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Abstract: The revolution in next-generation DNA sequencing technologies is leading to explosive
data growth in genomics, posing a significant challenge to the computing infrastructure and software
algorithms for genomics analysis. Various big data technologies have been explored to scale up/out
current bioinformatics solutions to mine the big genomics data. In this review, we survey some
of these exciting developments in the applications of parallel distributed computing and special
hardware to genomics. We comment on the pros and cons of each strategy in the context of ease of
development, robustness, scalability, and efficiency. Although this review is written for an audience
from the genomics and bioinformatics fields, it may also be informative for the audience of computer
science with interests in genomics applications.
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1. Introduction

The successful completion of the human genome project led to a revolution in DNA sequencing.
In the ten years following the completion of the first human genome in 2003, several sequencing
technologies, collectively called Next-Generation Sequencing (NGS), underwent several rounds of
development and displacement. Each round brought capacity increases of 100–1000 fold (reviewed
in [1]). By 2019, two types of sequencing technology remain popular: Short-read and long-read. If we
think of a genome as a book, short-read sequencers read this book sentence-by-sentence with few
errors, while long-read sequencers read it paragraph-by-paragraph, typically with a higher error rate.
Illumina dominates the short-read sequencing market and two companies presently compete in the
long read sequencer market, Pacific Biosciences and Oxford Nanopore. All platforms are massively
parallel sequencers. Currently, the majority of sequencing data are from short-read technologies
because they have much higher throughput and lower cost per base. Thanks to these powerful
sequencing technologies, genomics, like many other disciplines, has entered the big data era [2]. In
FY2018, the Department of Energy Joint Genome Institute (DOE JGI) generated 200 Terabases (Tb) of
sequence data, enough to sequence one human genome over 3000 times at 20× coverage. The total
amount of sequence of the first release of the UK BioBank project (50,000 participants, or about 1/10 of
the total) is already over 50 TB [3].

Unlike other domains, where big data are characterized by the four “V”s: Volume (for large scale),
variety (for different forms), velocity (for fast streaming) and veracity (for data uncertainty), genomics
big data also has a “U” characteristic, meaning the majority of genomics data are unstructured. In
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addition, data volume, variety, and veracity often increase as genomics data flows through various data
analytic steps. It is not uncommon to need disk space 100–200 times the input for storing temporary
data. Software tools, having very diverse input requirements and functionalities, are needed to extract
and reduce the information contained in the sequence data, and these tools inevitably introduce noises
and biases.

The exponential growth of genomics data poses a great challenge for data management and
analysis. We will not discuss data storage and management problems here. Interested readers are
encouraged to consult the excellent review [4]. In this review, we will discuss general strategies of
scalable genomics solutions without focusing on algorithms for specific genomics applications. We will
discuss these solutions in the context of four criteria: Ease of development, robustness, scalability,
and efficiency. Here, scalability refers to the capability of a bioinformatic tool to handle bigger
data/problems when additional resources are added. Efficiency indicates how well a tool utilizes the
computational resources of the system. We use scalability in combination with efficiency to measure
how well a bioinformatic tool effectively uses increasing numbers of parallel processing elements
(nodes, CPUs, cores, processes, threads, etc.) for processing a growing amount of data. It is important
to note that, besides parallelization that we are going to discuss below, there are many generic factors
that could impact the performance of genomic solutions, including compilers, programming models,
software-hardware optimization, etc.

2. Scalable Strategies

2.1. Shared-Memory Multicore Architecture

Given that many genomics research groups do not have seasoned software engineers for
distributed software development, exploiting single servers with a large amount of RAM and CPU
cores is a straightforward solution for large-scale sequence analysis. My group initially invested in big
memory nodes with Terabytes of RAM. The cache-coherent non-uniform memory access architecture
of the XSEDE resource Blacklight, housed at the Pittsburgh Supercomputing Center (PSC), with up
to 16 TB of RAM, enables very large plant genome assemblies such as the hexaploid wheat genome
[5]. Similarly, an SGI UV200 machine with 7 TB of shared RAM also enables wheat genome assembly
(38 days on 64 CPUs) [6]. Amazon Web Services (AWS) also offers large memory EC2 instances with
up to 4 TB and 128 cores (X1e instances) and much larger memory footprints are in alpha testing.

In these shared memory supercomputers with large memory and lots of cores, parallelism is
usually achieved by multi-threading, i.e., dividing a process into multiple threads and executing
them in parallel. As memory and other resources are shared among threads, threads can read
and write to the shared memory without the need for special mechanisms of communication.
Pthread [7] and OpenMP [8] are two implementations of multi-threading at different levels.
Pthreads, the POSIX standard thread library, is a low-level application programming interface
(API) for working with threads, whereas OpenMP gives programmers higher level threading
options that greatly simplify programming and debugging. Consequently, OpenMP is the
predominant threading model on shared memory systems for scientific computing. Accordingly,
there are more OpenMP-based tools (SPAdes [9–11]) than Pthread-based tools (ALLPATHS-LG [12],
SOAPdenovo [13]) on genomic analysis.

These large memory systems enable rapid results without extra software development time.
However, the cost of upgrading a node increases exponentially with memory size. Furthermore, there
are physical limits to how much memory or cores can be added to a node.

2.2. Special Hardware

The increasing demand for power-efficient, high-performance computing spurred a revolution in
computer architectures over the last couple of decades, as specialized processing units emerged to
improve the efficiency of parallel tasks. In this environment, the classical host processor delegates the
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execution of the computationally intensive parts of the job to co-processors, such as field-programmable
gate arrays (FPGA) [14], graphics-processing units (GPU) [15], and tensor processing unit (TPU) [16],
to speed up the overall execution. These special hardware architectures are now being applied to
genomics data analysis with remarkable success. For example, Falcon Computing developed an
FPGA-based solution [17] that speeds up the genome analysis tool kit (GATK) [18], a genomics variant
analysis suite, by 50 times. GPU has a long history in computational biology for special applications
such as molecular dynamics simulation [19,20], and recently sees an increasing application in NGS
data analysis (reviewed in [21]). As the genomics field is rapidly adopting deep learning technologies
(reviewed in [22]), GPUs and TPUs are expected to speed up more genomics applications such as
AlphaFold [23].

These special hardware architectures greatly increased the amount of parallelism that a machine
can exploit. However, there are several limitations including availability, difficulty scaling on
heterogeneous systems, and the need to port existing CPU-based algorithms to these systems.
In addition, training large deep neural networks on GPUs/TPCs could be very cost-prohibitive [24].

2.3. Multi-Node HPC Scalability

For on-premise hardware scaling, one could either scale up by upgrading the existing nodes
with more capacity (cores, memory, co-processing unit, storage, etc.) as we discussed above, or scale
out—by adding more nodes to form a high-performance computing cluster (HPC).

Message Passing Interface (MPI) [25], the de facto industry standard for distributed memory systems,
is a language-independent communications protocol that uses a message-passing paradigm to share
the data and state among a set of cooperative processes running on an HPC cluster. As it takes
the advantage of data locality, MPI-based implementation yields great computing performance
compared with alternatives [26]. MPI-based NGS sequence analysis tools, including read aligner
such as pBWA [27] and assembler such as Ray [28], can scale up to hundreds of thousands cores on a
HPC cluster.

Partitioned Global Address Space (PGAS) [29] is a distributed shared-memory programming model
that combines the advantages of the shared-memory programming paradigm and the performance
of the message passing programming paradigm. Unified Parallel C (UPC) [30] and UPC++ [31] are
C and C++ extensions of PGAS model, repsectively, by combining the advantages of the PGAS and
C/C++ language features such as templates, object-oriented design, operator overloading, and lambda
functions. These advantages have brought noticeable performance gains in a few challenging genomic
problems including metagenome assembly: UPC-based tools like Meta-HipMer [32] can assemble a
2.6 TB metagenome dataset in just 3.5 h with 512 nodes.

The biggest drawback of MPI and the PGAS languages is their programmability, as they require
experienced software engineers to take care of fine-grained control over mechanisms such as memory
locality, data communication, and tasks synchronization. These inevitably drive up the development
and maintenance costs. Another potential drawback of large-scale runs is fault-tolerance; failure
of one process could lead to the failure of the entire application. Some recent community efforts
aim to combine the ease of programming such as Python with the superior efficiency of distributed
computing paradigms such as MPI, e.g., the RAY project (https://github.com/ray-project/ray), which
may encourage more genomics applications to take advantage of the distributed systems.

2.4. Cloud Scalability

The need to process an unprecedented amount of genomics data efficiently and robustly also
drives many applications built on cloud computing technologies (reviewed in [33]). In cloud computing
paradigms, data are distributed to a large number of nodes and computation is shifted to the node
where the data resides. Hadoop and Spark are two powerful big-data frameworks for cloud computing.

The Hadoop framework [34] is the Apache’s open-source implementation of Google’s
MapReduce [35] programming model. With the combination of its two core components, Hadoop
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Distributed File System (HDFS) [36] and MapReduce, Hadoop enables a load-balanced, scalable,
and robust solution for big data analytics. Many Hadoop-based applications have been developed
for genomics, to name a few, NGS read alignment [37,38], genetic variant calling [39], sequence
analysis [40,41].

The IO-intensive nature of Hadoop’s MapReduce can severely limit its performance. For example,
map tasks of genomics applications often produce 10–100× amount of intermediate data stored in local
disks until the reduce tasks remotely fetch them (pull) via HTTP connections, adding very significant
communication overhead. Since there is no state shared between individual map and reduce tasks,
Hadoop is not suitable for iterative tasks. Reusing the same dataset across multiple iterations is very
common in sequence analysis algorithms, making Hadoop-based solutions very inefficient compared
to implementations of MPI and OpenMP.

Apache Spark [42] was developed to overcome the above limitations of Hadoop by providing an
efficient abstraction for in-memory computing called Resilient Distributed Dataset (RDD) [43]. Spark
can hold the intermediate data and computations in memory as persisted RDDs, thereby improving
performance by reducing disk overhead. Besides Scala, Spark also supports other programming
languages such as Python and R, which greatly improves its programmability. Integration with
the Jupyter notebook interactive environment, or a managed platform provided by Databricks [44],
can significantly shorten software development and data analysis time. Many Spark-based genomics
applications have been developed for large-scale sequence processing on public or private cloud
systems [45–47]; for a comprehensive review, please refer to [45].

Spark with in-memory data processing is significantly faster than Hadoop, but it is still slower
than MPI-based implementation, largely owing to the latter’s low-level programming language
and reduced overhead (e.g., no fault handing like Spark has). Another challenge is that not all the
components in a complex genomics data processing pipeline can be easily ported to Spark due to the
lack of corresponding libraries.

Cloud-based genomics solutions are evolving in a rapid pace. Cloud systems integrate data
management (store, access, and share) and data analysis into one platform, providing flexibility to scale
in/out and up/down, and offer user-friendly, consistent, reproducible data pipelines. Such solutions,
e.g., Terra (https://app.terra.bio/), will soon unshackle genomics data scientists from the burden of
managing hardware and software infrastructures and enable large team collaborations.

2.5. Container Scalability

Bioinformatic pipelines often consist of several independent tools or modules, and these
components may require different running environments or have different software dependencies,
making them difficult to deploy, manage, and run. Containerization packages all components of a
pipeline and their dependencies into a container image so that the pipeline can run consistently on any
infrastructure across on-premise and cloud environments. Containers are gaining much popularity
because it addresses the challenges of sharing bioinformatics tools and enabling reproducible analyses.
For example, ORCA (the genomics Research Container Architecture [48]) provides containers of over
600 bioinformatics tools (as of October 2019). Another resource, Dockerhub (hub.docker.com), also
hosts 100+ genomics-related containers. Among the available container platforms, Docker [49] is by
far the most popular choice. One major limitation of Docker is its root-owned daemon process, which
is not acceptable on most HPC systems. Shifter [50] and Singularity [51] are docker-alternatives that
support HPC-based containers.

Containers are “units of deployment”. One can host more containers on a single node by
upgrading its hardware resources (scale-up). For heavy workloads, Kubernetes [52] (often abbreviated
just as “k8s”) is a container-orchestration system that scales out container services on a cluster of
nodes. It achieves this by abstracting infrastructure components coordination, auto-scaling, and
self-healing. Kubernetes works with many container engines and enables automated deployment
on cloud or on-premise clusters. One of the successful adoptions of Kubernetes in genomics is the
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Galaxy project [53]. However, Kubernetes does not reduce the deployment complexity for applications
with complex workflows. To overcome this limit, one solution is to encapsulate a set of Kubernetes
resources into a preconfigured package, or charts, and manage the charts using a manager like
Helm [54]. Another solution is to use a container-native workflow engine such as Argo [55], which
supports both directed acyclic graph (DAG) and step-based workflows on Kubernetes. For deploying
machine-learning workflows, Kubeflow [56] makes it simple, portable, and scalable. Despite these
efforts, compared to well-established resource managers and schedulers such as slurm or torque in
HPC and YARN in the cloud, Kubernetes is still in its infancy.

3. Conclusions and Future Perspectives

We were only able to cover a few scaling strategies for genomics analysis in Section 2, summarized
in Table 1 in the context of ease of development, robustness, scalability, and efficiency. In the table,
we also listed some bioinformatic tools using these strategies. One might have to combine several
strategies, for example, using a single node for development and HPC for large-scale production.
When the scale of the analysis exceeds one’s on-premise capacity, they can "spillover" to cloud-based
solutions for additional capacity.

Table 1. A Comparison of Current Scalable Technologies.

Shared-Memory
Multicore

Architecture
Special Hardware HPC Cloud Container

Orchestration

Ease of dev +++ + + ++ +++

Robustness ++ ++ + +++ +++

Scalability + + +++ +++ +++

Efficiency ++ +++ ++ + +

Representative
Software

SPAdes [9],
OpenMP LCS [11],

ALLPATHS-LG [12],
SOAPdenovo [13],

LSHvec [57]

FAGP [17],
SOAP3 [58],

SOAP3-dp [59],
CUSHAW2-GPU [60]
FPGA-based Smith-

Waterman [61]

pBWA [27],
Ray [28],

Meta-HipMer [32]
ClustalW-MPI [62]
TREE-PUZZLE [63]

HAlign [37]
BigBWA [38],
BioPig [40,41],

SpaRC [46],
Metaspark [47],
SparkBWA [64]

Galaxy-
Kubernetes [53]

It is important to note that genomic analysis pipelines are complex sequential-parallel systems
consisting of multiple bioinformatic tools, each with a variable degree of parallelism. The overall
scalability is often limited by the step with the least scalability. In addition, the performance gain from
increasing parallelism is limited by the Amdahl’s law [65] in both parallel and distributed systems.

Serverless, or “Function-as-a-Service”, is another interesting concept that is currently undergoing
rapid development. It eliminates the need to set up computing infrastructure and brings several
benefits including ease-of-use, instantaneous scalability, and cost-effectiveness. Breaking up a gigantic
monolithic application into smaller micro-services enables scaling up individual functions, reducing
development time, and increasing agility as the pipeline evolves faster. We expect more and more
developers to deploy their complex bioinformatics workflows as serverless web services by taking
advantage of the rich cloud ecosystems offered by major commercial cloud vendors (AWS Lambda,
Microsoft Azure, and Google Clouds Function, etc.)
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