-
ularity and bipartiteness mean that if we want all subgadget nodes with external
edges to be on the same side of the bipartition, the number of external edges is
necessarily a multiple of ∆ (since each node on that side generates ∆ edges and
each node on the other side consumes ∆ edges).

Figure 5.4 depicts the subgadget design for degree ∆ = 4, and we now for-
mally describe it for all even ∆ ⩾ 2. To replace what was originally node v, our
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(node) subgadget consists of the (2∆ + 2) nodes ℓv
1, ℓv

2, ..., ℓv
∆, rv

1, rv
2, ..., rv

∆+1. Inter-
nally, we connect ℓv

j′ with rv
j for all for all j′ ∈ {1, 2, ..., ∆} and j ∈ {1, 2, ..., ∆ + 1}

unless j′ ∈ {2j − 1, 2j}. Our gadget will also have ∆ external edges coming out
of nodes rv

1, rv
2, ..., rv

∆/2 (two each). If the node v was connected to nodes v′ and v′′,
then we have external edges from rv

j to rv′
j and rv′′

j for all j ∈ {1, 2, ..., ∆/2}.
Now that we have described our subgadget, we copy the path gadget construc-

tion from the proof of Theorem 5.7.2, replacing every node with a node subgadget.
Reusing some notation from that proof, our path gadgets will guard against algo-
rithms that run for r rounds and we will be using k path gadgets in total, where
k is even and to be decided later. We also use k additional anchor nodes which
also get turned into node subgadgets. In total, the total number of nodes we use
is now k(2r + 2)(2∆ + 1).

Let us consider what the algorithm does on a single node subgadget. For con-
venience, let’s define the following sets of subgadget v’s nodes:

Xv = {ℓv
1, ..., ℓv

∆} (|Xv| = ∆)

Yv = {rv
1, ..., rv

∆/2} (|Yv| = ∆/2)

Zv = {rv
∆/2+1, ..., rv

∆+1} (|Zv| = ∆/2 + 1)

The most natural thing to do for subgadget v is to match the ∆/2 + 1 nodes of Zv

to an equal number of nodes in Xv, then match the remaining nodes of Xv to an
equal number of nodes in Yv. This leaves one remaining node from Yv to match
with an external node.

In fact, we will force the algorithm to do this on each node subgadget hvi
r

that corresponds to an innermost node vi
r in some path gadget gi. For conve-

nience, let v = vi
r. We will postprocess the algorithm’s decisions on subgadget hv,

and we will maintain that the total size of the matching does not decrease, so if
the post-processed matching fails the approximation guarantee, so did the algo-
rithm’s original matching. First, if any node in Zv is unmatched, we match it to a
node in Xv which is not currently matched to another node in Zv. This is always
possible because Zv and Xv are fully connected and |Xv| = ∆ ⩾ ∆/2 + 1 = |Zv|.
We possibly need to unmatch that node of Zv with a node in Yv, but even with
this in mind, we have not reduced the total size of the matching. Next, if any node
in Xv is unmatched after this, we match it to a node in Yv which is not currently
matched to another node in Yv. This is always possible because Xv and Yv are
almost fully connected; each node in Xv is only missing a connection to a single
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node in Yv, and between Yv and Zv there are ∆ + 1 nodes total, enough to guaran-
tee a match for every node in Xv even with the missing edges. We possibly need
to unmatch that node of Yv with an external node, but again this does not reduce
the total size of the matching. Finally, if any node in Yv is unmatched after this,
we match it to an external node in hvi

r+1 , possibly unmatching that external node
with a different external node. Since we are only doing this post-processing for
innermost nodes v = vi

r, we can safely do this all without collisions. As a result of
our post-processing, exactly one node of hvi

r is matched to an external node, and
the size of the matching has not decreased.

At this point, we can follow the original proof with only minor changes. We
say that hvi

r is matched to the right if its only external edge matched is with hvi
r+1

and its gadget gi is inserted forwards, or if its only external edge matched is with
hvi

r−1 and its gadget gi is inserted backwards. Similarly, we say that it is matched
to the left if its only external edge edge matched is with hvi

r−1 and its gadget gi is
inserted forwards, or if its only external edge matched is with hvi

r+1 and its gadget
gi is inserted backwards. Again, our post-processing has guaranteed that exactly
one of these possibilities occurs, and our random insertions guarantee each inner-
most node subgadget is independently an uniformly at random matched to the
right or left.

We now pair up adjacent gadgets as before; for i ∈ {1, 2, ..., k/2}, the ith gadget
pair includes the node subgadgets of g2i−1, the node subgadgets of g2i, as well as
the node subgadget for the anchor node u2i−1,2i. We know that there is a 1/2
probability that the two innermost node subgadgets have one match left and one
match right. When this event occurs, there are an odd number of nodes between
these two matching edges (an odd number of subgadgets times an odd number
of nodes per subgadget), so one of these nodes must be unmatched. Furthermore,
this 1/2 failure chance occurs independently across all our gadget pairs.

Against deterministic LOCAL algorithms we again choose a minimal k = 2 for
a single gadget pair. On average against our distribution, the algorithm leaves 1/2
of a node unmatched; we can begin to work out its multiplicative approximation
ratio to be at least:

n
n− 1/2

= 1 +
1

2n− 1

> 1 +
1

2n
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= 1 +
1

2k(2r + 2)(2∆ + 1)

= 1 +
1

8(2∆ + 1)(r + 1)

To turn this into (1 + ϵ), we let r = ⌊ ϵ−1−1
16∆+8⌋. This is Ω(∆−1ϵ−1) as claimed, and as

long as ϵ < 1
16∆+9 , we have r ⩾ 1 so that our post-processing was valid (i.e. vi

r−1
and vi

r+1 exist). Additionally our construction has Ω(∆−1ϵ−1) nodes which the
algorithm was guaranteed to be able to handle. The upshot is that after making
these choices for k and r, we have contradicted the (1 + ϵ)-multiplicative approx-
imation guarantee of the deterministic LOCAL algorithm, completing that half of
the proof.

To deal with the other half, Monte Carlo LOCAL algorithms, we again invoke a
Chernoff bound. Since the failure probability is the same, the Chernoff calculation
is identical and we need to choose k = 2⌈16 ln(1− δ)−1⌉+ 2 so that the number
of gadget pair failures X satisfies Pr[X ⩽ k/8] < 1− δ. Hence the complement
probability is Pr[X > k/8] < δ, but this many failures would make our Monte
Carlo algorithm have an approximation which is strictly larger than:

n
n− k/8

= 1 +
k/8

n− k/8

= 1 +
k/8

k(2r + 2)(2∆ + 1)− k/8

> 1 +
1

16(2∆ + 1)(r + 1)

To turn this into (1 + ϵ), we let r = ⌊ ϵ−1−1
32∆+16⌋. This is Ω(∆−1ϵ−1) as claimed,

and as long as ϵ < 1
32∆+17 , we have r ⩾ 1 so that our post-processing was valid.

Additionally our construction has Ω(∆−1ϵ−1 ln(1− δ)−1) nodes which the algo-
rithm was guaranteed to be able to handle. Hence with probability strictly greater
than δ, the approximation ratio is strictly worse than (1 + ϵ). This contradicts the
approximation guarantee of the Monte Carlo LOCAL algorithm, completing the
second part of the proof.

5.7.3 Bipartite Regular Graphs of General Degree

We now consider the (hard difficulty) general degree case. Unfortunately, the way
we got the even degree proof to work via node subgadgets runs into complications
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when try the same technique for odd degree. If we design a node subgadget
with an odd number of nodes, we will have an odd number of external edges
and the algorithm will be able to break symmetry (the subgadget’s two neighbors
will not look the same). If we design a node subgadget with an even number of
nodes, then we will want to match an even number of nodes to external nodes
and the algorithm will be able to evenly split them between the subgadget’s two
neighbors.

Hence we will need a different attack angle to handle odd degrees. The key
insight is to view the path gadget as a degree-two way to simulate a very long
edge (so that the algorithm cannot see the neighbor on the other side of the long
edge). We will design edge subgadgets to do the same thing for higher degrees.

We are now ready to prove Theorem 5.7.1, which is restated below for conve-
nience.

Theorem 5.7.1. For any degree ∆ ⩾ 2 and error ϵ ∈ (0, 1
160∆+32), any deterministic

LOCAL algorithm that computes a (1+ ϵ)-multiplicative approximation for MAXIMUM-
MATCHING on bipartite ∆-regular graphs with at least n ⩾ Ω(∆−1ϵ−1) nodes requires
Ω(∆−1ϵ−1) rounds.

For any degree ∆ ⩾ 2, error ϵ ∈ (0, 1
320∆+64), and failure probability δ ∈ (0, 1), any

Monte Carlo LOCAL algorithm that computes a (1 + ϵ)-multiplicative approximation
with probability at least 1− δ for MAXIMUMMATCHING on bipartite ∆-regular graphs
with at least n ⩾ Ω(∆−1ϵ−1 ln(1− δ)−1) nodes requires Ω(∆−1ϵ−1) rounds.

Proof. In order to support larger degree than the degree two proof, we plan to
create a (bipartite, regular) degree five graph and then replace each edge (u, v)
in it with an “edge subgadget” hu,v. We choose degree five to be the original
degree because of two factors: we want to write every degree ∆ ⩾ 2 as a sum
∆ = 3x + 2y where x, y ∈ {0, 1, ..., ∆} and we needed the coefficients on x and y in
that expression to both be at least two. It is easy to prove that every degree ∆ ⩾ 2
fits this criteria; if ∆ is even, then it can be written as ∆ = 0 + 2y for some y ⩾ 1
and we can then always choose x = 0. If ∆ is odd, then it is at least ∆ ⩾ 3 and
so ∆− 3 is even; we can hence write ∆ = 3 + 2y for some y ⩾ 0 and then always
choose x = 1.

This property that ∆ = 3x + 2y means that for any specific value of ∆ we will
only use two different edge subgadgets. Our “blue” subgadget will induce degree
x and our “red” subgadget will induce degree y, and hence three blue subgadgets
and two blue subgadgets induce a real degree of ∆.
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Figure 5.5: (General Degree Case) These are nodes from five adjacent layers of our
base graph, which is bipartite, regular, and has degree five. The edges are colored
blue and red so that every node has three incident blue edges and two incident red
edges. Each of these colored edges (u, v) will be replaced by an edge subgadget
hu,v.

The exact degree five base graph is not actually important (we can always
extract five disjoint perfect matchings and arbitrarily color them three blue, two
red), but for concreteness we will reason about the following layered graph. Let
k, the number of layers, be a parameter chosen later; we guarantee that k will
be a multiple of four (each set of four layers corresponds to a gadget pair in the
original proof). We have four nodes per layer, so our graph consists of 4k nodes
labelled vi,j for i ∈ {1, 2, ..., k} and j ∈ {1, 2, 3, 4}. For all i, i′ ∈ {1, 2, ..., k}, where
i + 1 ≡ i′ (mod k), and for all (j, j′) ∈ {(1, 1), (2, 1), (2, 2), (3, 3), (4, 3), (4, 4)} we
have an blue edge (vi,j, vi′,j′). For all i, i′ ∈ {1, 2, ..., k}, where i + 1 ≡ i′ (mod k),
and for all (j, j′) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}we have an red edge (vi,j, vi′,j′). This
base graph is depicted in Figure 5.5.

We are now ready to present our edge subgadget hu,v. It takes in three pa-
rameters: the degree ∆, an induced degree z ∈ {0, 1, ..., ∆}, and a length ρ which
is a positive even integer. Informally, our edge subgadget behaves like z parallel
edges between u and v that have a length of 2ρ + 1 (i.e. it takes that many hops
to get from u to v), implying that a 2ρ-round algorithm cannot see the identity of
v when making a matching decision for u. This is done by adding ∆ρ additional
nodes along with edges that use up all of their ∆ degree along with using up z
degree from both u and v.
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ρ,1
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ρ,z

wu,v
ρ,z+1

...

wu,v
ρ,∆

v

Subgadget hu,v

Figure 5.6: (General Degree Case) This is our edge subgadget hu,v, which sim-
ulates z parallel edges between u and v of length 2ρ + 1. The red dashed lines
emphasize missing edges. To maintain the bipartiteness of the resulting graph, u
and v must be on opposite sides of the bipartition.

We now formally describe the edge subgadget, which is depicted in Figure 5.6.
Our subgadget consists of (∆ρ) nodes {wu,v

i,j }i∈{1,2,...,ρ},j∈{1,2,...,∆}. We think of our
nodes as being arranged in ρ layers with ∆ nodes in each layer. We say that a
node wu,v

i,j is in layer i, and each layer is only connected to adjacent layers (except
for the first layer i = 1 and last layer i = ρ, which are also connected to u and v
respectively).

When going up from an odd layer i ∈ {1, 3, ..., ρ− 1} to the even layer i+ 1, the
nodes are fully connected except for a matching between the first z nodes. That
is, wu,v

i,j is connected to wu,v
i+1,j′ for all j, j′ ∈ {1, 2, ..., ∆} unless j = j′ ⩽ z. When

going up from an even layer i ∈ {2, 4, ..., ρ− 2} to the even layer i + 1, the only
connection is a matching between the first z nodes. That is, wu,v

i,j is connected to
wu,v

i+1,j for all j ∈ {1, 2, ..., z}. Finally, u is connected to wu,v
1,j for j ∈ {1, 2, ..., z} and v



CHAPTER 5. DISTRIBUTED APPROXIMATE MAXIMUM MATCHING IN
REGULAR GRAPHS 203

is connected to wu,v
ρ,j for j ∈ {1, 2, ..., z}.

After replacing all the edges in our base graph with edge subgadgets, we have
a total of n = 4k + 10k(∆ρ) nodes. Next, we will identify the equivalents of path
gadgets and gadget pairs within our graph, so that we can argue that algorithms
will wind up making mistakes at a certain rate.

Our new version of a gadget consists of an innermost node vi,j with even i
along with the five edge subgadgets incident to that node. Our construction has
provided the following properties: (i) gadgets do not overlap and (ii) each gadget
can be removed and reinserted into the graph one of 3!2! = 12 ways without
changing the overall structure of the graph, since the blue edge subgadgets can
be freely permuted with each other and the red edge subgadgets can be freely
permuted with each other. This leaves all nodes vi,j with odd i serving as anchor
nodes between gadgets.

We now group gadgets as follows; for i ∈ {1, 2, ..., k/4}, the ith gadget group
includes the 5 gadgets whose innermost nodes are v4i−2,1, v4i−2,2, v4i−2,4, v4i,1, v4i,2

(each consisting of that node and the five edge subgadgets incident to that node),
as well as the anchor node v4i−1,1. Intuitively, the situation is that we are examin-
ing an anchor node and its five neighbors; the algorithm needs exactly one of these
neighbors to be matched towards our anchor node, but it cannot do so precisely
due to our random method for inserting gadgets. The algorithm gets to decide
how to split a gadget’s probability of matching its innermost node towards a red
edge or towards a blue edge, but after that the red edges get shuffled and the
blue edges get shuffled and so any decision has a constant probability of getting
messed up.

In order to have independence between gadget groups later, it will be conve-
nient to run a Yao’s minimax principle argument. Let Y be a random variable rep-
resenting the algorithm’s randomness (even shared public randomness between
the nodes), and y be a specific value for this randomness. If the algorithm is de-
terministic, then this does not matter and we can say e.g. y can only be the empty
string. If we condition on Y = y, then the algorithm behaves deterministically
and in particular, every gadget’s innermost node is deterministically matched to
either a node in a red edge subgadget or a blue edge subgadget. After these deci-
sions are locked in, we randomly insert all gadgets and consider what happens to
our gadget groups.

We want to lower bound the probability that some node in the gadget group
is unmatched. One sufficient condition for this to occur is that an even number of
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the five gadgets in the gadget group match towards the anchor node. The algo-
rithm’s decision (which can depend on Y) amounts to choosing which subset of
gadgets get to participate, but participating gadgets have a probability of either
1/2 or 1/3 of changing the parity of the outcome. Since the probability of chang-
ing the parity is never greater than 1/2, this means that the even-parity proba-
bility after a coin flip (viewed as a weighted average) is closer to the even-parity
probability before the flip than the odd-parity probability before the flip; hence
the even-parity probability can never drop below 1/2. Furthermore, due to con-
ditioning Y = y, all gadget groups are independent Bernoulli variables (possibly
with different probabilities).

Against deterministic LOCAL algorithms the conditioning doesn’t matter, and
we choose a minimal k = 4 giving us a single gadget group. On average against
our distribution, the algorithm leaves at least 1/2 of a node unmatched; we can
begin to work out its multiplicative approximation ratio to be at least:

n
n− 1/2

= 1 +
1

2n− 1

> 1 +
1

2n

= 1 +
1

8k + 20k∆ρ

= 1 +
1

32 + 80∆ρ

To turn this into (1 + ϵ), we let ρ = ⌊ ϵ−1−32
80∆ ⌋. This is Ω(∆−1ϵ−1) as claimed, and

as long as ϵ < 1
160∆+32 we have ρ ⩾ 2 so that our edge subgadgets are valid. Ad-

ditionally our construction has Ω(∆−1ϵ−1) nodes which the algorithm was guar-
anteed to be able to handle and we guarded against 2ρ round algorithms which
is Ω(∆−1ϵ−1) as well. The upshot is that after making these choices for k and ρ,
we have contradicted the (1 + ϵ)-multiplicative approximation guarantee of the
deterministic LOCAL algorithm, completing that half of the proof.

We need to be a little careful rerunning our Chernoff bound, since the failure
probability may not be exactly 1/2, although it turns out that a lower bound on
the probability suffices. The expected number of gadget groups which fail is µ,
which is between 1

2
k
4 = k

8 and k
4 (the exact value in this range can depend on y).

We need some multiplicative error to run our Chernoff bound argument, so let us
consider the situation where at most k

16 fail. Let X be a random variable for the
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total number of gadget pair failures; since X is a sum of independent Bernoulli
variables (independent conditioned on Y = y) we know that:

Pr[X ⩽ (1− γ)µ|Y = y] ⩽ e−γ2µ/2 ∀γ ∈ (0, 1)

Pr[X ⩽ µ/2|Y = y] ⩽ e−µ/8

Pr[X ⩽ k/16|Y = y] ⩽ e−k/64

To arrive at a contradiction, we want to show that the left-hand side is strictly
less than 1− δ. Hence it suffices to show that:

e−k/64 < 1− δ

−k/64 < ln(1− δ)

k > 64 ln(1− δ)−1

We satisfy this by choosing k = 4⌈16 ln(1− δ)−1⌉+ 4; note that this is guaran-
teed to be a multiple of four and will contribute an asymptotic factor of Ω(ln(1−
δ)−1). Since we have now forced Pr[X ⩽ k/16] < 1− δ, we know that the comple-
ment probability is Pr[X > k/16] < δ. When this many failures occur, our Monte
Carlo algorithm will have an approximation ratio which is strictly larger than:

n
n− k/16

= 1 +
k/16

n− k/16

= 1 +
k/16

4k + 10k∆ρ− k/16

= 1 +
1

64 + 160∆ρ− 1

> 1 +
1

64 + 160∆ρ

To turn this into (1 + ϵ), we let ρ = ⌊ ϵ−1−64
160∆ ⌋. This is Ω(∆−1ϵ−1) as claimed, and

as long as ϵ < 1
320∆+64 , we have ρ ⩾ 2 so that our edge subgadgets are valid. Ad-

ditionally our construction has Ω(∆−1ϵ−1 ln(1− δ)−1) nodes which the algorithm
was guaranteed to be able to handle and we guarded against 2ρ round algorithms
which is Ω(∆−1ϵ−1). Hence with probability strictly greater than δ (just over our
counterexample distribution), conditioned on Y = y, the approximation ratio is
strictly worse than (1 + ϵ). But we now finish our Yao’s minimax argument and
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observe that since this argument worked for every value of y, we can safely un-
condition this statement by taking a weighted average. Hence with probability
strictly greater than δ (over both our counterexample distribution and the ran-
domness of the algorithm), the approximation ratio is strictly worse than (1 + ϵ).

This contradicts the approximation guarantee of the Monte Carlo LOCAL al-
gorithm, completing the second part of the proof.
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Chapter 6

Improved Inapproximability for
MaxIS in CONGEST

In Chapter 4, we showed that an O(∆)-approximation to the Maximum Indepen-
dent Set can be found in O(poly(log log n)) rounds in the CONGEST model. In
this chapter, we demonstrate that achieving substantially better approximation
factors, namely, 2 − ϵ and 4/3 − ϵ, is impossible even in linear and quadratic
times, respectively. This chapter is adapted from a joint work with Yuval Efron
and Ofer Grossman [139].

6.1 Introduction

By far the most fruitful technique for showing lower bounds in the CONGEST
model is reductions from two-party communication complexity, as discussed in
Chapter 3. This technique has yielded nearly tight results for various fundamen-
tal problems, such as distance computations, minimum spanning tree, minimum
vertex cover, and more [7,43,99,103,119,132,140,150,155,162,168,180,224,237,252].

In this work, we take this technique a step further, and we introduce a frame-
work of reductions from t-party communication complexity, for every t ⩾ 2. Our
framework enables us to show improved hardness of approximation results for
Maximum Independent Set.

Bachrach et al. [43] used the two-party framework to show that finding a
(5/6 + ϵ)-approximation requires Ω(n/ log6 n) rounds, and finding a (7/8 + ϵ)-
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approximation requires Ω(n2/ log7 n) rounds, in the CONGEST model. We am-
plify the hardness results of Bachrach et al. by using more parties. Our results:

Theorem 6.1.1. For any constant 0 < ϵ < 1/2, any algorithm that finds a (1/2 + ϵ)-
approximation for Maximum Independent Set in the CONGEST model requires at least
Ω(n/ log3 n) rounds.

Theorem 6.1.2. For any constant 0 < ϵ < 1/4, any algorithm that finds a (3/4 + ϵ)-
approximation for Maximum Independent Set in the CONGEST model requires at least
Ω(n2/ log3 n) rounds.

While our results are not necessarily tight, we hope that our technique could
pave the way for more and stronger lower bounds in the CONGEST model. We
note our results hold even against randomized algorithms that succeed with prob-
ability p ⩾ 2/3, and even for constant diameter graphs. The hard instances that
are used to prove Theorems 6.1.1 and 6.1.2 are weighted graphs, but we can extend
our arguments for unweighted graphs as well by losing a logarithmic factor in the
lower bounds (in terms of the number of rounds), as explained in Remark 6.4.9.

To prove Theorems 6.1.1 and 6.1.2 we use reductions from t-party communi-
cation complexity where we use t = O(1/ϵ) players. For t = 2, our constructions
are similar to the ones presented in [43], and can be viewed as simplified versions
of them.

The Challenge: Perhaps the first attempt that one would try to extend the two-
party framework to the multi-party case is to use a reduction from the multi-party
Set-Disjointness problem. In the multi-party Set-Disjointness problem, there are
t players p1, · · · , pt. Each player receives a string xi ∈ {0, 1}k, and they wish to
know if the strings all intersect at the same index. That is, they wish to know if
there is an index m ∈ [k] such that x1

m = x2
m = · · · = xt

m = 1. However, using a
reduction from the multi-party Set-Disjointness problem is not a simple task, and
as t increases, the task becomes more challenging. This complexity arises because,
in the non-intersecting case, there are many sub-cases of pairwise intersections,
and the reduction needs to account for all these sub-cases. For example, if we
try to extend the reduction of [43] to the multi-party Set-Disjointness problem,
in the non-intersecting case, for every pair i ̸= j ∈ [t], whether the strings xi

and xj intersect influences the size (or weight) of the Maximum Independent Set.
Therefore, in the non-intersecting case, the reduction needs to account for all the
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sub-cases of pairwise intersections. The more players we have, the more sub-cases
arise, and the more infeasible the reduction becomes.

To overcome this challenge, we use reductions from a certain Promise Pairwise
Disjointness problem, rather than the multi-party Set-Disjointness problem. In this
Promise Pairwise Disjointness problem, there are t players each receiving a string
xi ∈ {0, 1}k, with the promise that the strings are either all intersecting at the same
index or pairwise disjoint. That is, in the non-intersecting case, for all pairs i ̸= j ∈
[t], it holds that xi and xj are disjoint. Most importantly, we don’t have many sub-
cases of pairwise intersections in the non-intersecting case. The communication
complexity of this Promise Pairwise Disjointness problem is Ω(k/t log t) [105],
which is large enough for our purposes, and we are able to use it to prove our
results.

Road-map: In Section 6.2, we begin with some useful definitions and tools. In
Section 6.3, we present our framework of reductions from the multi-party com-
munication complexity model. The technical heart of this chapter is provided in
Sections 6.4 and 6.5, where we show our linear and quadratic lower bounds, re-
spectively.

6.2 Preliminaries

6.2.1 Multi-party Communication Complexity

Our lower bounds rely on reductions from the number-in-hand model of multi-
party communication complexity. In the number-in-hand model, there are t play-
ers, each is holding an input xi ∈ {0, 1}k, and they wish to compute a joint func-
tion of their inputs f (x1, · · · , xt), where t and k are parameters of the model. The
communication setting in the number-in-hand model can be defined in various
ways. In this work we use the shared blackboard model (see also, for exam-
ple, [241]), where the players can exchange messages by writing them on a shared
blackboard that is visible to all the players. The communication complexity in this
model is formally defined as follows.

Definition 6.2.1. [Communication Complexity - Shared Blackboard]
Let k ⩾ 1, t ⩾ 2 be two integers, f be a Boolean function f : ∏t

i=1{0, 1}k →
{TRUE, FALSE}, and Q be the family of protocols that compute f correctly with
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probability at least 2/3, in the shared blackboard model. Given t inputs x1, · · · , xt,
denote by πQ(x1, · · · , xt) the transcript of a protocol Q on the inputs x1, · · · , xt,
i.e. the sequence of bits that are written on the shared blackboard. The cost of a
protocol Q is

Cost(Q) = max
x1,··· ,xt∈{0,1}k

|πQ(x1, · · · , xt)|

The communication complexity of f , denoted by CC f (k, t), is defined to be
the minimum cost over all the possible protocols that compute f correctly with
probability at least 2/3:

CC f (k, t) = min
Q∈Q

Cost(Q)

Our lower bounds for the CONGEST model are achieved via reductions from
the Promise Pairwise Disjointness function. For two strings x, y ∈ {0, 1}k, we say
that x and y are disjoint if ∑k

j=1 xjyj = 0.

Definition 6.2.2. [Promise Pairwise Disjointness]
Let k ⩾ 1, t ⩾ 2, and x1, · · · , xt ∈ {0, 1}k, with the promise that the strings
x1, · · · , xt are either uniquely intersecting, or pairwise disjoint. That is, either there
is an m ∈ [k] satisfying x1

m = x2
m = · · · = xt

m = 1, or xi and xj are disjoint for all
pairs i ̸= j ∈ [t]. The Promise Pairwise Disjointness function outputs TRUE if the
strings are pairwise disjoint, and FALSE if they are uniquely intersecting.1

Chakrabarti et al. [105] proved the following theorem.

Theorem 6.2.3. [Theorem 2.5 in [105]]
Let f be the Promise Pairwise Disjointness function. It holds that CC f (k, t) = Ω(k/t log t).

6.2.2 Large Distance Codes

Our proofs use the tool of error-correcting codes that was used in [43]. Let us define
the notion of a code-mapping. Here, we use a similar definition to the one given by
Arora and Barak [34] (Chapter 19, Definition 19.5, page 380, in [34]).

1For any positive integer k, we denote by [k] the set of positive integers {1, 2, · · · , k}.
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Definition 6.2.4. [Code-mapping]
Let Σ be a finite set of symbols, called the alphabet. Fix three integers d ⩾ 1, L ⩾ 1
and M ⩾ L. For two strings x, y ∈ ΣM, the distance of x and y, denoted by d(x, y),
is equal to |{i ∈ [M] | xi ̸= yi}|.

A code-mapping with parameters (L, M, d, Σ) is a function C : ΣL → ΣM, such
that for every x ̸= y ∈ ΣL, d(C(x), C(y)) ⩾ d.

Our proofs use the following Theorem that shows the existence of large-distance
codes (Lemma 19.11 in [34]).

Theorem 6.2.5. Let Σ be an alphabet of size q = |Σ|. There is a code-mapping with
parameters (L, M, d, Σ), where L ⩽ M ⩽ q and d = M− L.

One way to construct a code-mapping that proves Theorem 6.2.5 is by the so
called Reed-Solomon code, which is a well-known algebraic construction for error-
correcting codes. In our proofs we don’t need the details of the construction, but
only its existence.

6.3 Multi-Party Communication Complexity
Reductions

In this section we show how to prove lower bounds for the CONGEST model via
reductions from the shared blackboard model of multi-party communication com-
plexity. Our framework extends the notion of a family of lower bound graphs [103]
that was discussed in Chapter 3 (in Definition 3.2.4), for any arbitrary number
t ⩾ 2 of players.

Definition 6.3.1. [Family of Lower Bound Graphs]
Given two integers k ⩾ 1, t ⩾ 2, a function f : ∏t

i=1 { 0, 1 }k → { TRUE, FALSE }, and
a graph predicate P, a family of graphs

{Gx̄ = (V, Ex̄, wx̄) | x̄ = (x1, · · · , xt) ∈
t

∏
i=1
{0, 1}k }

is said to be a family of lower bound graphs with respect to f and P if there is a
partition of the set of nodes V =

⋃̇t
i=1Vi for which the following properties hold:2

2Throughout this chapter, we use the notation V =
⋃̇t

i=1Vi to emphasize that {Vi}i∈[t] is a
partition of V.
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1. Only the weight of the nodes in Vi and the existence of edges in Vi×Vi may
depend on xi;

2. Gx̄ satisfies the predicate P iff f (x̄) = TRUE.

Next, we prove the following reduction theorem, which is based on a stan-
dard simulation argument. This theorem extends Theorem 3.2.5 that was stated
in Chapter 3 (and also in Theorem 1 in [103]). Given a family of lower bound
graphs and a graph Gx̄ in it, we denote by cut(Gx̄) the set of cut edges of Gx̄. That
is, cut(Gx̄) = Ex̄ \ (

⋃t
i=1 Vi ×Vi).

Theorem 6.3.2. Fix k ⩾ 1, t ⩾ 2, f : ∏t
i=1{0, 1}k → { TRUE, FALSE }, and a graph

predicate P. If there is a family {Gx̄ = (V, Ex̄, wx̄) } of lower bound graphs w.r.t. f and
P, then any algorithm for deciding P in the CONGEST model with success probability at

least 2/3 requires Ω
(

CC f (k,t)
|cut(Gx̄)| log |V|

)
rounds.

Proof. Let ALG be a distributed algorithm in the CONGEST model that decides
P in T rounds. We define a protocol for f in the shared blackboard model, as
follows. Let x̄ = (x1, · · · , xt) ∈ ∏t

i=1{0, 1}k be the vector of inputs of the players
p1, · · · , pt, where pi receives the string xi, in the shared blackboard model. Each
player pi constructs the part of Gx̄ for the nodes in Vi. This can be done by the
first condition of Definition 6.3.1, and the fact that the Vi’s are disjoint.

The players p1, · · · , pt simulate ALG, where each player pi simulates the nodes
in Vi, as follows. All the messages that are sent on edges in Vi ×Vi are simulated
by player pi, without any communication with the other players. All the other
messages, the ones that are sent on edges in cut(Gx̄) = Ex̄ \

(⋃t
i=1 Vi ×Vi), are

written on the shared blackboard. That is, whenever there is a message from some
node in Vi to some node in V j for i ̸= j ∈ [t], player pi writes this message on the
shared blackboard, which is visible to all the other players. In particular, it is
visible to pj who is simulating the nodes in V j.

After simulating the T rounds of ALG, the players know whether Gx̄ satisfies
the predicate P, and by the second condition of Definition 6.3.1, this reveals the
information about f (x̄). Observe that the total number of bits that are written
on the blackboard are O(T|cut(Gx̄)| log |V|). This is because an algorithm in the
CONGEST model sends at most O(log |V|) bits on each edge in each round, and
the only messages that are written on the blackboard are the ones that are sent
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on the edges in cut(Gx̄). Hence, the communication complexity of f is at most

O(T|cut(Gx̄)| log |V|) and therefore, T = Ω
(

CC f (k,t)
|cut(Gx̄)| log |V|

)
.

Our hardness results use families of lower bound graphs with respect to the
Promise Pairwise Disjointness function and a gap predicate P. We formalize such
families in Definition 6.3.4. First, we formally define the notion of γ-approximation
for Maximum Independent Set.

Definition 6.3.3. [γ-approximation for Maximum Independent Set]
Let G = (V, E, w) be a vertex-weighted graph with weight function w, and let
OPT be the value of an optimal solution for Maximum Independent Set.3 An in-
dependent set I in G is γ-approximation for Maximum Independent Set if w(I) ⩾
OPT/γ.

Definition 6.3.4. [γ-approximate MaxIS family of lower bound graphs]
Fix 0 ⩽ γ ⩽ 1, β > 0. Let P be a graph predicate that distinguishes between
graphs of Maximum Independent Set of weight at least β, and graphs of Max-
imum Independent Set of weight at most γ · β. A family of graphs is called a
γ-approximate MaxIS if it is a family of lower bound graphs with respect to the
Promise Pairwise Disjointness function and the graph predicate P.

The following corollary follows from Theorems 6.2.3 and 6.3.2.

Corollary 6.3.5. Let k ⩾ 1, t ⩾ 2 be two integers. If there is a γ-approximate MaxIS
family of graphs {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k}, then any algorithm for finding
a γ-approximation of Maximum Independent Set in the CONGEST model with success
probability at least 2/3 requires Ω(k/(t log t · |cut(Gx̄)| log |V|)) rounds.

6.4 Linear Lower Bound

In this section we prove the following theorem.

Theorem 6.1.1 For any constant 0 < ϵ < 1/2, any algorithm that finds a (1/2 + ϵ)-
approximation for Maximum Independent Set in the CONGEST model requires at least
Ω(n/ log3 n) rounds.

3Throughout this chapter, for a subset of nodes U ⊆ V, we denote by w(U) = ∑v∈U w(v).
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In order to prove Theorem 6.1.1, we construct a (1/2+ ϵ)-approximate MaxIS
family of lower bound graphs {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k }.

6.4.1 The family of lower bound graphs

We start by describing a fixed graph construction G = (V, E, w), and then we
describe how to get from G and a vector of strings x̄ ∈ ∏t

i=1{0, 1}k the graph Gx̄ =

(V, Ex̄, xx̄), which gives a family of graphs {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t
i=1{0, 1}k }.

Our fixed graph construction G contains t copies of a fixed base graph H. We
start by describing the base graph H.

Some notations. Let k, α, ℓ be three positive integers that are to be chosen later
such that (ℓ + α)α = k, and ℓ ≫ α. Let C be a code-mapping given by Theo-
rem 6.2.5 with parameters (α, ℓ+ α, ℓ, Σ), where Σ = {1, · · · , ℓ+ α}. Observe that
k = |Σ|α. Hence, we order the elements in Σα by an arbitrary ordering, and for
m ∈ [k], we denote by C(m) the code-mapping of the m’th element in Σα.

Description of H = (VH, EH). The set of nodes VH contains a clique of size k,
denoted by A = {v1, ..., vk}, and ℓ+ α cliques, C1, · · · , C(ℓ+α), each of size ℓ+ α.
For each h ∈ [ℓ+ α], the nodes in Ch are denoted by Ch = {σ(h,1), · · · , σ(h,ℓ+α)}.
We call the cliques C1, · · · , Cℓ+α the code gadget, and we denote this set of nodes
by

Code =
ℓ+α⋃
h=1

Ch

The reason that these cliques are called the code-gadget is as follows. Given a
code-word w ∈ Σℓ+α, we can represent w by ℓ+ α nodes

u1 ∈ C1, u2 ∈ C2, · · · , uℓ+α ∈ Cℓ+α

where uh ∈ Ch corresponds to the h’th position in w. That is, uh = σ(h,wh)
, where

wh is the value in the h’th position in w. For any m ∈ [k], we denote by Codem
the set of nodes that corresponds to the code-word C(m) ∈ Σℓ+α, and we connect
vm ∈ A to all the nodes in Code \ Codem.

This concludes the description of H. More formally, the graph H = (VH, EH) is
defined as follows. Given a clique C, we denote by E(C) the set of all the possible
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Figure 6.1: An example of the base graph H, where ℓ = 2, α = 1. A is a clique of
k = (ℓ+ α)α = 3 nodes, and there are ℓ+ α = 3 cliques C1, C2, and C3, each of size
3. In this example, we assume that the code-mapping of 1, C(1) = “2, 3, 1”, and
therefore, v1 in connected to all the nodes in Code = C1 ∪ C2 ∪ C3, except of the
nodes in Code1 = {σ(1,2), σ(2,3), σ(3,1)}. The other edges between {v2, v3} × Code
are omitted in this figure, for clarity.

edges between nodes in C.

VH = A ∪ Code

EH = E(A) ∪ {{vm, u} | vm ∈ A, u ∈ Code \ Codem}
ℓ+α⋃
h=1

E(Ch)

Obtaining the fixed graph construction G from H: Now we are ready to de-
scribe the fixed graph construction G = (V, E). Let t ⩾ 2. There are t copies
of H in G, denoted by H1, · · · , Ht. In order to distinguish between nodes in dif-
ferent Hi’s, we add a superscript i for the nodes in Hi. That is, for each i ∈ [t],
Hi = (Vi, Ei) contains a clique and a code-gadget, where the clique is denoted by
Ai = {vi

1, · · · , vi
k}, the code-gadget is denoted by Codei, the cliques in the code-

gadget are denoted by Ci
1, · · · , Ci

ℓ+α, and for any h ∈ [ℓ+ α], the nodes in Ci
h are

denoted by Ci
h = {σi

(h,1), · · · , σi
(h,ℓ+α)}. Similarly, Codei

m denotes the set of nodes
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Figure 6.2: An illustration for the connections between Ci
h and Cj

h. In this example,
ℓ+ α = 3. Observe that for any r ∈ {1, 2, 3}, σi

h,r is connected to all the nodes in

Cj
h except of σ

j
h,r.

in
⋃ℓ+α

i=1 Ci
h that corresponds to the code-word Cm. That is, let w = C(m), we have

that Codei
m = {σi

(1,w1)
, · · · , σi

(ℓ+α,wℓ+α)
}.

It remains to describe the connections between Hi and H j, for any i ̸= j ∈ [t].
For any h ∈ [ℓ+ α], we add all the possible edges between Ci

h and Cj
h except of the

natural perfect matching between Ci
h and Cj

h, i.e., {{σi
(h,r), σ

j
(h,r)} | r ∈ [ℓ+ α]}. More

formally, we add the following edges for any i ̸= j ∈ [t] and any h ∈ [ℓ+ α],

{
{u, v} | u ∈ Ci

h, v ∈ Cj
h

}
\
{
{σi

(h,r), σ
j
(h,r)} | r ∈ [ℓ+ α]

}
This concludes our fixed graph construction G, and we proceed to describing Gx̄.

Obtaining Gx̄ from G and x̄: Given x = (x1, · · · , xt) ∈ ∏t
i=1{0, 1}k. The graph

Gx̄ = (V, E, wx̄) is defined as follows. The sets of nodes and edges of Gx̄ are
exactly as in G. The weights of nodes in Gx̄ are defined as follows. Let i ∈ [t],
m ∈ [k], and vi

m ∈ Ai,

w(vi
m) =

{
ℓ if xi

m = 1

1 otherwise
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All the other nodes in Gx̄ are of weight 1. That is, for any u ∈ V \ ⋃t
i=1 Ai,

w(u) = 1.
This concludes the description of Gx̄. Before we proceed to proving that Gx̄ is

a family of lower bound graphs, we provide three useful properties of Gx̄ that are
used in the proof.

Property 3. For any m ∈ [k], it holds that
(⋃t

i=1 Codei
m
)
∪ {vi

m | i ∈ [t]} is an inde-
pendent set.

Proof. First, observe that the nodes in {vi
m | i ∈ [t]} are independent. This is be-

cause vi
m ∈ Ai, and there are no edges between Ai and Aj for any i ̸= j. There are

also no edges between Ai and Codej, for any i ̸= j. Furthermore, for any i ∈ [t] and
any m ∈ [k], it holds that {vi

m} ∪ Codei
m is an independent set. This is because vi

m
is connected only to the nodes in Codei \Codei

m. Finally, let w = C(m) be the code-
mapping of m. Since for any i ̸= j, we have that Codei

m = {σi
(1,w1)

, · · · σi
(ℓ+α,wℓ+α)

},
and Codej

m = {σj
(1,w1)

, · · · σj
(ℓ+α,wℓ+α)

}, and σi
(h,r) is not connected to σ

j
(h,r) for any

h, r ∈ [ℓ+ α], we have that
⋃t

i=1 Codei
m is an independent set. Hence, the union(⋃t

i=1 Codei
m
)
∪ {vi

m | i ∈ [t]} is an independent set.

Property 4. For any i ̸= j ∈ [t], and any m1 ̸= m2 ∈ [k], the bipartite graph
(Codei

m1
, Codej

m2) contains a matching of size at least ℓ.

Proof. Let w1 = C(m1) be the code-mapping of m1, and let the w2 = C(m2) be the
code-mapping of m2. Given h, r ∈ [ℓ+ α], observe that σi

(h,r) is connected to all the

nodes in Cj
h \ {σ

j
(h,r)}. Hence, since the distance between w1 and w2 is at least ℓ,

there are at least ℓ positions h ∈ [ℓ+ α] for which w1
h ̸= w2

h, and therefore, there
are at least ℓ positions h ∈ [ℓ + α] for which it holds that σi

(h,w1
h)

is connected to

σ
j
(h,w2

h)
, where w1

h is the h’th position in w1 and w2
h is the h’th position in w2.

Property 5. Let i ̸= j ∈ [t], let m1 ̸= m2 ∈ [k], and let I be any independent set. Let
w1 = C(m1) be the code mapping of m1, and let w2 = C(m2) be the code-mapping of m2.
The number of positions h ∈ [ℓ+ α] for which it holds that σi

(h,w1
h)
∈ I and σ

j
(h,w2

h)
∈ I is

at most α.

Proof. By Property 4, the bipartite graph (Codei
m1

, Codej
m2) contains a matching of

size at least ℓ. Therefore, there are at least ℓ positions h ∈ [ℓ + α] for which I
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contains at most one of the nodes σi
(h,w1

h)
and σ

j
(h,w2

h)
. This leaves at most α other

positions for which I can contain both σi
(h,w1

h)
and σ

j
(h,w2

h)
.

6.4.2 Gx̄ is a (1/2 + ϵ)-approximate MaxIS family of lower
bound graphs

In this section we show that there is a constant t > 2 for which Gx̄ is a (1/2 + ϵ)-
approximate MaxIS family of graphs. We start with a slightly weaker statement
for t = 2, which is later used in the proof for t > 2.

6.4.2.1 Warm-up: t = 2

In this section we prove the following lemma.

Lemma 6.4.1. For t = 2, and for any constant ϵ > 0, it holds that the family of graphs

{Gx̄ = (V, Ex̄, wx̄) | x̄ ∈
t

∏
i=1
{0, 1}k }

is a (3/4 + ϵ)-approximate MaxIS family of lower bound graphs.

For the rest of this subsection, we assume that t = 2. Lemma 6.4.1 is a corollary
of Claims 6.4.2 and 6.4.3.

Claim 6.4.2.
For any g(x1,x2) ∈ {G(x1,x2) = (V, E(x1,x2), w(x1,x2)) | (x1, x2) ∈ ∏2

i=1{0, 1}k }, if x1

and x2 are not disjoint, then g(x1,x2) contains an independent set of weight at least
4ℓ+ 2α.

Proof. Since the sets are not disjoint, there is an m ∈ [k] for which x1
m = x2

m = 1.
Therefore, the weight of each of the nodes v1

m and v2
m is ℓ. By Property 3, the

set {v1
m} ∪ {v2

m} ∪ Code1
m ∪ Code2

m is independent, and observe that its weight is
4ℓ+ 2α.

Claim 6.4.3.
For any g(x1,x2) ∈ {G(x1,x2) = (V, E(x1,x2), w(x1,x2)) | (x1, x2) ∈ ∏2

i=1{0, 1}k }, if x1

and x2 are disjoint, then any independent set I in g(x1,x2) is of weight at most
3ℓ+ 2α + 1.
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Proof. The proof is by the following simple case analysis.

1. I contains at most one node of weight ℓ: In this case, the node of weight ℓ
must be either in the clique A1 or in the clique A2. Assume without loss of
generality that this node is in A1. Observe that we can take at most one node
of weight 1 from A2. Furthermore, since each of Code1 and Code2 is a union
of ℓ+ α cliques, we cannot construct an independent set in Code1 ∪ Code2 of
weight larger than 2(ℓ+ α), it follows that the weight of I cannot be larger
than 3ℓ+ 2α + 1.

2. I contains two nodes of weight ℓ: This implies that I contains one node
v1

m1
∈ A1 of weight ℓ and another node v2

m2
∈ A2 of weight ℓ, where m1 ̸=

m2 ∈ [k]. Since the strings x1, x2 are disjoint, it must be the case that m1 ̸=
m2. Furthermore, since v1

m1
is connected to the nodes in Code1 \ Code1

m1
, and

v2
m2

is connected to the nodes in Code2 \ Code2
m2

, it remains to show that
|I ∩ (Code1

m1
∪ Code2

m2
)| ⩽ ℓ+ 2α. By Property 4, (Code1

m1
, Code2

m2
) contains

a matching of size at least ℓ, and since |Code1
m1
∪ Code2

m2
| = (2ℓ+ 2α), this

implies that |I ∩ (Code1
m1
∪ Code2

m2
)| ⩽ ℓ + 2α. To conclude, in this case,

I contains 2 nodes of weight ℓ and ℓ + 2α nodes of weight 1. In total, the
weight of I is 3ℓ+ 2α.

Notice that I cannot contain more than 2 elements of weight ℓ since the elements
of weight ℓ form two disjoint cliques.

Proof of Lemma 6.4.1. Claims 6.4.2 and 6.4.3 imply that the family of graphs
{Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏2

i=1{0, 1}k } is a family of lower bound graphs with re-
spect to the set disjointness function and the graph predicate that distinguishes
between graphs of Maximum Independent Set at least 4ℓ+ 2α and graphs of Max-
imum Independent Set at most 3ℓ+ 2α + 1.

We set ℓ = log k − log k/ log log k, α = log k/ log log k. Hence (ℓ + α)α = k
as desired. Since the dominating terms in the two cases are 4ℓ and 3ℓ, it follows
that for any constant ϵ > 0, {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏2

i=1{0, 1}k } is a (3/4 + ϵ)-
approximate MaxIS family of graphs4.

6.4.2.2 Hardness Amplification using t > 2 Players

In this section we prove the following lemma.
4In fact, by slightly changing the parameters ℓ and α, the claim holds for any ϵ = Ω(1/ log k).
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Lemma 6.4.4. For any constant ϵ > 0, there is a constant t > 2 for which it holds
that {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k } is a (1/2 + ϵ)-approximate MaxIS family
of lower bound graphs.

Lemma 6.4.4 follows from Claims 6.4.5 and 6.4.8.

Claim 6.4.5. For t ⩾ 0, and any gx̄ ∈ {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t
i=1{0, 1}k }, if

there is an m ∈ [k] for which it holds that x1
m = · · · = xt

m = 1, then gx̄ contains an
independent set of weight at least t(2ℓ+ α).

Proof. Observe that for any i ∈ [t], it holds that w(vi
m) = ℓ. Furthermore, by

Property 3,
(⋃t

i=1 Codei
m
)
∪ {vi

m | i ∈ [t]} is an independent set, and it is of weight
2tℓ+ tα.

Before we proceed to the case in which the strings are pairwise disjoint, let us
prove the following helper claim and a corollary of it.

Claim 6.4.6. For any positive integer t. Let m1, m2, · · · , mt be any t distinct values
in [k]. For any independent set I, if {vi

mi
| i ∈ [t]} ⊆ I, then

∣∣I ∩ ( t⋃
i=1

Codei
mi

)∣∣ ⩽ ℓ+ αt2

Proof. Let us start with some notations. Let wi = C(mi) be the code-mapping
of mi. Hence, we have that Codei

mi
= {σi

(1,wi
1)

, · · · , σi
(ℓ+α,wi

ℓ+α)
}. Furthermore, let

S = {h ∈ [ℓ+ α] | ∑t
i=1 |I ∩ σi

(h,wi
h)
| ⩽ 1}, S̄ = [ℓ+ α] \ S. That is, S is the set of

values h ∈ [ℓ+ α] for which the independent set I contains at most one node in⋃t
i=1{σi

(h,wi
h)
}. Finally, let ψh

i,j be an indicator defined as follows.

ψh
i,j =

1 if σi
(h,wi

h)
∈ I and σ

j

(h,wj
h)
∈ I

0 otherwise

By Property 5, for any i ̸= j ∈ [t], it holds that ∑h∈[α+ℓ] ψh
i,j ⩽ α. Hence,

∣∣I ∩ ( t⋃
i=1

Codei
mi

)∣∣ = t

∑
i=1

∣∣I ∩ Codei
mi

∣∣ = t

∑
i=1

∣∣I ∩ ( ℓ+α⋃
h=1

{σi
(h,wi

h)
}
)∣∣ (1)
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=
t

∑
i=1

ℓ+α

∑
h=1

∣∣I ∩ {σi
(h,wi

h)
}
∣∣ = ℓ+α

∑
h=1

t

∑
i=1

∣∣I ∩ {σi
(h,wi

h)
}
∣∣ (2)

=

(
∑
h∈S

t

∑
i=1

∣∣I ∩ {σi
(h,wi

h)
}
∣∣)+

(
∑
h∈S̄

t

∑
i=1

∣∣I ∩ {σi
(h,wi

h)
}
∣∣) (3)

⩽

(
∑
h∈S

t

∑
i=1

∣∣I ∩ {σi
(h,wi

h)
}
∣∣)+

∑
h∈S̄

∑
i ̸=j∈[t]

2ψh
i,j

 (4)

=

(
∑
h∈S

t

∑
i=1

∣∣I ∩ {σi
(h,wi

h)
}
∣∣)+

 ∑
i ̸=j∈[t]

∑
h∈S̄

2ψh
i,j

 (5)

⩽ ℓ+ α + 2α · t(t− 1)/2 ⩽ ℓ+ αt2 (6)

Where (1), (2), and (3) are straightforward. (4) holds because for any h ∈ S̄, there
are at least two indices i ̸= j ∈ [t], for which it holds that σi

(h,wi
h)
∈ I and σ

j

(h,wj
h)
∈ I.

(5) holds by changing the summation order of the second sum. (6) holds because
for any h ∈ S, ∑t

i=1 |I ∩ {σi
(h,wi

h)
}| ⩽ 1, and by Property 3, ∑h∈[ℓ+α] ψh

i,j ⩽ α.

Corollary 6.4.7. For any positive integer t, let m1, m2, · · · , mt be any t distinct values
in [k]. For any independent set I, if {vi

mi
| i ∈ [t]} ⊆ I, then

w(I) ⩽ (t + 1)ℓ+ αt2

Proof. Since each vi
mi

is connected to all the nodes in Codei \ Codei
mi

, we have that

w(I) = w(I ∩ (
t⋃

i=1

Ai)) + w(I ∩ (
t⋃

i=1

Codei)) =

(
t

∑
i=1

w(vi
mi
)

)
+ w(I ∩ (

t⋃
i=1

Codei
mi
))

⩽ tℓ+ ℓ+ αt2 = (t + 1)ℓ+ αt2

Claim 6.4.8. For t ⩾ 0, and any gx̄ ∈ {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t
i=1{0, 1}k }, if the

strings x1, · · · , xt are pairwise disjoint, then the weight of any independent set is
at most (t + 1)ℓ+ αt2.

Proof. The proof is by induction on t, where the base case of t = 1 is straight-
forward (even the case of t = 2 was already proved in Claim 6.4.3). We assume
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correctness for t− 1, and prove correctness for t. Let I be an independent set in gx̄.
Recall that Ai is a clique and therefore |I ∩ Ai| ⩽ 1. The proof is by the following
case analysis.

1. There is some i ∈ [t] for which it holds that I ∩ Ai is either empty, or contains
a node of weight 1: Observe that in this case, w(I ∩Vi) ⩽ ℓ+ α + 1. This is
because any independent set contains at most ℓ+ α nodes in Codei = Vi \ Ai.
Furthermore, by the inductive hypothesis on the graph induced by the nodes
in
⋃

j∈[t]\{i} V j, we have that w(I) ⩽ tℓ+ α(t− 1)2 + ℓ+ α + 1 ⩽ (t + 1)ℓ+
α(t2 − 2t + 1) + α + 1 < (t + 1)ℓ + α(t2). Where the last inequality holds
since α ⩾ 1, and t > 2.

2. For any i ∈ [t], I ∩ Ai contains a node of weight ℓ, denoted by vi
mi

: This case
is proved directly, without applying the inductive hypothesis, as follows.
First, since the strings x1, · · · , xt are pairwise disjoint, it must be the case
that for any i ̸= j ∈ [t], mi ̸= mj. This is because w(vi

mi
) = ℓ if and only if

xi
mi

= 1, and if mi = mj, it would imply that xi and xj are not disjoint. Hence,
by Corollary 6.4.7, we have that

w(I) ⩽ (t + 1)ℓ+ αt2

As desired.

Proof of Lemma 6.4.4. By Claims 6.4.5 and 6.4.8, we have that the family of graphs
{Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k } is a family of lower bound graphs with re-
spect to the pairwise disjointness function and the graph predicate that distin-
guishes between graphs of Maximum Independent Set at least t(2ℓ+ α) and graphs
of Maximum Independent Set at most (t + 1)ℓ+ α · t2.

Recall that ℓ = log k− log k/ log log k, α = log k/ log log k. Which implies that
the graph predicate distinguishes between independent sets of weight at least
2t(log k − log k/ log log k + log k/ log log k) = 2t log k and independent sets of
weight at most (t+ 1)(log k− log k/ log log k)+ t2(log k/ log log k) ⩽ (t+ 2) log k,
for any constant t and k ≫ t. Hence, for any constant ϵ > 0, we choose t = 2/ϵ

(or the first integer larger than 2/ϵ, if it is not an integer). This implies that for any
constant ϵ > 0, there is a constant t for which {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k }
is a (1/2 + ϵ)-approximate MaxIS family of graphs.
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Proof of Theorem 6.1.1. Observe that k = Θ(n), where n = |V|. Furthermore,
{Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k } is a (1/2+ ϵ)-approximate MaxIS family of
graphs, where the partition of the set of nodes that is needed for Definition 6.3.1
is V =

⋃t
i=1 Vi. Hence, by Corollary 6.3.5 and the fact that |cut(Gx̄)| = t2 log2 k =

Θ(log2 k), any algorithm for finding a (1/2 + ϵ)-approximation for Maximum In-
dependent Set in the CONGEST model with success probability at least 2/3 re-
quires Ω(k/(t log t · |cut(Gx̄)| log |V|)) = Ω(n/(t log t · log3 n) = Ω(n/ log3 n)
rounds.

Remark 6.4.9. While our hard instances in the proof of Theorem 6.1.1 are weighted,
it is easy to extend the argument for unweighted graphs as well, by losing a loga-
rithmic factor in the lower bound (in terms of the number of rounds), as follows.
For every node v of weight ℓ, we replace v by an independent set of size ℓ, de-
noted by I(v). For every node u that is adjacent to v in our construction, if u is
of weight 1, we connect all the nodes in I(v) to u. Otherwise, if u is of weight ℓ,
it means that it is replaced by an independent set of size ℓ, denoted by I(u). We
connect I(v) to I(u) by a bi-clique (a full bipartite graph). The proof that the con-
verted construction yields a hardness of (1/2 + ϵ)-approximation follows from a
similar case analysis to the one provided for the weighted case. Since the number
of nodes in the unweighted construction in n = Θ(kℓ) = Θ(k log k) rather than
Θ(k), in terms of the number of rounds, we lose a logarithmic factor in the lower
bound compared to the weighted case.

6.5 Quadratic Lower Bound

In this section we prove the following theorem.

Theorem 6.1.2 For any constant 0 < ϵ < 1/4, any algorithm that finds a (3/4 + ϵ)-
approximation for Maximum Independent Set in the CONGEST model requires at least
Ω(n2/ log3 n) rounds.

In order to prove Theorem 6.1.2, we construct a (3/4+ ϵ)-approximate MaxIS
family of lower bound graphs { Fx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k2 }. Observe
that unlike the previous section, the length of the strings in x̄ is k2 rather than k. In
our graph construction, similarly to the previous section, k = Θ(n). Hence, hav-
ing the length of the strings being k2 allows us to achieve a near-quadratic lower
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bound. Our hard instances are weighted graphs, and we can extend our argument
to unweighted graphs as well by losing a logarithmic factor in the lower bound
(in terms of the number of rounds) in the same way as explained in Remark 6.4.9.

6.5.1 The family of lower bound graphs

We begin with describing a fixed graph construction, F = (VF, EF, wF), and then
we describe how to get from F and a vector of strings x̄ ∈ ∏t

i=1{0, 1}k2
the graph

Fx̄ = (V, Ex̄, xx̄). Let G be the fixed graph construction defined in Section 6.4.1.
The fixed graph construction F consists of exactly two copies of G, denoted by
G1 and G2. Recall that G = (VG, EG) where VG =

⋃t
i=1 Ai ∪ Codei. In order to

distinguish between the sets of nodes that belong to G1 and the sets of nodes that
belong to G2, we add an ordered pair as a superscript (i, b), where b ∈ {1, 2}
indicates whether the set is in G1 or in G2. That is, the set of nodes of G1 is VG1 =⋃t

i=1 A(i,1) ∪ Code(i,1), and the set of nodes of G2 is VG2 =
⋃t

i=1 A(i,2) ∪ Code(i,2).
Hence the set of nodes of F is VF =

⋃t
i=1 Vi, where for any i ∈ [t], we denote by

Vi = V(i,2) ∪V(i,2)

V(i,1) = A(i,1) ∪ Code(i,1)

V(i,2) = A(i,2) ∪ Code(i,2)

A(i,1) = {v(i,1)m | m ∈ [k]}

A(i,2) = {v(i,2)m | m ∈ [k]}

Code(i,1) =
ℓ+α⋃
h=1

C(i,1)
h

Code(i,2) =
ℓ+α⋃
h=1

C(i,2)
h

C(i,1)
h = {σ(i,1)

(h,1), · · · , σ
(i,1)
(h,ℓ+α)

}

C(i,2)
h = {σ(i,2)

(h,1), · · · , σ
(i,2)
(h,ℓ+α)

}

Code(i,1)w = {σ(i,1)
(h,wh)

| h ∈ [ℓ+ α]}

Code(i,2)w = {σ(i,2)
(h,wh)

| h ∈ [ℓ+ α]}
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The weight function wF is defined as follows. For any v ∈ VF,

wF(v) =

{
ℓ if v ∈ ⋃t

i=1 A(i,1) ∪ A(i,2)

1 otherwise

That is, the weight of any node in the cliques
⋃t

i=1 A(i,1) ∪ A(i,2) is ℓ, and the
weight of any node in the code-gadgets

⋃t
i=1 Code(i,1) ∪Code(i,2) is 1. Observe that

unlike the previous section, the weights of the nodes don’t depend on the strings
in x̄.

Obtaining Fx̄ from F = (VF, EF, wF) and x̄. Let x̄ = (x1, · · · , xt) ∈
t

∏
i=1
{ 0, 1 }k2

.

For any xi, we index the k2 positions in xi by xi
(m1,m2)

, for m1, m2 ∈ [k]. The graph
Fx̄ is defined as follows. The set of nodes and the weight function remain exactly
as in F. The set of edges contains all the edges in F, and the following edges in
A(i,1) × A(i,2), for any i ∈ [t].

{v(i,1)m1 , v(i,2)m2 | xi
(m1,m2)

= 0}

That is, for any i ∈ [t] and any m1, m2 ∈ [k], we add an edge between v(i,1)m1 ∈
A(i,1) and v(i,2)m2 ∈ A(i,2) if and only if xi

(m1,m2)
= 0.

6.5.2 Fx̄ is a (3/4 + ϵ)-approximate MaxIS family of lower
bound graphs

In this section we prove the following lemma.

Lemma 6.5.1. For any constant ϵ > 0, there is a constant t > 2 for which it holds

that { Fx̄ | x̄ ∈
t

∏
i=1
{ 0, 1 }k2

} is a (3/4 + ϵ)-approximate MaxIS family of lower bound

graphs.

Lemma 6.5.1 is a corollary of Claims 6.5.2 and 6.5.3.
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Figure 6.3: An example of the graph induced by the nodes in V1. As in the
previous figures, ℓ = 2, α = 1 and k = (ℓ + α)α = 3. V1 contains two sets
of nodes: V(1,1) which is in G1, and V(1,2) which is in G2. The graph induced
by the nodes in V(1,1) has an identical topology to the graph induced by the
nodes in V(1,2), and they are both identical to the topology of the base graph
construction H that was described is Section 6.4.1. The reason that there is an
ordered pair (1, b), where b ∈ {1, 2} in a superscript in V(1,1) and V(1,2) is as
follows. The first element in the pair indicates that these sets are parts of V1,
and the second element b in the pair indicates that V(1,b) belongs to Gb. Sim-
ilarly, V(1,1) = A(1,1) ∪ Code(1,1) = A(1,1) ∪ C(1,1)

1 ∪ C(1,1)
2 ∪ C(1,1)

3 , and V(1,2) =

A(1,2) ∪ Code(1,2) = A(1,2) ∪ C(1,2)
1 ∪ C(1,2)

2 ∪ C(1,2)
3 . As in the previous figures,

the code-mapping of 1, C(1) = “2, 3, 1”, and therefore, v(1,1)
1 is connected to all

the nodes in Code(1,1) except of the nodes in Code(1,1)
1 = {σ(1,1)

(1,2) , σ
(1,1)
(2,3) , σ

(1,1)
(3,1)}.

Similarly, v(1,2)
1 is connected to all the nodes in Code(1,2) except of the nodes in

Code(1,2)
1 = {σ(1,2)

(1,2) , σ
(1,2)
(2,3) , σ

(1,2)
(3,1)}. Some edges are omitted in this figure, for clarity.
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Claim 6.5.2. For any gx̄ ∈ { Fx̄ | x̄ ∈
t

∏
i=1
{ 0, 1 }k2

}, if there is a pair (m1, m2) ∈

[k]× [k] for which it holds that x1
(m1,m2)

= x2
(m1,m2)

= · · · = xt
(m1,m2)

= 1, then gx̄

contains an independent set of weight at least 4tℓ+ 2αt.

Proof. Consider the following set of nodes.

I =
t⋃

i=1

{v(i,1)m1 } ∪ Code(i,1)m1 ∪ {v
(i,2)
m2 } ∪ Code(i,2)m2

First, by Property 3, it holds that both
t⋃

i=1
{ v(i,1)m1 } ∪ Code(i,1)m1 and

t⋃
i=1
{ v(i,2)m2 } ∪

Code(i,2)m2 are independent sets. Furthermore, the only possible edges between
t⋃

i=1
{ v(i,1)m1 } ∪ Code(i,1)m1 and

t⋃
i=1
{ v(i,2)m2 } ∪ Code(i,2)m2 are the ones in {{v(i,1)m1 , v(i,2)m2 } |

i ∈ [t]}. But since x1
(m1,m2)

= x2
(m1,m2)

= · · · = xt
(m1,m2)

= 1, none of the edges in

{{v(i,1)m1 , vi2
m2} | i ∈ [t]} exists in the graph Fx̄. The weight of I is

|
t⋃

i=1

w({v(i,1)m1 , v(i,2)m2 })|+ |
t⋃

i=1

w(Code(i,1)m1 ∪ Code(i,2)m2 )| = 2tℓ+ 2t(ℓ+ α) = t(4ℓ+ α)

as desired.

Claim 6.5.3. For any gx̄ ∈ {Gx̄ | x̄ ∈
t

∏
i=1
{ 0, 1 }k2

}, if the strings x1, x2, · · · , xt are

pairwise disjoint, then the weight of any independent set in gx̄ is at most 3(t +
1)ℓ+ 3αt3.

Proof. The proof is by induction on t. For t = 1, observe that w(I ∩ V1) =

w(I ∩ (V(1,1) ∪V(1,2))) = w(I ∩ (A(1,1) ∪ Code(1,1) ∪ A(1,2) ∪ Code(1,2))) ⩽ 4ℓ+ 2α.
We assume correctness for t− 1, and we prove correctness for t. Let I be an inde-
pendent set in gx̄. The proof is by the following case analysis.

1. There is some i ∈ [t], for which it holds that |I ∩ (A(i,1) ∪ A(i,2))| ⩽ 1: In this
case, observe that w(I ∩Vi) = w(I ∩ (A(i,1) ∪ A(i,2) ∪Code(i,1) ∪Code(i,2))) =
w(I ∩ (A(i,1) ∪ A(i,2))) + w(I ∩ (Code(i,1) ∪ Code(i,2))) ⩽ ℓ+ 2(ℓ+ α). Hence,
by applying the inductive hypothesis on the graph induced by the nodes
in
⋃

j∈[t]\{i} V j, we deduce that w(I) = w(I ∩ ⋃j∈[t]\{i} V j) + w(I ∩ Vi) ⩽
3tℓ+ 3α(t− 1)3 + 3ℓ+ 2α < 3(t + 1)ℓ+ 3αt3.
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2. For all i ∈ [t], it holds that |I ∩ (A(i,1) ∪ A(i,2))| = 2: This case is proved
without applying the inductive hypothesis, as follows. Fist, since A(i,1) and
A(i,2) are cliques, there is one node in I ∩ A(i,1) and one node in I ∩ A(i,2).
Denote these two nodes by v(i,1)

m1
i
∈ A(i,1) and v(i,2)

m2
i
∈ A(i,2), where m1

i , m2
i ∈

[k]. This implies that v(i,1)
m1

i
and v(i,2)

m2
i

are not connected by an edge. Since the

strings x1, · · · , xt are pairwise disjoint, it must be the case that all the pairs
in {(m1

i , m2
i ) | i ∈ [t]} are distinct.

We split the multiset of indices {m1
i | i ∈ [t]} into equivalence classes by their

value, where each class contains a set of indices of the same value. Ob-
serve that there are positive integers r, q1, q2, · · · , qr satisfying ∑r

j=1 qj = t,
for which we can split {m1

i | i ∈ [t]} into r equivalence classes Q1, · · · , Qr,
where |Qj| = qj. Let si = ∑i

j=1 qj.5 Assume without loss of generality that

Q1 = {m1
1, · · · , m1

s1
}

Q2 = {m1
s1+1, · · · , m1

s2
}

Q3 = {m1
s2+1, · · · , m1

s3
}

...

Qr = {m1
sr−1+1, · · · , m1

t }

where

m1
1 = · · · = m1

s1

m1
s1+1 = · · · = m1

s2

m1
s2+1 = · · · = m1

s3

...

m1
sr−1+1 = · · · = m1

t

That is, we are assuming without loss of generality that Q1 contains the first
s1 = q1 indices in {m1

i | i ∈ [t]}, Q2 contains the next q2 indices in {m1
i | i ∈

5For example, if the multiset is {1, 1, 2, 3, 3, 3, 5}, then we have r = 4, q1 = 2, q2 = 1, q3 =
3, q4 = 1
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[t]}, etc. This assumption is indeed without loss of generality because we
can always split {m1

i | i ∈ [t]} into r equivalence classes by their values, for
some positive integer r, and our proof doesn’t depend on the actual elements
in each class. Since the pairs in {(m1

i , m2
i ) | i ∈ [t]} are distinct, it must be

the case that

m2
1 ̸= · · · ̸= m2

s1

m2
s1+1 ̸= · · · ̸= m2

s2

m2
s2+1 ̸= · · · ̸= m2

s3

...

m2
sr−1+1 ̸= · · · ̸= m2

t

The idea of the proof is to split the set of nodes into 3 disjoint sets, where the
intersection of the independent set with each of the sets has small weight, as
follows (we set s0 = 0).

V =
t⋃

i=1

V(i,1) ∪V(i,2)

=

First set︷ ︸︸ ︷r−1⋃
j=0

V(sj+1,1))

∪
Second set︷ ︸︸ ︷ r⋃

j=1

(

sj⋃
i=sj−1+2

V(i,1))

∪
Third set︷ ︸︸ ︷ r⋃

j=1

(

sj⋃
i=sj−1+1

V(i,2))



In Propositions 6.5.4, 6.5.5, and 6.5.6, we show that the intersection of the
independent set with each of the three sets has small weight, and therefore,
in total, the weight of the independent set is sufficiently small.

Proposition 6.5.4. It holds that

w

I ∩ (
r−1⋃
j=0

V(sj+1,1))

 ⩽ (r + 1)ℓ+ αt2
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Proof. Since m1
1, m1

s1+1, · · · , m1
sr−1+1 are in different equivalence classes, they

are distinct. Hence, by applying Corollary 6.4.7, we have that

w

I ∩ (
r−1⋃
j=0

V(sj+1,1))

 ⩽ (r + 1)ℓ+ αr2 ⩽ (r + 1)ℓ+ αt2

Proposition 6.5.5. It holds that

w

I ∩
r⋃

j=1

(

sj⋃
i=sj−1+2

V(i,1))

 ⩽ 2ℓ(t− r) + α(t− r)

Proof. Since for any i ∈ [t], A(i,1) is a clique, and Code(i,1) is a union of ℓ+ α

cliques, we have that

w

 r⋃
j=1

(

sj⋃
i=sj−1+2

V(i,1))

 =
r

∑
j=1

sj

∑
i=sj−1+2

w(I ∩V(i,1))

=
r

∑
j=1

sj

∑
i=sj−1+2

w
(

I ∩ (A(i,1) ∪ Code(i,1))
)

⩽
r

∑
j=1

sj

∑
i=sj−1+2

2ℓ+ α

=
r

∑
j=1

2ℓ(|Qj| − 1) + α(|Qj| − 1)

=
r

∑
j=1

2ℓ(qj − 1) + α(qj − 1)

= 2ℓ(
r

∑
j=1

qj) + 2ℓ(
r

∑
j=1
−1) + α(

r

∑
j=1

qj − 1)

⩽ 2ℓ(t− r) + α(t− r)

where the final inequality holds because ∑r
j=1 qj = t.
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Proposition 6.5.6. It holds that

w

I ∩
r⋃

j=1

(

sj⋃
i=sj−1+1

V(i,2))

 ⩽ (t + r)ℓ+ αt3

Proof. Since for any j ∈ [r], it holds that m2
sj−1+1 ̸= · · · ̸= m2

sj
. We can ap-

ply Corollary 6.4.7 on the graph induced by the nodes in
⋃sj

i=sj−1+1 V(i,2) to
deduce that

w(I ∩ (

sj⋃
i=sj−1+1

V(i,2))) ⩽ (|Qj|+ 1)ℓ+ α(|Qj|)2

= (qj + 1)ℓ+ αqj
2

Hence, we have that

w

I ∩
r⋃

j=1

(

sj⋃
i=sj−1+1

V(i,2))

 =
r

∑
j=1

w(I ∩ (

sj⋃
i=sj−1+1

V(i,2))) ⩽
r

∑
j=1

(qj + 1)ℓ+ αq2
j

⩽ (t + r)ℓ+ αt2r ⩽ (t + r)ℓ+ αt3

In total, we have that

w(I) = w

I ∩ (
r−1⋃
j=0

V(sj+1,1))


+ w

I ∩
r⋃

j=1

(

sj⋃
i=sj−1+2

V(i,1))


+ w

I ∩
r⋃

j=1

(

sj⋃
i=sj−1+1

V(i,2))


Hence,
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w(I) ⩽ (r + 1)ℓ+ αt2 + 2ℓ(t− r) + α(t− r) + (t + r)ℓ+ αt3

⩽ ℓ(r + 1 + 2t− 2r + t + r) + 3αt3

= ℓ(3t + 1) + 3αt3

as desired.

Proof of Lemma 6.5.1. Claims 6.5.2 and 6.5.3 imply that the family of graphs
{Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k2 } is a family of lower bound graphs with
respect to the pairwise disjointness function and the graph predicate that dis-
tinguishes between graphs of Maximum Independent Set at least 4tℓ + 2αt and
graphs of Maximum Independent Set at most 3(t + 1)ℓ+ 3αt3.

Recall that ℓ = log k− log k/ log log k, α = log k/ log log k. Which implies that
the graph predicate distinguishes between independent sets of weight at least

4t(log k− log k/ log log k) + 2 log k/ log log k
= 4t log k− 2t log k/ log log k ⩾ 4(t− 1) log k

and independent sets of weight at most

3(t + 1)(log k− log k/ log log k) + t2(log k/ log log k) ⩽ 3(t + 2) log k

, for any constant t and k ≫ t. Hence, for any constant ϵ > 0, we choose t =

(3/4ϵ)− 1 (or the first integer larger than t = (3/4ϵ)− 1, if it is not an integer).
This implies that for any constant 0 < ϵ ⩽ 1/4, there is a constant t for which
{Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k2 } is a (3/4 + ϵ)-approximate MaxIS family
of graphs.

Proof of Theorem 6.1.2. Observe that k = Θ(tn) = Θ(n), where n = |V|. Fur-
thermore, by Lemma 6.5.1, {Gx̄ = (V, Ex̄, wx̄) | x̄ ∈ ∏t

i=1{0, 1}k2 } is a (3/4 + ϵ)-
approximate MaxIS family of graphs, where the partition of the set of nodes that
is needed for Definition 6.3.1 is V =

⋃t
i=1 Vi. Hence, by Corollary 6.3.5, the

fact that the length of the strings is k2 = Θ(n2), and the fact that |cut(Gx̄)| =
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Θ(t2 log2 k) = Θ(log2 k), any algorithm for finding a (3/4 + ϵ)-approximation
for Maximum Independent Set in the CONGEST model with success probability
at least 2/3 requires Ω(k2/(t log t · |cut(Gx̄)| log |V|)) = Ω(n2/(t log t · log3 n) =
Ω(n2/ log3 n) rounds.
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[121] Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak. Fast
distributed approximations in planar graphs. In Distributed Computing,
pages 78–92. Springer, 2008. 82

[122] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. Finding
even cycles faster via capped k-walks. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 112–120. ACM, 2017. 23, 24, 26, 32

[123] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. New
subquadratic approximation algorithms for the girth. arXiv preprint
arXiv:1704.02178, 2017. 17

[124] Elias Dahlhaus and Marek Karpinski. Perfect matching for regular graphs is
AC°-hard for the general matching problem. J. Comput. Syst. Sci., 44(1):94–
102, 1992. 124



BIBLIOGRAPHY 248

[125] Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams. Hardness
of approximate diameter: Now for undirected graphs. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1021–1032. IEEE, 2021. 17

[126] Mina Dalirrooyfard and Nicole Wein. Tight conditional lower bounds for
approximating diameter in directed graphs. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 1697–1710, 2021. 17

[127] Mina Dalirrooyfard and Virginia Vassilevska Williams. Conditionally op-
timal approximation algorithms for the girth of a directed graph. In Artur
Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Col-
loquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 32

[128] Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, and Nicole
Wein. Tight approximation algorithms for bichromatic graph diameter and
related problems. In Christel Baier, Ioannis Chatzigiannakis, Paola Floc-
chini, and Stefano Leonardi, editors, 46th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece, volume 132 of LIPIcs, pages 47:1–47:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. 17

[129] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. En-
gineering Route Planning Algorithms, pages 117–139. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009. 1

[130] Camil Demetrescu and Giuseppe F Italiano. A new approach to dynamic all
pairs shortest paths. Journal of the ACM (JACM), 51(6):968–992, 2004. 17

[131] Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths.
SIAM Journal on Computing, 29(5):1740–1759, 2000. 7, 17, 32

[132] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the
congested clique model. In Magnús M. Halldórsson and Shlomi Dolev, edi-
tors, ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris,
France, July 15-18, 2014, pages 367–376. ACM, 2014. 31, 60, 64, 207



BIBLIOGRAPHY 249

[133] Guillaume Ducoffe. Faster approximation algorithms for computing short-
est cycles on weighted graphs. SIAM Journal on Discrete Mathematics,
35(2):953–969, 2021. 17

[134] Bartlomiej Dudek and Pawel Gawrychowski. Computing quartet distance
is equivalent to counting 4-cycles. In Moses Charikar and Edith Cohen,
editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 733–743.
ACM, 2019. 32

[135] Bartlomiej Dudek and Pawel Gawrychowski. Counting 4-patterns in per-
mutations is equivalent to counting 4-cycles in graphs. In Yixin Cao, Siu-
Wing Cheng, and Minming Li, editors, 31st International Symposium on Al-
gorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong Kong,
China (Virtual Conference), volume 181 of LIPIcs, pages 23:1–23:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 32

[136] Lech Duraj, Krzysztof Kleiner, Adam Polak, and Virginia Vassilevska
Williams. Equivalences between triangle and range query problems. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
30–47. SIAM, 2020. 51

[137] Arnaud Durand and Etienne Grandjean. First-order queries on structures
of bounded degree are computable with constant delay. ACM Transactions
on Computational Logic (TOCL), 8(4):21–es, 2007. 23

[138] David A. Easley and Jon M. Kleinberg. Networks, Crowds, and Markets - Rea-
soning About a Highly Connected World. Cambridge University Press, 2010.
1

[139] Yuval Efron, Ofer Grossman, and Seri Khoury. Beyond alice and bob: Im-
proved inapproximability for maximum independent set in CONGEST. In
Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium on
Principles of Distributed Computing, Virtual Event, pages 511–520. ACM, 2020.
13, 207



BIBLIOGRAPHY 250

[140] Michael Elkin. An unconditional lower bound on the time-approximation
trade-off for the distributed minimum spanning tree problem. SIAM J. Com-
put., 36(2):433–456, 2006. 60, 207

[141] David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon Nissenzweig.
Sparsification—a technique for speeding up dynamic graph algorithms.
Journal of the ACM (JACM), 44(5):669–696, 1997. 1, 4

[142] Paul Erdös. On some extremal problems in graph theory. Israel Journal of
Mathematics, 3(2):113–116, 1965. 31

[143] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Com-
mentarii Academiae Scientiarum Imperialis Petropolitanae, 8:128–140, 1736. 1

[144] Guy Even, Moti Medina, and Dana Ron. Distributed maximum matching
in bounded degree graphs. In ICDCN, pages 18:1–18:10, 2015. 123

[145] Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Vá-
clav Rozhon. Local distributed rounding: Generalized to mis, matching,
set cover, and beyond. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023, pages 4409–4447. SIAM, 2023. 82

[146] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri,
and Jian Zhang. Graph distances in the data-stream model. SIAM J. Com-
put., 38(5):1709–1727, 2008. 6

[147] Manuela Fischer. Improved deterministic distributed matching via round-
ing. Distributed Comput., 33(3-4):279–291, 2020. 123

[148] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic dis-
tributed edge-coloring via hypergraph maximal matching. In 58th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 180–191, 2017. 12

[149] Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. Deterministic (1+ϵ)-
approximate maximum matching with poly(1/ϵ) passes in the semi-
streaming model and beyond. In STOC, pages 248–260, 2022. 123, 124,
125, 128



BIBLIOGRAPHY 251

[150] Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities
and impossibilities for distributed subgraph detection. In Proceedings of the
30th on Symposium on Parallelism in Algorithms and Architectures, SPAA, pages
153–162. ACM, 2018. 60, 207

[151] Abraham D. Flaxman and Shlomo Hoory. Maximum matchings in regular
graphs of high girth. Electron. J. Comb., 14(1), 2007. 124

[152] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren,
and Domagoj Vrgoc. Constant delay algorithms for regular document span-
ners. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 165–177, 2018. 23

[153] Sebastian Forster, Gramoz Goranci, and Monika Henzinger. Dynamic
maintenance of low-stretch probabilistic tree embeddings with applica-
tions. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1226–1245. SIAM, 2021. 17, 18

[154] Sebastian Forster and Danupon Nanongkai. A faster distributed single-
source shortest paths algorithm. In 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS, pages 686–697. IEEE Computer Society,
2018. 62

[155] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks can-
not compute their diameter in sublinear time. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 1150–1162, 2012. 11,
58, 59, 60, 64, 207

[156] Zoltán Füredi and Miklós Simonovits. The History of Degenerate (Bipartite)
Extremal Graph Problems, pages 169–264. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013. 60, 64

[157] Mohsen Ghaffari. An improved distributed algorithm for maximal indepen-
dent set. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’16, pages 270–277. SIAM, 2016. 12, 82

[158] Mohsen Ghaffari. Distributed maximal independent set using small mes-
sages. In SODA, pages 805–820. SIAM, 2019. 12, 82



BIBLIOGRAPHY 252

[159] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic,
and Ronitt Rubinfeld. Improved massively parallel computation algorithms
for mis, matching, and vertex cover. In Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2018, Egham, United King-
dom, July 23-27, 2018, pages 129–138, 2018. 12

[160] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic,
and Ronitt Rubinfeld. Improved massively parallel computation algorithms
for MIS, matching, and vertex cover. In PODC, pages 129–138. ACM, 2018.
124, 125, 130, 153

[161] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing
local distributed algorithms. In FOCS, pages 662–673, 2018. 123

[162] Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approxima-
tion. In Distributed Computing - 27th International Symposium, DISC 2013,
Jerusalem, Israel, October 14-18, 2013. Proceedings, volume 8205 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2013. 60, 207

[163] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of
local distributed graph problems. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 784–797, 2017. 82

[164] Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. Deterministic
distributed edge-coloring with fewer colors. In STOC, pages 418–430, 2018.
123

[165] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in
O(n log n) time in regular bipartite graphs. SIAM Journal on Computing,
42(3):1392–1404, 2013. 123, 124

[166] Shafi Goldwasser and Ofer Grossman. Bipartite perfect matching in pseudo-
deterministic NC. In ICALP, volume 80 of LIPIcs, pages 87:1–87:13, 2017. 124

[167] Louis Golowich. A new berry-esseen theorem for expander walks. In STOC,
pages 10–22. ACM, 2023. 124



BIBLIOGRAPHY 253

[168] Tzlil Gonen and Rotem Oshman. Lower bounds for subgraph detection in
the CONGEST model. In 21st International Conference on Principles of Dis-
tributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, vol-
ume 95 of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017. 60, 207

[169] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris
Schwiegelshohn, and Shay Solomon. (1 + ϵ)-approximate incremental
matching in constant deterministic amortized time. In SODA, pages
1886–1898, 2019. 123

[170] Ofer Grossman, Seri Khoury, and Ami Paz. Improved hardness of approxi-
mation of diameter in the CONGEST model. In Hagit Attiya, editor, 34th
International Symposium on Distributed Computing, DISC 2020, October 12-
16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 19:1–19:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 11, 31, 58

[171] Anupam Gupta, Guru Guruganesh, Binghui Peng, and David Wajc.
Stochastic online metric matching. In ICALP, volume 132 of LIPIcs, pages
67:1–67:14, 2019. 123

[172] Manoj Gupta and Richard Peng. Fully dynamic (1+ ϵ)-approximate match-
ings. In FOCS, pages 548–557, 2013. 123

[173] Magnús M. Halldórsson and Christian Konrad. Computing large indepen-
dent sets in a single round. Distributed Computing, 31(1):69–82, 2018. 82

[174] David G. Harris. Distributed local approximation algorithms for maximum
matching in graphs and hypergraphs. In FOCS, pages 700–724, 2019. 123,
124, 126, 128, 130, 137, 143

[175] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decre-
mental single-source shortest paths on undirected graphs in near-linear to-
tal update time. In 2014 IEEE 55th Annual Symposium on Foundations of Com-
puter Science, pages 146–155. IEEE, 2014. 17

[176] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and
Thatchaphol Saranurak. Unifying and strengthening hardness for dynamic



BIBLIOGRAPHY 254

problems via the online matrix-vector multiplication conjecture. In Proceed-
ings of the forty-seventh annual ACM symposium on Theory of computing, pages
21–30, 2015. 17, 18

[177] Monika R Henzinger and Valerie King. Maintaining minimum spanning
trees in dynamic graphs. In Proceedings of the twenty-sixth annual ACM sym-
posium on Theory of computing, pages 194–203. ACM, 1995. 1, 4

[178] Stephan Holzer, David Peleg, Liam Roditty, and Roger Wattenhofer. Dis-
tributed 3/2-approximation of the diameter. In Proceedings of the 28th Inter-
national Symposium on Distributed Computing, DISC, pages 562–564, 2014. 11,
58, 59, 60, 61

[179] Stephan Holzer and Nathan Pinsker. Approximation of distances and short-
est paths in the broadcast congest clique. In 19th International Conference on
Principles of Distributed Systems, OPODIS, volume 46 of LIPIcs, pages 6:1–
6:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. 11, 58, 62,
64

[180] Stephan Holzer and Nathan Pinsker. Approximation of distances and short-
est paths in the broadcast congest clique. In Proceedings of the 19th Interna-
tional Conference on Principles of Distributed Systems, OPODIS, pages 6:1–6:16,
2015. 60, 207

[181] Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs short-
est paths and applications. In Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC, pages 355–364, 2012. 11, 58, 59, 61

[182] Shlomo Hoory. On graphs of high girth. PhD thesis, Citeseer, 2002. 31

[183] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. 123

[184] Qiang-Sheng Hua, Haoqiang Fan, Lixiang Qian, Ming Ai, Yangyang Li, Xu-
anhua Shi, and Hai Jin. Brief announcement: A tight distributed algorithm
for all pairs shortest paths and applications. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA, pages 439–
441, 2016. 11, 58, 59



BIBLIOGRAPHY 255

[185] Amos Israeli and Alon Itai. A fast and simple randomized parallel algo-
rithm for maximal matching. Inf. Process. Lett., 22(2):77–80, 1986. 123, 125

[186] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7(4):413–423, 1978. 17

[187] Taisuke Izumi, Naoki Kitamura, and Yutaro Yamaguchi. A nearly linear-
time distributed algorithm for exact maximum matching. In David P.
Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 4062–
4082. SIAM, 2024. 123

[188] Svante Janson. Large deviations for sums of partly dependent random vari-
ables. Random Structures & Algorithms, 24(3):234–248, 2004. 137

[189] Ce Jin and Yinzhan Xu. Removing additive structure in 3sum-based reduc-
tions. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023, pages 405–418. ACM, 2023. 10

[190] Avi Kadaria, Liam Roditty, Aaron Sidford, Virginia Vassilevska Williams,
and Uri Zwick. Algorithmic trade-offs for girth approximation in undi-
rected graphs. In SODA, 2022. 17, 18

[191] Jeff Kahn and Jeong Han Kim. Random matchings in regular graphs. Comb.,
18(2):201–226, 1998. 124

[192] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite
matching with unknown distributions. In STOC, pages 587–596, 2011. 123

[193] Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972. 2

[194] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal
algorithm for on-line bipartite matching. In STOC, pages 352–358, 1990. 123

[195] CS Karthik and Pasin Manurangsi. On closest pair in euclidean metric:
Monochromatic is as hard as bichromatic. Combinatorica, 40(4):539–573,
2020. 17



BIBLIOGRAPHY 256

[196] Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the param-
eterized complexity of approximating dominating set. J. ACM, 66(5):33:1–
33:38, 2019. 17

[197] Ken-ichi Kawarabayashi, Seri Khoury, Aaron Schild, and Gregory
Schwartzman. Improved distributed approximations for maximum inde-
pendent set. In Hagit Attiya, editor, 34th International Symposium on Dis-
tributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, vol-
ume 179 of LIPIcs, pages 35:1–35:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. 13, 82, 89

[198] Seri Khoury, Manish Purohit, Aaron Schild, and Joshua Wang. Distributed
approximate maximum matching in regular graphs. In Under Submission,
2024. 14, 123

[199] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Con-
ference on Learning Representations, ICLR ’17, 2017. 1

[200] Jon M. Kleinberg. The small-world phenomenon: an algorithmic perspec-
tive. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 163–170. ACM, 2000. 1

[201] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from
the 3sum conjecture. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pages 1272–1287. SIAM, 2016. 8, 20, 33

[202] Ludek Kucera. Canonical labeling of regular graphs in linear average time.
In FOCS, pages 271–279. IEEE Computer Society, 1987. 124

[203] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of be-
ing near-sighted. In Proceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA, pages 980–989, 2006. 130

[204] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local compu-
tation: Lower and upper bounds. J. ACM, 63(2):17:1–17:44, 2016. 12, 13, 83,
124, 126



BIBLIOGRAPHY 257

[205] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge
University Press, New York, NY, USA, 1997. 62

[206] Christoph H. Lampert, Liva Ralaivola, and Alexander Zimin. Dependency-
dependent bounds for sums of dependent random variables, 2018. 137

[207] Christoph Lenzen and David Peleg. Efficient distributed source detection
with limited bandwidth. In Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC, pages 375–382, 2013. 11, 58

[208] Christoph Lenzen and Roger Wattenhofer. Leveraging linial’s locality limit.
In Distributed Computing, pages 394–407. Springer, 2008. 82

[209] Christoph Lenzen and Roger Wattenhofer. MIS on trees. In Proceedings of the
30th Annual ACM Symposium on Principles of Distributed Computing, PODC
2011, San Jose, CA, USA, June 6-8, 2011, pages 41–48, 2011. 12

[210] Ray Li. Settling SETH vs. approximate sparse directed unweighted diam-
eter (up to (NU)NSETH). In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1684–1696, 2021. 17

[211] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight
hardness for shortest cycles and paths in sparse graphs. In Artur Czu-
maj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 1236–1252. SIAM, 2018. 32

[212] Andrzej Lingas and Eva-Marta Lundell. Efficient approximation algorithms
for shortest cycles in undirected graphs. In Latin American Symposium on
Theoretical Informatics, pages 736–746. Springer, 2008. 17

[213] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput.,
21(1):193–201, 1992. 1, 3, 12, 90, 91, 125

[214] Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed ap-
proximate matching. J. ACM, 62(5):38:1–38:17, 2015. 123, 124

[215] Zvi Lotker, Boaz Patt-Shamir, and Adi Rosén. Distributed approximate
matching. SIAM J. Comput., 39(2):445–460, 2009. 123



BIBLIOGRAPHY 258

[216] Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM journal on computing, 15(4):1036–1053, 1986. 12, 13, 83

[217] Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM J. Comput., 15(4):1036–1053, 1986. 127, 131

[218] Aleksander Madry. Navigating central path with electrical flows: From
flows to matchings, and back. In FOCS, pages 253–262, 2013. 123
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