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ABSTRACT OF THE DISSERTATION

Learning Factor Analysis Structures:

A Clique Search Method on Correlation Thresholded Graphs

and a Piecewise Linear Spline Approach

by

Dale S. Kim

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Qing Zhou, Chair

Factor analysis is a widely used method for modeling a set of observed variables by a

set of unobserved latent factors. Despite their widespread application, existing methods

for factor analysis suffer from some or all of the following weaknesses: requiring the

number of factors to be known, lack of theoretical guarantees for learning the model

structure, and nonidentifiability of the parameters due to rotation invariance properties of

the likelihood. To address these concerns, this dissertation proposes two main methods.

First, we propose a fast correlation thresholding (CT) algorithm that simultaneously

learns the number of latent factors and a model structure that leads to identifiable

parameters. This approach translates this structure learning problem into the search for

so-called independent maximal cliques in a thresholded correlation graph that can be

easily constructed from the observed data. Moreover, we present a routine to find all

independent maximal cliques very efficiently by checking the neighborhood of each node in

the graph. Finite-sample error bound and high-dimensional consistency for the structure

learning of this method is also presented. Second, we consider the problem of non-linear

factor analysis, and propose a piecewise linear spline method under an EM-algorithm

framework. In many practical settings, learning a non-linear model may obviate the
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need for multiple latent factors, and also allow the model to avoid rotational invariance

nonidentifiability. This method is explored by simulation, and a preliminary study into

the non-linear multidimensional extension is also presented.
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Chapter 1

Introduction

Factor analysis is a commonly used multivariate technique which conceptualizes observed

variables as a function of unobserved latent factors. Methods and discussions have appeared

in a variety of fields, particularly the social sciences, such as psychology (Reise et al.,

2000), sociology (Werts et al., 1973), education (Schreiber et al., 2006), and epidemiology

(Martínez et al., 1998). It is generally assumed that the number of latent factors is less than

the number of observed variables, hence serving as a dimension reduction procedure in this

sense. Many applications use factor analysis to relate observed variables to hypothetical

constructs that cannot be directly observed. These may include personality (McCrae

and Costa, 1987), emotional states (Lovibond and Lovibond, 1995), symptomatology

(Nisenbaum et al., 1998), or political ideology (Bollen, 1980).

1.1 The Factor Analysis Model

Let X = (X1, . . . , Xp) ∈ Rp be a (column) vector of observed variables. The factor

analysis model specifies the joint distribution of X in the form of a structural equation

model:

X = ΛL + ϵ, (1.1)

where L = (L1, . . . , Ld) ∼ Nd(0, Φ) is a vector of latent variables or factors, ϵ =

(ϵ1, . . . , ϵp) ∼ Np(0, Ω) is a vector of independent errors with a diagonal Ω, and Λ =

(λij) ∈ Rp×d is a matrix of coefficients, or factor loadings. For convenience, an additive

mean vector µ is omitted from the model without loss of generality. The functional
1



Figure 1.1: An illustration of a general factor analysis model. Directed edges denote a functional
relation. Undirected edges denote a correlation. The dependence of X on ϵ and the independence
among the ϵ variables are considered to be implicitly understood and thus omitted.

relations of the model are depicted in Figure 1.1, which illustrates that all observed

variables X are a function of the latent variables L. We assume that d < p, since factor

analysis is generally used as a dimension simplification technique. In the context of Λ, Xi

is a function of Lj if and only if λij ̸= 0, in which case we may say that Lj is a parent of

Xi and Xi a child of Lj. We assume that every Xi has at least one parent, and every Lj

has at least one child, i.e., there are no rows or columns of full zeroes in Λ. No functional

relations are assumed among the L variables, and they are only assumed to be correlated

(oblique factor analysis) or uncorrelated (orthogonal factor analysis). We are considering

the more general case of oblique factor analysis models in this study.

Subsequently, factor analysis models can readily accommodate causal assumptions

and are often used as causal models. In such models, causal relations are generally assumed

to be from L to X, such that a causal relation exists from Lj to Xi if and only if λij ̸= 0.

Although factor analysis models make useful causal representations, we note that the

methods presented herein will not be using such assumptions.

The model stated in Equation (1.1) implies a covariance structure Σ for X as follows:

Σ(θ) := Var(X) = Var(ΛL + ϵ) = ΛΦΛT + Ω, (1.2)

letting θ = {Λ, Φ, Ω}. We write Σ(θ) to make explicit that we are referring to Σ as a

function of the parameters Λ, Φ, and Ω. At times, it will be easier to deal with observed

variables which are unit variance scaled. Let Dσ = diag(Σ)1/2, i.e. a diagonal matrix with

2



entries Σ1/2
ii . Then we define a unit variance scaled X as X̃ in the following manner:

X̃ := D−1
σ X = D−1

σ (ΛL + ϵ) = Λ̃L + ϵ̃, (1.3)

where Λ̃ = D−1
σ Λ and ϵ̃ = D−1

σ ϵ. Similarly, it follows that a correlation matrix Σ̃ can be

expressed as:

Σ̃(θ) := D−1
σ ΣD−1

σ = Λ̃ΦΛ̃T + Ω̃, (1.4)

where Ω̃ = D−1
σ ΩD−1

σ . Note that the factor analysis model for Σ and Σ̃ are often used

interchangeably, and the elements of Σ̃(θ) may be referred to as ρij. Finally, notice that

the structure of a factor analysis model is entailed by the number of factors d and the

support of Λ, denoted A(Λ). Therefore we will define the structure of a factor analysis

model as the pair (d, A(Λ)).

Given the structure of a factor analysis model (d, A(Λ)), maximum likelihood is

most widely used for estimating the parameters, based on the Gaussian log-likelihood for

X ∼ Np(0, Σ(θ)):

ℓ(θ) = n

2 log|Σ(θ)−1| − n

2 tr(Σ(θ)−1S), (1.5)

where S is the sample covariance matrix. However, there is no closed-form solution for

the MLE (Jöreskog, 1967). Therefore, iterative algorithms, such as Newton-Raphson

(Jennrich and Robinson, 1969) or Expectation-Maximization (Rubin and Thayer, 1982),

are employed, which can be computationally intensive when the number of observed

variables p is large. Furthermore, the parameters Λ and Φ as in Equation (1.2) are in

general not identifiable, often referred to as rotational nonidentifiability in the literature

(Anderson and Rubin, 1956). This issue must be taken care of with additional criteria for

parameter estimation or restrictions on the model structure.

In summary, all methods of learning factor analysis must address three fundamental

issues: (1) determine the number of factors, (2) learn the support of Λ, (3) resolve the

rotational nonidentifiability issue. As we will review, an overabundance of literature has

been dedicated to addressing these issues separately, all with varying degrees of success.

From a practitioner’s perspective, this has led to a combinatoric medley of methods for

3



determining the number of factors, determining the structure of the model, and choosing

a solution from the rotationally equivalent set. In contrast, we seek to address all three

issues simultaneously from a unified framework.

1.2 Review of Prior Work

Structure learning in the context of factor analysis typically refers to restrictions imposed

on Λ. We are interested in sparse structures, where many entries of Λ are zero. Sparse

structures are favorable in that they allow a clean interpretation of the model so it is clear

as to which latent variables relate to each observed variable. If causal relations can be

assumed, then learning the structure of Λ can be seen as a problem of learning causal

relations. In such applications, selecting the most relevant relations through sparsity can

greatly improve interpretability.

Prior work on learning factor analysis may be constraint-based or score-based.

Constraint-based methods involve the analyzing permutations of correlations and par-

tial correlations among the observed variables for constraints that would be implied by

potential models (Scheines et al., 1998; Silva et al., 2006). However, we note that the

focus of these algorithms is to construct equivalence classes of possible models and can

be computationally demanding. In contrast, our goal is to develop efficient methods for

learning and estimating a single model output in this work.

Single model output methods of sparse factor analysis usually involve score-based

techniques of search or estimation. To seek sparse solutions in particular, restrictions

are usually imposed on the model in Equation 1.1. A typical restriction would be to set

Φ = Id, where variants such as ℓ1 penalties (Choi et al., 2010; Ning and Georgiou, 2011),

non-concave penalties (Hirose and Yamamoto, 2014b), and alternative parameterizations

(Trendafilov et al., 2017) have been applied. Other work has investigated this topic with

prior restrictions on Λ, e.g., assuming one entry per row (Adachi and Trendafilov, 2018).

In contrast we focus on estimating these parameters without these restrictions. We review

other relevant work on this problem in what follows.
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1.2.1 Exploratory Factor Analysis

Currently, the main methods of learning a sparse structure on Λ fall under the umbrella of

Exploratory Factor Analysis (EFA). EFA itself may or may not include a sparsity learning

step depending on the purpose of the model. In practice, it is an algorithm that works

generally as follows (Ford et al., 1986; Howard, 2016):

1. Given d as an input, set Φ = Id and estimate an unconstrained Λ and diagonal Ω

(e.g., via MLE by optimizing Equation 1.5).

2. Use a rotation criterion to find Φ.

3. (Optional) For sparsity, small entries of Λ may be set to zero if they are less than

some threshold τ .

4. (Optional) Use a model selection procedure to choose among several choices of d.

To explain Step 2 , note that if Λ is unconstrained, the factor analysis model is not

identifiable. That is, there may be many (Λ, Φ) pairs that exist such that Σ(θ) = ΛΦΛT +Ω.

This issue is referred to as a lack of rotational uniqueness. To see this, let M be a d × d

invertible matrix. Then, beginning with an orthogonal factors model that would be

obtained by Step 1 of EFA (Φ = Id), we have

Σ(θ) = ΛΛT + Ω

= ΛMΦMΛT
M + Ω,

(1.6)

letting ΛM = ΛM and ΦM = M−1M−T . To ensure that ΦM remains a valid correlation

matrix, we impose the constraint that diag(M−1M−T ) = Id. Hence, estimating Φ (Step 2)

amounts to finding a suitable M .

To find M , additional constraints called “rotation criteria” can be imposed (Browne,

2001). One common example of such a criteria is to choose M such that the following is

minimized:

f(ΛM) = (1 − κ)
p∑

i=1

d∑
j=1

d∑
l ̸=j

λ2
ijλ

2
il + κ

d∑
j=1

p∑
i=1

p∑
k ̸=i

λ2
ijλ

2
kj, κ ∈ [0, 1], (1.7)

5



subject to the aforementioned constraints of M . This is known as the Crawford-Ferguson

family of rotation criteria (Crawford and Ferguson, 1970). We can see that the term∑d
j=1

∑d
l ̸=j λ2

ijλ
2
il ≥ 0, where equality holds if and only if there is at most one non-zero

element in the ith row of ΛM . The term ∑p
i=1

∑p
k ̸=i λ2

ijλ
2
kj behaves the same way except

it acts upon the jth column of ΛM . Thus, Equation 1.7 is a weighted penalty on the

row and column magnitudes of ΛM , which is parameterized by κ. The most common

parameterization choice is κ = 1/p, which is also known as varimax rotation (Kaiser,

1958).

Arguably, the biggest criticism of EFA is this lack of rotational uniqueness and the

ad hoc nature of rotation criteria: Different criteria may yield very different solutions.

Further, Step 3 of the EFA algorithm is another source of subjectivity, due to the lack of

a principled way to enforce sparsity in Λ. Even though a rotation criterion may minimize

certain magnitudes of the entries of ΛM , rotation alone is insufficient to produce entries

that are exactly zero. Hence, one must choose an arbitrary threshold τ by which to set

low magnitude entries of Λ to zero.

1.2.2 Penalized Exploratory Factor Analysis

As a potential solution to the subjectivity problems in EFA, penalized methods also

have been developed. Instead of rotating factor coefficients, penalized EFA can achieve

sparse solutions directly in estimation. While penalized estimation additionally requires

tuning parameters, these can be selected in an objective manner, for example by using

the Bayesian Information Criterion (BIC; Schwarz, 1978) or cross-validation (CV; Scharf

and Nestler, 2019).

These methods maximize a penalized likelihood (or minimize other loss functions) of

the form:

ℓp(θ) = ℓ(θ) − p(Λ), (1.8)

where p(·) is some penalty function. One example is the LASSO penalty (Tibshirani,

1996), which has been adapted to EFA (Choi et al., 2010; Ning and Georgiou, 2011) as

6



follows:

pκ(Λ) = κ∥Λ∥1 = κ
p∑

j=1

d∑
k=1

|λjk|, (1.9)

for a regularization parameter κ. Another common example is the minimax-concave

penalty (MCP; Zhang, 2010), which has been utilized in penalized EFA as well (Hirose

and Yamamoto, 2014a,b):

pκ,γ(Λ) = κ
p∑

j=1

d∑
k=1

∫ |λjk|

0

(
1 − x

κγ

)
+

dx, (1.10)

where κ, γ are regularization parameters. In both cases, the regularization parameters are

chosen by some model selection procedure (BIC, CV), while the number of latent factors

d is generally regarded as given.

1.2.3 Choosing d

One of the early well-known methods is to set d equal to the number of eigenvalues greater

than 1, also known as the Kaiser-Guttman criterion (Guttman, 1954; Kaiser, 1960). This

number was shown to be a lower bound on the number of factors in the population

(Guttman, 1954). It also has been argued that the minimum variance a latent variable

should be able to explain is at least equal to that of a single observed variable under null

correlation (Kaiser, 1960). However, subsequent authors have criticized the lower bound

argument as not useful since the goal is to determine the actual number of factors (Cliff,

1988; Lance et al., 2006; Velicer and Jackson, 1990). Furthermore, empirical studies have

shown inaccurate results in a variety of situations (Browne, 1968; Patil et al., 2008).

Another well-known method is to examine the successive differences between the

ordered eigenvalues. Then the greatest of these differences is argued to be a border at

which the eigenvalues that represent the latent variables’ variance ends, and the eigenvalues

that represent the error variances begins. This is often done in an informal manner by

checking for an “elbow” in the plot of ordered eigenvalues (known as the Scree Test;

Cattell, 1966), or more formally by examining the actual differences between eigenvalues

(Raîche et al., 2013). Some criticisms of this approach are that the differences between
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successive eigenvalues may not be clear or substantial and are vulnerable to sampling

fluctuations (Hayton et al., 2004; Linn, 1968). While this method has been shown to

perform better than the Kaiser-Guttman criterion, it still suffers from poor reliability

(Hakstian et al., 1982; Streiner, 1998; Zwick and Velicer, 1986).

A potential problem that interferes with the efficacy of these methods is that sampling

variability is not accounted for. Thus, other methods use a parametric bootstrap to

generate data from a hypothetical null correlation model, to obtain a reference distribution

of ordered eigenvalues. This null model provides a comparison to the hypothesis that all

eigenvalues represent error variance (zero latent variables). Thus the number of eigenvalues

higher than this reference distribution is taken to be d. This is known as parallel analysis

(Horn, 1965) and can be done with respect to the average bootstrapped eigenvalue or

some empirical quantile (Glorfeld, 1995). This method is essentially the same as the

Kaiser-Guttman criterion, except that it takes sampling variation into account. For

this reason, authors have criticized parallel analysis for the same shortcomings as the

Kaiser-Guttman method (Crawford and Koopman, 1973; Wayne et al., 2000).

1.3 Motivation and Contributions

As reviewed above, the problems with current methods can be categorized into three

main issues: determining the number of latent variables d, learning the support of Λ, and

determining a rotationally unique solution. To address this, we propose a correlation

thresholding algorithm to learn the support of Λ and the number of latent variables

simultaneously, whose solution is guaranteed to be rotationally unique. We also estab-

lish high-dimensional consistency for learning the structure (d, A(Λ)). Our method first

constructs an undirected graph on p nodes, corresponding to X1, . . . , Xp, by threshold-

ing sample correlations among these observed variables. We find that, under certain

assumptions, there is a perfect correspondence between the latent factors and a class

of maximal cliques (which we call independent maximal cliques defined in Section 2.2)

in the correlation thresholded graph. Therefore, the structure learning problem can be

converted to a search for all independent maximal cliques in the graph. We prove that
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all the independent maximal cliques can be found by checking the neighborhood of each

node, of which the computational complexity is no more than and usually well below

O(k2p), where k is the maximum neighborhood size. Another enormous advantage of our

algorithm is that it can provide a set of candidate model structures without maximizing

the likelihood (Equation 1.5) or a penalized likelihood, and is well applicable to problems

with thousands of variables, as demonstrated in the numerical results.

The rest of this dissertation is organized as follows. We describe our correlation

thresholding algorithm in Chapter 2 and develop theoretical justifications for its use in

Section 2.3. We then test our correlation thresholding algorithm along with other methods

with a series of simulation studies in Section 2.4 and a real data example in Section 2.5. In

Chapter 3 we examine non-linear generalizations of the factor analysis model, and present

a simple piecewise linear spline method for estimating it. Finally, we conclude with some

comments on future work and extensions in Chapter 4.

Notation throughout this article will be as follows. Define [n] := {1, . . . , n}. Let

A ⊆ [n] and B ⊆ [p] be index sets. The complement of A is denoted as Ac. For a matrix

M = (mij) ∈ Rn×p, we define MAB as the submatrix of M consisting of the rows indexed

by A and columns indexed by B. Similarly for a vector V ∈ Rn, we define VA as the

subvector of V consisting of the entries indexed by A. We denote the support of M as

A(M) := {(i, j) : mij ≠ 0}. We use 0 to represent a matrix or vector of zeroes, whose

dimension can be inferred from context and In denotes the n × n identity matrix.
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Chapter 2

The Correlation Thresholding Algorithm

2.1 Overview

To begin, we review several terms and definitions from graph theory. We define a graph

G as an ordered pair (V, E), explicitly denoted as G(V, E), where V is a set of vertices

and E ⊆ V × V is a set of edges. For convenience, we will use V = X to mean that the

elements of the vertex set V represent the index set of the random vector X. We also

restrict our attention to undirected graphs, where we only consider edges (i, j) ∈ E such

that i < j. A clique of G(V, E) is a subset of vertices C ⊆ V such that all pairs of distinct

vertices in C are connected by an edge. Finally, a maximal clique is a clique that cannot

be extended by including more vertices from V .

We now give a simple example to demonstrate how we will use graphical models for

the factor analysis model as in Equation (1.1). Consider the following parameters:

Λ̃ =



λ̃11

λ̃21

λ̃31 λ̃32

λ̃42

λ̃52


, Φ =

1

1

 , Ω̃ =



ω̃1

ω̃2

ω̃3

ω̃4

ω̃5


. (2.1)

This model is illustrated in Figure 2.1 (left). Note that these parameters imply the
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following correlation matrix:

Σ̃(θ) = Λ̃ΦΛ̃T + Ω̃ =



λ̃2
11 + ω̃1 λ̃11λ̃21 λ̃11λ̃31

λ̃11λ̃21 λ̃2
21 + ω̃2 λ̃21λ̃31

λ̃11λ̃31 λ̃21λ̃31 λ̃2
31 + λ̃2

32 + ω̃3 λ̃32λ̃42 λ̃32λ̃52

λ̃32λ̃42 λ̃2
42 + ω̃4 λ̃42λ̃52

λ̃32λ̃52 λ̃42λ̃52 λ̃2
52 + ω̃5


. (2.2)

From here, let us convert Σ̃(θ) = (ρij)p×p to a graph that simply encodes the non-zero

correlations. To do this, we define a thresholded correlation graph G(X, E(τ)), where the

edge set is determined by thresholding the values of |ρij| at τ ≥ 0, i.e.,

E(τ) := {(i, j) : |ρij| > τ, i < j}. (2.3)

For this example, G(X, E(0)) is depicted in Figure 2.1 (right). There are two key

observations to make regarding the relation between this factor analysis model and its

thresholded correlation graph. First, the number of latent variables (d = 2) equals the

number of maximal cliques in G(X, E(0)). Second, these maximal cliques have a one-to-one

correspondence to the children sets of the latent variables in the factor analysis model.

In Figure 2.1, the maximal cliques {X1, X2, X3} and {X3, X4, X5} (right panel) are the

respective children sets of L1 and L2 (left panel). The primary motivation of our algorithm

is to leverage this correspondence by using such a thresholded correlation graph to gain

insight into the support of Λ. In later sections we will develop the theoretical details for

these relations to hold formally in more general settings.

For now, let us generalize this model to allow a correlation between L1 and L2, i.e.

ϕ12 ≠ 0 in (2.1). In this case, the edge detection procedure is not as simple as thresholding

for non-zero correlations. Generally, we begin with a saturated correlation matrix (no

sparsities), since variables that do not share parents will be correlated by virtue of their

parents being correlated. However, in most practical settings, the correlation of variables

that do not share parents, e.g. X1 and X4, will have a lower magnitude than those
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Figure 2.1: (Left) graphical representation of the factor analysis model described in Equation (2.1);
(right) the corresponding thresholded correlation graph G(X, E(0)).

variables whose parents are shared, e.g. X1 and X2. To see why this could be the case,

consider Σ̃(θ) in Equation (2.2) again if the correlation ϕ12 ̸= 0:



λ̃2
11 + ω̃2

1 λ̃11λ̃21 λ̃11λ̃31 + λ̃11λ̃32ϕ12 λ̃11λ̃42ϕ12 λ̃11λ̃52ϕ12

λ̃11λ̃21 λ̃2
21 + ω̃2

2 λ̃21λ̃31 + λ̃21λ̃32ϕ12 λ̃21λ̃42ϕ12 λ̃21λ̃45ϕ12

λ̃11λ̃31 + λ̃11λ̃32ϕ12 λ̃21λ̃31 + λ̃21λ̃32ϕ12 λ̃2
31 + λ̃2

32 + ω̃2
3 λ̃31λ̃42ϕ12 + λ̃32λ̃42 λ̃31λ̃52ϕ12 + λ̃32λ̃52

λ̃11λ̃42ϕ12 λ̃21λ̃42ϕ12 λ̃31λ̃42ϕ12 + λ̃32λ̃42 λ̃2
42 + ω̃2

4 λ̃42λ̃52

λ̃11λ̃52ϕ12 λ̃21λ̃45ϕ12 λ̃31λ̃52ϕ12 + λ̃32λ̃52 λ̃42λ̃52 λ̃2
52 + ω̃2

5


.

Since |ϕ12| < 1, we see that it has a shrinking effect on the correlations between variables

that do not share parents (bolded for emphasis). That is, if |ϕ12| is small enough, there

would exist some threshold by which these correlations (bold) were below and correlations

among variables with shared parents (not bold) were above. Then this threshold could

identify and eliminate edges between pairs of variables that did not share parents, yielding

a structurally informative graph as in Figure 2.1 (right). Finding such a threshold and

using the thresholded correlation graph to learn the factor analysis structure is the key

intuition behind our algorithm.

A main assumption here is that there exists some threshold τ0 such that G(X, E(τ0))

can differentiate between pairs of variables that share latent factor parents and pairs that

do not. Let the parent set of Xi be Πi := {j : λij ̸= 0, j ∈ [d]}. Then we can formalize

this notion by denoting the set of pairs that share parents as

E0 := {(i, j) ∈ [p] × [p] : Πi ∩ Πj ̸= ∅, i < j}. (2.4)
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Subsequently, we denote the set of pairs that do not share parents (the complement of

E0) as:

Ec
0 = {(i, j) ∈ [p] × [p : Πi ∩ Πj = ∅, i < j}. (2.5)

Essentially, we would like to find some threshold τ0 that is able to separate the E0 and

Ec
0 sets by the magnitude of the correlations. We will define this notion as thresholdable.

Recall that ρij is the correlation between Xi and Xj given by Σ̃(θ) in (1.4).

Definition 1 (Thresholdable). A set of parameters θ is called thresholdable if there exists

a threshold τ0 such that

max{|ρkl| : (k, l) ∈ Ec
0} < τ0 < min{|ρij| : (i, j) ∈ E0}. (2.6)

That is, if θ is thresholdable, then we can correctly sort the index pairs of X into

the E0 and Ec
0 sets using τ0, i.e, E(τ0) = E0. This allows us to move forward with the

graphical logic as shown in the previous example with orthogonal factors (i.e., Figure 2.1).

In practice, given a sample of X, we can define an estimate of E0 for a candidate τk

as

Ê(τk) := {(i, j) : |rij| > τk, i < j}, (2.7)

where rij denotes the sample correlation. Putting these ideas together, the core task

of our algorithm is to search for a suitable τ0. This can be done by searching over a

set of candidate set τk ∈ [0, 1] and analyzing their respective thresholded correlation

graphs G(X, Ê(τk)). The aforementioned graphical concept of maximal cliques can then

be leveraged to learn the number of latent variables and the support of Λ. This essentially

yields a set of candidate models for which we can utilize model selection procedures (e.g.,

BIC) to select a final model.

Remark 1. Note that the thresholded graphs defined in Equation (2.3) are acting upon

the marginal correlations of the observed variables. This is in contrast to the well-known

conditional independence graphs in Gaussian graphical models, which correspond to the

support of the inverse correlation matrix, or Σ̃−1 (Lauritzen, 1996). In the case of factor
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analysis models of Equation (1.1), conditional independence graphs over the observed

variables are generally not sparse if the latent factors are correlated. That is, for any pair

(i, j), we have

Xi ̸⊥ Xj|{Xk : k ∈ V − {i, j}}

because their correlation is always confounded by the latent variables which are unac-

counted for. In this case, the conditional independence graph will be a complete graph,

and thus is not informative for estimating the structure of the factor analysis model.

Remark 2. Ancestral graphs are another way of representing multivariate relations

with latent variables (Richardson and Spirtes, 2002). Algorithms that determine these

relations (FCI and related variants; Spirtes et al., 2000; Spirtes, 2001; Colombo et al.,

2012) typically analyze the conditional independence among the observed variables. In

the case of the factor analysis models of Equation (1.1), the result would be a complete

graph without any edge orientations, since the relation Xi ̸⊥ Xj|A would hold for all (i, j)

and any A ⊆ V − {i, j} (for a list of orientation rules see Zhang, 2008). Again, this graph

is not useful for structure estimation of the factor analysis model.

2.2 The Algorithm

We now apply the framework from the previous section to construct our correlation

thresholding (CT) algorithm. Denote by R = (rij) ∈ Rp×p the sample correlation matrix

among X1, . . . , Xp, and let a set of chosen thresholds be τ = {τk : τk ∈ [0, 1], k ∈ [m]}.

Then the CT algorithm is described in Algorithm 1.

A couple of notes are in order. First, of particular interest to our algorithm, we will

define a specific kind of maximal clique, which we term as independent maximal clique:

Definition 2 (Independent Maximal Clique). Let C = {C1, . . . , Ck} be the set of all

maximal cliques in a graph G. Then, Ci is an independent maximal clique if

Ci ⊈
⋃
j ̸=i

Cj. (2.8)
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Algorithm 1: The Correlation Thresholding Algorithm
input : The sample correlation matrix R and a set of thresholds τ .
output : Parameter estimates θ̂.

1 for k ∈ [m] do
2 Calculate G(X, Ê(τk)) and extract the set of independent maximal cliques:

Ck = {C1, . . . C|Ck|};
3 Set d̂k = |Ck|;
4 Initialize Âk = ∅;
5 for (i, j) ∈ [p] × [d̂k] do
6 if i ∈ Cj then add (i, j) to Âk;
7 end
8 Estimate θ̂k given (d̂k, Âk), i.e. subject to λij = 0 for all (i, j) /∈ Âk;
9 end

10 Select one of the m estimates from {θ̂k : k ∈ [m]} via a model selection procedure.

Essentially, an independent maximal clique is a maximal clique that contains a vertex

that is not a member of any other maximal clique. We call such a vertex a unique member

of the independent maximal clique. We use the word “independent” as an analog to the

notion of linear independence in a vector space. That is, an independent maximal clique

cannot be covered by the union of any of the other maximal cliques. This condition is

needed for structural identifiability, which will be described in a later section.

To quickly find all independent maximal cliques in a graph, we can employ the

following Lemma.

Lemma 1. Given a graph G(X, E), let ne(Xi) be the set of vertices that contains Xi and

every node that shares an edge with Xi (the neighbors of Xi).

1. If ne(Xi) is a clique, then ne(Xi) is also an independent maximal clique and Xi is a

unique member of this clique.

2. If C is an independent maximal clique, then C = ne(Xi) for any unique member

Xi ∈ C.

Proof. First, we prove that ne(Xi) must be a maximal clique by contradiction. Suppose

ne(Xi) is a clique, but not maximal. Then ne(Xi) can be extended by another node

Xj /∈ ne(Xi), such that the union Xj ∪ ne(Xi) is a clique. This implies that there is

an edge between Xi and Xj and thus Xj ∈ ne(Xi). This leads to a contradiction, and
15



therefore, ne(Xi) must be maximal. Second, we prove that Xi is not a part of any other

maximal clique, once again by contradiction. Suppose that Xi ∈ A, where A is a maximal

clique and A ̸= ne(Xi). By the definition of ne(Xi), we must have A ⊂ ne(Xi), i.e., a

proper subset of ne(Xi), which contradicts the hypothesis that A is maximal. Therefore,

Xi is not a part of any other maximal clique, making ne(Xi) an independent maximal

clique. This completes the proof of the first statement.

Now we prove the second statement. Let Xi be any unique member of an independent

maximal clique C. Suppose ne(Xi) is not a subset of C, which means there is a vertex

Xj /∈ C but is a neighbor of Xi. Then {Xi, Xj} either is a maximal clique or can be grown

to a maximal clique C ′ ̸= C. This contradicts the fact that Xi is a unique member of

C. Therefore, ne(Xi) must be a subset of C and thus is a clique. By the first statement

of this lemma, ne(Xi) is also an independent maximal clique and thus we must have

ne(Xi) = C.

We can use Lemma 1 to find all independent maximal cliques in a graph, in the worst-

case scenario by checking whether ne(Xi) is a clique for every node Xi. The computational

cost for checking if ne(Xi) is a clique has a brute force complexity of O(k2), assuming a

maximum neighbor size of k. Thus, the total computational cost on all p nodes can be no

greater than and usually well below O(k2p), which is very efficient even for large graphs.

Returning to the CT algorithm, these independent maximal cliques are extracted in

Step 2, and Steps 3 through 7 use these cliques to learn the number of latent factors d

and the support of Λ. The number of independent maximal cliques is set as the estimate

of d, which is also the number of columns in Λ. Then, the nodes in each Cj determine if

λij is zero or non-zero for each i ∈ [p], allowing us to construct a candidate support Âk.

These are the steps that apply the logic set forth in Section 2.1 for structural learning.

Steps 8 and 10 are general in that they can utilize any estimation and model selection

methods. In our implementation, we will prefer to use maximum likelihood estimation

(1.5) and BIC for model selection. That is, after using maximum likelihood estimation to
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obtain θ̂k, we calculate BIC with

BIC(θ̂k) = qk log(n) − 2ℓ(θ̂k), (2.9)

where qk is the number of free parameters in θ̂k. Then the output of the CT algorithm

would be the estimated parameters using

θ̂ = argmin BIC(θ̂k). (2.10)

We note that a preferred pairing of methods would be one where both parameter estimation

and model selection are consistent. This leads to the final output model having consistent

parameters and model structure, as we will show in Section 2.3.4.

Finally, note that the generation of candidate structures does not depend on the

parameter estimates θ̂k. Hence, it is possible to forego the parameter estimation and

model selection parts (Steps 8 and 10) of the algorithm. The output would then be a set

of candidate structures {(d̂k, Âk)) : k ∈ [m]} without any θ̂k estimates. This is useful in

high-dimensional settings, when parameter estimation can be computationally slow, but

the structure learning portion remains fast. In this case, the structures may serve as a set

of candidate models to be further evaluated.

We provide a broad summary of the procedure in Figure 2.2. The main assertion of

the algorithm is that under a good choice of {τk : k ∈ [m]} among other identifiability

conditions (described below), the correct structure of Λ will be recovered by one of the

Ê(τk) (Steps 3 - 7). Then, given that the correct model is among the final set of candidate

models, a consistent model selection criterion will be able to recover it (Step 10). In the

following sections, we describe the precise conditions under which this can be achieved, as

well as establishing statistical consistency for the algorithm.
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Figure 2.2: Overview of the CT algorithm.

2.3 Theoretical Analysis

In this section, we establish theoretical guarantees for the CT algorithm and discuss the

key underlying assumptions. We assume throughout that the factor analysis model in

Equation (1.1) holds, i.e., X ∼ Np(0, Σ(θ)) and ϵ ∼ Np(0, Ω). Proofs of these results can

be found in Supplementary Materials ??.

2.3.1 On the Thresholdability of θ

One of the more fundamental assumptions of the CT algorithm is the thresholdability of

θ. In this section, we examine this assumption in more detail. Specifically, a necessary

and sufficient condition for thresholdability is as follows:

Lemma 2. Recall the definitions of E0 and Ec
0 in Equations 2.4 and 2.5, respectively. A

set of parameters θ is thresholdable if and only if:

max
(k,l)∈Ec

0

|Λ̃kEΦEF Λ̃T
lF | < min

(i,j)∈E0
|Λ̃iAΦABΛ̃T

jB + Λ̃iCΦCBΛ̃T
jB + Λ̃iAΦACΛ̃T

jC + Λ̃iCΦCCΛ̃T
jC |,

(2.11)

where A = A(i, j) = Πi − Πj, B = B(i, j) = Πj − Πi, C = C(i, j) = Πi ∩ Πj, E = Πk, and

F = Πl.
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First it will be convenient to partition the parent variables of any pair (Xi, Xj) as

Πi ∪ Πj = {LA, LB, LC}, where:

A = Πi − Πj

B = Πj − Πi

C = Πi ∩ Πj.

(2.12)

Then we may re-cast Equation (1.1) for any pair (X̃i, X̃j) as follows:

X̃i

X̃j

 =

Λ̃iA 0 Λ̃iC

0 Λ̃jB Λ̃jC




LA

LB

LC

+

ϵ̃i

ϵ̃j

 . (2.13)

We then obtain the correlation of between Xi and Xj from this form as follows:

Var


X̃i

X̃j


 =

Λ̃iA 0 Λ̃iC

0 Λ̃jB Λ̃jC




ΦAA ΦAB ΦAC

ΦBA ΦBB ΦBC

ΦCA ΦCB ΦCC




Λ̃T

iA 0

0 Λ̃T
jB

Λ̃T
iC Λ̃T

jC

+

ω̃i 0

0 ω̃j

 , (2.14)

for which we multiply through and take the off-diagonal to be:

ρij = Λ̃iAΦABΛ̃T
jB + Λ̃iCΦCBΛ̃T

jB + Λ̃iAΦACΛ̃T
jC + Λ̃iCΦCCΛ̃T

jC . (2.15)

Writing ρij in this way yields a useful decomposition with respect to the structure of the

factor analysis model. Specifically, this can be thought of as the correlation between Xi

and Xj due to their non-shared parents being correlated (ΦAB), their non-shared parents

being correlated with their shared parents (ΦAC , ΦCB) and simply having shared parents

(ΦCC). Thus, if Xi and Xj have no shared parents, then the index set C is empty. This

reduces Equation (2.15) to:

ρij = Λ̃iAΦABΛ̃T
jB. (2.16)

The result of Lemma 2 follows by characterizing the definition of thresholdability (2.6)

19



directly in terms of θ. That is, if for all (Xi, Xj) that share parents and for all (Xk, Xl)

that do not share parents, θ is thresholdable if and only if:

max
(k,l)∈Ec

0

|Λ̃kEΦEF Λ̃T
lF | < min

(i,j)∈E0
|Λ̃iAΦABΛ̃T

jB + Λ̃iCΦCBΛ̃T
jB + Λ̃iAΦACΛ̃T

jC + Λ̃iCΦCCΛ̃T
jC |.

(2.17)

We first note that the Gaussian assumption is not needed for Lemma 2. Rather,

it depends only on the correlation structure Σ̃(θ) and is agnostic to the underlying

distribution. Second, to illustrate the application of Lemma 2 we will consider several

scenarios of interest. Let us begin with the case where the latent variables are orthogonal.

Corollary 1. If Φ = Id, then θ is thresholdable.

Proof. From Equation (2.11), we can see that if Φ = Id, then the ΦAB, ΦCB, ΦAC , and

ΦEF matrices are all zero matrices, and ΦCC is an identity matrix. Thus Equation 2.11

reduces to

0 < min
(i,j)∈E0

|Λ̃iCΛ̃T
jC |, (2.18)

which trivially holds.

This can be seen from a straightforward substitution of Φ = Id into Inequality 2.11,

where the left side is zero and the right side positive. Another common scenario is when

Λ has exactly one non-zero entry per row, i.e., |Πi| = 1, for all i ∈ [p]. This is called

“independent cluster structure” (Harris and Kaiser, 1964) or “perfect simple structure”

(Jennrich, 2006). Under this structure, the children sets of latent variables are mutually

exclusive, which is a common design for factor analysis models due to its ease of causal

interpretability. Such structures lead to a simplification of the thresholdability condition

as shown in the following corollary.

Corollary 2. If Λ has exactly one non-zero entry per row, then θ is thresholdable if

max
(k,l)∈Ec

0

|λ̃keλ̃lfϕef | < min
(i,j)∈E0

|λ̃icλ̃jc|, (2.19)
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where Πi = Πj = {c}, Πk = {e}, and Πl = {f}.

Proof. The defining characteristic of the independent cluster structure is that Λ has

exactly one non-zero entry. This implies that each observed variable has only one latent

variable parent. Thus, the relevant parent sets will reduce to Πi = Πj = {c}, Πk = {e},

and Πl = {f}. That is, each pair of observed variables will either have one shared parent,

or no shared parents, but not both. Hence for each pair of variables that share parents,

the ΦAB, ΦCB, and ΦAC matrices will not exist and ΦCC = 1. Corollary 2 follows by

simplifying Equation 2.11 with these reductions.

Following Corollary 2, we can further observe that if Λ follows an independent cluster

structure and λ̃ij’s are homogeneous in magnitude, then θ is thresholdable.

Corollary 3. If Λ has exactly one non-zero entry per row and |λ̃ij| = λ for all (i, j) ∈ A(Λ),

then θ is thresholdable.

Proof. The result follows from Corollary 2 and setting all |λ̃ij| = λ. The condition for

thresholdability then becomes

max
(k,l)∈Ec

0

|λ2ϕef | < min
(i,j)∈E0

|λ2|, (2.20)

which holds since ϕef ∈ [0, 1). Note we exclude the pathological case of ϕef = 1 as this is

not distinguishable from considering Le and Lf as the same latent variable.

Corollaries 1, 2 and 3 involve desirable properties of factor analytic designs. First, it

has been suggested that latent variable models should be designed such that the latent

factors be distinguishable from one another, or that they are not too highly correlated

(Whitely, 1983). If the latent factors are too highly correlated, then a factor solution

with less dimensions may be better suited. Second, an independent cluster structure

yields mutually exclusive subsets of children for each latent variable. In other words,

each observed variable provides a “measurement” of a single latent variable alone. This

design is very common in educational and psychological test construction (Hattie, 1985;
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(a) (b) (c)

Figure 2.3: Three structures that yield the same graph G(X, E0).

Anderson and Gerbing, 1988), and much methodology has been devoted to seeking these

types of factor solutions (Scheines et al., 1998; Jennrich, 2001, 2006; Silva et al., 2006).

2.3.2 Structural Identifiability

In this section we study the conditions under which the structure for Λ can be recovered

from the thresholded correlation graph. To demonstrate the problem of structural

identifiability, consider some counter examples in Figure 2.3. All these structures will

yield the same graph with edge set E0 (Equation 2.4). Specifically, the independent

maximal cliques that are yielded by them are {1, 2, 3} and {3, 4, 5}, despite all having

different structures. This can be seen by noting that some latent variables do not yield

maximal cliques in G(X, E0), or yield the same independent maximal clique as another

latent variable. For example, in Figure 2.3b, both L2 and L3 yield the clique {3, 4, 5}.

Thus, L2 and L3 cannot be distinguished from each other through independent maximal

cliques alone. Similarly, in Figure 2.3c, L3 yields the clique {4, 5}, but it is not maximal

since L2 yields {3, 4, 5}. In this case, L3 cannot be identified as a latent variable, since its

clique is subsumed by the one yielded by L2. Hence, we must consider the problem of

multiple structures corresponding to the same edge set E0.

It would be ideal to find a one-to-one correspondence between the latent variables

and the independent maximal cliques (Definition 2). If such a correspondence holds for a

given Λ, we will call Λ (or θ) independent maximal clique identifiable. It turns out that

the following simple condition is sufficient for this correspondence to hold:

Condition 1 (Unique Child Condition). Let the child set of a latent variable be denoted
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ch(Lk) = {i ∈ [p] : λik ̸= 0}. If

Uk := ch(Lk) −
⋃
j ̸=k

ch(Lj) ̸= ∅, ∀ k ∈ [d], (2.21)

i.e., if each latent variable Lk has a non-empty set of unique children Uk, then we say that

the unique child condition holds. It essentially means that all latent parents have at least

one unique child variable.

Given this condition, we can obtain a bijection between the latent variables and the

independent maximal cliques in G(X, E0). We state this in the following lemma.

Lemma 3. If the unique child condition holds in Λ (Condition 1), then the set {ch(Lk) :

k ∈ [d]} is identical to the set of independent maximal cliques in G(X, E0).

Proof. Recall the definition of E0, which we re-state for convenience:

E0 := {(i, j) : Πi ∩ Πj ̸= ∅}.

Pick any k ∈ [d]. By definition, every Xj ∈ ch(Lk) shares a common parent Lk and thus

ch(Lk) forms a clique in G = G(X, E0). Let Uk be the set of unique children of Lk. Under

the unique child condition, Uk ≠ ∅, so we can pick an Xi ∈ Uk. Then Xi does not have an

edge connected to any node other than ch(Lk) by the definition of E0. This implies every

clique that includes Xi must be a subset of ch(Lk). Thus, ch(Lk) is the only maximal

clique that includes Xi, making it an independent maximal clique. The above argument

shows that each ch(Lk), k ∈ [d] is an independent maximal clique. Since ∪kch(Lk) = X,

any other maximal clique, if it exists, cannot be independent, and thus, {ch(Lk) : k ∈ [d]}

is the set of independent maximal cliques in G.

Recall the key observation that the dimension of L and support of Λ, i.e. (d, A(Λ)),

completely encodes the structure of the model. The CT algorithm leverages Lemma 3 to

recover the structure of a factor analysis model (d, A(Λ)) by finding independent maximal

cliques in an estimated graph G(X, Ê(τk)).
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Remark 3. We note our use of A(Λ) defines a model structure up to a column permutation

of Λ. That is, we consider different ordering or labeling of the factors to be equivalent,

since they define the same Σ(θ) in Equation 1.2.

We note that the unique child condition is practical for a wide range of factor analysis

designs. In Section 2.3.1 and Corollary 2, we discussed the independent cluster structure

(one non-zero per row of Λ) as a commonly used design. The unique child condition is

much more general in comparison, since it only requires a single unique child as opposed

to all children being unique to their parents. Further, observed variables can be designed

to fulfill the unique child condition a priori, which is typical for psychometric settings

(Hattie, 1985; Anderson and Gerbing, 1988).

2.3.3 Rotational Uniqueness

An important consideration with a factor analysis model is the identifiability of the

parameters θ = {Λ, Φ, Ω}. The lack of rotational uniqueness implies that there may be

many (Λ, Φ) pairs that exist such that Σ(θ) = ΛΦΛT + Ω. To see this, let M be a d × d

invertible matrix. Then we have

Σ(θ) = ΛΦΛT + Ω

= ΛMM−1ΦM−T MT ΛT + Ω

= ΛMΦMΛT
M + Ω,

(2.22)

letting ΛM = ΛM and ΦM = M−1ΦM−T . To ensure that ΦM remains a valid correlation

matrix, we impose the constraint that diag(M−1ΦM−T ) = Id. However, we will show that

the solutions learned by the CT algorithm resolves this nonidentifiability issue given that

the zero constraints implied by A(Λ̂) are preserved. Formally, we define the notion of

rotational uniqueness as follows.

Definition 3 (Rotational Uniqueness). For a set of parameters θ = {Λ, Φ, Ω}, denote a

rotated set of parameters as θM = {ΛM, M−1ΦM−T , Ω}, where M is an invertible d × d
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matrix. Let us define a set of constraint preserving rotations as

MCP = MCP (θ) := {M : Σ(θM) = Σ(θ), A(ΛM) ⊆ A(Λ), diag(M−1ΦM−T ) = Id}.

(2.23)

Then:

1. If MCP = {Id}, then θ is said to be globally rotationally unique.

2. If MCP is a set of signature matrices, then θ is said to be locally rotationally unique,

where signature matrices are diagonal matrices whose diagonal elements are ±1.

First, note that the condition A(ΛM) ⊆ A(Λ) ensures that the zero constraints

implied by A(Λ) are persevered. Second, all matrix factorizations will have the signature

matrix rotation as a source of non-uniqueness unless the signs of the main diagonal (or

a permutation thereof) are fixed and non-zero. Since the model in Equation 1.1 makes

no assumptions regarding the signs in Λ, local rotational uniqueness is the best type of

rotational uniqueness we can establish. Two local rotational uniqueness properties relevant

to the CT algorithm are described in Corollaries 4 and 5.

Corollary 4. If the unique child condition holds in Λ, then θ is locally rotationally unique.

Proof. Define an index set for the rows of Λ ∈ Rp×d which have zeroes in the jth column

as

Zj := {i : λij = 0} ⊆ [p],

and define

Λ[j] := ΛZj ,−j,

which is a submatrix of size |Zj| × (d − 1). Adapted from Peeters (2012), two sufficient

conditions for Λ that yield local rotational uniqueness for our model are:

Condition 1: Λ has at least d − 1 zeroes in each column.

Condition 2: rank(Λ[j]) = d − 1 for all j ∈ [d].
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An example of Λ[j] is as follows:

Λ =



λ11 0 0

λ21 λ22 0

λ31 0 0

0 λ42 0

0 λ52 λ53

0 λ62 0

0 0 λ73

0 0 λ83

λ91 0 λ93



, Λ[1] =



λ42 0

λ52 λ53

λ62 0

0 λ73

0 λ83


, Λ[2] =



λ11 0

λ31 0

0 λ73

0 λ83

λ91 λ93


, Λ[3] =



λ11 0

λ21 λ22

λ31 0

0 λ42

0 λ62


.

(2.24)

These conditions can be seen to be satisfied by the unique child condition as follows.

Let Uj be the set of unique children for Lj as defined in Equation (2.21). For all j, k ∈ [d],

and i ∈ [p] we can re-cast Uj as:

Uj = {i : λij ̸= 0, λik = 0, k ̸= j}, (2.25)

and let the index of non-unique variables be:

U = {i : i /∈ ∪d
j=1Uj}. (2.26)

Let us permute the rows of Λ according to an order that satisfies (U1, . . . , Ud, U). Denoting

a permutation matrix that yields such a row ordering as P , we have:

PΛ =



ΛU11

. . .

ΛUdd

ΛU1 · · · ΛUd


. (2.27)

That is, we can permute the rows of Λ such that its upper part is block-diagonal with d
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blocks. Then there must be at least d − 1 zeroes in each column, satisfying Condition 1.

It is easily seen that PΛ also satisfies Condition 2, as any (PΛ)[j] will also have its upper

part be block-diagonal, and thus full rank (d − 1).

Corollary 5. Any θ̂k for k ∈ [m], produced by Step 8 of the CT algorithm, is locally

rotationally unique.

Proof. As described in Section 2.2, Steps 5 through 7 of the CT algorithm construct the

support Âk deterministically based on a set of independent maximal cliques Ck (from

Step 2). Since by Definition 2 independent maximal cliques always have a unique node,

the sparsity pattern in Âk is guaranteed to follow the unique child condition (Condition 1).

By Corollary 4, θ̂k will be locally rotationally unique due to this pattern.

Note that Corollary 5 holds regardless if Condition 1 is true in the population

structure. Thus the CT algorithm can be used as a model approximation tool for finding

locally rotationally unique structures.

2.3.4 Error Bounds and Consistency

In this section, we establish the consistency of the CT algorithm. The crucial part of

the argument depends on the structure learning consistency of the algorithm (Steps 3

through 7, described in Section 2.2). We will call a structural estimate (d̂, A(Λ̂)) consistent

if

lim
n→∞

P
[
(d̂, A(Λ̂)) = (d, A(Λ))

]
= 1, (2.28)

given an i.i.d. sample of size n from the model in Equation (1.1). By Lemma 3, the model

structure (A(Λ), d) can be recovered exactly from the set of independent maximal cliques

in G(X, E0) when the unique child condition holds. Therefore, structural consistency

holds when limn→∞ P(Ê(τ0) = E0) = 1 under the unique child condition for a suitable

τ0, where Ê(τ) is the edge set of an estimated correlation thresholded graph as defined

in Equation (2.7). In what follows, it will be useful to define a gap of separation for a
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thresholdable θ as

γ := 1
2 [min{|ρij| : (i, j) ∈ E0} − max{|ρij| : (i, j) ∈ Ec

0}] . (2.29)

Theorem 1. Assume the model described in Equation (1.1) holds for X and that the

correlations between all pairs (Xi, Xj) are bounded such that maxi ̸=j|ρij| ≤ M < 1. If θ is

thresholdable with a gap γ > 0, then

P(Ê(τ0) ̸= E0) ≤ Cp(p − 1)(n − 2)
(

4 − γ2

4 + γ2

)n−4

:= η, (2.30)

where 0 < C < ∞ only depends on M . If additionally the unique child condition holds

(Condition 1), then we have

P((d̂, A(Λ̂)) = (d, A(Λ))) ≥ 1 − η, (2.31)

where (d̂, A(Λ̂)) is the estimated model structure by the CT algorithm with cutoff τ0.

To obtain our result, we will leverage existing estimation error bounds on the event

|rij − ρij| ≥ ϵ for some ϵ > 0. To do this it will be convenient to re-cast our event of

interest to Ê(τ0) ̸= E0. For clarity, let us first consider the event Ê(τ0) = E0, which by

definition, holds if and only if:

( ⋂
(i,j)∈E0

|rij| > τ0

)
∩
( ⋂

(i,j)∈Ec
0

|rij| < τ0

)
. (2.32)

Then by De Morgan’s laws, we can say Ê(τ0) ̸= E if and only if:

( ⋃
(i,j)∈E0

|rij| ≤ τ0

)
∪
( ⋃

(i,j)∈Ec
0

|rij| ≥ τ0

)
, (2.33)

which is to say that Ê(τ0) ̸= E0 holds if and only if any rij is on the opposite side of τ0 as

their population analog ρij. From here, the strategy is to derive bounds for P(|rij| ≤ τ0)

if (i, j) ∈ E0, and P(|rij| ≥ τ0) if (i, j) ∈ Ec
0, for all (i, j). To determine these bounds, we
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make use of a concentration inequality for P(|rij − ρij| ≥ ϵ) from Lemma 1 of Kalisch and

Bühlmann (2007). We re-state this as follows:

Lemma 4. Assuming Xi and Xj are Gaussian random variables with correlation |ρij| ≤

M < 1. Let rij be the sample correlation calculated from an i.i.d. sample of size n. Then

for any 0 < ϵ ≤ 2,

P(|rij − ρij| ≥ ϵ) ≤ C0(n − 2)
(

4 − ϵ2

4 + ϵ2

)n−4

, (2.34)

where 0 < C0 < ∞ only depends on M .

For our purposes, we set ϵ = γ and select as τ0 the mid-point of minE0(|ρij|) and

maxEc
0
(|ρij|), which will be the best choice to uniformly bound all P(|rij| ≤ τ0) if (i, j) ∈ E0

and P(|rij| ≥ τ0) if (i, j) ∈ Ec
0. The uniformity of the bound follows by seeing that

γ ≤
∣∣∣|ρij| − τ0

∣∣∣ for all (i, j). That is, there is no ρij that is closer to τ0 than the length of

γ.

We begin with the scenario where (i, j) ∈ Ec
0. Given the left-hand side of Equa-

tion (2.34) and setting ϵ = γ, we have:

P(|rij − ρij| ≥ γ) ≥ P(|rij| − |ρij| ≥ γ)

≥ P(|rij| − |ρij| ≥ τ0 − |ρij|)

= P(|rij| ≥ τ0).

(2.35)

Hence, P(|rij| ≥ τ0) is bounded from above by the right-hand side of Equation (2.34) if

(i, j) ∈ Ec
0. We can use the same strategy to conclude that, for (i, j) ∈ E0,

P(|rij − ρij| ≥ γ) ≥ P(|rij| ≤ τ0). (2.36)

Since these two events have the same upper bound, let us combine them by defining:

Bij = B(rij, τ0) :=


|rij| ≤ τ0 if (i, j) ∈ E0

|rij| ≥ τ0 if (i, j) ∈ Ec
0

. (2.37)
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Noting that Ê(τ0) ̸= E(τ0) holds if and only if ⋃(i,j) Bij holds, what remains is to find a

bound of the latter event. This can be done with the union bound:

P(Ê(τ0) ̸= E(τ0)) = P
( ⋃

(i,j)
Bij

)
≤
∑
(i,j)

P (Bij)

≤ p(p − 1)
2 max

(i,j)
{P(Bij)}

≤ Cp(p − 1)(n − 2)
(

4 − γ2

4 + γ2

)n−4

,

(2.38)

where 0 < C < ∞ only depends on M . This result follows by recognizing that all P(Bij)

are uniformly bounded as in Lemma 4. Finally, this implies

P(Ê(τ0) = E0) ≥ 1 − Cp(p − 1)(n − 2)
(

4 − γ2

4 + γ2

)n−4

(2.39)

and thus, (2.31) follows immediately under the unique child condition by Lemma 3.

Due to the exponential decay of the term [(4−γ2)/(4+γ2)]n−4, consistency is trivially

implied under a fixed p regime. More generally speaking, for any joint distribution of X

under which the central limit theorem holds for the sample correlations {rij}, structural

consistency would also follow. By the classical central limit theorem and the delta

method, this would include the class of distributions with finite fourth-order moments

(Ferguson, 1996). Furthermore, we will use the bound described in Inequality 2.30 to

develop a consistency result with high-dimensional accommodations where the dimension

p = pn ≫ n.

Theorem 2. Assume the model described in Equation (1.1) holds for X and that the

correlations between all pairs (Xi, Xj) are bounded such that maxi ̸=j|ρij| ≤ M < 1 for some

universal constant M independent of n. If θ is thresholdable with a gap γ = γn such that

γ2
n ≥ c1/(n−4)b for some c1 > 0 and b ∈ [0, 1) when n is large, and pn = o(exp(c(n−4)1−b)),

where 0 < c < c1/8, then

lim
n→∞

P(Ê(τ0) = E0) = 1. (2.40)
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If additionally the unique child condition holds (Condition 1), then we also have

lim
n→∞

P
[
(d̂, A(Λ̂)) = (d, A(Λ))

]
= 1. (2.41)

To begin, we will first examine the growth of a lower bound of P(Ê(τ0) = E0) as a function

of n. Noting from Equation (2.30), an upper bound on the decaying term with n can be

derived as follows:

(
4 − γ2

4 + γ2

)n−4

≤
(

1 − γ2

4

)n−4

≤
(

1 − c1

4(n − 4)b

)n−4

=
(

1 − c1

4(n − 4)b

)(n−4)b(n−4)1−b

=
(

exp
(

−c1

4

)
+ o(1)

)(n−4)1−b

≤ exp
(

−c2(n − 4)1−b

4

)
,

(2.42)

where we used the limit limx→∞(1 + a/x)x = exp(a) and another constant c2 ∈ (0, c1)

such that the o(1) remainder can be dropped. From here, we can form a looser bound on

Equation (2.30) as

P(Ê(τ0) = E0) ≥ 1 − Cp(p − 1)(n − 2)
(

4 − γ2

4 + γ2

)n−4

≥ 1 − Cpn(pn − 1)(n − 2) exp
(

−c2(n − 4)1−b

4

)

= 1 − p(n)f(n),

(2.43)

where p(n) = pn(pn − 1) and f(n) = (n − 2) exp(−c2(n − 4)1−b/4). Therefore, we have

consistency if limn→∞ p(n)f(b) = 0 or if p(n) = o(1/f(n)). Comparing the dominating

terms of p(n) and 1/f(n), consistency is achieved if

p2
n = o

(
exp

[
c2(n − 4)1−b

4 − log n

])

or if pn = o
(
exp

[
c(n − 4)1−b

])
,

(2.44)
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by choosing a positive constant c < c2/8.

Note that any fixed value between maxEc
0
{|ρij|} and minE0{|ρij|} will be a valid

choice for τ0 for structure learning consistency. This result is straightforward to generalize

to non-Gaussian forms of X, which could result from non-Gaussian combinations of L

and ϵ. All that would be required is to replace our use of Lemma 4 (a Gaussian sample

correlation concentration bound) in the proofs of Theorems 1 and 2 with a bound for

any non-Gaussian X of interest. So long as this bound is sufficiently well-behaved, the

probability bounds in Theorem 1 will hold as will Theorem 2 with different dependencies

between p and n.

In the practical context of the CT algorithm, recall that a suitable τ0 is actually

unknown, and the algorithm estimates and selects among a set of models based on

a candidate set {τk}. Assuming that a suitable τ0 is contained in {τk}, structural

identifiability and consistency implies that the correct model structure is among the set

of candidate models, asymptotically. From here, overall parameter consistency follows

by simply using a consistent parameter estimation method (Step 8) and a consistent

model selection procedure (Step 10) in the algorithm. A straightforward choice would be

to use maximum likelihood estimation in conjunction with BIC model selection. Then,

asymptotically, the CT algorithm will produce the correct model structure with consistent

parameter estimates. One caveat of these results is the reliance on the thresholdability

assumption. However, even if thresholdability is violated to a certain degree, the estimated

model structure can still be quite accurate as we will show empirically in the simulation

studies.

2.4 Simulation Studies

To begin our empirical simulations, we first sought to verify the performance of the CT

algorithm under ideal conditions (Section 2.4.1). As such, we designed conditions under

which all the assumptions of the CT algorithm were met and compared it against several

other existing methods. In Section 2.4.2, we consider situations in which some of these
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assumptions are violated, and study the robustness of the CT algorithm. Finally, in

Sections 2.4.3 and 2.4.4, we consider high-dimensional (n < p) and large p settings, where

p and d grow with n. We study how violations to thresholdability and departures from

the unique child condition affect model recovery in the high-dimensional setting.

Where possible, we tested the performance of the CT algorithm with a few other

methods of factor analysis structure learning. These methods were the MLE with known

structure (to serve as a baseline), EFA (described in Section 1.2), EFA-LASSO, and EFA-

MCP (both from Hirose and Yamamoto, 2014a). EFA-LASSO and EFA-MCP maximize

a penalized likelihood function of the form

ℓp(θ) = ℓ(θ) − p(Λ), (2.45)

where ℓ(θ) is the log-likelihood in Equation (1.5) and p(Λ) is the LASSO (Tibshirani,

1996) and MCP (Zhang, 2010) penalty functions, respectively.

Note that the three EFA methods all require d as an input. To make a comparison

as fair as possible, the CT algorithm was used to give the EFA methods a set of d to

work with, which was more informative than ad hoc choices. More specifically, we ran the

CT algorithm to Step 3, where d is estimated from the number of independent maximal

cliques. Thereafter, we replaced the support learning portion (Steps 5 through 7) of the

algorithm with one of the EFA procedures. Then the support of the model was saved

from the EFA methods and was used to resume the algorithm from Step 8, where the

MLE was estimated from the support.

The simulations were done in the R language (4.0.2; R Core Team, 2020). The

lavaan package (Rosseel, 2012) was used in the estimation phases of the CT algorithm

(Step 8), and was used to estimate the baseline MLE solution. For the cutoffs τk, 40

equidistant points from 0 to 1 were input for the CT algorithm. For EFA, the psych

package (Revelle, 2019) was used to obtain MLE solutions for unconstrained Λ. We left

the rotation option to the package default oblimin method (Crawford, 1975), however we

note that the rotation choice does not affect the results since we will only be examining

the likelihood of Σ(θ̂). And finally, the LASSO and MCP variants of EFA were estimated
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with the fanc package (Hirose and Yamamoto, 2014b,a). The tuning parameters were

left at the package defaults of 30 values for a single tuning parameter in LASSO and 270

combinations of two tuning parameters in MCP.

2.4.1 Basic Simulation Study

We generated data sets from a Gaussian distribution. The mean vector was set to µ = 0

for all conditions, and the covariance matrix Σ was parameterized by θ which varied by

condition. The number of latent variables (d) was set to 2, 3, 4, and 5, with the structure

of Λ set up as follows. We began with assigning five children to each latent variable in

mutually exclusive sets (p = 5d). In the children set of each latent variable, one variable

was designated the unique child of that latent variable to enforce structural identifiability.

Then each of the non-unique child variables was assigned to have an extra parent with 0.5

probability, with the parent chosen with uniform probability. The non-zero entries of Λ

were drawn from a uniform distribution, λij ∼ Uniform(0.4, 0.5). To generate Φ, we began

by setting its diagonals to one. Then for the off-diagonal elements, we drew a d × d matrix

A with entries from Uniform(0, 1) and rescaled it such that AT A had off-diagonals in the

range of [0.1, 0.125], a quarter of the magnitudes of λij. Then the off-diagonals of Φ were

set to the off-diagonals of this rescaled AT A, which ensured Φ would be positive definite

and θ would be thresholdable. To enforce thresholdability in the sample, we checked if

there existed a τ such that Ê(τ) = E0, and rejected samples for which this did not hold.

Finally, we generated two data sets, each with sample size n = 1000, per replication, one

for training purposes and one for testing purposes, using 100 replications for each value of

d.

We collected several metrics to evaluate performance in terms of true model recovery

and computational efficiency. For model fit, we calculated the test data log-likelihood

differences from that of the known structure MLE solution. To measure the accuracy

of the estimated model structure, we collected a Hamming distance (HD) from the true

support of Λ and F1 score of the estimated support (both described below), and the

learned dimension (d̂) of the latent variable vector. For the penalized EFA methods, the
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number of non-zero columns in Λ̂ was taken as d̂ as they would serve as the de facto

number of latent variables (Caner and Han, 2014). Finally, for computational efficiency,

we calculated the number of models estimated by each method. This metric was chosen to

be agnostic toward the numerical idiosyncrasies between the different software packages.

To compare the estimated and true supports (A(Λ̂) vs. A(Λ)) we computed the

minimum HD over all column permutations of Λ̂. That is, we define an HD as

HD := min
P

[
|A(Λ̂P ) △ A(Λ)|

]
, (2.46)

where △ is the symmetric difference or disjunctive union between two sets. The permuta-

tion matrix P reconciles the fact that the column order of Λ̂ may not be the same as the

column order of Λ, and that d̂ may not be the same as d. Put another way, HD is the

smallest number of element additions and deletions needed to make the sets A(Λ) and

A(Λ̂) identical, among all column permutations of Λ̂.

In addition to HD, we also report the F1 score, a normed measure of classification.

This allows for comparability between models with differing dimensions of Λ, that is

differing p and d. Note that the F1 score is simply the harmonic mean between precision

and recall. Once again using a permutation matrices to reconcile different orderings of L,

we have

F1(Λ̂) := max
P

 2|A(Λ̂P ) ∩ A(Λ)|
2|A(Λ̂P ) ∩ A(Λ)| + |A(Λ̂P ) △ A(Λ)|

 ∈ [0, 1], (2.47)

and the higher the F1 score, the more accurate the estimated support of Λ̂.

To measure computational efficiency we simply counted the number of models each

method estimated. For the CT algorithm, this is simply the number of unique structures

obtained by the sequence of τk. For EFA, this translates to the number of unique d

obtained by the sequence of τk. For EFA-LASSO and EFA-MCP, this is the number of

tuning parameter combinations to search over (30 for LASSO, 270 for MCP), per unique

d in the sequence of τk.

The average results of the evaluation metrics are displayed in Figure 2.4. In terms of

model fit and structure estimation, the CT algorithm almost always performed perfectly,
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Figure 2.4: Averages for all evaluation metrics of the basic simulation study. The values for the
test data log-likelihood had the known structure MLE subtracted for standardization. Hence, a
value of zero corresponds to no difference vs. the known structure MLE method.

with test data log-likelihood almost identical to that of the known structure MLE,

HD measures approximately zero, and F1(Λ̂) at about 1, as shown in Figures 2.4(a)

through 2.4(c). This performance was closely followed by EFA-MCP, where EFA-LASSO

performed moderately worse and EFA was substantially worse. For test data log-likelihood,

HD, and F1 metrics, the performances of the EFA-LASSO and EFA methods worsened as

the number of latent variables grew. For the estimated number of latent variables, all

methods had averages close to the true dimension.

The number of models estimated by each method is shown in Figure 2.4(e) in log10

scale. It is seen from the figure that EFA used the least number of solutions, with an

overall average of 5.03 models, followed by the CT algorithm which used 16.79. Notice that

the CT algorithm may propose multiple different structures with the same d, hence testing

more models than EFA. The number of models estimated by EFA-LASSO and EFA-MCP
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methods were much higher, using 150.83 and 1357.43 average solutions respectively. To

put this into another perspective, we note that the average number of unique d supplied to

the penalized EFA algorithms was 5.03. Supposing that we lowered the amount of tuning

parameters penalized EFA used in order to match the same number of solutions checked

by the CT algorithm, then penalized EFA could only use three to four sets of tuning

parameters per d, which is much smaller than the typical number of tuning parameters

used by a penalized method. This demonstrates the computational efficiency of the CT

algorithm.

To assess variability, we also display box plots of the evaluation metrics of the basic

simulation study in Figure 2.5. For the test data log-likelihood differences, the CT

algorithm and the EFA-MCP methods showed very little variability, while the EFA and

EFA-LASSO methods were much more variable. We see a similar pattern among the HD

statistics, where the CT algorithm and EFA-MCP showed much less variability compared

to the EFA and EFA-LASSO methods. For F1(Λ̂) score, we see that the CT algorithm

once again showed very little variability across all numbers of latent variables. For the

other EFA methods, there was moderate to large amounts of variability, which decreased

as the number of latent variables increased. In particular for the EFA-MCP method, the

variability was comparable to the CT algorithm for the 4 and 5 latent variable conditions.

In this basic simulation study we demonstrated that the CT algorithm performs

nearly perfectly in all accuracy metrics. In terms of computational efficiency, it was

only marginally outperformed by EFA, which conversely performed the worst on all

other metrics. EFA-MCP performed almost just as well as the CT algorithm, however it

calculated at least 80 times more models than the CT algorithm.

2.4.2 Thresholdability Robustness Study

In the previous simulation study we verified the performance of the CT algorithm when

all of the assumptions are met. In practice, the thresholdable θ assumption may be

violated and structural consistency will not be guaranteed. Despite this, it may be the

case that the CT algorithm still provides a reasonable approximation to the true model.
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Figure 2.5: Box plots for all evaluation metrics of the basic simulation study are displayed. The
values for the test data log-likelihood had the known structure MLE subtracted for standardiza-
tion. Hence, a value of zero corresponds to no difference vs. the known structure MLE method
for these metrics.

Thus in this simulation, we examine conditions under which the thresholdable assumption

is violated to varying degrees, and study the robustness of the CT algorithm to these

violations.

As in the previous simulation, we generated data sets from a zero-mean Gaussian

distribution, with a covariance matrix Σ parameterized by θ which varied by condition.

The structure of Λ followed an independent cluster structure (one non-zero entry per row).

We focused on this structure since it is the most common factor analysis design and it was

the simulation design used in the studies proposing the penalized EFA methods (Hirose

and Yamamoto, 2014b,a). We note that more complicated structures were included in

the previous simulation study. The number of latent variables (d) was set to 2, 3, 4 and

5, with the number of children per latent variable set to 5. The non-zero entries of Λ
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were drawn from a uniform distribution, λij ∼ Uniform(0.6, 0.8). The latent variable

correlation matrix Φ was constructed with the same procedure as the previous simulation,

with the exception of setting the range of the off-diagonals to α[0.6, 0.8]. The scaling

parameter α controlled the frequency of which θ was thresholdable, and was set to 1,

0.75, 0.5, 0.25, and 0. As we empirically show later, α = 0.5, 0.25, 0 corresponded to

thresholdable conditions, while α = 1, 0.75 corresponded to non-thresholdable conditions,

generally. Overall, this design resulted in 4 × 5 = 20 conditions, for which we conducted

100 replications per condition. As before, we generated two data sets per replication, one

for training purposes and one for testing purposes. The sample size of each data set was

set to n = 1000.

We collected the same basic metrics as the previous simulation. However, since

thresholdability was not enforced in this study, we collected the proportion of parameters

θ that were thresholdable (Definition 1) and the corresponding proportion for sample

thresholdability defined using sample correlations rij in place of ρij in Definition 1. To

examine the robustness of these methods to violations of thresholdability, we define an

additional metric which conveys the degree to which thresholdability is violated. We use

the best possible thresholded correlation graph (in terms of HD to E0) to represent an

upper bound on the best obtainable structure by thresholding. Then for comparability, we

represent this structure by its F1 score. That is, we define a “best” thresholded correlation

graph as

EB = E(τ ∗), where τ ∗ := argmin
τ∈(0,1)

[|E(τ) △ E0|] (2.48)

is obtained by checking all possible thresholds τ ∈ (0, 1) given the population correlations

ρij between Xi and Xj. Then we calculate its F1 score as

F1(EB) := 2|EB ∩ E0|
2|EB ∩ E0| + |EB △ E0|

. (2.49)

Note that thresholdability holds if F1(EB) = 1. We also use a sample version ÊB of EB

by substituting in Ê(τ) for E(τ) in Equation (2.48).

The results of the test data log-likelihood and d̂ statistics are displayed in Figure 2.6.
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Figure 2.6: Average test data log-likelihood differences and d̂ statistics of the robustness
simulation study. The test data log-likelihood values had the known structure MLE subtracted
for standardization.

For the test data log-likelihood, the performances of the EFA methods were generally

ranked from best to worst as EFA-MCP, EFA-LASSO, and EFA, and tended to be

stable across α and the number of latent variables. One caveat to this finding was that

EFA sometimes displayed a further loss in performance when α = 1. Likewise, the CT

algorithm only noticeably lost performance when α = 1, but performed near perfectly

otherwise. As in the prior simulation, EFA-MCP performed near perfectly in all scenarios.

For the learned number of latent variables (d̂), all methods performed nearly perfectly,

except when α = 1, where EFA and the CT algorithm suffered some minor to moderate

inaccuracies. These inaccuracies were more pronounced as the number of latent variables

increased.

The results of HD, F1(Λ̂), and number of models are displayed in Figure 2.7. For HD

and F1(Λ̂), the results were similar to the pattern exhibited by the test data log-likelihood.

The performance of EFA methods ordered from best to worst was EFA-MCP, EFA-LASSO,

and EFA. This was stable across α and the number of latent variables, with EFA-LASSO
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Figure 2.7: Average HD, F1(Λ̂), and the number of models (in the log10 scale) from the robustness
simulation study.

exhibiting slightly better structure learning as α decreased. The CT algorithm only had

noticeably loss in performance when α = 1, as with the fit statistics, otherwise was near

perfect. The EFA-MCP method, also showed near perfect performance regardless of the

condition. For the number of models, there is little variation across α and number of

latent variables. The averages ordered from best to worst are EFA (5.42), CT algorithm

(17.74), EFA-LASSO (162.45), and EFA-MCP (1462.05).

The thresholdability and F1(EB) statistics, reported in Figure 2.8, show that threshold-

ability generally holds when α ≤ 0.5. At α = 0.75, the average population thresholdability

is no less than 97%. However, at α = 1 the population thresholdability decreases to
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Figure 2.8: Average thresholdability and F1(EB) statistics of the robustness simulation study.
The F1(Λ̂) metric is shown alongside F1(EB) for ease of comparison.

45% for 2 latent variables and decreases to 0% for 3 through 5 latent variables. For

sample correlations, the pattern is the same, with the most notable difference being more

substantial decreases at α = 0.75. For the F1(EB) score, we see that the average values

are all high, being only less than 1 at α = 1 and 0.75 as implied by the thresholdability

results. In the worst case condition (α = 1 and d = 5), the population scores were no less

than 0.89 and the sample scores were no less than 0.86.

To assess variability, we also display box plots of the evaluation metrics of the

thresholdability robustness study simulation study in Figures 2.9 and 2.10. We only show

the box plots for the 5 latent variable condition for brevity. For the test data log-likelihood

difference, all methods generally showed very little variability, except for the CT algorithm

and EFA methods when α = 1. The HD statistics showed similar patterns as the test data

log-likelihood differences, with the exception that the EFA-LASSO method additionally

showed a moderately small amount of variability. For the F1(Λ̂) score, all methods showed

very little variability except for the CT algorithm at α = 1 and the EFA-LASSO showing

moderate variability across all α. For d̂, we also see very little variability except for the
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Figure 2.9: Box plots for test data log-likelihood, HD, F1, and d̂ of the thresholdability robustness
simulation study are displayed. The values for the test data log-likelihood had the known structure
MLE subtracted for standardization. Hence, a value of zero corresponds to no difference vs. the
known structure MLE method for these metrics.

CT algorithm and EFA methods in the α = 1 condition. The variability in the log10

number of models was uniformly small across all methods and all α. Finally, for the

F1(EB) statistics (Figure 2.10), we see that there is virtually no variability in both the

population and sample except in the α = 1 condition.

Overall, this simulation study largely confirms the robustness of the CT algorithm

against moderate violations to thresholdability assumption. When thresholdability is met,

the CT algorithm performs just as well as the known structure MLE. The results show

that the CT algorithm can be robust to large frequencies of thresholdability violations

(i.e., up to about 75% when α = 0.75), although the performance begins to suffer when

thresholdability is always violated (i.e., never thresholdable at α = 1): The F1(Λ̂) of

the CT algorithm only decreased moderately even for non-thresholdable parameters
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Figure 2.10: Box plots for the thresholdability and F1(EB) statistics of the thresholdability
robustness simulation study are displayed.

(α = 1, d ≥ 3, lower panels in Figure 2.8), but still outperformed EFA-LASSO and EFA in

almost all of these cases (Figure 2.7). Further, we note that the F1(EB) scores were robust,

and always close to 1, across all cases including non-thresholdable cases. The higher value

of F1(EB) than F1(Λ̂) indicates the possibility of improving structure learning accuracy

of the CT algorithm by increasing the number of candidate thresholds, τk. On the other

hand, the simulation results also show that α need not be too small in order to make θ

thresholdable: even at at α = 0.5 thresholdability is not violated much at all. Lastly, it is

worth reiterating that, in terms of the number of models estimated, the CT algorithm is

orders of magnitude more efficient than the competing method of EFA-MCP.

2.4.3 High-Dimensional Thresholdability Study

The previous simulations were designed under the classical low-dimensional setting, where

p and d were fixed to small values relative to the sample size n. In this simulation study,

we examine the high-dimensional setting, where both p and d grow proportionally with n,

and n < p. This allows us to study the degree to which the thresholdability assumption

is violated by varying (n, p, d), and how robust the CT algorithm is to violations of this

nature.

We generated data identically to the previous simulation (Section 2.4.2), except
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we varied n ∈ {250, 500, 1000}, and set p = 1.5n and d = 0.1n. Under these high p

settings, both the MLE and penalized EFA methods are prohibitively slow, and thus are

not included in this study. For computational considerations, we omitted the estimation

step of the CT algorithm (Step 8), since finding the MLE is too time-consuming, and

only examined the learned structures, i.e., (d̂k, A(Λ̂k)) for the set of input thresholds

{τk, k ∈ [m]}. Then we chose the model structure with the minimum HD among all

{(d̂k, A(Λ̂k)), k ∈ [m]}. This would allow us to examine whether the structures estimated

by the CT algorithm contained at least one accurate model. Accordingly, we collected HD,

F1(Λ̂), d̂, elapsed time, thresholdability, and F1(EB) statistics as our study outcomes.

The results are displayed in Figure 2.11. From the plots for HD and F1(Λ̂), we see

that the learned structure is more accurate as n grows despite a proportional growth in p.

This is predicted by Theorem 1, since P(Ê(τ0) ̸= E0) decays at an exponential rate with n,

but grows only at a polynomial rate with p. The estimated number of latent variables (d̂)

was also fairly accurate on average across all conditions, confirming the CT algorithm is

capable of determining the number of latent factors automatically even in such challenging

high-dimensional settings. As expected, the structure learning accuracy is also affected by

α: The structure learning becomes more accurate as α decreases in terms of both HD and

F1(Λ̂). This is in good agreement with how thresholdability and F1(EB) were affected by

α (Figures 2.11(e) through 2.11(h)) in this high-dimensional setting. In contrast to the

previous simulation where sample correlations are generally all thresholdable up to α = 0.5,

under these n < p settings sample thresholdability (Figure 2.11(g)) is violated starting at

α = 0 for n = 250, 500, and at α = 0.25 for n = 1000. Comparing the thresholdability

statistics to the F1(Λ̂) scores we can see that structure learning is still fairly robust to

thresholdability violations in the sample correlations. For example, when α = 0.5, the

sample thresholdability was close to zero for all three sample sizes, while the F1 score

of the learned structure was close to 0.75 for n = 250 and close to 1 for n = 500, 1000.

Note that for α ≤ 0.5, F1(Λ̂) is quite close to F1(ÊB), suggesting that the best threshold

that defines ÊB, the sample version of EB (2.48), is close to one of the 40 input threshold

values. Finally, we see that the computation time of the algorithm increases with α and
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Figure 2.11: Average HD, F1(Λ̂), d̂, running time, population and sample thresholdability, and
F1(EB) and F1(ÊB) statistics for the high-dimensional thresholdability study.

n. This may be attributable to the fact that the computational complexity of finding

independent maximal cliques is O(kp2) (see Lemma 1 for details).

We display box plots of the evaluation metrics in Figure 2.12 to assess variability.

For the HD statistics, we generally little to no variability when α ∈ {0.5, 0.25, 0}. At

α = 0.75 however, we see a moderate to large amount of variability, with the variability

decreasing once again at α = 1. The higher for the α ∈ {1, 0.75} conditions, we see

that variability increases with (n, p, d). For F1(Λ̂), we see the same general pattern as

HD. Variability is moderate at α = 1, then increases at α = 0.75, and decreases to very

small amounts at α ∈ {0.5, 0.25, 0}. This affect appears to be moderated (n, p, d), with

higher (n, p, d) conditions seeing more pronounced increasing and decreasing trends. For

d̂, we see a monotonically decreasing pattern of variability from α = 1 to α = 0, with

overall variability being smaller for lower (n, p, d). The variability of log10(seconds) of

computation time was fairly uniform across all α and (n, p, d). And finally, the F1 scores of

EB and ÊB showed very little variability across all conditions, with F1(ÊB) being slightly

more variable.
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Figure 2.12: Box plots for HD, F1(Λ̂), d̂, running time, F1(EB), and F1(ÊB) of the high-
dimensional thresholdability study are displayed.

We also use these results to demonstrate how the thresholdability gap γ (2.29) may

be affected by α. In Figure 2.13 we plot the solution paths of three example data sets of

size n = 1000 while varying α ∈ {0.5, 0.25, 0}. In these paths we show how F1(Λ̂k) changes

across various values of τk. We can see that the number of τk for which F1(Λ̂k) = 1 is the

greatest when α = 0, which yielded six such cutoffs with a range of [0.128, 0.256], and

thus γ ≈ 0.064. In the α = 0.25 dataset, the number of such τk shrinks to four cutoffs,

with a smaller range of [0.205, 0.282] suggesting γ ≈ 0.039. And finally, the α = 0.5

dataset had only one such τk at 0.282.

2.4.4 High-Dimensional Unique Child Condition Study

Once again we study the high-dimensional setting, now turning our attention to violations

of the unique child condition. As in the previous simulation, we allowed p and d to grow

proportionally with n, with always having n < p. We studied how robust the CT algorithm

to violations of the unique child condition under several settings of such (n, p, d).

We generated data under the same (n, p, d) as the previous study: n ∈ {250, 500, 1000},
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Figure 2.13: Example solution paths from the high-dimensional thresholdability study. All three
examples are taken from the n = 1000, p = 1500, d = 100 condition.

p = 1.5n, and d = 0.1n. To begin with, the structure of Λ followed an independent cluster

structure (one non-zero entry per row), for which the unique child condition trivially

holds for every latent variable. We will call these latent variables the main parent of

these observed variables. To isolate the effect of unique child conditions from that of

thresholdability, we ensured thresholdability was always met in the population by setting

Φ = Id (Corollary 1). Then to dictate to what degree the unique child condition was

violated, we defined a parameter β ∈ {1, 0.75, 0.5, 0.25, 0}, which was the randomly

selected proportion of latent variables that would have no unique children. If a latent

variable was deemed to have no unique children, we generated an extra path between

the children of these latent variables to another random latent variable. Thus, if a latent

variable was chosen to violate the unique child condition, all of its children were given an

extra parent at random. We will call these extra parents the alternative parent.

For each X, we drew an R2 ∼ Uniform(0.36, 0.64) as the proportion of variance in X

explained by L. The range of (0.36, 0.64) is analogous to the range of path coefficients we

were using in previous simulations which was (0.6, 0.8). If a given X only had a main

parent and no alternative parent, then that X had a single path coefficient of
√

R2 from

its main parent. However, if a given X also had an alternative parent, then the R2 was

split using a 5:1 or 3:1 ratio between the main parent and the alternate parent, and the
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path coefficients were calculated to reflect this accordingly.

As before, since the MLE and penalized EFA methods are prohibitively slow, we

only examined the learned structures from the CT algorithm. That is, we examined

the set of (d̂k, A(Λ̂k)) for the set of thresholds {τk, k ∈ [m]}. The selected model was

the structure with the minimum HD among all {(d̂k, A(Λ̂k)), k ∈ [m]}. Accordingly, we

collected HD, F1(Λ̂), d̂, elapsed time, sample thresholdability, and F1(ÊB) statistics as

our study outcomes.

To assess the effect of violating the unique child condition, we considered additional

metrics. Recall that EB is the graph closest to E (in terms of HD) by checking all possible

thresholds τ ∈ (0, 1). Let A(ΛB) be a structure generated by performing the structure

learning portion of the CT algorithm (Steps 2 through 7) on EB. Subsequently, let F1(ΛB)

be the F1 score of ΛB. We use the F1(ΛB) scores to show how adversely affected the best

thresholded graphs might be to violations of the unique child condition.

The results of this simulation are displayed in Figures 2.14 for the 5:1 ratio and 2.15

for the 3:1 ratio. The patterns between the two ratio conditions are generally the same,

thus we will focus on the 5:1 ratio condition. From the plots for HD and F1(Λ̂), we can see

that the accuracy of structure recovery has a strong correspondence with the proportion

of latent variables that violate the unique child condition (β). This is expected since

violations of the unique child condition no longer guarantee a bijective mapping between

the latent variable structure and the independent maximal cliques (Lemma 3). However,

the F1(Λ̂) remained fairly strong even at β = 1, where it ranges from 0.358 to 0.655. This

shows very good robustness of CT algorithm in learning the structure despite violations to

the unique child condition. This robustness may be explained by an interesting contrast

between the patterns exhibited by F1(Λ̂) and that of F1(Λ̂B) and F1(ΛB). The F1(Λ̂B)

and F1(ΛB) statistics show that the accuracy of the structure learning procedure have a

nearly linear relation with β if ÊB or EB are used as the thresholded graph. However, the

accuracy of F1(Λ̂) is higher than that F1(Λ̂B) and F1(ΛB), showing that there exists some

E(τ) on the solution path that yields a better approximation to the true structure. In

other words, even if E does not follow the unique child condition, using approximations
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Figure 2.14: Average HD, F1(Λ̂), d̂, running time, sample thresholdability, F1(ÊB), F1(Λ̂B), and
F1(ΛB) statistics for the 5:1 ratio high-dimensional unique child condition study.

E(τ) which still follow the unique child assumption can yield reasonably close structures.

2.5 Real Data Application

We examined a widely used factor analysis dataset comprised of intelligence test scores

of n = 301 middle school students (Holzinger and Swineford, 1939). The data consist

of 9 variables designed to measure 3 factors of intelligence. These were a spatial factor

L1 (visual perception tasks), a verbal factor L2 (paragraph comprehension, sentence

completion, and word meaning), and a speed factor L3 (speed tests of addition, counting

groups of dots, and discrimination of straight and curved capitals). The hypothesized

structure is shown in Figure 2.16(a), and we applied the CT algorithm, EFA, EFA-LASSO,

and EFA-MCP methods to the data. Again, for a fair comparison, we input the same set

of d values produced in the CT algorithm to each of the EFA methods as we did in the

simulation studies.
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Figure 2.15: Average HD, F1(Λ̂), d̂, running time, sample thresholdability, F1(ÊB), F1(Λ̂B), and
F1(ΛB) statistics for the 3:1 ratio high-dimensional unique child condition study.

We first checked the HD between the solution path of a method and the hypothesized

model structure. The minimum HD over the solution path was zero for CT algorithm,

6 for EFA and EFA-LASSO, and 3 for EFA-MCP. This indicates that the hypothesized

model was perfectly recovered within the solution path of the CT algorithm, but not

for any of the other methods. Moreover, the CT algorithm identified the hypothesized

structure with a much smaller set of candidate models (number of models in Table 2.1).

The number of models checked by the CT algorithm was 13, compared to the 120 models

checked by EFA-LASSO, and the 1080 models checked by EFA-MCP.

As in the simulation studies, we selected a model via BIC for each method and

used 10-fold CV to evaluate the estimated models. The estimate of d and test data

log-likelihood in 10-fold CV are reported Table 2.1. In terms of the test data log-likelihood,

the results are similar across the CT algorithm, EFA-LASSO, and EFA-MCP methods,

all three being much better than EFA. Despite the comparable performance between the
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Figure 2.16: Estimated model structure by each method in the real data example. Variables X1,
X2, and X3 were visual perception tasks, variables X4, X5, and X6 were verbal/reading tasks,
and variables X7, X8, and X9 were speed tests.

CT algorithm and the sparse EFA methods, the CT algorithm obtained these results

with much improved computational efficiency, as discussed above on the numbers of

candidate models estimated by these methods. Further, if we assume the hypothesized

factor model to be the true model, the F1(ÊB) metric yielded a score of 0.8, indicating

that the sample correlation matrix cannot be properly thresholded. This demonstrates

how much thresholdability may be violated in practice, and how robust the CT algorithm

is despite this assumption violation.

All methods slightly differed in the structure learned, as shown in Figure 2.16. Note
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Method HD(min.) d̂ test data log-likelihood Number of Models
CT Algorithm 0 4 -3749.60 13

EFA 6 2 -3823.14 4
EFA-LASSO 6 3 -3751.82 120
EFA-MCP 3 4 -3751.37 1080

Table 2.1: Results of real data example. HD(min.) denotes the minimum HD to the
hypothesized structure across all solutions.

that these structures, selected via BIC, are in general different from those with the

minimum HD to the hypothesized model, probably due to the relatively small sample size

of this dataset. The CT algorithm and EFA-LASSO methods were able to recover all of

the original hypothesized paths, however learned some extra paths. From the visual factor

L1, the CT algorithm introduced one extra path to a speed task (X9), while EFA-LASSO

introduced four extra paths to the visual and speed tasks (X5, X6, X7, X9). In addition,

an extra path was learned by both methods from the verbal factor L2 to each of the visual

and speed tasks. No extra path was learned by either method from the speed factor L3.

Both the CT algorithm and EFA-MCP learned a fourth factor, which had paths to two of

the speed tasks. In the model learned by the CT algorithm, the fourth factor seems to

supplement the already existing speed factor, while with the EFA-MCP method, its speed

factor seems to have been split into two.

2.6 Concluding Remarks

Overall, the CT algorithm is a promising method for learning factor analysis structures. In

this article, we motivated the algorithm using thresholded correlation graphs, and estab-

lished the conditions for structural identifiability, parameter uniqueness, and asymptotic

consistency. In addition, the CT algorithm yields a method of learning d, which the EFA

counterparts lack. In our simulation studies, the CT algorithm performed nearly perfectly

when the assumption of thresholdability was met, and showed robust results when this

assumption was violated. Further, the computational efficiency of the CT algorithm is

unrivaled relative to the EFA-LASSO and EFA-MCP methods, as it checks substantially

less models.
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There are some limitations of the CT algorithm to keep in mind. The most obvious

is the reliance on the thresholdability assumption. Even though we demonstrated that the

CT algorithm is robust to thresholdability violations in practice, EFA-MCP outperforms

the CT algorithm in these cases. Additionally, our statistical consistency results depend

on this assumption being true in the population. Future work can focus on relaxing the

thresholdability assumption.

Similarly, the CT algorithm is restricted to structures fulfilling the unique child

condition. However, in practice this assumption is a relaxation of many common factor

analysis designs as discussed in Section 2.3.2. In many factor analysis applications, the

observed variables are designed a priori as measurements of the latent variables. In these

cases, unique child variables can always be designed beforehand to use with the CT

algorithm.

We also note some computational limitations for the high-dimensional (n < p) regime

for parameter estimation. Both penalized and traditional MLE estimation procedures

have fairly long computation routines. Since the CT algorithm relies on external existing

estimation method to provide parameter estimates, it is subsequently limited by the

existing technology in this area. Thus the estimation portion of our algorithm will also

benefit from computational advances on this topic. We may also develop alternative

methods to select a solution from the candidate models generated by the CT algorithm

without maximizing the likelihood, such as ideas similar to stability selection (Meinshausen

and Bühlmann, 2010). This is certainly an interesting and promising future direction that

will further broaden the application of this work.
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Chapter 3

Piecewise Linear Splines for Non-Linear

Factor Analysis

In the previous chapters we considered the factor analysis model where X is comprised

of multiple linear influences from a multidimensional L. In this chapter, we consider the

case where X is comprised of non-linear influences from L. In general, a non-linear factor

analysis model can be written as:

X = g(L; β) + ϵ, (3.1)

where X, L, and ϵ are observed, latent, and error variables, respectively, as before, β are

the parameters, and g(·) may be a vector-valued non-linear function of L, β, or both. We

will continue to assume that L ∼ Nd(0, Φ), however the specification of X and ϵ may vary

depending on the application.

3.1 Prior Work

Prior work in non-linear factor analysis has nearly exclusively focused on the case where

g(·) is specified a priori. One of the most basic specifications are polynomial forms of L,

while remaining linear in β (McDonald, 1965, 1967; Etezadi-Amoli, 1983). More generally,

frameworks have also been presented where the elements of g(·) can be linear functions

of L or β, or non-linear in both (Yalcin and Amemiya, 2001). However, one of the most

popular non-linear specification is the sigmoid curve, either logit or probit in nature.
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Much of the field of psychometrics is dedicated to the study such methods, called Item

Response Theory (IRT; Cai et al., 2016; Baker and Kim, 2004), and is typically used for

modeling binary or polytomous data such as questionnaire responses and educational

assessments (Embretson and Reise, 2000). Overall, these methods can be computationally

challenging, as polynomial forms of L often require estimation of higher-order moments,

and the non-linear models of β (such as IRT) require numerical methods of integrating

the density of L (Cudeck et al., 2009).

On the other hand, very little work has been done with methods that learn the

function g(·). The most similar methods are latent variable interpretations of manifold

learning techniques. One closely related example are so-called principal curves and surfaces

(Hastie and Stuetzle, 1989; Tibshirani, 1992). Analogous to principal components analysis,

these methods are motivated by finding the curve through the “middle” of a dataset such

that the sum of squared deviations from all variables to the curve are minimized (subject

to flexibility constraints). Likewise, other manifold learning techniques can be interpreted

from a latent variable perspective. For example, Carreira-Perpiñán and Lu (2007) use

Laplacian eigenmaps and kernel density estimators to provide non-linear estimates of

L. The drawback to these techniques are that the variances of the errors are either

assumed to be homogeneous, or not readily available at all. And finally, other examples

come from neural network based approaches, such as generative networks (Goodfellow

et al., 2014; Han et al., 2017) and variational auto-encoders (Kingma and Welling, 2019).

These methods generally utilize neural networks to learn g(·) and L with the purpose of

reconstructing X.

In contrast, we will focus on methods of learning an interpretable g(·) which can easily

assign substantive meanings to L, while retaining the important factor analysis property

of heterogeneous error variances. To this end, we will explore a simple piecewise linear

spline method, motivated by an underlying generative factor analysis model, estimated

using the EM-algorithm.
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3.1.1 Model

Consider a latent variable scalar L ∼ N (0, 1), with a set of m knot locations cj for j ∈ [m],

and let c0 = −∞ and cm+1 = ∞. We then consider a piecewise linear model of the form:

X = β0L +
m∑

j=1
βj(L − cj)+ + ϵ, (3.2)

where X ∈ Rp is a vector of observed variables, ϵ ∼ Np(0, Ω) is a random vector of errors

(with Ω being a diagonal matrix), and β ∈ Rp are the regression coefficients. The term

(L − cj)+ is the positive part of (L − cj) and can be thought of as a threshold function:

(L − cj)+ := max(L − cj, 0) =


L − cj if L > cj

0 if L ≤ cj.

(3.3)

It will also be useful to consider the model in Equation 3.2 conditional on the event

that L ∈ (cj, cj+1]. To do this let us define the random variable Z = z ⇔ cz < L ≤ cz+1,

for z ∈ {0, . . . , m}. This can be thought of as a bin label. Then notice that we have the

following decomposition of Equation 3.2 about z:

X = β0L +
m∑

j=1
βj(L − cj)+ + ϵ

= β0L +
z∑

j=1
βj(L − cj)+ +

m∑
j=z+1

βj(L − cj)+ + ϵ.

(3.4)

Now, if we condition on the event Z = z, we obtain the following conditional model:

X = β0L +
z∑

j=1
βj(L − cj) + ϵ if Z = z

=
−

z∑
j=1

βjcj

+
 z∑

j=0
βj

L + ϵ if Z = z.

(3.5)

Thus, given Z = z, we have our usual factor analysis model. To see this, define αz :=
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−∑z
j=1 βjcj and Λz = ∑z

j=0 βj. Then we can write Equation 3.5 as

X = αz + ΛzL + ϵ if Z = z

⇒ Σz = ϕzΛzΛz + Ω if Z = z

(3.6)

which yields a conditional covariance factor analytic structure, with ϕz := Var(L|Z).

Finally, in subsequent calculations it will be also convenient to consider a traditional

regression form of Equation 3.2. We can re-write it as

X = βd(L) + ϵ, (3.7)

where β is a p × (m + 1) matrix containing all the regression coefficients and d(L) is an

(m + 1) × 1 design function that maps L to a design vector (or feature vector) as

d(L) =
[
L (L − c1)+ . . . (L − cm)+

]T

. (3.8)

We note that our choice to begin with a latent variable scalar is motivated from a

substantive perspective. In particular, it may be the case that a set of observed variables

have been designed to function with a certain latent variable dimensionality in mind

(typically d = 1) but unanticipated non-linearities may interfere with statistical fit and

introduce parameter bias. Rather than add more linear latent factors to improve the

model (which may not be interpretable), it has been argued to specify non-linear functions

to maintain the integrity of interpretation (McDonald, 1965; Ferguson, 1941). As such,

the starting point of d = 1 has very wide applicability, however we will present some

preliminary work and outline some challenges associated with the multivariable case in

Chapter 4.

58



3.2 Estimation

3.2.1 EM Algorithm

The EM algorithm is a two-step iterative procedure for obtaining parameter estimates for

models with missing data (Dempster et al., 1977). Considering X as our observed data

and L as missing data, the steps are as follows:

E-Step. For any iteration t, define a Q-function given an initial parameter start value

θ(0):
Qθ(t)(θ) = Eθ(t) [logPθ(X, L)|X]

=
∫

L
logPθ(X, L)Pθ(t)(L|X) dL.

(3.9)

M -Step. Maximize the Q-function with respect to θ and set the result as θ(t+1):

θ(t+1) = argmax
θ

Qθ(t)(θ), (3.10)

Hence, this is an iterative procedure that maximizes the expectation of the complete data

log-likelihood, given the observed data. It is known to converge to a local maximum of

the likelihood function under very general conditions (Wu, 1983).

An important property of the EM-algorithm is that each iteration will never decrease

the observed data log-likelihood. To see why this is the case, consider a decomposition of

the observed data log-likelihood as follows:

Pθ(X, L) = Pθ(L|X)Pθ(X)

logPθ(X, L) = logPθ(L|X) + logPθ(X)

⇒ logPθ(X) = logPθ(X, L) − logPθ(L|X)

= Qθ(t)(θ) − Hθ(t)(θ),

(3.11)

where we took the expectation with respect to Pθ(L|X), and as such

Hθ(t)(θ) := Eθ(t) [logPθ(L|X)|X] =
∫

L
logPθ(L|X)Pθ(t)(L|X) dL. (3.12)
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Then the difference between successive iterations of the observed data log-likelihood is

logPθ(t+1) − logPθ(t) =
(
Qθ(t)(θ(t+1)) − Hθ(t)(θ(t+1))

)
−
(
Qθ(t)(θ(t)) − Hθ(t)(θ(t))

)
=
(
Qθ(t)(θ(t+1)) − Qθ(t)(θ(t))

)
+
(
Hθ(t)(θ(t)) − Hθ(t)(θ(t+1))

)
.

(3.13)

The first term must be positive, as by the definition of θ(t+1) as the maximizer of Qθ(t)(θ)

we have
Qθ(t)(θ(t+1)) ≥ Qθ(t)(θ(t))

⇒ Qθ(t)(θ(t+1)) − Qθ(t)(θ(t)) ≥ 0.

(3.14)

Then for the second term we have

Hθ(t)(θ(t)) − Hθ(t)(θ(t+1)) = Eθ(t) [logPθ(t)(L|X)|X] − Eθ(t) [logPθ(t+1)(L|X)|X]

= Eθ(t)

[
− log Pθ(t+1)(L|X)

Pθ(t)(L|X)

∣∣∣∣∣X
]

≥ − log
(
Eθ(t)

[
Pθ(t+1)(L|X)
Pθ(t)(L|X)

∣∣∣∣∣X
])

= − log
(∫

L

Pθ(t+1)(L|X)
Pθ(t)(L|X) Pθ(t)(L|X) dL

)

= − log(1)

= 0,

(3.15)

which follows from Jensen’s inequality and the convexity of − log(·). Hence, successive log-

likelihoods of the observed data are non-decreasing in the iterations of the EM-algorithm.

3.2.2 Maximization of the Q-function

Given a sample from the model in Equation 3.2, the Q-function is as follows:

Qθ(t)(θ) =
n∑

i=1
Eθ(t) [logPθ(xi, li)|xi]

=
n∑

i=1
Eθ(t) [logPθ(xi|li) + logPθ(li)|xi]

= −n

2 log|Ω| − 1
2

n∑
i=1

Eθ(t)

[
(xi − βdi)T Ω−1(xi − βdi)

∣∣∣xi

]
+ c.

(3.16)
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For maximizing with respect to β, the relevant terms of the Q-function are:

Qθ(t)(β) = −1
2

n∑
i=1

Eθ(t)

[
(xi − βdi)T Ω−1(xi − βdi)

∣∣∣xi

]
+ c, (3.17)

where we abbreviate di := d(li). The first partial derivative is then

∂Qθ(t)(β)
∂β

=
n∑

i=1
Eθ(t)

[
Ω−1(xi − βdi)dT

i

∣∣∣xi

]
, (3.18)

which we set to zero and obtain the first-order condition of

β

(
n∑

i=1
Eθ(t)

[
did

T
i

∣∣∣xi

])
=

n∑
i=1

xiEθ(t)

[
dT

i

∣∣∣xi

]
(3.19)

Thus our maximizer of Qθ(t)(β) is

β(t+1) =
(

n∑
i=1

xiEθ(t)

[
dT

i

∣∣∣xi

])( n∑
i=1

Eθ(t)

[
did

T
i

∣∣∣xi

])−1

. (3.20)

For Ω the Q-function is

Qθ(t)(Ω) = −n

2 log|Ω| − 1
2

n∑
i=1

Eθ(t)

[
(xi − βdi)T Ω−1(xi − βdi)

∣∣∣xi

]
+ c′, (3.21)

which for convenience we will write the Q-function in terms of ω2
j as

Qθ(t)(ω2
j ) = −n

2

p∑
j=1

log ω2
j −

n∑
i=1

p∑
j=1

Eθ(t) [(xij − βj•di)2|xij]
2ω2

j

+ c′, (3.22)

where βj• is the jth row of β. The first partial derivative is then

∂Qθ(t)(ω2
j )

∂ω2
j

= − n

2ω2
j

+
∑n

i=1 Eθ(t) [(xij − βj•di)2|xij]
2ω4

j

. (3.23)

Setting this equal to zero gives use a first-order condition of

n

2ω2
j

=
∑n

i=1 Eθ(t) [(xij − βj•di)2|xij]
2ω4

j

, (3.24)
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yielding a maximizer as

ω
2,(t+1)
j =

∑n
i=1 Eθ(t)

[
(xij − β

(t+1)
j• di)2

∣∣∣xij

]
n

, (3.25)

and re-combining the ω2
j into matrix form

Ωt+1 = diag
∑n

i=1 Eθ(t)

[
(xi − βt+1di)(xi − βt+1di)T

∣∣∣xi

]
n

 . (3.26)

For computational efficiency we may consider an alternate form for Ω(t+1). Define b :=∑n
i=1 xiEθ(t)

[
dT

i

∣∣∣xi

]
and A := ∑n

i=1 Eθ(t)

[
did

T
i

∣∣∣xi

]
which yields βt+1 = bA−1. Then we can

expand the outer product in Equation 3.26 and simplify as follows

Ωt+1 = diag
∑n

i=1 Eθ(t)

[
(xix

T
i − βt+1dix

T
i − xid

T
i (βt+1)T + βt+1did

T
i (βt+1)T

∣∣∣xi

]
n


= diag

(∑n
i=1 xix

T
i − bA−1bT − bA−1bT + bA−1AA−1bT

n

)

= diag
(∑n

i=1 xix
T
i − bA−1bT

n

)

= diag
(∑n

i=1 xix
T
i − βt+1∑n

i=1 Eθ(t) [di|xi] xT
i

n

)
(3.27)

3.2.3 Conditional Expectations

We can see from the maximizers of the Q-function that the required conditional expecta-

tions are E[di|xi] and E[did
T
i |xi]. The main complication is that di is a vector that consists

of threshold functions depending on the value of li. That is we need

E[di|xi] =
[
E[li|xi] E[(li − cj)+|xi] . . . E[(li − cj)+|xi]

]T

. (3.28)

However, we can address this using the law of iterated expectation as follows

E[di|xi] = E[E[di|xi, zi]|xi]

=
m∑

z=0
E[di|xi, zi]P(zi|xi).

(3.29)
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which simplifies the problem since:

E[(li − cj)+|xi, zi] =


E[li|xi, zi] − cj if zi ≥ j

0 if zi < j

. (3.30)

The remaining quantity to compute is E[li|xi, zi]. We will show in the following section

that P(L|X, Z) is a truncated normal, thus E[li|xi, zi] can be calculated by using known

expressions for the one-dimensional truncated normal moments. Turning our attention to

E[did
T
i |xi], notice we have

did
T
i =



l2
i li(li − c1)+ · · · li(li − cm)+

li(li − c1)+ (li − c1)2
+ · · · (li − c1)+(li − cm)+

... ... . . . ...

li(li − cm)+ (li − c1)+(li − cm)+ · · · (li − cm)2
+


. (3.31)

Once again, by law of iterated expectation, we can use E[did
T
i |xi, zi] to make the expecta-

tions tractable. In general, we have three cases to consider. These are

E[li(li − cj)+|xi, zi] =


E[l2i |xi, zi] − cjE[li|xi, zi] if zi ≥ j

0 if zi < j

E[(li − cj)2
+|xi, zi] =


E[l2i |xi, zi] − 2cjE[li|xi, zi] + c2

j if zi ≥ j

0 if zi < j

E[(li − cj)+(li − ck)+|xi, zi] =


E[l2i |xi, zi] − (cj + ck)E[li|xi, zi] + cjck if zi ≥ j and zi ≥ k

0 otherwise

.

(3.32)

Therefore E[did
T
i |xi] is just a function of E[li|xi, zi] and E[l2

i |xi, zi], which can also be

easily obtained by known formulas for the one-dimensional truncated normal moments.

63



3.2.4 Truncated Normal Expressions

We show that P(L|X, Z) is a truncated normal distribution. This can be done using a

simple proportionality argument:

P(L|X = x, Z = z) ∝ P(L, X = x, Z = z)

∝ P(L, X = x|Z = z)

∝ hz(L, X = x)I(cz < L ≤ cz+1)

∝ hz(L|X = x)I(cz < L ≤ cz+1),

(3.33)

where hz(L, X) is the hypothetically non-truncated joint distribution of L and X, whose

parameters are given by the conditional model dictated by the event Z = z. That is, we

can take the conditional model parameters (Equation 3.6) and consider a non-truncated

version with the distribution:

hz(X, L) = Np+1


αz

0

 ,

ΛzΛT
z + Ω Λz

ΛT
z 1


 , (3.34)

and by standard conditional Gaussian properties, hz(L|X) is

hz(L|X) ∼ N
(
µz,L|X , Σz,L|X

)
µz,L|X = ΛT

z

(
ΛzΛT

z + Ω
)−1

(x − αz)

Σz,L|X = 1 − ΛT
z

(
ΛzΛT

z + Ω
)−1

Λz.

(3.35)

Finally, the expressions for E[li|xi, zi] and E[l2
i |xi, zi] can be obtained through the

known mean and variance expressions for a one-dimensional truncated normal. Suppose

we have a generic one-dimensional Gaussian random variable Y ∼ N (µ, σ2) and a support

range (k1, k2]. Then the mean and variance of the truncated version of Y are

E[Y |k1 < Y ≤ k2] = µ − σ
f(k2) − f(k1)
F (k2) − F (k1)

Var(Y |k1 < Y ≤ k2) = σ2

κ2f(k2) − κ1f(k1)
F (k2) − F (k1)

−
(

f(k2) − f(k1)
F (k2) − F (k1)

)2
 (3.36)
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where κj := (kj −µ)/σ, and f(·) and F (·) is the PDF and CDF of Y , respectively (Johnson

et al., 1994).

3.3 Simulation Study

We conducted a simple simulation study to examine the performance of the EM-algorithm

for the spline factor analysis model. Data were generated according to Equation 3.2,

choosing β such that a variety of patterns were displayed. These patterns are illustrated

in Figure 3.1. Numerically speaking, these came from the following β matrix:

β =



3 6 9 −3 −6

−6 3 3 3 3

1 2 3 4 5

−1 −2 −3 −4 −5


, (3.37)

using the knot values of c = (−∞, −0.842, −0.253, 0.253, 0.842, ∞), which correspond to

the points on a Gaussian distribution such that P(Z = z) = 0.2 for all z. Various values

for the diagonal of Ω were also chosen as ω = (1, 2, 5, 8). The sample size was set to

n = 1000 and the number of total datasets was also 1000. On each dataset, we estimated

the parameters using the EM-Algorithm described above, and for a baseline measure we

used the MLE solution treating L as observed.

The simulation results are displayed in Table 3.1. We show the empirical bias,

variance, and mean square errors (MSE) averaged over each observed variable (Xi), as

well as over all β parameters. Both methods showed very little empirical bias, with the

EM-algorithm having an overall average of -0.006 and the known L MLE having less

than 0.001. The average empirical variances per observed variable for the EM-algorithm

ranged from 0.374 to 1.451, compared to the known L MLE’s range of 0.110 to 0.793.

The overall average variance of the EM-algorithm was 2.922 times higher than the known

L MLE. For the average empirical MSEs, the EM-algorithm had a range of 1.066 to 3.836,

where the known L MLE had a range of 0.110 to 0.794. The overall average MSE of the

EM-algorithm was 4.888 times higher than the known L MLE.
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Figure 3.1: The data generating patterns for the piecewise linear factor analysis simulation. We
use an S-shaped curve, a parabolic curve, a curve with an increasing rate of change and a curve
with a decreasing rate of change.

3.3.1 Discussion and Future Work

In this chapter, we designed an EM-algorithm to estimate a non-linear factor analysis

model using a piecewise linear construction. This work was done under the scalar L

setting. Future work may extend this to multidimensional L (discussed in more detail in

Chapter 4) and smoother curves, but both of these extensions comes with several challenges.

Smoother curves may be achieved by generalizing the piecewise linear component with

higher-order terms, such as cubic splines. However, one of the challenges of using higher
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Method Function β̂ij − βij V̂ar(β̂ij) (β̂ij − βij)2

EM-Algorithm

S-Shaped 0.006 1.363 3.836
Parabolic −0.030 0.374 0.533

Increasing Rate −0.075 0.988 1.066
Decreasing Rate 0.074 1.451 1.555

Overall −0.006 1.044 1.748

Known L MLE

S-Shaped 0.000 0.110 0.110
Parabolic 0.002 0.217 0.217

Increasing Rate −0.001 0.310 0.310
Decreasing Rate −0.002 0.793 0.794

Overall 0.000 0.357 0.358

Table 3.1: Results of the piecewise linear factor analysis simulation. Displayed are the
empirical biases, variances and mean square errors averaged across the β parameter per
Xi, characterized by the “function” column.

order components is the computation of higher-order moments, which in the cubic case

would result in the need to compute up to E[L6|X]. This may result in greater estimation

variance than their lower-order counterparts. A second challenge is that smoother curves

may be more flexible, and thus require regularization to prevent overfitting. Additionally, if

the curve is flexible enough, cases where the curve intersects itself may need to be carefully

considered. These issues may be remedied by appropriately targeted regularization, or

setting curvature constraints on the surface of L.
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Chapter 4

Extensions and Miscellanea

In this chapter we describe some preliminary work and challenges on extending the

piecewise linear spline method to the multiple factor case. The main challenge is that the

region of each bin on L becomes hyper-rectangular on the multivariate Gaussian, which

is notoriously difficult to integrate. For an iterative procedure to be used (such as the

EM-algorithm), the integration must be very computationally fast as well as accurate,

since each bin probability must be calculated at every parameter update. In this chapter,

we briefly examine a variational EM-algorithm that obviates this issue. Sampling-based

methods may also handle this issue, which are discussed in Section 4.5.

4.1 Model

We may generalize the model in Equation 3.2 to the multivariate L case as follows

X =
d∑

k=1

β0kLk +
mk∑
j=1

βjk(Lk − cjk)+

+ ϵ, (4.1)

where X ∈ Rp is a vector of observed variables, L ∼ Nd(0, Id) is a random vector of latent

variables, ϵ ∼ Np(0, Ω) is a random vector of errors (with Ω being a diagonal matrix),

βjk ∈ Rp are the regression coefficients, and cjk ∈ {1, . . . , mk} are knot locations for the

kth latent variable. The term (Lk − cjk)+ is the positive part of (Lk − cjk) and can be
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thought of as a threshold function:

(Lk − cjk)+ := max(Lk − cjk, 0) =


Lk − cjk if Lk > cjk

0 if Lk ≤ cjk.

(4.2)

4.1.1 Conditional Model Form

As before, it is useful to condition on the event Lk ∈ (cjk < Lk ≤ c(j+1)k]. Hence we can

define a random vector Z such that

Zk = zk ⇔ czk < Lk ≤ c(z+1)k, for zk ∈ {0, . . . , mk}, (4.3)

where c0k = −∞ and cmkk = ∞. Then notice that we have the following decomposition

of Equation (4.1) about z:

X =
d∑

k=1

β0kLk +
mk∑
j=1

βjk(Lk − cjk)+

+ ϵ

=
d∑

k=1

β0kLk +
zk∑

j=1
βj(Lk − cjk)+ +

mk∑
j=zk+1

βjk(L − cjk)+

+ ϵ.

(4.4)

Now, if we condition on the event Z = z, we obtain the following conditional model:

X =
d∑

k=1

β0kLk +
zk∑

j=1
βjk(Lk − cjk)

+ ϵ if Z = z

=
d∑

k=1
β0kLk +

d∑
k=1

zk∑
j=1

βjkLk −
d∑

k=1

zk∑
j=1

βjkcjk + ϵ if Z = z

=
−

d∑
k=1

zk∑
j=1

βjkcjk

+
 d∑

k=1

zk∑
j=0

βjkLk

+ ϵ if Z = z.

(4.5)

From here, define

αz =
−

d∑
k=1

zk∑
j=1

βjkcjk


Λz =

[∑z1
j=0 βj1 · · · ∑zd

j=0 βjd

]
,

(4.6)
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and we can re-cast Equation 4.5 as a linear factor analysis model

X = αz + ΛzL + ϵ if Z = z

⇒ Σz = ΛzΦzΛz + Ω if Z = z

(4.7)

where Φz := Var(L|Z) which is a truncated normal variance.

4.1.2 Multivariate Regression Form

The model in Equation 4.1 can be described as a multivariate regression model using the

following framework

X = βd(L) + ϵ, (4.8)

where β is a p × M matrix of regression coefficients with M = d +∑d
k=1 mk and d(L) is a

design function that maps L to a vector of design variables which serve as regressors to

the model as

d(L) =
[
L1 (L1 − c11)+ · · · (L1 − cm11)+ · · · Ld (Ld − c1d)+ . . . (Ld − cmdd)+

]T

.

(4.9)

Some computational formulas are as follows. Define a computational version of c as

cα =
[
0 c11 . . . cm11 . . . 0 c1d . . . cmdd

]
, (4.10)

which is the stacked vector of all cjk, for all j ∈ {0, . . . , mk} and k ∈ {1, . . . d}, except

that all c0k = 0. Also, let us define a binary version of Z as follows.

Z̃ =
[
1 I(c11 < L1) . . . I(cm11 < L1) . . . 1 I(c1d < Ld) . . . I(cmdd < Ld)

]
(4.11)

which is the stacked vector of all I(cjk < Lk), for all j ∈ {0, . . . , mk} and k ∈ {1, . . . d},

except that all the entry corresponding to c0k is fixed to 1. Then we have the following
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computational formulas
αz = −βdiag(Z̃)cα

Λz = βbdiag(Z̃),
(4.12)

where bdiag(Z̃) is a block-diagonal matrix with each block corresponding to the kth stack

of Z̃.

4.2 Conditional Expectations

The multivariate regression form described in Section 4.1.2 is convenient as its param-

eterization is identical to the one used for the Q-function in Section 3.2.2. Hence, the

maximizers of the Q-function remain the same and we only need to generalize the condi-

tional expectations to the multivariate case.

As before, for the conditional expectations we need E[di|xi] and E[did
T
i |xi]. Since the

threshold functions depend on Z, it will be easier to use the law of iterated expectation

to obtain
E[di|xi] = E[E[di|xi, zi]|xi]

=
∑

z

E[di|xi, zi]P(zi|xi),
(4.13)

and calculate a series of E[di|xi, zi] instead. Thus for a general threshold function (lik−cjk)+

we have

E[(lik − cjk)+|xi, zi] =


E[lik|xi, zi] − cjk if zik ≥ j

0 if zik < j

. (4.14)

For E[did
T
i |xi], note that we have to consider all possible cross-products among lik and

71



(lik − cjk). For the expectations that contain threshold functions, we have

E[lik(lig − cjg)+|xi, zi] =


E[liklig|xi, zi] − cjgE[lik|xi, zi] if zig ≥ j

0 if zig < j

E[(lik − cjk)2
+|xi, zi] =


E[l2ik|xi, zi] − 2cjkE[lik|xi, zi] + c2

jk if zik ≥ j

0 if zik < j

E[(lik − cjk)+(lig − cag)+|xi, zi] =



E[liklig|xi, zi]−cagE[lik|xi, zi]

−cjkE[lig|xi, zi] + cjkcag

if zik ≥ j and zig ≥ a

0 otherwise

.

(4.15)

In what follows, we will use these expectations to set up the E-step of a variational-

EM algorithm. As in the traditional EM-algorithm, this will involve taking the expectation

with respect to L|X over the complete data log-likelihood. Since L is written as a function

of d(L), the conditional expectations derived here allow us to construct E[d(L)|X)] from

E[L|X, Z] and proceed with maximization in a straightforward manner.

4.3 Variational EM Algorithm

For multi-dimensional L, finding the probability of czk < Lk ≤ c(z+1)k jointly over all

k ∈ [d] is a difficult integration problem over the multivariate Gaussian distribution. This

makes the EM algorithm difficult to proceed with in the multiple L case. Therefore, we

may perform a variational-EM algorithm (Beal, 2003), which maximizes a lower-bound

of the log-likelihood as follows. Let q(·) be some distribution such that allows for the
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tractability of the E-step, parameterized by γ:

ℓ(θ) =
n∑

i=1
logPθ(xi)

=
n∑

i=1
log

∫
li
Pθ(xi, li) dli

=
n∑

i=1
log

∫
li

qγi
(li)

Pθ(xi, li)
qγi

(li)
dli

=
n∑

i=1
logEγi

[
Pθ(xi, li)

qγi
(li)

]

≥
n∑

i=1
Eγi

[
log Pθ(xi, li)

qγi
(li)

]

:= V(θ, γ),

(4.16)

which follows from Jensen’s inequality. This yields a variational EM algorithm as follows.

Given an initial start value θ(0):

Step 1. γ(t+1) = argmax
γ

V(θ(t), γ).

Step 2. θ(t+1) = argmax
θ

V(θ, γ(t+1)).
(4.17)

To make the problem of finding the joint probability of all czk < Lk ≤ c(z+1)k tractable,

we will use a qγi
(Li) that approximates Pθ(Li|Xi) with the constraint that Lij, . . . , Lid

are all mutually independent under qγi
(Li). Notice in Equation 4.16, if γ is considered a

constant, then V is identical to the Q-function of Equation 3.9 up to an additive constant.

Hence, Step 2 is identical to the EM steps of Chapter 3. Thus we will derive Step 1, the

maximization of V with respect to γ.
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4.3.1 Maximizing with Respect to γ

To maximize with respect to γ, we may equivalently write V(θ, γ) as follows:

V(θ, γ) =
n∑

i=1
Eγi

[
log Pθ(xi, li)

qγi
(li)

]

=
n∑

i=1
Eγi

[
log Pθ(li|xi)Pθ(xi)

qγi
(li)

]

=
n∑

i=1
Eγi

[
logPθ(xi) + log Pθ(li|xi)

qγi
(li)

]

=
n∑

i=1
logPθ(xi) +

n∑
i=1

Eγi

[
log Pθ(li|xi)

qγi
(li)

]

=
n∑

i=1
logPθ(xi) −

n∑
i=1

Eγi

[
log qγi

(li)
Pθ(li|xi)

]

=
n∑

i=1
logPθ(xi) −

n∑
i=1

DKL (qγi
(li) ∥ Pθ(li|xi))

= −
n∑

i=1
DKL (qγi

(li) ∥ Pθ(li|xi)) + c.

(4.18)

Therefore, maximizing V(θ, γ) with respect to γ is equivalent to minimizing the KL-

divergences per observation.

In order to do this, we must choose an appropriate qγi
(Li) distribution ideally similar

to Pθ(L|X). First notice that Pθ(L|X) can be characterized as a piecewise Gaussian in

the following way. Let S(Z) be the sample space of Z, which would be all permutations

of Zk.
Pθ(L|X) =

∑
z∈S(Z)

P(L|X, Z = z)P(Z = z|X)

=
∑

z∈S(Z)

hz(L|X)I(Z = z)
P(Z = z|X) P(Z = z|X)

=
∑

z∈S(Z)
hz(L|X)I(Z = z)

=
∏

z∈S(Z)
hz(L|X)I(Z=z),

(4.19)

where we used the definition of a truncated distribution, and hz(L|X) is the hypothetically

untruncated Gaussian distribution of L|X as defined in Equation 3.35. Thus we can

choose qγi
(Li) to also be a piecewise Gaussian, where γi contains the parameters of the

underlying hypothetically untruncated Gaussian distributions of the pieces. That is, using
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the logic from the previous equation, we could also write

qγi
(Li) =

∏
zi∈S(Zi)

qzi
(Li)I(Zi=zi), (4.20)

where qzi
(Li) is the hypothetically untruncated Gaussian distribution corresponding to

the region zi, with parameters µγzi
and Σγzi

. Additionally, we will introduce a marginal

bin parameter:

πγzik
:= Pγi

(czik < Lik ≤ c(zi+1)k), (4.21)

which is simply the probability of the kth latent variable falling in the marginal region

(czk, c(z+1)k]. Therefore, γi is the set that contains all the µγzi
, Σγzi

, and πγzik
parameters,

for all z ∈ S(Z) and k ∈ [d].

To simplify the E-step, we will impose two constraints on γi. First, we will assume

that all Σγzi
are diagonal matrices. Second, we will constrain

πγzik
= Pθ(czik < Lik ≤ c(zi+1)k|xi). (4.22)

That is, the probability of the event (czik < Lik ≤ c(zi+1)k) is identical under qγi
(Li) and

Pθ(L|X = xi). The simplification offered by this second constraint will be made apparent

as we derive the E-step.

With the piecewise Gaussian forms of qγi
(Li) and Pθ(L|Xi) in hand, our strategy

will be to obtain the KL-divergence between these two distributions in terms of their
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hypothetically untruncated Gaussian components. For any given observation i, we have

DKL (qγi
(li) ∥ Pθ(li|xi)) = Eγi

[
log qγi

(li)
Pθ(li|xi)

]

= Eγi
[log qγi

(li) − logPθ(li|xi)]

= Eγi

log
∏

zi∈S(Zi)
qzi

(li)I(Zi=zi) − log
∏

zi∈S(Zi)
hzi

(li|xi)I(Zi=zi)


= Eγi

 ∑
zi∈S(Zi)

I(Zi = zi) log qzi
(li) −

∑
zi∈S(Zi)

I(Zi = zi) log hzi
(li|xi)


= Eγi

 ∑
zi∈S(Zi)

I(Zi = zi) log qzi
(li)

hzi
(li|xi)


= Eγi,Zi

Eγi,Li|Zi

 ∑
zi∈S(Zi)

I(Zi = zi) log qzi
(li)

hzi
(li|xi)

∣∣∣∣∣∣Zi


= Eγi,Zi

 ∑
zi∈S(Zi)

I(Zi = zi)DKL (qzi
(li) ∥ hzi

(li|xi))


=
∑

zi∈S(Zi)
Pγi

(Zi = zi)DKL (qzi
(li) ∥ hzi

(li|xi))

=
∑

zi∈S(Zi)

d∏
k=1

Pθ(czik < Lk ≤ c(zi+1)k|xi)DKL (qzi
(li) ∥ hzi

(li|xi)) ,

(4.23)

where the final equality follows from the constraints imposed on γi. That is, due to

all Lik being independent within each piece, as well as the constraint characterized by

Equation 4.22, we have

Pγi
(Zi = zi) =

d∏
k=1

Pγi
(czik < Lk ≤ c(zi+1)k)

=
d∏

k=1
Pθ(czik < Lk ≤ c(zi+1)k|xi).

(4.24)

From here, we can see that the KL-divergence between qγi
(li) and Pθ(li|xi) is a

weighted sum of the KL-divergences of their hypothetically untruncated Gaussian compo-

nents, qzi
(li) and hzi

(li|xi). Since each DKL are comprised of independent parameters in

γi, it is sufficient to minimize each DKL individually per zi. Let µθzi
and Σθzi

denote the

mean and covariance parameters, respectively, for hzi
(li|xi). Then the KL-divergence for
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each zi is

DKL (qzi(li) ∥ hzi(li|xi)) = 1
2

[
tr(Σ−1

θzi
Σγzi

) + (µθzi
− µγzi

)T Σ−1
θzi

(µθzi
− µγzi

) − d + log
|Σθzi

|
|Σγzi

|

]
.

(4.25)

To minimize with respect to µγzi
, we can collect the relevant terms as

DKL(µγzi
) ∝ (µθzi

− µγzi
)T Σ−1

θzi
(µθzi

− µγzi
) + c, (4.26)

then differentiating and setting equal to zero

∂DKL

∂µγzi

∝ −2Σ−1
θzi

(µθzi
− µγzi

) = 0

⇒ µθzi
= µγzi

,

(4.27)

trivially shows that the value that minimizes DKL with respect to µγzi
is simply µθzi

. Now

to minimize with respect to Σγzi
we once again collect relevant terms as

DKL(Σγzi
) ∝ tr(Σ−1

θzi
Σγzi

) + log
|Σθzi

|
|Σγzi

|
+ c

= tr(Σ−1
θzi

Σγzi
) − log|Σγzi

| + c′

= tr(diag(Σ−1
θzi

)Σγzi
) − log|Σγzi

| + c′,

(4.28)

which makes use of the fact that Σγzi
is diagonal. Then differentiating and setting equal

to zero
∂DKL

∂Σγzi

∝ diag(Σ−1
θzi

) − Σ−1
γzi

= 0

⇒ diag(Σ−1
θzi

) = Σ−1
γzi

.

(4.29)

Thus, the component-wise parameters in γi that minimize DKL are simply the same as

those in θ, except we truncate the off-diagonals of Σθzi
to zero. That is,

µ(t+1)
γzi

= argmax
µγzi

V(θ(t), γ) = µ
(t)
θzi

Σ(t+1)
γzi

= argmax
Σγzi

V(θ(t), γ) = diag(Σ(t)
θzi

).
(4.30)
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Method β̂ij − βij V̂ar(β̂ij) (β̂ij − βij)2 Var Ratio MSE Ratio
Regularized-VEM −0.425 2.301 15.149 5.339 35.148

Known L MLE −0.001 0.431 0.431 - -

Table 4.1: Results of the piecewise linear factor analysis simulation with multiple L.
Displayed are the empirical biases, variances and mean square errors averaged across all
β parameters. Var ratio and MSE ratio are the ratios of empirical variances and MSE
between the regularized variational-EM and the known L MLE, also averaged over all β.

4.4 Simulation Study

To test the variational-EM approach, we conducted a small simulation study. The

simulation was designed identically to the simulation in Section 3.3 with the following

changes. First, rather than a latent variable scalar, we used a 3-dimensional latent variable

L ∼ N3(0, I3). Second, while we used the same non-linear functions as the 1-dimensional

simulation, each latent variable added a different independent copy of each function. That

is, if we denote the design function from the 1-dimensional simulation as d1(·) and the

current design function as d3(·), we have a block vector

d3(L) =
[
d1(L1) d1(L2) d1(L3)

]T

. (4.31)

Third, we note that variational-EM algorithm was used (Equation 4.17), with the caveat

that we added an ℓ2 regularizer on the loss function in Equation 4.16. Regularization was

needed to help the algorithm converge and a regularization constant was arbitrarily set to

5. We compared this method to the MLE estimates that used L as observed data.

The simulation results are displayed in Table 4.1. We show the empirical bias,

variance, and mean square errors averaged over all the β parameters. In addition, we

calculated the ratio of empirical variances and MSE between the regularized variational-

EM method and known L MLE methods, also averaged over all β. The results show that

the regularized variational-EM estimates show a small amount of bias, which is to be

expected with regularization. The empirical variance was 2.301, which was 5.339 times

higher than the known L on average, which was 0.431. Further, the empirical MSE was

15.149, which was 35.148 times higher than the known L MLE, which was 0.431.
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Comparing these variance and MSE ratios to the EM-algorithm method in 1-

dimensional data, the regularized variational-EM ratios were moderately to much higher.

The variational EM variance ratio was 5.339, compared to the EM-algorithm’s 2.922, and

the comparison of MSE ratio was 35.148 vs. 4.888. These ratios may be improved using

an optimal choice of regularization constant, however this may be challenging since a

complete run of the regularized variational-EM method took 9000 iterations (about 1

hour). Hence, a fast method of evaluating and choosing a regularization constant under

the EM-framework is a topic of further study.

4.5 Sampling-Based Methods

In addition to the variational-EM method, we may also consider sampling-based

methods. Recall that the key difficulty of the model in Equation 4.1 is calculating the

probability of a given region (Z = z) over the multivariate Gaussian. Another way to

obviate this problem is through sampling-based methods.

Within the EM-framework, one technique is stochastic EM (Celeux and Diebolt,

1985), which replaces the E-step with a sampling step. In the case of our model, this

amounts to replacing the computation of Eθ(t) [di|xi] with a draw from Pθ(t)(di|xi), for all

i ∈ [n]. Then the maximization step is then carried out acting as if the sampled data

were observed. Essentially, latent variables are imputed with a random draws followed

by a parameter update. In turn, the sequence of θ(t) becomes a Markov Chain (which is

ergodic under general conditions; Nielsen, 2000), and a final estimate can be obtained by

averaging over a final set of iterations, after discarding an initial burn-in set.

Alternatively, we may also consider a Gibbs sampling approach under a Bayesian

framework (Geman and Geman, 1984). The multivariate L versions of the estimators

described in Section 3.2.2 can be easily adapted into a Bayesian regression routine in

the following way. Given start values β(0), Ω(0), with Gaussian and inverse-gamma priors,

respectively:

1. Draw L(t+1)|X,β(t), Ω(t) from a Gaussian distribution.
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2. Compute d(t+1) = d(L(t+1)).

3. Draw β(t+1)|X, d(t+1), Ω(t) from a Gaussian distribution.

4. Draw Ω(t+1)|X, d(t+1),β(t+1) from an inverse-gamma distribution.

This procedure would provide empirical posterior distributions of β and Ω, which would

also allow for the quantification of standard errors in a straightforward manner (Gelman

et al., 2014).

4.6 Other Extensions

Akin to learning linear structures prior to estimation as in Chapter 2, we may augment

the methods explored in Chapters 3 and 4 with a structure learning step as well. The

clique search routines of Chapter 2 may readily be extended to non-linear correlation

coefficients. That is, we may use coefficients that measure the degree of (non-linear)

dependence between a pair of observed variables. This can be accomplished, for example,

by examining the mutual information between pairs of variables (e.g., Reshef et al.,

2011; Smith, 2015), or by analyzing and aggregating local linear dependencies (Delicado

and Smrekar, 2009). Similar to the CT algorithm, this would allow for the number of

latent variables and the presence of non-linear relations to be learned before carrying out

estimation. The estimation routines described in Chapters 3 and 4 may then be carried

out after specifying this learned structure. This would be a promising method for future

research.
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