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Abstract

Binary Stars Across the Milky Way: Probes of Star Formation and Evolution

by

Kareem Julian El-Badry

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Eliot Quataert, Co-chair
Associate Professor Daniel Weisz, Co-chair

Binary stars are foundational to modern astrophysics. They underpin precision measure-
ments of stellar structure, age, and composition; they provide stringent tests of general
relativity; they make possible the study of faint and rare objects such as black holes and
neutron stars; they are the progenitors of gravitational wave events. The components of bi-
naries often interact, dramatically changing their evolution and giving rise to a bewildering
zoo of astrophysical phenomenology. Binaries are not rare: about half of all Sun-like stars
are binaries, and the binary fraction is even higher for massive stars. To understand stars
– especially massive stars – it is thus critical to understand binaries. In the last decade,
industrial-scale stellar surveys have provided exquisite spectroscopic, photometric, and as-
trometric data for hundreds of millions of stars in the Milky Way. The goal of this thesis has
been to leverage this deluge of data toward new insight into the formation, evolution, and
cosmic importance of binaries. On the one hand, binary population demographics represent
the end state of the star formation process and thus inform theoretical star formation models.
On the other, binary population demographics are an important input for stellar population
models: stars in interacting binaries follow qualitatively different evolutionary histories from
single stars of similar mass and composition. An improved census of the binary population
thus has broad utility across astrophysics. Among other results, this thesis expands the total
number of binaries known by more than a factor of 10. The methods developed here are
expected to continue to bear fruit in the coming decades as panchromatic surveys look ever
deeper into the Galaxy.
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Chapter 1

Introduction

1.1 Historical background
Binary stars have played a paramount role in the history of astronomy. Algol, the bright-

est eclipsing binary star in the sky, was observed to periodically fade every ∼3 days by
ancient Egyptian scribes more than 3000 years ago. Algol’s 2.85 day period1 is clearly visi-
ble as a peak in a periodogram of the Cairo Calendar of lucky and unlucky days (Jetsu et al.
2013). This document is likely the oldest surviving record related to any variable star.

It is not known whether the ancient Egyptian understood the reason for Algol’s peri-
odic dimming. The earliest surviving suggestion that eclipses were to blame was made by
Goodricke (1783). Around the same time, Herschel (1782) began constructing the first known
catalog of spatially resolved wide binary stars.2 It took more than 100 more years until the
first close binary was discovered spectroscopically (Pickering 1890). The first high-precision
light curve for an eclipsing binary – once again Algol – was calculated by Stebbins (1910).

Outside the Solar system, binary stars provide the best measurements of stellar masses
and radii (e.g. Andersen 1991; Torres et al. 2010). These measurements are (relatively)
independent of modeling assumptions and depend on well-understood physics: Newtonian

1In fact, the orbital period of Algol today is 2.87 days. However, mass transfer from a lower- to a
higher-mass star widens a binary’s orbital period. For Algol’s mass transfer rate, Ṁ ≈ 2 × 10−7M� yr−1,
the binary’s orbital period is predicted to have been 2.85 days in 1200 BCE, when the Cairo Calendar was
produced (Jetsu et al. 2013).

2Herschel was not looking for binaries, and in fact did not know that binaries existed in 1782: he was
attempting to measure stellar parallaxes, and was looking for chance alignments. In Herschel’s time, there
was no universal coordinate frame (“ICRS”) against which to measure stellar positions. Hershel knew it would
be easier to measure small angular displacements of a foreground star if there were a nearby background
star with negligible parallax. With this goal in mind, Herschel identified more than 800 close pairs, down to
about 11th magnitude, and carried out astrometric measurements of their components over 20 years. This
was a clever idea, but it did not work, because almost all of the pairs in Herschel’s catalog were physically
associated binaries, not chance alignments. This meant that the two stars had the same parallax, making it
impossible to measure the parallax of one component relative to the other. Herschel eventually realized this
(Herschel 1803).
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mechanics and geometry. McLaughlin (1924) measured the masses and radii of the com-
ponents of Algol by simultaneously fitting the light curve and spectroscopic radial velocity
measurements, discovering the first evidence of the Rossiter-McLaughlin effect in the pro-
cess. Precision measurements of masses and radii in a few dozen binaries allowed Hertzsprung
(1923) and Kuiper (1938) to construct an empirical mass-luminosity relation for main se-
quence stars across more than two decades in mass and nearly eight decades in luminosity.

A mathematical theory of stellar structure and evolution was developed during the 1920s
and 30s (e.g. Eddington 1924; Jeans 1925; Eddington 1926; Rosseland 1926; Russell 1929;
Milne 1930; Bethe 1939). It was soon realized that the masses and evolutionary states of
the components of Algol and other similar close binaries appeared to be inconsistent with
the theory (e.g. Kuiper 1941). The apparent tension with the theory, dubbed the “Algol
paradox”, can be summarized as follows: (a) it is assumed that the component stars in most
binaries are coeval, (b) stellar evolution predicts that lower-mass stars have shorter lifetimes
than higher-mass stars, and (c) in Algol and other similar binaries, the low-mass star is more
evolved than the high-mass star, contradicting (b).

The Algol paradox was investigated by many astronomers in the next few decades, with
a variety of incorrect explanations proposed (see Pustylnik 1998, for a summary). The
(presumably) correct solution was first proposed by Crawford (1955): the more evolved star
was initially the more massive component, but it has since transferred most of its mass to the
companion. This evolutionary scenario is now thought to be quite common in close binaries,
but it was not widely accepted as the resolution of the Algol paradox for several decades.
The upshot of the Algol story, which will become relevant again later in this thesis, is that
interactions between the components of binary stars make possible a much wider diversity of
evolutionary histories than is normally allowed under single-star evolution.

The utility of binary star population demographics – that is, their distributions of period,
eccentricity, primary mass, and mass ratio – was recognized early. With the publication of
a catalog of ∼ 3000 wide binary candidates by Struve (1837), binary star studies firmly en-
tered the realm of statistical astronomy. The purity and completeness of early samples were,
however, not well understood. All binary star surveys are subject to selection effects, which
for spatially resolved binaries introduce biases against unequal mass ratios and close sepa-
rations. An attempt to correct for these biases was made by Kuiper (1935), who recognized
the potential of binaries as a window into the star formation process. Using data from the
recent Lick observatory spectroscopic survey of Aitken & Doolittle (1932) and various other
catalogs, Kuiper combined samples of single-lined binaries (“SB1”; spectroscopic binaries in
which only one component is detectable in the spectrum) and double-line binaries (“SB2”)
to constrain the binary mass ratio distribution as a function of primary mass.

The methods he used to account for incompleteness were applied in many subsequent
studies. Abt & Levy (1976) carried out a multi-epoch radial velocity survey with the goal of
constraining the frequency of binaries among Solar-type stars. They found that the period
distribution of Solar-type binaries is roughly lognormal, with a peak between 10 and 100
years and a total binary fraction of about 50%. This result was solidified in later studies by
Duquennoy & Mayor (1991) and Raghavan et al. (2010); other works showed that the binary
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fraction and peak separation vary with primary mass (e.g. Duchêne & Kraus 2013; Moe &
Di Stefano 2017a).

Beginning in the 1960s, it was recognized that mass transfer within close binaries gives
rise to a broad range of astrophysical phenomenology. Mass-transferring white dwarf +
main sequence binaries were identified as the cause of cataclysmic variables (Kraft 1962),
and an extensive theory of a cataclysmic variable evolution was developed over the next
few decades (Warner 1995). In the 1970s, many of the bright X-ray sources discovered by
balloon and satellite missions were found to be associated with normal-star optical sources.
These objects were soon identified as “X-ray binaries” in which a black hole or neutron
star accretes mass from a close stellar companion (e.g. Webster & Murdin 1972; Clark 1975;
Margon et al. 1979). The first radio pulsar discovered in a binary (Hulse & Taylor 1975) made
possible precision measurements of the masses of neutron stars, and precision tests of general
relativity. Increasingly sophisticated binary evolution models were developed to explain the
formation of observed systems (e.g. Kopal 1956; Spruit & Ritter 1983a; Bhattacharya &
van den Heuvel 1991; Kalogera & Webbink 1996; Hurley et al. 2002a; Paxton et al. 2011).
Binaries were also identified as the progenitors of gamma ray bursts (Narayan et al. 1992),
type Ia supernovae (Whelan & Iben 1973; Iben & Tutukov 1984; Branch et al. 1995; Hachisu
et al. 1999), and stripped-envelope (Ib/Ic) supernovae (e.g. Yoon et al. 2010).

The last few decades have witnessed a meteoric rise of stellar surveys, which have obtained
spectra, light curves, and astrometric solutions for millions of stars across the Milky Way.
The revolution began with the Hipparcos mission (ESA 1997), which measured parallaxes
and proper motions of ∼ 105 bright stars within ∼ 100 pc. Hipparcos also provided full
binary astrometric solutions for a few hundred sources, fitting the plane-of-the-sky motion of
these sources with an astrometric model that included elliptical motion of the photocenter,
in addition to motion due to parallax and proper motion. Meanwhile, spectroscopic surveys
including SDSS, RAVE, LAMOST, APOGEE, and GALAH obtained single- and multi-epoch
spectra of several million stars, including thousands of short-period binaries (York et al. 2000;
Steinmetz et al. 2006; Allende Prieto et al. 2008; De Silva et al. 2015; Kunder et al. 2017;
Majewski et al. 2017). The CoRoT, Kepler, and K2 mission produced light curves with
millimag precision for a few ×105 stars. The “highlight” of these missions was the discovery
of transiting exoplanets, but large catalogs of close binaries, discovered through eclipses
as well as ellipsoidal variation, doppler beaming, reflection, gravitational microlensing, and
tidally-excited oscillations, were a happy biproduct for the binary field.

The genesis of this thesis in 2018 was motivated by several planned and just-released
datasets. After decades of planning and commissioning, the LIGO collaboration had recently
detected its first gravitational wave events: mergers of massive (∼ (10−30)M�) binary black
holes at cosmological distances (e.g. Abbott et al. 2016). Most of the black holes detected by
LIGO were more massive than those known to exist in local X-ray binaries (e.g. Remillard &
McClintock 2006). Their discovery raised broader questions about the black hole population:
how many other black holes might lurk in detached binaries in the Milky Way? Within a
few years, a binary neutron star merger produced the first gravitational wave event with
an electromagnetic counterpart (e.g. Abbott et al. 2017), generating interest in the system’s
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formation history and progenitors. These discoveries motivated me to search for binaries
containing compact objects and/or interacting massive stars in the Milky Way.

In 2018, the 2nd data release of the Gaia mission (Gaia Collaboration et al. 2018b)
revolutionized stellar and Galactic astronomy. Before Gaia, stellar distances were hard to
come by and plagued by systematic errors. Suddenly, precise distances were available for
most stars within about a kiloparsec. Poorly measured distances had been a dominant
source of uncertainty in modeling several classes of interacting binaries (e.g. cataclysmic
variables and X-ray binaries). Without well-measured distances, it had also been impossible
to distinguish the widest gravitationally bound binaries from chance alignments.

Finally, the launch of the TESS satellite in 2018 (Ricker et al. 2015) promised to deliver
high-precision light curves for ∼20 million bright stars. Unlike Kepler, which during its
primary mission monitored only about 0.25% of the sky, TESS surveys the whole sky every
24 months, with most sources receiving ∼27 days of consecutive coverage. Particularly for
bright sources (which are easier to follow-up spectroscopically), the TESS data were expected
to be a treasure trove for study of close and interacting binaries.

This thesis represents an early step in leveraging large-scale surveys for binary star pop-
ulation studies. A host of upcoming surveys will shine new light on binaries and stellar
astrophysics in general in the next decade. eROSITA will discover new populations of low-
luminosity X-ray binaries, including wind-transfer BH binaries (Doroshenko et al. 2014).
The Rubin observatory’s LSST survey will reveal millions of close binaries throughout the
Local Group, including large samples of massive interacting binaries (Prša et al. 2011); it
is also expected to detect thousands of isolated stellar-mass BH candidates via microlensing
(Abrams & Takada 2020). The Roman telescope microlensing survey will also detect BH
candidates, with better mass constraints than LSST (Lam et al. 2020). In the coming years,
I will use these surveys both for binary population demographics and to select objects for
detailed follow-up. I am particularly invested in the SDSS-V survey (Kollmeier et al. 2017),
which will provide broad opportunities to advance the search for interesting binaries and
BHs beginning this year. I am leading SDSS-V open fiber programs to obtain BOSS and
APOGEE spectra of ∼50,000 light-curve selected massive binaries and BH candidates and
∼5,000 white dwarf + main sequence wide binaries, continuing the work described in Chap-
ter 10. Stellar binarity is among the oldest fields in astrophysics, but the field continues to
revolutionize itself. As one co-chair of this thesis told me, binary stars are the new black!

1.2 Thesis summary
This thesis is organized as follows. Chapters 2 and 3 concern the spectroscopic detection

and characterization of binaries with wide-field surveys. Chapter 4 introduces a method
to distinguish spatially resolved wide binaries from chance alignments using data from the
Gaia mission. Chapter 5 analyzes the Gaia binary sample to constrain the metallicity-
dependence of the binary fraction. Chapter 6 outlines a method for testing modifications
to the gravitational force law in the low-acceleration regime with wide binaries. Chapter 7
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is focused on the excess population of equal-mass “twin” binaries and on the binary mass
ratio distribution in general. Chapters 8 and 9 examine two unusual binaries proposed to
contain dormant black holes. Chapter 10 uses wide binaries to constrain the astrometric
precision of the Gaia survey. Chapter 11 introduces a new type of mass-transfer binary that
is transitional between the known populations of cataclysmic variables and low-mass white
dwarfs.

1.3 Other work
It is said that a thesis which goes exactly as planned is a boring thesis. This one was not

boring: I changed my focus more than once and had the opportunity to explore a variety
of subfields across astrophysics. My other work focused primarily on galaxy formation and
creative uses of survey data. A bibliography of papers I (co)-authored while I was Ph.D.
student that are not included in this thesis is below.

41. El-Badry, K., Ostriker, E. O., Kim, C.-G., Quataert, E., Weisz, D. R., 2019, “Evolu-
tion of supernovae-driven superbubbles with conduction and cooling”, arXiv:1902.09547,
MNRAS, 490, 1961.

40. El-Badry, K., Rix, H.-W., Weisz, D. R. 2018, “An empirical measurement of the
initial-final mass relation with Gaia white dwarfs”, arXiv:1805.05849, ApJL, 860, 17.

39. El-Badry, K., Quataert, E., Weisz, D. R., Choksi, N., Boylan-Kolchin, M. 2019, “The
formation and hierarchical assembly of globular cluster populations”, arXiv:1805.03652,
MNRAS, 482, 4528.

38. El-Badry, K., Bland-Hawthorn, J., Wetzel, A., Quataert, E., Weisz, D. R., Boylan-
Kolchin, M., Hopkins, P. F., Faucher-Giguère, C.-A., Kereš, D., Garrison-Kimmel,
S. 2018, “Where are the most ancient stars in the Milky Way?”, arXiv:1804.00659,
MNRAS, 480, 652.

37. El-Badry, K., Bradford, J., Quataert, E., Geha, M., Boylan-Kolchin, M., Weisz, D.
R., Wetzel, A., Hopkins, P. F., Chan, T. K., Fitts, A., Kereš, D., Faucher-Giguère, C.-
A. 2018, “Gas kinematics in FIRE simulated galaxies compared to spatially unresolved
HI observations”, arXiv:1801.03933, MNRAS, 477, 1536.

36. El-Badry, K., Quataert, E., Wetzel, A., Hopkins, P. F., Weisz, D. R., Chan, T. K.,
Fitts, A., Boylan-Kolchin, M., Kereš, D., Faucher-Giguère, C.-A., Garrison-Kimmel, S.
2018, “Gas kinematics, morphology, and angular momentum in the FIRE simulations”,
arXiv:1705.10321, MNRAS, 473, 1930.

35. El-Badry, K., Weisz, D. R., Quataert, E. 2017, “The statistical challenge of constrain-
ing the low-mass IMF in Local Group dwarf galaxies”, arXiv:1701.02347, MNRAS, 468,
319.



1.3. OTHER WORK 6

34. El-Badry, K., Wetzel, A., Geha, M., Quataert, E., Hopkins, P. F., Kereš, D., Chan,
T. K., Faucher-Giguère, C.-A. 2017, “When the Jeans do not fit: How stellar feedback
drives stellar kinematics and complicates dynamical modeling in low-mass galaxies”,
arXiv:1610.04232, ApJ, 835, 193.

33. El-Badry, K., Wetzel, A., Geha, M., Hopkins, P. F., Kereš, D., Chan, T. K., Faucher-
Giguère, C.-A. 2016, “Breathing FIRE: How stellar feedback drives radial migration,
rapid size fluctuations, and population gradients in low-mass galaxies”, arXiv:1512.
01235, ApJ, 820, 131.

32. Nelson, T., Ting, Y.-S., Hawkins, K., Ji, A., Kamdar, H., El-Badry, K., 2021,
“Distant relatives: The chemical homogeneity of comoving pairs identified in Gaia”,
arXiv:2104.12883, ApJ, submitted.

31. Stern, J., Sternberg, A., Faucher-Giguère, C.-A., Hafen, Z., Fielding, D., Quataert,
E., Wetzel, A., Anglès-Alcàzar, D., El-Badry, K., Kereš, D., Hopkins, P. F., 2021,
“Neutral CGM as damped Lyα absorbers at high redshift”, MNRAS, submitted.

30. Santistevan, I., Wetzel, A., Sanderson, R., El-Badry, K., Samuel, J., Faucher-Giguère,
C.-A., “The origin of metal-poor stars on prograde disk orbits in FIRE simulations of
Milky Way-mass galaxies”, MNRAS, submitted.

29. Martin, D. V., El-Badry, K., Hodžić, V. K., Triaud, A. H. M. J., Angus, R., Birky,
J., Foreman-Mackey, D., Hedges, C., Montet, B., Murphy, S. J., Santerne, A., Stassun,
K. G., Stephan A. P., Wang, J., Benni, P., Krushinsky, V., Chazov, N., Mishevskiy,
N., Ziegler, C., Soubkiou, A., Benkhaldoun, Z., Caldwell, D. A., Collins, K., Henze,
C. E., Guerrero, N. M., Jenkins, J. M., Latham D. W., Levine, A., McDermott, S.,
Mullally, S. E., Ricker, G., Seager, S., Shporer, A., Vanderburg, A., Vanderspek, R.,
Winn, J. N., 2021, “TOI-1259Ab – a gas giant with 2.6% deep transits and a bound
white dwarf companion”, arXiv:2101.02707, MNRAS, submitted.

28. Mercado, F. J., Bullock, J. S., Boylan-Kolchin, M., Moreno, J., Wetzel, A., El-Badry,
K., Graus, A. S., Fitts, A., Hopkins, P. F., Faucher-Giguère, C.-A., 2020, “Totally
metal: A relationship between stellar metallicity gradients and galaxy age in dwarf
galaxies”, arXiv:2009.01241, MNRAS, 501, 5121.

27. Velázquez, J. F., Gurvich, A. B., Faucher-Giguère, C.-A., Bullock, J. S., Starken-
burg, T. K., Moreno, J., Lazar, A., Mercado, F. J., Stern, J., Sparre, M., Hayward,
C., Wetzel, A., El-Badry, K., 2020 “The time-scales probed by star formation rate
indicators for realistic, bursty star formation histories from the FIRE simulations”,
arXiv:2008.08582, MNRAS, 501, 4812.

26. Xiang, M.-S., Rix, H.-W., Ting, Y.-S., Zari, E., El-Badry, K., Yuan, H.-B., Cui,
W.-Y., 2020, “Data-driven spectroscopic estimates of absolute magnitude, distance,



1.3. OTHER WORK 7

and binarity — method and catalog of 16,002 O- and B-type stars from LAMOST”,
arXiv:2008.10637, ApJ, in press.

25. Irrgang, A., Geier, S., Heber, U., Kupfer, T., El-Badry, K., Bloemen, S., 2020, “A
proto-helium white dwarf stripped by a substellar companion via common-envelope
ejection: Uncovering the true nature of a candidate hypervelocity B-star”, arXiv:
2007.03350, A&A., in press.

24. Kamdar, H., Conroy, C., Ting, Y.-S., El-Badry, K., 2020, “Spatial and kinematic
clustering of stars in the Galactic disk”, arXiv:2007.10990, ApJ, submitted.

23. Stern, J., Faucher-Giguère, C.-A., Fielding, D., Quataert, E., Hafen, Z., Gurvich, A.
B., Ma, X., Byrne, L., El-Badry, K., Anglès-Alcàzar, D., Chan, T.-K., Feldmann,
R., Kereš, D., Wetzel, A., Murray, N., Hopkins, P. F., 2020, “Virialization of the inner
CGM in the FIRE simulations and implications for galaxy discs, star formation and
feedback”, arXiv: 2006.13976, ApJ, in press.

22. Li, F., Rahman, M., Murray, N., Hafen, Z., Faucher-Giguère, C.-A., Stern, J., Hum-
mels, C. B., Hopkins, P. F., El-Badry, K., Kereš, D., 2020, “Probing the CGM of
low-redshift dwarf galaxies using FIRE simulations”, MNRAS, 500, 1038.

21. Lazar, A., Bullock, J. S., Boylan-Kolchin, M., Chan, T.-K., Hopkins, P. F., Graus, A.,
Wetzel, A., El-Badry, K., Wheeler, C., Straight, M. C., Kereš, D., Faucher-Giguère,
C.-A., Fitts, A., Garrison-Kimmel, S., 2020, “A dark matter profile to model diverse
feedback-induced core sizes of ΛCDM haloes”, arXiv:2004.10817, MNRAS, 497, 2393.

20. Coronado, J., Rix, H.-W., Trick, W., El-Badry, K., Rybizki, J., Xiang, M., 2020,
“From birth associations to field stars: mapping the small-scale orbit distribution in
the Galactic disc”, arXiv:2002.09496, MNRAS, 495, 4098.

19. Santistevan, I. B., Wetzel, A., El-Badry, K., Bland-Hawthorn, J., Boylan-Kolchin,
M., Bailin, J., Faucher-Giguère, C.-A., Benincasa, S., 2020, “Growing pains: the forma-
tion times and building blocks of Milky Way-mass galaxies in the FIRE simulations”,
arXiv:2001.03178, MNRAS, 497, 747.

18. Pelliccia, D., Mobasher, B., Darvish, B., Lemaux, B. C., Lubin, L. M., Hirtenstein,
J., Shen, L., Wu, P.-F., El-Badry, K., Wetzel, A., Jones, T., 2020, “Effects of stellar
feedback on stellar and gas kinematics of star-forming galaxies at 0.6 < z < 1.0”,
arXiv:2001.00590, ApJL, 896, 26.

17. Hafen, Z., Faucher-Giguère, C.-A., Anglès-Alcàzar, D., Stern, J., Kereš, D., Esmerian,
C., Wetzel, A., El-Badry, K., Chan, T.-K., Murray, N., 2019, “The fates of the
circumgalactic medium in the FIRE simulations”, arXiv:1910.01123, MNRAS, 494,
3581.



1.3. OTHER WORK 8

16. Tian, H.-J., El-Badry, K., Rix, H.-W., Gould, A., 2019, “The separation distribution
of ultrawide binaries across galactic populations”, arXiv:1909.04765, ApJS, 246, 4.

15. Hawkins, K., Lucey, M., Ting, Y.-S., Ji, A., Katzberg, D., Thompson, M., El-Badry,
K., Teske, J., Nelson, T., Carrillo, A., 2019, “Identical or fraternal twins?: The chemical
homogeneity of wide binaries from Gaia DR2”, arXiv:1912.08895, MNRAS, 492, 1164.

14. Jahn, E. D., Sales, L. V., Wetzel, A., Boylan-Kolchin, M., Chan, T.K., El-Badry, K.,
Lazar, A., Bullock, J. S., 2019, “Dark and luminous satellites of LMC-mass galaxies in
the FIRE simulations”, MNRAS, 489, 5348.

13. Samuel, J., Wetzel, A., Tollerud, E., Garrison-Kimmel, S., Loebman, S., El-Badry,
K., Hopkins, P.F., Boylan-Kolchin, M., Faucher-Giguère, C.-A., Bullock, J., Benincasa,
S., Bailin, J., 2019, “A profile in FIRE: resolving the radial distributions of satellite
galaxies in the Local Group with simulations”, arXiv:1904.11508, MNRAS, 491, 1471

12. Garrison-Kimmel, S., Wetzel, A., Hopkins, P. F., Sanderson, R., El-Badry, K., Graus,
A., Chan, T.K., Feldmann, R., Boylan-Kolchin, M., Hayward, C., Bullock, J. S., Fitts,
A., Samuel, J., Wheeler, C., Kereš, D., Faucher-Giguère, C.-A., 2019, “Star formation
histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local
Group environment”, arXiv:1903.10515, MNRAS, 489, 4574.

11. Dickey, C. M., Geha, M., Wetzel, A., El-Badry, K., 2019, “AGN all the way down?
AGN-like line ratios are common in the lowest-mass isolated quiescent galaxies”, arXiv:
1902.01401, ApJ, 884, 180.

10. Emami, N., Siana, B., Weisz D. R., Johnson, B. D., Ma, X., El-Badry, K., 2018, “A
closer look at bursty star formation with LHα and LUV distributions”, arXiv:1809.06380,
ApJ, 881, 71.

9. Fitts, A., Boylan-Kolchin, M., Bozek, B., Bullock, J. S., Graus, A., Robles, V., Hopkins
P. F., El-Badry, K., Garrison-Kimmel, S., Faucher-Giguère, C.-A., Wetzel, A., Kereš,
D., 2018, “Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark
matter physics”, arXiv: 1811.11791, MNRAS, 490, 962.

8. Hafen, Z., Faucher-Giguère, C.-A., Anglès-Alcàzar, D., Stern, J., Kereš, D., Hummels,
C., Esmerian, C., Garrison-Kimmel, S., El-Badry, K., Wetzel, A., Chan, T. K.,
Hopkins, P. F., Murray, N., 2018, “The origins of the circumgalactic medium in the
FIRE simulations”, arXiv:1811.11753, MNRAS, 488, 1.

7. Hirtenstein, J., Jones T., Wang, X., Wetzel, A., El-Badry, K., Hoag, A., Treu, T.,
Bradač, M., Morishita, T., 2018, “The OSIRIS lens-amplified survey (OLAS) I: dy-
namical effects of stellar feedback in low mass galaxies at z ∼ 2”, arXiv:1811.11768,
ApJ, 880, 54.



1.3. OTHER WORK 9

6. Garrison-Kimmel, S., Hopkins, P. F., Wetzel, A., Bullock, J., Boylan-Kolchin, M.,
Kereš, D., Faucher-Giguère, C.-A., El-Badry, K., Lamberts, A., Quataert, E., Sander-
son R. E., 2018, “The Local Group on FIRE: Dwarf galaxy populations across a suite
of hydrodynamic simulations”, arXiv:1806.04143, MNRAS, 487, 1380.

5. Debattista, V. P., Gonzalez O. A., Sanderson R. E., El-Badry, K., Garrison-Kimmel,
S., Wetzel, A., Faucher-Giguère, C.-A., Hopkins, P. F., 2018, “Formation, vertex devi-
ation and age of the Milky Way’s bulge: input from a cosmological simulation with a
late-forming bar”, arXiv:1805.12199, MNRAS, 485, 5073.

4. Fitts, A., Boylan-Kolchin, M., Bullock, J., Weisz, D. R., El-Badry, K., Wheeler, C.,
Faucher-Giguère, C.-A., Quataert, E., Hopkins, P. F., Kereš, D., Wetzel, A., 2018,
“No assembly required: mergers are mostly irrelevant for the growth of low-mass dwarf
galaxies”, arXiv:1801.06187, MNRAS, 479, 319.

3. Garrison-Kimmel, S., Hopkins, P. F., Wetzel, A., El-Badry, K., Sanderson R. E.,
Bullock, J., Ma, X., van de Voort, F., Hafen, Z., Faucher-Giguère, C.-A., Hayward,
C. C., Quataert, E., Kereš, D., Boylan-Kolchin, M., 2018, “The origin of the diverse
morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations”,
arXiv:1712.03966, MNRAS, 481, 4133.

2. Chan, T. K., Kereš, D., Wetzel, A., Hopkins, P. F., Faucher-Giguère, C.-A., El-Badry,
K., Garrison-Kimmel, S., Boylan-Kolchin, M. 2017, “The origin of ultra diffuse galaxies:
stellar feedback and quenching”, arXiv:1711.04788, MNRAS, 478, 906.

1. Hopkins, P. F., Wetzel, A., Kereš, D., Faucher-Giguère, C.-A., Quataert, E., Boylan-
Kolchin, M., Murray, N; Hayward, C. C., El-Badry, K. 2017, “How to model super-
novae in simulations of star and galaxy formation”, arXiv:1707.07010, MNRAS, 477,
1578.



10

Chapter 2

Signatures of unresolved binaries in
stellar spectra: implications for spectral
fitting

An earlier version of this article was previously published as El-Badry, K., Rix, H.-W.,
Ting, Y.-S., Weisz, D. R., Bergemann, M., Cargile, P., Conroy, C., Eilers, A.-C., 2018,
MNRAS, 473, 5043.

2.1 Abstract
The observable spectrum of an unresolved binary star system is a superposition of two

single-star spectra. Even without a detectable velocity offset between the two stellar compo-
nents, the combined spectrum of a binary system is in general different from that of either
component, and fitting it with single-star models may yield inaccurate stellar parameters
and abundances. We perform simple experiments with synthetic spectra to investigate the
effect of unresolved main-sequence binaries on spectral fitting, modeling spectra similar to
those collected by the APOGEE, GALAH, and LAMOST surveys. We find that fitting
unresolved binaries with single-star models introduces systematic biases in the derived stel-
lar parameters and abundances that are modest but certainly not negligible, with typical
systematic errors of 300 K in Teff , 0.1 dex in log g, and 0.1 dex in [Fe/H] for APOGEE-like
spectra of solar-type stars. These biases are smaller for spectra at optical wavelengths than
in the near-infrared. We show that biases can be corrected by fitting spectra with a binary
model, which adds only two labels to the fit and includes single-star models as a special case.
Our model provides a promising new method to constrain the Galactic binary population,
including systems with single-epoch spectra and no detectable velocity offset between the
two stars.
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2.2 Introduction
Roughly half of all solar-type stars reside in binary systems (Raghavan et al. 2010; Moe

& Di Stefano 2017a). Outside the solar neighborhood (d & 100 pc), most binaries are
spatially unresolved and will fall within the same fiber in spectroscopic surveys. Short-period
binaries are easily identified spectroscopically by a line-of-sight velocity offset between the
two components (Pourbaix et al. 2004; Matijevič et al. 2010; Fernandez et al. 2017; Merle
et al. 2017) or time-variable radial velocity measurements (Troup et al. 2016; Gao et al. 2017).
However, most solar-type binary systems have orbital periods of hundreds to thousands of
years (see Duchêne & Kraus 2013, for a review) and are missed by binarity detection methods
based on the Doppler shift.

Absent a detectable velocity offset, the spectrum of an unresolved binary still contains
signatures of the unseen companion. These are strongest when the two components have
very different spectral features, as is the case with white dwarf – main sequence binaries
(Rebassa-Mansergas et al. 2007; Ren et al. 2013). However, the presence of an unresolved
companion changes the observable spectrum in all cases where the two stars are not identical.

This is on one hand useful for the study of binary systems, as it implies that many binaries
should be detectable from detailed modeling of their spectra, even without a detectable
velocity offset. However, it also presents a challenge for Galactic surveys aiming to measure
the properties of stars by fitting their spectra. When the spectrum of an unresolved binary is
fit with single-star models, contamination from the unseen companion may introduce biases
in the inferred atmospheric parameters and abundances. Quantifying and remedying these
biases is the subject of this paper.

2.3 Methods
In order to disentangle the effects of unresolved binaries from systematic errors in stellar

models, we conduct our analysis with synthetic spectra.
We generate spectra for single stars using 1D-LTE atmosphere models computed by the

ATLAS12 code (Kurucz 1970, 1979, 1992). Radiative transfer calculations are carried out
with SYNTHE (Kurucz 1993). We vary (and later fit for) four stellar labels: Teff , log g, [Fe/H],
and [α/Fe], where Mg, Si, S, Ar, Ca, and Ti are included in α and are varied in lockstep.

To efficiently calculate the synthetic spectrum at an arbitrary point in label space (as
is required during fitting) we interpolate between nearby models at each wavelength pixel
using a neural network. This approach, which makes it possible to self-consistently fit for
many stellar labels simultaneously, is similar to that developed in Ting et al. (2016a) and
Rix et al. (2016). It was introduced in Ting et al. (2017b) and will be fully explained in Ting
et al. (2017c, in prep). In brief, we first generate an irregular grid of ab-initio Kurucz model
spectra throughout the region of label space within which a spectral model is desired. These
spectra are then used as a training set to train an individual neural network to predict the
flux at each wavelength pixel as a function of labels. The full spectral model then consists
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of all the individual neural networks for all wavelength pixels stitched together. We have
verified through cross-validation that typical interpolation errors in model fluxes are small
(� 1 percent). We produce synthetic spectra with the wavelength coverage and typical S/N
per pixel of three surveys:

• APOGEE, with R = 22, 500, S/N = 100, and coverage across 1.51 − 1.70µm, with
some gaps (Holtzman et al. 2015).

• GALAH, with R = 28, 000, S/N = 100, and coverage over four ∼ 250Å channels
between 0.47µm and 0.79µm (De Silva et al. 2015).

• LAMOST, with R = 1, 800, S/N = 30, and coverage across 0.37− 0.90µm (Cui et al.
2012a).

These surveys were chosen to span a range of resolution, S/N , and wavelength coverage
representative of modern spectroscopic surveys. A primary goal of all three surveys is to
derive precise stellar parameters and abundances for large samples of stars in order to study
the formation and enrichment history of the Galaxy.

Synthetic spectra are calculated at R = 300, 000, degraded to lower resolutions assuming
a Gaussian line spread function (LSF) with FWHM = λ/R, and resampled on the wavelength
grid of each survey. Best-fit labels are determined through full-spectrum fitting with χ2 mini-
mization on normalized spectra. We normalize APOGEE-like spectra using the Cannon-type
continuum normalization routine from the APOGEE package (Bovy 2016a). For LAMOST-and
GALAH-like spectra, we normalize by dividing the spectrum by a smoothed version of itself,
as in Ho et al. (2017) and Ting et al. (2017b). For our idealized experiments, the choice of
normalization method has a negligible effect on the best-fit stellar parameters. We empha-
size that we make no attempt to closely reproduce the LSF, continuum normalization, or
fitting procedure of the surveys we emulate. Rather, we seek to qualitatively measure how
unresolved binarity changes stellar spectra at different resolutions and wavelengths, without
making strict assumptions about implementation.

We have verified that our approach can recover the labels of single-star spectra with
added noise with high fidelity. We also experimented with generating and fitting spectra
using NLTE spectra computed using the 1D hydrostatic MAFAGS-OS model atmospheres
(Grupp 2004; Bergemann et al. 2012) instead of ATLAS12 and SYNTHE, obtaining very similar
results for the effects of unresolved binarity.

We emphasize that the choice of spectral model and normalization method have negligible
effects on the best-fit stellar parameters for each survey only because the spectral model
and the spectra to be fit are always generated self-consistently. For example, rather than
predicting spectra normalized with the “true” continuum, the model for normalized spectra
predicts spectra normalized in the same way as the spectra to be fit (for each mock-survey).
In cases where there is a mismatch between the model and the spectra being fit, changes to
the normalization procedure and other details of the spectral model will have more significant
effects.
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2.4 Fitting binary spectra with single-star models
Figure 2.1 illustrates the effects of unresolved binarity on a small wavelength range of

an APOGEE-like spectrum for a typical K-dwarf star (Teff = 5000 K, log g = 4.59, [Fe/H] =
−0.2). The top panel shows the spectrum of the primary (blue), secondary (red), and their
sum (black). We always assume that the secondary has the same age and abundances as the
primary (neglecting the subtle effects of atomic diffusion; see Dotter et al. 2017), so that its
spectrum is completely determined by the mass ratio q = m2/m1. Atmospheric parameters
of the secondary (Teff = 4100 K, log g = 4.72 for the star in Figure 2.1) are calculated for a
given mass ratio using MIST isochrones (Choi et al. 2016).

In the middle panel, we show the continuum-normalized spectrum of the binary and
primary star, as well as the result of fitting the binary spectrum with a single-star model.
The corresponding residuals are shown in the bottom panel. Because the primary and
secondary stars have different temperatures, they have noticeably different spectral features.
For example, the absorption line at 16064Å is weaker in the secondary, while the lines at
16057Å and 16060Å are much weaker in the primary. As a result, the normalized binary
spectrum deviates from that of the primary in several lines.

Fitting the unresolved binary spectrum with a single-star model produces a good fit, with
significantly smaller residuals compared to the primary star spectrum. However, the labels
of the best-fit single-star model differ significantly from the true labels of the primary. This
case study shows that fitting a binary spectrum with a single-star model can introduce biases
in the derived stellar parameters and abundances. We now investigate these systematically.

We construct mock spectra for 2000 unresolved binaries by combining pairs of main-
sequence single stars with masses spanning (0.2− 1.7)M� and ages spanning (1− 12) Gyr,
with 3100 K ≤ Teff ≤ 7000 K and 4.0 dex ≤ log g ≤ 5.05 dex. Masses for both the primary
and secondary are drawn from a uniform distribution. Atmospheric parameters for both
stars are calculated from MIST isochrones; cases where either star has left the main sequence
are discarded. We assign metallicities and α−abundances to each pair simultaneously by
drawing randomly from labels of stars in APOGEE DR13 (Holtzman et al. 2015). We draw
orbital periods from the lognormal period distribution for solar-type stars found in Duchêne
& Kraus (2013); we assume random orbital orientations and phases to calculate line-of-sight
velocity offsets for each system, assuming circular orbits. We exclude the ∼ 20% of orbital
configurations with velocity offsets |∆v| > 10 km s−1, as these could potentially be identified
as double-line binaries in high-resolution spectra and removed from the sample. We then
sum the unnormalized single-star spectra, add Gaussian noise to bring the binary spectra
to the fiducial S/N of each survey, and fit them with single-star models. The results of this
experiment are shown in Figure 2.2. For each mock-survey, we compare the true labels of
the primary star to those found by fitting a single-star model to the binary spectrum.

In the limit of low q, systematic errors in labels are small, because the secondary star
contributes a negligible fraction of the total light. At 0.4 . q . 0.9, fitting a single-star
model leads to a best-fit Teff that is on average too low, because the primary spectrum is
contaminated by a cooler companion. For all surveys, systematic errors in all labels except
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Figure 2.1 : Effect of an unresolved companion on the observable APOGEE-like spectrum of a K-
dwarf star. Top: synthetic spectrum of the primary, secondary (mass ratio q = m2/m1 = 0.75), and
their sum, with no velocity offset. Middle: normalized spectrum of the primary star, unresolved
binary, and the best-fit single-star model. Bottom: residuals of the spectra of the true primary star
and the best-fit single star model with respect to the unresolved binary spectrum. The unresolved
binary spectrum deviates subtly but nontrivially from the that of the primary (blue). It can be
well-fit by a single-star model (orange), but the inferred stellar labels are biased toward lower
temperature and metallicity.
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Figure 2.2 : Effects of unresolved binarity on the accuracy of stellar labels recovered from spectral
fitting. We model 2000 synthetic unresolved main-sequence binaries with a realistic distribution of
orbits, mass ratios, and stellar parameters. We produce synthetic spectra with wavelength coverage,
resolution, and signal-to-noise per pixel similar to three spectroscopic surveys (Section 2.3) and fit
them with single-star models. Unresolved binarity introduces systematic biases in the inferred
stellar parameters which are largest at q ≈ 0.7. Inset shows the luminosity ratio at each survey’s
wavelength coverage for a Sun-like primary. Binarity leads to larger systematics for APOGEE-like
spectra than for optical spectra because lower-mass companions contribute a larger fraction of the
total light in the near-infrared.
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log g are largest at 0.6 . q . 0.9. The mass ratio at which binarity has the largest effect
is somewhat lower for APOGEE-like spectra than for LAMOST- and GALAH-like spectra,
because cooler secondaries contribute more significantly to the total spectrum in the near-
infrared than at optical wavelengths. The biases caused by unresolved binarity are subtle but
not negligible. For example, for APOGEE-like spectra of solar-type stars with 0.5 < q < 0.8,
the median errors in Teff and [Fe/H] are 330 K and 0.1 dex, respectively. In the limit of q ∼ 1,
the two components have identical spectra. However, since we include velocity offsets of up
to 10 km s−1 (with a median |∆v| = 1.2 km s−1), some biases remain at q ∼ 1. The largest
errors in recovered parameters for q ∼ 1 binaries are in log g, which is most sensitive to
changes in line shape. We have verified that biases at q ∼ 1 disappear when ∆v = 0.

The strength of the bias in best-fit single star labels varies with the temperature of the
primary: systems with low Teff have smaller systematic offsets on average. This is because
Teff is almost constant with mass along isochrones low on the main-sequence. In binaries
where Teff, primary . 4000 K, the binary and secondary have similar temperatures, and thus,
similar spectra.

The typical systematic biases at intermediate q are larger in APOGEE-like spectra than in
GALAH- or LAMOST-like spectra due to APOGEE’s redder wavelength coverage. Lower-
mass stars are always redder at fixed metallicity, and they therefore contribute a larger
fraction of the total light at longer wavelengths. This is illustrated in the inset in the
upper-right panel of Figure 2.2, which shows as a function of q the luminosity ratio of
the secondary star to the primary, integrated over the wavelength coverage of each survey.
At q = 0.7, the secondary contributes ∼ 30% as much light as the primary at APOGEE
wavelengths, compared to only ∼ 12% and ∼ 11% at the wavelengths probed by GALAH and
LAMOST, respectively. Likely for this reason, previous work has found the biases introduced
by unresolved binaries to be relatively small at optical wavelengths (Matijevič et al. 2010).

Here we only model main-sequence binaries, as binarity will likely have a much smaller
effect on stellar parameter estimates for red giant stars. This is because a dwarf secondary will
contribute a minuscule fraction of the total light in giant-dwarf binaries, while in giant-giant
binaries, the two components will necessarily have very similar masses, and consequently,
similar spectra.

In Figure 2.3, we show how unresolved binarity changes the distribution of stars in the
best-fit Teff − log g plane for APOGEE-like spectra. The left panel shows the results of
fitting the spectra of the binary population from Figure 2.2 with single-star models. For
most binaries, the best-fit single-star parameters scatter off the main sequence. As one
might expect, the spectral contributions of a cooler companion bias the inferred Teff to lower
temperatures than the true value for the primary. The best-fit log g is often lower than the
true value for either star. This occurs because log g is significantly covariant with both Teff

and [Fe/H] (see e.g. Ting et al. 2017a), and the single-star model can best accommodate the
change in the spectral line profiles due to the cooler star by decreasing both Teff and log g. As
a result, single-star fits to binary spectra often lie above the main sequence. This suggests
that unresolved binarity may be partially responsible for the presence of “main sequence
upturn” stars found in many spectroscopic surveys (e.g Kordopatis et al. 2013; Sharma et al.
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2017), though limitations in atmosphere models likely also play a role. The right panel of
Figure 2.3 shows that fitting spectra with a binary model, as described in the next section,
can correct these biases.

2.5 Fitting a binary spectral model
We now demonstrate how the biases discussed in the previous section can be corrected

by fitting a binary model; i.e., fitting the spectrum with a sum of two single-star spectra.
We construct a binary spectral model by adding two additional labels to the single-star
model: the mass ratio q, which sets Teff and log g of the secondary from isochrones, and
the line-of-sight velocity offset ∆v. We note that the assumption that the primary and
secondary star reside on a theoretical isochrone may be problematic for cool stars. There
is in principle no need to enforce this restriction; fitting all parameters of the primary and
secondary simultaneously simply comes at the cost of greater model complexity.

In Figure 2.4, we show the results of fitting the synthetic spectrum of the binary shown
in Figure 2.1, as it would be observed by each survey, with a binary model. The posterior for
each spectrum was sampled with emcee (Foreman-Mackey et al. 2013a) with non-informative
flat priors, and marginalized projections are generated with corner (Foreman-Mackey 2016);
constraints on ∆v are marginalized over the uncertainties in the velocities of both stars, which
are fit independently. Unsurprisingly (since the data are generated and fit with the same
model), the binary model is able to recover the true input parameters without systematic
biases. The constraining power of spectra from the three surveys is in large part a function
of S/N and pixel count – so LAMOST-like spectra provide weaker constraints for most labels
than APOGEE- and GALAH-like spectra – but it also depends on the sensitivity of different
parts of the spectrum to different labels. Thus, the covariances between different labels in
Figure 2.4 are somewhat different for different surveys.

APOGEE- and GALAH like spectra have comparable resolution and adopted S/N , but
constraints on most labels are stronger for GALAH-like spectra, in large part due to the
higher spectral information content at short wavelengths, where more lines contribute in
fixed-length wavelength interval. For the same reason, constraints on Teff and log g for
LAMOST-like spectra are nearly as strong as those from APOGEE-like spectra despite the
significantly lower adopted S/N . The 68 and 95% probability contours show that, at the
fiducial S/N assumed in our analysis, the surveys we consider are sufficiently informative to
constrain the parameters of a binary model with high fidelity (at least at q ∼ 0.75). The
additional labels introduced by the binary model (q and ∆v) are not strongly convariant
with other labels, though all three surveys show a negative covariance between q and log g;
i.e., decreasing q increases log g of the secondary, which has a similar effect on the total
spectrum as increasing log g of the primary.

This fitting approach can be used to constrain the Galactic binary population: probable
binaries can in principle be identified as stars which are significantly better-fit in a χ2 sense
by a binary model than by a single star. An important question is whether binary spectra can
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Figure 2.4 : 68 and 95% probability contours obtained by fitting a binary model to the synthetic
spectrum of an unresolved binary as it would be observed by three spectroscopic surveys. Fitting a
binary model corrects the bias that is present when the spectrum is fit by a single-star model and
adds only two additional labels: the mass ratio, q, and the velocity offset, ∆v. A binary model makes
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At intermediate mass ratios, unresolved binaries can be identified as systems which are significantly
better fit by a binary model than a single-star model.
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reliably be distinguished from single-star spectra with different parameters. We investigate
this in Figure 2.5.

For a Sun-like primary star, we generate synthetic binary spectra with q varying from 0.2
to 1. We set ∆v = 0, since this is the limit in which detecting binarity is most challenging.
We then fit each spectrum with both a single-star and a binary model. The difference in
χ2 values between these fits quantifies “how much better” the spectrum is fit with a binary
model. At intermediate mass ratios, the χ2 difference between the best-fit binary and single-
star models is significant: ∆χ2 & 100 for LAMOST-like spectra, and ∆χ2 & 1000 for
APOGEE- and GALAH-like spectra. The q range where binaries are detectable is similar
(though not identical) to the range in which fitting a single-star model introduces the largest
systematics.

We find that fitting a single-star spectrum with a binary model always converges to
q = 1 and ∆v = 0, (which is completely degenerate with the single-star case) and recovers
the correct labels for the primary star, with ∆χ2 of order unity. Cases where the binary
model provides a better fit but ∆χ2 is small should be interpreted as consistent with being
single stars. It it thus straightforward (in the limit of perfect models) to detect binaries with
0.6 . q . 0.85 in LAMOST- and GALAH-like spectra; in APOGEE-like spectra, binaries
are in principle detectable at mass ratios as low as q ∼ 0.3.

These experiments are of course idealized, as they assume no systematic shortcomings
in the model spectra. Detecting unresolved binaries in real spectra will present challenges
which do not arise with synthetic data. For example, systematic errors in stellar models may
cause some single star spectra to be better-fit by a binary model. In this case, care must
be taken in formulating a heuristic to determine what ∆χ2 constitutes reliable evidence of
binarity. A useful approach for fitting real spectra may be to use a data-driven model like
The Cannon (Ness et al. 2015a) as opposed to synthetic spectra. Another complication not
considered in this work is the effect of stellar rotation, which can broaden spectral lines in
a manner superficially similar to a velocity offset in a binary system with q ∼ 1. This effect
is small for most cool stars but becomes important at Teff & 6500 K (Glebocki et al. 2000).
Because the effective kernel for rotational broadening changes spectral line profiles differently
from a velocity offset in a binary system, a straightforward solution is to incorporate the
projected rotation velocity as another label in the spectral model.

2.6 Conclusions
We have shown that unrecognized binarity in main-sequence stars can introduce biases

in stellar labels found by fitting single-star models. These can be significant compared to
the target measurement precision of high-resolution spectroscopic surveys (which is σTeff ∼
50 K, σ[Fe/H] ∼ 0.05 dex for APOGEE and GALAH) and present a potential challenge for
works requiring precise measurements of stellar parameters and abundances of main-sequence
stars, e.g., for chemical tagging (Freeman & Bland-Hawthorn 2002; Ting et al. 2015; Hogg
et al. 2016; Ting et al. 2016b). These biases can be eliminated by fitting a binary model,
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with a modest increase in complexity.
Fitting a binary model also makes it possible to spectroscopically identify main-sequence

binary systems, even absent a velocity offset between the two stars: if the two components of
a binary system have different temperatures, their combined spectrum will be better-fit by a
binary model than a single-star model. The spectral signatures of binarity are stronger in the
near-infrared than at optical wavelengths, because a cooler secondary contributes a larger
fraction of the total light at longer wavelengths. For APOGEE-like spectra, the signatures
of binarity are strongest for systems with 0.4 . q . 0.8. We will present results of fitting
APOGEE spectra with a data-driven binary model in forthcoming work.

An important limitation of fitting a binary model is that, without distance information,
our method cannot detect binaries with mass ratios near q = 1 and small velocity offsets:
because the two components of a q = 1 binary system have essentially identical spectra, their
normalized combined spectrum will be indistinguishable from that of a single star. However,
in this case there is also no bias in the inferred stellar parameters and abundances. The
degeneracy between a single star and a q = 1 binary can also be broken with moderate-
accuracy distance information, since at fixed distance, a q = 1 binary will be twice as bright
as a single star.
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Chapter 3

Discovery and Characterization of 3000+
Main-Sequence Binaries from APOGEE
Spectra

An earlier version of this article was previously published as El-Badry, K., Ting, Y.-S.,
Rix, H.-W., Quataert, E., Weisz, D. R., Cargile, P., Conroy, C., Hogg, D. W., Bergemann,
M., Liu, C., 2018, MNRAS, 476, 528.

3.1 Abstract
We develop a data-driven spectral model for identifying and characterizing spatially unre-

solved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars.
Binaries and triples are identified as targets whose spectra can be significantly better fit by a
superposition of two or three model spectra, drawn from the same isochrone, than any single-
star model. From an initial sample of ∼20,000 main-sequence targets, we identify ∼2,500
binaries in which both the primary and secondary star contribute detectably to the spectrum,
simultaneously fitting for the velocities and stellar parameters of both components. We ad-
ditionally identify and fit ∼200 triple systems, as well as ∼700 velocity-variable systems in
which the secondary does not contribute detectably to the spectrum. Our model simplifies
the process of simultaneously fitting single- or multi-epoch spectra with composite models
and does not depend on a velocity offset between the two components of a binary, making
it sensitive to traditionally undetectable systems with periods of hundreds or thousands of
years. In agreement with conventional expectations, almost all the spectrally-identified bina-
ries with measured parallaxes fall above the main sequence in the color-magnitude diagram.
We find excellent agreement between spectrally and dynamically inferred mass ratios for the
∼600 binaries in which a dynamical mass ratio can be measured from multi-epoch radial
velocities. We obtain full orbital solutions for 64 systems, including 14 close binaries within
hierarchical triples. We make available catalogs of stellar parameters, abundances, mass
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ratios, and orbital parameters.

3.2 Introduction
About half of solar-type stars are in binary or higher order multiple-star systems (Ragha-

van et al. 2010; Moe & Di Stefano 2017a). Beyond the Solar neighborhood, most binaries are
too close on the sky to be spatially resolved; they appear as single photometric point sources,
and both components of binary systems contribute to the spectra observed by spectroscopic
surveys.

Spectroscopically identifying such unresolved binaries is straightforward only if the period
is relatively short (P . 5 years). In this case, spectra exhibit split or “double” lines if the
two components have comparable luminosities (so-called “SB2” systems), and two peaks can
be identified in the cross-correlation function (Pourbaix et al. 2004; Fernandez et al. 2017;
Merle et al. 2017). Even if the secondary is faint and does not contribute significantly to the
spectrum, short-period binaries can be identified from radial velocity variability when multi-
epoch spectra are available (“SB1” systems; Minor 2013; Troup et al. 2016; Price-Whelan
et al. 2017; Badenes et al. 2017).

However, about half of solar-type binaries have periods exceeding 200 years (Duquennoy
& Mayor 1991; Duchêne & Kraus 2013). The typical line-of-sight velocity separation between
the two stars in such systems is of order 1 km s−1, while the typical change in the stars’
individual velocities over a one year baseline is of order 0.01 km s−1. Such systems will be
missed by binary-detection methods based on the Doppler shift.

Unresolved binarity in main-sequence stars presents both a nuisance and an opportunity
for spectroscopic surveys of the Milky Way. Because spectral morphology is a strong function
of effective temperature, contamination from a cooler secondary star1 makes the observable
spectrum of an unresolved binary different from that of the primary, and in many cases,
different from that of any single star. This means that, if binarity is ignored and all spectra
are simply fit with single-star models, biases can be introduced in the stellar parameters and
abundances inferred for unrecognized binaries (El-Badry et al. 2018a).

On the other hand, binarity-induced features in stellar spectra can be exploited to detect
binaries that could not be detected based on velocity shifts alone: binaries can be identified as
systems whose spectrum can be significantly better fit by a binary spectral model (i.e., a sum
of two single-star models) than any single-star model. This approach, if it can successfully
be applied to large spectroscopic surveys, will make possible systematic study of the Galactic
binary population on an unprecedented scale.

El-Badry et al. (2018a, hereafter E18) recently demonstrated that fitting a binary model
to synthetic APOGEE-like spectra makes it possible to spectroscopically identify many bi-
naries and to simultaneously recover the atmospheric parameters and abundances of both

1We adopt the convention that the secondary is the less-massive of the two stars (e.g. Duchêne & Kraus
2013). For the equal-age, equal-composition main-sequence binaries that we model, the secondary is always
cooler and less luminous.
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component stars. In this paper, we apply the method described in E18 to real spectra from
DR13 of the APOGEE survey (Majewski et al. 2017). We focus on main-sequence stars,
for which the effects of unresolved binarity on the spectrum are typically larger than in
giants. We demonstrate that, although the spectral signatures of binarity are strongest in
close systems with a large velocity offset between the two stars, binaries with mass ratios
0.4 ≤ q ≤ 0.8 can be detected with high fidelity even in the absence of any detectable velocity
offset (where q = m2/m1).

This paper is organized as follows. We describe our spectral model for single and binary
stars in Section 3.3 and its application to the combined APOGEE spectra in Section 3.4. In
Section 3.3.4, we extend the model to fit multi-epoch spectra of close binaries with detectable
velocity changes between visits, calculating dynamical mass ratios from the relative velocities
of the two components. We identify and derive parameters for close binaries, triples, and
systems with unusual velocity shifts in Section 3.4.2 and derive orbital solutions for the
subset of binaries with sufficient visits and phase coverage in Section 3.4.4. We discuss our
results and conclude in Section 3.5.

We provide many of the underlying model details in the Appendices. Specifically, in
Appendix 3.6, we describe the spectral model; model selection and tests with semi-empirical
synthetic binary spectra are described in Appendix 3.7; shortcomings of the model and
false positives are discussed in Appendix 3.8, and diagnostics of orbit-fitting convergence are
presented in Appendix 3.9. Available catalogs are described in Appendix 3.10.

3.3 Methods
Our binary spectral model depends on two steps: (a) creating a data-driven generative

model for single-star spectra (Section 3.3.1), and (b) combining the spectra of two single
star models, with a suitable velocity offset (Section 3.3.2). To find candidate binaries, we
fit spectra with both single-star and binary models (Section 3.3.3) and identify systems that
can be significantly better fit by a binary model (Appendix 3.7).

In this work, we only attempt to fit main sequence stars; i.e., targets with log g ≥ 4. We
do not attempt to identify binaries in which one star is a giant because in most giant-dwarf
binaries, the dwarf secondary will contribute a negligible fraction of the total light, while in
giant-giant binaries, two components with the same age will necessarily have similar masses,
and thus, quite similar spectra. We note that short-period binaries containing giants can
be straightforwardly detected from radial velocity variability (Troup et al. 2016; Badenes
et al. 2017), and some giant-subgiant binaries can likely be detected spectroscopically (Sec-
tion 3.5.1).
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3.3.1 Single-star spectral model

We model APOGEE spectra of single stars using a data-driven2 generative model to
predict the rest-frame normalized flux density at a given wavelength as a function of a set
of “labels,” ~̀, which determine the spectrum. Our approach is very similar to that employed
by The Cannon (Ness et al. 2015a): the spectral model is a fitting function that maps labels
to normalized spectra, and the free parameters of this fitting function are determined by
optimization on a training set, whose labels are obtained separately or known a priori, e.g.,
from ab-initio fitting.

The primary difference between our method and existing implementations of The Cannon
is that, as in Ting et al. (2017b) and E18, we model the normalized flux density at a particular
wavelength pixel using an artificial neural network rather than a polynomial function. We
find a neural network model to be more flexible than a polynomial and to typically produce
smaller errors in model spectra during cross-validation; this formalism, which we refer to as
The Payne, is described further in Appendix 3.6 and will be explained in detail in Ting et
al. (in prep). The full spectral model then consists of all the individual neural networks for
all wavelength pixels stitched together.

We predict rest-frame spectra with a single-star model that depends on five labels,

~̀= (Teff , log g, [Fe/H] , [Mg/Fe], vmacro) . (3.1)

We use [Mg/Fe] as a proxy for all “α−elements.” We experimented with including more
elemental abundances as labels, including C, N, O, and Si. We found that this did not
substantially change our identification of likely binary targets or their inferred mass ratios,
so we opted to use a relatively simple model in the interests of reduced complexity. vmacro

primarily accounts for the effects of stellar rotation, and is small (< 10 km s−1) for most
stars with Teff . 6000 K. In practice, spectra are not observed in the rest frame, so an
additional label vHelio also determines the model spectrum and must be included in fitting.
However, our neural network model always predicts spectra in the rest frame; Doppler shifts
are applied subsequently.

An ideal training set would contain only stars known to be single a priori. Unfortunately,
it is nearly impossible to conclusively rule out the possibility that an unresolved system
is a binary.3 We therefore construct a training set by beginning with a random sample
of main sequence APOGEE stars and then iteratively removing stars whose spectra can
be significantly better fit by the binary model described in Section 3.3.2. The ASPCAP
pipeline does not derive reliably calibrated abundances for dwarfs. “Ground truth” labels for

2We also experimented with using synthetic, ab-initio spectral models, but we found them ill-suited for
identifying binaries because systematic shortcomings in synthetic models cause almost all spectra to be
significantly better fit by a sum of two models than a single model.

3The only exception is in the immediate Solar neighborhood (d . 8 pc), where a combination of direct
imaging and speckle interferometry can resolve nearly all systems where a velocity offset is not detectable
(Simons et al. 1996; Reid & Gizis 1997). However, there are only ∼ 66 stars in the Solar neighborhood
for which binarity can be ruled out with high confidence; of these, only the Sun and Arcturus have been
observed by APOGEE.
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stars in the training set were derived from ab-initio fitting with single-star models, following a
procedure similar to that used by Ting et al. (2017b); see Ting et al. (in prep) for details. For
the initial training set, we randomly selected 2000 targets distributed throughout the region
of label space within which a spectral model was desired, namely 4200 K < Teff < 7000 K,
4.0 < log g < 5.0, −1 < [Fe/H] < 0.5, −0.4 < [Mg/Fe] < 0.6, and 0 km s−1 < vmacro <
45 km s−1. We only attempt to fit targets for which the labels determined from ab-initio
fitting lie within this region of parameter space, as (a) we are only interested in main-
sequence stars, and (b) the labels determined from ab-initio fitting are less reliable outside
this range (Ting et al., in prep).

There is of course no guarantee that the targets in our initial training set are actually
single stars. After training the initial model, we therefore fit all spectra in the training set
both with the initial single-star model and a binary model (as described in Section 3.3.2)
based on this single-star model. We then removed from the training set the ∼300 targets that
could be significantly better fit by a binary-model than a single-star model4 and re-trained
the single-star model on the resulting “cleaned” training set. We repeated this cleaning and
re-training procedure until none of the targets in the training set could be significantly better
fit by a binary model. This approach converges quickly: after the second iteration, fewer
than 10 targets in the cleaned training set could be significantly better fit by a binary model;
after the third iteration, no additional targets in the training set could be significantly better
fit by a binary model.

This iterative cleaning procedure likely does not remove all unresolved binaries from
the training set: only binaries whose combined spectrum is significantly different from any
single-star star spectrum can be identified. For APOGEE-like spectra of solar-type stars
with negligible velocity offsets, the range of mass ratios over which binarity is detectable is
0.4 . q . 0.85 (E18). Binaries in the training set with mass ratios outside this range will
not contaminate the spectral model, since their spectra are not significantly different from
the spectrum of a single star with the labels of the primary.

Our approach would likely not work if binaries dominated the training set, or if the func-
tional form of the spectral model were sufficiently complex to incorporate spectral features
due to binarity in the single-star model. Because binaries with spectra that are significantly
better fit by a binary model constitute only ∼15% of the initial training set and the spectral
model is not very complex (we use a small neural network with only 1 hidden layer of 5
neurons), detectable binary spectra are essentially treated as outliers and removed during
iterative cleaning, preventing the model from overfitting the signature of unresolved binarity
into the single-star model.

3.3.2 Binary spectral model

We assume that both components of a binary system have the same age and composition.
Fitting a binary model thus adds three free parameters compared to the single-star model:

4Here, we quantified “significantly better fit” as having χ2
single star − χ2

binary > 1000. We develop a more
detailed threshold for model selection in Appendix 3.7.
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the mass ratio, q = m2/m1, which determines Teff and log g of the secondary, and vmacro

and vHelio of the secondary. To model the normalized spectrum of a binary with a particular
mass ratio, we estimate Teff and log g of the secondary using MIST isochrones (Choi et al.
2016),5 predict the single-star spectra of the primary and secondary in unnormalized space,
apply a Doppler shift, add the two spectra, and finally pseudo-continuum normalize the total
spectrum; see E18 for details.

Since the data-driven model for single stars operates on normalized spectra, predicting un-
normalized spectra for the primary and secondary requires a model for the pseudo-continuum
by which the normalized spectra can be multiplied. We obtain the pseudo-continuum for a
single star at a particular point in label space by applying our pseudo-continuum fitting pro-
cedure (see Section 3.3.3) to a spectrum produced by a synthetic spectral model trained on
Kurucz spectra (Kurucz 1970, 1979, 1993). Synthetic spectra are first produced with units
of surface flux density and are then multiplied by the surface area of the star in question,
using radii estimated from MIST isochrones. The unnormalized flux density of an unresolved
binary system viewed from a distance D is then given by

fλ,binary =
1

D2

(
R2

1fλ,1 +R2
2fλ,2

)
, (3.2)

where R1 and R2 represent the radii of the primary and secondary star, and fλ,1 and fλ,2
represent their individual flux densities. Because we subsequently normalize fλ,binary prior
to fitting, the distance D is an arbitrary scaling factor and does not enter our analysis. In
practice, R1 and R2 are estimated from Teff , log g, and [Fe/H] using a neural network trained
on a large grid of MIST isochrones.

Our results are not sensitive to the choice of synthetic model spectra, which sets only
the relative flux contribution of the primary and the secondary, because the total binary
spectrum is again normalized prior to fitting. We have verified that we obtain similar results
by simply defining a continuum for each star as a blackbody with appropriate Teff scaled by
the surface area of the star.

For long-period systems with negligible velocity shifts, our model cannot detect binaries
with mass ratios q . 0.4, because the secondary contributes a negligible fraction of the
total light, or q & 0.85, because the spectra of the primary and secondary are too similar.
In practice, another, often more stringent limit on the lowest detectable mass ratio is set
by our spectral model’s minimum Teff of 4200 K. For systems with a hot primary star
(Teff & 6500 K), this limit is not important, since a secondary with Teff < 4200 K would be too
faint to contribute significantly to the spectrum anyway. However, the model’s minimum Teff

reduces the range of detectable mass ratios for systems with cooler primaries: for a primary
with Teff = 5800 K, the effective minimum q that can be modeled is qmin ≈ 0.62, while for a
primary with Teff = 5000 K, qmin ≈ 0.75. We discuss this further in Appendix 3.7.1.

5In practice, we predict Teff and log g of the secondary from Teff and log g of the primary, [Fe/H], and
q using a neural network trained on a large grid of binary isochrones with 0.01 ≤ (age/Gyr) ≤ 13.5 and
−1 ≤ [Fe/H] ≤ 0.5. We have verified through cross validation that typical errors in the thus-estimated
parameters of the secondary are small (∼20 K in Teff and ∼0.01 dex in log g).
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3.3.3 Model fitting

Best-fit labels for binary and single-star models are determined through full-spectrum
fitting of normalized spectra in vacuum wavelengths. Pseudo-continuum normalization is
carried out using the Cannon-type normalization routine from the APOGEE package (Bovy
2016b), which fits a 4th order Chebyshev polynomial to pixels in which the gradient of the
data-driven spectral model with respect to the labels is small. Bad pixels and pixels with
poor sky subtraction, as flagged in the bitmasks produced by the APRED pipeline (Nidever
et al. 2015), are masked during normalization and fitting.

Fitting is carried out using the Scipy curve_fit routine, which implements the “trust
region reflective” algorithm (Branch et al. 1999) for χ2 minimization. When fitting a single
spectrum with a single-star model, we find that the optimization essentially always converges
on the true global minimum, irrespective of the location in label space where it is initialized.
However, for the binary model there is an obvious degeneracy: the normalized spectrum
of a q = 1 binary model is identical to that of a q = 0 model in the limit of no velocity
offset. Hence, the posterior for a binary model is often bimodal in q, and minimization
can sometimes converge on a false local minimum. We therefore initialize ∼10 separate
optimizers with different initial values of q when fitting a binary model. If these do not all
converge to the same model, we take as the best model the one that reaches the lowest global
χ2. We have verified by fitting semi-empirical synthetic binary spectra that this approach
converges on the true global minimum in ∼99% of all cases (see Appendix 3.7.1).

Most APOGEE targets are observed more than once, with time baselines between in-
dividual visits ranging from ∼1 hour to ∼1200 days.6 Spectra from individual visits are
shifted to rest frame and coadded to produce a single combined spectrum with higher S/N
than the individual visit spectra by the APSTAR pipeline (Nidever et al. 2015). It is these
combined spectra that are fit by the ASPCAP pipeline to derive the stellar parameters and
abundances published for the main survey (Holtzman et al. 2015; García Pérez et al. 2016),
but the reduced spectra from individual visits are also made publicly available.

Combined spectra are easier to work with than individual visit spectra both because
they have higher S/N and because stars are often observed with a different fiber and with a
different barycentric velocity at each visit, so that the combined spectrum is less affected by
bad pixels, poor sky subtraction, and telluric absorption than the individual visit spectra. We
therefore fit the combined spectra rather than spectra from individual visits when possible.
However, if a system is an unresolved close binary, the orbital configuration and relative radial
velocities of the primary and secondary will change between visits, so that the morphology
of the total binary spectrum is different in each visit. In such cases, the combined spectrum
does not represent any real physical system, and fitting it can yield biased labels.

6The APOGEE observing strategy aims to observe most targets 3 times, over a minimum time baseline
of 1 month. Some targets, primarily faint stars, are visited more often to accumulate S/N; some targets in
unfavorable locations, such as the Galactic Bulge, are visited only once (Zasowski et al. 2013). Most targets
with baselines longer than 1 year, as well as those with multiple visits within 1 night, are targets which were
observed initially during the survey commissioning period and again during the main survey.
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For this reason, we attempt to fit all targets that may be close binaries using the individual
visit spectra rather than the combined spectrum. We identify potential close binaries as
targets for which (a) the best-fit model to the combined spectrum is a binary model in
which the line-of-sight velocity separation of the two components, ∆vlos, is greater than
10 km s−1, or (b) the Vscatter term calculated from the radial velocities determined by the
APSTAR pipeline (Nidever et al. 2015) is greater than 1 km s−1, indicating potential radial
velocity variability. Some of these targets, particularly stars with high Teff or low S/N, are
single stars with poorly constrained radial velocities, but many are close binary systems.
Fitting individual visit spectra for targets with Vscatter > 1 km s−1 also protects against the
possibility of a single star erroneously appearing to be a binary if the radial velocities are
calculated incorrectly while creating the combined spectrum; otherwise, coadding two visit
spectra with different Doppler shifts could produce a combined spectrum bearing erroneous
signatures binarity with q = 1.

The number of free parameters to be optimized increases substantially when we fit spec-
tra from many visits simultaneously, since the radial velocities at each visit are all free
parameters. This can make the fit more susceptible to convergence on an erroneous local
minimum in χ2; we discuss the measures taken to ensure global convergence in this case in
Section 3.3.4.

For both single-visit and combined spectra, we inflate the uncertainties of pixels with
S/N > 200 to 0.5% (i.e., S/N of 200) during fitting because empirical S/N diagnostics based
on the variation in a given pixel across visits show that the noise model underestimates
uncertainties for bright stars and is likely limited by systematics at this level (Nidever et al.
2015). We also find that our fitting approach often performs poorly at low S/N, primarily due
to poor continuum normalization. We therefore do not attempt to fit any visit spectra with
median S/N < 30 pixel−1. Since most APOGEE targets are bright, this restriction excludes
less than 20% of the targets in our sample; for these targets, we report labels obtained by
fitting the combined spectrum, which has higher S/N, but we caution that results for targets
with large Vscatter and low S/N are likely less reliable.

We do not report uncertainties on labels for individual targets. Formal fitting uncertain-
ties based on the concavity of the likelihood function in the vicinity of the global maximum
can be computed with curve_fit (e.g. Ness et al. 2015a; Ho et al. 2017), and comparable
uncertainties can be obtained by MCMC sampling. However, the thus-obtained uncertain-
ties are typically unrealistically small for high- S/N spectra (e.g., σ(Teff) < 10 K for typical
APOGEE spectra) because they do not properly account for systematic errors in the spectral
model. Systematic errors cam arise if (a) the spectral model is not sufficiently complex to
account for all the variance in the dataset, (b) there are unaccounted-for errors in the labels
assigned to the training set, or (c) the adopted set of labels does not fully characterize all
the variance in the dataset. We investigate the typical precision of our best-fit labels in
Appendix 3.7.1.
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3.3.4 Fitting Multi-Epoch Spectra

We attempt to fit the individual visit spectra rather than the combined spectra of all
stars that were visited more than once and are flagged as potential close binaries. In order
to fully exploit the information contained in the spectra, we fit all single-visit spectra for
each system simultaneously, requiring the physical parameters of the component stars to
be the same at all epochs. Because we fit all visit spectra with the same spectral model,
we implicitly treat the instrumental line spread function as constant across all fibers and
visits. For the single-star model, we also require the line-of-sight velocity to be the same at
each epoch; in this case, the model is no more complex than when fitting a single combined
spectrum.

For an isolated binary system, the line-of-sight velocities of the two components are not
independent: in the center-of-mass frame, conservation of linear momentum requires that
the radial velocity of the primary along any line of sight, v1, and that of the secondary, v2,
are related by v2 = −v1/qdyn, where qdyn is the dynamical mass ratio of the system. If the
center-of-mass heliocentric velocity of the binary is γ, then

vHelio,2 = γ + (γ − vHelio,1) /qdyn. (3.3)

Here vHelio denotes a velocity at a single epoch, measured in the frame of the center of mass
of the Solar system.

For true, isolated binary systems containing two main sequence stars, qdyn should be equal
to the spectral mass ratio q, which determines the contribution of the secondary star to the
binary spectrum. We will use q and qspec interchangeably in the rest of this paper. However,
we fit qdyn and qspec separately to allow for the possibility of companions whose contribution
to the spectrum is different from what is predicted by the dynamical mass ratio. This could
occur, for example, if there are biases in the isochrones used in the spectral model, if the
secondary falls near the edge of the APOGEE fiber and only a fraction of its flux contributes
to the spectrum, or if a third object is present in the system. Comparing the best-fit qdyn

and qspec provides a useful diagnostic of the accuracy of our spectral model.
Our basic “SB2” binary model does not allow the velocities of both stars to vary freely,

but instead enforces the restriction that the velocities at all epochs follow Equation 3.3 when
two or more visit spectra are fit simultaneously. In most cases, this leads to best-fit velocities
that are similar (within ∼ 200 m s−1 on average, and nearly always within a few km s−1) to
those obtained when Equation 3.3 is not enforced. However, there are some targets for which
the best-fit velocities are very different – and produce a much better fit – when Equation 3.3
is not enforced than when it is. Such systems have velocities inconsistent with being a
simple two-body system and likely contain a third component. To avoid mischaracterizing
these systems, we also fit all targets with a binary model in which the velocities of both
components are allowed to vary freely; systems that are significantly better-fit by this model
are classified as SB2s with an unseen third component (see Section 3.3.4 for details).

We also find systems in which there is a clear radial velocity shift in the spectrum between
different visits but no individual visit spectrum is better-fit by a binary model; i.e., the
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existence of a companion can be inferred from its gravitational effects on the primary, but
the companion does not significantly contribute to the observed spectrum. Most of these
single-line binary (“SB1”) systems are probably ordinary main-sequence binaries with low
mass ratios and relatively short periods; some are likely binaries in which the companion is
a stellar remnant. To distinguish between SB1s and SB2s, we fit all potential close binary
systems with an SB1 model, which is identical to the single-star model, except that the radial
velocity is allowed to vary between visits. We designate systems as SB1s if the SB1 and SB2
models converge on essentially the same fit; i.e., if there is no detectable contribution to the
spectrum from the secondary.

Finally, we find some systems whose visit spectra cannot be well-fit by any single star or
binary model: the binary model provides a better fit than the single-star model, but many
lines are poorly fit or are missing entirely from the best-fit binary model. We find that many
of these systems can be much better fit by a triple model: i.e. three stars with independent
velocities and masses, restricted to lie on the same isochrone.

Summary of models fit to visit spectra

We simultaneously fit the N visit spectra for each object in the “potential close binary”
subsample with a total of five different models, which we summarize here. We classify systems
based on the total χ2 of each model, preferring the least complex model when different models
have similar χ2.

1. Single-star : The single-star model has 6 free parameters, regardless of the number of
visit spectra:

~̀
single star = (Teff , log g, [Fe/H] , [Mg/Fe] ,vmacro, vHelio) . (3.4)

In particular, this model forces the heliocentric velocity of the star to be the same in
all visits.

2. SB1 : The SB1 model is identical the single-star model, except that the heliocentric
velocity is allowed to vary between the N visits. The 5 +N free parameters are:

~̀
SB1 = (Teff , log g, [Fe/H] , [Mg/Fe] ,vmacro,vHelio,i) , (3.5)

where i enumerates the visits.

3. SB2 : The SB2 model fits two stars, with different velocities at each visit, but with the
restriction that the velocity satisfy Equation 3.3. The 9 +N free parameters are

~̀
SB2 =

(
Teff , log g, [Fe/H] , [Mg/Fe] ,q,

vmacro1, vmacro2, qdyn, γ, vHelio1,i

)
.

(3.6)
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Figure 3.1 : Left: Spectrum of an unresolved main-sequence binary with q = m2/m1 ≈ 0.7 as
observed by APOGEE. Top panel shows the full normalized spectrum. Middle panel shows the
spectrum and best-fit binary and single-star models, zoomed-in on a narrow wavelength range
enclosing a hydrogen Brackett line. The binary model fits the data significantly better than the
single-star model. Bottom panel shows the two components of the best-fit binary model. The
spectrum’s broad features are due primarily to the hotter star, which contributes > 80% of the
total light but has no strong narrow lines; the shape of the sharp line profiles is primarily due to
the cooler star. Our method makes it possible to identify many long-period binaries like this one,
in which the velocity offset between the two stars is negligible. Right: Spectrum of a presumed
single star with similar parameters to the primary in the system shown in the left panels. In this
case, the best-fit binary and single-star models are identical.
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Figure 3.2 : Examples of single-star and binary model fits to binary systems with a negligible (top),
intermediate (middle), and large (bottom) line-of-sight velocity offset between the two stars. All
three systems have a mass ratio q = m2/m1 ∼ 0.7, a primary star with Teff ∼ 5400 K and log g ∼ 4.5,
and [Fe/H] ∼ 0. Detecting binarity in systems with a large velocity offset (∆vlos & 15 km s−1) is
straightforward, because the two stars’ lines become separated in velocity space. However, binarity
can also be detected in many systems where the line-of-sight velocity offset is negligible, as in the
top panel, because the two component stars have different temperatures and ionization states, so
their combined spectrum cannot be well-fit by any single-star model.
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4. SB2 with unseen 3rd object : This model fits two stars but allows their velocities to
vary freely, without enforcing Equation 3.3. If it provides a significantly better fit than
the SB2 model, the relative radial velocity shifts are inconsistent with being a simple
Keplerian two-body system. The 7 + 2N free parameters are:

~̀
SB2, unseen 3rd object =

(
Teff , log g, [Fe/H] , [Mg/Fe] ,q,

vmacro1, vmacro2, vHelio1,i, vHelio2,i

)
.

(3.7)

5. SB3 : The SB3 model fits three stars and imposes no restrictions on their velocities.
The 9 + 3N free parameters are:

~̀
SB3 =

(
Teff , log g, [Fe/H] , [Mg/Fe] ,q2, q3, vmacro1,

vmacro2, vmacro3, vHelio1,i, vHelio2,i, vHelio3,i

)
,

(3.8)

where q2 = m2/m1 and q3 = m3/m1.

We note that the SB2 models are in principle identical to the SB1 model (and the SB3
model to the SB2 models) in the limit where q = 0. We keep these models separate in
practice because our model does not transition smoothly from the minimum possible q that
can be modeled (corresponding to Teff = 4200 K) to q = 0.

Fitting many visits simultaneously increases the number of labels to be fit, increasing
the risk of the optimizer’s convergence on a local minimum. For example, for a target with
10 visits, fitting the SB2 (SB3) model requires optimization of the likelihood in 19 (39)
dimensions, which is computationally demanding. In tests with synthetic binary spectra,
we find that convergence on the global best-fit is nearly always achieved as long as the
optimizer is initialized reasonably close to the global minimum; i.e., with all velocities within
± ∼ 20 km s−1 of their true values at all epochs. We therefore first fit individual visit
spectra one at a time to estimate the velocity of each component at each epoch, and then
use the resulting best-fit labels to initialize the global optimizer during simultaneous fitting.
Because the velocity offsets at each epoch are nearly uncorrelated with those in other epochs
– i.e., changing vHelio,1,i only shifts the spectrum predicted for the ith visit – the optimization
remains tractable in many dimensions.

3.4 Results
We fit the spectra of 20,142 targets from APOGEE DR13 that ab-initio fitting with

single-star models (Ting et al., in prep) found to (a) lie on the main sequence (log g >
4), (b) fall within the region of label space where the synthetic spectral model is reliable
(4200 K ≤ Teff ≤ 7000 K and −1 ≤ [Fe/H] ≤ 0.5), and (c) be acceptably fit, in a χ2

sense, by synthetic spectral models. From this initial sample, we identify 2645 targets in
which more than one star contributes significantly to the spectrum and an additional 663
targets with time-variable radial velocities but no detectable spectral contribution from the
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secondary. Catalogs of targets classified as single stars, binaries, and triples are presented in
Appendix 3.10.

Figure 3.1 illustrates how our model identifies systems that are likely binaries but show
no significant radial velocity variability or split lines due to a velocity offset between the two
components. Panels on the left show the spectrum of a target that can be significantly better
fit by a binary model than a single-star model; those on the right show one that cannot.

We fit the full spectrum simultaneously, but we zoom-in on a small region to show the
qualitative signatures of binarity. The spectrum in the left-hand panels contains features of
both hot and cool stars: wide hydrogen lines and rotationally-broadened line profiles at the
wing of all lines, and deeper, narrow line cores that do not show rotational broadening. No
single-star model can achieve a good fit: the absorption lines in the best-fit single star model
are too shallow, and some lines in the data spectrum are blended in the best-fit single star
model or are missing altogether. On the other hand, the binary model can provide a good fit
and reproduces the line profiles of the observed spectrum. The decomposition of the binary
model spectrum in the bottom panel shows that the broad features are all due to the hot
primary star, while the sharper features originate in the spectrum of the cooler secondary.

In the right panels of Figure 3.1, we show the spectrum of a typical single star with
stellar parameters and abundances similar to the primary in the left panels; as expected, it
is similar to the spectrum in the left panels with the sharper, narrow lines removed. In this
case, the binary and single-star models converge on what is essentially the same spectrum,
so there is no reason to prefer the binary model.

The binary spectrum in the left panels of Figure 3.1 illustrates why it is often possible
to spectrally identify binaries even when one star is much brighter than the other: although
the secondary star in the binary system contributes less than 20% of the total light, it
contributes a large fraction of the total absorption because lines in hotter stars are often
intrinsically weaker than those in cool stars. For many binaries containing a hot primary
and cool secondary, the spectrum and binary model exhibit lines that are completely absent
from the spectrum of the primary because the relevant species are ionized at its higher Teff .

3.4.1 Effect of a velocity offset

Although a line-of-sight velocity difference between the primary and secondary star is
in many cases not required to identify binaries with our model, a velocity offset makes the
signatures of unresolved binarity more obvious and extends the range of detectable mass
ratios. This is illustrated in Figure 3.2, which compares the spectra of three binary systems
with similar stellar parameters, abundances, and mass ratios, but a range of velocity offsets
between the primary and secondary component. The system shown in the top panel has a
small line-of-sight velocity offset, similar to the system in the left panels of Figure 3.1. In this
case, the effects of binarity are quite subtle, and binarity can likely only be detected with
detailed spectral modeling. As the velocity offset increases (middle and bottom panels),
binarity-induced changes to the spectrum become more obvious. In all three panels of
Figure 3.2, we plot the APSTAR combined spectrum, not the spectra from individual visits.
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However, the target in the bottom panel, which is the only target of the three for which we
might expect a large velocity change between visits, was only visited once.

For APOGEE spectra with R = 22, 500, one resolution element corresponds to a radial
velocity difference of δv ∼ c/R ∼ 13.5 km s−1. The traditional method of identifying binaries
as systems in which the cross-correlation function of an observed spectrum with a synthetic
template exhibits two peaks can only reliably detect binaries in which the line-of-sight ve-
locity offset is of order 1-3 resolution elements; such systems are usually referred to as “SB2”
systems. For example, Fernandez et al. (2017) found that binaries could only be reliably
detected in APOGEE spectra when the maximum line-of-sight velocity separation exceeded
∆vlos = 30 km s−1.7 Figure 3.2 shows that even a small velocity offset can substantially
strengthen the signatures of binarity. How much a velocity offset improves detectability for
our method depends on the stellar parameters and abundances of the primary, because it
is easier to detect velocity offsets in stars with many deep, narrow lines. For most stars
with Teff . 6500 K, a velocity offset of ∆vlos & (5− 10) km s−1 makes it possible to identify
binaries from single-epoch spectra even when the mass ratio is close to q = 1; such systems
are not otherwise detectable with our method (see Appendix 3.7.1).

3.4.2 Results for multi-epoch spectra with velocity variability

Examples of targets whose spectra are best-fit by SB2, SB1, SB2 with an unseen 3rd
object, and SB3 models are shown in Figures 3.3, 3.5, 3.8, and 3.6.

Figure 3.3 shows a system that is best-fit by the SB2 model (i.e., case (iii) from Sec-
tion 3.3.4) and exhibits spectra that change substantially from one epoch to the next. In the
upper panel, we plot the combined spectrum and the best-fit binary and single-star models
obtained by fitting it. Although the binary model is a better fit (and our initial fit to the
combined spectrum did flag the system as a likely binary), the fit is not very good: some
features in the combined spectrum cannot be accommodated by either the single-star or
the binary model. In the lower panel, we show the spectra obtained in the three individual
visits, which are coadded to produce the combined spectrum, and the binary model obtained
by simultaneously fitting them. The fit to the individual visit spectra is good. The poor
fit to the combined spectrum is a consequence of the fact that the components’ velocities
change between visits, meaning that the combined spectrum is an unphysical superposition
of different spectra.

The inset in Figure 3.3 shows the heliocentric velocities of the primary and secondary
star at each visit for the best-fit SB2 model. The slope and intercept of the line on which
these velocities fall can be used to calculate the dynamical mass ratio, qdyn, and the center-
of-mass velocity, γ. For binary systems in which the velocities of the two stars change
significantly between visits, it is therefore possible to obtain a constraint on the mass ratio

7Other surveys find similar sensitivity to spectroscopic binaries; e.g., Merle et al. (2017) found that
binaries could be detected down to ∆vlos = 15 km s−1 in UVES spectra (R = 47000) from the Gaia-ESO
survey, and Matijevič et al. (2010) found a minimum ∆vlos for reliable detection of 50 km s−1 in the RAVE
survey (R = 7500).
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Figure 3.3 : A binary system in which the stars’ velocities change between visits. Top panel shows
a small portion of the combined spectrum (black), which is produced by coadding spectra from
different visits, best-fit single-star model (red), and best-fit binary model (cyan). The binary model
provides a better fit than the single-star model, but it cannot fully reproduce the combined spectrum.
Bottom panel shows the individual visit and the best-fit SB2 model, which produces an excellent
match to all the individual visit spectra. Inset shows heliocentric velocities of the primary and
secondary star at each epoch; momentum conservation requires that these lie on a line with slope
−1/qdyn, where qdyn is the dynamical mass ratio. The spectrally-inferred mass ratio, qspec = 0.93,
is in good agreement with the dynamical mass ratio, qdyn = 0.91.
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Figure 3.4 : Comparison of spectroscopically- and dynamically-inferred mass ratios for “SB2” binary
systems in which a dynamical mass ratio can be measured. qspec is measured from the relative
contribution of each star to the spectrum, and qdyn, from the relative changes of the radial velocities
of the primary and secondary across multiple epochs (see Figure 3.3). The designation of primary
and secondary components is based on their relative contribution to the spectrum: qspec is bounded
by 1, but qdyn is not. 623 systems have sufficiently short periods to allow measurement of qdyn. Most
systems for which the disagreement between qspec and qdyn is large have low S/N (left) and cool
primaries (middle). Due to the spectral model’s minimum Teff of 4200 K, low mass ratio systems
can only be detected if the primary is hot, and mass ratios are less accurate for cooler systems. The
median absolute difference between qdyn and qspec is 0.048.
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that is independent of the spectral label q. Such constraints will of course not be reliable
if the orbital configuration does not change significantly between visits: in this case, all
measurements of vHelio,1 and vHelio,2 will be clustered around one point, and the slope of the
line is ill-constrained. We also emphasize that linear momentum conservation requires that
the slope of the line on which vHelio,2 and vHelio,1 fall must be negative for a true binary
system. Fernandez et al. (2017) attempted to infer qdyn also from systems in which the slope
of this line is positive or zero (e.g. their Figure 6), but mass ratios inferred in this way have
no physical interpretation and indicate either inaccurate radial velocity measurements or the
presence of a third, unseen component.

In Figure 3.4, we compare the best-fit values of qspec and qdyn obtained for SB2 systems
in which qdyn can be reliably measured; we identify such systems as those in which the range
of vHelio spanned across visits is at least 10 km s−1 for both stars, corresponding to a velocity
shift of slightly less than 1 resolution element. We color points by the median of S/N per
pixel as reported in the allVisit catalog, where the median is over all visit spectra used in
the fit.

The agreement between qspec and qdyn is in general quite good, with a median absolute
difference between qspec and qdyn of med(|qspec − qdyn|) = 0.048 and a corresponding middle
68% range of (0.012 − 0.14). The agreement is on average better for targets whose spectra
have higher S/N; most systems with significantly different qspec and qdyn have S/N . 50.
Particularly at lower mass ratios, qdyn is on average slightly lower than qspec; i.e., assuming
qdyn is usually more accurate than qspec, the latter is biased to slightly higher q. This can
be understood as a consequence of the minimum Teff of our spectral model, which sets an
effective minimum qspec. If a cool primary has a companion with Teff cooler than 4200 K that
cannot be fully accommodated by the spectral model, a better fit can often still be achieved
by a binary model with Teff = 4200 K and a too-high qspec than a single star model which
ignores the secondary entirely. This in part explains the substantial number of cool systems
with qspec near 1 and lower qdyn, though we note that most cool systems also have lower S/N.

If the secondary is very faint compared to the primary, its contribution to the spectrum
may be completely undetectable, in which case binary and single-star models will converge to
the same model spectrum as long as the velocities are allowed to vary between visits. Such
systems can be distinguished from isolated single stars by the fact that the “SB1” model
provides a better fit than the single-star model, which requires a target’s velocity to be the
same at all visits. Figure 3.5 shows an example of such a system. Our model makes it
possible to set an upper limit on the mass ratio, under the assumption that the companion
is a main sequence star: in this case, the SB2 model would provide a better fit than the
SB1 model if the secondary had Teff & 4200 K. This limit is likely conservative in practice
for main-sequence secondaries, as discussed above. However, it will not apply for binaries in
which the companion is a stellar remnant.

We note that most SB1s and some close SB2s can be qualitatively identified as unlikely to
be single based on the scatter across visits in the radial velocities measured by the APSTAR
pipeline (e.g. Badenes et al. 2017). However, we find a nontrivial number of SB2 systems
(∼100 systems out of the∼20000 targets studied in this work) that show clearly time-variable
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Figure 3.5 : Visit spectra and best-fit models for an SB1 system. The SB1 model contains only
a single star contributing to the spectrum, but its radial velocity can vary across visits. The SB2
model includes the possibility of a second star contributing to the spectrum. In this case, the best-
fit SB1 and SB2 models are identical, indicating that there is no detectable contribution to the
spectrum from the secondary. However, radial velocity variability of the primary clearly indicates
that a companion is present. Assuming that the companion is a main-sequence star, an upper-limit
of q . 0.45 can derived; if q were larger, the secondary would contribute detectably to the spectrum,
and the SB2 model would provide a better fit.
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spectra, with changes in the velocities of both components larger than 30 km s−1, for which
the APSTAR-derived vHelio measurements change at the < 1 km s−1 level. This indicates that
APOGEE radial velocity measurements are likely problematic for these systems, and studies
that flag short-period binaries based on velocity variability will miss some SB2 systems.

Figure 3.6 shows an example of a spectrum classified as a triple. The SB2 model (cyan)
clearly cannot provide a good fit to the observed spectra, which simply have too many
lines; on the other hand, the triple model is a good fit to all visits. The inset shows the
velocities of the three components at each epoch; note that these are all allowed to vary
freely and are not restricted to follow any equivalent of Equation 3.3. One component, the
spectral primary, has effectively constant velocity (within ±0.5 km s−1) across all visits. On
the other hand, the velocities of the secondary and tertiary components vary a great deal
between visits and fall on a line with negative slope, just as in the case of close binaries
(Figure 3.3). The most straightforward explanation for these kinematics is that the system
is a hierarchical triple (e.g. Ford et al. 2000; Toonen et al. 2016) consisting of a close binary
orbiting a third system with a period much longer than that of the close binary, so that the
velocity of the primary and the center-of-mass velocity of the close binary do not change
significantly over the temporal baseline between visits (which is ∼ 54 days for this target).
This type of hierarchical orbital is illustrated schematically in Figure 3.6. Consistent with
this interpretation, the spectrally inferred mass ratio between the two components of the
close binary is similar to the dynamical mass ratio inferred from the slope of the line on
which their velocities fall.

We find 114 triple systems, most of which have the same qualitative velocity configuration
as the system in Figure 3.6: they contain one component with effectively constant velocity
over all visits and two components with variable velocities that fall on a line as expected by a
close binary. This is not surprising, as hierarchical configurations are the natural stable end
state of the dynamical evolution of (otherwise chaotic) triple systems (Naoz et al. 2013). We
also find systems in which the velocity of the third (long-period) component is not constant
but changes approximately linearly with time; this is expected if the system’s outer period is
long compared to the observation baseline but not so long that no change can be observed.
In such cases, the heliocentric velocities of the other two components do not fall on a straight
line but exhibit some intrinsic scatter; this scatter can be reduced if a constant multiple of
the linear trend of the lone star is subtracted from the velocities of the other two stars.

Such systems are almost certainly gravitationally bound triples, since the velocities of
all three components are correlated. However, for triples in which the velocity of one com-
ponent is consistent with being constant over the time baseline spanned by observations,
there is no guarantee that the three stars are actually gravitationally bound: the observed
velocities could also be explained by a chance alignment between a close binary system and
a background or foreground star. Whether such chance alignments constitute a substantial
fraction of the targets we identify as hierarchical binaries can be diagnosed by comparing
the center-of-mass velocity of the close binaries to the velocity of the third component. For
gravitationally bound triples, these should be reasonably similar, with offsets of order the
orbital velocity of the long-period component. The typical offsets should be larger (at mini-
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Figure 3.6 : Visit spectra of a target identified as a triple (SB3) system. The three components
have different line-of-sight velocities, so many lines can be seen in triple, and an SB2 model cannot
provide a good fit. Inset shows the line-of-sight velocities of each component at each epoch. The
heliocentric velocity of the primary is consistent with being constant at vHelio,1 ≈ 34.5 km s−1, so no
dynamical mass ratio can be estimated for m2/m1 or m3/m1. However, vHelio,2 and vHelio,3 fall on
a line with an implied mass ratio m3/m2 consistent with the spectrally inferred one. This implies
that the system is a hierarchical triple, as is illustrated in the orbit schematic.
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mum, of order 30 km s−1, the velocity dispersion of the Milky Way’s stellar disk) for chance
alignments.

We investigate this explicitly in Figure 3.7. Here we only plot systems that are consistent
with the velocity of the of the long-period component being fixed over all epochs; we identify
such cases as systems in which the change in the velocity of the long-period component
across epochs is less than 2 km s−1 when all velocities are allowed to vary freely. Consistent
with the expectation for bound triples, the system velocity of the close binary is in most
cases within 10 km s−1 of that of the third component. There are 5 systems in which the
offset is larger, but due to the relatively short observational baselines, we find that none
of these velocity offsets are large enough to rule out the possibility that all three stars are
gravitationally bound. We discuss the possibility of contamination due to chance-alignments
of stars further in Section 3.4.5.

Along with SB1s, SB2s, and SB3s, we also identify a class of systems in which the presence
of a third component can be deduced from radial velocity measurements, but only two star
contribute significantly to the spectrum. Figure 3.8 shows an example of such a target. The
standard SB2 model, which enforces Equation 3.3 with qdyn ≥ 0.2, cannot satisfactorily fit
the spectrum. However, the “SB2 with unseen third component” model, which allows the
velocities of both components to vary freely, provides a good fit, converging on a solution in
which the velocity of one component is consistent with being fixed across epochs while that
of the other varies.

As illustrated in the orbital schematic in Figure 3.8, such a radial velocity pattern can be
explained straightforwardly if the system is a hierarchical triple in which the close binary is
an SB1; i.e., one component of the close binary does not contribute to the spectrum, either
because its mass is low or because it is a compact remnant. No dynamical mass ratio can be
inferred for these systems, because the acceleration of the variable velocity component is due
primarily to the unseen component. We identify 108 SB2 systems in which the presence of
a third component can be inferred dynamically; the majority of these systems have velocity
configurations similar to Figure 3.8, with one component’s velocity essentially constant.

3.4.3 Color-magnitude diagram

A straightforward diagnostic to verify that the targets we spectroscopically identify as
binaries are primarily true binaries, as opposed to single stars whose spectra contain unusual
features that are not well accounted for in the spectral model, is to examine their distribution
in a color-magnitude diagram (CMD). True binaries are expected to lie above the single-star
main sequence of a CMD (Hurley & Tout 1998; Li et al. 2013): binaries with q ∼ 1 will have
the same color as would either single star but will be twice as luminous, while binaries with
0.5 . q . 0.9 will be both brighter and redder than a single star with the parameters of the
primary.

Accurate measurements of absolute magnitude (and hence distance) are required to con-
struct the CMD. To identify stars in our sample with accurate distance measurements, we
cross-matched it with the Tycho-Gaia astrometric solution (TGAS) catalog (Michalik et al.
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Figure 3.7 : Line-of-sight velocities for hierarchical triples containing a close binary and third compo-
nent with a much larger separation (see schematic in Figure 3.6). The tight correlation between the
center-of-mass velocity of the close sub-binary and the velocity of the long-period component indi-
cates that most systems are bona-fide gravitationally bound triples, not chance alignments between
a close binary and a background or foreground star.
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Figure 3.8 : Visit spectra of a triple system in which the third component does not contribute
significantly to the spectrum but can be detected gravitationally. Cyan line shows best-fit SB2
model with the restriction that vHelio,1 and vHelio,2 fall on a line with negative slope (Equation 3.3).
Red line shows the best-fit binary model in which the velocities of the primary and secondary are
allowed to vary freely. Inset shows the line-of-sight velocities corresponding to the red model. The
velocity of the secondary is consistent with being constant at vHelio,2 ≈ −14.5 km s−1, while that of
the primary varies substantially. This implies that the system is a hierarchical triple in which one
component of the close binary does not contribute to the spectrum (i.e., it is a stellar remnant or
faint M-dwarf); this is shown schematically in the orbital diagram.
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2015) using the gaia_tools.xmatch routine written by Jo Bovy. This revealed 1925 stars
in our sample with parallax errors of 10% or better,8 217 of which were spectroscopically
identified as multiple-star systems in which at least two components contribute detectably
to the spectrum.

We plot the CMD for these objects, based on 2MASS photometry, in the left panel of
Figure 3.9. As expected, the majority of spectroscopically-identified binaries are scattered
above the main sequence. We stress that our model for identifying binaries operates ex-
clusively on normalized spectra and does not rely whatsoever on photometry; the fact that
nearly all of the spectroscopically identified binaries populate the expected locus of the CMD
above the main sequence is therefore a robust confirmation that our model is finding real
binaries.

In the right panel of Figure 3.9, we show schematically how the presence of an unresolved
companion is expected to change a star’s position on the CMD. For a single stellar population,
binaries with mass ratios 0.6 . q . 1 form a coherent second sequence ∼ 0.75 magnitudes
above the main sequence; i.e., it is not the case over this range of mass ratios that binaries
with higher q fall farther above the main sequence. This occurs because as q is increased
from 0.6 to 1 and Teff of the secondary increases, unresolved binaries move blueward parallel
to the main sequence. On the other hand, in binaries with q . 0.4, the secondary contribute
so little light that the change in the unresolved system’s location on the CMD is negligible.

The lowest mass-ratio to which we are sensitive is q ∼ 0.4, so the majority the binaries
we identify should scatter above the main sequence for their respective isochrone. In the
left panel of Figure 3.9, we plot separately binaries with q ≤ 0.6 (which are only detectable
around primaries with Teff & 5800 K; see Appendix 3.7.1) and those with higher mass ratios.
As expected, the lower mass ratio systems are on average below the higher mass ratio systems
on the CMD. With one exception,9 systems identified as triples (SB3) fall above the binary
main sequence. We do not mark SB1s in Figure 3.9; their distribution on the CMD is similar
to that of single stars, likely because most have low mass ratios.

The sample of stars for which accurate parallaxes are available spans a wide range of
metallicities and ages, so significant intrinsic scatter is expected in the distribution of both
single stars and binaries on the CMD. We note that there are some stars that our model does
not identify as binaries but which still scatter well above the main sequence. We suspect
that most of these systems are binaries with q ∼ 1 and small velocity offsets; these are not
detectable in our current framework.

We also divide suspected binaries into subsamples with large and small velocity offsets,
corresponding approximately to systems which could and could not be detected with tradi-

8This corresponds to a magnitude error of ±0.22 mag, plus typical 2MASS photometric errors of ±0.03
mag. We do not attempt to correct for extinction or redding, which is expected to be modest in the near-
infrared at the distances of the stars with accurate parallaxes (which have a median distance of 200 pc).

9We have investigated the spectra of this target (2M07212735+2342096) in detail and find it to be an
unambiguous triple, with clear changes in spectral morphology between visits. Why it falls below the main
sequence is not clear; one possibility is that marginally resolved multiplicity led to an overestimate of its
parallax.
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Figure 3.10 : Left: Orbit fit to an SB2 systems with 15 epochs. In this relatively low-mass ratio
system, the secondary contributes only ∼3% of the light, but we can still determine its velocity to
± ∼ 1 km s−1. Black and gray lines show the heliocentric velocity of the primary and secondary
star. Right: 68 and 95% marginalized probability regions for the system’s orbital parameters.
Because the eccentricity is very nearly 0, Tp and ω are highly degenerate and are individually not
well constrained, reflecting the fact that these quantities are meaningless for a circular orbit. We
derive similar orbital solutions, shown in Table 3.1, for 64 systems.

tional CCF-based binary detection methods (Fernandez et al. 2017). Only ∼30% of systems
have velocity offsets that are large enough to be detected with traditional methods. This
highlights one of the primary advantages of the method introduced in this work: it is sensi-
tive to a substantially larger fraction of the binary population than methods based on radial
velocity separation or variability alone.

3.4.4 Deriving Orbital Parameters

We derive full orbital solutions for 64 binary systems which have sufficient visits and
phase coverage to constrain the orbit. Our criteria for determining whether the available
velocity data are sufficient to constrain a system’s orbit are discussed in Appendix 3.9. We
only attempt to derive orbital solutions for systems in which at least two stars contribute to
the spectrum; orbital solutions for SB1 systems in APOGEE can be found in Troup et al.
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(2016).
Velocities for both components are returned as labels for the best-fit spectral model. An

initial estimate of the radial velocity uncertainty at each visit is obtained through bootstrap-
ping: Gaussian noise proportional to the best-fit model residual at each pixel is added to the
data spectrum and the fit is repeated; the uncertainty on each radial velocity is taken to be
the standard deviation of the best-fit velocity at each epoch when this procedure is repeated
many times.

Fitting a Keplerian orbit amounts to simultaneously maximizing the likelihood of the
radial velocity curves of the primary and secondary, where the model radial velocity for
a given set of orbital parameters is obtained by solving the two-body problem (Murray &
Correia 2010). We use a custom Python implementation of the adaptive simulated annealing
algorithm (Iglesias-Marzoa et al. 2015) to obtain an initial maximum-likelihood estimate
of the best-fit orbital parameters and then sample the parameter space in the vicinity of
the maximum likelihood with emcee (Foreman-Mackey et al. 2013a) to estimate parameter
uncertainties. We use non-informative, flat priors throughout. In addition to the 7 standard
Keplerian orbital parameters,10 we fit a “jitter” term, s2, to allow for the possibility of
intrinsic scatter in the radial velocities due to e.g. stellar pulsation or underestimated radial
velocity uncertainties (see e.g. Baluev 2009; Price-Whelan et al. 2017). The effective total
uncertainties in the radial velocities used in fitting are then σ2

tot,i = σ2
i + s2, where σi are

the radial velocity uncertainties at each epoch found from bootstrapping. Explicitly, the
log-likelihood function is

lnL = − 1

2

N∑
i

{
[vr(ti, ~θ1)− vHelio1,i]

2

σ2
1,i + s2

+ ln[2π(σ2
1,i + s2)]

+
[vr(ti, ~θ2)− vHelio2,i]

2

σ2
2,i + s2

+ ln[2π(σ2
2,i + s2)]

}
.

(3.9)

Here the sum is over N epochs at times ti, vr(t, ~θ) represents the predicted radial ve-
locity at time t for a system with orbital parameters ~θ (Murray & Correia 2010), and
~θ1 = (P, Tp, e, ω,K1, γ) and ~θ2 = (P, Tp, e, ω + π,K2, γ) are the orbital parameters for each
component. For most systems, the best-fit jitter is small (s2 ∼ 0.1 km2 s−2), indicating that
our estimates of σi are reasonably accurate. However, for stars with large vmacro, which
indicates significant rotation, jitter is sometimes of order 1 km s−1. This suggests that our
velocity measurements are less accurate for rapidly rotating stars, which is also supported
by our experiments with semi-empirical binary spectra (Appendix 3.7.1).

For some systems with mass ratios near 1, we found that it was initially impossible to
obtain a good fit to the measured radial velocities because the velocity assignments of the
two stars were switched in the fits for one or more visits. We attempted to fit these systems
by allowing the fitting algorithm to switch the assigned velocities for individual visits if doing

10These include the period, P , periastron time, Tp, eccentricity, e, argument of periastron, ω, center-of-
mass velocity, γ, and the velocity semi-amplitudes, K1 and K2.
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so would improve the fit. In most cases, this solved the problem. A few systems (∼5% of
those with sufficient coverage) remained with radial velocity curves that could not be well-fit
by a Keplerian orbit, even with the possibility of switching the assigned velocities; these
systems may have poorly measured radial velocities or contain an unseen component.

Figure 3.10(a) shows an example orbital solution for a system with typical phase coverage,
radial velocity errors, and number of epochs. This system has the lowest mass ratio, q = 0.44,
of the systems for which we derive orbital solutions. Because of the system’s low mass ratio,
the secondary contributes only a small fraction (∼3%) of the total light in the spectrum; it
is not obvious from visual inspection that more than one star contributes to the spectrum.
However, the secondary is detected unambiguously by our model, and the fact that the
primary and secondary velocities all fall on a Keplerian orbit confirms the validity of the
detection.

Marginalized probabilities for the orbital parameters of this system are shown in Fig-
ure 3.10(b). Most orbital parameters are well-constrained for this system, without strong
parameter covariances. However, the periastron time, Tp, and argument of periastron, ω,
are highly degenerate, because the orbit is nearly circular (the eccentricity, e, is consistent
with 0); the orbit has no well-defined periastron, and hence Tp and ω are undefined. All
systems with low eccentricities therefore have large uncertainties in ω and in Tp, even when
the meaningful parameters of the orbit are well-constrained.

In Table 3.1, we provide best-fit orbital parameters and marginalized uncertainties for 64
systems for which an orbital solution could be obtained. Most of these systems are ordinary
double-lined binaries (SB2s), similar to the system shown in Figure 3.3. However, we also
include solutions for several close SB2s within hierarchical triples (similar to Figure 3.6), as
well as SB1s within hierarchical triples with hidden third components (similar to Figure 3.8).
These are fit very similarly to pure SB2 systems, with the only difference being that vHelio

measurements for individual stars at each visit are obtained from the “SB3” and “SB2 with
an unseen 3rd object” models. We only attempt to fit such systems if they are consistent
with the third component having constant velocity over the observed baseline. For “SB2
with an unseen 3rd object” systems, the fit is to a single radial velocity curve, so K2 is not
measurable. The rms velocity residual for all orbital solutions ranges been 0.04 and 1 km s−1.
The systems with the largest velocities errors have a) lower average S/N and b) higher Teff

and vmacro, both of which make it more difficult to accurately measure radial velocities.
The statistics UN and VN in the last column of Table 3.1 quantify the uniformity of

coverage in orbital phase and velocity by the measured radial velocity data. We calculate
these statistics following Troup et al. (2016) (their Equations 22 and 23); both UN and VN are
bounded between 0 and 1, with values near 1 corresponding to uniform phase and velocity
coverage. Troup et al. (2016) estimated that orbital parameters are unreliable for SB1s if
UNVN < 0.5; of course, the probability of recovering the correct orbit also depends on the
number of radial velocity measurements and their uncertainties. In Appendix 3.9, we carry
out tests with synthetic radial velocity data to determine the number of epochs and phase +
velocity coverage required for reliable orbit recovery of SB2s with radial velocity data similar
to that obtained for real binaries.
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2MASS ID Nepochs P Tp e ω K1 K2 γ UNVN
[days] [BMJD] [radians][km s−1][km s−1][km s−1]

06212323+1701485 8 42.24 56657.15 0.3166 0.684 35.27 41.40 1.37 0.79
±0.19

0.17 ±0.21
0.23 ±0.0091

0.0092 ±0.029
0.034 ±0.31

0.29 ±0.32
0.31 ±0.19

0.18

08544465+1130053 21 39.23855 55933.6200.6932 1.0931 59.79 62.93 -6.818 0.92
±0.00097

0.00093 ±0.016
0.016 ±0.0014

0.0014 ±0.0035
0.0035 ±0.20

0.19 ±0.20
0.21 ±0.069

0.069

04030722+5150045 9 69.973 55906.20 0.569 4.026 31.5 33.4 -7.176 0.76
±0.076

0.093 ±0.38
0.33 ±0.045

0.036 ±0.024
0.026 ±2.9

1.9 ±3.1
2.1 ±0.089

0.091

21313924+1307507 41 1.5567964 55731.18 0.0016 1.03 59.51 71.84 -52.199 0.92
±0.0000016

0.0000015 ±1.10
0.19 ±0.0016

0.0012 ±4.30
0.76 ±0.12

0.12 ±0.13
0.13 ±0.069

0.061

18470667-0226077a 32 7.52676 55823.81 0.0136 5.38 45.86 55.85 15.99 0.93
±0.00015

0.00014 ±0.39
0.37 ±0.0046

0.0050 ±0.32
0.30 ±0.27

0.26 ±0.26
0.26 ±0.15

0.15

07355296+2135482 15 15.3645 55879.8 0.0065 4.62 31.47 72.11 15.50 0.87
±0.0010

0.0011 ±1.5
1.5 ±0.0033

0.0034 ±0.60
0.62 ±0.17

0.18 ±0.27
0.27 ±0.11

0.10

15010903+3702218 7 17.5079 56090.8540.2996 2.5573 41.962 57.13 -47.938 0.61
±0.0011

0.0011 ±0.046
0.045 ±0.0014

0.0013 ±0.0092
0.0088 ±0.100

0.092 ±0.14
0.14 ±0.040

0.036

08541894+1239291 22 1.304679255904.366 0.042 2.96 130.2 130.2 7.87 0.91
±0.0000087

0.0000089 ±0.054
0.052 ±0.010

0.010 ±0.25
0.24 ±1.7

1.7 ±1.8
1.8 ±0.86

0.80

19303146+4210508b 24 5.55412 56444.01 0.0120 6.05 43.20 – -58.76 –
±0.00013

0.00014 ±0.25
0.22 ±0.0029

0.0030 ±0.28
0.24 ±0.13

0.13 ±0.092
0.100

08464223+1205302 17 15.0232 56654.1460.2980 0.290 24.76 26.54 -6.493 0.93
±0.0023

0.0024 ±0.023
0.023 ±0.0034

0.0035 ±0.010
0.011 ±0.13

0.12 ±0.14
0.14 ±0.058

0.055

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 3.1 : Orbital solutions for double-line spectroscopic binaries. We report the median and
middle 68% of the marginalized posterior samples for each parameter. UN and VN quantify the
phase and velocity coverage of the observations (see Appendix 3.9); systems with UNVN . 0.5−0.6

are susceptible to erroneous bad fits. aSystem is an SB2 within a hierarchical triple (10 systems).
bSystem is an SB1 within a hierarchical triple (3 systems). This table is available in its entirety
(with orbital solutions for 64 systems) in machine-readable form.
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Figure 3.11 : Top: Distribution of periods, semi-major axes, and masses for the 64 double-lined
binary systems for which we derive an orbital solution. Due to APOGEE’s relatively rapid cadence
(most targets have maximum baselines of a few months), these systems are heavily biased toward
short periods. Bottom: Period-eccentricity distribution. Most systems with P . 10 days have low
eccentricity due to tidal circularization.
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In the top panel of Figure 3.11, we plot constraints on the semimajor axes and component
masses derived from the orbital parameters of all systems for which we present an orbital
solution.11 Our sample contains systems with periods ranging from 0.6 days (short enough
that the two stars are nearly touching, with a sin i ∼ 0.8R�) to ∼ 600 days. Dynamical
constraints on the absolute masses of stars in individual binaries are weak due to the de-
generacy with sin i, but the highest lower limit on the mass of an individual component is
∼ 1.5M�. This corresponds to Teff & 6600 K for a solar-metallicity star on our adopted MIST
isochrones; reassuringly, none of our dynamical mass constraints imply Teff > 7000 K, which
is the upper limit adopted for our spectral model.

We plot the periods and eccentricities of binary systems in the bottom panel of Fig-
ure 3.11. Most of the short period (P . 10 days) systems have nearly circular orbits, likely
due tidal dissipation processes (e.g. Koch & Hrivnak 1981). However, a few systems with
short periods do have eccentricity constraints that are inconsistent with zero. Some of these
systems are short-period binaries within a hierarchical triple; such systems are known to be
susceptible to eccentricity boosts via three-body interactions (Kozai 1962).12

3.4.5 Are binaries gravitationally bound?

Our method finds binaries and triples by identifying targets in which more than one star
falls within a single APOGEE fiber and contributes to the observed spectrum. In all cases
where the velocities of the components of a suspected binary or triple system are not observed
to vary in a correlated way, there is no guarantee that all the components are gravitationally
bound: chance alignments of stars at different distances that fall within the same fiber can
produce spectra consistent with binarity.

To estimate the false-positive rate due to such “optical binaries” that are not gravita-
tionally bound, we analyze mock photometric catalogs created with Galaxia (Sharma et al.
2011). Galaxia implements the Besançon model of stellar population synthesis (Robin
et al. 2003) to populate the Galactic distribution function and produce realistic mock sur-
veys along arbitrary lines of sight. Using a Galactic dust extinction map computed by
mwdust (Bovy 2016a), we produced mock catalogs complete to J = 14 mag along 3 lines of
sight representative of the range of stellar densities spanned by different APOGEE fields:
one towards the bulge with (`, b) = (0 deg, 5 deg), one toward the Galactic anticenter with
(`, b) = (180 deg, 0 deg), and one at high latitude with (`, b) = (0 deg, 60 deg), where ` and b
represent Galactic longitude and latitude. We then checked, for each star in a mock catalog,

11We calculate a sin i, M1 sin3 i, and M2 sin3 i using the standard formulas from Cox (2000). It is not pos-
sible to measure a or M directly from radial velocity data alone; we note that future astrometric constraints
can break the degeneracy between these quantities and orbital inclination for nearby systems (Halbwachs
et al. 2017b).

12The only short-period system which is distinctly noncircular and is not best fit by a triple model is
2M21320320+1107560, with P = 6.70 days, e = 0.41, and 41 epochs. It may well also be part of a hierarchical
triple in which the third (long-period) component is too faint to appreciably contribute to the spectrum.
Such a system would not be identifiable as having an unseen companion, as only systems in which the unseen
companion is in the short-period sub-binary have velocities inconsistent with being an isolated binary.
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whether any other stars fall within a circular aperture of diameter 2 arcseconds centered
on that star, representing a single APOGEE fiber. If more than one star was found in a
given aperture (including both dwarfs and giants), we classified all stars in that aperture as
a single optical binary.

Toward the Galactic Bulge, we find a 0.2% probability that a star is an optical binary.
The same probability is 0.05% toward the Galactic anticenter and 0.005% at high latitude.
As these probabilities are all much smaller than our detected binary fraction of ∼ 15%, we
conclude that optical binaries are unlikely to be a large source of false positives, though a
small fraction of the systems we detected in fields toward the Bulge may be chance alignments
masquerading as binaries.

Our model requires all components of a multiple-star system to have identical distances
and abundances and fall on a single isochrone. This is likely a reasonable assumption for
true, gravitationally bound binaries (Desidera et al. 2004; Andrews et al. 2017), but it is
unlikely to hold for chance alignments. One could thus distinguish between true binaries
and chance alignments by allowing the stellar parameters and abundances, and/or relative
distance, of the secondary to vary freely and identifying cases where the best-fit model assigns
significantly different abundances or distances to the different components. We defer such
analysis to future work.

3.5 Discussion and Conclusions

3.5.1 Comparison to previous work

Chojnowski et al. (2015) compiled a catalog of double-lined spectroscopic binaries and
triples in APOGEE by identifying targets whose cross-correlation function exhibited mul-
tiple peaks.13 Of the 610 targets in their catalog that were also in our initial sample, 574
were also classified as multiple systems by our pipeline, 5 were classified as SB1s, and 31
were classified as consistent with being single stars. Of the 574 stars classified as multiple
systems by both pipelines, 514 are in our “potential close binary” subsample, which contains
variable-velocity targets and binaries with large velocity offsets between the two compo-
nents (Section 3.3.4). This ∼95% agreement rate is encouraging, given the very different
approaches of the two pipelines. A primary advantage of the method developed in this work
is its increased sensitivity to long-period systems with negligible velocity offsets.

Recently, Badenes et al. (2017) studied the occurrence rate of short-period, velocity
variable binaries in APOGEE. They found the multiplicity fraction for main-sequence stars
to be a factor of ∼2 higher in the lowest-metallicity tercile of their sample than in the
highest-metallicity tercile. We find a similar result: for short-period systems (those with
velocity shifts of at least 10 km s−1 between epochs), the multiplicity fraction is ∼60%
higher for the lowest-metallicity tercile of our sample ([Fe/H] < -0.21) than for the highest-
metallicity tercile ([Fe/H] > -0.02). Badenes et al. (2017) studied systems with metallicities

13Their catalog is available at http://astronomy.nmsu.edu/drewski/apogee-sb2/apSB2.html

http://astronomy.nmsu.edu/drewski/apogee-sb2/apSB2.html
http://astronomy.nmsu.edu/drewski/apogee-sb2/apSB2.html
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as low as [Fe/H] = -2.5; given the smaller range of metallicities in our sample ([Fe/H] > -1),
these results are likely consistent. For long-period systems, we find the binary fraction to
be consistent with being constant with metallicity. Some theoretical models (e.g. Machida
2008) predict that low-metallicity clouds should preferentially form short-period binaries,
consistent with this result. However, we caution against over-interpreting this finding, as we
have not attempted to quantify or correct for changes in the completeness of our method at
lower metallicity.

Modeling approaches similar to the method developed in this work have previously been
used on a case-by-case basis to fit “composite spectrum binaries”, a term that refers specif-
ically to binaries containing a cool giant primary and a hot subgiant or main-sequence sec-
ondary (e.g. González & Levato 2006; Griffin & Griffin 2010). Similar techniques have also
been employed to spectroscopically detect and characterize unresolved binaries composed of
very low-mass stars or brown dwarfs with different spectral types (Burgasser 2007; Burgasser
et al. 2008). Although this work focuses on modeling the spectra of binaries in which both
components are main-sequence stars, the method we develop is flexible and can be straight-
forwardly extended to identify other flavors of binaries. The primary requirement is a robust
training set spanning the range of single-star spectral types found in the dataset of interest.

For systems known to be double-lined binaries, a wide variety of techniques have been
developed to disentangle the spectra of the two component stars in order to measure their
individual velocities and stellar labels (e.g. Bagnuolo & Gies 1991; Simon & Sturm 1994;
Hadrava 1995; Pavlovski & Hensberge 2010; Czekala et al. 2017). These techniques can
reliably separate the spectra of the individual components of a binary even when lines are
blended, but they generally require multi-epoch spectroscopy that captures the combined
binary spectrum at several orbital configurations.

If only single-epoch spectroscopy is available or the binary is sufficiently wide that the
orbital velocities of the two components do not change much between visits, the most com-
mon approach for measuring radial velocities is cross-correlation with a composite template
spectrum (Zucker & Mazeh 1994; Halbwachs et al. 2017a); this requires first estimating the
labels of the individual stars. In such cases, most previous works have attempted to first
model the primary star with a synthetic or empirical template, then subtract this template
from the composite spectrum, and finally fit a model for the second star to the residual spec-
trum. However, it is difficult to ensure with this approach that the optimal binary model has
been found, as the single-star model spectrum that best fits the combined binary spectrum
does not in general correspond to the true best-fit parameters of the primary star (see E18).
The method introduced in this work, which fits for the stellar parameters and velocities of
both components simultaneously, avoids these complications.

Recently, a few works have shown that double-lined binaries can also be detected non-
parametrically by identifying systems with peculiar spectra that are clustered outliers in a
high-dimensional space of arbitrary summary statistics computed for all spectra collected
by a survey (Traven et al. 2017; Reis et al. 2017). While such methods thus far primarily
identify binaries with large velocity offsets, we note that non-parametric methods can likely
be further optimized for binary identification by searching for targets which are precisely
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Figure 3.12 : Schematic illustration of the range of binary periods and mass ratios that can be
detected with different methods. Gray shading (identical in all panels) shows the distribution of
periods and mass ratios for solar-type stars; hatches show the regions of parameter space that can
be probed by radial velocity variability (left) and fitting a binary model to single- and multi-epoch
spectra (middle, right). Conventional multi-epoch radial velocity surveys are sensitive to essentially
all mass ratios, but only for short-period binaries, which represent roughly a third of the observed
lognormal period distribution for solar-type stars. The binary spectral model introduced in this
work is sensitive to all but the longest periods (as long as both stars fall within one spectroscopic
fiber) with single-epoch observations, but only for intermediate mass ratio systems. When multi-
epoch spectra are available, fitting a binary model can also detect all systems with variable radial
velocities as SB1s.

the kind of outliers expected to result from binarity; for example, one could identify systems
that cannot be well-described by a single combination of spectral PCA components but can
be well-described by two sums of components with different velocities.

3.5.2 Future prospects

Improving the model

A straightforward way to make our model sensitive to a larger fraction of the binary
population is to extend the single-star model to cooler temperatures. As discussed in Ap-
pendix 3.7.1, the lower limit of Teff = 4200 K, which is due to shortcomings of ab-initio
spectral models for main-sequence stars at lower temperatures, limits the model to only
detecting binaries with mass ratios near q = 1 at low temperatures and prevents us from
fitting spectra of the coolest stars altogether. Fitting cooler stars does not required any mod-
ification of our general approach, only a robust training set at lower temperatures, which
currently does not readily exist. Due to the increased importance of molecular opacity from
many species at lower Teff , it may be helpful to include more abundances in the spectral
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model for cooler stars.
Our model could also be improved by fitting for the projected rotation velocity v sin i

explicitly instead of subsuming it under the Gaussian broadening of vmacro, since the single-
star model currently performs worst for rapidly rotating stars. This is in principle simple to
accomplish: rotation velocities for stars in the training set can be obtained straightforwardly
in post-processing (e.g. Díaz et al. 2011), and the inferred v sin i can then be added as an
additional label to the model. Rotation is currently not an important problem for most
of the targets in our sample because stars with Teff . 6500 K typically lose most of their
angular momentum to magnetic braking and do not rotate rapidly on the main sequence
(Glebocki et al. 2000; Schatzman 1962), and stars with Teff ≥ 6500 K represent less than 4%
of our dataset. However, an improved treatment of rotation would make it possible to better
model hot stars and would likely decrease the false-positive rate (see Appendix 3.8). This is
particularly true for young stars, which can rotate significantly even at cooler temperatures
(e.g. Terrien et al. 2014).

Hierarchical modeling

Beyond the Solar neighborhood, previous spectroscopic studies of the Galactic binary
population have been limited to studying the short-period tail of the binary population.
Because the model presented in this work does not depend on radial velocity variability or
a line-of-sight velocity offset to detect binaries, it has the potential to substantially improve
on existing constraints on the binary population of the Milky Way and/or its satellites when
combined with a model for detection completeness and the survey selection function.

Existing radial velocity surveys of the Milky Way and nearby dwarf galaxies are sensitive
to binaries with periods less than ∼ (1 − 10) years (e.g. Matijevič et al. 2011; Minor 2013;
Hettinger et al. 2015; Gao et al. 2017; Badenes et al. 2017). For the log-normal period
distribution for solar-type stars found in the Solar neighborhood (Duchêne & Kraus 2013),
∼73% percent of binaries have P > 10 years; most of these systems will be missed by
such surveys. The most probable period for solar-type binaries is ∼300 years; assuming
random orbit orientations, the typical line-of-sight velocity separation for such systems is
∆vlos ∼ 2 km s−1, and the average radial velocity change over a one-year baseline is ∼
0.02 km s−1. This is an order of magnitude below the detectability thresholds of existing large
spectroscopic surveys, though such weak radial velocity trends in SB1s may be marginally
detectable with high-dispersion spectrographs typically used to study exoplanets (Konacki
2005; Katoh et al. 2013).

Irrespective of radial velocity variability, long-period binaries with favorable mass ratios
can be detected with our model as long as both components fall within a single spectroscopic
fiber. At a distance of 1 kpc, more than 80% of solar-type binaries will have projected
separations of less than 1 arcsecond, so that both stars would fall with a single 2-arcsecond
fiber; this fraction increases at larger distances. On the other hand, for long-period systems,
the binary spectral model is sensitive only to intermediate mass ratio systems (0.4 . q . 0.8),
in which the primary and secondary have qualitatively different spectral types, but the
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secondary still contributes a non-negligible fraction of the total light (see Appendix 3.7.1
and E18). The distribution of mass ratios for solar-type binaries is approximately flat down
to q = 0.1 (Duchêne & Kraus 2013), so the binary model will miss many high and low mass
ratio systems with long periods.

We summarize the sensitivity of our method, as well as standard binary-detection meth-
ods based on velocity variability, to systems with different periods and mass ratios in Fig-
ure 3.12. Radial velocity variability can probe essentially all mass ratios, but only for the
short-period tail of the binary population. On the other hand, fitting a binary spectral
model to single-epoch observations can probe most of the period distribution, but only for
a restricted subset of mass ratios. We thus expect that the method developed here can
be fruitfully combined with existing multi-epoch radial velocity measurements from SB1s,
such as the APOGEE constraints on the short-period binary fraction presented in Badenes
et al. (2017) and measurements of the binary fractions of nearby dwarf galaxies presented
by Minor (2013). This would enable a full hierarchical model for binary populations that is
sensitive to an unprecedented range of periods and mass ratios.

An immediate advantage of our method is that it is sensitive to a large fraction of the
binary population even when only single-epoch observations are available. With multi-epoch
observations, our model can detect short-period systems as SB1s, with similar sensitivity to
traditional methods. Our modeling approach can also be straightforwardly applied to spectra
from other surveys. The precise range of mass-ratios to which it is sensitive will vary with
wavelength coverage: surveys at optical wavelengths will be more sensitive to binaries with
higher mass ratios (0.8 . q . 0.9; see E18) due to the increased spectral information content
at shorter wavelengths, but they will be less sensitive at low q because a cooler secondary
star contributes a greater fraction of a binary system’s total light in the near-infrared than
at optical wavelengths.

In this work, we fit normalized spectra and only used the CMD to assess the reliability
of our spectral model. A promising avenue for future work is to fit spectra and photometry
simultaneously, or to place a photometric prior on q. This would make it possible to detect
systems with q ∼ 1 and negligible velocity offsets, which are twice as luminous as they
would be if they were a single star. Particularly with improved parallaxes from future Gaia
data releases, photometric constraints could substantially extend the fraction of the binary
population to which our method is sensitive.

3.5.3 Summary

We have developed a flexible data-driven method for identifying and fitting the spectra
of multiple-star systems and have applied it to ∼ 20,000 main-sequence targets from the
APOGEE survey. Unlike most previous work, our model performs well even for long-period
systems in which the line-of-sight velocity offset between components is negligible, substan-
tially expanding the fraction of the binary population that can be probed by observations.
Our method is mostly automated and can be straightforwardly applied to other spectroscopic
surveys with modest adjustments. Our main results are as follows:
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1. Spectral identification of long- and short-period binaries: Unresolved binaries can be
identified as systems whose spectrum can be better-fit by a sum of two single-star
model spectra falling on a single isochrone than any single-star model (Figure 3.1).
For systems with mass ratios 0.4 . q . 0.8, in which the two stars have different
spectral types, binaries can be identified spectroscopically even in the limit of no ve-
locity offset and with only single-epoch observations. Spectral signatures of binarity
are strengthened in the presence of a velocity offset of order one resolution element or
greater (Figure 3.2); thus, close binaries can be detected even in the limit of q ∼ 1.

2. Photometric test of the model: Nearly all spectroscopically identified binaries with ac-
curate distance measurements fall above the main sequence on the CMD, as is predicted
for true binaries, and triple systems fall above most binaries (Figure 3.9). Photometry
does not enter our binary identification procedure, so this agreement with theoretical
predictions provides independent validation of our spectral model.

3. Dynamical mass ratios: For short-period binaries in which the velocities of the two
components change substantially between visits, it is possible to obtain a dynamical
measurement of the mass ratio from the relative changes in the stars’ radial velocities
between visits (Figure 3.3). This provides a constraint on the mass ratio that is inde-
pendent of the spectral mass ratio, which determines the contribution of the secondary
star to the spectrum. We find good agreement between spectral and dynamical mass
ratios, with a median difference of 0.048 and even better agreement for systems with
high S/N spectra (Figure 3.4).

4. Triple systems: We identify 114 systems in which the contributions of three stars can
be identified in the spectrum (Figure 3.6) and an additional 108 in which only two
stars contribute significantly to the spectrum, but the presence of a third component
can be inferred from its gravitational effects (Figure 3.8). Most identified triples are
hierarchical, consisting of a close binary orbited by a third component with a much
longer period; we have verified that these systems are all likely gravitationally bound
(Figure 3.7).

5. Orbital solutions: For double-lined systems with a sufficient number of epochs and
well-sampled radial velocity curves, we derive full Keplerian orbital solutions (Fig-
ure 3.10(b)); some of these systems are close binaries within hierarchical triples. We
derive orbital solutions for 64 binaries with periods ranging from ∼0.6 days to ∼2 years
and semimajor axes ranging from ∼ R� to ∼ 1 AU. Consistent with previous studies,
we find that most binaries with P . 10 days have eccentricity consistent with 0 due to
tidal circularization processes (Figure 3.11).

We make catalogs of best-fit labels for all identified multiple-star systems publicly available;
these are described in Appendix 3.10.
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3.6 Neural network spectral model
As mentioned in Section 3.3.1, we use a neural network to predict the normalized flux

density at a given wavelength pixel as a function of stellar labels. As applied in this work, a
neural network is essentially a flexible function produced through the composition of simple
functions. It takes as its argument a vector of labels (~̀; Equation 3.1) and returns the
normalized flux density predicted at a particular wavelength pixel.

For the neural network used in this work, which contains a single hidden layer with 5
neurons, the normalized flux density at wavelength pixel λ is given by

f̂λ = w̃iλσ
(
wkλi

ˆ̀
k + bλi

)
+ b̃λ (3.10)

with implied summation over k = 1 . . . Nlabels and i = 1 . . . Nneurons. Here ˆ̀ = (~̀ −
~̀

min)/(~̀max − ~̀
min) − 0.5 is a scaled label vector, ~̀max and ~̀

min are vectors of the maxi-
mum and minimum values of each label in the training set, and σ(z) = 1/ (1 + e−z) is the
“sigmoid” activation function. The weights, w and w̃, and biases, b and b̃, parameterize the
neural network; these are the free parameters that are adjusted during training.

In order to treat spectra with different line-of-sight velocities, all spectra are shifted to
rest-frame and linearly interpolated onto a common wavelength grid. Training the model
consists of minimizing a loss function, comparable to the χ2 statistic, that quantifies how
well the model can fit the training set. We use an L1 loss function, which minimizes the total
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absolute difference between fluxes predicted by the neural network and those in the training
set. We expect this to perform better than e.g. the χ2 statistic during the iterative cleaning
of the training set and re-training, since it is less sensitive to outliers. During training, we
mask all pixels with S/N < 50, bad or missing pixels, and pixels with poor sky subtraction.

We implement and train the neural network using the python package PyTorch. We tested
a wide range of network architectures, varying the network depth, width, and activation
function, with both data-driven and synthetic spectral models. We find that using a small
neural network and a large training set is the most straightforward way to prevent overfitting;
using a substantially larger network with more neurons or hidden layers causes the model to
reach lower losses (i.e., fit the training set better) but perform worse in cross-validation. We
verified that our spectral model performs equally well on the training and cross-validation
sets at fixed S/N, so it does not overfit the training set.

An advantage of using a neural network spectral model is that the neural network’s flexi-
bility makes it possible to model a wide range of stellar parameters in a single model, rather
than stitching together multiple models covering different regions of label space. However,
our basic approach of constructing a binary spectral model does not depend critically on use
of a neural network; a comparable binary model could likely be built from other forms of
single-star model (e.g., The Cannon).

3.7 Model selection
Because the single-star model is a special case of the binary model, it is always possible

to obtain a binary model that fits a data spectrum at least as well as does the best-fit
single-star model. As the binary model is more complex than the single-star model, with
three additional free parameters, one might expect to find a better fit, in a χ2 sense, with
the binary model even for targets which are true single stars. It is therefore necessary to
formulate a heuristic to determine “how much” better a fit with a binary model is required
to constitute reliable evidence in favor of the binary model.

The primary statistic used for model selection is the χ2 difference, ∆χ2 = χ2
single−χ2

binary,
which simply quantifies how much better a fit is obtained by the binary model. We also
calculate a second statistic, the “improvement fraction” fimp, to quantify how much better a
fit the binary model achieves relative to how different it is from the single-star model. The
basic idea here is that if a binary model spectrum is very different from the single-star model,
but only achieves a slightly better fit to the data, this constitutes weaker evidence in favor of
the binary model than a case with comparable ∆χ2 in which most of the difference between
the best-fit binary and single-star model goes toward improving the fit. The improvement
fraction is defined as

fimp =

∑{(∣∣∣f̂λ,single − f̂λ
∣∣∣− ∣∣∣f̂λ,binary − f̂λ

∣∣∣) /σ̂λ}∑{∣∣∣f̂λ,single − f̂λ,binary

∣∣∣ /σ̂λ} , (3.11)
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where f̂λ and σ̂λ are the normalized flux density and corresponding uncertainty, f̂λ,single and
f̂λ,binary are the best-fit normalized single-star and binary model spectra, and the sum is over
all wavelength pixels.

Our full acceptance criterion for preferring the binary model is given in Table 3.2. These
thresholds were motivated in part by the ∆χ2 and fimp values calculated for semi-empirical
binaries as described below, and in part by validation with the CMD (Figure 3.9). The
adopted thresholds are conservative, and prevent us from identifying some binaries whose
spectra can only be marginally better fit by a binary model; however, setting them to
substantially lower values causes the model to begin categorizing more targets near the main
sequence of the CMD as binaries, indicating a non-negligible false-positive rate. We have not
tuned the minimum fimp value for each ∆χ2; we set the intuitive requirement that a higher
fimp should be required for systems with a lower ∆χ2.

Different ∆χ2 thresholds are required for systems identified as potential close binaries,
because (a) for these systems, we fit multiple visit spectra simultaneously, and (b) we fit a
total of 5 different models (see Section 3.3.4). For these systems, we begin with a fiducial
threshold of ∆χ2 = 300×Nepochs for each increase in model complexity, where Nepochs is the
number of visit spectra fit simultaneously; i.e., we require χ2

single star − χ2
SB1 > 300Nepochs for

a system to be initially classified as an SB1; χ2
SB1 − χ2

SB2 > 300Nepochs for a system to be
initially classified as an SB2, etc. We then inspected the spectra of these targets individually
and reclassified suspected false positives (see Appendix 3.8).

We experimented with generating single-star spectra directly from the spectral model,
adding noise, and fitting them with both a binary and single-star model. This produces
typical ∆χ2 values of order unity, which is smaller than we find for the majority of APOGEE
targets. This occurs because spectra generated in this way can necessarily be perfectly fit by
the single-star spectral model, which is not necessarily the case for real spectra. We quantify
the ∆χ2 values expected for real binary spectra in the next section.

3.7.1 Tests with semi-empirical synthetic binary spectra

To assess the accuracy and potential systematics of our method, and to measure the
expected ∆χ2 values for true binaries with a particular mass ratio, we construct a library of
∼15,000 “semi-empirical” synthetic binary spectra. These are created by combining randomly
chosen pairs of APOGEE spectra in unnormalized space, following the method outlined in
Section 3.3.2. We then normalize and fit these spectra following the same procedure used
to fit real spectra. An advantage of constructing synthetic binary spectra by combining real
spectra (as opposed to simply generating binary spectra from the data-driven model) is that
this accounts for the possibility that the model does not capture all the variance in the real
spectra; this is likely the case for our model, which only contains 5 labels.

We require that the two stars used to construct a semi-empirical binary spectrum have
similar abundances (within 0.05 dex in [Fe/H] and [α/Fe]) and fall within 0.03 dex in log g
of a single isochrone. We only combine spectra consistent with being single stars; i.e., those
which cannot be significantly better-fit by a binary model than a single-star model according
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Figure 3.13 : Results of fitting semi-empirical binary spectra with single-star and binary models.
Semi-empirical binary spectra are created by adding together flux-calibrated APOGEE spectra
of two stars with similar abundances. At q . 0.8, most semi-empirical binary spectra can be
significantly better fit with a binary model, with ∆χ2 & 1000. The χ2 difference is nearly always
larger for systems with large velocity offsets; for systems with q ∼ 1, only binaries with ∆vlos &
10 km s−1 have ∆χ2 & 1000. At fixed q and ∆vlos, the typical ∆χ2 is larger for systems with cooler
primaries. Due to our single-star spectral model’s minimum Teff of 4200 K, low mass ratio systems
can only be modeled for hot primaries.
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∆χ2 = χ2
single − χ2

binaryminimum fimp

∆χ2 ≥ 3000 0
2500 ≤ ∆χ2 < 3000 0.05
2000 ≤ ∆χ2 < 2500 0.075
1500 ≤ ∆χ2 < 2000 0.1
1000 ≤ ∆χ2 < 1500 0.125
750 ≤ ∆χ2 < 1000 0.15
600 ≤ ∆χ2 < 750 0.175
450 ≤ ∆χ2 < 600 0.2
300 ≤ ∆χ2 < 450 0.225

Table 3.2 : Minimum ∆χ2 and improvement fraction fimp (Equation 3.11) for a target to be classified
as a binary. All systems with ∆χ2 < 300, and all systems falling below the minimum fimp for a
given ∆χ2, are classified as inconclusive; i.e., showing no strong evidence of binarity.

to the thresholds in Table 3.2. We assign realistic orbital parameters to each system following
E18, drawing orbital periods from the log-normal period distribution for solar-type stars from
Duchêne & Kraus (2013) and assuming random orbit orientations and phases. Results from
fitting these semi-empirical binary spectra are shown in Figures 3.13, 3.14, 3.15, and 3.16.

In Figure 3.13, we show the χ2 difference in favor of the binary model, ∆χ2 = χ2
single −

χ2
binary, as a function of the mass ratio q, line-of-sight velocity offset ∆vlos, and Teff of the

primary star. As expected, ∆χ2 is a strong function of q: most binaries with q . 0.75 have
∆χ2 > 1000, while most systems with q ∼ 1 have much lower ∆χ2. This is expected, because
the two stars in binaries with q ∼ 1 will have similar spectra, making the combined binary
spectrum indistinguishable from that of either single star unless there is a sizable velocity
offset between the two stars. The left panel of Figure 3.13 shows that ∆χ2 is also a strong
function of the velocity offset ∆vlos: at fixed q, systems in which the velocity offset is larger
nearly always have larger ∆χ2. In particular, most binaries with ∆vlos & 10 km s−1 have
∆χ2 > 1000, even at q ∼ 1. Indeed, among binaries with large velocity offsets, the typical
∆χ2 is largest for systems with q ∼ 1; in such systems, both stars contribute significantly to
the spectrum, and absorption lines are obviously split.

The right panel of Figure 3.13 shows the dependence of ∆χ2, and the range of mass
ratios to which our method is sensitive, on Teff of the primary. At fixed mass ratio and
∆v, the median ∆χ2 is slightly lower for hot stars (Teff > 6000 K), particularly for systems
with q ∼ 1 and large ∆v. This occurs because lines are on average weaker and more
rotationally broadened in hot stars, reducing the information content of the spectrum. This
panel also shows that, due to the minimum Teff of 4200 K of the single-star spectral model,
the minimum mass ratio that can be modeled varies with Teff of the primary. This means
that our completeness is higher for hot stars than for cool stars.

To determine whether our binary model fit has converged on the true globally optimal
model rather than a local χ2 minimum, we check whether the χ2 value of the best-fit binary



3.7. MODEL SELECTION 66

0.2 0.0 0.2 0.4 0.6 0.8 1.0
fimp

0

1

2

3

4

5

6

lo
g( χ2 si

n
gl

e
−
χ

2 b
in

ar
y

) suspected
binaries

inconclusive

0.4 0.5 0.6 0.7 0.8 0.9 1.0
q=m2/m1

0.0

0.2

0.4

0.6

0.8

1.0

co
m

pl
et

en
es

s

Figure 3.14 : Results for fitting semi-empirical synthetic binary spectra. Left panel shows the
χ2 difference and improvement fraction (Equation 3.11); systems passing the adopted acceptance
criterion for a binary candidate to be considered legitimate are plotted in red. Right panel shows
the resulting completeness function; i.e., the fraction of semi-empirical binary systems at a given q
that are successfully identified as binaries.

model is at least as low as that corresponding to the binary model with the true labels of the
system. We find that our fit converges on the globally optimal solution for ∼99% of all semi-
empirical binaries. About half of the systems in which the fit converges on a local minimum
are binaries with q ∼ 1 in which the velocity assignments of the primary and secondary star
are switched; in these cases, the derived stellar labels are still reasonably accurate.

In Figure 3.14, we show how our adopted model selection threshold translates to the range
of mass ratios to which the model is sensitive. In the left panel, we plot the distribution
of semi-empirical binaries in ∆χ2 − fimp space. ∆χ2 and fimp are correlated: most systems
whose spectrum can be significantly better fit by a binary model (high ∆χ2) also have high
fimp. In the right panel, we plot the fraction of semi-empirical binaries at a given mass ratio
that pass our adopted model selection criteria to be considered reliable binary candidates. As
expected, this “completeness” function is a strong function of mass ratio. Most binaries with
0.55 . q . 0.75 have spectra that are sufficiently different from any single-star model that
they can be unambiguously identified as binaries; at higher mass ratios, the spectra of the two
component stars become similar, so only the ∼ 20% of binaries with ∆vlos & 10 km s−1 can
be detected. At sufficiently low mass ratios, the secondary contributes a negligible fraction
of the total light.

We emphasize that this completeness function does not represent our global completeness
function for all binaries, for two reasons. First, the population of binaries in our semi-
empirical library is not statistically representative of the Galactic binary population: because
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Figure 3.15 : χ2 differences between best-fit single and binary models. Black histogram shows
suspected single stars from which semi-empirical binary spectra are constructed. Solid (dotted) red
histogram shows semi-empirical binary spectra which pass (fail) the ∆χ2 and fimp binary acceptance
criterion.

our single-star spectral model cannot model stars with Teff < 4200 K, we cannot currently
model low mass ratio binaries in which the primary is cool, as the secondary will have
Teff < 4200 K (see Section 3.3.2). Second, we have made no attempt to model the APOGEE
selection function, which would complicate the distribution of Teff at a given q. For the
particular set of semi-empirical binaries analyzed here, ∼ 50% of all binary systems pass the
model selection threshold to be characterized as binaries. However, this is not representative
of the global sensitivity of our model, since we make no attempt to use a realistic distribution
of mass ratios in the semi-empirical library: the distribution of mass ratios in our semi-
empirical binary library is skewed toward q = 1, which is precisely the regime in which the
model performs poorly.

In Figure 3.15, we compare the distribution of ∆χ2 values for the suspected single stars
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used in constructing the semi-empirical binary library to those for semi-empirical synthetic
binary spectra. Systems for which 0 < ∆χ2 < 1 are assigned log ∆χ2 = 0 on this plot;
each histogram is normalized separately. The median ∆χ2 is ∼50 for single stars, ∼200 for
semi-empirical binaries that fail the detection criteria to be considered reliable binaries, and
∼2600 for semi-empirical binaries that pass the threshold to be considered reliable. There
is some overlap in the distribution of χ2 values for single stars and semi-empirical binaries,
since for systems with small ∆vlos, the binary model in principle transitions smoothly to
the single-star model both as q → 1 and q → 0. However, for binaries with favorable mass
ratios, the typical ∆χ2 is more than an order of magnitude greater than for single stars.

Cross validation

In Figure 3.16, we compare the best-fit labels for all semi-empirical binaries that pass the
binary detection threshold to the true labels used in constructing the semi-empirical binary
spectra. We set the “true” abundance for each binary as the average of the abundances of
the two single-stars, which we required to be within 0.05 dex for [Fe/H] and [α/Fe]. Teff and
log g refer to the primary. These semi-empirical binaries were not used to train the spectral
model, so this experiment constitutes cross validation of the binary spectral model. In each
panel, we indicate the median signed error (bias) and absolute error (scatter) in the best-fit
label. Overall, this experiment reveals that labels inferred from fitting our binary model
are reasonably precise: the true and best-fit labels fall near the one-to-one line, with small
scatter. The only label for which this is not obviously true is vmacro,2; this occurs primarily
because only hot stars have vmacro & 10 km s−1, so only the few binaries in which both stars
are hot have non-negligible vmacro,2.

The median error in the best-fit q for the semi-empirical binaries is 0.021, which is smaller
than the median difference of 0.048 between qdyn and qspec found for real binaries in Figure 3.4.
This is not unexpected, because (a) qdyn also has nonzero uncertainty, and (b) “qtrue” for the
semi-empirical binaries is calculated with the same isochrones used in the model from which
qfit is obtained. That is, the median difference of 0.021 does not account for uncertainties in
the isochrones; the larger difference of 0.048 does, because qdyn is independent of isochrones.

We emphasize that while Figure 3.16 shows our derived stellar labels to be precise, this
does not guarantee that they are accurate. The reason for this is that the uncertainties in stel-
lar parameters obtained from spectral fitting are often dominated by systematic uncertainties
in the model, which enter primarily from errors in the “ground truth” labels of the training
and validation sets, and are not accounted for in cross-validation. The cross-validation errors
therefore are reasonable estimates of the precision of the model, but represent lower limits
on the absolute uncertainties.

3.8 False positives
As discussed above, there are some targets for which our fitting and model selection for-

mally prefers a binary model but visual inspection of the spectrum reveals that the evidence
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Figure 3.16 : Label recovery diagnostic for semi-empirical binary spectra that pass our ∆χ2 and
fimp threshold to be considered real detections. For each label `i, inset text indicates the median
error, med(|`i,fit − `i, true|), and bias, med(`i, fit − `i, true).
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Figure 3.17 : Spectra of two stars flagged as candidate binaries in our initial fitting that are likely
false positives. Top: Nearly featureless spectrum of a hot (Teff ≈ 7000 K), rotationally broadened
star. The main difference between the single-star and binary model (which has q = 1 and ∆vlos =

40 km s−1) is that the binary model produces slightly broader lines. This target is an APOGEE
telluric standard. Bottom: Although the binary model (with q = 1 and ∆vlos = 25 km s−1) is
formally preferred, it has many marginally split lines, marked with arrows, which are not present
in the data spectrum. This target is a young star in an embedded cluster.

in favor of the binary model is weak and a single-star model should likely be preferred. After
visually inspecting all ∼ 3300 targets for which our model selection thresholds preferred a
model other than a single star, we flagged ∼ 300 targets as probable false-positives. The
vast majority of such cases are hot stars (Teff & 6500 K) exhibiting significant rotational
broadening.

In Figure 3.17, we show example spectra of two stars flagged as false positives. The top
panel shows the spectrum of a hot, rotating star. Such spectra are less informative than
spectra of cooler stars with less rotational broadening: most metallic lines are intrinsically
weaker, since more species are ionized at higher Teff , and the profiles of individual lines
are smeared out due to rotation. Although the binary model is formally preferred, with
∆χ2 ∼ 1000, it does not obviously fit the profiles of individual lines better than the single-
star model. Indeed, the main difference between the binary and single-star models is that
the binary model produces slightly wider blended lines.

Most of the stars we flag as false positives have spectra similar to this target and large
vmacro. There is in principle no reason to expect the method model to generically fail for
such targets; the most likely explanation is that our 5-label single-star spectral model is
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not sufficiently complex to fully characterize the results of rotation. More than half of
these targets are APOGEE telluric standard stars, which are selected to be used for telluric
correction because they have nearly featureless spectra. Because hot, rotationally-broadened
stars constitute only a small fraction of our initial sample, we simply visually inspected
and removed questionable targets by hand. A straightforward method for automating this
procedure in future work would be to remove all telluric standards and/or targets for which
a Fourier transform of the spectrum reveals little power at high frequencies.

The bottom panel of Figure 3.17 shows the spectrum of a false-positive candidate that
is not featureless. The binary spectral model achieves a fit that is formally better than the
single-star model (∆χ2 ∼ 1500), but unlike the single-star model, the binary model spectrum
has noticeably split lines as a result of the velocity offset between the two components.
Because the data spectrum does not show such split line profiles, the binary model fit is
likely erroneous and formally preferred only because it produces wider and shallower lines
than the single-star model can accommodate. False-positives like this one are rare; only a
few dozen spectra are identified in which the binary model produces a less realistic line profile
than the single-star model despite achieving a formally better fit. A significant fraction of
these are targets in young embedded clusters. Young stars often exhibit spectral features
that are uncommon in older stars, such as chromospheric emission and increased rotation
in cooler stars. Our method is more susceptible to incorrectly preferring a binary model if
the spectrum cannot be well accommodated by the single-star model; this is likely the case
for these targets. In future studies, such false-positives can potentially be eliminated by
using a more complex spectral model for single stars and ensuring that different varieties of
“unusual” spectra are represented in the training set.

Besides reclassifying stars flagged as false-positives upon visual inspection to be single
stars, we also reclassified some of the potential close binary targets (Section 3.3.4) from one
multiple-star class to another. For example, we reclassified SB2 systems for which the best-
fit velocities of the primary and secondary fall on a one-to-one line with positive slope as
SB1s, and SB3s with broad lines that were not obviously better bit by the SB3 model than
the SB2 model as SB2s. We attempted to be conservative in classifying systems as triples;
i.e., some triple systems are likely miscategorized as binaries, but all systems classified as
triples are unambiguously better fit by the SB3 model than the SB2 model.

3.9 Orbit fitting convergence
Sparse radial velocity data can often be well-fit by several families of qualitatively dif-

ferent orbits, particularly when there are few radial velocity measurements and/or phase
coverage is poor (e.g. Price-Whelan et al. 2017). Due to the complex multi-modal structure
of the posterior in these cases, standard MCMC techniques fail to fully explore the orbital
parameter space in finite time, meaning that there is no guarantee that our orbit-fitting pro-
cedure will converge on the true solution or that the orbital parameter uncertainties found
by emcee are reliable. In the left panel of Figure 3.18, we show an example APOGEE binary
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in which the radial velocity data are not sufficiently constraining to yield an unambiguous
orbital solution: (at least) two qualitatively different orbital solutions can fit the measured
radial velocities.

To assess the number of epochs and phase + velocity coverage required for reliable orbit
constraints, we generated synthetic radial velocity measurements for a population of synthetic
binaries (as described in E18) with 4 < Nepochs < 12 and phase coverage 0.3 < UNVN <
1 and fit them using the same procedure described in Section 3.4.4. To ensure realistic
survey cadence, we drew observation times from observations of real APOGEE stars. We
added Gaussian noise to the synthetic data with σRV = 0.2 km s−1, which is typical for our
observations.

The results of this experiment are shown in Figure 3.18. We label each fit successful if
the true orbital parameters fall within the marginalized 90% credibility regions returned by
MCMC fitting. Although it is in principle possible to constrain the orbit of an SB2 with as
few as 5 radial velocity epochs,14 reliable constraints for can only be obtained from realistic
data with & 7 epochs. At fixed number of epochs, constraints are more reliable for systems
with larger UNVN , as expected. Based on the results of this experiment, we only attempt
to fit orbits to systems with Nepochs ≥ 7 and UNVN ≥ 0.5. All but two of the targets for
which we provide an orbital solution have UNVN > 0.6; we caution that orbital parameters
for systems with lower UNVN may be less reliable.

We stress that the orbit of an SB2 can in general be constrained with fewer radial velocity
measurements than that of an SB1. The basic reason for this is that even with only a few
epochs, having velocity measurements for both stars pins down the system velocity γ exactly.
Therefore, many of the families of orbits with different combinations of P, e, and γ that
would be permitted if radial velocity measurements were only available for the primary can
be excluded when the secondary is detected.

Other works have used more conservative limits to determine whether the available ve-
locity data were sufficient to constrain a binary orbit. For example, Halbwachs et al. (2017b)
require Nepochs ≥ 11. The true probability of convergence on a local minimum depends on
the radial velocity uncertainties, number of epochs, and the uniformity of observational cov-
erage. This experiment indicates that Nepochs ≥ 7 is usually sufficient for radial velocity data
similar to what we obtain in this work, but the probability of convergence on an erroneous
orbital solution is, of course, lower for systems with a larger number of epochs.

3.10 Data products
Here we make available the best-fit labels for all targets identified as multiple-star systems.

We also provide a list of targets consistent with being single stars in order to make it possible
to reconstruct our initial sample of 20,142 targets.

14Although 7 parameters are required to parameterize a two-body orbit, the system velocity γ and mass
ratio q = K1/K2 can be obtained “for free:” if the radial velocities of the primary and secondary fall on a
line vHelio,2 = αvHelio,1 + β, the system velocity is γ = β/ (1− α) and the mass ratio is q = −1/α.
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Figure 3.18 : Left: Example APOGEE binary system with 8 epochs in which the available velocity
data is not sufficient to fully constrain the orbit. Top and bottom panels show two qualitatively
different orbital solutions which can both fit the measured velocity data (identical in the two panels)
well. Because the measured velocities are sparse, the posterior is multimodal. We do not provide
orbital solutions for such systems. Right: Results of fitting synthetic radial velocity data for an SB2
population with realistic orbital parameters and survey cadence. The “success rate” indicates the
fraction of systems in each cell of Nepoch − UNVN space for which our fitting procedure converged
on the true orbit from which RV measurements were generated. Orbits can usually be reliably
constrained for Nepochs & 7, though systems with poor phase coverage can still converge on incorrect
orbital solutions. We only attempt to fit orbits for systems with Nepochs ≥ 7 and UNVN > 0.5.
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APOGEE ID
2M00000233+1452324
2M00001701+7052395
2M00003475+5723259
2M00004578+5654428

· · ·

Table 3.3 : List of targets identified as single stars. This table is available in its entirety (with 16834
rows) in machine-readable form.

APOGEE ID Teff log g [Fe/H] [Mg/Fe] vmacro ∆vmax

[K] [dex] [dex] [dex] [km s−1] [km s−1]
2M00010204+0049037 6008 4.26 -0.41 0.00 6.48 2.93
2M00031962-0017109 6157 4.23 -0.23 -0.06 42.95 65.17
2M00041803+1519505 5941 4.92 0.15 0.17 2.21 0.78
2M00041859+7104111 4921 4.36 0.13 -0.01 5.64 20.26

· · · · · · · · · · · · · · · · · · · · ·

Table 3.4 : Best-fit labels for targets identified as SB1s. ∆vmax is the maximum change in radial
velocity between visits. This table is available in its entirety (with parameters for 663 systems) in
machine-readable form.

In Table 3.3, we list all targets consistent with being single stars; labels for these sys-
tems will be released by Ting et al. (in prep). Labels for targets identified as SB1s are
listed in Table 3.4; these are obtained by simultaneously fitting visit spectra. Labels for
targets classified as binaries are listed in Table 3.5. As described in Section 3.3.3, these
are obtained by simultaneously fitting visit spectra for potential close binaries, which are
primarily RV-variable systems, and by fitting the combined spectrum for all other systems.
For close binaries in which the orbital configuration changes substantially between visits, we
list dynamical mass ratios and center-of-mass velocities. Labels for targets classified as SB2s
in which the gravitational effects of an with an unseen third component can be detected
are listed in Table 3.6; these are obtained by simultaneously fitting visit spectra. Labels for
targets identified as triples in which all three components contribute to the spectrum are
listed in Table 3.7; these are obtained by simultaneously fitting visit spectra.
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APOGEE ID Teff log g [Fe/H] [Mg/Fe] qspec vmacro,1 vmacro,2 qdyn γ
[K] [dex] [dex] [dex] [km s−1] [km s−1] [km s−1]

2M00003968+5722329 4517 4.62 0.05 -0.04 0.88 3.09 8.19 — —
2M00012717+0128193 5048 4.51 0.07 0.06 0.75 0.00 14.57 — —
2M00023179+1521164 4589 4.37 -0.20 0.10 0.99 19.29 16.15 0.84 -0.92
2M00024073+6354560 5664 4.26 0.18 -0.01 0.67 1.42 3.34 — —

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 3.5 : Best-fit labels for targets identified as binaries in which both components contribute
to the spectrum. Teff and log g refer to the primary. For the 623 targets in which the orbital
configuration changes substantially between visits, we provide the dynamical mass ratios, qdyn, and
center-of-mass velocity, γ. This table is available in its entirety (with parameters for 2423 systems)
in machine-readable form.

APOGEE ID Teff log g [Fe/H] [Mg/Fe] qspec vmacro,1 vmacro,2

[K] [dex] [dex] [dex] [km s−1] [km s−1]
2M00103470+0043200 4200 4.50 -0.21 0.21 1.00 19.98 5.40
2M00265252+6359169 6416 4.56 -0.04 -0.29 0.85 10.34 14.38
2M00310678+8508494 5742 4.44 0.01 -0.07 0.62 4.91 3.11
2M01194897+8532293 5272 4.54 -0.08 0.03 0.90 2.68 4.80

· · · · · · · · · · · · · · · · · · · · · · · ·

Table 3.6 : Best-fit labels for targets in which two components contribute to the spectrum but the
gravitational effects a third components can be detected (e.g. Figure 3.8). Teff and log g refer to the
primary. This table is available in its entirety (with parameters for 108 systems) in machine-readable
form.

APOGEE ID Teff log g [Fe/H] [Mg/Fe] q2 q3 vmacro,1 vmacro,2 vmacro,3

[K] [dex] [dex] [dex] [km s−1] [km s−1] [km s−1]
2M00182859+6207248 5398 4.33 0.22 -0.20 1.00 1.00 8.69 4.33 0.19
2M00285967+5931138 4655 4.20 -0.22 0.08 0.94 0.94 1.39 30.07 36.15
2M00470197+1751448 6386 4.07 -0.47 0.03 0.89 0.88 19.03 3.50 4.46
2M01103850+6655525 4756 4.60 0.07 -0.00 0.92 0.81 3.71 1.34 16.35

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 3.7 : Best-fit labels for SB3s, targets in which three components contribute to the spectrum
(e.g. Figure 3.6). Teff and log g refer to the primary. This table is available in its entirety (with
parameters for 114 systems) in machine-readable form.
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Chapter 4

Imprints of white dwarf recoil in the
separation distribution of Gaia wide
binaries

An earlier version of this article was previously published in El-Badry, K. and Rix, H.-W.,
2018, MNRAS, 480, 4884.

4.1 abstract
We construct from Gaia DR2 an extensive and very pure (. 0.2% contamination) catalog

of wide binaries containing main-sequence (MS) and white dwarf (WD) components within
200 pc of the Sun. The public catalog contains, after removal of clusters and resolved higher-
order multiples, > 50,000 MS/MS, > 3,000 WD/MS, and nearly 400 WD/WD binaries with
projected separations of 50 . s/AU < 50, 000. Accounting for incompleteness and selection
effects, we model the separation distribution of each class of binaries as a broken power-law,
revealing marked differences between the three populations. The separation distribution of
MS/MS systems is nearly consistent with a single power-law of slope −1.6 over at least 500 <
s/AU < 50, 000, with marginal steepening at s > 10, 000AU. In contrast, the separation
distributions of WD/MS and WD/WD binaries show distinct breaks at ∼ 3,000AU and
∼ 1,500AU, respectively: they are flatter than the MS/MS distribution at small separations
and steeper at large separations. Using binary population synthesis models, we show that
these breaks are unlikely to be caused by external factors but can be explained if the WDs
incur a kick of ∼ 0.75 km s−1 during their formation, presumably due to asymmetric mass
loss. The data rule out typical kick velocities above 2 km s−1. Our results imply that most
wide binaries with separations exceeding a few thousand AU become unbound during post-
MS evolution.
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4.2 Introduction
Wide binaries (semimajor axes a & 100AU) are thought to form when initially unbound

pairs of young stars become bound as their birth cluster dissolves (van Albada 1968; Moeckel
& Bate 2010; Kouwenhoven et al. 2010; Moeckel & Clarke 2011). The binding energies of wide
binaries are low, comparable to the kinetic energy of a star moving with velocity 1 km s−1.
Their orbits are therefore fragile, and can be easily disrupted. Such disruption can occur
either due to external gravitational perturbations or due to internal kicks originating from
one of the component stars.

Much of the interest in wide binaries to date has stemmed from the prospect of using
their separation distribution as a probe of the Galactic gravitation potential (e.g. Bahcall
et al. 1985; Chanamé & Gould 2004; Yoo et al. 2004; Quinn et al. 2009; Monroy-Rodríguez &
Allen 2014; Correa-Otto et al. 2017; Coronado et al. 2018). Inhomogeneities in the potential
due to stars, molecular clouds, black holes, or other dark objects accelerate the disruption
of wide binaries (Retterer & King 1982; Bahcall et al. 1985; Carr & Sakellariadou 1999;
Yoo et al. 2004). The wide binary separation distribution therefore places constraints on
the number and mass distribution of gravitating objects in the disk and halo, and on the
dynamical history of the Galaxy.

Because wide binaries can also potentially be disrupted by internal processes during post-
main sequence evolution, the separation distribution of binaries containing one or more stellar
remnants contains information about the late stages of stellar evolution. Wide binaries can
be easily become unbound or “ionized” by ∼km s−1 velocity kicks. As a consequence, the
separation distributions of binaries containing a white dwarf places strong constraints on
the occurrence of velocity kicks in dying stars. Such kicks have be theoretically predicted
to occur as a result of anisotropic and/or non-adiabatic mass loss, but evidence for their
existence is largely circumstantial (Fellhauer et al. 2003; Davis et al. 2008; Izzard et al.
2010). Constraining their occurrence is one of the primary goals of this work.

Historically, searches for wide binaries have identified pairs of stars with close angular
separations and/or similar proper motions. Because the orbital timescales of wide binaries
are too long for changes in positions of the component stars to be observed in real time, such
studies rely on probabilistic arguments to identify pairs likely to be bound.

In the absence of astrometric data, the wide binary population can be studied statis-
tically through the stellar angular two-point correlation function (Bahcall & Soneira 1981;
Garnavich 1988; Gould et al. 1995; Sesar et al. 2008; Longhitano & Binggeli 2010; Dhital
et al. 2015): although it is not possible to determine conclusively whether a given pair is a
gravitationally bound binary or a chance alignment, the chance alignment rate can be esti-
mated for stochastically distributed stars (e.g. Lépine & Bongiorno 2007a; Sesar et al. 2008;
Dhital et al. 2015), allowing the number of true binaries to be estimated after the expected
number of chance alignments at a given angular separation is subtracted.

Wide binaries can be identified more reliably with the aid of proper motion data, which
can eliminate interloper pairs that appear close on the sky but have significantly different
projected angular velocities. Astrometric searches for wide binaries have primarily targeted
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stars with large proper motions (Luyten 1971, 1979b,a, 1988; Wasserman & Weinberg 1991;
Poveda et al. 1994; Silvestri et al. 2002; Salim & Gould 2003; Chanamé & Gould 2004;
Makarov et al. 2008; Dhital et al. 2010) in order to limit contamination from interlopers that
most commonly are distant stars with correspondingly small proper motions.

The purity of a sample of wide binaries can be further improved with the inclusion of
parallaxes (e.g. Close et al. 1990; Shaya & Olling 2011; Andrews et al. 2017; Hollands et al.
2018) or radial velocities (e.g. Latham et al. 1984; Close et al. 1990; Price-Whelan et al.
2017; Andrews et al. 2018a,b). Until recently, most wide binary searches that incorporated
parallaxes were restricted to modest samples of stars in the immediate solar neighborhood
(d . 50 pc). However, the recent Gaia data releases (Gaia Collaboration et al. 2016, 2018a)
have dramatically expanded the sample of stars for which precise parallaxes and proper
motions are available, making it possible to assemble large statistical samples of binaries
with a � 1 % contamination rate.

In this paper, we use Gaia DR2 data to produce a catalog of wide binaries within 200
pc with very high (∼99.8%) purity. We divide binaries into main sequence–main sequence
(MS/MS), white dwarf–main sequence (WD/MS), and white dwarf–white dwarf (WD/WD)
pairs and study the separation distributions of each class of binaries separately. This sample
is not volume complete. But the completeness as a function of angular separation can be
well characterized (Appendix 4.7), allowing us to correct for observational biases and infer
the intrinsic separation distributions.

Because white dwarf binaries are faint and rare, past studies of the WD/WD binary
population have been limited to samples of a few dozen objects (e.g. Greenstein 1986; Sion
et al. 1991; Andrews et al. 2012; Toonen et al. 2017). A few hundred candidate WD/MS
binaries have been identified in common proper motion catalogs (Smith 1997; Silvestri et al.
2002; Chanamé & Gould 2004; Gould & Chanamé 2004), but a systematic study of their
separation distribution has yet to be carried out. Gaia astrometry makes it possible to
assemble a large, homogenous catalog of WD/MS and WD/WD binaries for the first time.

The remainder of this paper is organized as follows. In Section 4.3, we describe our
strategy for selecting candidate binaries. Section 4.4 describes our method for extracting
the intrinsic separation distributions, which are then presented in Section 4.4.3. These data
reveal clear differences in the separation distributions of MS/MS, WD/MS and WD/WD
binaries. In Section 4.5, we compare our results to the predictions of binary population
synthesis models and use the separation distribution of binaries containing a white dwarf to
constrain the occurrence of kicks during white dwarf birth. We summarize our findings in
Section 4.6. Appendices 4.7–4.10 provide more information on the details of our model. The
catalog of our high-confidence binaries is described in Appendix 4.11.

4.3 Methods
For each star in Gaia DR2 within 200 pc that passes our quality cuts (Section 4.3.1), we

consider as potential binary companions all neighboring stars that pass similar quality cuts
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and lie within an aperture of projected radius 5×104 AU. We further require the two stars in
a pair to have parallaxes and proper motions consistent with a gravitationally bound binary,
as described in Section 4.3.2. Finally, we remove binaries that are members of clusters,
moving groups, and higher-order multiples (Section 4.3.3).

We limit our search to projected separations s < 5×104 AU ≈ 0.25 pc, largely because the
contamination rate from background sources (e.g. Lépine & Bongiorno 2007a; Andrews et al.
2017) and unbound associations (e.g. Caballero 2009; Oh et al. 2017a; Dhital et al. 2015)
grows rapidly at larger separations. Disruption from external gravitational perturbations is
expected to have significant effects only at the largest separations in our catalog (s & 0.1 pc;
Retterer & King 1982; Close et al. 1990; Weinberg et al. 1987; Jiang & Tremaine 2010),
so works aiming to use wide binaries as dynamical probes typically focus on binaries with
larger separations. As we show in Section 4.5.3, modest velocity kicks during white dwarf
formation are expected to ionize binaries with substantially smaller separations.

4.3.1 General quality cuts

We require that both members of a candidate binary pair have a five-parameter astromet-
ric solution and a successful measurement of the GBP−GRP color. Following Lindegren et al.
(2018) and Gaia Collaboration et al. (2018b), we require both stars to have low astrometric
excess noise, satisfying

√
χ2/(ν ′ − 5) < 1.2 ×max(1, exp(−0.2(G − 19.5)), where χ2 and ν ′

are respectively referred to as astrometric_chi2_al and astrometric_n_good_obs_al in
the Gaia archive.

We further require the photometry for both stars to be relatively uncontaminated from
nearby sources. Because GBP and GRP magnitudes are calculated by integrating over low-
resolution spectra, which are more dispersed than the G-band point spread function, the
degree of contamination from nearby sources can be assessed by comparing the total BP
and RP flux to the G-band flux (Evans et al. 2018). We require both stars to satisfy
1.0 + 0.015(GBP −GRP)2 < phot_bp_rp_excess_factor < 1.3 + 0.06(GBP −GRP)2.

Finally, we require both stars to have high-SNR photometry: < 2% flux uncertainties
in the G-band and < 5% (< 10%) uncertainties in BP and RP flux, for the primary and
companion, respectively. These cuts remove a substantial number of spurious sources that
fall in unphysical regions on the color-magnitude diagram, as well as some real sources (see
Gaia Collaboration et al. 2018b).

In particular, for pairs with small parallaxes and proper motions – distant and slowly
moving stars – it is essentially impossible to conclusively rule out the possibility that a given
pair is a chance alignment of unassociated stars. Any search for wide binaries must therefore
make compromises between completeness and purity. This work aims to construct a sample
with high purity. This is essential for a reliable measurement of the separation distribution
at large separations, where true binaries are rare and contaminants can easily dominate.
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Figure 4.1 : Joint distribution of projected physical separation and distance for all 55,128 binaries in
our final sample. Marginalized histograms are on a logarithmic scale, with a dynamic range of 100
to 10,000 counts. Given our photometric and astrometric quality cuts (Section 4.3.1), the typical
angular resolution limit of our sample is ∼2 arcsec. This prevents the detection of close binaries at
large distances.
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Figure 4.2 : On-the-sky physical velocity difference between members of candidate binaries, ∆V⊥,
versus their projected physical separation, s = θ × d. We select binary candidates as objects that
fall below the dashed line within 3σ (Equation 4.7); i.e., the difference in their proper motions is
small enough to be consistent with a bound Keplerian orbit. Bottom panel shows the subsample
with d < 100pc.
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4.3.2 Initial Search

We search for companions around stars that are nearby and have precise parallaxes,
parallax > 5 and parallax_over_error > 20. We then search a circle corresponding to a
projected radius 5× 104 AU around each such target, i.e, within an angular separation

θ

arcsec
≤ 50× $

mas
, (4.1)

where $ is the parallax of the target. We also require potential companions to have a
reasonably precise parallax, satisfying parallax_over_error > 5. At large distances, one
expects the parallaxes of two actual binary components to be essentially identical. However,
for the nearest wide binaries, the orbital separation can be a non-negligible fraction of the
distance to the binary. Give the high precision of Gaia parallaxes for nearby stars, this can
cause individual stars in a true binary to have inconsistent parallaxes. For most orbits and
orientations, the line-of-sight difference in distance between the two stars in a binary satisfies
∆d < 2s. We reject pairs that do not satisfy this constraint within 3σ, i.e.,

∆d− 2s ≤ 3σ∆d, (4.2)

where in suitable units, ∆d = |1/$1 − 1/$2|, and σ∆d = (σ2
$,1/$

4
1 + σ2

$,2/$
4
1)1/2. Here $i

and σ$,i represent the parallax of a target and its standard error. The distribution of sources
in our final binary catalog in distance–projected separation space is shown in Figure 4.1. The
Gaia resolution limit leaves a clear imprint in the distribution, preventing close binaries from
being detected at large distances.1 At large separations, the catalog is dominated by the
most distant binaries due to the larger volume at large distances.

We require the difference in proper motion of the two stars to be consistent with a bound
Keplerian orbit. For a circular orbit of total mass 5M� and semi-major axis a, this translates
to a maximum projected physical velocity difference of

∆Vorbit

km s−1
≤ 2.1

( a

103AU

)−1/2

. (4.3)

In terms of observables, we translate this to

∆µorbit

mas yr−1
≤ 0.44

( $

mas

)3/2
(

θ

arcsec

)−1/2

, (4.4)

where we have used the fact that ∆V⊥ [km s−1] = 4.74×∆µ [mas yr−1] /$ [mas]. We do not
attempt to account for covariance between parallax and proper motion errors. Equation 4.4
implicitly assumes that the projected separation s = θ × d, where d is the distance to a

1Gaia DR2 is reasonably complete for separations θ & 0.7 arcsec. However, the majority of pairs with
θ < 2 arcsec lack GBP − GBP colors (see Figure 9 of Arenou et al. 2018a) and are therefore excluded from
our catalog.
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binary, is equal to the true semimajor axis a. This assumption does not hold in detail due
to projection effects and non-circular orbits. But we show in Appendix 4.8 that it holds to
within a factor of two in a large majority of cases. Equation 4.3 also does not hold in general
for non-circular orbits, as the orbital velocity exceeds

√
GM/a near periapse. However, in

this case the projected separation is also smaller than a, such that Equation 4.4 holds in the
vast majority of cases for randomly oriented orbits (see also Andrews et al. 2017).

We require that all candidate binaries have proper motion differences within 3σ of the
maximum velocity difference expected for a system of total mass 5M� with circular orbits.
For each pair, we determine the scalar proper motion difference,

∆µ =
[
(µ∗α,1 − µ∗α,2)2 + (µδ,1 − µδ,2)2

]1/2
, (4.5)

where µ∗α,i ≡ µα,i cos δi. The corresponding uncertainty σ∆µ is given by standard error
propagation:

σ∆µ =
1

∆µ

[(
σ2
µ∗α,1

+ σ2
µ∗α,2

)
∆µ2

α +
(
σ2
µδ,1

+ σ2
µδ,2

)
∆µ2

δ

]1/2

, (4.6)

where ∆µ2
α = (µ∗α,1−µ∗α,2)2 and ∆µ2

δ = (µδ,1−µδ,2)2. We reject pairs with σ∆µ ≥ 1.5 mas yr−1

. We then require

∆µ ≤ ∆µorbit + 3σ∆µ, (4.7)

where ∆µorbit is given by Equation 4.4.
The results of this selection are shown in Figure 4.2. The dashed line shows the fiducial

cut from Equation 4.4. Pairs with significant proper motion uncertainties scatter above
it; this scatter is smaller in the 100 pc sample, where typical proper motion and parallax
uncertainties are smaller. To limit contamination from pairs with large uncertainties, we
impose an absolute cut of ∆µ ≤ 2×∆µorbit.

Our selection method compares the on-sky projected proper motions of two stars, rather
than the 3d space velocities. At large angular separations, this can potentially lead to a
bias in the obtained binary population, because projection effects cause stars with the same
3d space velocity to have different proper motions (e.g. Oh et al. 2017a). We performed
simulations to assess the magnitude of any possible biases introduced by this affect. Assum-
ing a uniform spatial distribution of binaries and randomly oriented orbits, we found that
within 200 pc, 0.7% of the widest binaries (s > 104 AU) are expect to have their projected
physical velocity difference ∆V⊥ inflated by more than 0.25 km s−1 due to projection effects,
such that they run a substantial risk of not passing the proper motion cut of Equation 4.7.
Only binaries with large angular separations (θ � 10 arcmin) are affected; so the effect is
even smaller for binaries with smaller separations. Within 100 pc, the same fraction affected
is 3%.
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Figure 4.3 : Top: On-sky distribution of ∼60,000 wide, comoving pairs within 200 pc returned by
our initial search. Overdensities correspond to stars in open clusters and moving groups, which meet
our initial search criteria but are primarily not genuine bound binaries. Bottom: cleaned sample
of binaries after ∼5,000 pairs in clusters, moving groups, and resolved higher-order multiples have
been removed.
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Figure 4.4 : Color-magnitude diagram for our final sample of wide binaries. We overplot a solar
metallicity PARSEC isochrone and a 0.6M�, hydrogen atmosphere white dwarf cooling sequence.
The vast majority of objects in our catalog are main sequence stars and white dwarfs. In each
binary, the “primary” is the object with the larger photometrically-inferred mass (Section 4.3.4).
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4.3.3 Removing clusters, moving groups, and higher-order multi-
ples

The on-sky distribution of objects returned by our initial search is shown in the upper
panel of Figure 4.3. A number of obvious spatial overdensities are apparent. Most of these
can be identified with known open clusters and moving groups within 200 pc. Members of
these groups formally satisfy our selection criteria, but most are presumably not genuinely
self-bound binaries. Indeed, once-bound associations can remain comoving for several Galac-
tic dynamical times as they slowly dissolve (e.g. Jiang & Tremaine 2010; Shaya & Olling
2011; Oelkers et al. 2017; Oh et al. 2017a), so a substantial number of unbound moving
groups are predicted to exist. We clean our sample of such objects through two cuts.

For each candidate binary pair, we count the number of nearby neighbor pairs in position–
parallax–proper motion space. We define nearby neighbor pairs as those within 1 degree on
the sky, ±3 mas yr−1 in both proper motion coordinates, and ±5 pc in 1/$. We remove from
our sample pairs for which this search finds more than 5 neighbors. This cut, which was
chosen through trial and error, removes ∼2000 candidate binaries, all of which are in one of
the overdensities visible in Figure 4.3.

We also repeat the search described in Section 4.3.2 but replace the proper motion cut
from Equation 4.4 with an absolute cut on ∆µ corresponding to a physical velocity difference
of 2 km s−1. In a majority of cases, this search returns either the same pair found in our
initial search, or no results. However, in some cases, it returns many – in some cases, dozens
– of additional companions to a given object within 50,000 AU. We discard from our sample
all pairs for which this search returns more than one companion to either member of a pair.
In addition to selecting the majority of cluster and moving group members selected by the
first cut, this cut removes ∼2,000 triples and resolved higher-order multiples in the field. We
defer further analysis of these systems to future work.

The bottom panel of Figure 4.3 shows the effects of these cuts on our sample. Obvious
clusters and associations are removed. Although not shown in the figure, we also find that
obvious structure in proper motion space is removed. Our final sample contains 55,128
binaries. It does not contain any resolved higher-order multiples; i.e., if a star is a member
of more than one pair, we remove both pairs.

4.3.4 Summary of the binary catalog

A color-magnitude diagram of all objects in our catalog is shown in Figure 4.4. We assign
the parallax of the brighter star to the companion when calculating absolute magnitudes.
We define objects with MG < 2.75(GBP − GRP) + 5.75 as “main sequence” stars2, where
MG = G + 5 log ($/mas)− 10. Objects with MG > 3.25(GBP−GRP) + 9.63 are classified as
white dwarfs. We do not attempt to correct for extinction, which is minor within 200 pc. 46
objects that passed our other quality cuts were not classified as either main sequence stars or
white dwarfs (i.e., they fell between the main sequence and white dwarf cooling sequence);

2i.e., our “main sequence” category serves only to exclude white dwarfs; it includes a few giants.
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we discarded the binary candidates containing these objects. Clear sequences of spatially
unresolved binaries (e.g. El-Badry et al. 2018g; Widmark et al. 2018) are apparent above
the main sequence for both primaries and secondaries, indicating that quite a number of the
wide binaries are really hierarchical systems containing unresolved closer binaries.

Given the color-magnitude diagram, we estimate the mass of each star photometrically
by interpolating on a grid of isochrones. We use PARSEC isochrones (Bressan et al. 2012) for
main sequence stars and cooling tracks for carbon-oxygen cores with hydrogen atmospheres
(Holberg & Bergeron 2006; Kowalski & Saumon 2006; Tremblay et al. 2011; Bergeron et al.
2011), in both cases using the revised DR2 filters. These mass estimates are crude and are
not included in the public catalog, as we do not make any attempt to correct for unresolved
binarity, extinction, or white dwarf spectral types, but in most cases they are expected to be
accurate within 0.1 M�, which is sufficient for characterizing the catalog’s binary population
in broad strokes.

In Figure 4.5, we show distributions of several observables and inferred properties for each
class of binaries. The top panels show the mass of the primary (which we always define to be
the more massive star) and the mass ratio. For white dwarfs, the mass refers to the current
mass (as opposed to the initial mass), so in some cases, the white dwarf in a WD/MS binary
is the secondary. Most main sequence stars in the sample have masses 0.3 . M/M� . 1.3;
most white dwarfs have 0.5 .M/M� . 0.8. The mass ratio distribution for MS/MS binaries
is nearly uniform over 0.25 . q . 1 but exhibits an excess of systems with q ∼ 1, consistent
with previous results (e.g. Söderhjelm 2007). The dearth of low-mass stars and low-mass
ratio binaries can largely be attributed to incompleteness; the fall-off at low masses and mass
ratios is less pronounced within 50 pc, where the catalog is more complete.

The middle left panel shows the distribution of apparent magnitude difference, ∆G =
|G1−G2|, for binaries in each category. In most of the WD/WD binaries, the two stars have
similar apparent magnitude (median ∆G = 0.66 mag). The typical magnitude difference
is significantly higher in WD/MS binaries (median ∆G = 3.50 mag) and MS/MS binaries
(median ∆G = 2.05 mag). This is important for reliable determination of the intrinsic sepa-
ration distribution, because the Gaia sensitivity to a companion at fixed angular separation
varies with magnitude difference (see Appendix 4.7). Corrections for incompleteness at small
separations thus affect the three populations differently.

Figure 4.5 also shows the distributions of distance (middle right) and angular separation
(bottom left). Because white dwarfs are intrinsically fainter than most main sequence stars,
those in our catalog are on average nearer. The median distances for WD/WD, WD/MS,
and MS/MS binaries in our catalog are 102 pc, 127 pc, and 147 pc, respectively. The typical
angular separation for all binaries is of order 10 arcsec. Due to incompleteness at small
angular separations (Figure 4.1), there are essentially no binaries with angular separations
of less than 1.5 arcsec. A few of the nearest binaries have separations of tens of arcminutes,
but these are rare; the 99th percentile separation for all binaries in our catalog is 4 arcmin.

Our requirement that stars in the catalog have precise parallaxes, proper motions, and
photometry causes it to contain primarily relatively bright stars (lower right). The median
apparent magnitude of MS stars in the catalog is G = 14.5; for white dwarfs, it is G = 18.4.
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Figure 4.5 : Distributions of primary mass, mass ratio, magnitude difference, distance, angular
separation, and apparent magnitude for the 51,668 MS/MS, 3,085 WD/MS, and 375 WD/WD wide
binaries in our catalog. Most of the main-sequence stars have masses 0.3 . M/M� . 1.3; most
of the white dwarfs have 0.5 . M/M� . 0.8. The mass ratio distribution is roughly uniform
for MS/MS binaries. The typical brightness contrast between the two stars in a binary is largest
for MS/MS binaries and smallest for WD/WD binaries. Dashed line in the middle right panel
shows the scaling expected for a uniform spatial distribution of binaries, illustrating the effects of
incompleteness at large distances. The typical angular separation is ∼ 10 arcsec, with the widest
binaries in the catalog having separations of tens of arcminutes.
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Figure 4.6 : Left: Heliocentric velocities for the 7.5% of MS/MS binaries in our catalog for which
Gaia provides a precise radial velocity for both components. Radial velocities were not used in our
selection of candidate binaries but provide a useful check on the contamination rate: in genuine
binaries, the RVs of the two stars should agree within a few km s−1 (modulo radial velocity uncer-
tainties of up to 3 km s−1). Right: Most binaries in our catalog with substantially different radial
velocities have larger-than-average radial velocity errors; the fraction of binaries with inconsistent
radial velocities does not vary much with orbital separation. We estimate the contamination rate
to be . 0.2%.
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Typical parallax and proper motion uncertainties are consequently also higher for white
dwarfs.

Higher-order multiples

Although we have removed resolved higher-order multiples from the catalog, it is still
expected to contain a substantial number of hierarchical systems in which one or both of
the resolved components is really a spatially unresolved close binary. Unresolved binaries
with mass ratios q & 0.5 scatter above the main sequence in a color-magnitude diagram (e.g.
Hurley & Tout 1998; Widmark et al. 2018). For solar-type stars, the “binary sequence” formed
by such objects barely overlaps with the single-star main sequence, making it straightforward
to estimate the binary fraction from the fraction of objects above the main sequence.

The unresolved binary sequence is most cleanly separated from the single-star main
sequence at 1 . (GBP − GRP) . 2 (Figure 4.4), so we use this region of the CMD to
estimate the unresolved binary fraction for MS/MS binaries in our catalog. Main-sequences
stars in this region of the CMD have masses 0.5 . m/M� . 1. For 1 < (GBP − GRP) < 2,
the line MG = 2.8 (GBP −GRP) + 2.4 divides the binary and single-star main sequences. We
find that ≈ 10.5% of primaries and secondaries with 1 < (GBP − GRP) < 2 fall above this
line and likely have an unresolved companion with q & 0.5. Assuming a uniform mass-ratio
distribution for unresolved binaries, this implies that ∼ 20% of main-sequence primaries and
secondaries have an unresolved main-sequence companion, such that at least one component
has an unresolved main-sequence companion in ∼ 36% of the wide binaries in our catalog.
Although they cannot be easily identified in an optical CMD, we also estimate that a few
percent of the main-sequence components in the catalog have an unresolved white dwarf
companion (Willems & Kolb 2004).

4.3.5 Contamination Rate

Our search for wide binaries in Gaia DR2 uses only parallaxes, spatial coordinates, and
proper motions to determine whether two stars are part of a binary system. We do not
use Gaia radial velocities (RVs) because they are not available for most of our candidates.
However, reliable RVs are available for both stars in 7.5% of the MS/MS binaries in our
sample. We use these to validate our catalog and assess the contamination rate. RVs provide
an independent check on whether candidate pairs are true binaries or chance alignments; in
the latter case, one would expect the RVs of the two stars to be significantly different, with
a typical RV difference comparable to the local velocity dispersion of the disk (e.g. Andrews
et al. 2018a).

We consider all pairs in which a Gaia RV with uncertainty σRV < 3 km s−1 is available
for both stars and a Gaia-RVS spectrum was obtained for at least 3 transits (see Sartoretti
et al. 2018; Katz et al. 2018); σRV is calculated from the scatter in the RVs measured for
individual transits. This cut eliminates most objects with bad RVs and yields 3813 pairs.
All pairs with RVs are MS/MS, as DR2 does not include RVs for white dwarfs. In the left
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panel of Figure 4.6, we compare the RVs of the two stars in each binary. As expected for
true wide binaries, the vast majority of points lie within a few km s−1 of the one-to-one line.
A few binaries do scatter far from the one-to-one line; these are potential contaminants.

In the right panel of Figure 4.6, we show the absolute RV difference, ∆RV, as a function of
physical separation and the uncertainty in the RV difference. The majority of binaries with
larger-than-average ∆RV also have larger-than-average σ∆RV, suggesting that they are true
binaries. There are 12 binaries with RV differences in excess of 10 km s−1. Most of these also
have relatively large σ∆RV, such that their velocities are marginally consistent with a bound
orbit. 6 binaries have ∆RV > 15 km s−1. We regard these as likely contaminants, assuming
no catastrophic failure in the RVs. This translates to a contamination rate of ∼0.15%.
We note that one might expect the contamination rate for the full sample to be somewhat
higher than that in the subsample of pairs with RVs, because the stars with measured RVs
are brighter on average and thus have smaller-than-average parallax and proper motion
uncertainties.

We obtain an independent estimate of the contamination rate by calculating the number
of random alignment pairs expected to pass our selection criteria. We estimate this by
applying the same selection criteria and quality cuts to the mock Gaia DR2 catalog presented
in Rybizki et al. (2018), which implements the Besançon model of stellar population synthesis
(Robin et al. 2003) and populates the Galactic distribution function using Galaxia (Sharma
et al. 2011), assuming a similar selection function and uncertainty model to Gaia DR2. The
mock catalog does not contain any true binaries, so any pairs that pass our selection criteria
in the mock catalog are chance alignments. It also does not contain any white dwarfs, so we
restrict our comparison to the MS/MS pairs.

Executing the same search on the mock catalog, we find 51 pairs. Given a total sample of
∼50,000 MS/MS binaries, this implies a contamination rate of 0.1%. The majority (85%) of
chance alignments found in the mock catalog have s > 104 AU. This is expected for chance
alignments simply because there is more area at large separations than at small separations.
Intriguingly, the binary candidates in our catalog that we identify as likely contaminants
because they have large ∆RV are not strongly concentrated at large s (Figure 4.6). This
suggests that some of the pairs with large ∆RV may in fact be genuine binaries in which one
of the objects has an unreliable radial velocity. One possibility is that some of these objects
are in fact hierarchical triples in which one component is a close, unresolved binary. Most
of these systems should be eliminated by the cut of σRV < 3 km s−1, but a few could escape
detection if the different transits occurred at a similar orbital phase. In any case, these tests
imply that our sample retains high purity at large separations; for example, the contaminant
population estimated from the Rybizki et al. (2018) mock catalog implies a contamination
rate of less than 1% even at s > 104 AU.
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Figure 4.7 : Normalized distributions of projected physical separation for MS/MS binaries (black),
WD/MS binaries (blue) and WD/WD binaries (gold). Top panel shows full sample within 200 pc;
bottom panel shows objects within 100 pc. The dearth of systems with small separations reflects the
fact that binaries with small angular separations are spatially unresolved, leading to incompleteness
in our sample at log(s/AU) . 3 in the top panel and log(s/AU) . 2.7 in the bottom panel (dashed
lines; see Appendix 4.7). The separation distribution of MS/MS binaries falls off as dN/ds ∼ s−1.6

(where Opik’s law is dN/ds ∼ s−1), at least for s & 500AU. At large separations, the separation
distributions of WD/WD and WD/MS binaries fall off more sharply than that of MS/MS binaries.
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4.4 Separation distributions
Figure 4.7 shows raw distributions of the projected physical separation, s = θ × (1/$),

for the three classes of binaries. The scarcity of binaries with small physical separations is
due to incompleteness at small angular separations, where binaries are unresolved. At larger
s, all binaries are resolved, so the slope of the raw separation distribution is representative of
that of the intrinsic distribution. As we show in Appendix 4.7, within 200 pc the separation
distribution is complete for ∆G < 5 (84% of all binaries) at s > 1000AU and is complete for
all ∆G at s > 2000AU. Considering only the 100 pc sample moves the completeness limit
toward smaller separations by a factor of two.

Incompleteness effects become severe at s � 1000AU (full sample) and s � 500AU
(100 pc sample), so we caution against overinterpretation of the raw distributions in this
regime. Incompleteness affects the separation distribution of each class of binaries in dif-
ferent ways because the have different characteristic magnitude differences (see Figure 4.5
and Appendix 4.7). We describe how incompleteness at small orbital separations can be
accounted for in Section 4.4.1.

The raw separation distribution of MS/MS binaries in Figure 4.7 clearly continues to rise
toward smaller separations, to at least 500 AU. Although the distribution appears to flatten
somewhat at smaller separations, it remains unambiguously steeper than Opik’s law (i.e., a
flat distribution of log(s)). This result is in conflict with the findings of some previous works
(e.g. Poveda & Allen 2004; Chanamé & Gould 2004; Lépine & Bongiorno 2007a; Sesar et al.
2008), which have found the binary separation distribution to be consistent with Opik’s law
out to a break at ∼3000AU, with steeper fall-off beginning only at larger separations. The
existence of such a break has been interpreted theoretically as a consequence of dynamical
effects within the clusters in which wide binaries are formed (Gould & Eastman 2006). Our
distribution does not display any strong break. We deem it unlikely that this discrepancy
is the result of unaccounted-for systematics in our catalog, as any incompleteness would be
expected to introduce biases against smaller separations.

4.4.1 Inferring intrinsic separation distributions

Due to our quality cuts and the Gaia completeness limit, our catalog is not volume-
complete: it is missing both spatially unresolved close binaries, and binaries in which either
star is too faint to pass our quality cuts or be detected in the first place. Correcting for
incompleteness due to unresolved binaries with small separations is important, as it leads
to biases in the separation distribution. On the other hand, incompleteness arising from the
fact that faint stars are not detected is only a problem if it preferentially affects stars with
small or large separations.

Whether a companion is detected at fixed angular separation is a function primarily of
its apparent magnitude, of the magnitude contrast between the two stars, and of the angular
separation of the two stars. At sufficiently large angular separations, a binary will be detected
as long as both stars are bright enough to be detected independently. However, at small
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angular separations, the presence of a bright star makes it harder to detect a faint companion
at fixed angular separation (see also Ziegler et al. 2018). This is especially true given the
requirement that both stars be free from contamination from nearby sources (Section 4.3.1).

We characterize the probability of a companion’s detection at an angular separation θ
with a function f∆G(θ) which depends on ∆G, the G-band magnitude difference between
the two stars. We empirically constrain f∆G(θ) as described in Appendix 4.7. As one might
expect, f∆G(θ) drops rapidly from 1 at large angular separations3 to 0 at small separations;
the characteristic angular scale at which the drop occurs increases with ∆G.

We consider an intrinsic separation distribution with functional form φ(s|~m) = dP/ds,
where ~m is a set of free model parameters to be fit. Given a sample of binaries with projected
separations si, the likelihood function is

L = p ({si} |~m) =
∏
i

p (si|~m) , (4.8)

where p(si|~m) is the probability of detecting the i-th binary given model parameters ~m. It
can be calculated for each binary as

p (si|~m) =
φ (si|~m)∫ smax

smin
φ (s|~m) f∆G (s|di) ds

. (4.9)

pi is proportional to the probability that a binary with distance di, magnitude difference ∆G,
and physical separation si is found in the catalog, given an intrinsic separation distribution
with parameters ~m. f∆G is explicitly a function of θ, the angular separation of the two stars
(Equation 4.15); it is given by f∆G (θ) = f∆G (s/di). Here smin and smax are the minimum
and maximum separations of the distribution from which the observed si are drawn, and
φ(s|~m) is normalized such that

∫ smax

smin
φ (s|~m) ds = 1. We note that Equation 4.9 does not

account for the observational uncertainties in si or di. These are expected to be small, as all
the binaries in our sample have parallax errors smaller than 5%.

The denominator in Equation 4.9 represents the fraction of predicted binaries that could
have been detected at a distance di and magnitude difference ∆G; it accounts for the fact
that at large distances and large ∆G, only binaries with large s can be detected. We set
smax = 5 × 104 AU. The choice of smin has no effect on our results, since the integrand in
Equation 4.9 goes to 0 at small separations. We set smin = 10−2 AU.

Whether a binary is detected also depends on the apparent magnitude of both stars, as
systems in which either star is too faint will not be detected. This has no effect on the inferred
separation distribution as long as the undetected binaries have the same intrinsic separation
distribution – for a particular class of binaries – as those that are detected. This implies that
the separation distribution for each class of binaries must be independent of both distance
and the absolute magnitude of the two stars. That φ(s) does not vary significantly with
distance is reasonable within our 200 pc sample, but the separation distribution is expected

3I.e., f∆G(θ) is normalized relative to the fraction of companions that would be detected at asymptotically
large separations, not the absolute number of companions that exist.
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vary somewhat with the mass (and thus, absolute magnitude) of the two stars (e.g. Duchêne
& Kraus 2013; Moe & Di Stefano 2017a). Our inferred separation distribution should thus
be viewed as a marginalization over the mass distributions in our sample, which consists
primarily of solar and sub-solar mass stars (0.3 .M/M� . 1.3; Figure 4.5).

4.4.2 Fitting the separation distribution

We model the separation distribution as a broken power-law:

φ (s) = φ0

{
s−γ1 , s ≤ sbreak

sγ2−γ1

break × s−γ2 , s > sbreak

, (4.10)

where φ0 is a normalization constant. The break separation, sbreak, where the distribution
transitions from φ(s) ∼ s−γ1 to φ(s) ∼ s−γ2 , is left free, so we fit for three parameters
~m = (γ1, γ2, log(sbreak/AU)). We experimented with using a more flexible parameterization
with more than one break in the power law but found that it did not improve the fit much.
For a power-law parameterization of φ(s) and our adopted fitting function for f∆G(θ) (Equa-
tion 4.15), the integral in Equation 4.9 has an analytic solution in terms of hypergeometric
functions.

We sample the posterior distribution for each class of binaries using emcee (Foreman-
Mackey et al. 2013b). We use broad, flat priors on all model parameters.

4.4.3 Fitting results

We show the constraints obtained for the separation distribution of each class of binaries
in Figure 4.8. Marginalized parameter constraints are visualized using corner (Foreman-
Mackey 2016). Remarkably, these distributions reveal for the first time distinct differences
in the separation distributions of wide MS/MS, WD/MS, and WD/WD binaries.

These differences are already hinted at in the raw distributions, but become more obvious
in the inferred intrinsic distributions, which account for the different angular completeness
of the three classes of binaries. Consistent with the apparent trends in Figure 4.7, the
separation distribution of WD/WD binaries is almost flat out to s ∼ 1, 500AU, after which
it drops off sharply. The distribution for WD/MS binaries also exhibits a break, but at
slightly larger separations. In contrast, the MS/MS separation distribution is best fit by a
model with a weak break, formally at log(s/AU) = 3.8. But the change in power law slope
is modest (see also the raw distribution in Figure 4.7), and comparably good fits for MS/MS
binaries can be obtained with a single power law model.

Although there is no strong evidence for a turnover in the separation distributions at
small separations in our sample (Figure 4.7), we emphasize that the true uncertainty in
the separation distribution at small s is larger than the shaded regions in the top panel
of Figure 4.8, particularly for MS/MS binaries. As Figures 4.1 and 4.2 show, our catalog
contains few binaries with small physical separations. The large number of binaries with
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Figure 4.8 : Top: Broken power-law fits to the intrinsic separation distributions of MS/MS,
WD/MS, and WD/WD binaries, after accounting for incompleteness and selection effects. Bot-
tom: 68 and 95% probability contours and marginalized probability distributions for parameters
of broken power-law fits. The separation distributions of binaries containing a white dwarf are
significantly different from the MS/MS binary separation distribution: they fall off more steeply at
large separations and exhibit a stronger break at intermediate separations.
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separations 2.5 . log(s/AU) . 3.5 set tight constraints on the power-law slope in that
range; the slopes of all posterior samples remain tightly constrained at smaller separations
because only a single break in the power law is allowed by the model. We find that we
obtain comparably good fits to the separation distribution of MS/MS binaries when we
fit a lognormal separation distribution that is allowed to flatten at log(s/AU) . 2.5 (see
Appendix 4.9). Moreover, when we fit a power law model with an extra break at log(s/AU) =
2.5, constraints on the slope at smaller separations become weaker. On the other hand, a
steepening in the slope of the separation distributions of WD/MS and WD/WD binaries at
intermediate separations is a robust prediction; it is evident in the raw distributions and is
recovered for all models that allow a change in the slope of the distribution.

In Figure 4.9, we divide the MS/MS sample by mass at a primary mass of 0.8M� and
show separately the inferred separation distributions of MS/MS binaries with higher and
lower masses. This cut results in roughly equal numbers of binaries in the two subsamples
and is comparable to the minimum mass of a single star that can evolve to become a white
dwarf within the age of the Universe.

Consistent with previous work (e.g. Duchêne & Kraus 2013; Moe & Di Stefano 2017a),
we find that the separation distribution for MS/MS binaries varies somewhat with mass: the
distribution for lower-mass systems falls off more strongly at large separations than that for
higher-mass systems. Because the progenitors of white dwarfs in our catalog would fall in the
higher-mass subsample, variation in the separation distribution with mass should be consid-
ered in interpreting the separation distributions of WD/MS and WD/WD binaries. We note
that the trend of higher-mass binaries having wider separation distributions is the opposite
of what would be expected if the different separation distributions for binaries containing a
white dwarf were due only to the higher average masses of white dwarf progenitors.

In Appendix 4.9, we verify that our approach yields comparable constraints on the sepa-
ration distribution when we fit the full catalog and when we fit only the 100 pc sample, which
has a different raw separation distribution (Figure 4.7), completeness, and typical parallax
and proper motion uncertainties. This suggest that our inference does a reasonable job of
extracting the intrinsic separation distribution without large biases.

4.5 Theoretical interpretation
Our discovery that the separation distribution of WD/WD (WD/MS) binaries exhibits

a break at ∼ 1500AU (∼ 3000AU) that is not seen in the distribution of MS/MS binaries
calls for an explanation, which we develop now.

4.5.1 Semi-analytic binary evolution models

The wide binary separation distribution depends on the intrinsic initial separation dis-
tribution, on internal processes that can change the separation of a binary after it forms
(e.g. mass transfer, tidal effects, mass loss, or velocity kicks), and on disruption due to
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Figure 4.10 : Full semi-major axis distributions predicted by our binary population synthesis sim-
ulations. Shaded region shows the range of separations probed by our data. Top panel shows the
raw population produced by BSE; middle panel shows the results of accounting for the disruption
of wide binaries due to external gravitational perturbations (Equation 4.11. In the bottom panel, a
modest velocity kick is applied when white dwarfs form due to asymmetric mass loss during post-MS
evolution (Section 4.5.3); this unbinds most binaries containing a proto-WD with log(a/AU) & 3.5

and also expands the orbits of binaries with smaller initial separations.
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gravitational perturbations from other objects. To quantitatively assess the effects of these
processes on the observable separation distributions, we carry out Monte Carlo simulations
of a large population of synthetic binaries using the semi-analytic model BSE (“binary star
evolution”; Hurley et al. 2002b).

We generate 5×105 binaries assuming a constant star formation history over 12 Gyr. We
draw masses from a Kroupa (2001a) initial mass function between 0.3M� and 8M� and mass
ratios from a uniform distribution over [0, 1], roughly consistent with the photometrically-
inferred mass distributions for our sample (Figure 4.5). For systems where the primary
mass is greater than 0.75M�, we draw orbital periods from a lognormal distribution with
log(P/day) = 4.8 and σlog(P/day) = 2.3 (Duquennoy & Mayor 1991); for systems with lower
mass primaries, we draw from a second lognormal with log(P/day) = 4.1 and σlog(P/day) = 1.3
(Fischer & Marcy 1992). Eccentricities are drawn from a uniform distribution over [0, 0.95]
(Duchêne & Kraus 2013). We use BSE to evolve all binaries from the zero-age main sequence
to present day. We then divide the simulated binary population into MS/MS, WD/MS,
WD/WD, and other classes of binaries according to the evolutionary stage reported by BSE.
We do not include hierarchical systems containing unresolved binaries in these simulations.

The top panel of Figure 4.10 shows the semi-major axis distribution predicted for the
three classes of binaries we consider, assuming default model parameters (see Table 3 of
Hurley et al. 2002b). The distribution for MS/MS binaries is similar to the initial input
distribution. The separation distributions of binaries containing a white dwarf are bimodal,
with a shortage of systems with a ∼ 1AU. Binaries with initial separations a . 10AU
interact when their component stars leave the main sequence, and common envelope effects
shrink many of their orbits to a � 1AU (e.g. Paczynski 1976; Tout & Hall 1991; Ivanova
et al. 2013).

At larger separations, the components of systems with modest eccentricities do not in-
teract, and the orbital separation grows when each components leaves the main sequence. In
this case – if mass loss is adiabatic and isotropic – the orbit gradually expands such that the
quantity (m1 + m2)a is conserved (Jeans 1924; Rahoma et al. 2009). This leads the orbits
of typical MS/MS binaries to expand by a factor of ∼2 on average when one star becomes
a white dwarf, and by another factor of ∼2 when the second star becomes a white dwarf.
These processes make the separation distributions of binaries containing a white dwarf flatter
than the MS/MS binary separation distribution in the range of separations probed by our
data (top panel of Figure 4.10).

However, we have not yet accounted for processes that can disrupt the orbits of wide
binaries.

4.5.2 Disruption from external perturbations

All wide binaries can be disrupted over time through gravitational interactions with
inhomogeneities in the Galactic gravitational potential caused by stars, molecular clouds,
or other dark objects (Heggie 1975; Bahcall et al. 1985; Weinberg et al. 1987; Mallada &
Fernandez 2001). For the most weakly bound binaries, the large-scale Galactic tidal field
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can also accelerate disruption (Jiang & Tremaine 2010).
For the range of separations probed by our data (a . 0.25 pc), the effects of the Galactic

tidal field are negligible. Disruption due to interactions with stars and other objects can be
modeled as a diffusive process described by the Fokker-Planck equation. Following Andrews
et al. (2012), we estimate the timescale t1/2 at which a binary of semi-major axis a has a
50% survival probability as

t1/2 (a) ≈ 29 Gyr
( a

104 AU

)−1

. (4.11)

This approximation is based on calculations by Weinberg et al. (1987). We apply this ap-
proximation to our Monte Carlo binary population statistically: the probability of a binary’s
survival to the present day is set as

Psurvive (a, age) = 2−age/t1/2(a). (4.12)

In practice, this prescription causes about half of all binaries with a ∼ 5× 104 AU to be dis-
rupted. Most binaries with a > 105 AU are disrupted, while most with a < 104 AU survive.
The middle panel of Figure 4.10 shows the effects of disruption on the observable binary
population. Disruption affects WD/MS and WD/WD binaries slightly more than MS/MS
binaries at fixed semi-major axis because they are older on average, but the difference is
minor. This means that the separation distribution of MS/MS binaries can straightfor-
wardly constrain the efficiency of disruption from external perturbations, without potential
complications due to the effects of mass loss on binary orbits.

4.5.3 White dwarf recoil

We now assess how internal perturbations arising from kicks to the component stars
during post-main sequence evolution are expected to change the observable separation dis-
tribution.

In the calculations described above, BSE assumes that mass loss on the AGB occurs
isotropically and quasisteadily over long timescales, such that mass loss leads to gradual
orbital expansion. This result will break down if mass loss occurs asymmetrically or too
rapidly. If mass loss is asymmetric, the proto-white dwarf will recoil to conserve momentum,
resulting in a velocity “kick” near the end of the TP-AGB phase or as it forms a planetary
nebula. Given typical wind velocities of (10− 20) km s−1, even 1% deviations from spherical
symmetry in the integrated mass-loss history can produce a recoil velocity of order a km s−1

(Fellhauer et al. 2003). Resolved observations of AGB stars find tentative evidence for
anisotropic mass loss (Zijlstra 2006; Blasius et al. 2012; Höfner & Olofsson 2018), and some
asymmetric mass loss is likely required to explain the observed rotation rates of single white
dwarfs (Spruit 1998).

Although the proposed kicks are too weak to detect directly in observations of proto-
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white dwarfs in planetary nebulae (PNe),4 several circumstantial lines of evidence hint at
their existence. First, the number of observed white dwarfs in nearby open clusters is lower
than is predicted by stellar evolution models for a standard initial mass function, initial
mass-age relation, and initial-final mass relation (e.g. Weidemann 1977; Kalirai et al. 2001);
this could be explained if the typical kick speed is comparable to the clusters’ few–km s−1

escape velocity (Fellhauer et al. 2003). Second, the velocity dispersion of young white dwarfs
in globular clusters has been found to be higher than predicted in the absence of natal kicks
(Davis et al. 2006, 2008; Calamida et al. 2008). A typical kick velocity of order 1-2 km s−1

could explain these observations (Heyl 2007, 2008b,a), and could also play a role in staving
off core collapse in globular clusters (Heyl & Penrice 2009; Fregeau et al. 2009). Few–
km s−1 velocity kicks during white dwarf formation could also explain the nonzero observed
eccentricities of binaries containing a white dwarf and a barium star (Izzard et al. 2010),
as well as the high occurrence rate of dusty disks around young white dwarfs (Stone et al.
2015).

The separation distributions of WD/MS and WD/WD binaries provide a sensitive probe
of white dwarf kicks, as even a small kick is sufficient to unbind a weakly-bound wide binary.
For example, for two stars of equal mass M in a circular orbit, the kick velocity required to
unbind the system is

vkick =

(
GM

a

)1/2

= 0.5 km s−1

(
M

M�

)1/2 ( a

103.5 AU

)−1/2

. (4.13)

To test explicitly how kicks during white dwarf formation change the separation distri-
butions of WD/MS and WD/WD binaries, we modify BSE to include a velocity kick when a
white dwarf forms. We use the same algorithm BSE uses for (stronger) kicks following SNe
explosions. When a white dwarf is formed, we draw a kick velocity magnitude, vkick, from a
Maxwellian distribution characterized by a free parameter, σkick:

P (vkick) =

√
2

π

v2
kick

σ3
kick

exp

[
− v2

kick

2σ2
kick

]
; (4.14)

this distribution peaks at vkick =
√

2σkick. The kick is applied instantaneously in a random
direction and occurs at a random time in the orbit. Following a kick, BSE self-consistently
solves for the new eccentricity and semi-major axis, as described in Appendix A1 of Hurley
et al. (2002b). If a kick unbinds the system, we consider the binary disrupted and discard it
from our subsequent analysis.

In the bottom panel of Figure 4.10, we show the effects of applying kicks during WD
formation with σkick = 0.5 km s−1 to the same Monte Carlo synthetic binary population.
The main observable effect of including kicks is that the number of very wide WD/MS
and WD/WD binaries is reduced, such that their distributions fall off more steeply at

4Within the typical lifetimes of PNe are ∼ 104 yrs (Badenes et al. 2015), a 1 km s−1 kick will transport
the WD a distance of order 0.01 pc, which is small compared to the pc-scale size of PNe.
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log(a/AU) & 3 than the distribution of MS/MS binaries. The disrupted WD/MS and
WD/WD binaries with large a are partially replaced by widened binaries with smaller initial
separations. But because the orbits of the widest binaries are so weakly bound, only a small
number of binaries have initial separations such that their orbits are significantly expanded
without being fully disrupted. As a result, even weak kicks with σkick = 0.5 km s−1 cause
the separation distributions of WD/WD and WD/MS binaries to fall off significantly more
steeply at large a than the MS/MS distribution. For σkick = 0.5 km s−1, 21% of MS/WD
binaries and 33% of WD/WD binaries are disrupted. Kicks unbind a majority of WD/MS
binaries with initial separations log(ainit/AU) > 3.1 and a majority of WD/WD binaries
with log(ainit/AU) > 2.6.

Comparison with observational constraints

We now compare the separation distributions predicted by BSE to our constraints from
the Gaia 200 pc sample. The observational data constrain the distribution of projected sep-
arations, P (s), while BSE returns the distribution of intrinsic orbital semi-major axes, P (a).
To carry out a fair comparison between these distributions, we compute in Appendix 4.8 the
probability distribution, P (a/s), of the conversion factor between s and a by mock-observing
an ensemble of synthetic binary orbits along random lines of sight. For each binary evolved
by BSE, we divide the intrinsic a by a random draw from P (a/s).

The projected separation distributions predicted by BSE for different kick velocities are
shown in Figure 4.11. Of course, kicks during WD formation have no effect on the separation
distribution of MS/MS binaries. The observed constraints on the separation distribution of
MS/MS binaries are reasonably similar, though not identical, to the distribution produced
by BSE.

The separation distributions of WD/MS and WD/WD binaries appear most consis-
tent with the simulations with σkick = 0.5 km s−1, corresponding to a typical kick speed
of ∼ 0.75 km s−1. Simulations with no kicks produce separation distributions that drop off
significantly less steeply than the observational constraints. Conversely, stronger kicks cause
the separation distribution of the simulated binary population to drop off more steeply than
is observed. This does not rule out the possibility that such kicks occur for some white
dwarfs, but it suggests that they are not widespread.

4.6 Summary and Discussion
We have constructed a catalog of high-confidence wide binaries using astrometric data

from Gaia DR2. The catalog is publicly available and is described in Appendix 4.11. On
its basis we determined with high fidelity the physical separation distributions of MS/MS,
WD/MS, and WD/WD binaries over the separation range 1.5 . log(a/AU) . 4.7. We
discovered that these distributions differ among these types of binaries, and use these differ-
ences to constrain the occurrence of kicks during white dwarf formation. We summarize our
study below.
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Figure 4.11 : Comparison of our separation distribution constraints (shaded regions) to binary
population synthesis simulations (“BSE” ; lines). We compare the results predicted for simulations
in which mass loss in post-MS stars is isotropic and adiabatic (“no kicks”; solid lines) to simulations
in which a stochastic velocity kick is applied during white dwarf formation (see Section 4.5.3). The
separation distributions of WD/MS and WD/WD binaries are best matched by simulations with
σkick = 0.5 km s−1 (corresponding to a most common kick speed of ∼ 0.75 km s−1; see Equation 4.14);
simulations with no kicks or larger kick velocities produce substantially worse agreement with the
data. The separation distribution of MS/MS binaries (bottom) is independent of kicks but is also
reasonably well matched by the simulations.
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1. Sample selection: we require both members of a binary pair to have d < 200pc and have
positions, parallaxes, and proper motions consistent with a bound orbit (Figures 4.1
and 4.2). Members of open clusters, moving groups, and wide higher-order multiples are
excised from the catalog (Figure 4.3). We classify each component as a main sequence
star or a white dwarf using its location on a color-magnitude diagram (Figure 4.4).
The catalog contains ∼50,000 MS/MS binaries, ∼3000 WD/MS binaries, and ∼400
WD/WD binaries; the main sequence stars are a mix of solar-type stars and M-dwarfs
((0.3− 1.3)M�; Figure 4.5).

2. Purity and completeness: we estimate the contamination rate of the catalog by com-
paring the radial velocities of the components of candidate binaries (Figure 4.6) and
by measuring the chance alignment rate in a mock catalog (Section 4.3.5). Precise par-
allaxes for both components make it possible to achieve unprecedentedly high purity,
with an estimated contamination rate of order ∼0.2%.

The catalog is not volume complete. Incompleteness at small angular separations due to
blending is straightforward to characterize empirically (Appendix 4.7) and is accounted
for in our inference (Section 4.4.1). We do not attempt to correct for incompleteness
due to missing faint sources, as it does not lead to any obvious biases in the inferred
separation distribution.

3. Separation distributions: We infer the intrinsic separation distributions for each class
of binaries (Figure 4.8) from the raw distributions (Figure 4.7). We discovered that
the separation distributions of WD/MS and WD/WD binaries fall off more sharply
at large separations than the corresponding distribution for MS/MS binaries. The
break in the separation distribution occurs at smaller separations for WD/MS bina-
ries than for MS/MS binaries, and at even smaller separations for WD/WD binaries.
The log-separation distribution of MS/MS binaries continues to rise toward smaller
separations (i.e., it is steeper than Opik’s law) to at least s = 500AU (Figure 4.7).
We infer consistent separation distributions for the full sample and the 100 pc sample
(Appendix 4.9).

4. Constraints on white dwarf kicks: We use binary population synthesis simulations
to predict the separation distributions of each class of binaries given a reasonable
initial separation distribution and dynamical disruption rate (Figure 4.10). These
simulations fail to reproduce the observed separation distributions of WD/MS and
WD/WD binaries, producing too many binaries with wide separations (s & 5000AU).
When modest velocity kicks during white dwarf formation due to asymmetric mass loss
are included in the simulations (with typical velocities of ∼0.75 km s−1), they reproduce
the observed separation distributions much more closely (Figure 4.11). Ubiquituous
kicks with substantially larger kick velocities (vkick & 2 km s−1) can be ruled out, though
we cannot exclude the possibility that they occur in a fraction of systems.
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4.6.1 Discussion

Introducing a velocity kick during white dwarf formation is of course not the only way to
change the predicted separation distribution for binaries containing a white dwarf: one can
also change the input initial separation distribution or the prescription for disruption due to
external gravitational perturbations, both of which are uncertain. However, the nontrivial
differences between the separation distributions of MS/MS binaries and binaries containing
a white dwarf (Figure 4.8) calls for an additional disruption mechanism that affects only
binaries containing a white dwarf.

Toonen et al. (2017) also considered the possibility that wide binaries are disrupted during
white dwarf formation. Rather than modeling explicit natal kicks resulting from anisotropic
mass loss, they assumed that mass loss is isotropic but can occur non-adiabatically, on a
timescale that is short relative to the orbital timescale. In this case, wide binaries can be
unbound when a WD forms because there is not enough time for the orbit to adjust to
the reduced binding energy after mass loss (e.g. Savedoff 1966; Veras et al. 2011). Given
a typical AGB lifetime of 1Myr, one naively expects such effects to become important for
torbit � 1Myr, corresponding to a� 104 AU for solar-type stars.

Although Toonen et al. (2017) did not attempt to model the observed separation dis-
tribution, their calculations showed that rapid mass loss could unbind a fraction of white
dwarfs in binaries with ainit & 5000AU. The primary goal of their simulations was to test
whether sudden mass loss could explain the observed deficit of wide WD/WD binaries in
the immediate solar neighborhood (d < 20 pc, where the observed white dwarf population
is nearly complete) relative to the predictions of populations synthesis models. They found
that rapid mass loss would not unbind enough systems to explain the shortage of observed
WD/WD binaries, as only a small fraction of all binaries are wide enough to be disrupted.

We do not attempt to model the normalization of the white dwarf binary population in our
sample, because its absolute completeness is not well characterized. Dissolution arising from
rapid mass loss like that modeled by Toonen et al. (2017) could also be partially responsible
for the shortage of very wide WD/MS and WD/WD binaries in our sample. However, we
note that even if mass loss is instantaneous, it will not necessarily lead to disruption if it is
isotropic. For example, a circular orbit will only be disrupted by instantaneous isotropic mass
loss if the total mass of both stars decreases by more than 50% (Huang 1963), irrespective of
the initial separation. This means that equal-mass binaries with circular orbits will always
survive if only one star loses mass. For non-circular orbits, the probability of disruption
also depends on orbital phase, but the majority of binaries are expected to survive rapid,
isotropic mass loss if the total mass of the binary decreases by less than ∼70% (Savedoff
1966).

Our population synthesis models assume kicks occur instantaneously; i.e., on timescales
that are short compared to the orbital time. For the orbital separations we consider, this is
always a good approximation if asymmetric mass loss occurs during PNe formation, but it
can become problematic if deviations from spherically symmetric mass loss build gradually,
over the full extent of the AGB phase. Using direct N-body simulations of a range binaries



4.6. SUMMARY AND DISCUSSION 107

orbits, we find that a majority of wide binaries that are disrupted by instantaneous kicks
would also be disrupted if the same total velocity change were delivered through a gradual
acceleration over many orbital timescales. We thus remain agnostic of the timescale over
which anisotropic mass loss is likely to occur.

Irrespective of the details of the process responsible for ionizing binaries during post-
MS evolution, one might also expect the magnitude of kicks to vary with the mass of the
white dwarf, as the progenitors of massive white dwarfs lose a larger fraction of their mass
during white dwarf birth (e.g. El-Badry et al. 2018f). Splitting the WD/MS binaries in our
catalog by photometric white dwarf mass, we do not detect a significant difference between
the separation distributions of binaries with lower- and higher-mass white dwarfs. However,
the range of white dwarf masses in our catalog is not very large, and the photometric mass
estimates are subject to nontrivial uncertainties. Further investigation of any dependence on
the mass of the white dwarf and/or main sequence star represents a useful avenue for future
work.

Finally, we note that kicks during white dwarf formation could accelerate the rate of
WD/WD mergers and collisions in hierarchical triples, with potentially important implica-
tions for the SNe Ia rate. Kozai oscillations can drive inner WD/WD binaries in triples to
extremely eccentric orbits, leading to a reduced gravitation wave inspiral timescale and/or
head-on collisions of the WDs (e.g. Thompson 2011; Katz & Dong 2012). The efficiency of
this mechanism depends on the mutual inclination of the inner and outer binaries. Weak
kicks during white dwarf formation could rearrange stable hierarchical triples containing an
inner WD/WD binary, driving them to higher mutual inclinations where they are suscepti-
ble to the Kozai mechanism (e.g. Toonen et al. 2018). Simulations are needed to assess the
efficiency of such kick-driven orbital rearrangement.

Using the catalog

Our sample of binaries serves as a potential resource for studies of the Galactic binary
population, including the physics of star formation, ISM chemistry, cluster dissolution, and
dynamical disruption. We make the catalog of high-confidence binaries within 200 pc publicly
available in the hope that others find it useful.

Although the current catalog is truncated at separations of 50,000 AU ≈ 0.25 pc, ex-
tending the search to larger separations is straightforward (see Appendix 4.10); doing so
may be useful for studies focused on dynamical disruption. At significantly larger separa-
tions, a more careful contamination model may be needed to account for unavoidable chance
alignments of gravitationally unassociated pairs.

As discussed in Section 4.3.2, the fact that our binary selection uses on-sky projected
proper motions can lead to a slight bias against binaries with large angular separations, as
stars with identical 3d space velocities can have different proper motions. The effects of
this bias are expected to be negligible for our full sample and for the 100 pc sample, but
it can lead to a non-trivial selection effect against the widest physical separations if only
the nearest binaries are considered. The simulations described in Section 4.3.2 show that if
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only binaries within 50 pc (20 pc) are considered, 12% (60%) of binaries with s > 104 AU
are likely to be missed. We therefore recommend a less stringent cut on proper motion for
studies focused on the nearest binaries.

For more than 4000 of the binaries in our catalog, at least one component has been ob-
served by a Galactic spectroscopic survey such as LAMOST, RAVE, APOGEE, and GALAH;
for several hundred, a spectrum has been obtained for both stars. The metallicities and
detailed abundances of binaries in the catalog can be used to investigate the chemical ho-
mogeneity of star forming regions, the creation rate through dynamical encounters of wide
binaries that did not form together, and the dependence, or lack thereof, of the wide binary
fraction on metallicity.

Wide binaries containing a white dwarf are particularly useful for the determination of
stellar ages, as the total age of the white dwarf can be constrained from its cooling age and
mass, given an initial-final mass relation and an initial mass-age relation. Assuming that the
two components in a binary are co-eval, this age constraint can be transferred to a main-
sequence companion, whose age could otherwise not be measured precisely (e.g. Fouesneau
et al. 2018). Such analysis is also useful for calibrating empirical age constraints for main
sequences stars based on stellar activity or gyrochronology (e.g. Chanamé & Ramírez 2012;
Godoy-Rivera & Chanamé 2018). The strongest constraints can be obtained for systems in
which spectroscopic abundance constraints are available. In additional to the systems which
have already been observed by Galactic spectroscopic surveys, we anticipate that Gaia DR3
will deliver abundances for a large fraction of binaries in our catalog.
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4.7 Gaia spatial resolution and dependence on flux ratio
Our method of identifying wide binaries requires that the two component stars be spa-

tially resolved and that both stars pass the quality cuts we impose (Section 4.3.1). Whether
a wide binary is detected thus depends both on the angular separation of the two stars and
on their flux ratio. The secondary is more likely to be outshone or contaminated by light
from the primary at fixed angular separation if the flux ratio is large than if it is small. This
must be accounted for in modeling the intrinsic separation distribution.

We assess the sensitivity ofGaia photometry to a companion at a given angular separation
using a method similar to that described in Arenou et al. (2018a). We query all sources in a
field of radius 1.5 degrees and measure the number of pairs passing the quality cuts listed in
Section 4.3.1 as a function of angular separation and ∆G, the G-band magnitude difference
between the two sources. The resulting two-point correlation function is shown in the top
panel Figure 4.12. For each bin in ∆G, we plot the number of pairs in 0.66 arcsec-wide
bins. With no restriction on parallax or proper motion, the vast majority of pairs are chance
alignments. At any flux ratio and angular separation θ, the expected number of such random
alignments scales as Npairs ∼ 2πθ dθ.

The top panel of Figure 4.12 shows that such a linear scaling is indeed found at large
separations for all ∆G bins. To estimate the total number of pairs at a given θ and ∆G,
including those that are missed due to incompleteness at small separations, we extrapolate
a linear fit to the number of pairs found at large separations. We then estimate the fraction
of all pairs that are detected by dividing the empirically measured number of pairs by this
extrapolation (bottom panel of Figure 4.12). For all ∆G, the sensitivity drops rapidly from
1 to 0 at some angular separation θ0, where θ0 increases with ∆G. We fit the sensitivity
curves for each ∆G with an empirical fitting function:

f∆G (θ) =
1

1 + (θ/θ0)−β
. (4.15)

Here θ0 characterizes the angular separation below which the sensitivity drops to 0, and β
determines how rapidly the sensitivity falls off at θ � θ0. We estimate the value of θ0 and β
appropriate for a given ∆G by interpolating on the fits for the discrete values of ∆G shown
in Figure 4.12. We find that β = 10 works reasonably well for all ∆G. For θ0, we find
θ0 ≈ 2.25 arcsec at ∆G < 1.5mag, and θ0 ≈ 0.9(∆G+ 1) at ∆G > 1.5mag.

We find that this parameterization of the sensitivity works well over a wide range of col-
ors and source surface densities. However, we caution that it applies only for the particular
choice of quality cuts listed in Section 4.3.1. Ziegler et al. (2018) found a comparable sensi-
tivity scaling in the efficiency with which Gaia recovers known binaries, but with a different
normalization θ0 due to less stringent quality cuts on the Gaia photometry.
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Figure 4.12 : Top: total number of pairs with separation θ (i.e., two-point autocorrelation function)
in a dense region (l, b = −30◦,−4◦). Different lines correspond to pairs in bins of different magnitude
difference, ∆G = |G1 −G2|. Dashed lines show linear fits to data at θ > 10 arcsec. Bottom: ratio
of data in top panel to linear extrapolations, representing the fraction of all pairs with a given ∆G

that are detected at angular separation θ. Dashed lines show fits using Equation 4.15.
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Figure 4.13 : Distribution of the conversion factor, P (a/s), from projected separation s to semi-
major axis a for randomly oriented orbits. We compare distributions for a binary population with
a uniform eccentricity distribution (as is assumed in our population synthesis simulations; black)
and a thermal eccentricity distribution (f (e) de = 2e de, red).

4.8 Relation between projected separation and semima-
jor axis

When comparing BSE simulations to our observational constraints, it is necessary to trans-
late between distributions of the intrinsic semi-major axis, a, and the projected separation,
s. To determine an appropriate conversion factor distribution, we mock-observe an ensemble
of 3× 106 simulated binaries.

Each binary is observed along a random line-of-sight (resulting in an a p(i) di = sin(i) di
inclination distribution) at a random time in its orbit. We consider two eccentricity distri-
butions: a uniform distribution, which is roughly consistent with observations (e.g. Duchêne
& Kraus 2013; Tokovinin & Kiyaeva 2016) and is also assumed in our BSE simulations, and
a thermal distribution, p(e) de = 2e de, which is predicted if the phase-space distribution of
binaries is a function of energy alone (e.g. Jeans 1919). The distributions of stellar mass,
mass ratio, and orbital period have no effect on the conversion factor between s and a.
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The results of these simulations are shown in Figure 4.13; they are identical to the findings
of Dupuy & Liu (2011), who performed a similar experiment. For each binary simulated in
our population synthesis experiments in Section 4.5, we multiply the semimajor axis by a
random draw from the P (a/s) distribution for a uniform eccentricity distribution in order
to construct the P (s) distribution. For both eccentricity distributions, s and a differ by
less than a factor of two for a large majority of binaries. Because we consider separation
distributions over separations varying by many orders of magnitude, P (s) and P (a) are
nearly indistinguishable.

4.9 Distance dependence
In Figure 4.14, we compare the separation distributions obtained for our full binary

sample to those obtained when we apply our inference only to the binaries within 100 pc
(i.e., $ > 10mas). We expect the intrinsic separation distribution of the 100 pc sample
to be similar to that of the full sample. Because the typical parallax and proper motion
uncertainties, angular separation, and expected contamination rate of the 100 pc sample are
different from those of the full catalog, this experiment provides a useful test of the inference
described in Section 4.4.1.

The 100 pc sample contains 10179, 977, and 177 MS/MS, WD/MS, and WD/WD bina-
ries, respectively. Figure 4.14 shows that the constraints obtained for each class of binary are
quite similar in the 100 pc sample to in the full sample. Although there are slight differences
in the constraints, the separation distributions are consistent within 2σ at all separations,
and none of our conclusions would change if we were to fit only the 100 pc sample.

In the top panel of Figure 4.14, we also show the best-fit distribution obtained for MS/MS
binaries when we replace the default broken power law parameterization of φ(s) with a
lognormal; i.e., a Gaussian in log(s). The formal best-fit parameters are µlog s/AU = −0.93
and σlogs/AU = 1.69. However, we caution that because there is no strong evidence of
a turnover in φ(s) over the range of separations probed by our data, µlog s and σlog s are
strongly degenerate, and the best-fit value of µlog s is meaningless (see El-Badry et al. 2018a,
their Figure 1). For example, a lognormal with µlog s/AU = 1.0 and σlogs/AU = 1.26 provides
a comparably good fit.

4.10 ADQL query
The ADQL query used to obtain our initial sample of candidate binaries (before removing

clusters, triples, etc., and before applying all the quality cuts listed in Section 4.3.1) is
reproduced below. The search approach is modeled after that used by Fouesneau et al.
(2018). We follow the variable naming convention from the Gaia Archive.

SELECT g2.source_id as source_id2,
g2.ra as ra2, g2.dec as dec2,
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Figure 4.14 : 1σ constraints on the separation distributions of different classes of wide binaries. We
compare constrains obtained from fitting the full sample within 200 pc (solid; identical to Figure 4.8)
to those obtained when fitting only the nearest objects within 100 pc (hatched); they are essentially
consistent. Distance distributions are shown in Figure 4.5. In the top panel, we also show the
best-fit lognormal distribution for the full MS/MS sample.
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g2.astrometric_chi2_al as
astrometric_chi2_al_2,
g2.astrometric_n_good_obs_al
as astrometric_n_good_obs_al2,
g2.phot_g_mean_flux_over_error
as phot_g_mean_flux_over_error2,
g2.phot_rp_mean_flux_over_error
as phot_rp_mean_flux_over_error2,
g2.phot_bp_mean_flux_over_error
as phot_bp_mean_flux_over_error2,
g2.phot_bp_rp_excess_factor
as phot_bp_rp_excess_factor2,
g2.pmra as pmra2, g2.pmra_error
as pmra_error2, g2.pmdec as pmdec2,
g2.pmdec_error as pmdec_error2,
g2.phot_g_mean_mag as
phot_g_mean_mag2, g2.phot_bp_mean_mag
as phot_bp_mean_mag2,
g2.phot_rp_mean_mag as
phot_rp_mean_mag2, g2.parallax as
parallax2, g2.parallax_over_error as
parallax_over_error2, g2.radial_velocity
as radial_velocity2,
g2.radial_velocity_error as
radial_velocity_error2, g2.rv_nb_transits
as rv_nb_transits2, t1.source_id, t1.ra,
t1.dec, t1.pmra, t1.pmra_error, t1.pmdec,
t1.pmdec_error, t1.phot_g_mean_mag,
t1.phot_bp_mean_mag, t1.phot_rp_mean_mag,
t1.parallax, t1.parallax_over_error,
t1.astrometric_chi2_al,
t1.astrometric_n_good_obs_al,
t1.phot_g_mean_flux_over_error,
t1.phot_rp_mean_flux_over_error,
t1.phot_bp_mean_flux_over_error,
t1.phot_bp_rp_excess_factor,
t1.radial_velocity, t1.radial_velocity_error,
t1.rv_nb_transits,
distance(POINT(’ICRS’, t1.ra, t1.dec),
POINT(’ICRS’, g2.ra, g2.dec)) AS pairdistance

FROM (select * from gaiadr2.gaia_source where
parallax between 5 and 1000 and
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parallax_over_error > 20 and
phot_g_mean_flux_over_error > 50 and
phot_rp_mean_flux_over_error > 20 and
phot_bp_mean_flux_over_error > 20) as t1,
(select * from gaiadr2.gaia_source
where bp_rp is not null and
parallax_over_error > 5 and
phot_g_mean_flux_over_error > 50 and
phot_rp_mean_flux_over_error > 10 and
phot_bp_mean_flux_over_error > 10) as g2

WHERE 1 = contains(POINT(’ICRS’, g2.ra, g2.dec),
CIRCLE(’ICRS’, t1.ra, t1.dec,
1.4e-2*t1.parallax))

AND t1.source_id != g2.source_id
AND abs(1/t1.parallax - 1/g2.parallax) -

2*0.01745*distance(POINT(’ICRS’, t1.ra,
t1.dec), POINT(’ICRS’, g2.ra, g2.dec))/
t1.parallax < 3*sqrt(power(t1.parallax_error,
2)/power(t1.parallax, 4) + power(
g2.parallax_error, 2)/power(g2.parallax, 4))

AND sqrt(power((t1.pmra - g2.pmra), 2) +
power((t1.pmdec - g2.pmdec), 2)) -
(7.42e-3 * power(t1.parallax, 1.5) *
power(distance(POINT(’ICRS’, t1.ra, t1.dec),
POINT(’ICRS’, g2.ra, g2.dec)), -0.5)) <
3*sqrt(((power((t1.pmra_error), 2) + power(
(g2.pmra_error), 2)) * power((t1.pmra -
g2.pmra), 2) + (power((t1.pmdec_error), 2) +
power((g2.pmdec_error), 2)) * power(
(t1.pmdec - g2.pmdec), 2))/(power(
(t1.pmra - g2.pmra), 2) + power(
(t1.pmdec - g2.pmdec), 2)))

AND sqrt(((power((t1.pmra_error), 2) +
power((g2.pmra_error), 2)) * power(
(t1.pmra - g2.pmra), 2) + (power(
(t1.pmdec_error), 2) + power(
(g2.pmdec_error), 2)) * power((t1.pmdec -
g2.pmdec), 2))/(power((t1.pmra - g2.pmra),
2) + power((t1.pmdec - g2.pmdec), 2))) < 1.5

In practice, this query will not finish within the default time limits on the Gaia Archive.
We therefore split it on source id into many smaller queries. That is, we add the condition
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where source_id between A and B, where A and B are integers, to both clauses in the
FROM block. We find splitting on healpix level 2 (i.e., 192 regions of area ≈ 215 degree2)
to work well. Splitting up the sky during the search could in principle introduce a bias
against pairs with large separations, which are more likely to be missed because the two
component stars fall in different regions of the sky. We have verified through simulations
that any resulting bias is at the < 3% level, because the typical angular separations of even
the widest binaries in our catalog are small compared to the size of each search region.

4.11 Catalog
Table 4.1 provides a summary of our catalog of wide binaries within 200 pc. A full version

of the catalog is available online.
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Table 4.1 : Catalog description
Column units Description
astrometric_chi2_al astrometric goodness-of-fit (χ2) in the along-scan direction; star 1
astrometric_chi2_al_2 astrometric goodness-of-fit (χ2) in the along-scan direction; star 2
astrometric_n_good_obs_al number of good CCD transits; star 1
astrometric_n_good_obs_al2 number of good CCD transits; star 2
binary_class type of binary; MSMS, WDMS, or WDWD
dec deg declination; star 1
dec2 deg declination; star 2
pairdistance deg angular separation between star 1 and star 2
parallax mas parallax; star 1
parallax2 mas parallax; star 2
parallax_over_error parallax divided by its error; star 1
parallax_over_error2 parallax divided by its error; star 2
phot_bp_mean_flux_over_error integrated BP mean flux divided by its error; star 1
phot_bp_mean_flux_over_error2 integrated BP mean flux divided by its error; star 2
phot_bp_mean_mag mag integrated BP mean magnitude; star 1
phot_bp_mean_mag2 mag integrated BP mean magnitude; star 2
phot_bp_rp_excess_factor ratio of total integrated BP and RP flux to G-band flux; star 1
phot_bp_rp_excess_factor2 ratio of total integrated BP and RP flux to G-band flux; star 2
phot_g_mean_flux_over_error integrated G-band mean flux divide by its error; star 1
phot_g_mean_flux_over_error2 integrated G-band mean flux divide by its error; star 2
phot_g_mean_mag mag G-band mean magnitude (Vega scale); star 1
phot_g_mean_mag2 mag G-band mean magnitude (Vega scale); star 2
phot_rp_mean_flux_over_error integrated RP mean flux divided by its error; star 1
phot_rp_mean_flux_over_error2 integrated RP mean flux divided by its error; star 2
phot_rp_mean_mag mag integrated RP mean magnitude; star 1
phot_rp_mean_mag2 mag integrated RP mean magnitude; star 2
pmdec mas yr−1 proper motion in the declination direction; star 1
pmdec2 mas yr−1 proper motion in the declination direction; star 2
pmdec_error mas yr−1 standard error of proper motion in the declination direction; star 1
pmdec_error2 mas yr−1 standard error of proper motion in the declination direction; star 2
pmra mas yr−1 proper motion in right ascension direction; i.e., µ∗α = µα cos δ; star 1
pmra2 mas yr−1 proper motion in right ascension direction; i.e., µ∗α = µα cos δ; star 2
pmra_error mas yr−1 standard error of proper motion in right ascension direction; star 1
pmra_error2 mas yr−1 standard error of proper motion in right ascension direction; star 2
ra deg right ascension; star 1
ra2 deg right ascension; star 2
radial_velocity km s−1 spectroscopic barycentric radial velocity; star 1
radial_velocity2 km s−1 spectroscopic barycentric radial velocity; star 1
radial_velocity_error km s−1 standard error of spectroscopic barycentric radial velocity; star 1
radial_velocity_error2 km s−1 standard error of spectroscopic barycentric radial velocity; star 2
rv_nb_transits number of transits used to compute radial velocity; star 1
rv_nb_transits2 number of transits used to compute radial velocity; star 2
s_AU AU projected physical separation between two stars
source_id Gaia source id (int64); star 1
source_id2 Gaia source id (int64); star 2

Note: Each row in the catalog corresponds to a single binary; “star 1” and “star 2”
designations in each binary are arbitrary. Full descriptions of Gaia variables can be found
at https://gea.esac.esa.int/archive/documentation/GDR2/.

https://gea.esac.esa.int/archive/documentation/GDR2/Gaia_archive/chap_datamodel/sec_dm_main_tables/ssec_dm_gaia_source.html
https://gea.esac.esa.int/archive/documentation/GDR2/
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Chapter 5

The wide binary fraction of solar-type
stars: emergence of metallicity
dependence at a < 200 AU

An earlier version of this article was previously published as El-Badry, K. and Rix, H.-W.,
2019, MNRASL, 482, 139.

5.1 Abstract
We combine a catalog of wide binaries constructed from Gaia DR2 with [Fe/H] abun-

dances from wide-field spectroscopic surveys to quantify how the binary fraction varies with
metallicity over separations 50 . s/AU . 50, 000. At a given distance, the completeness
of the catalog is independent of metallicity, making it straightforward to constrain intrinsic
variation with [Fe/H]. The wide binary fraction is basically constant with [Fe/H] at large
separations (s & 250AU) but becomes quite rapidly anti-correlated with [Fe/H] at smaller
separations: for 50 < s/AU < 100, the binary fraction at [Fe/H] = −1 exceeds that at
[Fe/H] = 0.5 by a factor of 3, an anti-correlation almost as strong as that found for close
binaries with a < 10AU. Interpreted in terms of models where disk fragmentation is more
efficient at low [Fe/H], our results suggest that 100 < a/AU < 200 is the separation below
which a significant fraction of binaries formed via fragmentation of individual gravitation-
ally unstable disks rather than through turbulent core fragmentation. We provide a public
catalog of 8,407 binaries within 200 pc with spectroscopically-determined [Fe/H] for at least
one component.

5.2 Introduction
The statistical properties of the binary star population and their potential variation with

metallicity provide powerful diagnostics of the star formation process (White & Ghez 2001;
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Machida et al. 2009; Duchêne & Kraus 2013; Bate 2014; Badenes et al. 2018; Moe et al.
2018). Different binary formation mechanisms predict different metallicity dependences of
the resulting binary fraction (Moe et al. 2018). Measurements of metallicity dependence as
a function of orbital separation can thus constrain the separation regimes in which different
formation mechanisms operate.

The close binary fraction is strongly anti-correlated with metallicity: the fraction of
primaries that have a companion with a < 10AU decreases by a factor of 4 over −1 <
[Fe/H] < 0.5, from (40± 6) % at [Fe/H] = −1 to (10± 3) % at [Fe/H] = 0.5 (Raghavan
et al. 2010; Badenes et al. 2018; Moe et al. 2018). The existence of such anti-correlation
was long controversial (Jaschek & Jaschek 1959; Carney 1983; Latham et al. 2002; Hettinger
et al. 2015), in large part because the sensitivity of most binary detection methods varies
with metallicity. But in a recent re-analysis of the binary populations probed by 5 surveys,
Moe et al. (2018) found that after observational biases are corrected for, all 5 show consistent
evidence of a metallicity-dependent close binary fraction.

On the other hand, studies of the wide binary fraction have found it to be approximately
metallicity-invariant (e.g. Zapatero Osorio & Martín 2004; Chanamé & Gould 2004; El-
Badry et al. 2018g). Most of the binaries studied in these works have separations of order
1000 AU, but the variation of metallicity dependence with orbital separation has yet to be
studied in detail. The recent Gaia data releases (Gaia Collaboration et al. 2016, 2018a)
have substantially simplified the process of reliably identifying spatially resolved binaries,
making it possible to study the intermediate-to-wide binary population with unprecedented
precision (e.g. Oh et al. 2017a; Oelkers et al. 2017; Andrews et al. 2017). In this Letter, we
seek to constrain the transition between the close and wide binary regimes, pinpointing the
separation at which metallicity dependence emerges.

5.3 Methods

5.3.1 Wide binary catalog and extension

We extend the wide binary catalog described in El-Badry & Rix (2018a, hereafter ER18),
which was constructed by searching Gaia DR2 for pairs of stars whose positions, proper mo-
tions, and parallaxes are consistent with being gravitationally bound. The ER18 catalog
contains ∼50,000 binaries with separations 50 . s/AU < 50, 000, with an estimated con-
tamination rate of ∼0.2%. To maintain high purity, it only contains binaries that are within
200 pc of the Sun and havhe high-quality astrometry and photometry.

To separate main sequence stars and white dwarfs, ER18 required both stars to have a
measured bp_rp color, and to have well-resolved photometry as quantified by the phot_bp_rp_excess_factor
(see Section 2.1 of ER18). As a consequence of these requirements, the ER18 catalog has an
effective resolution limit of ∼2 arcsec and contains few binaries with separations s < 200AU.
To find more binaries with small separations, we now extend the catalog by removing the
restrictions on bp_rp and phot_bp_rp_excess_factor only for pairs with projected separa-
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Table 5.1 : Sources of the spectroscopic abundances
Sample Nin binary Ntot, d<200 pc

RAVE 3,261 33,792
LAMOST 3,729 46,729
APOGEE 660 5,796
GALAH 537 6,759
Hypatia 660 3,954
Total stars 8,847 97,030
Total number of binaries 8,407

tions s < 500AU. We still require both components to pass the other quality cuts in ER18,
including having reliable astrometry and precisely measured, mutually consistent parallaxes,
and we apply the same procedure for removing members of clusters, moving groups, and
resolved higher-order multiples.

This extended search yields 23,079 new binaries not included in the initial catalog. Many
of the new additions have angular separations between 0.5 and 2 arcsec. Combining them
with the sample from ER18 results in a total of 78,207 binaries, including 8,284 with s <
200AU. Although the photometry of the objects that did not pass the ER18 cuts is less
clean, we expect essentially all of them to be bona fide binaries, as the contamination rate
from chance alignments is negligible at close separations.

5.3.2 Spectroscopic metallicities

We cross-matched the expanded wide binary catalog with several wide-field spectroscopic
surveys: LAMOST (DR5; Zhao et al. 2012), RAVE (DR5; Kunder et al. 2017), APOGEE
(DR14; Majewski et al. 2017, using the abundances derived by Ting et al. 2018), and GALAH
(DR2; Buder et al. 2018). We also cross-matched with the Hypatia catalog (Hinkel et al.
2014), which is a compilation of high-resolution spectroscopic abundances for stars within
150 pc of the Sun. We limit our sample to main-sequence binaries in which the primary has
absolute magnitude 2.5 < MG < 9.5, corresponding to 0.45 .M/M� . 1.5.

The resulting catalog is summarized in Table 5.1. Cross-matching yields a spectroscopic
[Fe/H] for at least one component of 8,407 binaries; in 440, a spectroscopic [Fe/H] is available
for both components. We assign binaries in which both components have a spectroscopic
[Fe/H] the mean of the two components; when only one component has a measured [Fe/H],
we adopt that value. For stars that were observed by more than one survey, we prioritize
abundances from surveys in the reverse order listed in Table 5.1. The catalog is available
online.

We also construct a spectroscopic “control sample” that consists of the 97,030 stars within
200 pc that were observed by the spectroscopic surveys listed in Table 5.1 and pass the Gaia
quality and magnitude cuts applied to the wide binary sample. Our method for identifying
wide binaries is metallicity-blind, and the spectroscopic surveys did not preferentially target
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or avoid wide binaries. Therefore, any metallicity bias in the spectroscopic binary sample
will, at fixed distance, affect the control sample in the same way it affects the binary sample.

Binaries with angular separations of less than a few arcsec may not be spatially resolved
by ground-based spectroscopic surveys. The resulting errors in [Fe/H] are expected to be
less than 0.1 dex on average, with negligible systematic biases for the mid-resolution optical
spectra that constitute the majority of our sample (Schlesinger et al. 2010; El-Badry et al.
2018b).

5.4 Results

5.4.1 Metallicity Distribution

Figure 5.1 compares the metallicity distribution functions (MDFs) of binaries in different
separation bins to the MDF of the control sample. Because close binaries are unresolved at
large distances, their distributions of heliocentric distance are different from those of the full
200 pc control sample. To avoid biases arising from the distance-dependence of the MDF, for
each bin in s, we compare to a random subset of the control sample with the same distance
distribution as the binaries in that s bin.

At small separations, the MDFs of binaries are biased toward low [Fe/H] relative to the
control sample. This bias is strongest in the 50 < s/AU < 100 bin but is present in all
separation bins up to s = 250AU. No strong bias toward higher or lower [Fe/H] is evident
at large separations, though there are hints of a slight excess of binaries with [Fe/H] ∼ 0
in the largest separation bin. The latter is likely attributable to age effects: at the widest
separations, there is a non-negligible probability for binaries to be dynamically disrupted by
gravitational perturbations from other stars and molecular clouds. Lower-metallicity binaries
are on average older, allowing more time for dynamical disruption.

5.4.2 Inferring the dependence of binarity on [Fe/H]

To quantify the metallicity dependence of the binary fraction implied by the binary MDFs
in Figure 5.1, we fit a model that describes the ratio of the MDF of binaries to that of all
stars as a function of metallicity and separation. Given a normalized, empirically measured
MDF for all stars, ψ ([Fe/H]) = dP/d [Fe/H], we define the MDF of binaries with separation
s as

ψb ([Fe/H]|s, ~m) = ψ ([Fe/H])w ([Fe/H]|s, ~m)× c. (5.1)

Here w is an arbitrary, positive-definite “weight function” parameterized by a vector of model
parameters ~m, and c is a normalization constant,

c (s, ~m) =

[∫
ψ ([Fe/H])w ([Fe/H]|s, ~m) d [Fe/H]

]−1

. (5.2)
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Figure 5.1 : Metallicity distribution functions (MDFs) of binaries (red) and all stars with spectro-
scopic metallicities (black). We separate binaries in bins of projected physical separation, s; in each
panel, the black histogram shows the MDF of a random subset of the control sample with the same
distance distribution as the binaries in that panel. At small separations (s < 250AU), the binary
MDF shows a shortage of metal-rich binaries and an excess of metal-poor binaries relative to the
control sample. At larger separations, the MDF of binaries is nearly identical to that of all stars,
with a slight excess of metal-rich systems at the widest separations.
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If the MDF of all binaries is identical to that of single stars, then w = const. If the binary
fraction varies with metallicity in way that affects binaries of all separations equally, w is a
function of [Fe/H] alone. In the general case where the binary fraction varies with [Fe/H] in
a separation-dependent way, w = w ([Fe/H], s). The absolute normalization of w is arbitrary
due to the normalization condition, but its dependence on [Fe/H] and s determines the
binary fraction relative to its value at a fixed metallicity; e.g.

fbin (s, [Fe/H])

fbin (s, [Fe/H] = 0)
=

w (s, [Fe/H])

w (s, [Fe/H] = 0)
. (5.3)

We parameterize w with a flexible function that allows the metallicity dependence to
vary with separation:

w =
1

2

[
(w0 + 1)− (w0 − 1) tanh

(
[Fe/H]− [Fe/H]0

γ

)]
. (5.4)

This parameterization causes w to asymptote to 1 at [Fe/H] � [Fe/H]0 and asymptote
to w0 at [Fe/H] � [Fe/H]0. The abruptness of the transition between the two regimes is
determined by γ. To allow the asymptotic behavior to vary with s, we parameterize w0 as

w0 = 1 +
A− 1

1 + (s/s0)β
, (5.5)

which asymptotes to w0 = 1 at s � s0 and to w0 = A at s � s0. The abruptness of the
transition is determined by β, which is required to be positive.

Given a sample of binaries with metallicities [Fe/H]i and separations si, the likelihood
function is

L = p ({[Fe/H]i , si} |~m) =
∏
i

ψb ([Fe/H]i|si, ~m) , (5.6)

with ψb given by Equation 5.1. We tabulate the ψ appropriate for the distance distribution
of binaries as a function of s, using a subset of stars from the control sample with the
same distance distribution as binaries of separation s. We sample the posterior distribution
using emcee (Foreman-Mackey et al. 2013b), with broad, flat priors on all model parameters
~m = (A, log (s0/AU) , β, [Fe/H]0 , γ).

We plot the resulting constraints on the binary fraction in Figure 5.2, normalizing relative
to [Fe/H] = 0. Consistent with the qualitative picture from Figure 5.1, the binary fraction
becomes metallicity-dependent at s . 250AU. Over −0.5 < [Fe/H] < 0.5, the dependence
on metallicity is nearly linear, with hints of flattening at lower [Fe/H]. The emergence of
metallicity dependence towards smaller separations is quite rapid: there is essentially no
dependence at s = 300AU, while at s = 100AU, the binary fraction at [Fe/H] = −1 is
a factor of 3 higher than at [Fe/H] = 0.5. The metallicity dependence at the smallest
separations probed by our catalog is fully consistent with that found at a < 10AU by
Moe et al. (2018), though our median constraints lean toward somewhat weaker metallicity
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Figure 5.2 : Metallicity-dependence of the binary fraction. Top panels show constraints at fixed
metallicity as a function of separation; bottom panels show constraints at fixed separation as a
function of metallicity. In all panels, we normalize by the separation-dependent binary fraction at
[Fe/H] = 0. Hints of metallicity-dependence first appear at s ∼ 250AU and become stronger with
decreasing separation. For comparison, we show constraints on the metallicity-dependence of the
close binary fraction (a < 10AU) from Moe et al. (2018).
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dependence at [Fe/H] < −0.5. The uncertainties in our constraints are substantial at small
separations due to the small number of binaries in our catalog with s < 100AU. Nevertheless,
the data rule out a metallicity-independent binary fraction with greater than 2σ significance
for all s < 150AU.

5.4.3 Separation distributions

In Figure 5.3, we show inferred intrinsic separation distributions over 50 < s/AU < 500
(where the binary selection function is consistent and well-characterized; see Section 5.3.1) of
binaries in 4 metallicity bins. The relative detection efficiency drops below 50% at an angular
separation of θ0 ≈ 1 arcsec, so the maximum distance at which a binary of separation s can be
detected is dmax/pc ≈ min {(s/AU) / (θ0/arcsec) , 200}. In inferring the intrinsic separation
distribution, we weight each observed binary by the fraction of objects in the control sample
at a particular [Fe/H] that are at distances greater than dmax.

Over 50 < s/AU < 500, the separation distributions of lower-[Fe/H] systems consistently
show an excess of smaller-separation binaries relative to those of higher-[Fe/H] systems.
Integrating over all metallicities, the total separation distribution peaks at a ≈ 200AU
and is relatively flat over the separations shown in Figure 5.3 (Duchêne & Kraus 2013).
However, Figure 5.3 shows that the peak in the separation distribution occurs at smaller
(larger) separations for binaries with low (high) metallicity. Using a weighted two-sample
KS test, we verified that the separation distributions for both of the two highest-[Fe/H] bins
are inconsistent with those of each of the two lowest-[Fe/H] bins at at least the 4σ level
(pKS < 3 × 10−5). Indeed, such variation is required to explain a binary fraction that is
metallicity-dependent at small separations but not at asymptotically large separations (see
Moe et al. 2018, their Figure 19).

5.5 Discussion and Conclusions
We have shown that the metallicity distribution functions (MDFs) of binaries with separa-

tions 50 . s/AU . 250 exhibit a shortage of high-[Fe/H] binaries and an excess of low-[Fe/H]
binaries relative to a control sample subject to the same selection function (Figure 5.1). We
fit a flexible, parameterized model for the modification of the binary MDF relative to the
MDF of all stars, thus constraining the [Fe/H]-dependence of the binary fraction as a func-
tion of separation (Figure 5.2). Metallicity dependence is weak at s = 250AU but ramps up
rapidly with decreasing separation: at 50 < s/AU < 100, the binary fraction increases by
a factor of 3 over −1 < [Fe/H] < 0.5. For these separations, the metallicity-dependence is
roughly linear over −0.5 < [Fe/H] < 0.5. It begins to flatten at [Fe/H] < −0.5, albeit with
substantial uncertainty. The separation distribution is similarly metallicity-dependent, with
low-metallicity binaries concentrated at smaller separations (Figure 5.3).

The projected separation s of a wide binary can exceed the semi-major axis a by at
most a factor of 2. Projection effects will tend to smooth out the transition between the
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metallicity-dependent and independent regimes, so the weak metallicity dependence detected
at s & 200AU could be a consequence of stronger metallicity dependence at a ∼ 150.
However, a and s are usually similar for realistic orbits (see ER18; their Figure B1). For a
uniform eccentricity distribution, 16% of randomly observed orbits satisfy s > 1.33a, and
2.3% satisfy s > 1.75a. Metallicity dependence out to s ∼ 250AU thus implies dependence
to at least a = 150AU.

In the model proposed by Moe et al. (2018), the binary fraction is metallicity-dependent
only at separations where binaries formed primarily via the fragmentation of gravitationally
unstable disks: the turbulent core fragmentation process that produces wider binaries is
independent of metallicity, at least for the range of [Fe/H] considered here. Interpreted in
terms of this model, our results suggest that 100 < a/AU < 200 is the separation below
which a substantial fraction of solar-type binaries were formed via disk fragmentation.

In simulations, disk fragmentation typically occurs at separations of a/AU ∼ 50 − 100
(Burkert et al. 1997; Machida et al. 2009; Stamatellos & Whitworth 2009; Kratter et al.
2010), in agreement with observations that find Class 0 binary protostars formed by disk
fragmentation to have typical separations of s ∼ 75AU (Tobin et al. 2013, 2016). After
fragmentation, the orbital separation can decrease due to viscous dissipation or three-body
dynamics (e.g. Moe & Kratter 2018) or increase, e.g. following accretion of high-angular
momentum gas. Our results imply that systems formed by disk fragmentation constitute a
significant fraction of the binary population out to a ∼ 200AU, with wider systems forming
primarily through turbulent core fragmentation. Other lines of evidence also point toward
a change in the binary formation mechanism at a ∼ 200AU. The masses of the components
of solar-type binaries are correlated and inconsistent with random pairings from the IMF
out to separations of 200 AU (Moe & Di Stefano 2017a). Similar trends with separation are
found for the correlation in accretion rates of binary protostars (White & Ghez 2001) and
the mutual inclination of orbits in hierarchical triples (Tokovinin 2017a).

It remains important to systematically measure the metallicity dependence of the binary
fraction at intermediate separations (10 . a/AU . 50), between the regimes probed by close
binaries (e.g. Badenes et al. 2018; Moe et al. 2018) and our study. Some previous works have
found metallicity-dependence in the binary fraction in this regime to be weak (Raghavan
et al. 2010; Rastegaev 2010), and others have found evidence of a positive correlation with
metallicity, at least for low-mass binaries (Riaz et al. 2008; Jao et al. 2009; Lodieu et al. 2009;
Ziegler et al. 2015). However, the common strategy of photometrically selecting metal-poor
subdwarfs from below the main sequence for follow-up imaging can lead to a bias against
binaries (Moe et al. 2018). While speckle interferometry and AO + HST imaging likely
represent the most promising route to probing the binary fraction at 10 . s/AU . 50,
studies based on spectroscopically selected metal-poor samples would be less prone to biases
against binaries. Constraints on the wobble of astrometric binaries in future Gaia data
releases will also probe the intermediate-separation regime.
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Chapter 6

The geometric challenge of testing
gravity with wide binaries

An earlier version of this article was previously published in El-Badry, K., 2019, MNRAS,
482, 5018.

6.1 Abstract
Wide binaries provide promising laboratories for testing general relativity (GR) in the

low-acceleration regime. Recent observational studies have found that the difference in the
proper motions and/or radial velocities of the components of nearby wide binaries appear
larger than predicted by Kepler’s law’s, indicating a potential breakdown of GR at low
accelerations. These studies have not accounted for projection effects owing to the different
position of the two stars on the celestial sphere. I show that two stars in a wide binary
with identical 3D space velocities often have significantly different proper motions and radial
velocities purely due to projection effects. I construct a sample of simulated binaries that
follow Kepler’s laws and have similar phase-space distributions to the observed samples of
nearby binaries. Beyond separations of∼ 0.1 pc, direct comparison of the components’ proper
motions would suggest strong tensions with GR, even though the simulated binaries follow
Kepler’s laws by construction. The magnitude of the apparent disagreement is similar to
that found observationally, suggesting that the apparent tension between observations and
GR may largely be due to projection effects. I discuss prospects for constraining gravity at
low accelerations with wide binaries. Robust tests of GR are possible with current data but
require measurements of 3D velocities. Further work is also needed to model contamination
from unbound moving groups and unrecognized hierarchical triples.
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6.2 Introduction
Wide binaries provide an intriguing testbed for modified theories of gravity that predict

deviations from general relativity (GR) in the Newtonian limit at very low accelerations.
Many such theories have been proposed to explain observations on galactic scales, potentially
alleviating the need for dark matter to explain observations of galactic dynamics (e.g. Famaey
& McGaugh 2012). Testing modified gravity on galactic scales is challenging because many
aspects of the galaxy formation process remain imperfectly understood. In the idealized
case, the orbits of wide binaries provide a less complicated test, as the two-body problem
has a simple solution both in GR and in many modified gravity theories (Zhao et al. 2010).

Modified gravity theories designed to explain galactic dynamics typically deviate from
the Newtonian limit of GR at accelerations below the scale a0 ≈ 10−8 cm s−2. This is
comparable to the acceleration in a solar-type binary with separation 10,000AU (0.05 pc).
At wider separations, GR and modified gravity theories predict different relations between
the physical separation and orbital velocity of two stars in a gravitationally bound binary.
The orbital timescales of such wide binaries are long (& 1 Myr), so their full 3D separation
and orbital velocity are generally not directly observable. However, for a statistical sample
of binaries observed at random snapshots in their orbits, GR and modified gravity theories
predict different relations between the projected physical separation, s, and the instantaneous
one-dimensional velocity difference between the two stars (typically measured with proper
motions and/or radial velocities), ∆V . The magnitude of the difference compared to GR
varies significantly between modified gravity theories and is much larger in theories that do
not include an external field effect than in theories that do (Banik & Zhao 2018; Pittordis
& Sutherland 2018). GR (in the Newonian limit) predicts ∆V ∼ s−1/2; at s ∼ 1 pc, it
predicts bound solar-type binaries to have ∆V of only a few tens of m s−1. Measurements of
binaries with wide separations and large ∆V can in principle rule out both GR and modified
gravity theories that include an external field effect (Famaey & McGaugh 2012; Pittordis &
Sutherland 2018).

Recently, Hernandez et al. (2018) used astrometry from Gaia for a sample of wide binary
candidates with projected separations 0.01 . s/pc . 10 to measure the relation between
∆V and s, with the aim of testing classical gravity at low accelerations. They found val-
ues of ∆V that are substantially larger than the Newtonian prediction at large separations
(s & 0.1 pc) and interpreted them as evidence for a possible breakdown of GR at low ac-
celerations. Their binary catalog contains 83 wide binary candidates within ∼ 120 pc of
the Sun that were originally identified by Shaya & Olling (2011) using astrometry from the
Hipparcos and Tycho-2 catalogs and were classified as unlikely to be chance alignments of
stars that are not physically associated. The second Gaia data release significantly improved
the precision of proper motions and parallaxes for most stars observed by Hipparcos, making
it possible to measure sky-projected velocities for nearby stars with � 0.1 km s−1 precision
(Gaia Collaboration et al. 2018b). As a result, the formal constraints on ∆V obtained by
Hernandez et al. (2018) are quite strong.

Prior to the Gaia mission, two other studies considered the relation between ∆V and s
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δ ; middle) and radial velocity (right). The observed binary sample from Hernan-
dez et al. (2018) is shown in black; the simulated sample described in Section 6.3 is shown in red.
The simulated sample is constructed to have a similar distribution of distance and proper motion
to the observed sample.

as a potential constraint on the force law at low accelerations. Hernandez et al. (2012) used
proper motions of wide binary candidates from the SDSS “SLoWPoKES” catalog (Dhital
et al. 2010), as well as those of some of the wide binary candidates in the Shaya & Olling
(2011) catalog, and reached qualitatively similar conclusions to Hernandez et al. (2018),
but with larger uncertainties due to less precise astrometry. Scarpa et al. (2017) compared
the radial velocities (RVs) of the components of some of the nearby binaries studied by
Hernandez et al. (2012). They found that a large fraction had RV differences larger than
the naive prediction for Keplerian orbits, indicating either a breakdown in classical gravity
or that the binary candidates are not actually gravitationally bound.

In this paper, I draw attention to a potential complication in measuring the true velocity
differences of the components of wide binaries. Direct comparison of RVs and proper motions
of binary components entails the projection of velocity vectors in spherical coordinates onto a
local Cartesian frame centered on each component. This will yield correct velocity differences
in the limit where the two components are at the same position on the sky. However, as the
angular separation of binary components grows, Cartesian planes that are normal to the unit
sphere at the position of each component become rotated with respect to each other, leading
to projection effects (e.g. Shaya & Olling 2011). These effects can cause two stars with very
similar or identical 3D space velocities to have significantly different proper motions and
radial velocities. Left unaccounted for, projection effects can lead to apparent tension with
GR at wide separations, even in the absence of any true deviation from Keplerian orbits. In
Section 6.3 below, I describe simulations to quantify the magnitude of this effect.
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6.3 Simulations
I construct a sample of simulated binaries with the goal of comparing to the sample

studied by Hernandez et al. (2018). I first sample positions for the center of mass of each
binary assuming a uniform spatial distribution. I then reject a random subset of the sim-
ulated binaries such that their distribution of heliocentric distance is similar to that of the
observed sample. Center-of-mass velocities for each simulated binary are drawn from a 3D
Gaussian with σ1D = 25 km s−1. This value of σ1D is comparable to that measured in the
solar neighborhood (Sharma et al. 2014) and is also equal to the dispersion in RV for the
observed sample of binaries that have measured RVs. In Figure 6.1, I compare the distri-
butions of distance, proper motion, and RV of the simulated binary sample to those of the
observed sample.

For each simulated binary, I draw an eccentricity from a uniform distribution e ∈ [0, 1],
a primary mass from a uniform distribution of m1 ∈ [0.5M�, 0.6M�], and a mass ratio
from a uniform distribution of q = m2/m1 ∈ [0.8, 1]. These choices are designed to yield
a binary population similar to the observed sample. I assume random orbital orientations,
corresponding to a p(i) di = sin(i) di distribution of inclinations. Periods are drawn from
a log-uniform distribution. This is not realistic (Duchêne & Kraus 2013), but the period
distribution is not important for this study, which aims only to measure the enhancement
of ∆V at a particular separation. Finally, each binary is mock observed at a random time
tobs ∈ [0, P ].

At time tobs, I calculate the celestial coordinates of each component star, and θ, the
angular separation between them. For a binary with center-of-mass distance d, the projected
separation is s = d× θ, and the projected physical velocity difference in each proper motion
component is

∆Vi
km s−1

= 4.74× 10−3 ∆µi
mas yr−1

× d

pc
. (6.1)

Here ∆µi represents the difference in each proper motion component (∆µα cos(δ) for right
ascension; ∆µδ for declination) between the two components of a binary. I also calculate
the RV of each component, and the true velocity difference between the components of
each binary along the three Cartesian axes. Transformations between coordinate frames are
carried out using the astropy.coordinates package (Astropy Collaboration et al. 2018a).

6.3.1 Projection effects

Figure 6.2 compares the true one-dimensional ∆V to the value obtained by directly com-
paring the proper motions of the two componets (Equation 6.1). Each binary contributes
two points, as proper motions in the RA and Dec components are considered independently.
At small separations, projection effects are negligible, and the median ∆V computed from
Equation 6.1 is identical to that of the true 1D velocity difference computed from the Carte-
sian velocity components. However, at s & 0.1 pc (corresponding to an angular separation of
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Figure 6.2 : One-dimensional velocity difference versus projected separation for simulated binaries.
In the top panel, red points show the true velocity difference, while black points show the result
of directly comparing proper motion components; i.e. applying Equation 6.1. Solid and dashed
lines show the median ∆V in bins of projected separation. At s & 0.1 pc, projection effects be-
come important, and the value of ∆V obtained by direct comparison of proper motion components
significantly exceeds the true velocity difference. In the bottom panel, I remove binaries in which
∆V > 4 km s−1 in any component, as such pairs are unlikely be classified as binaries in the first
place. Blue points and error bars show the binned median and middle 68% of ∆V for the observed
binary sample from Hernandez et al. (2012). The increase in ∆V at large separations is quite similar
to that predicted to result from projection effects in the simulations.
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θ & 10 arcminutes for the distance distribution of our sample), the true and projected values
of ∆V begin to diverge widely. At a separation of 1 pc (10 pc), the typical enhancement in
∆V due to projection effects is 0.5 km s−1 (2 km s−1).

The bottom panel of Figure 6.2 compares the values of ∆V predicted by the simulation
to the observed binary sample from Hernandez et al. (2018). Here I have removed binaries
in which the RVs or either proper motion component of the two stars differ by more than 4
km s−1; such pairs are unlikely to be classified as genuine binaries.1 I plot the median and
1σ (middle 68%) range of ∆V for observed binaries in each bin of projected separation (note
that this is not identical to the rms velocity in each bin plotted by Hernandez et al. 2018).
Values of ∆V for the observed binaries are generally in good agreement with the simulation,
even at large separations where they disagree substantially from the prediction for bound
Keplerian orbits. This agreement suggests that the tension between the observed sample
and the classical gravity prediction at large separations may in large part be a consequence
of projection effects.

Although it is not shown in Figure 6.2, I find that projection effects enhance ∆V in
the RV component in a manner essentially identical to the enhancement in proper motion
difference.

6.3.2 Correcting for projection effects

With measurements of both radial velocity and proper motion, projection effects can
be straightforwardly corrected for. The most direct approach is to transform the velocities
of both components into a Cartesian frame and compare each of the velocity components
in that frame. With Gaia data for nearby binaries, it is typically the case that proper
motion uncertainies are much smaller than RV uncertainties. This fact can be exploited
by transforming velocities for both stars into a Cartesian frame centered on one of the
components and normal to the celestial sphere (i.e., with the ẑ axis pointing toward the
Sun). In this case, a high-precision comparison of velocities in the x̂ and ŷ components is
possible even with relatively low-precision RVs.

This is demonstrated in Figure 6.3, which shows the ∆V predicted for simulated binaries
after transforming to a Cartesian frame centered on one component. I assume a proper
motion uncertainty of 5 mas yr−1 in both components in all cases (adding Gaussian noise
to the proper motions during mock observations) and vary the available RV information in
different panels. To correct for projection effects, I chose one component of each binary at

1This is similar but not identical to the cuts used in constructing the observed binary sample studied by
Hernandez et al. (2018). Their sample was constructed from the Shaya & Olling (2011) binary catalog, after
removal of pairs in which both components have RVs measured by Gaia that differ by more than 4 km s−1, as
well as pairs in which Shaya & Olling (2011) estimated the probability that the system is a chance alignment
to be greater than 10%.
Shaya & Olling (2011) did attempt to account for geometrically-induced proper motion differences in

constructing their catalog. Because Hernandez et al. (2012) used measurements of ∆µ from Shaya & Olling
(2011) for part of their sample, these measurements may be less affected by projection effects than those in
Hernandez et al. (2018).
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Figure 6.3 : Predicted one-dimensional ∆V recovered from precise proper motions when projection
effects are corrected for (see Section 6.3.2). In the top two panels, I assume RVs are available for
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ameliorates the enhancement in ∆V at large separations compared to the direct comparison of
proper motions in all cases, but some RV information is required to recover accurate velocities in
the separation regime where alternative gravity theories predict strong deviations from GR.
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random and transform the 3D velocities of both stars to a Cartesian frame that is centered
on that component with ẑ axis pointed toward the Sun. I calculate ∆V separately for the x̂
and ŷ components in this frame. If no RVs are available, I assume RV = 0km s−1 for both
components. If an RV is measured for one component only, I assume both component have
that same RV.

When no RVs are available (bottom panel), transforming to a Cartesian frame reduces
the enhancement of ∆V due to projection effects by a factor of ∼ 2 on average, but projec-
tion effects still dominate at s & 0.2 pc. Inclusion of RVs for both components makes the
geometric correction effective to typical separations of 1-3 pc, depending on the precision of
the RVs (top two panels). Obtaining a precise RV for one component and assuming that the
2nd component has the same RV is also effective at s . 1pc.

6.4 Discussion
I have shown that projection effects can lead to apparent disagreement in the proper

motions and RVs of the components of wide binaries, even when the 3D space velocities
follow Keplerian orbits. The magnitude of the disagreement caused by projection effects
is comparable to the disagreement found observationally (Scarpa et al. 2017; Hernandez
et al. 2018). It is of course possible that the observed wide binary candidates really do have
discrepant 3D velocities, even after geometric distortions are corrected for. Here I only argue
that consistency with Keplerian orbits is not ruled out.

I have considered only geometric complications to attempts to measure the velocity dif-
ference between the two components of a binary. Below, I briefly highlight two additional
challenges to tests of gravity with wide binaries, and their potential resolutions.

1. Unbound comoving pairs: There is no guarantee that wide pairs of comoving stars with
consistent astrometry are gravitationally bound. Recent studies (e.g. Oh et al. 2017a;
Simpson et al. 2018; Faherty et al. 2018) have identified large numbers of unbound
“moving groups”; i.e., associations of stars that are likely not gravitationally bound but
follow very similar orbits through the Galaxy. Moving groups originate from dissolving
star clusters that drift apart on ∼ 100 Myr timescales. Their components have typical
separations of a few pc and are essentially indistinguishable from genuinely bound
binaries at large separations.

Failure to remove unbound pairs will result in an artificial enhancement of ∆V at large
separations. Unbound pairs are more common at large separations, where the num-
ber of genuine binaries decreases, the phase-space volume for potential companions in-
creases, and the binding energy of genuine binaries decreases. At separations exceeding
the Jacobi limit, rJ ∼ 1.7 pc, the Galactic tidal field is stronger than the gravitational
attraction between the components of solar-type binaries (Binney & Tremaine 2008a),
so essentially no binaries at larger separations are expected to be genuinely bound.
Several previous studies have attempted to account for the presence of unbound pairs
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by comparing to the predictions of Jiang & Tremaine (2010), who include in their
calculations disrupted, unbound binaries in the process of drifting gradually apart.
But because Jiang & Tremaine (2010) model only co-moving pairs that were initially
gravitationally bound binaries – i.e., their calculations do not attempt to account for
the fact that most stars are born in clusters that gradually dissolve – their prediction
at large separations likely underestimates the number of unbound comoving pairs with
velocities that differ by a few km s−1.

At the widest separations where previous studies have attempted to use wide binaries
as probes of gravity, it is highly improbably that the identified pairs are binaries in any
useful dynamical sense. At a separation of 8 pc, typical orbital periods are ∼1.5 Gyr,
many times larger than the Galactic dynamical time! It is therefore advisable to use
binaries with separations s < 1 pc. The rate of contamination from dissolving clusters
can also be substantially decreased by targeting binaries on halo-like orbits, which are
primarily old and free from their birth associations.

2. Hierarchical triples: nearly half all wide binaries are really hierarchical triples and
higher-order multiples (Tokovinin et al. 2006; El-Badry & Rix 2018b) in which the
additionally components are either faint or unresolved. These systems are generically
not expected to follow the Keplerian prediction of ∆V ∼ s−1/2, because the dynamics
of one component are dominated by its closer companion. Of order half of such systems
can be identified as containing photometric or spectroscopic binaries (El-Badry et al.
2018g), but it is unavoidable that a substantial fraction of hierarchical triples will go
undetected; namely, those in which the unseen companion is faint and the inner orbit
is wide enough that little RV variation is expected on observable timescales. Robust
tests of gravity with samples of wide binaries should therefore include a population
model for unrecognized higher-order multiples.
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Chapter 7

Discovery of an equal-mass “twin” binary
population reaching 1000+ AU
separations

An earlier version of this article was previously published in El-Badry, K., Rix, H.-W.,
Tian, H., Duchêne, G., Moe, M., 2019, MNRAS, 489, 5822.

7.1 Abstract
We use a homogeneous catalog of 42,000 main-sequence wide binaries identified by Gaia

to measure the mass ratio distribution, p(q), of binaries with primary masses 0.1 < M1/M� <
2.5, mass ratios 0.1 . q < 1, and separations 50 < s/AU < 50, 000. A well-understood
selection function allows us to constrain p(q) in 35 independent bins of primary mass and
separation, with hundreds to thousands of binaries in each bin. Our investigation reveals a
sharp excess of equal-mass “twin” binaries that is statistically significant out to separations
of 1,000 to 10,000 AU, depending on primary mass. The excess is narrow: a steep increase in
p(q) at 0.95 . q < 1, with no significant excess at q . 0.95. A range of tests confirm the signal
is real, not a data artifact or selection effect. Combining the Gaia constraints with those
from close binaries, we show that the twin excess decreases with increasing separation, but its
width (q & 0.95) is constant over 0.01 < a/AU < 10, 000. The wide twin population would be
difficult to explain if the components of all wide binaries formed via core fragmentation, which
is not expected to produce strongly correlated component masses. We conjecture that wide
twins formed at closer separations (a . 100AU), likely via accretion from circumbinary disks,
and were subsequently widened by dynamical interactions in their birth environments. The
separation-dependence of the twin excess then constrains the efficiency of dynamical widening
and disruption of binaries in young clusters. We also constrain p(q) across 0.1 . q < 1.
Besides changes in the twin fraction, p(q) is independent of separation at fixed primary mass
over 100 . s/AU < 50, 000. It is flatter than expected for random pairings from the IMF
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but more bottom-heavy for wide binaries than for binaries with a .100AU.

7.2 Introduction
Binary stars are ubiquitous: roughly half of all field stars have binary companions

(Duquennoy & Mayor 1991; Duchêne & Kraus 2013; Moe & Di Stefano 2017a), and the
binary fraction is even higher in star forming regions (e.g. Ghez et al. 1993; Leinert et al.
1993; Mathieu 1994; Connelley et al. 2008; Sadavoy & Stahler 2017; Duchêne et al. 2018).
Significant progress has been made in developing theoretical models to explain the popula-
tion statistics of observed binaries (e.g. Kroupa 1995; Marks et al. 2011; Bate 2012; Lomax
et al. 2015), but fundamental aspects of the binary formation process remain imperfectly
understood.

The distribution of binary mass ratios has been a subject of interest for at least a century
(e.g. van Biesbroeck 1916; Öpik 1924; Kuiper 1935). As a final outcome of the binary for-
mation process, the mass ratio distribution provides useful constraints on theoretical models
of star formation. Unlike the distributions of orbital separation and eccentricity, the mass
ratio distribution has been suggested to be insensitive to dynamical evolution after forma-
tion (such that binaries of different mass ratios are disrupted at similar rates; e.g. Parker
& Reggiani 2013). Mapping the mass ratio distribution over a range of binary masses and
separations has thus been the focus of many studies (e.g. Trimble 1974, 1987, 1990; Eggleton
et al. 1989; Mazeh et al. 1992; Hogeveen 1992; Shatsky & Tokovinin 2002; Burgasser 2007;
Söderhjelm 2007; Raghavan et al. 2010; Tokovinin 2014a; Gullikson et al. 2016).

Observational studies of the mass ratio distribution are complicated by incompleteness.
All binary detection methods are biased against low-mass ratio companions, which produce
weaker radial-velocity shifts at fixed separation (e.g. Shahaf & Mazeh 2019), contribute less
light to the observed spectra of unresolved binaries (e.g. El-Badry et al. 2018c,g), cause
weaker eclipses (e.g. Moe & Di Stefano 2013), and are less likely to be detected as visual
companions (e.g. Tokovinin 2011; El-Badry & Rix 2018c). The detection efficiency also varies
with primary mass and orbital separation. This complicates measurement of the mass ratio
distribution, because the distributions of separation, primary mass, and mass ratio are not
independent (e.g. Moe & Di Stefano 2017a). It is thus important for demographic studies
of binaries that the selection function of observed samples is well understood. If possible,
binaries of different masses and physical separations should be considered independently.

A puzzling feature of the mass ratio distribution identified by previous works is the so-
called “twin” phenomenon, which refers to a purported statistical excess of nearly equal-mass
binaries with mass ratios 0.95 . q < 1. Most studies that find an excess of equal-mass twins
have focused on spectroscopic binaries with close separations (a � 1AU, e.g. Lucy &
Ricco 1979; Hogeveen 1992; Tokovinin 2000; Halbwachs et al. 2003; Lucy 2006; Pinsonneault
& Stanek 2006; Simon & Obbie 2009; Kounkel et al. 2019). Indeed, several studies have
reported a sharp drop-off in the fractional excess of twin binaries beyond periods of 40 days
(a . 0.2AU; e.g. Lucy & Ricco 1979; Tokovinin 2000; Simon & Obbie 2009). Recent studies
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have not confirmed such a sharp drop-off in the twin excess for solar-type stars (Tokovinin
2014a; Moe & Di Stefano 2017a), but have still found it to decline monotonically with
increasing separation. At least for M1 & 1M� (the mass range on which most previous
studies have focused), the twin excess has been found to decrease with increasing primary
mass at fixed separation and to extend to wider separations for lower-mass primaries (Moe
& Di Stefano 2017a).

Some works have also argued that the twin phenomenon may be a selection effect (Mazeh
et al. 2003; Cantrell & Dougan 2014), since equal-mass binaries are brighter, can be detected
at larger distances, and are preferentially selected by several binary detection methods (e.g.
Branch 1976). Such biases are minimized for binary samples that are nearly volume-complete
(e.g. Raghavan et al. 2010; Tokovinin 2014a) and/or have well-understood completeness.

If it is a real effect, the physical origin of the twin phenomenon is not fully understood.
Several mechanisms have been proposed that could lead to preferential formation of equal-
mass binaries, including fragmentation during the late stages of protostellar collapse, mass
transfer between pre-main sequence stars, and competitive accretion (see Tokovinin 2000
for discussion of different formation mechanisms). Several simulations have predicted that
accretion of high-angular momentum gas, particularly from a circumbinary disk, tends to
drive binary mass ratios toward unity (e.g. Bate 2000; Farris et al. 2014; Young & Clarke
2015). However, it is not obvious why, when averaged over a large population of binaries,
accretion from a circumbinary disk would produce a sharp peak in the mass ratio distribution
at q & 0.95 as opposed to a gradual increase.

There have also been hints of an excess of twins among spatially resolved wide binaries
with separations ranging from tens to thousands of AU (Trimble 1987; Söderhjelm 2007). The
selection functions of the wide binary samples studied in these works were poorly understood,
causing investigators to remain agnostic of whether the excess of equal-brightness pairs in
their catalogs was of astrophysical origin or rooted in selection biases. Recently, Moe & Di
Stefano (2017a) measured the twin excess at different separations in a small but relatively
complete sample of solar-type binaries within 25 pc of the Sun. They found the twin excess
to decline with separation, but found it inconsistent with 0 out to separations of 200AU. At
even wider separations, they set an upper limit of ∼5% on the excess twin fraction.

High-quality parallaxes and proper motions from the recent Gaia data releases (Gaia
Collaboration et al. 2016, 2018b) have simplified the process of constructing samples of wide
binaries with (a) little contamination from chance alignments and (b) a well-understood
selection function. Using data from Gaia DR2, El-Badry & Rix (2018c, hereafter ER18)
constructed a high-purity catalog of wide binaries within 200 pc of the Sun consisting mainly
of AFGKM dwarfs. In this paper, we use a subset of that catalog to constrain the mass
ratio distribution over a wide range of primary masses (0.1 . M/M� . 2.5), mass ratios
(0.1 . q < 1) and separations (50 . s/AU < 50, 000). The large size of the catalog allows
us to constrain p(q) in narrow bins of primary mass and separation independently. This
approach make it possible to measure variation in p(q) with mass and separation, and it
minimizes the sensitivity of our results to imperfectly known inputs such as the initial mass
function (IMF) and separation distribution.
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A striking result of our investigation is the unambiguous evidence that twins are not
purely a close-binary phenomenon: a significant excess of equal-mass (q & 0.95) binaries
persists out to separations as wide as 10,000AU. We derive constraints on the excess fraction
of twins and the width of the twin excess as a function of mass and separation. We also
provide constraints on the full mass ratio distribution over 0.1 . q ≤ 1 in all bins.

The remainder of this paper is organized as follows. Section 7.3 describes the binary
catalog and tests we have done to verify that the twin excess is real. In Section 7.4, we
describe how we forward-model synthetic binary populations to fit for the intrinsic mass
ratio distribution. Results of this fitting are presented in Section 7.5. In Section 7.6, we
compare to previous work and discuss implications of our results for models of binary star
formation and dynamical evolution. The appendices provide additional details about several
aspects of the data and model. There we discuss sensitivity to the adopted parametric form
of p(q), (Appendix 7.8), systematic uncertainties in our model (Appendix 7.9), evidence
for a twin excess in archival wide binary catalogs (Appendix 7.10), empirical determination
of the selection function (Appendix 7.11), and validation of the adopted Galactic model
and selection function (Appendix 7.12). Constraints on fitting parameters are tabulated in
Appendix 7.14.

7.3 Data
Our primary analysis uses the binary catalog assembled in ER18. This catalog contains

∼55,000 spatially resolved wide binaries with main sequence (MS), giant, and white dwarf
components, and projected physical separations of 50 . s/AU < 50, 000. We refer to ER18
for a full description of the catalog’s contents. In brief, it was constructed by searching
Gaia DR2 for nearby (d < 200pc) pairs of stars whose positions, proper motions, and
parallaxes are consistent with being gravitationally bound. Resolved higher-order multiples
and suspected members of bound and dissolving clusters were removed. The catalog is
designed to be pure but not complete: cuts on photometric and astrometric precision ensure
that the contamination rate from chance alignments is low (� 1%), but they also reduce
the number of faint binaries.

We do not use the full catalog from ER18, but impose the following additional cuts:

• We only consider MS/MS binaries, removing binaries in which either component is
suspected to be a white dwarf, subgiant, giant, or pre-main sequence star. We identify
non-MS components from the color-magnitude diagram (CMD; see below).

• We require both components to have parallax > 5, parallax_over_error > 20,
phot_bp_mean_flux_over_error > 20, and phot_rp_mean_flux_over_error > 20.
ER18 used these same cuts for the primary, but used less stringent cuts for the sec-
ondary. Here we apply the same cuts to both components in order to symmetrize the
selection function.
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Figure 7.1 : Color-magnitude diagram of all stars (both primaries and secondaries) in the ER18
catalog of resolved wide binaries. Right y-axes and upper x-axes show the mass and effective
temperature corresponding to a given magnitude and color for main-sequence stars with [Fe/H] = 0.
In the upper left panel, points are colored by a Gaussian kernel density estimate of the local density.
We compare PARSEC isochrones with a range of metallicity (upper right) and age (lower left) to
the data. The bottom-right panel divides the CMD into three regions. Black points (main-sequence
components with no bright unresolved sub-components) comprise the bulk of our sample, and their
masses are estimated using single-star isochrones. Yellow points (components of wide binaries
with a bright unresolved companion) are kept, but their masses are estimated using unresolved
binary isochrones. Red points (pre-main sequences stars, unresolved triples, and evolved stars) are
discarded.
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• We reject binaries in which the CMD-inferred mass of the primary falls outside 0.1 <
M1/M� < 2.5. The ER18 catalog contains fewer than 100 binaries with estimated
primary masses above 2.5 M�, and none with estimated primary masses below 0.1M�.

These additional cuts remove 23% of the ER18 catalog, leaving us with a sample of 42,338
MS/MS binaries.

Figure 7.1 shows the CMD of all stars in the ER18 catalog, with primaries and secondaries
included on the same axes. Overplotted PARSEC isochrones show that the spread on the
lower main sequence is primarily attributable to metallicity (upper right panel), while that
on the upper main sequence and red giant branch is primarily due to age (lower left panel).
A secondary sequence consisting mainly of unresolved binaries is visible above the main
sequence. Wide “binaries” with one component in this sequence are primarily hierarchical
triples. We do not remove these from our sample but account for them in our model when
fitting for the mass ratio distribution in Section 7.4.1

MS components that fall below a main sequence PARSEC isochrone with [Fe/H] = 0.5
(black points in the lower right panel of Figure 7.1) are treated as single stars. Those that
fall above this isochrone but below an unresolved binary isochrone for two equal-mass stars
with [Fe/H] = 0.5 (yellow points) are treated as unresolved binaries. Finally, sources that
fall above this binary isochrone (red points; likely a mix of unresolved triples, pre-MS stars,
and giants/subgiants) are rejected, as are white dwarfs. Of the 42,382 wide binaries in our
catalog, 35,087 have two components consistent with having no unresolved sub-components
(black points), and 7,295 have at least one component suspected to be an unresolved binary
(yellow points).

We estimate masses for both components of each binary based on their location in the
CMD. The ratios of these masses are not used explicitly in fitting the mass ratio distribution,
but they are used to assign the primary vs. secondary components and to assign binaries
to bins of primary mass. For MS stars that are suspected to be single, we estimate masses
by interpolating from a grid of single-star PARSEC isochrones. This method is reasonably
effective for single components, but it would yield biased results for the unresolved sub-
components.

To estimate masses for components suspected to be unresolved binaries, we construct
a population of synthetic unresolved binaries (see Section 7.4) and, for the subset of this
population that falls in the region of the CMD colored in yellow in the bottom right panel
of Figure 7.1, we calculate the median primary mass as a function of MG of the unresolved
binary. For observed sources in that region of the CMD, we estimate the primary mass by
interpolating from MG on this median relation. That is, the mass assigned to unresolved
components represents the mass of the primary of the unresolved component, not the total
mass.

This method of assigning masses is not without drawbacks: masses assigned to unresolved
binaries are imprecise, because the mass ratio is not known. In addition, some pre-MS stars

1We also experimented with removing binaries with suspected unresolved components from the sample;
doing so does not qualitatively change any of our results.



7.3. DATA 144

J131121.67+141942.5
q= 0.13

J023917.90+215955.5
q= 0.21

J031519.95+032634.4
q= 0.35

J000733.97+231149.9
q= 0.40

J152925.89-121639.2
q= 0.51

J083443.18+172706.8
q= 0.61

J141701.60+504358.9
q= 0.70

J012429.76+051139.7
q= 0.81

J235622.38-041522.9
q= 0.92

J150725.51+610352.4
q= 1.00

30′′

M1 ≈ 1M¯; 0.1 q 1

J234244.76+041641.8
q= 0.29

J232137.12+242838.4
q= 0.37

J073733.17+132803.6
q= 0.53

J141302.43+624739.2
q= 0.77

J172753.79+014141.8
q= 0.98

30′′

M1 ≈ 0.5M¯; 0.25 q 1

J222321.70+374029.7
q= 0.98

J224854.55+332522.0
q= 1.00

J225746.59+313744.2
q= 0.98

J222311.09+292240.2
q= 0.99

J221604.98+285718.3
q= 0.97

30′′

M1 ≈ 0.5M¯; q≈ 1

Figure 7.2 : SDSS images of a selection of binaries from our catalog. Top panel shows binaries in
which the primary is a solar-type star (0.9 < M1/M� < 1.1) and the mass ratio varies from ≈ 0.1

to 1. The primary is at the center of each image, and the secondary is circled. Middle panel shows
binaries in which the primary is a late K dwarf (0.4 < M1/M� < 0.6), again for a range of mass
ratios. Bottom panels shows examples of “twin” binaries with near-identical components, each with
0.4 < M1/M� < 0.6. Each image is 100 (top panel) or 45 (bottom panels) arcsec on a side. Our
analysis uses photometry from Gaia, not SDSS. Because the SDSS photometry is ground-based,
blending and source contamination affect it more severely.
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Figure 7.3 : Apparent G-band magnitude difference between the two components of binaries in our
catalog as a function of the apparent magnitude of the primary (left), angular separation (middle),
and projected physical separation (right). The sign of ∆G is randomized for easier visualization.
There is a clear excess of equal-brightness binaries with ∆G ≈ 0. These “twin” binaries are found
over a large range of apparent magnitudes, preferentially at closer physical and angular separations.
The middle panel shows the contrast sensitivity limit for our sample; at fixed angular separation, the
probability of a companion passing our photometric quality cuts drops rapidly outside this limit due
to source contamination (Appendix 7.11.2). The lack of binaries with large ∆G at small separations
is a selection effect; the narrow excess at ∆G ≈ 0 is not.

may be mistaken for unresolved binaries, and some low-mass ratio unresolved binaries may
be mistaken for higher-metallicity single stars. However, we expect the typical accuracy to
be . 0.1M�, which is good enough for our purpose of assigning binaries to different bins of
primary mass prior to fitting. In modeling the mass ratio distribution, it is not critical that
the mass ratio of any one binary be measured accurately, but rather that the distribution of
magnitude difference be predicted self-consistently.

Figure 7.2 shows “postage-stamp” images2 of some of the binaries in our catalog from the
Sloan Digital Sky Survey (SDSS; York et al. 2000). We note that SDSS photometry is not
used in our analysis or in fitting the mass ratio distribution; we show it here because raw
images from Gaia are not publicly available. Source contamination in the SDSS images is
generally expected to be more severe than in Gaia photometry due to atmospheric seeing.
To showcase the diversity of binaries in the catalog, we choose a selection of binaries with
roughly solar-mass primaries and a range of mass ratios (top panel), binaries with primary
masses of ≈ 0.5M� and a range of mass ratios (middle panel), and some examples of equal-
mass “twin” binaries with component masses of ≈ 0.5M� (bottom panel). The twins are
easily recognized because their magnitudes and colors are very similar.

An observable quantity that is closely related to the mass ratio is the difference in appar-
ent magnitude of the two components, ∆G = |G1−G2|. Figure 7.3 shows the distribution of
∆G as a function of apparent magnitude of the primary, angular separation, and projected
physical separation. The sign of ∆G is randomized, such that the distribution about ∆G = 0

2skyserver.sdss.org/dr14/en/tools/chart/listinfo.aspx

http://skyserver.sdss.org/dr14/en/tools/chart/listinfo.aspx
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is symmetric. This is helpful in making the equal-brightness population stand out, since it
would otherwise be squished against the x-axis. An excess of equal-brightness binaries is
evident over a wide range of apparent magnitudes; it is strongest at close separations. As we
will show, the feature is quite narrow: the density of binaries is enhanced primarily at mag-
nitude differences of ∆G < 0.25mag. This is much narrower than the range over which the
selection function varies significantly: at θ > 2.5 arcsec, the contrast sensitivity is basically
constant over 0 < ∆G < 2 (see ER18; their Appendix A).

The middle panel of Figure 7.3 shows that there are no binaries with small separations and
large ∆G in the catalog. This is a consequence of photometric contamination at small angular
separations. The dashed line shows the contrast sensitivity limit derived in Appendix 7.11.2;
this is the value of ∆G at which the sensitivity is 50% of its value at asymptotically large
separations for a given θ. The contrast limit is derived from the correlation function of chance
alignment sources subject to similar quality cuts as real binaries. The fall-off in sensitivity
is quite steep beyond the contrast limit, leading to an envelope in ∆G(θ) beyond which no
binaries are found. The drop-off toward larger ∆G is less steep as a function of physical
separation s, since binaries with similar s have different angular separations at different
distances.

7.3.1 Is the twin excess real?

To test whether the narrow excess of binaries with ∆G ≈ 0 is a real astrophysical effect
(as opposed to a data artifact), we produced a control sample of chance alignments with
similar observable properties to the real binaries. This sample was produced by repeating
the procedure used to produce the real binary catalog (applying the same quality cuts and
limits on photometric and astrometric precision), but requiring that the two stars have
parallaxes and proper motions that are inconsistent rather than consistent. This selects
pairs of stars that are close together on the sky (and thus are affected by contamination and
blending in the same way as real binaries) but are not physically associated. We applied
the same procedure for removing resolved higher-order multiples and potential members of
bound and dissolving clusters that was used for real binaries. Because chance alignments are
intrinsically rare at close angular separations, we searched out to 400 pc (rather than 200 pc
for the fiducial binary catalog) to obtain better statistics. We verified that our conclusions
are unchanged when only the sample within 200 pc is considered.

In Figure 7.4, we compare the distributions of magnitude and color difference for real
binaries in our catalog (left panels) and chance alignments (right panels). Chance alignments
are more common at large angular separations. The broad distribution and outer envelope of
∆G and ∆(GBP−GRP) at a given θ is similar for binaries and chance alignments, reflecting
Gaia’s contrast sensitivity. For the chance alignments, there is no sharp excess of pairs with
nearly-equal magnitude and color. Because chance alignments are subject to same cuts on
astrometric and photometric quality and signal-to-noise as the real binaries, any aspects
of the Gaia source detection algorithm that might be expected to produce a bias toward
equal-brightness pairs should affect real binaries and chance alignments very similarly. We
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Figure 7.4 : Difference in G-band magnitude (top) and color (bottom) between the two components
of pairs with a range of angular separations. We compare genuine binaries (left) to chance-alignments
(right). The chance alignments are required to pass the same quality cuts as the true binaries. A
clear excess of pairs with ∆G ≈ 0 and ∆(GBP − GRP) ≈ 0 is evident for the true binaries, but
not for the chance alignments. The absence of the excess among chance alignments bolsters our
confidence that the feature found in the real binaries is due to a true excess of equal-mass twins
and is not a selection effect or data artifact.
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Error bars are 1 sigma. We compare binaries at different distances, as well as a control sample of
chance-alignments. At fixed physical separation, the twin excess is consistent with being indepen-
dent of distance. At fixed angular separation, it decreases with distance. Together, these trends
strongly suggest that the ∆G ≈ 0 excess (Figures 7.3 and 7.4) reflects a real excess of equal-mass
binaries, not a selection effect or photometric issue at close angular separations.

therefore interpret the lack of a thin excess at ∆G ≈ 0 and ∆(GBP − GRP) ≈ 0 for chance
alignments as strong evidence that the twin excess among real binaries is astrophysical.

An initial worry was that apparent twins might be duplicate Gaia sources that were
not properly removed: if a source were observed twice in two different scans without being
identified as a duplicate, it could manifest in our catalog as an apparent binary pair in which
the two components had essentially identical astrometry and photometry. We verified that
unrecognized duplicate sources are not the source of the twin signal using the SDSS images:
we visually inspected the postage stamps of several hundred equal-brightness binaries in the
SDSS footprint, and all the systems indeed contain two stars.

Another useful test to verify that the ∆G ≈ 0 excess is physical is to determine whether
its strength depends primarily on physical or angular separation. This can be accomplished
by comparing the ∆G distributions of binaries at different distances. If the excess of equal-
brightness pairs were due to an observational bias against binaries that are not nearly equal-
mass (or if there were an issue with the Gaia photometry causing close pairs to erroneously
have the same reported magnitude), one would expect the twin excess to depend on angular
separation, manifesting itself at different physical separations for binaries at different dis-
tances. If the excess is due to an astrophysical preference for equal-mass binaries, then it
should be primarily a function of s, manifesting itself at the same physical separation but
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different θ for binary samples at different distances.3
In Figure 7.5, we compare the excess of equal-brightness pairs for binaries in three differ-

ent distance bins as a function of physical separation (left) and angular separation (right).
We measure the excess as the ratio of the number of binaries with 0 < ∆G < 0.25 (nearly-
equal magnitudes) to the number with 0.25 < ∆G < 0.5 (slightly different, but still similar
magnitudes). In order to include binaries at distance larger than 200 pc, we repeated the
binary search from ER18, this time searching out to 400 pc. The additional binaries with
200 < d/pc < 400 are considered for this test only and are not included in the sample used
to fit for the mass ratio distribution.

The left panel of Figure 7.5 shows that at fixed physical separation, the fractional excess
of twins increases toward closer separations in a manner that is consistent across the three
different distance samples. The right panel shows that as expected, the twin excess at
fixed angular separation varies with distance. At fixed θ, larger distances correspond to
wider physical separation. Because the twin excess decreases with physical separation, it
decreases with distance at fixed θ. The excess of equal-brightness chance alignments is also
shown as a function of angular separation in the right panel of Figure 7.5. As expected,
this is nearly consistent with 0 at all angular separations, meaning that there is no strong
bias toward equal-brightness pairs compared to pairs with slightly different brightness. At
the closest angular separations (θ . 5 arcsec), there is a slight excess of equal-brightness
chance alignments, suggesting that contrast sensitivity begins to play a role. The excess for
the chance alignments is less than that found for the true binaries at all distances and is
self-consistently accounted for in the selection function (Appendix 7.11.2).

Figure 7.6 shows distributions of ∆G for binaries in 5 different bins of primary mass.
Both the overall shape of the distribution and the strength of the excess at ∆G ≈ 0 vary
substantially between mass bins. For the highest-mass bin, 1.2 < M1/M� < 2.5, the excess
at ∆G ≈ 0 is weak, and the observed distribution (without accounting for incompleteness)
peaks at ∆G ≈ 8, corresponding to q ≈ 0.3 (see Figure 7.8). For 0.8 < M1/M� < 1.2 and
0.6 < M1/M� < 0.8, there is a clear excess of twins out to s ≈ 1000AU, with the observed
peaks in the ∆G distribution corresponding to q ≈ 0.45 and q ≈ 0.6, respectively. In the two
lowest-mass bins, the visible twin excess appears to extend to larger separations, and there is
no secondary peak in the distributions of ∆G. For all mass bins, the binaries with the largest
∆G have secondaries with M ≈ 0.1M�. The maximum ∆G in each panel is probably set
largely by observational incompleteness, since at moderately old ages (� 100 Myr), objects
below the hydrogen burning limit are several magnitudes fainter than those just above it.
Incompleteness at small separations due to the angular resolution and contrast sensitivity
of our catalog becomes significant at different projected physical separations for different
mass bins, because the low-mass binaries that pass our quality cuts are on average at closer
distances than the higher-mass binaries.

3An implicit assumption here is that the fractional excess of twins is independent of the intrinsic properties
of a binary (e.g. mass), since binaries that pass our quality cuts at larger distances will be more massive on
average than those that are nearby. We show in Section 7.5 that this assumption does not hold up in detail,
which could lead to modest variation with distance in the observed twin excess at fixed physical separation.
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Figure 7.6 : Magnitude difference as a function of projected physical separation for binaries with
different primary masses. The sign of ∆G is randomized for easier visualization, and masses are
computed from the CMD. The thin band of “twin” binaries with ∆G ≈ 0 is clearly visible in all but
the highest-mass bin. In the top three bins, there is a clear preference for unequal-mass (large ∆G,
low-q) binaries. Incompleteness to faint companions prevents the detection of large ∆G companions
to low-mass secondaries.
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7.4 Modeling
We now turn to the intrinsic mass ratio distribution, p(q). Because we expect that p(q)

may vary with primary mass and/or separation, we split the observed sample into 5 bins of
primary mass and 7 bins of projected physical separation, fitting each of the resulting 35
subsamples independently. Our choice of bins is designed to balance the number of binaries
in each bin while still covering a large dynamic range of mass and separation. We constrain
p(q) for each subsample by forward-modeling a simulated population of binaries with a given
distribution of primary mass, age, metallicity, distance, physical separation, and mass ratio,
passing them through the selection function, and comparing to the data. The “data” we
consider is the distribution of the observed binaries in the 3-dimensional space of angular
separation θ, magnitude difference ∆G, and parallax $. The best-fitting p(q) is then the
one that best matches the observed data, and uncertainties in p(q) are estimated via Markov
chain Monte Carlo from the range of p(q) that adequately reproduce the observed data. This
approach requires a parameterized form of p(q) (Section 7.4.1), knowledge of the selection
function (Section 7.4.2), and a Galactic model from which simulated binaries are drawn
(Section 7.4.3).

To generate a model prediction for a given set of fitting parameters, we generate a pop-
ulation of N = 106 synthetic binaries and forward-model their distribution into the space
of observables. Masses, ages, metallicities, and distances are Monte Carlo sampled from
their respective distribution functions. For mass ratios and separations, we use a regular
1000 × 1000 grid, weighting the synthetic binary at each gridpoint by the mass ratio and
separation distributions. This approach is chosen because in the fiducial model, we fit for the
mass ratio and separations distributions but leave the distributions of age, mass, distance,
and metallicity fixed. The number of synthetic binaries generated must be large enough that
Poisson noise is negligible. We verified that N = 106 binaries in each mass and separation
bin is large enough that our constraints are converged and insensitive to the random seed.

Synthetic photometry is calculated for both components from isochrones (including the
effects of unresolved companions in hierarchies; see Section 7.4.3), and the observable proper-
ties of each binary are passed through the selection function. In constructing the distribution
of mock-observables to be compared with the data, each synthetic binary is weighted by the
selection function evaluated for its observables. Finally, the observed and simulated distri-
butions are binned on a regular 3D grid. We default to using 100 bins in ∆G, 100 bins in
log θ, and 5 bins in $ (because typical errors in $ are larger than those in ∆G or θ). The
maximum value of the ∆G grid for a given primary mass bin is chosen to include the largest
∆G value for the data in that bin, and the 5 bins in $ are chosen so that roughly the same
number of observed binaries fall in each bin. Our constraints are not sensitive to the choice
of bins, since they are small compared to the scale on which the data exhibit substructure.

We re-scale the binned model prediction such that the total counts match the observed
data. We calculate the likelihood for a particular set of model parameters by summing over
all cells in the 3D distribution, assuming that the distribution of counts in each cell is set by
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a Poisson process. The log-likelihood function is

lnL =
∑
mi 6=0

[di lnmi −mi − ln(di!)] , (7.1)

where mi and di are the counts in the ith cell of the binned model and data (“!” denotes a
factorial). We sample from the posterior using emcee (Foreman-Mackey et al. 2013a), using
priors described in Section 7.4.1. We use 200 walkers and draw 20,000 samples for each bin
of mass and separation after a burn-in period of 200 steps per walker. Inspecting the chains,
we find this to be sufficient for convergence in all cases. We carried out tests with mock data
that was drawn from a known mass ratio distribution assigned with realistic observational
uncertainties in order to verify that our approach yields unbiased constraints on p(q).

This fitting procedure is qualitatively very similar to the method commonly used to
constrain population properties such as the IMF, star formation history, unresolved binary
fraction, or initial-final mass relation from CMDs (e.g. Dolphin 2002; Bonatto et al. 2012;
Geha et al. 2013; El-Badry et al. 2018d). The difference between our approach and these
studies is that we are forward-modeling the distribution of binaries in the space of angular
separation, magnitude difference, and parallax rather than color and magnitude. The ap-
proach can in principle be generalized to include other observables, such as color difference
or apparent magnitude of the primary, but the computational expense increases rapidly with
the dimension of the space in which the likelihood function is calculated.

We note that the data uncertainties do not enter Equation (7.1). The implicit assumption
(which does hold for our problem setup) is that the uncertainties are small compared to the
scale of the bins in all quantities. We also note that for a fine grid, a majority of grid cells
will contain 0 or 1 real binaries. This is not a problem; Equation (7.1) does not make any
assumptions about the magnitude of di.

7.4.1 Parameterization

We fit the mass ratio distribution by assuming a parameterized form of p(q) and then
obtaining constraints on the parameters. Our fiducial parameterization is motivated by the
one used by Moe & Di Stefano (2017a) and is shown in Figure 7.7. p(q) is parameterized as
a broken power law with logarithmic slope γsmallq at q < qbreak and γlargeq at q > qbreak. An
possible excess (or deficit) of twins is added on top of the power law component at q > qtwin.
This excess is modeled as a step function, with the magnitude such that the integrated excess
of twins divided by the total number of binaries with q > 0.3 is Ftwin. The reason for this
choice (as opposed to normalizing relative to all binaries) is that, compared to the constraints
at q > 0.3, the constraints on p(q) at small q are often weak due to incompleteness. p(q) is
set to 0 at q < 0.05 to prevent divergence when γsmallq < −1. Because we are not sensitive
to companions with q < 0.05, this has little effect on our results.

There is no a priori motivation for this particular parameterization: because the physics
that set p(q) are imperfectly understood, we simply require a functional form that is suffi-
ciently flexible to reproduce the observed distributions of ∆G. We have experimented with
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Table 7.1 : Summary of priors adopted in each primary mass bin. We use the same priors for
all separation bins. U(a, b) represents a uniform distribution over [a, b], and N (µ, σ) represents a
normal distribution with mean µ and dispersion σ. γs is the logarithmic slope of the local separation
distribution; i.e., p(s) ∝ sγs . Other parameters are described in Figure 7.7.

0.1 < M1/M� < 0.4 0.4 < M1/M� < 0.6 0.6 < M1/M� < 0.8 0.8 < M1/M� < 1.2 1.2 < M1/M� < 2.5
Ftwin U(−1, 1) U(−1, 1) U(−1, 1) U(−1, 1) U(−1, 1)
qtwin U(0.93, 1) U(0.93, 1) U(0.93, 1) U(0.93, 1) U(0.93, 1)
γlargeq N (0.5, 1) N (−1, 1) N (−1, 1) N (−1, 1) N (−1, 1)
γsmallq — N (0.5, 0.5) N (0, 0.5) N (0, 0.5) N (0, 0.5)
γs N (−1.5, 1) N (−1.5, 1) N (−1.5, 1) N (−1.5, 1) N (−1.5, 1)

qbreak — 0.5 0.5 0.5 0.3

other forms of p(q), including adding an additional break point to the power law and mod-
eling the twin excess as ramping up linearly instead of increasing stepwise. However, we
find the form shown in Figure 7.7 to provide a good fit in all mass and separation bins,
with more complicated models providing only marginal improvements. We thus use this
functional form for our main analysis. In Appendix 7.8, we show results of using alterna-
tive parameterizations, including one that smoothly transitions between the two power laws
instead of including a sharp break and one that leaves the shape of the twin excess flexible.

There are two differences between our parameterization of p(q) and the one used by
Moe & Di Stefano (2017a), who focused primarily on binaries with M1 & M�. First, they
fixed qbreak = 0.3, a value that was appropriate for their analysis because several studies
have found the mass ratio distribution to peak at q ≈ 0.2 − 0.3 for binaries with M1 &
M� (Duquennoy & Mayor 1991; Gullikson et al. 2016; Murphy et al. 2018). We also use
qbreak = 0.3 for our highest-mass bin, but we find qbreak = 0.5 to provide a better fit at lower
masses (see Appendix 7.8.2). Second, they fixed qtwin = 0.95, roughly the value found for
spectroscopic binaries (e.g. Tokovinin 2000). In order to identify or rule out trends with
mass and separation, we leave qtwin as a free parameter.

Along with the parameters of the mass ratio distribution, we also fit for γs, the local
logarithmic slope of the separation distribution in each bin of primary mass and separation.
Opik’s law (a uniform distribution of log(s)) corresponds to γs = 0.

Our adopted priors are listed in Table 7.1. For the lowest-mass bin, the smooth compo-
nent of p(q) is modeled as a single power law, because no useful constraints can be obtained
at q . 0.5. Our priors on γsmallq and γlargeq are loosely motivated by constraints from the
literature (particularly Tokovinin 2014a and Moe & Di Stefano 2017a) but are fairly weak.
We use a uniform flat prior on Ftwin. We require qtwin > 0.93 in order to prevent cases where
a large Ftwin is combined with qtwin � 1 such that a broad “twin excess” simply modifies
the overall shape of p(q) but does not actually correspond to a sharp increase near q = 1.
We show in Appendix 7.8.1 that, where a twin excess is significant, it is always narrow
(qtwin & 0.94).
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7.4.2 Selection Function

Because both components of a binary must pass astrometric and photometric quality
cuts, the binaries in our catalog are relatively bright. The median apparent magnitude of all
stars in our fitting sample (considering primaries and secondaries together) is 〈G〉 = 14.5,
and 90% (99%) of stars fall in the range 9.1 < G < 17.4 (6.6 < G < 18.1). For stars in
this magnitude range, Gaia DR2 is nearly complete outside of crowded fields (Arenou et al.
2018a; Sollima 2019). The completeness is not quite 100% due to a variety of issues, but it is
primarily a function of position on the sky, not color or magnitude. The selection function for
our sample is thus determined by the cuts imposed on astrometric and photometric precision.

In order for a binary to appear in the catalog, (a) both components must be bright enough
that they individually pass the cuts we impose on parallax_over_error and photometric
signal to noise, and (b) they must not be so close on the sky that the photometry of either
component is significantly contaminated. The selection function for binaries can thus be
expressed as a product of the two components’ single-star detection probabilities and a
contrast sensitivity cross term:

sbinary = s1 × s2 × s∆G(θ). (7.2)

Here s1 and s2 represent the independent probabilities of detecting an isolated star with the
observable properties of star 1 and star 2; they depend primarily on apparent magnitude
and color. s∆G(θ) quantifies the reduction in the probability of detecting star 1 and star 2
together, relative to the probability of detecting them at asymptotically large separation. It
is primarily a function of the angular separation of the two stars and their flux ratio. For
example, s∆G(θ) ≈ 0 at θ < 2 arcsec and 1 at θ > 10 arcsec; at intermediate separations, it
depends strongly on ∆G. We calculate the single-star selection function given our quality
cuts in Appendix 7.11.1 and s∆G(θ) in Appendix 7.11.2. The derived selection functions are
then validated in Appendix 7.12.

7.4.3 Model inputs

We draw primary masses and system ages assuming a Kroupa (2001b) IMF and a constant
star formation history over the last 10Gyr. Because suspected members of bound and
dissolving clusters are removed from our binary catalog, we remove synthetic binaries with
age < 100Myr. We assume that the wide binary fraction, fwb, scales with mass as fwb ∝
Mαwb

1 , where αwb = 0.4 is a constant (i.e., higher-mass primaries are more likely to have
wide binary companions). The effect of this assumption is that primary masses are drawn
from a distribution with logarithmic slope αIMF + αwb, where αIMF is the local logarithmic
slope of the IMF (αIMF = −2.3 for M1/M� > 0.5 and αIMF = −1.3 for M1/M� < 0.5). We
find that with this choice of αwb, our model predicts a distribution of primary magnitudes
in reasonably good agreement with that of the binary catalog when the selection function is
taken into account.

We model the intrinsic spatial distribution of all stars as a plane-parallel exponential
with the Sun at the midplane. The exponential scale height increases with stellar age (e.g.
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Nordström et al. 2004; Seabroke & Gilmore 2007), because older stars (a) were born from
kinematically hotter gas and (b) have been dynamically heated more since their formation
(e.g Ting & Rix 2018). We use a fit to the empirical age-scale height relation recently
measured by Sollima (2019) using Gaia star counts:

log (hz/pc) = 0.53 log (age/yr)− 2.65. (7.3)

I.e., the scale height increases from 40 pc for stars of age 100 Myr, to 130 pc at age 1 Gyr,
to 450 pc at age 10 Gyr. We show in Appendix 7.12.1 that this leads to a predicted distance
distribution in good agreement the data.

We use the tabulated empirical metallicity distribution function (MDF) for our binary
catalog that was measured in El-Badry & Rix (2019b) by considering a subset of ∼8000
binaries in the catalog for which [Fe/H] was measured spectroscopically for at least one
component. Most of the binaries in our catalog are disk stars, with a median metallicity
of 〈[Fe/H]〉 ≈ −0.1 and tails extending to [Fe/H] ≈ −1.0 and [Fe/H] ≈ +0.4. We do not
include any variation in the MDF with age or distance.

We generate synthetic photometry in the Gaia DR2 bands from Evans et al. (2018) using
PARSEC4 isochrones (Bressan et al. 2012; Chen et al. 2014). Just as for the real data, we
remove synthetic binaries in which either component has evolved off the main sequence. For
companions with M2 < 0.1M�, we supplement the PARSEC models with BT-Settl models
for very low-mass stars and brown dwarfs (Allard et al. 2012; Allard 2014).5 We include
companions with masses as low as 0.01M� in our model for completeness. However, these
have very little effect on our results, because substellar companions are too faint and red to
pass our quality cuts except at very young ages.

Figure 7.8 shows the relation between q and ∆G predicted for PARSEC isochrones. We
show relations for 5 different primary masses, corresponding approximately to the median
masses of primaries in each of our five mass bins, and use a minimum companion mass of
0.1M� in all cases. Comparing to Figure 7.6, it is evident that the lowest-mass secondaries
haveM2 ≈ 0.1M� in all bins of primary mass. As for the excess of equal-brightness binaries,
it is primarily manifest over 0 < ∆G < 0.25 (though there is some variation with mass; see
Figure 7.10), which corresponds to 0.93 . q < 1.

Some components of wide binaries have their own spatially-unresolved close companions.
We incorporate these in our models following observed binary statistics. The probability
that a star has a close companion is taken to be a function of its mass, increasing from
20% at M < 0.2M�, to 30% at 0.2 < M/M� < 0.5, to 35% at 0.5 < M/M� < 0.8,
to 45% at M/M� > 0.8 (Duchêne & Kraus 2013). For components that are assigned a
binary companion, we draw the unresolved companion mass from a mass ratio distribution
that is uniform between qmin = 0.1M�/M1 and 1. We assume that the two components’
probabilities of having a close companion are independent and neglect dynamical stability

4http://stev.oapd.inaf.it/cgi-bin/cmd
5Synthetic photometry in Gaia DR2 bands is computed for the BT-Settl models using the Pheonix web

simulator, available at phoenix.ens-lyon.fr/simulator-jsf22-26/index.faces.

http://stev.oapd.inaf.it/cgi-bin/cmd
https://phoenix.ens-lyon.fr/simulator-jsf22-26/index.faces
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Figure 7.8 : Magnitude difference vs. mass ratio for binaries of different primary mass, computed
from PARSEC isochrones. We assume both components have [Fe/H] = 0, adopting an age of 1
Gyr for the highest primary mass and 5 Gyr for the others. Because the mass-luminosity relation
varies with mass, the relation between ∆G and q does as well. A magnitude difference of 0.25 mag
(roughly where the twin excess becomes significant in our catalog) corresponds to a mass ratio of
0.93 to 0.97, depending on primary mass.
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constraints. This prescription reproduces the morphology of the observed CMD reasonably
well. In particular, the fraction of stars within 200 pc that fall in the “suspected unresolved
binary” region of the CMD (yellow points in the bottom right panel of Figure 7.1) at a given
MG is reproduced within ∼25% over 0.1 < M/M� < 1.0.

We do not include extinction or reddening due to dust in our model and do not attempt
to correct the data for it. Because the stars in our catalog are nearby (d < 200 pc), the
effects of extinction are expected to be modest. The morphology of the CMD (e.g. the
compactness of the red clump and main sequence; see Figure 7.1) validates this assumption.
Moreover, because the two components of a binary have similar position on the sky (within
an arcminute in most cases) and similar distance, the extinction toward both components is
expected to be similar.

We discuss the sensitivity of our constraints on the mass ratio distribution to various
model ingredients in Appendix 7.9. The largest systematic uncertainties come from the
choice of stellar models. All the systematics we consider primarily affect constraints at
low q. This is also true for uncertainties in the completeness function: because the two
components of binaries with q ≈ 1 have similar magnitudes and colors, incompleteness
affects them similarly. The translation between the distribution of ∆G and p(q) is thus more
straightforward at q ≈ 1 than at q � 1.

7.5 Results
Our fitting produces samples from the posterior distribution of free model parameters for

each bin of mass and separation. These samples translate to marginalized constraints on each
parameter of the mass ratio distribution and the covariances between them. An example for
a single mass and separation bin is shown in Figure 7.21. Marginalized constraints for all
bins are listed in Appendix 7.14.

The 35 panels of Figure 7.9 show median and 2 sigma constraints on the mass ratio
distribution for 35 bins of primary mass and separation. We do not show the y-axis ticks to
avoid cluttering the figure, as the limits are different in each panel. The uncertainties (shaded
regions) are derived by drawing 1000 samples from the posterior, calculating a normalized
p(q) for each sample, and then shading the middle 95.4% range of these samples at each q.
Solid black lines show the median at each q. Because p(q) is normalized, uncertainty in the
mass ratio distribution at any q translates to uncertainty in the normalization of p(q) at all
q. This reflects the fact that it is impossible to know the total fraction of all binaries that
fall in some mass ratio range if one does not know how many binaries with low mass ratios
are missed. However, γlargeq, the slope of the mass ratio distribution at q > qbreak, is usually
well-constrained. Dashed vertical lines in each panel show the lowest-mass ratio observed
binary included in that bin. This roughly corresponds to the observational completeness
limit and marks the mass ratio below which meaningful constraints cannot be obtained.

The fact that p(q) is modeled as a double power law with a sharp break leads to some
unphysical artifacts in Figure 7.9, including a sharp change in slope at q = qbreak and
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artificially low uncertainty just below qbreak, which is caused by p(q) “pivoting” about this
point as γsmallq varies and p(q) is renormalized. We show in Appendix 7.8.3 that these
features are not present when we fit a more flexible “smoothly-broken” power law model.
However, doing so introduces parameter covariances that are not present for the fiducial form
of p(q). We use the simpler sharply broken power law as our fiducial model to facilitate easier
comparison between different mass and separation bins and comparison with the literature.

Figure 7.10 compares the observed 1D distributions of ∆G to the predictions of the
best-fit model; this is useful for assessing the quality of the fits. In each panel, we note the
number of observed binaries and the marginalized 1 sigma constraints on Ftwin. In generating
the model predictions, we use the median of the 1D marginalized posterior distribution for
each free parameter. We then generate a Monte Carlo realization of the binary population,
drawing primary masses, mass ratios, separations, ages, metallicities, and distances from the
appropriate joint distributions, calculating synthetic photometry, and weighting each binary
by the selection function evaluated for its observables.

Overall, the model predictions are in good agreement with the observed distributions of
∆G. This indicates that our parameterization of p(q) is suitable and sufficiently flexible. In
panels where Ftwin is inconsistent with 0, there is a clear excess of equal-brightness binaries.
The distributions of ∆G near ∆G = 0 are also adequately reproduced by the model, indi-
cating that the simple “step function” model for the twin excess is consistent with the data.
Although it is not shown here, we also find the best-fit models to predict distributions of
other observables (angular separation, parallax, and apparent magnitude of the primary) in
good agreement with the data.

Figure 7.11 shows the constraints on Ftwin as a function of mass and projected physical
separation. Light and dark error bars show middle 95.4% and 68.2% of the marginalized
posterior distributions. Note that the y-axis scale is different in the top panel. In all bins
of primary mass, the excess twin fraction falls with increasing separation and is negligible
at the largest separations we consider (s > 15, 000AU). At fixed separation, the magnitude
of the excess varies with primary mass. For close separations (50 < s/AU < 350), Ftwin is
largest in the lowest bin of primary mass (0.1 < M1/M� < 0.4). This may be in part because
low-mass primaries in our sample are at closer distances on average, such that the median
separation within the (50 < s/AU < 350) bin is smaller than for higher-mass primaries.

The maximum separation out to which there is a significant twin excess also varies with
primary mass. For the highest-mass bin, Ftwin is consistent with 0 at s > 600AU. For solar-
type primaries, Ftwin is only consistent with 0 at s > 5000AU, but it is < 3% for s > 1000AU.
The fall-off in Ftwin with increasing separation is shallowest for 0.4 < M1/M� < 0.6 and
0.6 < M1/M� < 0.8, with a larger normalization for 0.4 < M1/M� < 0.6. Here Ftwin is
almost independent of separation over 350 < s/AU < 15, 000. Finally, the fall-off steepens
again in the lowest primary mass bin, where Ftwin ≈ 0 beyond 2500AU. We discuss possible
interpretations of these trends in Section 7.6.2.

In the bottom two panels of Figure 7.11, we compare our constraints on Ftwin to the 1
sigma constraints obtained by Moe & Di Stefano (2017a, their Tables 8 and 11) for binaries
in similar mass and separation ranges. The constraints for solar-type stars (0.8 < M1/M� <
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Figure 7.10 : Magnitude difference between the two components of a binary (linear y-axis; normal-
ization is arbitrary). Black histograms show real binaries, split into bins of primary mass (increasing
left to right) and physical separation (increasing top to bottom). The twin excess can be seen in
many panels as an excess of binaries with ∆G ≈ 0. Red histograms show Monte Carlo populations
generated from the best-fit model. The number of observed binaries (black) and the marginalized
1 sigma constraints on Ftwin (red) are listed in each panel. Overall, the model is quite successful in
matching the observed distributions.
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Figure 7.11 : Marginalized constraints on Ftwin, the fractional excess of binaries with nearly equal
mass, vs. physical separation. Each panel shows a separate bin of primary mass. Dark and light
error bars show 1 and 2 sigma constraints. In all mass bins, Ftwin declines with increasing separation
and is consistent with 0 at the largest separations. The twin excess reaches the widest separations
for 0.4 < M1/M� < 0.6, where Ftwin is ∼5% out to 15,000 AU. We compare to constraints from the
nearby solar-type binary sample of Raghavan et al. (2010, panel 4) and the adaptive optics imaging
survey from De Rosa et al. (2014, panel 5); these were derived by Moe & Di Stefano (2017a).
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1.2) were obtained from the solar neighborhood sample of Raghavan et al. (2010). Those
shown in the bottom panel were obtained from the AO-assisted survey of visual binaries with
A-type primaries (1.7 < M1/M� < 2.3) described in De Rosa et al. (2014). Reassuringly,
constraints for both mass bins are consistent with those obtained from our catalog. Because
the binary sample we analyze is larger than the Raghavan et al. (2010) and De Rosa et al.
(2014) samples, we can tighten the uncertainties on Ftwin at large separations, showing, for
instance, that Ftwin for solar-type primaries is inconsistent with 0 out to s ≈ 5000AU.

Figure 7.12 shows constraints on γlargeq as a function of separation, again separating
binaries by primary mass. The dashed line in each panel shows the slope that would be
expected for random pairings from the IMF. This is obtained by fitting a power law mass
ratio distribution over the same range of primary masses and mass ratios to a simulated
population of binaries in which the masses of both components are drawn from a Kroupa
(2001b) IMF and paired randomly.

Consistent with previous work (e.g. Lépine & Bongiorno 2007a; Reggiani & Meyer 2011;
Duchêne & Kraus 2013; Moe & Di Stefano 2017a), we find that the mass ratio distribution
is not consistent with random pairings from the IMF, but is weighted toward higher mass
ratios than would be expected in such a scenario. Whether this is an imprint of the binary
formation process or in part reflects the fact that binaries with higher mass ratio have higher
binding energy and are thus more difficult to disrupt is an open question. Any trends in
γlargeq with separation are weak over the separation range we probe: at the 2 sigma level, our
constraints are consistent with a separation-independent γlargeq over 100 . s/AU < 50, 000
in all mass bins. However, they are not consistent with being independent of primary mass:
p(q) becomes increasingly bottom-heavy (lower γlargeq) with increasing M1.

The fact that γlargeq does not vary much with separation can serve as a strong constraint
on formation models for wide binaries. It has frequently been argued that while binaries
with separations of 100 . s/AU . 5000 formed primarily by core fragmentation, those with
s & 5000AU (the size of typical cloud cores) formed by another process. Candidate pro-
cesses include cluster dissolution (Kouwenhoven et al. 2010; Moeckel & Bate 2010), unfolding
of hierarchical triples (Reipurth & Mikkola 2012), or pairing of adjacent cores (Tokovinin
2017b). One might naively expect a change in the mass ratio distribution at s ∼ 5000AU if
the binary formation mechanism changes there, but none is observed.

The mass ratio distribution for wide solar-type binaries is not uniform, but is weighted
towards low mass ratios. For example, companions with q ≈ 0.5 are roughly twice as
common as those with q ≈ 0.9. The dominance of low-mass ratio companions can be
seen clearly in the data at wide separations (Figure 7.10) and cannot be due to selection
effects, which all work against low-mass ratio binaries. p(q) is thus more bottom-heavy
at wide separations than at close separations, where it is basically uniform (Mazeh et al.
1992; Tokovinin 2014a). Analyzing the 25-pc Raghavan et al. (2010) sample of solar-type
binaries, Moe & Di Stefano (2017a) found the mass ratio distribution to transition from
γlargeq = −0.4± 0.3 (close to uniform) across 10 < s/AU < 200 to γlargeq = −1.1± 0.3 across
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200 < s/AU < 5000.6 Combined with our constraints at wide separations, this implies
that the transition between a uniform mass ratio distribution at close separations and a
bottom-heavy distribution at wide separations occurs relatively abruptly at s ∼ 100AU.
Several other binary population properties are observed to change at s ∼ 100AU (see El-
Badry & Rix 2019b and references therein), perhaps due to a transition in the dominant
binary formation mechanism at this separation. This sharp transition, and the fact that
γlargeq is nearly constant over 300 . s/AU . 50, 000, provides a useful constraint for star
formation models. Because the effects of dynamical processing after formation on the mass
ratio distribution are imperfectly understood, similar constraints obtained in star-forming
environments will prove useful for disentangling the primordial mass ratio distribution from
the effects of dynamical processing.

We show constraints on other parameters obtained from our fitting in Figure 7.13. The
left column shows qtwin. This parameter is only meaningful if Ftwin is nonzero, so we do not
show constraints for bins of mass and separation where Ftwin is consistent with 0 at the 2
sigma level. There are no strong trends in qtwin with mass or separation; the typical best-fit
value is qtwin ≈ 0.95. In a few bins (e.g. 1.2 < M1/M� < 2.5 and 350 < s/AU < 600),
the constraint runs up against the prior, implying that a broader excess may be preferred.
However, the width of the observed ∆G ≈ 0 excess is still reproduced reasonably well in
these cases (Figure 7.10).

Constraints on γsmallq are shown in the middle column. Most constraints are consistent
with γsmallq = 0 (a flat distribution at small q), and trends with separation are weak. For
the lowest-mass bin (M1 < 0.4M�), we fit a single power law, so γsmallq = γlargeq. Unlike for
γlargeq, there are no strong trends with primary mass. We note that our data cannot strongly
constrain γsmallq for low-mass primaries, so the constraints are influenced somewhat by the
priors (Section 7.4.1).

Finally, the right column of Figure 7.13 shows constraints on the local slope of the
separation distribution γs, which is defined such that p(s) ∝ sγs . The dashed line shows
γs = −1.6, which is approximately the value that has been found for wide binaries when
marginalizing over a larger range of primary masses and separations (Andrews et al. 2017;
ER18). The constraints we find here are similar to this value on average but show some
evidence for a steepening in p(s) with increasing separation. Any trends with primary mass
at fixed separation are weak. We emphasize that these constraints come from the gradient
in binary counts as a function of s measured within a narrow bin of s, which is necessarily
noisy: trends in γs with separation represent the second derivative of p(s).

6Because we use qbreak = 0.5 for solar-type primaries and Moe & Di Stefano (2017a) used qbreak = 0.3,
our measurements should not be directly compared. p(q) flattens at q < qbreak, so at fixed γlargeq, a lower
qbreak corresponds to a more bottom-heavy mass ratio distribution.
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show γs = −1.6, the value found by ER18 when averaging over all masses and separations.
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7.6 Discussion

7.6.1 Comparison to previous work

Although most work on twin binaries to date has focused on spectroscopic binaries, hints
of a twin excess at wide separation have been reported in several previous works. Trimble
(1987) found a significant excess of equal-brightness pairs among a sample of bright, nearby
visual binaries. She suggested that this excess might point toward a formation mechanism
that favors equal-mass systems but found significantly different distributions of magnitude
difference when comparing different samples of wide binaries and thus did not rule out the
possibility that the q ∼ 1 peak was the result of selection effects. Similar conclusions were
reached by Giannuzzi (1987). Halbwachs (1988) argued that the mass ratio distribution of
wide, common proper motion binaries was likely consistent with random pairings from the
IMF once selection effects were corrected for.

Larger and more homogeneous samples of bright wide binaries were identified using as-
trometry from the Hipparcos satellite for one or both components (e.g. Söderhjelm 2000,
2007; Eggenberger et al. 2004; Lépine & Bongiorno 2007a; Shaya & Olling 2011). The mass
ratio distribution of Hipparcos binaries with A and F star primaries was modeled in detail
by Söderhjelm (2007), who found evidence for a q ≈ 1 peak at 100 . s/AU . 1000. The
strength of the peak decreased with primary mass. He argued that the twin excess was not
the result of any known selection effect, although he did not reject the possibility that an
unknown bias in the Hipparcos input catalog could explain it. The twin feature identified
by Söderhjelm (2007) is likely the same feature apparent in our catalog. We note however,
that most of the binaries observed by Hipparcos fall in our highest-primary mass bin (where
the twin excess is weaker than at lower masses), as Hipparcos only observed bright stars
(G . 13).

A preference for equal-brightness pairs was also noticed among wide common proper
motion disk and halo binaries identified by Chanamé & Gould (2004) and Dhital et al.
(2010). The authors could not rule out the possibility that it was the result of selection
effects, which were not well understood for their samples. The twin excess in our catalog is
visually quite striking (e.g. Figure 7.4), so a natural question is why it was not as as clear
in earlier binary catalogs. In Appendix 7.10, we show that a twin excess is apparent in the
large, low-mass wide binary catalog produced by Dhital et al. (2015) using SDSS photometry,
but it only becomes obvious once objects with blended photometry are removed. It is also
clearer in the Gaia photometry than in the ground-based SDSS photometry.

More broadly, the twin excess we identify is visually striking because it is narrow, but
it represents only a few percent of the total twin population. This means that it will only
become obvious when (a) the photometry is sufficiently precise and uncontaminated that
the difference in the components’ apparent magnitude can be measured with precision that
is good compared to the intrinsic width of the twin excess, and (b) the sample considered
is large, containing (at least) hundreds of objects. A twin excess among solar-type visual
binaries is also observed in the Raghavan et al. (2010) 25-pc and Tokovinin (2014a) 67-pc
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samples, extending out to s ≈ 200AU at a statistically significant level Moe & Di Stefano
(2017a). This excess is consistent with our constraints (e.g. Figure 7.11); at wider sepa-
rations, these samples did not contain enough objects to detect or rule out a few-percent
excess with high significance.

Width of the twin excess

Among spectroscopic binaries, there has been some disagreement in the literature over
whether the twin excess is limited to a narrow peak in the mass ratio distribution at q & 0.95
(e.g. Tokovinin 2000) or is a broader feature, corresponding simply to a positive slope in p(q)
at q & 0.8 (e.g. Halbwachs et al. 2003; see Lucy 2006 for further discussion). In our sample,
the twin feature is unambiguously narrow, only becoming significant above qtwin ≈ 0.95
(Figure 7.13). In Appendix 7.8.1), we show that p(q) is always consistent with a flat or
negative power law at q < 0.94; for the majority of the mass and separation bins, the
twin excess only becomes strong at q > 0.97 (see Figure 7.18). To allow better comparison
between close and wide binaries, we now re-examine the twin excess among spectroscopic
binaries.

In the volume-limited 67-pc sample of FG dwarfs, Tokovinin (2014a) identified 98 double-
lined spectroscopic binaries (SB2s) with periods P = 1−100days, 70 of which have dynamical
mass ratios 0.76 < q < 1. Nearly all binaries with P < 100days and q > 0.76 will appear
as SB2s, so the 70 observed systems in this parameter space represent a relatively complete
subsample. In Figure 7.14, we plot the cumulative mass ratio distribution of the 70 short-
period SB2s with q > 0.76, about half of which have q > 0.95. We model a uniform mass ratio
distribution across 0.76 < q < 1 with an excess twin fraction Ftwin above q > qtwin. We use
the maximum-likelihood method described in Moe & Di Stefano (2017a) to fit the two free
parameters Ftwin and qtwin and draw 1,000 bootstrap samples to estimate their uncertainties.
We show in Figure 7.14 the best-fit models obtained when fixing qtwin = 0.93, 0.95, and
0.97. The value qtwin = 0.93 is inconsistent with the data (p = 0.014), while qtwin = 0.95
and 0.97 both provide reasonable fits. We formally measure qtwin = 0.964 ± 0.013 (1 sigma
uncertainties).7 By using a larger and more complete sample of short-period SB2s, we thus
confirm the conclusions of Tokovinin (2000) and Moe & Di Stefano (2017a) that close solar-
type binaries with a < 0.5AU exhibit a large excess twin fraction and that the twins are
narrowly distributed above qtwin & 0.95.

In Figure 7.15, we show constraints on Ftwin and qtwin for solar-type binaries across a
wide range of periods and separations. At wide separations, the constraints from Gaia
wide binaries are reproduced from Figure 7.11 and 7.13. At closer separations, we show
the constraints on Ftwin obtained by Moe & Di Stefano (2017a) from the Raghavan et al.
(2010) sample, as well as the constraint on qtwin at P = 1 − 100days derived above for the
Tokovinin (2014a) sample (Figure 7.14). At intermediate periods (P = 102−6 days), we show
qtwin ≈ 0.95 ± 0.02 based on the Moe & Di Stefano (2017a) analysis of the Raghavan et al.

7We do not present constraints on Ftwin for this sample, because Ftwin depends on p(q) at 0.3 < q < 1,
and many lower-mass ratio binaries will not be double-lined.
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(2010) sample. This constraint is not the result of formal fitting but provided a good fit to
the data (see Figure 30 of Moe & Di Stefano 2017a). Figure 7.15 shows that while Ftwin

decreases with separation, qtwin ≈ 0.95 is consistent with being constant over all separations
in this mass range. Similar values of qtwin are also found for massive binaries at the short
periods where there is a significant twin excess (Moe & Di Stefano 2013).

7.6.2 Origin of twin binaries

It is typically assumed that the components of binaries wider than a few hundred AU
formed nearly independently of one another (e.g. White & Ghez 2001; Moe & Di Stefano
2017a; Tokovinin 2017b; Moe et al. 2018; El-Badry & Rix 2019b) during turbulent core
fragmentation (for binaries with separation less than a few thousand AU; e.g. Offner et al.
2010) or by becoming bound at slightly later times (for those with the widest separations;
e.g. Parker et al. 2009; Moeckel & Bate 2010; Kouwenhoven et al. 2010; Tokovinin 2017a).

The existence of a narrow twin excess at q & 0.95 suggests that the components of a
fraction of binaries with s� 100AU formed at closer separations in a highly correlated way.
We do expect that the dynamical process of becoming and staying bound may lead to a
preference for roughly equal-mass binaries (say, q > 0.5), because these have higher binding
energy. This could quite reasonably explain, at least in part, why the power-law component
of the mass ratio distribution is shallower than expected for random pairings from the IMF
(Figure 7.12). But we do not expect dynamical processes to produce a sharp twin feature like
what is observed: at fixed primary mass, the binding energy at q = 0.9 is not much less than
that at q = 1. And indeed, simulations of binary formation during cluster dissolution find
larger typical mass ratios at wide separations than predicted for random pairings, but they
do not predict a narrow excess of twins (Kroupa 1998; Moeckel & Bate 2010; Kouwenhoven
et al. 2010).

The excess twin fraction uniformly decreases with separation and eventually goes to 0 at
s > 15, 000AU in all mass bins. The shape of the twin excess (i.e. qtwin and the slope of p(q)
at q > qtwin) does not vary much between 50 and 15,000 AU in our catalog. Moreover, it is
effectively the same for spectroscopic binaries (with separations as close as 0.01AU) and wide
binaries (Figure 7.15). Invoking Occam’s razor, it seems more likely that the wide binary
twin phenomenon is an extension of the phenomenon that has previously been observed at
s . 100AU than that it is produced by a qualitatively different process.

Even for close binaries, there is not a clear consensus in the literature about the physical
origin of the twin phenomenon. Some models for the formation of twins can only apply to
very close binaries. In the first paper to highlight the twin phenomenon for spectroscopic
binaries, Lucy & Ricco (1979) suggested that twins were formed by fragmentation of rapidly
rotating pre-main sequence stars during the late stages of dynamical collapse, at scales of
a� 1AU. Alternatively, Krumholz & Thompson (2007) proposed that twins could be pro-
duced by mass transfer between stars of initially different masses during pre-main sequence
evolution.8 It seems implausible that such mechanisms can explain the twin phenomenon

8These authors sought to explain the observed twin excess in massive stars. The specific mechanism they
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among wide binaries, because there is no known mechanism to widen the orbits of twins
from the separations at which they operate – a few, or at most a few tens of, solar radii –
to the separations at which they are observed today. Such widening would require a very
strong velocity kick, the magnitude of which would have to be fine-tuned in order to not
unbind the binaries completely.

A more plausible formation mechanism for equal-mass twins at wider separations is
through competitive accretion from a circumbinary disk. Many studies have found that
the accretion rate from a circumbinary disk is usually higher for the secondary than the
primary (e.g. Bate & Bonnell 1997; Bate 2000; Farris et al. 2014; Young & Clarke 2015;
Nelson & Marzari 2016; Matsumoto et al. 2019). Because the secondary’s orbit is larger
than that of the primary, it sweeps out a larger radius in the disk and can accrete more
rapidly than the primary, unless the material being accreted has low angular momentum.9
Preferential accretion onto the secondary will necessarily drive the mass ratio towards unity.
If such accretion continues for long enough, binaries within circumbinary disks should thus
end up with q ≈ 1. An appeal of this formation mechanism is that it can operate at scales
comparable to the size of circumbinary disks, s . 100AU.

It is plausible but not obvious that preferential accretion onto the secondary will give
rise to a sharp twin feature like the one found observationally. In order to end up at q ≈ 1, a
binary that initially had an intermediate mass ratio must accrete a large fraction of its mass
from a circumbinary disk, such that there is enough time to drive the mass ratio to 1 even
while the primary continues to accrete. If twins are formed by accretion from circumbinary
disks, then the width of the twin feature (i.e., qtwin) can tell us about the fraction of the
total mass accreted from the disk, as well as the mass ratio above which the accretion rate
onto the two components becomes nearly equal. A sharp twin feature could be expected if
a fraction of binaries accrete most of their mass from a circumbinary disk (becoming twins)
and the rest either do not develop circumbinary disks or only accrete a subdominant fraction
of their total mass from them.

In accretion-driven explanations of the twin excess, the increase in Ftwin towards close
separations has been interpreted as evidence that gravitational torques within circumbinary
disks (e.g. Artymowicz et al. 1991; Shi et al. 2012) shrink the orbits of twins (Young & Clarke
2015). Indeed, the observed twin excess is largest at separations a < 0.2AU (Figure 7.15),
too close for binaries to have formed at their current separations. This implies that some

proposed, which relies on deuterium shell burning causing protostars to expand and overflow their Roche
lobes, cannot operate in solar-type or lower mass stars. Moreover, the twin excess for massive stars appears
to be limited to close separations (Moe & Di Stefano 2017a), so mass transfer may adequately explain it.
Here we simply suppose, for the sake of argument, that there is some mechanism through which stable mass
transfer in lower mass stars could drive the mass ratio to unity.

9It is worth noting that there has not been a full consensus in the literature whether this mechanism
works: some simulations of accretion from a circumbinary disk have actually predicted the opposite trend,
with accretion favoring the primary (Ochi et al. 2005; Hanawa et al. 2010; de Val-Borro et al. 2011). These
simulations assumed a higher gas temperature than those which have found accretion to favor the secondary;
Young & Clarke (2015) showed that accretion only favors the secondary when accreted gas is cold, as is
appropriate for stellar binaries.
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combination of gravitational torques, viscous dissipation, and dynamical interactions (e.g.
Bate 2012; Moe et al. 2018) must have shrunk the orbits of twins at very close separations.

However, several recent simulations of circumbinary disks have found that, contrary to
previous results in the literature, accretion can also widen binaries within circumbinary
disks, when the advective torque dominates over the gravitational torque (Miranda et al.
2017; Muñoz et al. 2019; Moody et al. 2019). Whether gravitational or advective torques
dominate depends on details such as the sink prescription used for accretion (Tang et al.
2017). Further work is needed to clarify the effects of circumbinary disks on orbital evolution.
However, the fact that the twin excess extends to very wide separations suggests that orbit
shrinkage is not a ubiquitous outcome of accretion from circumbinary disks.

High-resolution studies of the dynamics of individual circumbinary disks are generally
too idealized, run for too short a time, and are focused on too narrow a range of initial
conditions to make ab-initio predictions of the full mass ratio distribution. However, they
do typically find that gas is preferentially accreted onto the secondary for realistic accretion
geometries once a steady state is reached. On the other hand, global simulations of the
fragmentation of molecular clouds (e.g. Bate 2009, 2014, 2019) are reaching the point where
they can make realistic predictions of the mass ratio distribution with minimal fine-tuning.
Such studies have lower resolution than idealized simulations of individual binaries, so it is
not guaranteed that the dynamics within disks are well resolved, but they are able to predict
the accretion rate and angular momentum distribution of accreted material, and the mass
and size distribution of disks (e.g. Bate 2018). Such global calculations predict an excess
of equal-mass binaries out to separations of order 100 AU (see e.g. Bate 2014, Figure 18).
Because they typically only form a few dozen binaries in a cloud, such calculations do not
yet have the statistical power to predict or rule out a few-percent effect at wider separations.

Accretion can plausibly explain an excess of twins out to significantly larger separations
than mass transfer or late-stage fragmentation, but it alone cannot explain a signal reaching
out to thousands of AU. Observed circumstellar and circumbinary gas disks have typical
radii of order 100AU (Ansdell et al. 2018; Eisner et al. 2018). The largest observed cir-
cumbinary disks have radii of order 500 AU and host binaries with separations of 50-200 AU
(e.g. Hioki et al. 2007; Brinch et al. 2016; Tobin et al. 2016; Takakuwa et al. 2017; Comerón
et al. 2018; Czekala et al. 2019); these preferentially host relatively massive binaries. There
are no observed disks with radii exceeding 1000 AU, and simulations also predict the largest
circumbinary disks to have radii of several hundred AU (Bate 2018). It thus seems exceed-
ingly unlikely that twin binaries with s & 200AU formed at their present-day separation
by accretion from a circumbinary disk. This implies that either (a) twin binaries formed
at closer separations and their orbits were subsequently widened, or (b) some other pro-
cess is responsible for producing twins at very wide separations. Lacking a good candidate
mechanism for (b), we here consider the plausibility of orbit widening.
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Dynamical orbit widening in young clusters

In the Galactic field, dynamical interactions have a negligible effect on most binaries with
s . 10, 000 AU (e.g. Weinberg et al. 1987). However, dynamical interactions are expected to
be more efficient in binaries’ birth environments, where the typical stellar density is higher.
The dynamical evolution of binaries within their birth clusters has been the subject of
considerable study. As a general rule, interactions within birth clusters are expected to widen
the orbits of binaries with orbital velocities lower than the cluster velocity dispersion, and to
tighten the orbits of those with orbital velocities greater than it (Heggie 1975; Hills 1975).
There are several complicating factors in real clusters. For example, the mass distribution
within clusters at early times is not smooth but clumpy (Dorval et al. 2017), both stars
and gas can be dynamically important, and cluster density and velocity dispersion change
as clusters age, in part because energy is redistributed among binaries (see e.g. Kroupa &
Burkert 2001; Parker et al. 2009; Goodwin 2010). Observed binary populations provide
constraints on models for binaries’ dynamical evolution, but a unified model to explain the
diversity of binary populations found in different environments does not exist. We summarize
some relevant observational constraints on disruption below.

1. Over a wide range of separations (10 . s/AU < 3000), the binary fraction in low-
density star forming regions (e.g. Taurus) is higher than in the field by roughly a
factor of 2 (e.g. Leinert et al. 1993; Duchêne 1999). This is true especially at wider
separations, where the separation distribution of young binaries is roughly log-uniform,
but that of field stars declines more steeply (e.g. Connelley et al. 2008; Kraus et al.
2011).

2. In dense young clusters (e.g. the ONC), the binary fraction at separations of s &
100AU is similar to the field (lower than in low-density star forming regions) and
declines steeply at wide separations (Reipurth et al. 2007). At closer separations (10 .
s/AU . 60) the binary fraction in dense clusters is comparable to that in low-density
star forming regions, and higher than that found in the field (Duchêne et al. 2018).

3. At very close separations (s . 5 AU), the binary fraction in star forming regions (over
a range of densities) is consistent with that in the field (e.g. Kounkel et al. 2019).

Some models (e.g. Kroupa 1995; Marks et al. 2011; Marks & Kroupa 2012) postulate
that the initial binary fraction and separation distribution are insensitive to local proper-
ties, such that observed variation in binary populations must be due to disruption. These
models interpret the higher wide binary fraction in low-density clusters as the primordial
population, which is transformed into the field population by dynamical widening and dis-
ruption. Because disruption of wide systems is more rapid in dense clusters, these models
also predict the binary fraction at s & 100AU to decrease with cluster density, in agreement
with observations. However, if such models are correct, it is not clear what happens to the
excess of relatively tight binaries (10 . s/AU . 100), which are over-represented relative to
the field in both high- and low-density star forming regions. Such systems have high enough
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binding energies that they can only be disrupted in very dense clusters. Thus the lower
binary fraction in the field at 10 . s/AU . 100 would imply that a large fraction of field
stars formed in dense environments.

In any case, the fact that the binary fraction in the field is lower than that in star
forming regions down to fairly close separations implies that a significant fraction of young
binaries undergo quite energetic interactions, the cumulative effect of which is sufficient to
disrupt binaries with initial separations as close as 10-100AU. In many cases, binaries will
be disrupted by such interactions, but in some cases, they will only be widened (e.g. Kroupa
& Burkert 2001). It is in this latter context that the twin fraction at wide separations is
informative about the fraction of stars at a given present-day separation that formed at
significantly closer separations.

The fact that the dependence of Ftwin on separation varies with binary mass in a non-
monotonic way (Figure 7.11) suggests that, if the twin excess at s � 100AU is due to
dynamical widening of orbits, then the primordial twin statistics (e.g. the twin fraction and
the range of separations over which twins are form) must also vary with mass. This may
not be unreasonable, since the physical properties of disks do vary with mass (Bate 2018;
Eisner et al. 2018), but it means that disentangling the effects of dynamical widening and
the primordial separation distribution of twins is nontrivial.

We use a simple toy model to explore how the separation-dependence of the twin excess
may depend on the initial twin population and the strength of dynamical interactions. We
suppose that twin formation is efficient out to a separation of atwin,max ≈ 100AU and does
not operate at wider initial separations. We consider primordial populations of equal-mass
binaries with components of mass M and a uniform distribution of log a between 10 and
104 AU. At a < atwin,max, we assign a random subset of 20% of the binaries the label of
“twin”. We then assume that dynamical interactions add an energy Eint to each orbit (for
both twins and non-twins), such that the new orbital energy is Enew = Einitial + Eint, where
Einitial = −GM2/ainitial. Values of Eint for each binary are drawn from a uniform distribution
between 0 and Emax, interactions. If Enew is positive, then the binary is considered unbound
and is discarded. The new separation after interactions is anew = −GM2/Enew. Finally, we
measure what fraction of the surviving binaries bear the twin label as a function of final
separation. This fraction is proportional to the fraction of binaries at a given present-day
separation that formed with a < atwin,max. We do not model dynamical hardening of close
binaries, and thus implicitly assume that all binaries we consider are soft; i.e., that they reside
in clusters with velocity dispersion larger than than the highest orbital velocities of binaries
being widened. For an initial separation of 100AU and binaries with typical component
mass of 0.5M�, this corresponds to a dispersion of σ ≈ 1.5 km s−1; for an initial separation
of 10AU, to σ ≈ 5 km s−1.

We plot the results of this experiment in Figure 7.16, varying atwin,max (top), Emax, interactions

(middle), and M (bottom). The final separation-dependence of the twin fraction depends
significantly on all of these parameters. The twin excess extends to larger separations, and
falls off less steeply with separation, when (a) the initial separation out to which twins form
is larger, (b) dynamical interactions are more energetic, or (c) the binding energy of twins is
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Figure 7.16 : Predictions of the toy model for orbit widening described in Section 7.6.2. We assume
that the initial twin fraction is 20% for a < atwin,max (varied in the top panel; 100AU by default)
and 0 at larger separations. We consider an initial separation distribution that is flat in log space.
We then widen the orbits of all binaries by adding energy, representing the cumulative effect of
gravitational interactions within a birth cluster. The total added energy is drawn from a uniform
distribution between 0 and Emax,interaction. Binaries that are disrupted are discarded. We plot
the final twin fraction as a function of separation, varying Emax,interaction (middle panel; default is
G (0.5M�)2 / (100 AU)) and mass (bottom panel; default is 0.5M�).
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lower. In order to obtain a nonzero twin fraction at very wide separations, it is necessary that
a fraction of binaries undergo dynamical interactions energetic enough to unbind binaries
at separation at which twins form. Once this is satisfied, twins can contribute significantly
to the binary population at wider separations, because the same interactions that widen
close binaries will unbind a large fraction of initially wider non-twin binaries. Wide twins
are produced most efficiently in clusters where the velocity dispersion is comparable to the
orbital velocity at a separation of atwin,max: significantly denser clusters produce few wide
binaries, since most binaries that are not close are disrupted completely.

The toy model generically predicts that Ftwin decreases with separation and that low-
mass twins can be more efficiently widened than high-mass twins due to their lower binding
energy. It thus predicts that the excess twin fraction will fall off less steeply for lower-mass
binaries. This trend is found in the observed binaries over 0.4 < M1/M� < 2.5 (Figure 7.11),
but it is reversed for the lowest-mass subsample: Ftwin falls off significantly more steeply for
0.1 < M1/M� < 0.4 than for 0.4 < M1/M� < 0.6. This is not easily explained in the context
of the toy model.

It is thought that a fraction of wide binaries (likely at a� 1000AU) form at later times
(perhaps during cluster dissolution) than wide binaries at closer separations. Dilution of
the twin excess due to these binaries is not accounted for in the toy model. If the fraction
of binaries at fixed separation that formed during cluster dissolution were higher at lower
masses, this could explain the observed steeper decline in Ftwin with separation at low masses.

An addition complication is that the observed population of field binaries is an average
over a wide range of formation environments, from low-density regions to dense clusters. The
trends in Figure 7.16 rely on a number of crude approximations and should not be used to
directly interpret the observed trends in Ftwin (and we have not attempted to tune the model
to match observed trends). Here we simply emphasize that the separation distribution of
twins is quite sensitive to dynamical processing. We conclude that dynamical orbit widening
provides a plausible explanation for the existence of the wide twin excess, but more realistic
theoretical modeling is needed to determine whether the observed trends in Ftwin with pri-
mary mass and separation can be reproduced when averaging over a realistic population of
star-forming environments.

Widening of unstable triple systems?

Another possible mechanism for dynamically widening twins is through unfolding of
unstable triple systems, in which initially close companions can be scattered to much wider
orbits (e.g. Reipurth & Mikkola 2012). Triples are not uncommon: more than a third of
all wide binaries contain subsystems (e.g. Tokovinin & Smekhov 2002a; Tokovinin 2014a),
and a large fraction of binaries are thought to have formed as higher-order multiples that
subsequently decayed (e.g. Sterzik & Durisen 1998).

Widening of the outer orbit in triples generally comes at the expense of shrinking of the
inner orbit. Since the outer orbit is the more fragile one, a triple-origin of the wide twin
excess would imply that one of the component stars in wide twins had, and in most cases still
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Figure 7.17 : Magnitude difference between the two resolved components of all wide binaries in
which one or both components is suspected to have a bright, unresolved companion (N = 7, 295;
yellow points in Figure 7.1). There is no obvious excess at ∆G ≈ 0 (compare to the right panel of
Figure 7.3).
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has, a close companion, which in most cases would be spatially unresolved. However, the
twin excess at ∆G . 0.25mag cannot be due to systems in which either resolved component
has an unresolved companion any less than ≈ 2.5 magnitudes fainter than it; otherwise
the light from the unresolved companion would make it more than 0.25 mag brighter than
the other resolved component. Figure 7.17 shows that there is indeed no obvious excess at
∆G ≈ 0 for wide binaries in which either component has a bright unresolved companion.
There is thus a photometric upper limit on the mass ratio of any unresolved companions to
twins with ∆G ≈ 0; it ranges from q < 0.45 to q < 0.7, depending on primary mass (see
Figure 7.8).

Unresolved companions with lower mass ratios cannot be ruled out based on photometry,
but at close separations, they can be detected from radial velocity (RV) variability. In
Appendix 7.13, we show that the Gaia visit-to-visit radial velocity scatter implies a lower
close binary fraction for the components of wide twins than for components of non-twins
with similar separations and masses. This speaks against a triple-origin of wide twins.
It is, however, consistent with our expectations if twins are formed through accretion in a
circumbinary disk, since the presence of a third close companion in the disk would complicate
the mechanism through which accretion drives the mass ratio of two stars in a disk toward
unity.

7.7 Summary and conclusions
We have analyzed a pure and homogeneous sample of ∼42,000 main-sequence wide bi-

naries selected from Gaia DR2 to constrain the mass ratio distribution of binaries with
projected separations 50 . s/AU < 50, 000 and primary masses 0.1 < M1/M� < 2.5. High-
precision photometry allows us to measure mass ratios with unprecedented accuracy, and a
well-understood selection function makes it possible to account for biases arising from the
magnitude and contrast sensitivity limits of Gaia DR2 given our quality cuts.

A striking feature of the catalog is a high-significance excess of “twin” binaries with
nearly equal brightness (Figure 7.3). The excess is present over a narrow range of magnitude
differences, 0 < ∆G . 0.25, corresponding to mass ratios 0.95 . q . 1, and extends over
a wide range of masses and separations. The twin excess is reminiscent of the excess of
equal-mass binaries historically reported at very close separations (a < 0.2AU) and recently
found to extend to a ∼ 100AU, but it extends to separations of several thousand AU, where
binary formation models do not predict strongly correlated component masses.

We have done a variety of tests to confirm that the twin feature is caused by an astrophys-
ical excess of equal-mass binaries, not selection effects or data artifacts. We first repeated
the search that produced the binary catalog, but required that the two components of a
pair have inconsistent rather than consistent astrometry. This yields a catalog of physically
unassociated “chance alignments” that are subject to essentially the same selection function
as the real binaries and have similar distributions of most observable properties. A narrow
excess of equal-brightness pairs is not found among chance alignments (Figure 7.4).
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By considering binaries at different distances, we verified that the strength of the twin
feature varies primarily with physical, not angular, separation (Figure 7.5). This speaks to
the physicality of the twin feature, since most observational biases are expected to depend on
angular separation, which is the observable quantity. Finally, we verified that the twin feature
is not an artifact of the Gaia photometry; it is visible in photometry from other surveys.
We also identified the same twin excess in archival data from another binary catalog after
removing objects with contaminated photometry (Appendix 7.10).

In order to measure the intrinsic mass ratio distribution, we forward-model the joint dis-
tribution of magnitude difference, angular separation, and parallax given a Galactic model,
a selection function, and a parameterized mass ratio distribution. We measure the selec-
tion function for our catalog empirically, using chance alignments to quantify the contrast
sensitivity as a function of angular separation. Our primary results are as follows:

1. Twin fraction: we quantify the twin excess as Ftwin, the fractional excess of binaries
with q > qtwin relative to the full population with q > 0.3 (Figure 7.7; qtwin ≈ 0.95
quantifies the width of the excess). Typical values of Ftwin are 10% at 100AU and
3% at 1000AU, with some dependence on mass (Figure 7.11). These values are lower
than the value found for spectroscopic binaries (Figure 7.15), which is Ftwin ≈ 25%,
but they are clearly inconsistent with 0.

2. Width of the twin excess: at all masses and separations where it is statistically signif-
icant, the twin excess we find is quite narrow, only becoming significant at q & 0.95
(Figure 7.13). We experimented with different functional forms for the enhancement
near q ≈ 1, but we find a step function increase at q & 0.95 to perform as well as more
complicated models (Figure 7.18). We also re-measured qtwin at close separations using
a volume-limited sample of spectroscopic binaries (Figure 7.14). The width of the twin
excess, qtwin, is basically constant over 6 orders of magnitude in separation, from the
closest spectroscopic binaries to wide binaries at s ∼ 10, 000AU.

3. Mass and separation dependence: the fractional excess of twins declines with separation
and is consistent with 0 at s > 15, 000AU for all mass bins (Figure 7.11). The twin
excess at s > 1, 000AU is strongest for primary masses 0.4 < M1/M� < 0.6. At closer
separations (50 < s/AU < 1, 000), it is strongest for low-mass primaries (M1 < 0.4M�)
and roughly consistent for other mass bins. The slope of the fall-off in Ftwin with
separation varies non-monotonically with mass; it is shallowest at 0.4 < M1/M� < 0.6.

4. Mass ratio distribution at lower q: we provide broken power law fits to the full mass
ratio distribution for all mass and separation bins (Figure 7.9; Appendix 7.14). These
fits reproduce the observed data well (Figure 7.10). For solar-type stars, the power
law slope is γlargeq ≈ −1.3 for q > 0.5 (i.e., weighted toward lower mass ratios than
the uniform distribution found at closer separations) and γsmallq ≈ 0 for q < 0.5. p(q)
becomes more bottom-heavy with increasing primary mass but is always flatter than
expected for random pairings from the IMF. Besides variation in the excess twin frac-
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tion, p(q) does not vary much with separation over 100 . s/AU < 50, 000 (Figures 7.12
and 7.13).

5. Origin of the twin excess: no theoretical models that have been proposed to explain
twin binaries at close separations predict them to form at s & 100AU. Dynamical
processes may lead to a formation bias against low-q binaries, but they are not expected
to produce a sharp peak at q ≈ 1. Given the monotonic fall-off in Ftwin with separation,
the similar width of the twin feature between close and wide binaries, and the lack of
a plausible mechanism for forming twins at very wide separations, we conjecture that
the excess twins must have formed at closer separations (s . 100AU; likely through
accretion from a circumbinary disk) and subsequently been widened by dynamical
interactions.

In this scenario, the separation-dependence of the twin fraction is an imprint of dynam-
ical orbit widening in binaries’ birth environments (see Section 7.6). The plausibility of
this explanation is not straightforward to assess because (a) present-day field binaries
formed in a wide range of environments and (b) existing models for widening and dis-
ruption of binaries in star forming regions do not fully explain the diversity of observed
binary populations in young clusters and in the field. A simple toy model suggests that
a separation-dependence in Ftwin comparable to that which is observed is predicted if
typical dynamical interactions are strong enough to disrupt binaries at the separation
inside which twins are expected to form (a . 100AU). However, the mass-dependence
of Ftwin at wide separations is not fully explained in such models. Further theoretical
work is required to (a) predict the primordial separation distribution of twins at differ-
ent masses and (b) constrain the efficiency of dynamical orbit widening for a realistic
ensemble of star forming environments. In future work, we will search for a wide twin
excess in observed star forming regions to shed more light on the primordial separation
distribution of twins and the density-dependence of orbit widening.
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7.8 Functional form of p(q)

7.8.1 How sharp is the twin feature?

In our default model, the twin feature is characterized by two number: Ftwin, the fractional
excess of binaries with near-equal masses, and qtwin, the mass ratio above which the excess
manifests itself. The implicit assumption in this model is that (a) the increase in the mass
ratio distribution near q = 1 occurs abruptly, not gradually, and (b) the amount of twin
excess is constant between q = qtwin and q = 1. In this Section, we assess the validity of this
assumption by using a more flexible model for the twin excess.

We model the twin excess between q = 0.85 and q = 1 as a histogram with 5 equally-
spaced bins of width ∆q = 0.03. As in the fiducial model, we assume the smooth underlying
distribution in this region is p(q) ∼ qγlargeq . We then introduce a set of uncorrelated weights,
wi with i = 0 . . . 5, and multiply p(q) in the i-th bin by wi. With this parameterization,
wi = 1 entails no deviation from a smooth power law in the i-th bin, wi = 2 corresponds to
a factor-of-two enhancement relative to the underlying power law, and wi = 0 means that
there are no binaries at all with mass ratios in the i-th bin. With a sufficiently large number
of bins, this parameterization is flexible enough to represent any arbitrary shape of p(q). 5
bins of width 0.03 is a pragmatic choice given the size of our binary catalog, since the shot
noise uncertainty increases as the bin size is reduced.

Figure 7.18 shows results of fitting a histogram model. Consistent with Figure 7.9,
a statistically significant excess of twins is found out to several thousand AU for 0.1 <
M1/M� < 1.2 and s . 2500AU, with the excess reaching s = 15, 000AU for 0.4 < M1/M� <
0.6. In most mass and separation bins, the data is consistent with a smooth power law
distribution (with no twin excess) all the way up to q = 0.97. In a few mass bins, there is
also a significant excess relative to the underlying power law at 0.94 < q < 0.97, but never
at q < 0.94. That is, in all bins where it is significant, the twin feature is “thin”: there is
not a broad peak at q & 0.8, but a narrow excess only at q & 0.95. It is because of the
narrowness of the twin peak that the excess of equal-mass pairs is so clearly apparent in the
observed data (e.g. Figure 7.3), even though twins only make up a small fraction (< 5%;
see Figure 7.11) of the total binary population at wide separations.

7.8.2 Choice of qbreak

As discussed in Section 7.4, we model the mass ratio distribution in all but the lowest-
mass bin as a broken power law whose slope changes at q = qbreak (Figure 7.7). In order to
make comparison between different separation bins more straightforward, we do not leave

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium


7.8. FUNCTIONAL FORM OF P (Q) 183
p
(q

)

0.1<M/M¯ < 0.4 0.4<M/M¯ < 0.6 0.6<M/M¯ < 0.8 0.8<M/M¯ < 1.2 1.2<M/M¯ < 2.5

p
(q

)
p
(q

)
p
(q

)
p
(q

)
p
(q

)

0.75 0.85 0.95
q=M2/M1

p
(q

)

0.75 0.85 0.95
q=M2/M1

0.75 0.85 0.95
q=M2/M1

0.75 0.85 0.95
q=M2/M1

0.75 0.85 0.95
q=M2/M1

50
<
s/

A
U
<

35
0

35
0
<
s/

A
U
<

60
0

60
0
<
s/

A
U
<

10
00

10
00
<
s/

A
U
<

25
00

25
00
<
s/

A
U
<

50
00

50
0
0
<
s/

A
U
<

15
00

0
1
5
00

0
<
s/

A
U
<

50
0
00

Figure 7.18 : Constraints on p(q) near q = 1. Solid lines and gray shaded regions represent median
and 2σ (middle 95.4%) constraints; y-axis scale is linear. We model the mass ratio distribution over
0.85 < q < 1 as a histogram with 5 bins of width 0.03, fitting for the height of each bin as a free
parameter. The twin excess generally becomes statistically significant only at 0.97 < q < 1, in some
cases with a modest enhancement at 0.94 < q < 0.97. At lower q, the mass ratio distribution is
generally consistent with a smooth power law (dashed line).
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Figure 7.19 : Mass ratio distribution constraints (right) and predicted ∆G distributions (left) for
fits with qbreak = 0.5 (red) and qbreak = 0.3 (cyan). We show a single separation bin (1000 < s <

2500). Top panels show solar-type stars (0.8 < M1/M� < 1.2); bottom panels show A and F stars
(1.2 < M1/M� < 2.5). For each choice of qbreak, we show the best-fit constraints when qbreak is
fixed at that value and other parameters are left free. For solar-type stars, a significantly better
fit can be obtained with qbreak = 0.5 than with qbreak=0.3. The opposite is true for A and F stars,
where the data strongly favor qbreak = 0.3.
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qbreak free, but instead fix it to a single value in a given mass bin: qbreak = 0.3 for 1.2 <
M1/M� < 2.5, and qbreak = 0.5 in all other mass bins. These values were chosen by trial and
error, but it is necessary to use different values of qbreak in different mass bins, as we now
show.

Figure 7.19 shows constraints on the mass ratio distribution (right) and corresponding
predicted ∆G distributoins (left) for two choices of qbreak and two bins of primary mass. A
single separation bin is shown for illustrative purposes: 1000 < s < 2500, where the twin
excess is weak in both mass bins. In the left panels, we compare the observed distributions
of ∆G to Monte Carlo binary populations produced for 5 draws from the posterior.

The top panels show that for solar-mass primaries (0.8 < M1/M� < 1.2), the best-fit
model obtained while assuming qbreak = 0.5 provides a significantly better fit to the observed
∆G distribution than the best-fit model with qbreak = 0.3: in the latter case, the observed
distribution is poorly reproduced both at 0 < ∆G . 2 and at ∆G ≈ 5. On the other
hand, the bottom panels show that qbreak = 0.3 provides a much better fit for A and F star
primaries.

7.8.3 Smoothly-broken power law

As discussed in Section 7.5, our choice to model the mass ratio distribution with a
broken power law leads to an unphysical sharp break in the best-fit mass ratio distribution
at intermediate q. We test the sensitivity of our constraints on p(q) to the assumed functional
form below. As an alternative to a sharply broken power law, we fit a “smoothly broken power
law” with the functional form

p (q) ∝
(

q

qbreak

)γsmallq

[
1 +

(
q

qbreak

)1/∆
](γlargeq−γsmallq)∆

. (7.4)

This function approaches p ∝ qγsmallq at q/qbreak � 1, and p ∝ qγlargeq at q/qbreak � 1. The
parameter ∆ controls the sharpness of the transition between the two regimes; in the limit
of ∆→ 0, it reduces to a simple double power law with a sharp transition between the two
slopes.

In Figure 7.20, we compare the constraints on p(q) obtained for a single mass and sepa-
ration bin when using the fiducial model (gray) and a smoothly broken power law (hatched
red). Overall, the constraints are quite similar, but as expected, fitting a broken power law
model smooths the best-fit profile for p(q) and removes the region near q ∼ 0.3 where the
nominal uncertainty is suppressed. We find qualitatively similar results for other bins of
mass and separation. However, we note that increasing ∆ shifts the peak of the distribution
towards lower q (upper panel of Figure 7.20). Since ∆ itself is often only weakly constrained,
this can lead to parameter covariances between ∆, γsmallq, and qbreak. We therefore use the
simpler broken power law as our fidicial model.
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Figure 7.20 : Top panel shows example smoothly broken power laws for different values of the
smoothing parameter, ∆. For all cases, γsmallq = 0.3, γlargeq = −1.2, Ftwin = 0.04, and qtwin = 0.95.
Increasing ∆ softens the transition between p ∼ qγsmallq and p ∼ qγlargeq . Bottom: middle 95.4%
constraints on p(q) for 0.8 < M1/M� < 1.2 and 600 < s/AU < 1000. We compare constraints
obtained by fitting a smoothly broken power law (red hatched) to those obtained by fitting our
default model, a simple double power law (i.e., forcing ∆ = 0). The constraints we obtain with the
two models are similar, with the most significant difference being that the smoothly broken model
lacks (a) the sharp break at qbreak = 0.5 and (b) the artificial suppression of uncertainty near a
pivot point at q = 0.3.
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7.9 Sensitivity to systematics
The uncertainties we report on mass ratio distribution parameters represent formal fitting

uncertainties due to Poisson errors, but they do not include various systematic uncertainties
due to modeling choices we make that are held fixed during fitting. Here we vary several
aspects of the model to assess how sensitively our constraints depend on them. Figure 7.21
shows the effects of varying the assumed IMF, stellar age distribution, and the isochrones
used to generate synthetic photometry, on our parameter constraints. We show a single
primary mass and separation bin with typical uncertainties and sensitivity to systematics.

Varying the IMF (blue) has very weak effects on our constraints, primarily because we fit
narrow bins in primary mass independently. Our constraints are also relatively insensitive to
the assumed star formation history (brown). Varying the age distribution has several effects:
it changes the number of low-mass companions that are still undergoing Kelvin-Helmholtz
contraction and are thus brighter, it changes the mass-luminosity relation at M & 0.7M�,
where age effects are non-negligible; and it changes the distance distribution implied in our
model because we adopt an age-dependent scale height (Equation 7.3). Varying the model
for unresolved subsystems has similarly weak effects. The green lines in Figure 7.21 show
constraints obtained when unresolved subsystems are ignored entirely in the model (i.e. none
of the synthetic wide binary components are assigned an unresolved companion). The thus-
obtained constraints are nearly indistinguishable from those obtained when subsystems are
included in the model.

Changing the adopted stellar models from PARSEC to MIST (Choi et al. 2016) has the
strongest effect on our constraints. Because the two models predict modestly different mass-
luminosity relations, a given ∆G corresponds to different q in the two models. This has weak
effects on the constraints on Ftwin and qtwin: twins necessarily have similar masses, and the
mapping between luminosity and mass varies less over a small range of masses than over a
large one. Differences between the models are largest for low-mass stars, where isochrones
are known to be more uncertain.

We note that while there clearly are uncertainties in our results associated with the stellar
models, the PARSEC models appear to fit the Gaia data for low-mass stars significantly
better than the MIST models. Particularly on the lower main sequence MG & 10, we are
unable to reproduce the morphology of the CMD unless we assume a higher-than-expected
mean metallicity of 〈[Fe/H]〉 ≈ +0.2. This is why we use the PARSEC synthetic photometry
in our fiducial model. We note that the PARSEC models use surface boundary conditions
that are empirically calibrated to match the observed mass-radius relation at low masses
(Chen et al. 2014); without this calibration, the tension between their predictions and the
observed lower main sequence is similar to that found for MIST models (e.g. Choi et al.
2018).



7.9. SENSITIVITY TO SYSTEMATICS 188

0.8<M1/M¯ < 1.2; 600<s/AU< 1000

1.7
5

1.5
0

1.2
5

1.0
0

γ
la

rg
eq

fiducial (age=0− 10Gyr; αIMF = − 2.3;
PARSEC isochrones)

shallow IMF (αIMF = − 2.0)

young (age=0− 5Gyr)

no subsystems

MIST isochrones

0.0
15

0.0
30

0.0
45

0.0
60

0.0
75

F
tw

in

0.9
45

0.9
60

0.9
75

0.9
90

q t
w

in

0.5
0

0.2
5

0.0
0

0.2
5

0.5
0

γsmallq

0.6

0.9

1.2

1.5

γ
s

1.8 1.5 1.2 0.9

γlargeq

0.0
15

0.0
30

0.0
45

0.0
60

0.0
75

Ftwin

0.9
45

0.9
60

0.9
75

0.9
90

qtwin

0.6 0.9 1.2 1.5

γs

Figure 7.21 : Sixty-eight and ninety-five per cent probability contours for one representative bin
of primary mass and physical separation. Panels on the diagonal show marginalized probability
distributions. Black contours shows results for fitting the fiducial model. Blue, brown, green, and
cyan contours show constraints obtained when the assumed IMF, star formation history, model for
unresolved binaries, and stellar models are varied. Overall, constraints are not very sensitive to the
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Figure 7.22 : Excess of twins in the SLoWPoKES-II catalog (Dhital et al. 2015). Top panel shows
the full catalog with SDSS photometry. Here there is no obvious excess of equal-brightness twins.
Middle panel shows Gaia photometry from the full SLoWPoKES-II catalog. The Gaia photometry
is significantly more precise than the ground-based SDSS photometry, so a slight excess of twins
is apparent, but the signal is somewhat weaker than that found in our catalog. The bottom two
panels show SDSS and Gaia photometry for the subset of the SLoWPoKES-II catalog for which
the Gaia photometry passes our cut on phot_bp_rp_excess_factor. This cut removes binaries in
which the photometry for either component is contaminated (either by the binary companion or by
a background star). Once sources with contaminated photometry have been removed, an excess of
twins is visible in both the SDSS and Gaia photometry.
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Figure 7.23 : Ratio of the number of binaries with nearly equal magnitudes (∆G < 0.25) to the
number with slightly different magnitude (0.25 < ∆G < 0.5) as a function of projected physical
separation (right). Error bars are 1 sigma. We compare the fiducial sample from this work (solid
black line) to the subsample of the SLoWPoKES-II catalog (Dhital et al. 2015) with uncontaminated
Gaia photometry (dashed red line; bottom panel of Figure 7.22) and the sample of Gaia binaries
from El-Badry & Rix (2019b), which reaches closer angular separations than our fiducial sample
but passes less stringent quality cuts.
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7.10 Twins in other catalogs
Another large sample of low-mass wide binaries is the SLoWPoKES-II catalog created by

(Dhital et al. 2015) using SDSS photometry. This catalog was produced without astrometry
and extends to larger distances than our catalog (d . 1 kpc). Despite the lack of parallaxes
and proper motions Dhital et al. (2015) were able to ensure relatively low contamination
by limiting their search to close angular separations (θ < 20 arcsec) and using an isochrone
prior (i.e., requiring both components of a binary to have similar photometric distance). The
selection function of their catalog is quite different from ours, so we do not attempt a full
probabilistic model of the mass ratio distribution. However, we check whether a twin excess
is visible in the magnitude difference distributions of their catalog and whether its strength
at fixed physical separation is consistent with that found in our catalog.

Figure 7.22 (top panel) shows the distribution of ∆r, the difference in apparent r-band
magnitude between the two components, as a function of physical separation for the full
SLoWPoKES-II catalog. Projected physical separations are calculated using the mean pho-
tometric distance of the two stars estimate by Dhital et al. (2015). We verified that for
stars that are bright enough to have precise Gaia parallaxes, the photometric and geometric
distances are usually in reasonably good agreement. The SLoWPoKES-II catalog primarily
contains binaries with q & 0.5: there are few pairs with ∆r > 5, and at physical separations
s . 2000AU, most pairs have ∆r < 2. This is primarily a consequence of the catalog se-
lection function. No clear excess of equal-brightness twins is apparent in the top panel of
Figure 7.22: the distribution of ∆r at fixed separation is reasonably smooth.

To check whether the lack of obvious twin excess in the full SLoWPoKES-II catalog is
a consequence of the SDSS ground-based photometry being poorer, we cross-matched the
catalog with Gaia DR2. A Gaia source was found with 1 arcsecond for both components
for ∼90% of the binaries in the catalog. In the 2nd panel of Figure 7.22, we plot all of
these sources (many of which do not pass the photometric and astrometric quality cuts
imposed in our catalog), showing the difference in G-band magnitude. Here, an excess of
equal-brightness binaries is visible, but it appears somewhat weaker than in our catalog.

Finally, in the 3rd and 4th panels of Figure 7.22, we show the SDSS and Gaia photom-
etry for the subset of the SLoWPoKES-II catalog in which the Gaia photometry for both
components passes the quality cut on phot_bp_rp_excess_factor that is imposed on our
catalog. This cut removes objects in which the sum of the flux in the BP and RP bands is
not consistent with the flux in the G-band (see Evans et al. 2018). Because the fluxes in
the BP and RP bands are dispersed over several arcsec while the G-band flux is obtained
by profile fitting a narrower image, this cut efficiently selects objects in which the Gaia
photometry (both BP/RP and G-band) is contaminated by a nearby source. Once this cut
is applied, a stronger excess of equal-brightness binaries is apparent in both the Gaia and
SDSS photometry. We show below that for the subsample of the SLoWPoKES-II catalog
with uncontaminated Gaia photometry, the twin excess at fixed separation is consistent with
that found in our catalog.

A natural worry is that the cut on phot_bp_rp_excess_factor could somehow select
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against pairs that are close on the sky and do not have nearly identical brightness or color,
thus erroneously producing an apparent excess of equal-brightness binaries. However, the
fact that no excess of equal-brightness pairs is found for chance alignments subject to the
same cut speaks against this possibility. Inspecting the SDSS images of binaries in which
the Gaia photometry for either component does not pass the phot_bp_rp_excess_factor
cut, we find that in most cases the contamination is quite strong: either the light from the
two stars is blended, or another source is blended with one of the components. In such cases,
the individual magnitudes of the components cannot be measured with high fidelity, likely
leading to underestimated photometric errors.

In Figure 7.23, we compare the strength of the twin excess found in the Gaia photometry
for the SLoWPoKES-II catalog (once the phot_bp_rp_excess_factor cut is applied) at
fixed separation (red) to that found in our catalog (black). The y-axis is similar to that in
Figure 7.5. The strength of the twin excess is consistent between the two catalogs at all
separations. We note that at close physical separations, binaries are only spatially resolvable
if they are nearby, so at s . 500AU, there is substantial overlap between the two catalogs.
At s & 1000AU, there is little overlap, because most of the SLoWPoKES-II binaries are too
distant and faint to enter our catalog.

We also show in Figure 7.23 the excess of equal-brightness binaries found in the catalog
of Gaia binaries constructed in El-Badry & Rix (2019b), which targeted closer separations.
This catalog only contains binaries with s < 500AU. Unlike our primary catalog, it did not
require the components to have measured GBP and GRP magnitudes, and it did not apply
any cuts on phot_bp_rp_excess_factor. This makes it possible to reach binaries with a
factor of ∼4 closer angular separations than our primary catalog. Figure 7.23 shows that
in this catalog, the twin excess continues to increase toward smaller separations, at least to
s ≈ 50ȦU. The twin excess is slightly weaker at fixed separation in this catalog, likely because
the photometry is more contaminated, but it is strongly inconsistent with 0. This provides
further evidence that the twin excess is not the result of the phot_bp_rp_excess_factor
cut creating a bias against binaries with unequal brightness or color.

In addition to the comparisons to other surveys described above, we have also verified
that the twin excess we find is not an artifact of the Gaia photometry. Cross-matching
our full binary catalog with the Pan-STARRS1 survey (Chambers et al. 2016; Flewelling
et al. 2016), we find a twin excess of similar strength in its photometry. The excess is also
apparent in SDSS photometry, but it is somewhat less narrow there due to the larger typical
photometric errors.

7.11 Selection function
The selection function of Gaia DR2 is known to exhibit spatial variation on small scales

as a result of the scanning law (e.g. Arenou et al. 2018a). Modeling all the small-scale
structure in the selection function is beyond the scope of this work, but doing so is not
necessary for our purposes. First, spatial variations are almost negligible for sources within
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the magnitude range of our catalog (G . 18). More generally, since we do not expect the
intrinsic properties of the binary population to vary much with on-sky position (particularly
on small scales), one can construct an effective selection function averaged over the whole
sky without introducing biases (e.g. Bovy 2016a).

We model the selection function for binaries as the product of two single-star terms and
a cross-term that depends on the angular separation and magnitude difference of the two
stars (Equation 7.2). Both terms are described below.

7.11.1 Single-star term

The single-star term (s1 and s2 in Equation 7.2; here we default to s1) is set primarily
by the following cuts we imposed in creating the catalog:

1. 5% parallax uncertainty: parallax_over_error > 20

2. precise photometry: phot_bp_mean_flux_over_error> 20, phot_rp_mean_flux_over_error
> 20, and phot_g_mean_flux_over_error > 20

3. good astrometric model fits;
√
χ2/(ν ′ − 5) < 1.2×max(1, exp(−0.2(G− 19.5)), where

χ2 and ν ′ are respectively referred to as astrometric_chi2_al and astrometric_n_good_obs_al
in the Gaia archive.

4. uncontaminated photometry; 1.0+0.015(GBP −GRP)2 < phot_bp_rp_excess_factor
< 1.3 + 0.06(GBP −GRP)2.

The motivation for these cuts is described in Lindegren et al. (2018). We discuss the effects
of each cut below. We note that ER18 also required difference in total proper motion of the
two stars to be precise, satisfying σ∆µ < 1.5mas yr−1. We find that for the subset of the
binaries studied in this work, that cut has a negligible effect on the selection function, as
sources that satisfy (i) and (ii) already satisfy it.

For (i), parallax error is expected to depend mainly on apparent magnitude. Figure 7.24
shows that the parallax error at a given G−band magnitude roughly follows a lognormal
distribution, the mean value of which increases for fainter stars. This allows us to calculate
the fraction of stars at a given distance and magnitude that will have parallax_over_error
> 20. In particular, the distribution of $/σ$ at a given distance and magnitude is

P ($/σ$) = P (log σ$)

∣∣∣∣ d log σ$
d ($/σ$)

∣∣∣∣ , (7.5)

where P (log σ$) is the (Gaussian) distribution of log parallax error. The fraction of stars
with $/σ$ > 20 is then

s$(G) =

∫ ∞
20

P ($/σ$) d ($/σ$) (7.6)

=
1

2

[
1− erf

(
µf ln 10 + ln (20/$)√

2σf ln 10

)]
. (7.7)
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Figure 7.24 : Top panel shows the distributions of log parallax error for nearby stars (D < 100 pc)
in 0.5-mag wide bins of apparent magnitude. We find that the distribution of σ$ at fixed apparent
magnitude is roughly lognormal; solid curves show Gaussian fits to the observed histograms. Bottom
left panel shows the mean and dispersion of the log parallax error distribution as a function of G-
band magnitude. Modeling the distribution of parallax error as a lognormal with µ and σ following
this panel allows us to calculate what fraction of stars with a given absolute magnitude and distance
will pass the cut of parallax_over_error > 20 (Equation 7.6; bottom right panel).
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Here µf and σf represent the mean and dispersion of the log parallax error distributions at
magnitude G; i.e., the quantities plotted in the lower left panel of Figure 7.24. Given Equa-
tion (7.6), we can can calculate the probability that a star with given absolute magnitude
at a given distance will satisfy parallax_over_error > 20; this is shown in the lower right
panel of Figure 7.24.

A similar strategy can be used to calculate the fraction of stars passing the photometric
precision cuts. We find that the cut on phot_bp_mean_flux_over_error is the most im-
portant: once it is applied and white dwarfs are excluded, all the sources that pass it also
pass the other cuts in (ii). This quantity depends primarily on the apparent magnitude in
the GBP band. As Figure 7.25 shows, the distribution of phot_bp_mean_flux_over_error
at a given GBP is also roughly lognormal. We use the empirical dependence of the distribu-
tions of phot_bp_mean_flux_over_error on GBP from the bottom left panel of Figure 7.25
to predict the distribution of phot_bp_mean_flux_over_error for a hypothetical star with
absolute BP-band magnitude at a given distance, and then calculate sBP as the fraction of
that distribution that exceeds the adopted threshold of 20:

sBP (GBP) =

∫ ∞
20

P (log (FBP/σBP)) d log (FBP/σBP) (7.8)

=
1

2

[
1 + erf

(
µf − log 20√

2σf

)]
. (7.9)

Here FBP/σBP represents phot_bp_mean_flux_over_error, and µf and σf represent the
mean and dispersion of the log phot_bp_mean_flux_over_error distributions at apparent
BP-band magnitude GBP; i.e., the quantities plotted in the lower left panel of Figure 7.25.

It is also worth considering whether the quality cuts (iii) and (iv) change the single-star
selection function. We assess the effects of each quality cut as follows. We begin with the
full sample of stars within 200 pc satisfying $/σ$ > 10. We then apply each quality cut and
monitor the effects on the sample. For this nearby sample, it is straightforward to determine
whether most of the sources removed by a particular cut are erroneous (generally distant
faint stars with incorrect parallaxes) or real, because distant sources with incorrect parallaxes
generally fall in a cloud below the main sequence (see Lindegren et al. 2018). What we wish
to quantify is the fraction of real sources that are removed by each cut, and whether these
cuts introduce systematic biases.

Figure 7.26 shows the fraction of suspected genuine sources removed by cuts (iii) and
(iv). We conclude that cut (iv) has a negligible effect on the single-star selection function.
The effects of cut (iii) are also weak, but it does appear to preferentially remove nearby
sources. This may be because unresolved astrometric binaries produce large deviations from
linear motion of the light centroid at close distances. We tabulate scut due to cut (iv) as a
function of parallax. The total single-star selection function is then

s1 = s$(G)sBP(GBP)scut($), (7.10)

where s$(G) and sBP(GBP) are given by Equations (7.6) and (7.8), respectively.
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Figure 7.25 : Top panel shows distributions of phot_bp_mean_flux_over_error for nearby stars
(D < 100 pc) in different 0.5 mag wide bins of GBP apparent magnitude. Solid lines show lognormal
fits; vertical dashed line shows the cut of phot_bp_mean_flux_over_error > 20 that both compo-
nents of a binary must satisfy to enter the catalog. Bottom left panel shows µ and σ of lognormal
fits to these distributions as a function of GBP. From these, we calculate the probability that a star
at a given distance and absolute magnitude MBP will have phot_bp_mean_flux_over_error > 20
(bottom left panel).
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Figure 7.26 : Fraction of suspected genuine sources within 200 pc that survive the cuts we impose
on astrometric_chi2_al and bp_rp_excess_factor, as a function of apparent magnitude (left)
and distance (right). Both cuts remove only a small fraction of genuine sources. The cut on
bp_rp_excess_factor removes sources with contaminated photometry (section 7.11.2). The cut on
astrometric_chi2_al preferentially removes nearby sources, perhaps because perturbations from
a companion lead to the larger angular deviations from linear motion for nearby sources.
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Figure 7.27 : Contrast sensitivity given our quality cuts. θ0 is the angular separation below which
the sensitivity to a companion with magnitude difference ∆G drops off rapidly (see Equation 7.11).
Companions can be detected at closer separations when the magnitude difference is small. We
compare the values of θ0 found by ER18 (for all stars passing our quality cuts in a dense field) to
those derived from our all-sky catalog of nearby chance alignments with precise parallaxes.

7.11.2 Contrast sensitivity for close pairs

A critical aspect of the selection function for binaries is the reduction in sensitivity to a
companion at close angular separations. Whether a binary enters our catalog depends both
on the angular separation of the two stars and on their flux ratio, as a secondary is more
likely to be outshone or contaminated by light from the primary at fixed angular separation
if the flux ratio is large than if it is small.

The sensitivity to a companion can be measured by comparing the two point correlation
function of chance alignments to what would be expected in the absence of crowding/blending
effects (e.g. Arenou et al. 2018a; Brandeker & Cataldi 2019a). Of course, the sensitivity to
companions in a particular catalog depends on the quality cuts imposed: cuts that remove
objects with somewhat contaminated photometry will lower the sensitivity.
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We quantified the reduction in sensitivity to a companion as a function of angular sep-
aration θ and magnitude difference ∆G in ER18. There we found that, given our cuts on
astrometric χ2 and photometric quality (primarily bp_rp_excess_factor), the sensitivity
to a companion goes to 0 at θ � θ0, where θ0 ≈ 2 arcsec for sources with similar magnitude,
and θ0 increases with ∆G. We quantified this dependence by fitting a function:

s∆G (θ) =
1

1 + (θ/θ0)−β
, (7.11)

where β ≈ 10 and we fit for θ0 as a function of ∆G. We note that the angular resolution of
Gaia DR2 is actually significantly better than 2 arcsec: most companions are detected down
1 arcsec separations, and the detection fraction only drops to zero at θ < 0.5 arcsec (Arenou
et al. 2018a; Ziegler et al. 2018). The ∼2 arcsec limit for our catalog is a result of our require-
ment that both stars have a measured bp_rp color and the cut on bp_rp_excess_factor.

The dependence of θ0 on ∆G calculated in ER18 was derived from the source counts of all
sources passing our quality cuts (iii) and (iv) in a dense field, most of which are fainter than
the objects in the binary catalog. Here, we improve slightly on the ER18 measurement by
repeating their analysis, but using the sources from the chance alignment catalog described
in Section 7.3 instead of all sources in a dense field. The advantage of this approach is that
the sources in the chance alignment catalog, being nearby and having precise parallaxes, are
more representative of objects in the binary catalog. Unsurprisingly – since it was verified
in ER18 that there are no strong trends in contrast sensitivity with apparent magnitude or
source density; see also Brandeker & Cataldi (2019a) – the improved constraints are fairly
similar to those derived in ER18. We compare them in Figure 7.27. On average, we find
that the angular resolution at fixed separation is marginally better for the bright chance
alignments than was found in ER18.

7.12 Model validation
To test whether the assumptions of the model we use to fit for the intrinsic mass ratio

distribution are valid, we use it to predict properties of the population of single stars that
pass the same quality cuts as the binaries in our catalog (Section 7.12.1) and the separation
distribution of chance alignments (Section 7.12.2).

7.12.1 Single stars

We query the Gaia catalog for all stars with $ > 5mas that pass the cuts on astrometric
and photometric quality and precision that we require both members of the binary catalog to
pass. Distributions of their distance, apparent magnitude, absolute magnitude, and color are
shown in Figure 7.28 with a black histogram. To compare to the model predictions, we draw
masses, ages, metallicities, distances from the fiducial distributions described in Section 7.4,
compute synthetic photometry using PARSEC isochrones, and pass the observables through
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Figure 7.28 : Validation of the single-star selection function and underlying Galactic model. Black
histograms show distributions of distance, apparent magnitude, absolute magnitude, and color for
all stars (not just binaries) within 200 pc that pass the quality cuts of the binary catalog. Black line
show the distributions predicted by our model; i.e., assuming the same single-star selection function,
IMF, Galactic scale height, star formation history, and metallicity distribution that we use when
fitting the binary population. The reasonably good agreement with the observed distributions
suggests that our empirical selection function and Galactic model are reasonable. Our fiducial
model slightly overpredicts the number of faint stars. This tension can be resolved if a shallower
IMF is assumed (with a logarithmic slope of -0.9 instead of -1.3 at M < 0.5M�; gold). Overall, we
regard the agreement between the fiducial model and observations as quite satisfactory.
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the single-star selection function (Appendix 7.4.2). The resulting selection-function weighted
distributions are compared to the data in Figure 7.28 (red histogram). In the upper left panel,
we also show the distance distributions predicted for a uniform spatial distribution and for
an exponential disk with scale height of 300 pc (comparable to the Milky Way; see Jurić et al.
2008a), both assuming no incompleteness. The distance distribution of single stars is not
that different from the exponential disk prediction, but it begins to deviate at d & 130pc,
which is where incompleteness effects become significant for MG ≈ 14 (Figure 7.24).

The agreement between model and data is reasonably good. However, the fiducial model
predicts slightly too many faint stars and too few bright stars. The gold histograms shows
that the agreement can be improved if a slightly shallower IMF is assumed, with a logarithmic
slope of -0.9 (instead of -1.3, as assumed in the fiducial model) at M < 0.5M�.10 This is
consistent with the recent result from Sollima (2019), who used the Gaia nearby star sample
to measure the IMF. For the sake of this work, we are agnostic of whether Figure 7.28
indicates that the low-mass IMF in the solar neighborhood is slightly shallower than that
assumed in our fiducial model or points towards a systematic in some other aspect of the
model (such as the metallicity distribution function or stellar models). We note that changing
the assumed IMF has very little effect on our inferred mass ratio distribution (Figure 7.21).

We also note that the color distributions predicted by our model do not exactly match the
observed distribution for either choice of IMF. This could be due to reddening, the adopted
MDF (as the subset of stars with spectroscopic metallicity measurements is not guaranteed
to be an unbiased sample), or imperfect stellar models.

7.12.2 Chance alignments

To validate our model for the contrast sensitivity as a function of angular separation, we
predict the distributions of magnitude difference at fixed separation using our model and
compare to the chance alignment catalog described in Section 7.3. This is accomplished
as follows. We draw masses, ages, distances, and metallicities for both “components” of a
chance alignment independently, and we draw angular separations assuming P (θ) dθ ∝ 2πθ.
Just as for true binaries, we compute the selection function for each pair by multiplying the
two single-star selection functions and the angular contrast sensitivity term. The results are
shown in Figure 7.29 σ0. The agreement with the real chance alignment catalog is good.

7.13 RV variability
Although Gaia DR2 does not contain multi-epoch radial velocity measurements, the

published radial velocity uncertainties contain information that can be exploited to detect
a large fraction of RV-variable close binaries. The radial_velocity_error reported in the
Gaia archive represents the uncertainty on the median of velocity measurements from several

10This slope was found by fitting the IMF from the CMD, as described in Appendix C of El-Badry et al.
(2018a).
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Figure 7.29 : Distributions of apparent magnitude difference for our observed sample of chance
alignments within 400 pc (black) and a simulated sample based on the same selection function
and distributions of mass, age, metallicity, and distance assumed in modeling genuine binaries.
Agreement between data and model validates the model assumptions, particularly the sensitivity
to a companion as a function of angular separation and magnitude difference.
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transits (see Katz et al. 2019). It is calculated as

εRV =

[
π

2Nobs

σ2
RV + σ2

0

]1/2

, (7.12)

where σ0 = 0.11 km s−1 is a constant term that represents the minimum achievable RV uncer-
tainty due to calibration issues, Nobs is the number of radial velocity transits (rv_nb_transits
in the Gaia archive), and σRV is the standard deviation of the RVs measured in individual
transits. The standard deviation of the measured transit RVs can thus be reconstructed as

σRV =
[
2Nobs

(
ε2RV − σ2

0

)
/π
]1/2

. (7.13)

We expect σRV to be larger than usual if the variation in the true radial velocity of a star
between transits is large compared to the observational RV precision. This suggests that close
binaries could be identified as stars with unusually large σRV for their color and apparent
magnitude.

To quantify this, we queried the Gaia archive for all stars within 200 pc that pass the
quality cuts imposed on binary components and additionally have rv_nb_transits > 2.
Selecting main-sequence stars in bins of bp_rp color and G-band magnitude, we calculated
the median σRV in each bin (Figure 7.30). As expected, the typical RV error increases
with increasing G magnitude and is larger for bluer stars, which have weaker and broader
absorption lines, at fixed magnitude.

We designate sources that have σRV larger than 2.5 times the median for their color and
apparent magnitude as likely close binaries. The factor of 2.5 is a practical choice to balance
the number of false-positives and false-negatives. To assess the false-negative rate for this
designation, we cross-matched Gaia DR2 with the catalog of RV-variable main-sequence
SB1s identified by El-Badry et al. (2018g) using APOGEE spectra and calculated σRV for
the subsample of that catalog that passes our quality cuts. Among SB1s for which El-Badry
et al. (2018g) found the radial velocity to vary by at least 5 km s−1 between visits, 62% are
correctly identified as binaries based on the Gaia σRV. This fraction climbs to 82% for sources
whose APOGEE RVs varied by at least 15 km s−1. On the other hand, the false-positive rate
is relatively low: only 2.6% of the stars classified by El-Badry et al. (2018g) as likely to be
single are classified as binaries based on the Gaia σRV. This means that, although some
true binaries will be missed and there will be some false positives, the Gaia σRV can be
used to obtain an estimate of the close binary fraction in a population (where “close” means
a . few AU).

To assess whether the components of wide twins are more likely to have an unresolved
close companion than the components of non-twins, we use the σRV distributions to estimate
the fraction of components of twin (∆G < 0.25) and non-twin (0.25 ≤ ∆G < 1) wide binaries
with an unresolved close companion. We only consider binaries with 100 < s/AU < 500,
since at wider separations, the number of “excess” twins is subdominant relative to the
underlying population (Figure 7.10). We consider all components with masses in the range
0.5 < M/M� < 1.2 that have Gaia RVs with rv_nb_transits > 2 (i.e., we do not require
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this represents the typical radial velocity precision for stars of a given brightness and spectral type.
Most stars that have σRV substantially larger than the median for their color and magnitude are
close binaries.
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both resolved components to have measured RVs). Among 546 eligible components of wide
twins, 29 have σRV consistent with having unresolved close companion, implying a close
companion fraction per wide binary component of

fclose companion, twins = 0.053± 0.012. (7.14)

Of the 780 eligible components of non-twins, 76 have σRV consistent with having unresolved
close companion. This implies

fclose companion, non−twins = 0.097± 0.013. (7.15)

That is, the fraction of wide binary components that have a close unresolved companion is
higher at the 2 sigma level for non-twins than for twins. This would seem to speak against a
scenario in which the excess of wide twins is causally linked to hierarchical triples. Indeed,
given the non-zero false positive rate of the σRV-based close binary identification and the
fact that “excess” twins represent only about half of the population with ∆G < 0.25, the
data are consistent with the excess twins having no close companions at all.

7.14 Full fitting constraints
Constraints on fitting parameters for all bins of primary mass and separation are listed

in Table 7.2. Error bars are 2 sigma (middle 95.4%).
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Table 7.2 : Marginalized 2 sigma constraints on fitting parameters for all bins of primary mass and
separation. For 0.1 < M1/M� < 0.4, we fit a single power law, so γsmallq = γlargeq. The units of M1

are M� in all columns.
0.1 < M1 < 0.4 0.4 < M1 < 0.6 0.6 < M1 < 0.8 0.8 < M1 < 1.2 1.2 < M1 < 2.5

Ftwin

50 < s/AU < 350 0.189±0.042
0.049 0.112±0.034

0.038 0.059±0.019
0.021 0.101±0.027

0.029 0.086±0.058
0.075

350 < s/AU < 600 0.105±0.036
0.035 0.062±0.018

0.020 0.043±0.016
0.019 0.054±0.014

0.018 0.088±0.037
0.047

600 < s/AU < 1, 000 0.049±0.032
0.039 0.054±0.017

0.020 0.032±0.016
0.019 0.035±0.015

0.016 0.015±0.024
0.034

1, 000 < s/AU < 2, 500 0.023±0.025
0.033 0.049±0.018

0.022 0.024±0.016
0.016 0.013±0.010

0.011 0.002±0.015
0.020

2, 500 < s/AU < 5, 000 −0.001±0.048
0.039 0.047±0.025

0.029 0.018±0.020
0.019 0.023±0.017

0.021 −0.003±0.023
0.023

5, 000 < s/AU < 15, 000 0.005±0.040
0.043 0.043±0.030

0.031 0.014±0.018
0.021 0.007±0.015

0.015 0.003±0.023
0.035

15, 000 < s/AU < 50, 000 0.024±0.094
0.120 −0.009±0.039

0.043 −0.012±0.028
0.032 0.009±0.024

0.032 0.001±0.037
0.057

qtwin

50 < s/AU < 350 0.953±0.010
0.006 0.959±0.023

0.014 0.969±0.019
0.005 0.962±0.014

0.009 0.950±0.018
0.029

350 < s/AU < 600 0.937±0.006
0.011 0.959±0.017

0.009 0.954±0.021
0.016 0.967±0.027

0.010 0.936±0.006
0.018

600 < s/AU < 1, 000 0.954±0.022
0.025 0.963±0.025

0.012 0.939±0.008
0.018 0.957±0.023

0.028 0.954±0.022
0.040

1, 000 < s/AU < 2, 500 0.975±0.043
0.017 0.963±0.029

0.017 0.941±0.011
0.030 0.959±0.025

0.030 0.957±0.026
0.037

2, 500 < s/AU < 5, 000 0.955±0.025
0.039 0.953±0.022

0.019 0.950±0.019
0.029 0.945±0.014

0.039 0.958±0.027
0.035

5, 000 < s/AU < 15, 000 0.959±0.028
0.038 0.951±0.020

0.030 0.965±0.034
0.027 0.970±0.038

0.027 0.960±0.029
0.035

15, 000 < s/AU < 50, 000 0.961±0.030
0.031 0.961±0.029

0.033 0.961±0.029
0.032 0.957±0.026

0.038 0.957±0.026
0.039

γlargeq

50 < s/AU < 350 0.52±0.45
0.45 0.17±0.40

0.39 −1.43±0.48
0.51 −1.22±0.66

0.67 −0.89±0.90
1.00

350 < s/AU < 600 −0.16±0.43
0.43 −0.01±0.29

0.27 −0.89±0.35
0.33 −1.83±0.42

0.38 −1.88±0.54
0.55

600 < s/AU < 1, 000 0.23±0.41
0.45 −0.44±0.28

0.27 −1.19±0.30
0.30 −1.43±0.30

0.30 −1.16±0.33
0.28

1, 000 < s/AU < 2, 500 0.39±0.41
0.39 −0.55±0.28

0.26 −0.90±0.26
0.25 −1.54±0.22

0.22 −1.55±0.21
0.19

2, 500 < s/AU < 5, 000 0.23±0.52
0.52 −0.43±0.40

0.38 −1.04±0.36
0.34 −1.52±0.32

0.33 −1.52±0.29
0.27

5, 000 < s/AU < 15, 000 0.22±0.51
0.59 −0.42±0.44

0.42 −0.86±0.37
0.35 −1.35±0.33

0.31 −1.31±0.28
0.25

15, 000 < s/AU < 50, 000 0.53±0.86
0.84 −0.43±0.67

0.67 −0.72±0.65
0.63 −1.39±0.55

0.58 −1.22±0.46
0.43

γsmallq

50 < s/AU < 350 0.33±0.60
0.56 0.20±0.51

0.58 0.13±0.64
0.69 0.13±0.98

1.00
350 < s/AU < 600 −0.37±0.44

0.47 0.24±0.41
0.47 0.40±0.41

0.43 −0.01±0.79
0.86

600 < s/AU < 1, 000 0.17±0.44
0.46 0.24±0.33

0.36 0.12±0.26
0.26 0.15±0.55

0.72
1, 000 < s/AU < 2, 500 0.53±0.44

0.44 0.06±0.25
0.27 0.12±0.17

0.16 0.56±0.42
0.47

2, 500 < s/AU < 5, 000 0.02±0.56
0.58 −0.15±0.33

0.34 −0.14±0.21
0.21 0.09±0.36

0.43
5, 000 < s/AU < 15, 000 0.13±0.59

0.69 0.12±0.39
0.40 −0.20±0.21

0.22 −0.18±0.40
0.40

15, 000 < s/AU < 50, 000 −0.02±0.84
0.88 −0.13±0.69

0.60 −0.24±0.42
0.41 −0.09±0.64

0.66
γs
50 < s/AU < 350 −1.36±0.22

0.21 −1.55±0.18
0.20 −1.22±0.32

0.38 −1.02±0.40
0.46 −0.84±0.77

0.93
350 < s/AU < 600 −1.10±0.43

0.42 −1.20±0.29
0.27 −0.89±0.39

0.38 −0.80±0.47
0.43 −1.28±1.00

1.00
600 < s/AU < 1, 000 −1.48±0.48

0.46 −1.16±0.31
0.29 −1.75±0.34

0.37 −1.13±0.36
0.36 −0.03±0.74

0.78
1, 000 < s/AU < 2, 500 −1.67±0.23

0.26 −1.56±0.14
0.14 −1.52±0.15

0.16 −1.47±0.13
0.13 −1.41±0.24

0.26
2, 500 < s/AU < 5, 000 −2.05±0.51

0.46 −1.71±0.30
0.30 −1.75±0.30

0.29 −1.67±0.23
0.26 −1.40±0.42

0.45
5, 000 < s/AU < 15, 000 −1.74±0.34

0.36 −1.74±0.21
0.21 −1.62±0.21

0.21 −1.84±0.16
0.17 −1.35±0.28

0.27
15, 000 < s/AU < 50, 000 −1.61±0.90

0.83 −1.68±0.47
0.49 −2.21±0.54

0.50 −2.00±0.37
0.40 −1.50±0.66

0.63
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Chapter 8

Not so fast: LB-1 is unlikely to contain a
70 M� black hole

An earlier version of this article was previously published in El-Badry, K. and Quataert,
E., MNRASL, 2020, 493, 22.

8.1 Abstract
The recently discovered binary LB-1 has been reported to contain a ∼ 70M� black hole

(BH). The evidence for the unprecedentedly high mass of the unseen companion comes from
reported radial velocity (RV) variability of the Hα emission line, which has been proposed
to originate from an accretion disk around a BH. We show that there is in fact no evidence
for RV variability of the Hα emission line, and that its apparent shifts instead originate from
shifts in the luminous star’s Hα absorption line. If not accounted for, such shifts will cause a
stationary emission line to appear to shift in anti-phase with the luminous star. We show that
once the template spectrum of a B star is subtracted from the observed Keck/HIRES spectra
of LB-1, evidence for RV variability vanishes. Indeed, the data rule out periodic variability
of the line with velocity semi-amplitude KHα > 1.3 km s−1. This strongly suggests that the
observed Hα emission does not originate primarily from an accretion disk around a BH, and
thus that the mass ratio cannot be constrained from the relative velocity amplitudes of the
emission and absorption lines. The nature of the unseen companion remains uncertain, but
a “normal” stellar-mass BH with mass 5 . M/M� . 20 seems most plausible. The Hα
emission likely originates primarily from circumbinary material, not from either component
of the binary.

8.2 Introduction
Characterization of the Milky Way’s stellar-mass black hole (BH) population is a primary

aim of numerous stellar surveys. As part of a search for stellar-mass BHs with normal-
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star companions, Liu et al. (2019) recently identified an intriguing BH-candidate (“LB-1”)
consisting of a B star with an unseen companion. The B star is on a nearly circular orbit
with P = 78.9 ± 0.3 days and velocity semi-amplitude KB = 52.8 ± 0.7 km s−1, yielding a
mass function (which represents the absolute minimum companion mass compatible with
the orbit of the star) of f(m) = 1.2M�. If the B star’s mass is taken to be MB ≈ 8.2M�,
as Liu et al. (2019) estimated from a model fit to the stellar spectrum, this corresponds to
a lower limit on the companion mass of M2 & 6.3M�.

However, Liu et al. (2019) argue for a companion mass much higher than this, M2 =
68+11
−13M�, which implies a low inclination (i ≈ 16 deg). The spectrum of LB-1 contains both

the expected absorption lines of a B star, and a strong Hα emission line, which the authors
interpret as originating from an accretion disk around a BH. They find the Hα line to be
RV variable, with velocity semi-amplitude KHα = 6.4± 0.8 km s−1, and interpret the ratio of
the velocity amplitudes of the absorption and emission lines, KB/KHα ≈ 8.2, as representing
the mass ratio, M2/MB. Taking MB ≈ 8.2M�, this yields M2 ≈ 68M�.

The proposed BH mass is more than double that of the most massive BHs in dynamically
confirmed X-ray binaries (e.g. McClintock & Remillard 2006) and is also more massive than
the most massive pre-merger BHs thus far discovered via gravitational waves (Abbott et al.
2019). The existence of a 68M� BH formed by stellar collapse is unexpected on theoretical
grounds, because would-be progenitors of BHs with masses between about 50 and 130M�
are predicted to lose mass and then explode via pulsational pair-instability supernovae (e.g.
Woosley 2017), leaving behind either lower-mass BHs or no remnants at all. The novel and
unexpected nature of the object has already spurred several theoretical investigations into
possible formation channels for such a binary (e.g. Belczynski et al. 2019; Shen et al. 2019;
Groh et al. 2019).

In this Letter, we reconsider the evidence for the mass of the unseen companion in LB-1.
We argue that the companion is probably a stellar-mass BH, but that there is no evidence
for an unusually high mass.

8.3 Basic issue
The observed spectrum of LB-1 contains absorption lines, presumably formed in the

photosphere of a B star, and emission lines (most notably, Hα), with some other origin. B
stars have strong Hα absorption lines with broad wings, so the observed flux at the Hα line
is a sum of emission and absorption (i.e., a reduction in the stellar continuum). The stellar
absorption lines are known to be RV-variable. If one wishes to determine the velocity of the
Hα emission alone, it is necessary to first account for the wavelength-dependent reduction in
total observed flux due to the absorption line. This is illustrated schematically in Figure 8.1,
where we show the effects of an RV-variable absorption line on the apparent velocity of an
emission line whose true velocity is constant.

The emission line is modeled with a Voigt profile centered on 0 with Gaussian σ =
90 km s−1, Lorentzian γ = 50 km s−1, and amplitude 2.8. As we discuss in Section 8.4, we
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Figure 8.1 : Schematic illustration of the effects of an RV-variable absorption line on the apparent
velocity of a stationary emission line. The velocity of the emission line is fixed at RVHα = 0 km s−1.
We Doppler shift the spectrum of a B star (dotted lines) by ±53 km s−1, representing the luminous
star’s orbital motion. This causes the total spectrum (emission plus absorption; solid lines) to shift
in the opposite direction. We then fit for the mean velocity of the Hα emission at each epoch using
the wings of the total emission profile, without accounting for contamination from the absorption
line. This causes the emission line to appear to shift by ±4.4 km s−1, exactly in anti-phase with the
luminous star. This shift is not real; the emission line’s velocity is fixed at 0 by construction.
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Figure 8.2 : Left: comparison of Keck/HIRES spectra of LB-1 obtained at two different epochs,
centered on the Hα line. The velocity of the B star varies by 71 km s−1 between these epochs. The
wings of the emission line profiles also suggest a velocity offset between them, and fitting yields an
offset of 10 km s−1. Right: the same two spectra after the template spectrum of a B star at the
appropriate velocities has been subtracted. There is now no evidence of a velocity offset between
the two emission lines: the apparent offset in the left panel was due to the RV variability of the
stellar absorption line.

find this functional form to provide a good fit to the Keck/HIRES Hα emission profile of
LB-1, particularly its wings. We model the spectrum of the B star with a TLUSTY model
(Hubeny & Lanz 1995) with Teff = 18, 000K, log g = 3.5, and Z = Z�, consistent with the
fit to the spectrum of the B star obtained by Liu et al. (2019)1. We broaden the spectrum to
v sin i = 10 km s−1, as found for the observed B star, using the rotational broadening profile
from Gray (1992a). We shift the stellar spectrum by ±53 km s−1, representing changes in
the velocity of the B star throughout its orbit, and then add the emission line (always
centered on RVHα = 0 km s−1) to the shifted stellar spectrum at each epoch. We degrade
the total spectrum to the resolution of the Keck/HIRES data analyzed in the next section
(R ≈ 60, 000), assuming a Gaussian line spread function. The details of our treatment of
the spectrum do not sensitively affect our results, because the Hα absorption line is broad
and basically featureless in the region used to measure its velocity.

Figure 8.1 shows that shifts of the absorption line cause the total emission profile to shift
in anti-phase with the star. When we fit for the line’s mean velocity (using the profile wings,
as described in the next section), we infer an erroneous shift of ±4.4 km s−1, even though the
line is stationary by construction. When the stellar spectrum is subtracted from the total
emission, we of course recover the true RVHα = 0 km s−1 at all epochs. One might hope that

1Several works (e.g. Abdul-Masih et al. 2019; Simón-Díaz et al. 2019; Irrgang et al. 2019) have reported
a cooler temperature, Teff ≈ 13, 000K. None of our results change significantly if we adopt this value.
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masking the line center during fitting would protect against contamination from absorption.
It does not, because although the absorption line core is narrow and excluded from the region
where RVs are fit, the Balmer lines in the B star have broad wings, such that the magnitude
of emission and absorption in LB-1 are comparable at |RV| & 200 km s−1.

8.4 Contamination from absorption in LB-1
We now investigate the effect of contamination from Hα absorption on the spectrum of

LB-1. We analyze the same 7 epochs of Keck/HIRES data analyzed by Liu et al. (2019, their
Extended Data Table 1). The data were obtained and reduced using the standard California
Planet Search setup (Howard et al. 2010) and are available through the Keck Archive. We
focus on the Keck/HIRES data because it has the highest spectral resolution, allowing the
most precise measurement of the Hα line’s velocity, but we expect measurements based on
spectra from other instruments (e.g. LAMOST and GTC) to be affected in the same way.

We barycenter-corrected the spectra and normalized them by dividing by the mean flux
at 6580 < λ/AA < 6600; this simple procedure works well because the spectra are featureless
in this region and we only study a narrow wavelength range centered on Hα.

Figure 8.2 compares the Hα line profiles of LB-1 in the two epochs between which the
velocity of the B star varies most. In the left panel, we simply overplot the normalized
spectra from the two epochs. Here, there appears to be a visible shift between the two
line profiles, and fitting for the emission line velocities (see Section 8.4.1) yields a velocity
shift of 10 km s−1 between them. However, the right panel of Figure 8.2 shows that once
the TLUSTY spectrum of the B star is subtracted, the line profile wings in the two epochs
become almost perfectly aligned, with no evidence for a velocity shift between them. We
find very similar results when comparing all pairs of single-epoch spectra.

8.4.1 Fitting RVs

We now turn to measuring the radial velocity of the Hα emission line at all epochs. As
shown in Figure 8.2, the emission near line center (within ±150 km s−1 of the mean velocity)
varies substantially between epochs, but the shape of the emission line wings is relatively
stable. Following Liu et al. (2019), we measure the line velocity using the region of the
spectrum with |RV| < 500 km s−1, while masking out the line center, which is defined as
the region where the emission line flux exceeds 1/3 of its maximum value (shaded regions
in Figure 8.3). We measure the velocity of the line at each epoch by fitting a Voigt profile,
which we find can always provide a good fit to the line profile within these windows.

Each fit has 4 free parameters: a central velocity RVHα, an amplitude A (which we define
as the profile’s value at line center), a Gaussian dispersion σ, and a Lorentzian HWHM
γ. Figure 8.3 shows the results of these fits. We also carry out similar fits without first
subtracting the spectrum of the B star. The formal fitting uncertainty in RVHα is typically
(0.1− 0.2) km s−1. We inflate this uncertainty by adding to it a 1 km s−1 systematic error in
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quadrature to account for uncertainty in the wavelength solution when it is not registered to
lines of known wavelength (e.g. Griest et al. 2010). Our fitting procedure is not identical to
the one used by Liu et al. (2019), but we find it to be robust and show below that it yields
consistent results.

In Figure 8.4, we plot the results of this RV fitting as a function of the binary’s orbital
phase. Red points show RV measurements when contamination from the B star’s absorption
lines is not corrected for. As expected, these are in agreement with the model from Liu
et al. (2019), which has KHα = 6.4 km s−1, and they are inconsistent with a constant velocity
for the Hα line. Black points show RV measurements after the B star template spectrum
has been subtracted. These show no evidence for variation with orbital phase and appear
consistent with a constant velocity for the Hα line wings.

The data are strongly inconsistent with KHα = 6.4 km s−1 and in fact rule out any
KHα > 1.3 km s−1 at the 2-sigma level. The best-fit sinusoidal velocity amplitude is formally
KHα = 0.25+0.7

−0.3 km s−1, but a constant velocity provides essentially as good a fit as the best-
fit sinusoidal model (∆χ2 = 0.1). Given the sinusoidal model’s higher complexity, there is
no evidence that the Hα line is RV-variable.

The dashed vertical lines in Figure 8.3 show the velocity of the B star at each epoch.
Although the wings of the emission line are stationary, there is a narrow component of the
emission (FWHM ≈ 50 km s−1) that shifts between epochs and appears to trace the B star.
Moreover, the emission flux in the inner wings (outside the narrow peak) is correlated with
the velocity of the star: in epochs 4-8, when the star is blueshifted relative to the barycenter,
there is excess emission in the left wing relative to the Voigt fit, and a deficit of emission in
the right wing. The situation is reversed in epoch 1, when the star is redshifted relative to
the barycenter.

8.5 Discussion
We have shown that the Hα line in LB-1, the binary reported to contain a 70M� BH, does

not actually display evidence of periodic RV variability, at least not at the KHα > 1.3 km s−1

level. This undermines the interpretation of the previously reported KHα in terms of the
system mass ratio, and thus the reported 70 M� mass.

8.5.1 Nature of the unseen companion

One conceivable interpretation is that the companion is a BH with even higher mass
than reported: assuming MB = 8.2, our upper limit on KHα would imply M2 & 330M�.
We regard this scenario as exceedingly unlikely both because of the astrophysical challenge
of producing such a system and because it would imply an improbably low inclination (i .
9 deg, representing ∼1% of randomly oriented orbits). We thus conclude that the Hα line
(at least its wings) is not moving with either component of the binary.

Although there is little evidence that LB-1 contains an unusually massive BH, the unseen
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companion may still be a stellar-mass BH. If the mass of the B star is indeed MB ≈ 8M�
as found by Liu et al. (2019), this would imply 6 . M2/M� . 20 for inclinations 30 <
i/deg < 90 (representing 87% of randomly oriented orbits). Normal-star companions in this
mass range are expected to contribute to the spectrum at a detectable level, so the lack
of absorption lines from a luminous secondary would make a “normal” stellar-mass BH the
most likely companion.

Two additional observations point toward the companion being a stellar remnant. First,
the orbit is nearly circular. This is rare for ordinary main-sequence binaries with P & 10 days,
which have a wide range of eccentricities (Moe & Di Stefano 2017a; El-Badry et al. 2018g),
but it is expected for binaries containing evolved stars, because even binaries with relatively
long periods (P . 200 days) become tidally circularized when one component ascends the
giant branch (Verbunt & Phinney 1995; Price-Whelan & Goodman 2018). If LB-1 was tidally
circularized when the companion was a giant, then the fact that the orbit is still circular
may set stringent limits on any mass loss or kicks that occurred during the death of the
companion.

Second, the rotation velocity of the luminous component (v sin i ≈ 10 km s−1) is excep-
tionally low for a B star. This could be explained if the star was tidally synchronized when
the companion was a giant, such that the rotation period is equal to the orbital period.
Synchronization is expected to occur on a timescale similar to or shorter than circulariza-
tion. The expected rotation velocity in this case is vrot = 2πRB/P , which ranges from 4.5
to 7 km s−1 for 7 < RB/R� < 11, similar to the observed rotation velocity. If the B star
is tidally synchronized, then a precise measurement of v sin i and the stellar radius could
constrain the orbital inclination.

As discussed by Liu et al. (2019), their spectroscopically-inferred MB ≈ 8M� is incon-
sistent with the Gaia DR2 parallax, which implies a lower mass, MB ≈ 5M�. The revised
atmospheric parameters estimated by Simón-Díaz et al. (2019) and Abdul-Masih et al. (2019)
also support such a scenario, which would yield a lower limit of M2 & 5M�, still making a
BH the most likely companion.

Eldridge et al. (2019) and Irrgang et al. (2019) proposed that the luminous star could be
a ∼ 1M� pre-subdwarf in a short-lived (∼ 104 yr) evolutionary phase. In this scenario, the
companion could also have a significantly lower mass: for MB < 1.2M�, the minimum mass
of the companion is less than 2.5M�, such that it could be a neutron star. The primary
challenge to this scenario is its short lifetime: the probability is low that the LAMOST RV
monitoring campaign, which observed ∼ 3000 targets, would happen to observe such a rare
object.

8.5.2 Source of the Hα emission

The shape of the Hα profile near line center varies with orbital phase, with a narrow
component that tracks the velocity of the B star (Figure 8.3). This may originate at the star
itself, perhaps from accretion or from interaction of the stellar wind with the circumbinary
environment. It is possible that a component of the emission tracks the BH, but this is not
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Figure 8.4 : Red points show RV measurement of LB-1’s Hα emission line obtained from Keck-
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of RV variability, and the model with KHα = 6.4 km s−1 is manifestly ruled out.
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easily distinguishable with the presently available spectra.
As for the wings, the fact that their mean velocity does not vary with phase suggests

that this emission must not originate from either component of the binary, but rather from
material in the barycentric rest frame. Because the present-day orbit is smaller than the
radius of plausible progenitors to the companion when it was a giant, the system likely went
through a period of common envelope evolution. Fallback material from the companion’s
envelope could form a circumbinary disk in this scenario (Muno & Mauerhan 2006; Kashi
& Soker 2011). If the luminous star is a recently-stripped pre-subdwarf (e.g. Irrgang et al.
2019), fallback material from its envelope could also contribute. Another possibility is that
the low-velocity component of winds from the B star are captured by the binary (e.g. Taam
& Spruit 2001).

For a 5M� BH and a 5M� star, a ≈ 0.75AU, and the circular velocity at the inner rim of
a circumbinary disk (r ≈ 2a) would be vc ≈ 75 km s−1. For an optically thin Keplerian disk,
one would thus expect a double-peaked emission line with peaks separated by ∼ 150 km s−1.
The Hα line is somewhat wider than this, with FWHM ≈ 260 km s−1 and shallow wings that
extend at least ±500km s−1 from line center. The wings likely do not trace disk kinematics,
but are instead broadened by a combination of non-coherent scattering (i.e., repeated ab-
sorption and re-emission of line photons in an optically thick medium; see Hummel & Dachs
1992) and electron scattering (in the outermost wings; see Poeckert & Marlborough 1979).
The effects of these processes in broadening Hα are well-studied in the disks around classical
Be stars (e.g. Hanuschik et al. 1996). Spiral density waves, interactions with the B star’s
winds, and fluctuations of the disk’s rim temperature due to the B star’s orbital motion can
all complicate the emission line profile. In the future, a more dense sampling of spectra in
orbital phase may enable reconstruction of the emission region and more detailed modeling
of the circumbinary environment.

There are several similarities between LB-1 and the recently-identified binary AS 386
(Khokhlov et al. 2018), which contains a 7M� B-star primary and a detached & 7M�
unseen companion suspected to be a BH. That system also has a strong Hα emission line
whose shape changes between epochs. Although the mean velocity of the system’s Hα
emission does vary with phase, its velocity amplitude is lower than that of the star, and
Doppler tomography suggested that it originates from a shock where the wind from the B
star interacts with a circumbinary disk. The orbit of the B star in AS 386 is also circular,
despite a long period of 131 days. Like LB-1, and in contrast to most classical Be stars, AS
386 is slowly rotating. Also in contrast to classical Be stars (Dachs et al. 1990), both LB-1
and AS 386 have stronger Balmer decrements than predicted for low-density nebular gas,
case-B recombination, and a temperature near 104 K. The spectral energy distributions of
AS 386 and LB-1 both reveal infrared excess; Khokhlov et al. (2018) find that in AS 386,
this stems primarily from dust emission in a circumbinary disk.

AS 386 exhibits periodic variability in the infrared. Khokhlov et al. (2018) attribute this
to dust temperature variations in the Earth-facing inner rim of the circumbinary disk as the
distance from the B star to the rim changes. We do not find evidence of such variability in
the WISE light curves of LB-1, although the light curves are sparse. This could indicate that
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the inclination is lower than in AS 386, or that the IR excess (which is weaker than that in
AS 386) is emitted at larger radii. We also note that unlike LB-1, the spectrum of AS 386
contains several other emission lines, including forbidden lines emitted in the circumbinary
disk. Further theoretical modeling of LB-1 will be required to explain these differences.

Although it likely does not contain a 70M� BH, LB-1 is an intriguing system which adds
to the short but growing list of Milky Way stellar mass BH candidates that are not X-ray
bright (e.g. Casares et al. 2014; Khokhlov et al. 2018; Giesers et al. 2018; Thompson et al.
2019). If the unseen companion is confirmed to be a BH, LB-1’s circular orbit will provide
tantalizing evidence that some massive stars end their lives without an explosion (e.g. Adams
et al. 2017). We are optimistic that further study of the system will shine additional light
on its evolutionary history.
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Chapter 9

A stripped-companion origin for Be
stars: clues from the putative black holes
HR 6819 and LB-1

An earlier version of this article was previously published in El-Badry, K. and Quataert,
E., 2020, MNRAS, 502, 3436.

9.1 Abstract
HR 6819 is a bright (V = 5.36), blue star recently proposed to be a triple containing

a detached black hole (BH). We show that the system is a binary and does not contain a
BH. Using spectral decomposition, we disentangle the observed composite spectra into two
components: a rapidly rotating Be star and a slowly rotating B star with low surface gravity
(log g ≈ 2.75). Both stars show periodic radial velocity (RV) variability, but the RV semi-
amplitude of the B star’s orbit is KB = (62.7 ± 1) km s−1, while that of the Be star is only
KBe = (4.5 ± 2) km s−1. This implies that the B star is less massive by at least a factor of
10. The surface abundances of the B star bear imprints of CNO burning. We argue that
the B star is a bloated, recently stripped helium star with mass ≈ 0.5M� that is currently
contracting to become a hot subdwarf. The orbital motion of the Be star obviates the need
for a BH to explain the B star’s motion. A stripped-star model reproduces the observed
luminosity of the system, while a normal star with the B star’s temperature and gravity
would be more than 10 times too luminous. HR 6819 and the binary LB-1 probably formed
through similar channels. We use MESA models to investigate their evolutionary history,
finding that they likely formed from intermediate-mass (3 − 7M�) primaries stripped by
slightly lower-mass secondaries and are progenitors to Be + sdOB binaries such as φPersei.
The lifetime of their current evolutionary phase is on average 2 × 105 years, of order half
a percent of the total lifetime of the Be phase. This implies that many Be stars have hot
subdwarf and white dwarf companions, and that a substantial fraction (20− 100%) of field
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Be stars form through accretion of material from a binary companion.

9.2 Introduction
Large-scale multi-epoch radial velocity (RV) surveys have identified a number of binaries

in recent years that are proposed to contain stellar mass black holes (BHs; e.g. Casares et al.
2014; Khokhlov et al. 2018; Giesers et al. 2018, 2019; Thompson et al. 2019). Confirmation
of these BH candidates is challenging precisely because BHs are expected to be rare. That
is, all plausible alternate explanations for observed data, even those which are rare, must be
ruled out before a candidate BH can be considered reliable.

Recently, Rivinius et al. (2020) identified the object HR 6819 as a candidate host of a
stellar-mass BH. Phase-resolved optical spectra of the object revealed two luminous com-
ponents: a B star with relatively narrow, RV-variable absorption lines, which were ob-
served to follow a nearly circular orbit with P = 40.3 days and velocity semi-amplitude
KB ≈ 61 km s−1, and a classical Be star whose broad emission and absorption lines appeared
to be stationary. No component was found to orbit in anti-phase with the B star. Assuming
the mass of the B star to be at least 5M�, as expected for a normal star of its spectral
type, Rivinius et al. (2020) argued that any stellar companion massive enough to explain
the B star’s orbit would also contribute to the spectrum at a detectable level. They thus
concluded that the companion is a BH, with an estimated minimum mass of 4.2M�. In this
hierarchical triple scenario, the Be star must be at least a few AU from the B star and BH
for the system to be dynamically stable, and its status as a Be star would likely be unrelated
to the B star or BH.

HR 6819 is in many ways similar to the binary LB-1 (Liu et al. 2019), which was also
proposed to contain a stellar-mass BH. Like HR 6819, LB-1 contains an RV-variable B
star and apparently stationary emission lines. The emission lines were initially proposed to
originate in an accretion disk, either around the BH (Liu et al. 2019) or around the binary
(El-Badry & Quataert 2020; Abdul-Masih et al. 2020; Irrgang et al. 2020). Rivinius et al.
(2020) proposed that LB-1 and HR 6819 are both hierarchical triples with a B star and a
BH companion in the inner binary, and a distant Be star – the source of the emission lines
– orbiting both components.

Shenar et al. (2020), however, recently used spectral disentangling to fit the multi-epoch
spectra of LB-1 as a sum of two luminous components. They also found evidence for a
Be star, including both emission and rotationally-broadened absorption lines, but found its
spectrum to shift in anti-phase with the B star. This is not expected in the hierarchical triple
scenario, so they argued that LB-1 is a binary containing two luminous stars. It was also
recently noted by Liu et al. (2020) that the emission line shape in LB-1 varies coherently with
the B star’s phase. This variation, which is consistent with expectations for an irradiated
or tidally-perturbed disk, is expected if the system is a binary, but not if it is a hierarchical
triple.

The RV variability amplitude found by Shenar et al. (2020) for the Be star in LB-1
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suggests it is 5 times more massive than the B star. If the luminous binary scenario for
LB-1 is correct, the B star thus would have a mass of MB ≈ 1.5M�, a factor of 4 lower than
expected for a normal star of its spectral type. Shenar et al. (2020) propose that most of the
B star’s envelope was recently stripped by its companion. In this case, the star is currently
contracting and will likely soon become a core helium burning sdOB star (see also Irrgang
et al. 2020).

In this paper, we use spectral disentangling to fit the multi-epoch spectra of HR 6819.
We find that, like in LB-1, the Be star orbits in anti-phase with the B star, which is much
less massive than expected for a normal star of its spectral type. The remainder of this
paper is organized as follows. We describe the spectra in Section 9.3.1 and the disentangling
method in Section 9.3.2. We constrain the atmospheric parameters of both components in
Section 9.3.3. Section 9.3.4 presents the RV variability of both components, and Section 9.3.5
compares the system’s luminosity to models. The emission from the Be star’s disk is exam-
ined in Section 9.3.6, and the abundances of the B star in Section 9.3.7. We present possible
evolutionary models for the system in Section 9.3.8. Finally, we discuss HR 6819 and LB-1
in the context of the broader Be star population in Section 9.4.

The appendices provide supporting information. Appendix 9.5 describes our estimate
of both components’ masses, radii, and luminosities. Spectral disentangling is detailed in
Appendix 9.6. Appendix 9.7 investigates the pulsation-driven variability of the B star.
Spectroscopic constraints on the B star’s rotation velocity are presented in Appendix 9.8.
Its surface helium abundance is investigated in Appendix 9.9.

9.3 Methods

9.3.1 Data

We analyze 51 optical spectra of HR 6819 with spectral resolution R ≈ 48, 000 that were
taken in 2004 with the FEROS echelle spectrograph (Kaufer et al. 1999) on the ESO/MPG
2.2m telescope at La Silla Observatory. The data span 134 days (3.3 orbital periods) from
MDJ 53138 to 53273 and are publicly available through the ESO archive; they are described
in more detail by Rivinius et al. (2020). The spectra were reduced with the ESO-MIDAS
pipeline, which performs bias-subtraction, flat fielding, and wavelength calibration, applies
a heliocentric correction, and combines the spectra from individual orders. The pipeline
failed to reliably measure the signal-to-noise ratio (SNR), so we estimated it empirically
from the pixel-to-pixel scatter in regions without strong absorption or emission lines. The
typical SNR per pixel is 300 at λ = 6, 000Å.1 We verified the stability of the wavelength
solution by checking that the ISM sodium absorption line at 5890 Å is found at the same
heliocenter-corrected wavelength at all epochs.

We also analyzed an additional 12 FEROS spectra of HR 6819 that were obtained in 1999
(dataset “A” in Rivinius et al. 2020). We found that the Be star’s emission line profiles varied

1All wavelengths are quoted at their values in air.
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substantially between the 1999 and 2004 datasets, with obvious changes in the shape, width,
and amplitude of Balmer, Fe II, and O I emission lines. Such variation is common in Be
stars due to changes in the structure of the disk (e.g. Dachs et al. 1981; Okazaki 1991), but
it complicates the disentangling of the composite spectra. We therefore focus our analysis
on the 2004 dataset, within which the emission line profiles are relatively stable.

The spectra are not flux calibrated. Continuum normalization was performed by fitting
a cubic spline to wavelength pixels without significant absorption or emission. The initial set
of candidate continuum pixel was selected by taking all wavelengths from a TLUSTY model
spectrum (Hubeny & Lanz 1995) with Teff = 18 kK and log g = 3.5 for which all pixels within
±60 km s−1 are within 0.5% of the theoretical continuum. We then refined the selection of
continuum pixels by inspecting the individual spectra, removing pixels affected by telluric
absorption and other features not present in the model spectrum. We tested application of
this continuum normalization procedure on mock spectra with a range of log g to verify that
it does not significantly overfit the continuum in the wings of broad lines. This is important,
because improper continuum normalization can change the shape of the wings of broad lines,
leading to biases in the inferred log g. We focus our analysis on the part of the spectrum with
λ > 3900Å because the narrow spacing of the Balmer lines at shorter wavelengths makes it
challenging to estimate the continuum there.

9.3.2 Spectral disentangling

We used the code CRES (Ilijic 2004), which implements the wavelength-space spectral
disentangling algorithm of Simon & Sturm (1994), to separate the spectra of the two compo-
nents. The algorithm operates under the ansatz that all the observed composite spectra are
produced by summing together the time-invariant spectra of two components, with known
Doppler shifts between epochs and a known continuum luminosity ratio. The rest-frame
spectra of the two components are modeled as arbitrary vectors, which under these assump-
tions can be solved for using singular value decomposition. No model spectra (or indeed,
any physics beyond the Doppler shift) are use in this calculation.

The velocity of the B star in HR 6819 is reasonably well known at each epoch through the
orbital solution from Rivinius et al. (2020), but the velocity of the Be star is not. Following
Shenar et al. (2020), we therefore proceed under the ansatz that the Be star and B star are
orbiting each other, and step through a grid of velocity semi-amplitudes for the Be star, KBe,
calculating the best-fit disentangled spectra for each value. The choice of KBe = 0 km s−1

corresponds to a stationary Be star and would be expected in a triple scenario. We choose
the optimal KBe and spectral decomposition as the value that minimizes the total χ2 over
all spectra; we find KBe = (4.5± 2) km s−1. The determination of this value is described in
detail in Appendix 9.6.

When determining KBe, we use the spectra at their native resolution and independently
analyze narrow wavelength ranges centered on absorption and emission lines with clear con-
tributions from both components. We then adopt KBe = 4.5 km s−1 and use this value to
disentangle the full spectrum. At this stage, we re-bin the spectra to a 0.2Å wavelength
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resolution to reduce the computational cost of disentangling. This does not significantly
decrease the information content of the spectra, because higher-frequency spectral features
are smeared out by rotation and/or macroturbulence. The spectral disentangling and deter-
mination of KBe are described in detail in Appendix 9.6.

Spectral decomposition only determines the spectra of the two components up to a multi-
plicative constant, which represents the continuum luminosity ratio of the two stars. Unless
there are e.g. eclipses or well-characterized pulsations, the luminosity ratio must be de-
termined based on external information, because the effects on the combined spectrum of
increasing the continuum flux contribution of one component are identical to the effects of
weakening all its spectral lines. We begin by assuming both components contribute 50%
of the light, as estimated by Rivinius et al. (2020). Once a preliminary decomposition is
found with this ratio, we adjust the luminosity ratio to match the depths of the B star’s
Balmer lines to model spectra, while accounting for rotation, macroturbulence, instrumental
broadening, and rebinning. The temperature of the model spectra is constrained primarily
by ionization balance of metal lines (see Section 9.3.3; this temperature estimate is not sen-
sitive to the luminosity ratio). We found the optimal flux ratio to be fB/ftot = 0.47 ± 0.05
at λ = 4000Å (i.e., with the Be star the slightly brighter component). The uncertainty in
the flux ratio accounts for uncertainty in Teff and log g, as all atmospheric parameters are
fit simultaneously. Because the Be star is slightly hotter, its relative contribution to the
total flux is expected to decrease toward redder wavelengths. For our fiducial temperature
estimates of Teff,B = 16 kK and Teff,Be = 18 kK (Section 9.3.3), the expected flux ratio in-
creases to 0.49/0.51 at λ = 7000Å, still with the Be star the brighter component. This weak
wavelength-dependence of the flux ratio is accounted for in our spectral disentangling. We
normalize the component spectra following the method described by Ilijic et al. (2004).

Figure 9.1 shows a 600Å wide section of the disentangled spectra. The overplotted
TLUSTY model spectra are taken from the BSTAR06 grid (Lanz & Hubeny 2007) and have
the Teff , log g, and v sin i that we find to best fit the disentangled spectra. The chemical
abundances of the models are derived in Section 9.3.7. The Be star spectrum primarily shows
strong absorption lines from neutral H and He due to its large v sin i, as well as excess due to
double-peaked emission lines within the Balmer line cores and in Fe II lines (Section 9.3.6).
The B star spectrum has many narrow metal lines (see Section 9.3.7).

Fitting the disentangled metal line profiles of both components with the rotational profile
from Gray (1992a), we find v sin i = (180 ± 20) km s−1 for the Be star. For our best-fit Be
star mass, radius, and inclination (Sections 9.3.4 and 9.3.5), this corresponds to near-critical
rotation. For the B star, we derive an upper limit of v sin i < 20 km s−1. We are not able
to measure the actual value of v sin i from the B star’s line profiles because non-rotational
broadening due to macroturbulence and/or non-radial pulsations dominates over rotation
(see Appendix 9.8). If the B star is tidally synchronized, as might be expected following a
period of mass transfer, its v sin i would be less than 5 km s−1. The Be star is not expected
to be tidally synchronized, as accretion of mass and angular momentum is expected to spin
it up.

Overall, the consistency between the disentangled spectra and theoretical models, as
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Figure 9.1 : Disentangled spectra of the B star (top) and Be star (bottom) in HR 6819. Black lines
show the reconstructed spectra. Red lines show TLUSTY model spectra, which are not used in
the spectral disentangling, for comparison. The B star spectrum contains many narrow lines and is
well-fit by a model with Teff = 16 kK and log g = 2.75 (see also Figure 9.2). The Be star spectrum
is strongly broadened by rotation. It is reasonably well described by a model with Teff = 18 kK and
log g = 3.75, but with clear excess emission inside the Balmer line cores (see also Figure 9.6).
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manifest in properties such as the relative depth and width of absorption lines, is good. We
emphasize that the spectral disentangling procedure does not use model spectra in any way
– the disentangled spectra are free to take any shape they like – so the agreement between
the observed and model spectra is encouraging.

9.3.3 Temperature and gravity

We fit the disentangled spectra of both components using 1D-NLTE model spectra com-
puted with TLUSTY (Hubeny & Lanz 1995, 2017). We use the BSTAR06 grid, which has
∆Teff = 1 kK and ∆ log g = 0.25 dex, (Lanz & Hubeny 2007) in an initial grid search and
then use the radiative transfer code SYNSPEC (Hubeny & Lanz 2011) to generate spectra
with finer grid spacing, as well as spectra with different abundance patterns than assumed
in the BSTAR06 grid (Section 9.3.7). We constructed grids of spectra with 4 values of the
microturbulent velocity: vmic = (2, 5, 10, 15) km−1. We find vmic = 10 km s−1 to provide the
best fit and adopt this value in the rest of our analysis (see also Bodensteiner et al. 2020),
but we account for a ±5 km s−1 uncertainty in vmic when calculating uncertainty in other
spectral parameters and abundances.

We perform an iterative fit for the temperature and gravity of the B star, first measuring
Teff based on equivalent width ratios of lines in different ionization states (Figure 9.3), then
measuring log g based on the wings of broad lines, then refining the Teff estimate taking the
estimated log g into account, and so forth. Detailed abundances are measured in a final step,
once a converged solution for Teff and log g is found. To estimate systematics due to model
uncertainties, we also compared to 1D-LTE model spectra generated with SYNTHE (Kurucz
1993) from ATLAS-12 model atmospheres (Kurucz 1970, 1979, 1992). We find consistent
solutions for the two sets of model spectra within 1 kK in Teff and 0.2 dex in log g.

The model spectra used in determining the temperature and gravity of the B star assume
a solar abundance pattern. We show in Section 9.3.7 that the B star is enhanced in helium.
We have checked that this does not significantly change our inferred atmospheric parameters,
and the level of helium enhancement we find has a minimal effect on the shapes of the Balmer
lines.

Our final best-fit parameters for both stars are listed in Table 9.1. The reported uncertain-
ties in atmospheric parameters include formal fitting uncertainties due to noise in the spectra,
uncertainty in the flux ratio, systematic differences between fits with TLUSTY/SYNSPEC
and Kurucz spectra, and covariances between atmospheric parameters. Systematic uncer-
tainty dominates the error in Teff , and because Teff and log g are strongly covariant, also
contributes significantly to the uncertainty in log g.

A critical result of our analysis is that the surface gravity of the B star is lower than that
of a main-sequence star, log g ≈ 2.75. The main constraint on log g comes from the wings of
the Balmer lines and some He I lines, which become broader with increasing log g. This is
illustrated in Figure 9.2, which shows a zoom-in on the Balmer lines Hε, Hδ, and Hγ in the
disentangled spectrum of the B star. We compare the best-fit model, which has log g = 2.75,
to one with log g = 3.75, the approximate value assumed by Rivinius et al. 2020, and the
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Table 9.1 : Physical parameters and 1σ (middle 68%) uncertainties for both components of HR 6819.
Constraints on stellar parameters are based on the measured Teff and log g of the Be star and the
dynamical mass ratio. Table 9.3 lists constraints that also take the distance into account.

Parameters of the B star
Effective temperature Teff [kK] 16± 1
Surface gravity log(g/(cm s−2)) 2.75± 0.35
Projected rotation velocity v sin i [km s−1] < 20
Macroturbulent velocity vmacro [km s−1] 30± 5
Microturbulent velocity vmic [km s−1] 10± 5
Continuum flux ratio at 4000Å fB/ftot(4000Å) 0.47± 0.05

Radius R [R�] 4.7+2.9
−1.9

Bolometric luminosity log(L/L�) 3.11+0.42
−0.46

Mass M [M�] 0.47+0.28
−0.22

Parameters of the Be star
Effective temperature Teff [kK] 18+2

−3

Surface gravity log(g/(cm s−2)) 3.75+0.5
−0.25

Projected rotation velocity v sin i [km s−1] 180 ± 20
Macroturbulent velocity vmacro [km s−1] 60± 20
Continuum flux ratio at 4000Å fBe/ftot(4000Å) 0.53± 0.05

Mass M [M�] 6.7+1.9
−1.5

Radius R [R�] 4.7+2.7
−1.5

Bolometric luminosity log(L/L�) 3.35+0.47
−0.44

Fraction of critical rotation vrot/vcrit 0.80+0.18
−0.14

Parameters of the binary
Orbital period P [day] 40.3± 0.3
B star RV semi-amplitude KB [km s−1] 62.7±1.0
Be star RV semi-amplitude KBe [km s−1] 4.5±2.0
Be star center-of-mass velocity γB [km s−1] 10.4± 0.6
Be star center-of-mass velocity γBe [km s−1] 10.5± 0.3
B star eccentricity eB < 0.037
Be star eccentricity eBe < 0.013
B star RV scatter sB [km s−1] 4± 0.5
Be star RV scatter sBe [km s−1] < 1.0
Mass ratio q = MB/MBe 0.071± 0.032

Orbital inclination i [deg] 32.1+3.0
−2.6

Separation a [R�] 96± 8
B star abundances relative to Solar
Helium [He/H] 0.55± 0.2
Carbon [C/H] −0.5± 0.2
Nitrogen [N/H] 1.1± 0.3
Oxygen [O/H] 0.3± 0.3
Neon [Ne/H] 0.15± 0.2
Magnesium [Mg/H] 0.2± 0.2
Aluminum [Al/H] 0.4± 0.2
Silicon [Si/H] 0.3± 0.2
Sulfur [S/H] −0.3± 0.2
Argon [Ar/H] 0.4± 0.2
Iron [Fe/H] 0.2± 0.2
Be star disk parameters
Projected outer disk rotation velocity vout sin i [km s−1] 105± 4
Ratio of inner to outer disk radii Rinner/Router 0.24± 0.05
Fe II emissivity exponent α = −d ln j/d ln r 1.6± 0.3

Outer disk radius Router [R�] 33+5
−4

Inner disk radius Rinner [R�] 7.8+2.1
−1.8
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Figure 9.2 : Balmer lines as a surface gravity diagnostic. Black lines show the spectrum of the B
star obtained through spectral disentangling. Red lines shows a TLUSTY model spectrum with
log g = 2.75, which reproduces the observed Balmer line profiles reasonably well. Cyan lines show
model spectra with log g = 3.75, as expected for a normal B star near the end of the main sequence.
For this value of log g, the wings of the Balmer and He I lines are much too wide to match the
observed spectrum. The model Teff values are chosen to match the observed ionization ratios at a
given log g (Figure 9.3). For other choices of Teff , the disagreement between the log g = 3.75 model
and the observed spectrum is even more severe.
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best-fit Teff for that log g. The log g = 3.75 model predicts much wider Balmer lines than
are found in the observed spectrum. The poor fit of the higher log g model is also evident
in the wings of the 4009Å and 4388Å He I lines. We note that while the superiority of the
log g = 2.75 model is clear in Figure 9.2, this is only the case because we have disentangled
the spectra of the two components. In the composite spectra, the Balmer and He I lines
appear much broader due to the broader absorption lines of the Be star.

The effective temperature of the B star is constrained from equivalent width ratios of
lines of the same element in different ionization states. Higher ionization states become
increasing populated as temperature increases. The ratios of e.g. Si III to Si II equivalent
widths are therefore sensitive to Teff and relatively insensitive to the absolute Si abundance.
Unlike absolute abundance measurements, equivalent width ratios are also insensitive to the
assumed luminosity ratio of the two components, since light from the companion dilutes all
lines by a similar factor.

Figure 9.3 compares the observed equivalent width ratios of Si III/II and Fe III/II lines
to predictions from TLUSTY models for a range of Teff and log g. Our best-fit model with
log g = 2.75 is shown in black; colored lines show other values of log g. All the line ratios we
consider imply a temperature of Teff = (16 ± 0.5) kK for log g = 2.75, with values that are
respectively higher and lower for higher or lower log g.

Rapid rotation washes out most of the Be star’s lines, making it infeasible to measure
Teff from ionization state ratios. The constraint on Teff comes primarily from the Balmer
lines and the strength of Si II and He I lines. The star’s gravity can still be constrained from
the shape of the Balmer lines, which are sufficiently broad that their wings are not strongly
affected by rotation.

A natural concern when working with echelle spectra is that the profiles of broad lines such
as the Balmer lines could be distorted by the blaze function and/or continuum normalization
process, leading to a bias in log g. To assess the reliability of our derived Teff and log g, we
analyzed an archival FEROS spectrum of the slowly rotating standard B star HR 5285 that
was presented and analyzed by Nieva & Przybilla (2007). The spectral resolution and SNR
of this spectrum is similar to that of the HR 6819 data. We apply the same continuum
normalization routine and procedure for estimating atmospheric parameters used for HR
6819 to this spectrum and obtain Teff = 21 kK and log g = 4.25, in good agreement with the
literature values (Vrancken et al. 1996 found Teff = 22.6± 0.9 kK and log g = 4.2± 0.1, while
Nieva & Przybilla 2012 found Teff = 20.8± 0.3 kK and log g = 4.22± 0.05). This allays any
fear that our inferred log g values are significantly biased.

9.3.4 Radial velocities

We measure radial velocities for both components at each epoch by fitting the composite
spectra as a sum of the two disentangled spectra obtained in Section 9.3.2, with the radial
velocities of both components left free. We also leave the luminosity ratio free, because at
least one component of the system is photometrically variable at the 5-10% level (Rivinius
et al. 2020). We mask regions of the spectrum containing diffuse interstellar bands, telluric
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Figure 9.3 : Temperature of the B star from ionization equilibrium. Shaded regions show the
observed ratios of the equivalent widths of Si III and Si II lines (left columns) and Fe III and Fe II
lines (right columns). Lines show the ratios predicted for models of different log g as a function of
Teff . Given the best-fit log g ≈ 2.75 from the Balmer lines (Figure 9.2), the best-fit Teff lies between
15500 and 16500K for all line ratios.
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absorption, and a few lines that are poorly fitted.
We divide the spectrum into four segments, fitting the RVs in each segment independently.

This allows us to empirically estimate RV uncertainties from the scatter between different
segments. It also allows us to test whether the RVs of the emission lines, which trace the
Be star’s disk and circumstellar envelope, vary coherently with the absorption lines, which
trace the photosphere. In particular, the region of the spectrum with 5100 < λ/Å < 5400
contains no strong absorption lines from the Be star but contains seven Fe II emission lines,
which likely originate in a disk around the Be star.

As discussed by El-Badry & Quataert (2020) and Abdul-Masih et al. (2020), RVs mea-
sured from emission lines can be biased if contamination from absorption lines is not taken
into account. Our procedure for measuring RVs is not susceptible to the bias pointed out in
these works, because the spectra of both components are modeled simultaneously.

Figure 9.4 shows the measured epoch RVs for both components, phased to a period of
40.3 days. Error bars in the top two panels show the scatter between RVs fit to different
spectral regions. The Be star displays sinusoidal RV variability with the same period as the
B star, suggesting that they are orbiting each other. Emission and absorption lines show
consistent variability, implying that the Be star and its disk move coherently. This implies
that the disk is likely circumstellar, not circumbinary. For the B star, the RV uncertainties
are smaller than the symbols for most points, suggesting that there is intrinsic RV scatter.

We fit the RVs of both components independently with Keplerian orbits, without the
requirement that they have the same center-of-mass velocity or phase. Along with the 6
standard Keplerian orbital parameters, we fit for an intrinsic RV scatter or “jitter” term (see
El-Badry et al. 2018g, their Equation 9), which can represent either intrinsic RV variability
not captured in the model or underestimated uncertainties. We initially search for the best-
fit orbital solution using simulated annealing, and then sample from the posterior in the
vicinity of this solution using a Markov chain Monte Carlo method, as described in El-Badry
et al. (2018g). Given the large number of RV measurements (51), there is little danger of
the sampler getting stuck in a local minimum. Our best-fit orbital parameters are listed in
Table 9.1.

Our best-fit velocity amplitude for the B star isKB = 62.7±1.0 km s−1, which is consistent
with the value measured by Rivinius et al. (2020). Our constraints on P is also consistent, but
our uncertainties are larger, because we did not include the additional RVs from 1999 in our
fit. Unlike Rivinius et al. (2020), we do not measure any significant eccentricity: we find an
upper limit of e < 0.037 for the B star, but the orbit is consistent with e = 0 once RV scatter
is accounted for. For the Be star, we measure e < 0.13, again consistent with a circular
orbit. The formal uncertainty in KBe obtained from fitting the RVs shown in Figure 9.4 is
only 0.3 km s−1, but the true uncertainty is larger, since the points shown in Figure 9.4 were
obtained after fixing KBe = 4.5 km s−1 in spectral disentangling (see Appendix 9.6).

For the B star, we find an intrinsic RV scatter of ≈ 4 km s−1. We did not find evidence
of additional periodicity in the residuals. As we show in Appendix 9.7, the B star’s RV
scatter is accompanied by modest variability in its spectral line profiles. HR 6819 also
exhibits photometric variability with brightness variations of up to five percent in the total
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Figure 9.4 : Radial velocities for the B star (top panel) and Be star (middle and bottom panels),
phased to a period of 40.3 days. RVs for both components are measured simultaneously by fitting
the composite spectra with the single-star templates obtained from spectral disentangling. The Be
star exhibits sinusoidal RV variability in anti-phase with the B star, suggesting the two components
are orbiting each other with a period of 40.3 days. The much lower velocity amplitude of the Be
star implies a mass ratio MB/MBe = 0.071 ± 0.032. The bottom panel compares velocities for the
Be component measured from absorption lines (presumably originating in the stellar photosphere)
and emission lines (presumably originating in a circumstellar disk). Emission and absorption line
RVs vary coherently.
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light (implying variations of 10% if the light comes primarily from one component) on
timescales down to half a day (Rivinius et al. 2020). The most likely explanation is that
the B star is a slowly pulsating B star (SPB star; e.g. Waelkens 1991) undergoing non-
radial g-mode pulsations that cause the RV scatter, line profile variability, and photometric
variability. The B star’s atmospheric parameters, the amplitude of the RV and photometric
variability, and the variability timescale are all within the normal range found for SPB
stars (e.g. Dziembowski et al. 1993). We note, however, that photometric variability is also
common for Be stars, due to both pulsations and variations in the structure of the disk
(Rivinius et al. 2013), so some of the observed photometric variability could also come from
the Be star.

If the masses of both components are known, the inclination of the binary’s orbital plane
can be measured from the velocity semi-amplitudes. For a circular orbit,

sin3 i =
(1 +KBe/KB)2

2πG

K3
BP

MBe

. (9.1)

Taking MBe = 6.7+1.9
−1.5M�, a constraint which we obtain by comparing the Be star’s temper-

ature and surface gravity to MIST evolutionary tracks (see Appendix 9.5; Dotter 2016; Choi
et al. 2016), we obtain obtain i = 32.1+3.0

−2.6 deg. The mass ratio of the two components is
constrained from the relative velocity amplitudes to MB/MBe = 0.071± 0.032. This leads to
MB = 0.47+0.28

−0.22M�, where the dynamical mass ratio and the mass of the Be star contribute
roughly equally to the uncertainty.

9.3.5 Luminosity

If the distance to HR 6819 is known, then its absolute magnitude can distinguish between
models in which the B star is a normal star and models in which it was recently stripped.
The bolometric luminosity of a star can be approximated as
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)4

. (9.3)

As discussed by Rivinius et al. (2020), a normal star with the temperature and gravity of
the B star in HR 6819 would have a minimum mass of at least 5M�. It would thus be a
minimum of 10 times brighter than a 0.5M� stripped star with the same Teff and log g. And
as we discuss below, the minimum mass for a normal B star matching HR 6918’s spectral
type is even higher, of order 10M�, once the lower log g measured from the disentangled
spectrum is taken into account.
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Distance

Gaia measured a parallax of $ = 2.71 ± 0.12mas for HR 6819 (Gaia DR3 source_id
6649357561810851328), implying a distance d ≈ 369 ± 17 pc (Gaia Collaboration et al.
2020a).2 At this distance, the projected semimajor axis would be θ ≈ 1.2mas. Since this is
almost half the parallax, and the astrometric solution did not account for orbital motions,
the parallax uncertainty is likely underestimated. The re-normalized unit weight error for the
source is large, ruwe = 1.45, also indicating a problematic astrometric solution (e.g. Fabricius
et al. 2020). Given that the Gaia data span many orbital periods, the Gaia distance is not
expected to be catastrophically biased, but the parallax uncertainty should not be taken at
face value.

Rivinius et al. (2020) derived an independent estimate of the distance to HR 6819 by
comparing its flux-calibrated UV spectrum to models with temperature and radius matching
their fit to the spectrum. They estimated d = (310±60) pc, which is also consistent with the
Gaia distance. The largest source of uncertainty was the unknown luminosity ratio between
the two components. Although the spectral type we infer for the B star is significantly
different from that estimated by Rivinius et al. (2020), only the temperature and radius
are relevant for the distance estimate. The values they adopted (Teff = 16 kK and R =
(5.5 ± 0.5)R�) are consistent with our best-fit values, because our lower mass estimate is
almost exactly compensated for by our lower estimate of log g.

El-Badry et al. (2021) found that bright sources with ruwe > 1.4 typically have parallax
uncertainties underestimated by up to a factor of 2. We adopt the Gaia distance estimate
in our analysis, but we conservatively inflate the parallax uncertainty by a factor of ≈2 due
to the large ruwe and expected orbital motion. We assume d = 369 ± 34 pc. To account
for the possibility of more severe problems with the Gaia distance, we also present stellar
parameters that are inferred without taking the distance into account.

Synthetic photometry

We used synthetic photometry from MIST isochrones (Dotter 2016; Choi et al. 2016) to
place models for HR 6819 on the color-magnitude diagram (CMD), assuming solar metal-
licity. We assume an extinction of E(B − V ) = 0.135, as reported by Wegner (2002),
and a Cardelli et al. (1989) extinction curve with RV = 3.1. The SFD map estimates
E(B − V ) = 0.13 at the position HR 6819 (Schlegel et al. 1998).

We began by searching the MIST model grid for “normal” stellar models with atmospheric
parameters similar to the B star (15 < Teff/kK < 17 and 2.4 < log g < 3.1). These models
have masses ranging from 9M� to as much as 20M� (see Figure 9.10). This is significantly
higher than the mass of (5− 6)M� that would be inferred if the B star had log g = 3.5− 4,
as assumed by Rivinius et al. 2020. These models are shown in green in the right panel of
Figure 9.5. Even without the contribution from the Be star, these models are far brighter

2The Gaia DR2 parallax was $ = 2.91±0.18mas. The distance errors implied by the parallax are slightly
asymmetric, d = 369+17

−16 pc; we symmetrize them for simplicity.
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than HR 6819.
We next calculate synthetic photometry for a stripped star with the same range of Teff

and log g as the models described above, accounting for the lower mass using Equation 9.3.
These models are shown in magenta in Figure 9.5; we assume masses between 0.4 and 0.6
M� for the stripped star. We also take synthetic photometry for the Be star from models
with 15 < Teff/kK < 20 and 3.5 < log g < 4.25. These models are shown in cyan; we do not
attempt to correct for gravity darkening due the the Be star’s rapid rotation. Finally, we
calculate the combined magnitude and color of randomly paired Be star and stripped star
models (orange points). These are generally consistent with the color and magnitude of HR
6819.

This analysis reveals that the B star in HR 6819 cannot be a normal B supergiant –
its luminosity is too low. A consistent solution can, however, be obtained if the B star has
unusually low mass, of order 0.5M�. The poor agreement between a “normal B star” model
and the observed luminosity of HR 6819 cannot be alleviated by simply assuming a different
distance. A distance of 3-5 times our fiducial value would make the observed magnitude of
HR 6819 compatible with a normal B star (green points in Figure 9.5). But in this case,
the B star would be a factor of ∼ 20 brighter than the Be star, violating the observational
constraint that the two components are roughly equally bright.

Luminosities, masses and radii

We estimate the mass and radius of the Be star by comparing its temperature and surface
gravity to a grid of MIST evolutionary tracks (Figure 9.10). We then calculate the mass of
the B star from the measured mass ratio, and its radius from this mass and its measured
surface gravity. The bolometric luminosity of each component is then calculated through
Equation 9.2. The resulting stellar parameters are reported in Table 9.1.

In Appendix 9.5, we calculate an estimate of the same stellar parameters that is an-
chored on the distance to HR 6819 rather than on evolutionary tracks. We obtain consistent
solutions between the two methods.

9.3.6 Emission lines

As is often the case in classical Be stars, the disentangled Be star spectrum contains
clearly double-peaked emission in the Balmer lines and in many Fe II lines. Weak double-
peaked emission lines are also found in some C II and Si II lines. Figure 9.6 highlights the Hα
line (which is by far the strongest of the star’s emission lines) and several of the Fe II lines. We
correct the emission lines for contamination from the Be star’s absorption lines by subtracting
a TLUSTY model spectrum with Teff = 18 kK, log g = 3.75, and v sin i = 180 km s−1. This
has little effect on the Fe II lines, but it increases the amplitude and slightly changes the
shape of the Hα line.

The integrated emission line profile of an optically thin, kinematically cold Keplerian disk
with known emissivity profile can be calculated analytically (e.g. Smak 1969). Following Shen
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et al. (2019), we assume that the emissivity profile can be approximated by a power law,
j(r) ∝ r−α, and that the emissivity is sharply truncated at inner radius r = Rinner and outer
radius Router. This truncation could either represent the geometric edge of the disk, or a
change in the ionization state. We assume an intrinsic thermal broadening with isothermal
sound speed cs = 10 km s−1, appropriate for ionized gas with temperature near 104 K.

Given these assumptions, we fit the emission line profile of the Fe II 5169 line. The
free parameters of the fit are the projected rotation velocity at the outer edge of the disk,
vout sin i = (GMBe/Router)

1/2 sin i, rinner = Rinner/Router, the ratio of the inner disk edge to
the outer disk edge, and the emissivity exponent α. We obtain α ≈ 1.6, vout ≈ 105 km s−1,
and rinner ≈ 0.24 (see Table 9.1). This leads to Rinner ≈ 7.8R� and Router ≈ 33R�. These
parameters can be interpreted straightforwardly from the observed line profiles: Rinner is
constrained by the maximum width of the emission lines (since the largest Keplerian velocities
are found at the inner edge of the disk) and Router is constrained by the RV separation of
the two peaks (since the total emission is maximized at the outer edge of the disk).

We note that applying the same fitting to the Hα line yields significantly different results,
including an unphysically small Rinner. This is because repeated absorption and re-emission
of Hα photons, as well as electron scattering, significantly broadens the wings of the Hα line.
This makes it an unreliable kinematic tracer (e.g. Hummel & Dachs 1992). Fe II lines have
lower optical depth and are therefore more reliable optical tracers of the disk (Hanuschik
1988; Dachs et al. 1992), though they too many not be completely optically thin in the inner
parts of the disk (Arias et al. 2006).

For our best-fit orbital parameters, the binary’s semimajor axis is a ≈ 0.44 AU ≈ 96 R�.
That is, the disk emission extends to about 0.34a. For a binary of mass ratio 0.07, the largest
stable streamline at which a disk can be maintained is rmax ≈ 0.44a (Paczynski 1977), so
the disk likely extends to near its maximum stable radius.

9.3.7 Chemical abundances

We use SYNSPEC (Hubeny & Lanz 2011) to generate grids of model spectra with Teff =
16 kK and log g = 2.75, varying each of the 11 elements listed in Table 9.1 with a grid
spacing of 0.1 dex. All abundances are measured relative to the Solar abundance pattern,
which is taken from Grevesse & Sauval (1998). The atmospheric structure is taken from the
BSTAR06 atmosphere grid, which was generated with TLUSTY assuming Z = 0.02 and the
Solar abundance pattern. We assume a microturbulent velocity vmic = 10 km s−1 but also
experimented with varying Teff , log g, and vmic within their uncertainties.

Unlike the line ratios shown in Figure 9.3, the abundances are sensitive to the luminosity
ratio of the two components. The smaller the ratio LB/LBe, the deeper the lines of the B
star, and the larger the inferred abundances. Our reported abundance uncertainties account
for a ±5% uncertainty in the luminosity ratio. Uncertainties in Teff , vmic, and the flux ratio,
not the noise in the spectrum, dominate the abundance uncertainties.

The most striking result of our abundance analysis is that the surface of the B star is
significantly enriched in nitrogen and helium, and significantly depleted of carbon. This
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suggests that material on the B star’s surface has been processed by the CNO cycle, as has
also been reported for LB-1 (Irrgang et al. 2020; Shenar et al. 2020). An enhancement of
nitrogen and helium at the expense of carbon and oxygen is expected in the stripped star
scenario: the material at the surface of the star today was inside the convective core of the
progenitor when it was on the main sequence and is thus contaminated with fusion products.

Unlike in LB-1, we do not find a significant depletion of oxygen for the B star. Most
other elements are consistent with, or slightly enhanced relative to, the Solar value. We note
that Irrgang et al. (2020) found most metals to be depleted in LB-1, but this is likely at
least in part due to the unaccounted-for line dilution by the Be star, which makes all lines
appear weaker by roughly a factor of 2.

We do not attempt to measure detailed abundance for the Be star, since most metal lines
are washed out by rotation, uncertainties in continuum normalization will significantly affect
the interpretation of weak and highly broadened lines, and contamination by disk emission
complicates the interpretation of absorption line equivalent widths. Besides H and He, the
strongest lines visible in the Be star spectrum come from C II and Si II. The strongest tension
between the disentangled Be star spectrum and the TLUSTY model occurs for the 4075Å
CII line, which is much weaker than predicted. This suggests that the Be star’s surface is
also depleted of C, which is consistent with our expectations if the Be star recently accreted
much of the CNO-processed envelope of the B star.

We defer more detailed analysis and modeling of HR 6819’s abundance pattern to future
work. Given the B star’s unusually large surface He abundance, it would be useful to
recalculate the atmospheric structure while taking the abundance variations into account.

9.3.8 Evolutionary history

To better understand the possible formation pathways and future evolution of HR 6819,
we began by searching the BPASS (v2.2; Eldridge et al. 2017) library of binary evolution
models for models that go through a phase similar to the current state of HR 6819. We then
investigated a few possible formation histories in more detail using Modules for Experiments
in Stellar Astrophysics (MESA, version 12778; Paxton et al. 2011, 2013, 2015, 2018, 2019).

We search the Z = 0.02 BPASS grid and set the following constraints:

• 15 < Teff,1/kK < 17

• 2.5 < log g1 < 3.25

• 5 < M2/M� < 10

• 20 < P/days < 60

• 2.7 < log(L1/L�) < 3.3

We refrained from placing constraints on the temperature or luminosity of the secondary,
because the evolutionary models in the BPASS do not follow the secondary’s evolution with
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Figure 9.7 : Initial masses and periods of models in the BPASS binary evolution library that at any
point in their evolution pass through an evolutionary state similar to the current state of HR 6819.

detailed calculations following mass transfer. Because BPASS uses a grid of discrete models,
we allow a relatively large range of periods. This search yielded 10 models, with initial
primary masses ranging from 4.5 to 7 M�, initial mass ratios ranging from 0.4 to 0.8, and
initial periods of 1.5 to 6.5 days. These are shown in Figure 9.7.

We then used MESA to calculate binary evolution tracks for models in this region of pa-
rameter space, and to investigate how the systems’ evolution changes when their parameters
are varied. Most of the single-star free parameters are set following the inlist_7M_prems_to_AGB
inlist in the MESA test suite. We use the wind mass loss prescription from Reimers (1975).
The initial metallicity is set to 0.02. We use a mixing length parameter αMLT = 1.73 and
an exponential overshoot scheme with overshoot efficiency parameter fov = 0.014. The
overshooting scheme and motivation for this choice of fov are described in Herwig (2000).

The MESAbinary module is described in detail in Paxton et al. (2015). Both stars are
evolved simultaneously, with tides and mass transfer taken into account. Roche lobe radii
are computed using the fit of Eggleton (1983). Mass transfer rates in Roche lobe overflowing
systems are determined following the prescription of Kolb & Ritter (1990). Tidal torques
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and stable core helium burning. Right panel compares models with a range of stripped star masses,
corresponding to initial masses between 3.5 and 7 M�.

are modeled following Hut (1981). The orbital separation evolves such that the total angular
momentum is conserved when mass is lost through winds or transferred to a companion, as
described in Paxton et al. (2015). We experimented with a range of mass transfer efficiencies.
When mass transfer is not conservative, the mass that escapes the binary is modeled as being
lost from the vicinity of the accretor through a fast wind, as described by Tauris & van den
Heuvel (2006, their “β” parameter).

Our MESA models are summarized in Table 9.2. Figure 9.8 shows the evolution of 4
models in Teff − log g space. The left panel shows a model with initial masses M1 = 4M�,
M2 = 3M�, and an initial period of 2.3 days. The components of the binary evolve normally
until the end of the primary’s main sequence lifetime. Shortly before the primary crosses
the Hertzsprung gap, it overflows its Roche lobe and begins stable mass transfer to the
companion. The primary’s envelope expands further as more mass is removed, and the star
moves up the red giant branch. At the tip of the red giant branch (TRGB), the temperatures
required to maintain hydrogen burning can only be maintained if the envelope contracts. At
this point, when the primary’s luminosity is of order 1000L�, the primary leaves the RGB
and passes through the region of Teff–log g space where HR 6819 and LB-1 are currently
observed. The star then continues to contract and heat until it reaches Teff ≈ 30 kK and
log g ≈ 5.5, where it settles as a core helium burning hot subdwarf (sdOB star). The core
helium burning phase would last of order 108 years, but for most of the models we consider,
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Table 9.2 : Summary of our MESA binary models.
M1,init M2,init Pinit fmt Pstripped Mstripped MHe core Menv MBe tRLOF tTRGB tsdOB bloated lifetime
[M�] [M�] [days] [days] [M�] [M�] [M�] [M�] [Myr] [Myr] [Myr] [105 yr]
3.5 2.8 2.3 1 90 0.49 0.43 0.06 5.8 232 269.9 272.7 2.07
4.0 3.0 2.3 1 91 0.54 0.47 0.07 6.4 162 203.8 205.5 1.29
5.5 4.2 2.3 0.3 152 0.67 0.11 0.56 5.6 71 97.1 98.7 2.20
7.0 4.0 2.3 0.2 79 0.83 0.15 0.68 5.2 41 55.8 57.2 2.27

M1,init, M2,init, and Pinit are the initial masses and period at the zero-age main sequence.
fmt is the efficiency of mass transfer, defined such that a fraction fmt of mass lost by the
donor is gained by the accretor. Pstripped is the orbital period during the bloated stripped
star phase, when 2 < log g < 3.5 (roughly when the star passes through the inset in
Figure 9.8). Mstripped, MHe core, and Menv, are the total, core, and envelope mass of the
initial primary (the B star) during this period, and MBe is the mass of the companion
during this period. tRLOF, tTRGB, and tsdOB are the system age when the primary first
overflows its Roche lobe, when it reaches the tip of the red giant branch, and when its
luminosity is first dominate by He burning. The “bloated stripped phase lifetime” is the
time it takes the primary to contract from log g = 2 to log g = 3.5 as it moves from the
TRGB toward the extreme horizontal branch.

it is truncated prematurely when the secondary (the Be star) leaves the main sequence and
overflows it Roche lobe.

The right panel compares stripped star models with masses between 0.49 and 0.83 M�.
These are produced from calculations with initial primary masses of 3.5, 4.5, 5.5, and 7 M�.
We reduce the efficiency of mass transfer (which is poorly constrained a priori) as the primary
mass increases, so that the mass of the secondary during the stripped star phase is always
about 6 M�. As the total mass of the core increases, its radius and luminosity increase,
and log g decreases. However, the sensitivity of these parameters to mass is relatively weak
in this region of parameter space, so HR 6819’s atmospheric parameters are consistent with
models with a broad range of core masses (and hence initial masses).

Figure 9.9 shows the evolution of the model with M1 = 4M� and M2 = 3M� after the
primary begins to contract. We designate the “bloated stripped star” phase of the binary’s
evolution as the phase after the tip of the red giant branch when the primary (the B star) has
log g between 2 and 3.5. This is roughly the period when the primary has the temperature
of a B star and is more inflated than a main sequence star of the same temperature. For the
4 models shown in Figure 9.8, the duration of this phase ranges from 1.3 to 2.3 ×105 years.
The secondary (i.e., the Be star) does not evolve on the timescale shown in Figure 9.9: for
all our models, the mass transfer timescale near the TRGB is significantly longer than the
thermal timescale of the secondary, so the secondary remains in thermal equilibrium.

We note that, contrary to what is sometimes assumed in the literature (e.g. Eldridge et al.
2020), the contraction from the red giant branch to the extreme horizontal branch does not
occur on a Kelvin-Helmholtz timescale of the donor star – the bottom panel of Figure 9.9
shows that it is longer by more than a factor of 10. The reason for this is that gravitational
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Figure 9.9 : Time-evolution of the MESA model with Mstripped = 0.54M� during the stripped star
phase (black line in Figure 9.8). From top to bottom, panels show surface gravity, luminosity, mass,
and Kelvin-Helmholtz timescale. Time is measured since the tip of the red giant branch (i.e. when
log g reaches its minimum). The luminosity is dominated by H shell fusion, which burns through
most of the remaining envelope as the star contracts. He fusion is ignited as contraction begins, but
does not dominate over shell fusion until 1.5 × 106 years after the TRGB (beyond the time range
of the plot). The lifetime of the contraction phase is a few ×105 years. This is significantly longer
than the Kelvin-Helmholtz timescale (bottom panel), because gravitational contraction contributes
only a small fraction of the luminosity.
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contraction is not the dominant source of energy during this phase; hydrogen shell burning
and core helium burning both contribute luminosity to slow the star’s contraction.

The final period produced by these calculations is somewhat longer (P = 79− 152 days)
than the observed P = 40.3 days in HR 6819. This can be understood as a result of the
orbit’s expansion during mass transfer. When mass transfer is conservative, the final period
can be calculated analytically to be

Pf = Pi

(
Mdonor,i

Mdonor,f

× Maccretor,i

Maccretor,f

)3

. (9.4)

Here Pi and Pf represent the initial and final period, Mdonor,i and Mdonor,f the initial and
final masses of the donor, and Maccretor,i and Maccretor,f the initial and final masses of the
accretor. In our calculationsMdonor,i/Mdonor,f = 7−8.5, whileMaccretor,i/Maccretor,f = 1−2.1.
This causes the final period to be a factor of & 40 larger than the initial period. The final
period according to Equation 9.4 could be shorter if the initial mass ratio were more unequal
(M1 �M2), but in this case mass transfer eventually becomes dynamically unstable, leading
to an episode of common envelope evolution (CEE) and typically inspiral to a much shorter
period (e.g. Heber 2016).

No analytic expression for the final period exists for non-conservative mass transfer. How
the angular momentum of a binary changes following mass loss depends on how the mass is
lost (see Soberman et al. 1997, and Tauris & van den Heuvel 2006, their Equation 16.18).
In MESAbinary, it is possible to specify what fraction of transferred mass is lost from the
vicinity of the donor, from the vicinity of the accretor, and from a circumbinary toroid.
Particularly near the end of the stripping process, when Mdonor/Maccretor � 1, the orbital
response to mass loss, which is parameterized through the Tauris & van den Heuvel (2006)
subgrid model, depends quite sensitively on the assumed mass loss fractions for each channel.
For our calculations with non-conservative mass transfer, the final period decreases by up
to a factor of 10 if we assume mass is lost from a circumbinary toroid rather than from a
wind in the vicinty of the accretor. Because we have limited physical intuition for what the
efficiency of mass transfer is in this problem or how mass that leaves the binary escapes, the
observed period cannot reliably constrain the binary’s initial period.

We note that while luminosity and radius increase monotonically with the total mass
of the stripped star in our calculations (right panel of Figure 9.8), this is not necessarily
expected to generically be the case. The radius and luminosity of the stripped star de-
pend on the relative masses of the envelope and the He core, with lower envelope masses
corresponding to larger radii and luminosities at fixed temperature. For example, Driebe
et al. (1998) calculated evolutionary tracks for low-mass stripped pre-He WDs formed from
a 1M� progenitor by artificially enhanced mass loss on the RGB. Their 0.41M� track is
nearly coincident with our 0.83M� track, while their 0.33M� track falls below our 0.49M�
track and is consistent with the LB-1 atmospheric parameters (see also Irrgang et al. 2020).
In HR 6819, both the dynamical mass and atmospheric parameters of the stripped star are
consistent with a scenario in which it is a pre-He white dwarf, with a degenerate core and too
low a mass to ever ignite helium. However, our binary evolution calculations do not produce
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stripped stars with such low mass. Because the stripped star must have initially been the
more massive component of the binary, and the total initial mass must have been at least
& 6M�, the initial mass of the stripped star must have been at least 3M�. Stars with initial
masses near 3M� can produce stripped He stars with masses of order 0.4M�, but these ignite
He burning on the RGB. Because their cores are not degenerate during the bloated stripped
phase, they have thicker hydrogen envelopes, higher log g, and lower luminosity than the
Driebe et al. (1998) models.

We have not performed an exhaustive search of parameter space with detailed binary
evolution calculations, so it is possible that another region of parameter space could produce
systems similar to HR 6819 and LB-1, even though no other satisfactory models were found
in the BPASS library. Below, we briefly summarize how the MESA models change when the
initial conditions or model parameters are perturbed.

• Longer periods: For longer initial periods, mass transfer begins later, when the primary
has expanded more. For Pinit . 20 days, evolution is similar to our fiducial models,
but stripping occurs over a shorter timescale, the final period is longer, and a some-
what larger fraction on the envelope remains when contraction begins, shifting models
downward (toward larger log g) by up to ≈ 0.2 dex in Figure 9.8.

For 20 . Pinit/days < 150, mass transfer begins when the envelope is convective and the
core mass is too small to support stable mass transfer, leading to dynamical instability
and presumably an episode of CEE. MESA does not include robust treatment of CEE,
but it is expected to result in shorter periods than the observed P = 40.3 days (e.g.
Ivanova et al. 2013).

For 150 . Pinit/days < 2000, the primary begins core He burning before RLOF. Strip-
ping then begins on the asymptotic giant branch (AGB), where the larger core mass
allows mass transfer to remain dynamically stable (e.g. Chen & Han 2008). Eventually,
the primary is reduced to a carbon-oxygen core with a thin helium envelope, whose
contraction is similar to that of a single proto-white dwarf. These models pass through
the same region of Teff − log g space highlighted in Figure 9.8, typically shifted up-
ward (toward smaller log g) somewhat from our fiducial models of the same total mass.
However, they contract much more rapidly than our fiducial models, with lifetimes of
. 103 years. The final periods are also much longer, P & 3000 days, though we note
that these depend sensitively on the assumptions made about how mass is lost from
the binary.

• Shorter periods : For shorter periods, RLOF occurs earlier, when the primary is still
on the main sequence. For Pinit . 2 days, the primary loses about half its mass during
the initial phase of RLOF, but then essentially continues its evolution as a lower-mass
main sequence star. Meanwhile, the now-more-massive secondary evolves faster than
the primary, reaching the end of the main sequence before the primary. Such models
never resemble HR 6819.
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• More unequal mass ratios: If the initial masses of the two components are too unequal
(M2/M1 . qcrit, where qcrit depends on the structure of the donor; e.g. Hjellming
& Webbink 1987; Han et al. 2002; Ge et al. 2010), mass transfer eventually becomes
dynamically unstable, leading to an episode of CEE. When mass transfer begins, the
envelope is radiative, and mass transfer is stable for a wide range of mass ratios.
However, the envelope becomes convective soon after mass transfer begins, and mass
transfer then becomes unstable. We note that the secondary is generally not expected
to accrete much mass during CEE; this also speaks against an initially low secondary
mass.

• Higher primary masses : As the mass of the primary increases, the efficiency of mass
transfer must approach 0 to avoid making the Be star too massive. If this is achievable
physically, then a higher primary mass produces leads to a more massive stripped He
star. For our default parameters, M1,init = 10M� leads to a 1.3 M� stripped He star.
During the contraction phase, the 1.3M� model continues the monotonic trend seen in
Figure 9.8 of lower log g with increasing mass at fixed Teff .

• Lower primary masses: For primary massesM1,init . 3M�, the total initial mass of the
binary is less than its current total mass, so the observed mass of the Be star cannot
be reproduced.

• More or less overshooting: The treatment of overshooting changes the mapping between
initial mass and stripped star mass. The larger the overshooting efficiency parameter,
the larger the convective core on the main sequence, and the larger the He core. In-
creasing fov thus leads to higherMstripped for fixedM1,init, shifting models toward lower
log g at fixed Teff . For the models shown in Figure 9.8, increasing fov from 0.014 to
0.028 increases Mstripped by ≈ 0.12M� on average, but does not significantly change
the lifetime of the “bloated stripped star” phase.

We note that while the models shown in Figure 9.8 allow for a consistent solution between
the dynamically-inferred mass of the stripped star in HR 6819 and its position in Teff − log g
space, we have not found a consistent solution for LB-1. The Teff and log g (taken from
Shenar et al. 2020) imply a stripped star mass Mstripped . 0.5M�, which can be relaxed to
Mstripped . 0.6M� if we allow for longer initial periods. However, Shenar et al. (2020) report
a dynamical mass of (1.5 ± 0.5)M�, which is significantly higher than this. A 1.5M� He
star is generically difficult to produce in the context of our models (or the BPASS models);
if stripping occurs near the Hertzsprung gap, it requires a primary mass of order 12M� for
our adopted overshooting parameter. Unless mass transfer is highly inefficient, the Be star
would end up too massive in such a scenario. Without binary interactions, a single star of
solar metallicity must have initial mass & 9M� to reach a He core mass of 1.5M� prior to
core He burning.

The dynamical mass constraint derived by Shenar et al. (2020) comes primarily from the
Hα line. Since spectral disentangling relies on the assumption that the individual spectra of
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both components are time-invariant, and this assumption likely does not hold in detail for
the Hα line of LB-1 due to phase-dependent disk irradiation by the B star (Liu et al. 2019),
it is possible that the dynamical mass measurement of the B star is biased and the true mass
is lower. If the mass measurement is reliable, it would imply a significantly higher envelope
mass (Menv/MHe core ∼ 1) than produced by our models, since the luminosity during the
stripped phase is set mainly by the He core mass. Three of the five confirmed Be + sdOB
binaries have estimated masses above 1.0M� (Wang et al. 2017), so a higher stripped-star
mass is not beyond the realm of possibility. This is, however, at least partially a selection
effect, since higher-mass sdOBs are hotter and easier to detect (e.g. de Mink et al. 2014; Wang
et al. 2017; Schootemeijer et al. 2018). We also note that the secondaries in these systems
have higher masses than in HR 6819 ((9− 12)M�), allowing for higher initial masses for the
primaries.

9.4 Summary and Discussion
We have shown that HR 6819 is a binary containing a rapidly rotating Be star and an

undermassive B star with mass of order 0.5M�. Radial velocity measurements from double-
lined spectra establish that the two luminous components of the binary are orbiting one
another (Figure 9.4). There is thus no need to invoke an unseen 3rd object to explain the
orbital motion of the B star, as proposed by Rivinius et al. (2020). We propose that the
B star is the core of a star with initial mass of order 5M� whose envelope was recently
stripped by its companion near the tip of the red giant branch. In this scenario, the B
star is currently in a short-lived (few ×105 years) phase of contraction toward the extreme
horizontal branch, where it will become a core helium burning sdOB star (e.g. Heber 2016).
In this scenario, HR 6819 is a progenitor system for Be + sdOB binaries, of which at least
six are known (e.g. Gies et al. 1998; Koubský et al. 2012; Peters et al. 2013, 2016; Wang et al.
2017; Dulaney et al. 2017; Chojnowski et al. 2018) and another dozen candidates have been
identified (Wang et al. 2018). Recent accretion of the B star’s envelope would then explain
the near-critical rotation of the Be star.

HR 6819 is quite similar to the binary LB-1 (Liu et al. 2019), which has recently been the
subject of much discussion. In El-Badry & Quataert (2020), we speculated that the emission
lines in LB-1 might come from a circumbinary disk around a BH and a stellar companion.
But spectral disentangling by Shenar et al. (2020) has since revealed the presence of a Be
star in the spectrum, similar to the case in HR 6819. The B star in LB-1 would then also
be a recently stripped He star, with no BH in the system.

Further modeling will be required to pin down the mass and current evolutionary state
of these systems. Our MESA calculations produce stripped stars with masses, temperatures,
and surface gravities comparable to HR 6819 and LB-1, but there is not yet full agreement be-
tween the dynamically- and evolutionarily-inferred masses for LB-1. For both systems, Gaia
DR3 astrometry (including binary astrometric model fits) and ground-based interferometry
are expected to prove useful in further constraining the system parameters.
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9.4.1 Implications for the formation of Be stars

We now consider what the existence of the HR 6819 system implies for the broader Be
star population.

HR 6819 is bright enough (G = 5.22, V = 5.36) to be seen with the naked eye. Estimating
the rate of Be + stripped star binaries based on HR 6819 is challenging both because the
search that led to its discovery does not have a well-defined selection function and because
Poisson errors are large when only one object is known. We nonetheless make a crude
estimate of the frequency of HR 6819-like binaries below.

Roughly 15% of all field B stars are Be stars (Jaschek & Jaschek 1983; Zorec & Briot
1997). There are about 1500 B stars brighter than G = 6, corresponding to about 225 Be
stars.3 Most stars this bright have been studied in some detail, so it seems a reasonable
assumption that HR 6819 is the brightest object in its class, and that there are at most a
few stars brighter than G = 6 in its current evolutionary state.

Once the stripped star contracts, HR 6819 will likely continue to appear as a Be star for a
few × 107 years – a few hundred times the lifetime of the stripped star phase – depending on
the mass of the Be star. This implies that for every system like HR 6819, there should be a few
hundred binaries consisting of a Be star and a faint sdOB or WD companion. Such binaries
certainly exist, but they are challenging to detect because the sdOB typically contributes at
tiny fraction of the light in the optical. 5 of the 6 confirmed Be + sdOB binaries are brighter
than G = 6 and were discovered via UV spectra. Recently, Wang et al. (2018) identified
another dozen candidate Be + sdOB systems using IUE spectra, all of which are brighter than
G = 7. Schootemeijer et al. (2018) estimated that there should be 30-50 yet undiscovered
Be + sdOB binaries for each confirmed system of a given magnitude, which corresponds
to 150-250 Be + sdOB binaries brighter than G = 6. Raguzova (2001) estimated through
population synthesis simulations that about 70% of Be stars formed through binary evolution
should have faint white dwarf companions, while 20% should have sdOB companions. No
white dwarf companions have yet been unambiguously detected.

Given our estimate that there are only a few hundred Be stars brighter than G = 6,
the existence of HR 6819 is consistent with a scenario in which a majority of Be stars form
through this evolutionary channel. This is an appealing possibility, because the origin of
the Be phenomenon is still not fully understood. It is certainly tied to rapid rotation, but
there is considerable debate about how Be stars were spun up in the first place (e.g. Rivinius
et al. 2013). Accretion of mass from a companion is one possibility. There is, however,
considerable uncertainty in the frequency of HR 6819-like binaries. Given N = 1 objects
discovered among 225 Be stars, the 1-sigma Poisson confidence interval for the fraction of
Be stars in this evolutionary phase is (0.08−1.5)%. If we take the mean lifetime of a Be star

3We estimate the number of B stars brighter than G = 6 based on Gaia photometry. There are 1275
sources in Gaia DR2 with −0.3 < GBP − GRP < 0.1, a color range corresponding to Teff = (11 − 30) kK
without extinction. We inflate this to 1500 to account for extinction (which is modest for most naked-eye
stars) and incompleteness in Gaia DR2 for bright stars. We obtain a similar estimate based on the Hipparcos
catalog. The Be star catalog from Jaschek & Egret (1982) contains 141 sources brighter than V = 6 but
does not claim to be complete.
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to be 5× 107 years and the mean lifetime of the stripped star to be 2× 105 years, the lower
limit of 0.08% implies that at least 20% of Be stars went through a phase like HR 6819.

HR 6819 and LB-1 are currently the only known objects in their class. Given that LB-
1 is more than 6 magnitudes fainter than HR 6819 and was discovered in an multi-epoch
RV survey of only 3000 objects (without selection on color or spectral type), there are
probably significantly more similar systems with magnitudes between HR 6819 and LB-1
that have yet to be discovered. We estimate that there are of order 104 Be stars brighter
than G = 12.4 Given the rate estimate from HR 6819, this implies between 8 and 150 Be
+ bloated stripped star binaries brighter than G = 12, a large fraction of which should be
discoverable to wide-field spectroscopic surveys such as SDSS-V. While both HR 6819 and
LB-1 were only identified as candidate stripped stars after significant spectroscopic study,
additional candidates could likely be identified from a single medium-resolution spectrum as
objects exhibiting both the emission lines of a classical Be star and narrow absorption lines
from the companion (indicative of low v sin i). Normal Be stars viewed pole-on would be a
contaminant to such a search, but these can usually be identified from the shape of their
emission lines (Hummel & Vrancken 2000; Rivinius et al. 2013), and they are rare due to
geometric effects.

With LB-1 and HR 6819 demoted, the list of detached stellar mass BH candidates remains
short. The most secure detached BH candidates to date are likely those discovered in globular
clusters with MUSE (Giesers et al. 2018, 2019), but the evolutionary history of these objects
is likely quite different from that of BH binaries in the field. No luminous companion has
been discovered to the giant–BH binary candidate reported by Thompson et al. (2019), but
its status as a BH is not uncontroversial (van den Heuvel & Tauris 2020; Thompson et al.
2020). We note that the other two BH candidates on the field also contain Be stars (Casares
et al. 2014; Khokhlov et al. 2018). These systems are not likely to contain low-mass stripped
stars, because in them it is the Be star that is clearly RV variable. Be stars do not constitute
a dominant fraction of all massive stars, and there is no strong bias toward Be stars in the
selection function of multi-epoch RV surveys. If these objects do contain BHs, then their
status as Be stars is likely to be a result of accretion from the BH progenitor.

In the final stages of this manuscript’s preparation, a similar analysis of HR 6819 was
completed by Bodensteiner et al. (2020). Overall, there is excellent agreement between their
results and ours. The only point of disagreement, the helium abundance of the B star, is
discussed in Appendix 9.9.

Data availability
All the spectroscopic data is publicly available through the ESO archive. The TLUSTY/SYN-

SPEC spectral models are available at http://tlusty.oca.eu/. MESA is publicly available at
4This estimate is also based on Gaia DR2. Because reddening is more severe for the G < 12 sample, we

select candidate B stars as objects with −0.3 < GBP−GRP < 0.3 and MG < 1.5; this yields 9.5× 104 B star
candidates, of which we again assume 15% are Be stars.

http://tlusty.oca.eu/
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http://mesa.sourceforge.net/. Other data is available upon reasonable request of the corre-
sponding author.
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9.5 Stellar parameters anchored to evolutionary tracks
and distance

Figure 9.10 compares the atmospheric parameters of both components of HR 6819 to
MIST evolutionary tracks. As discussed in Section 9.3.5, the temperature and surface gravity
of the B star would imply a mass of at least 9M� if it were a normal star, but this is
inconsistent with the measured system luminosity (Figure 9.5). The atmospheric parameters
of the Be star imply a mass in the range of 5 and 8M�. For a single star, this would
correspond to an age range of 30 to 80 Myr, but we caution that mass transfer between the
two components is likely to make these age estimates unreliable.

To estimate the mass and radius of the Be star, we construct a grid of evolutionary
tracks with a mass spacing of 0.05 M�. We sample each track with 500 points spaced
uniformly in time. We thus make no attempt to account for the different IMF probability
or lifetime of each track (which would downweight higher-mass tracks), or the observational
selection function (which would downweight lower-mass tracks). We then retain samples
with probability proportional to the likelihood of their Teff and log g given the measured
constraints on the Be star’s atmospheric parameters, approximating the likelihood function
as a two-sided Gaussian. This effectively selects points from the evolutionary tracks that
are close to the Be star in Teff − log g space. We use the resulting samples to estimate the
mass, radius, and luminosity of the Be star, and to propagate forward the uncertainty in
other parameters in Table 9.1 that depend on the Be star’s mass.

The system parameters listed in Table 9.1 are anchored to the mass of the Be star
estimated from its Teff and log g. The constraints can be tightened somewhat if the distance,
d = (310±60) pc, is taken into account. To this end, we add a term to the likelihood function
that compares the predicted V−band apparent magnitude of the evolutionary tracks to the
measured V = 5.36, assuming a V -band flux ratio of fBe/ftot = 0.52 ± 0.05 and extinction
AV = 0.42. The resulting constraints are listed in Table 9.3. They are consistent with
the constraints in Table 9.1, but the uncertainties are somewhat smaller. At fixed Teff , a
constraint on luminosity translates directly to a constraint on radius. When combined with

http://mesa.sourceforge.net/
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Figure 9.10 : Atmospheric parameters for the two components of HR 6819 compared to MIST
evolutionary tracks for normal (i.e. non-stripped) stars. If the B star were a normal star, its Teff

and log g would imply a mass of at least 9M�, roughly 20 times the mass we infer dynamically. For
the Be star, the atmospheric parameters imply a mass between 5 and 8 M�.
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the measured log g, this translates to an improved constraint on mass.

9.5.1 System parameters independent of evolutionary tracks

An estimate of the stellar parameters of both components that is independent of evolu-
tionary tracks can be calculated from the apparent magnitude, distance, and flux ratio. The
V -band apparent magnitude of HR 6819 is 5.36. Given extinction AV = 0.42 mag, total
bolometric correction BC = −1.5 ± 0.15,5 and distance d = 369 ± 34pc, the absolute bolo-
metric magnitude of HR 6819 is Mbol = −4.39+0.26

−0.24 mag. This corresponds to a bolometric
luminosity

Lbol,tot = 100.4(Mbol,�−Mbol)L� (9.5)
= 4500+1100

−1000L�, (9.6)

where Mbol,� = 4.74.
Given the effective temperatures of the two components, their respective uncertainties,

and (47±5)% flux contribution from the B star at λ = 4000Å, the fraction of the total light
contributed by the B star is fB,bol = 0.43+0.08

−0.07. The individual luminosities are then:

log(Lbol,B/L�) = 3.28+0.13
−0.13 (9.7)

log(Lbol,Be/L�) = 3.40+0.12
−0.12. (9.8)

The radius of each component can then be calculated as R =
√
Lbol/ (4πσSBT 4

eff), where
σSB is the Stefan Boltzmann constant. This yields

RB = 5.7+1.1
−0.9R� (9.9)

RBe = 5.3+1.9
−1.1R�. (9.10)

Finally, the mass of each component can be calculated as M = gR2/G, yielding

MB = 0.65+0.93
−0.38M� (9.11)

MBe = 6.9+15.7
−4.0 M�. (9.12)

Equations 9.7-9.12 are fully consistent with the constraints in Tables 9.1 and 9.3, which
are anchored on the fit of the temperature and gravity of the Be star with evolutionary tracks.
Equations 9.7-9.12 are also consistent with, but independent of, the dynamically measured
mass ratio. We adopt the parameters anchored to evolutionary tracks as our fiducial values
due to their tighter constraint on the component masses.

5For solar-metallicity MIST models, Teff values of 16 kK and 18 kK correspond to bolometric corrections
of −1.35 and −1.64, with weak dependence on log g.
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Table 9.3 : System parameters anchored to both distance and evolutionary tracks. Uncertainties
are 1σ (middle 68%).

Be star mass MBe [M�] 7.0+1.0
−0.8

Be star radius RBe [R�] 5.3+0.9
−0.7

Be star bolometric luminosity log(LBe/L�) 3.45+0.14
−0.16

Be star fraction of critical rotation vrot/vcrit 0.83+0.13
−0.11

Orbital inclination i [deg] 31.7+1.7
−1.5

Semi-major axis a [R�] 96± 4
B star mass MB [M�] 0.49+0.24

−0.22

Be star outer disk radius Router [R�] 33+4
−3

Be star inner disk radius Rinner [R�] 7.9+1.9
−1.8

9.6 Spectral disentangling and determination of KBe

Spectral disentangling solves for the two single-star spectra that can best reproduce all
the observed composite spectra for an assumed set of relative RVs at each epoch. If the RVs
are not known a priori, they can be solved for in tandem with the single-star spectra by
searching for the RVs that allow the disentangled single-star spectra to best reproduce all
the observed composite spectra. In the case of HR 6819, the problem is simplified by the
fact that the narrow lines of the B star allow a preliminary estimate of its RVs to be made
directly from the composite spectra.

We optimize for the RVs in two steps. In the first step, we assume that the velocity of the
B star at each epoch is the velocity predicted by the orbital solution of Rivinius et al. (2020).
We then step through a grid of RV semi-amplitudes for the Be star, KBe, calculating the
optimal disentangled spectra for each value. The choice of KBe = 0 km s−1 corresponds to a
stationary Be star, as would be expected in a triple scenario.6 We choose the optimal KBe

and corresponding spectral decomposition as the value that minimizes the total χ2 summed
over all observed spectra.

With the disentangled spectra from the first step in hand, we use them as templates to fit
the composite spectra for the RVs at each epoch, as described in Section 9.3.4. This revealed
intrinsic scatter of s ≈ 4 km s−1 for the RVs of the B star (see Section 9.3.4).

In the second step, we repeat the disentangling, again stepping through a grid of KBe

values. Rather than setting the RVs of the B star to the values predicted by the Rivinius
et al. (2020) orbital solution, we now set them to the values measured in the previous step.
The best-fit values of KBe for a given spectral region do not change much between the first
and second step, but the quality of the fit improves somewhat in the second step.

We perform spectral disentangling and determine the optimal KBe for 10 different regions
of the spectrum, each centered on an emission or absorption line with clear contributions

6Note that there is no need to try different center-of-mass velocities: because we do not use any template
spectra, the absolute RV scale is arbitrary.
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from both components. Treating different lines independently allows us to test whether
different ions trace different kinematic components, and to quantify the uncertainty in the
KBe values we infer.

Figure 9.11 shows the total χ2 as a function of KBe for the 10 lines. For easy comparison,
we subtract the minimum χ2 for each line. The Fe II lines in the top panel are dominated
by emission in the Be star spectrum (e.g. Figure 9.6). The He I lines (middle panel) are
dominated by absorption. The Balmer lines7 contain both absorption and emission, with a
larger emission contribution toward redder wavelengths (Figure 9.1).

The 10 spectral regions we consider have optimal KBe ranging from 2 to 10 km s−1.
Of these, 7 have optimal values between 3 and 6 km s−1. None of the lines have minimal
χ2 values associated with KBe = 0 km s−1, as would be expected for a stationary Be star.
The scatter in KBe values inferred from different lines, including lines tracing the same
ion, is larger than would be expected if the formal uncertainties in KBe, as quantified by
χ2(KBe) for a single line, were reliable. This is most likely a consequence of small errors
in continuum normalization as well as time-variability in the flux ratio, which violate the
underlying assumptions of the spectral disentangling algorithm (see Hensberge et al. 2008).

We do not find systematic difference between lines from different ions, or emission vs.
absorption lines. This suggests that the emission lines, which are presumed to originate
in a disk around the Be star, move coherently with the star. Considering the 10 spectral
regions shown in Figure 9.11, as well as the RVs obtained when fitting a synthetic spectral
template (Figure 9.13), we adopt KBe = (4.5 ± 2) km s−1 as our fiducial value. We then fix
KBe = 4.5 km s−1 in disentangling the full spectrum.

The shape of the disentangled spectra depends very weakly on the value ofKBe. Choosing
KBe = 0 km s−1 makes both the emission and absorption lines of the disentangled Be star
spectrum slightly broader (by of order 0.1Å) than in our fiducial solution. Broader lines
suppress the RV variability of the Be star, but this leads to a worse overall fit to the composite
spectra. The inferred Teff and log g of the two components are not sensitive to the adopted
value of KBe, at least over the range 0 ≤ KBe/(km s−1) < 10.

In addition to our primary spectral decomposition using CRES, we also experimented
with using the Fourier-space spectral disentangling code fd3 (also referred to as FDBinary
in the literature; Ilijic et al. 2004; Ilijić 2017), which uses the algorithm described by Hadrava
(1995) to separate composite spectra. The disentangled spectra produced by the two codes
are very similar. Figure 9.12 compares the two codes’ constraints on KBe from the Hβ line.
Under idealized circumstances, the velocity-space and Fourier-space spectra disentangling
algorithms are mathematically identical (e.g. Hensberge et al. 2008). The most significant
practical difference in the implementations for our purposes is that fd3 requires the RVs of
both components to follow Keplerian orbits, while CRES allows them to be specified manually
at each epoch. The fd3 solution thus does not model the scatter in the B star’s RVs, which
is accounted for in the CRES solution.

7We do not fit the Hα line, because the shape of the emission varies between epochs. That is, there is no
two-component spectral decomposition for which a good fit of all the observed spectra can be obtained. Such
variability is common for Be stars (e.g. Rivinius et al. 2013); it may or may not be related to the companion.
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We also experimented with fitting RVs for both components using synthetic spectral
templates. Figure 9.13 shows the best-fit RVs of the Be star obtained by jointly fitting the
RVs of both components at each epoch, using the best-fit TLUSTY/SYNSPEC spectra for
both components and fitting the He I absorption line at 4387.9 Å. Because the synthetic
spectra do not perfectly reproduce the observed spectra, the narrow lines in the Be star’s
spectrum are washed out by rotation, and many of the Be star’s lines are significantly
contaminated by emission, we find that we obtain more stable RVs when fitting a narrow
wavelength range than when fitting the full spectrum simultaneously. The RVs measured
this way show larger scatter than those measured from the disentangled spectra (Figure 9.4),
but they still show clear periodic modulation, the amplitude of which is consistent with the
amplitudes we measure from spectral disentangling. The RVs we measure for the B star are
in good agreement with those measured in Section 9.3.4.

9.7 B star variability
As discussed in Section 9.3.4, the measured RVs of the B star do not perfectly follow

the predictions of a Keplerian orbit, but exhibit additional scatter with amplitude σRV ≈
4 km s−1. Here we show that this variability is accompanied by variability in the B star’s
line profiles.

The top panel of Figure 9.14 shows the line profiles of two Si III lines from three single-
epoch spectra of HR 6819, which are chosen to showcase the range of profiles found in the
dataset. Weak and narrow metal lines such as these are ideal for characterizing the B star’s
variability because contamination from the Be star – besides dilution by its continuum –
is negligible. All three epochs are shifted to rest frame. The depth and width of the lines
vary visibly between epochs. We quantify the line width with vmacro =

√
2σ, where σ is the

dispersion of the best-fit Gaussian broadening profile (see Appendix 9.8).
The three lower panels of Figure 9.14 show vmacro, equivalent width, and RV deviation

from a Keplerian orbit, measured from the Si III 4568 line across all 51 epochs. The epoch-
to-epoch variation in vmacro is of order 10%, with a maximum-to-minimum range of almost
a factor of 2. The typical variation in equivalent width is somewhat smaller, of order 5%.
The RV scatter is 4 km s−1, consistent with our finding in Section 9.3.4. There is no clear
trend with orbital phase. Like the photometric variability (see Rivinius et al. 2020), the line
profile variability exhibits power on timescales from ≈ 0.4 days to several days, and is not
dominated by a single period.

The observed line profile variations cannot be understood as a result of photometric
variability of the Be star, which would change the flux ratio – and thus, line depth and
equivalent width — but not vmacro. It thus seems natural to connect the B star’s line profile
variations with the observed photometric variability of HR 6819. The period and amplitude
of the photometric variability are consistent with a scenario in which they are due primarily
to the B star (see below). We note, however, that photometric variability is also common
among Be stars, so we cannot rule out the possibility that some of the observed photometric
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Figure 9.14 : Top panel shows three single-epoch spectra of HR 6189, highlighting two Si III lines
for which the absorption is dominated by the B star. The depth and width of the lines varies
appreciably between epochs. Legend indicates the best-fit Gaussian vmacro, which quantifies the
width of the lines. Bottom three panels show vmacro, equivalent width, and RV deviation from a
Keplerian orbit, all measured for the Si III 4568 line, in all 51 epochs. These quantities vary between
epochs, but do not vary systematically with orbital phase.
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variability is due to the Be component.
The period, photometric variability amplitude, RV scatter, temperature, and luminosity

of the B star in HR 6819 are all typical of slowly pulsating B-type (SPB) stars (e.g. Waelkens
1991; Waelkens et al. 1998). Indeed, the prototypical SPB star, 53 Persei, has Teff = 17 kK,
log(L/L�) = 2.9, and exhibits pulsation-driven RV variations with peak-to-peak amplitude
of about 15 km s−1, and photometric peak-to-peak amplitude of order 0.2 mag, quite similar
to the B star in HR 6819 (Smith et al. 1984; Chapellier et al. 1998). SPB stars undergo
non-radial g-mode pulsations, which are excited by the κ mechanism acting on the metal
opactiy bump for Teff = 10 − 25 kK (e.g. Dziembowski et al. 1993). Line profile variations
in SPB stars are primarily due to variations in the velocity field at the stellar photosphere;
variations due to changes in Teff are usually negligible (Buta & Smith 1979; Townsend 1997;
Aerts & Eyer 2000).

Photometric and spectral variability violate the assumptions of the spectral disentangling
algorithm. When variability is purely photometric, it is straightforward to account for a time-
dependent luminosity ratio (e.g. Ilijic 2004; Hensberge et al. 2008). In the presence of line
profile variations, however, there is no unique spectral decomposition, so the disentangled
spectra represent a time-average of the component spectra. We carried out tests with mock
data to assess the effects of unmodeled line profile variability similar to that found in HR 6819
on spectral disentangling. Because the variability is not systematically phase-dependent, we
find that it does not lead to systematic biases in KBe or in the width or depths of the
disentangled line profiles, but it does reduce the total goodness-of-fit.

9.8 Rotation vs. macroturbulent broadening
The metal lines of the B star component of HR 6819 have a typical FWHM of 50 km s−1.

This is relatively narrow for a B star, but it is larger than the expected thermal width
given the B star’s spectral type in the absence of rotation or macroturbulent broadening
(FWHM ≈ 10 km s−1).

Figure 9.15 shows line profiles of the Si III 4568 and 4575 Å lines in a single-epoch
(φ ≈ 0.55) spectrum of HR 6819. These lines are ideal for characterizing the B star’s
line broadening because they are intrinsically narrow and spectral disentangling suggests
that the contribution of the Be star to them is negligible. We compare the observed line
profiles to the predictions of a TLUSTY/SYNSPEC model (Teff = 16 kK and log g = 2.75)
with no rotational or macroturbulent broadening, and to line profiles broadened only by
macroturbulence or rotation. The rotational broadening profile is taken from Gray (1992a),
using a linear limb darkening coefficient ε = 0.5. The macroturbulent broadening profile is
modeled as a Gaussian with σ = vmacro/

√
2. Instrumental broadening has negligible effects

on the predicted line profiles. Rotational broadening alone reproduces the observed line
profiles poorly. Disagreement between the observed and modeled profiles is most obvious
in the line wings, which for the rotational profiles extend only to ±v sin i. The observed
line wings are less steep and extend farther from the line center. This is not a result of
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Figure 9.15 : Black line shows an observed spectrum of HR 6819, highlighting two Si III lines for
which the absorption is dominated by the B star. Blue line shows a model spectrum with no
rotational or macroturbulent broadening and vmic = 10 km s−1. Cyan and red lines show fits to
the line profiles assuming purely rotational and Gaussian broadening, respectively. The observed
line profiles have broader wings than predicted for pure rotational broadening and are reasonably
well-fit by Gaussian profiles. This indicates that non-rotational broadening contributes significantly
to the observed line widths.
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contamination from the Be star: given its v sin i ≈ 180 km s−1, any absorption from it is
spread over a significantly wider wavelength range, ∆λ > 5Å.

Purely Gaussian broadening does reproduce the observed line profiles reasonably well.
An isotropic Gaussian broadening profile is not well-motivated physically (e.g. Gray 1992a;
Simón-Díaz & Herrero 2014), but it is a serviceable simplification. The physical basis of
non-rotational broadening in B stars is not well understood. As it is modeled here, macrotur-
bulence represents any broadening mechanisms besides rotation, not necessarily turbulence.
Given the observed photometric variability and line profile variations in HR 6819, it is likely
that pulsation-driven fluctuations in the surface velocity field of the B star contribute to
the broadening. Such fluctuations are not expected to produce strictly Gaussian broadening
profiles (e.g. Aerts & Eyer 2000; Aerts et al. 2014), but in practice we find that Gaussians
provide a reasonably good fit to the line profiles of uncontaminated metal lines in HR 6819
at all epochs, though the best-fit values of vmacro change somewhat from epoch to epoch
(Figure 9.14). The conclusion that rotation alone produces line profiles with too-steep wings
also holds at all epochs.

Because non-rotational broadening likely dominates over rotational broadening, we can-
not reliably estimate v sin i of the B star from its line profiles. By fitting the observed Si
III 4568 line profiles with a combination of rotational and macroturbulent broadening (e.g.
Ryans et al. 2002; Simón-Díaz & Herrero 2014), we can limit the projected rotation velocity
to v sin i < 20 km s−1. If the B star is tidally synchronized, the limits on its radius and the
binary’s inclination (Table 9.1) would imply v sin i = 3.1+1.8

−1.2 km s−1.

9.9 Helium enrichment
As discussed in Section 9.3.7, we find that the surface of the B star is enriched in he-

lium. Evidence for this is shown in Figure 9.16, which compares the strong He lines in the
disentangled spectrum to TLUSTY/SYNSPEC models with solar helium abundance (blue)
as well as models with nHe/nH = 0.35 (red). The latter is 3.5 times the solar value (0.55
dex enhancement) and corresponds to a ≈ 55% helium mass fraction. The helium-enriched
models clearly provide a better fit. We note that while a 55% helium mass fraction is consid-
erably higher than expected for a normal hydrogen-burning star, it is lower than predicted
by the MESA models we analyze in Section 9.3.8, which predict mass fractions of ≈80%.

Bodensteiner et al. (2020) also analyzed the spectra of HR 6819. Their inferred atmo-
spheric parameters and conclusions about the nature of the system are broadly consistent
with ours. However, they did not find evidence of helium enrichment. The different con-
clusions are driven primarily by different choice of atmospheric models: their abundance
constraints are based on PoWR models presented in Hainich et al. (2019), while we use
TLUSTY/SYNSPEC models. Comparing the models directly, we find that at fixed Teff ,
log g, and vmic, and He abundance, the PoWR models predict significantly stronger He lines,
such that solar-abundance PoWR models indeed provide a good fit to the He lines in HR
6819. We defer a more detailed analysis of the differences between the two atmospheric and
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Figure 9.16 : Strong helium lines of the B star. Black line shows the disentangled spectrum of the
B star. Blue shows a TLUSTY/SYNSPEC model with Teff = 16 kK, log g = 2.75, vmic = 10 km s−1,
and solar helium abundance, nHe/nH = 0.1. Red line shows a model with the same atmospheric
parameters but 0.55 dex higher helium abundance; i.e., nHe/nH = 0.35. The helium-enhanced
model provides a much better fit.

spectral models to future work.
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Chapter 10

A million binaries from Gaia eDR3:
sample selection and validation of Gaia
parallax uncertainties

An earlier version of this article was previously published in El-Badry, K., Rix, H.-W.,
Heintz, T. M., 2021, arXiv:2101.05282, MNRAS, in press.

10.1 Abstract
We construct from Gaia eDR3 an extensive catalog of spatially resolved binary stars

within ≈ 1 kpc of the Sun, with projected separations ranging from a few au to 1 pc. We
estimate the probability that each pair is a chance alignment empirically, using the Gaia cat-
alog itself to calculate the rate of chance alignments as a function of observables. The catalog
contains 1.3 (1.1) million binaries with >90% (>99%) probability of being bound, including
16,000 white dwarf – main sequence (WD+MS) binaries and 1,400 WD+WD binaries. We
make the full catalog publicly available, as well as the queries and code to produce it. We
then use this sample to calibrate the published Gaia DR3 parallax uncertainties, making use
of the binary components’ near-identical parallaxes. We show that these uncertainties are
generally reliable for faint stars (G & 18), but are underestimated significantly for brighter
stars. The underestimates are generally ≤ 30% for isolated sources with well-behaved as-
trometry, but are larger (up to ∼80%) for apparently well-behaved sources with a companion
within . 4 arcsec, and much larger for sources with poor astrometric fits. We provide an
empirical fitting function to inflate published σ$ values for isolated sources. The public
catalog offers wide ranging follow-up opportunities: from calibrating spectroscopic surveys,
to precisely constraining ages of field stars, to the masses and the initial-final mass relation
of white dwarfs, to dynamically probing the Galactic tidal field.
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10.2 Introduction
About half of all solar-type stars are members of binary systems, and a majority of these

are so widely separated that the two components never interact (e.g. Moe & Di Stefano
2017b). With orbital periods ranging from ∼10 to ∼ 108 years, most of these binaries can
in some sense be viewed as clusters of two: the components formed from the same gas
cloud and have orbited one another ever since. They thus have essentially the same age,
initial composition, and distance, but generally different masses and occasionally different
evolutionary phases. This makes wide binaries useful for calibrating stellar models as well
as spectroscopic and astrometric surveys.

At angular separations greater than about one arcsecond, wide binaries are easily re-
solvable as two point sources. Distinguishing physically bound binary stars from chance
alignments (“optical doubles”) has been a long-standing challenge for binary star astronomy.
Indeed, the first systematic binary star catalog was constructed under the assumption that
all close pairs were chance alignments (Herschel 1782), an assumption that was only shown
to be incorrect two decades later (Herschel 1803).

For bright binaries at close angular separations, chance alignments can be excluded prob-
abilistically. However, the contamination rate from chance alignments increases at wider
separations and fainter magnitudes. Inclusion of proper motion data can aid the selection of
genuine binaries, in which the two stars have nearly identical proper motions (e.g. Luyten
1971, 1979b; Salim & Gould 2003; Chanamé & Gould 2004; Dhital et al. 2010). Many wide
binary searches have specifically targeted high-proper motion stars, which have fewer phase-
space neighbors that can be mistaken for binary companions. If available, parallaxes and
radial velocities are also useful for distinguishing binaries from chance alignments (e.g. Close
et al. 1990; Andrews et al. 2017).

Prior to the Gaia mission (Gaia Collaboration et al. 2016), useful parallaxes for this
purpose were only available for (relatively) small samples of nearby and bright stars. Gaia
DR2 (Gaia Collaboration et al. 2018a) dramatically expanded the sample of stars with well-
measured parallaxes and proper motions, enabling the construction of unprecedentedly pure
and extensive wide binary samples. El-Badry & Rix (2018c, hereafter ER18) searched Gaia
DR2 for pairs of stars within 200 pc of the Sun with parallaxes and proper motions consistent
with being gravitationally bound, and projected separations of up to 50,000 AU (0.24 pc).
Their catalog prioritized purity over completeness, and thus imposed relatively strict cuts
on astrometric and photometric quality and signal-to-noise ratio (SNR). This resulted in a
catalog of ∼ 55, 000 binaries with an estimated contamination rate of ∼ 0.1%.

Using the same basic strategy but less stringent cuts on astrometric SNR, Tian et al.
(2020) extended the ER18 binary search to larger distances (d < 4 kpc) and wider separations
(s < 1 pc). This produced a substantially larger sample of ∼ 800, 000 binary candidates,
but with a higher contamination rate: chance-alignments dominate their catalog at s &
20, 000 au, though higher-purity subsamples can be selected by imposing stricter cuts on
astrometric SNR. Their catalog contained 325,000 binaries with s < 20, 000 au; it is expected
to be reasonably pure in this separation regime.
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Another binary catalog was produced by Hartman & Lépine (2020), who combined Gaia
DR2 astrometry with a catalog of high-proper motion stars not contained in Gaia DR2. In
order to reduce contamination from chance alignments, they limited their search to binaries
with proper motions larger than 40 mas yr−1; this translates to a distance limit of order 200
pc for typical stars in the Galactic disk, but to a larger search volume for stars on halo-like
orbits with large tangential velocities. Their primary binary catalog contains ∼ 100, 000
binary candidates, with projected separations as large as 10 pc.

In this paper, we use Gaia eDR3 data (Gaia Collaboration et al. 2020a) to further expand
the sample of known wide binaries. Compared to DR2, eDR3 astrometry is based on a
∼1.5× longer time baseline. This yields significant improvements in parallax and especially
proper motion uncertainties. For example, the median uncertainties in parallax and pmra
(one-dimenstional proper motion) at G = 18 have respectively improved from 0.165 mas
to 0.120 mas, and from 0.280 mas yr−1 to 0.123 mas yr−1 (Lindegren et al. 2018, 2020b).
Improvements at the bright end are more significant, due to better handling of systematics;
i.e., at G = 13, the median parallax uncertainty decreased from 0.029 mas to 0.015 mas.
This improved astrometric precision allows us to distinguish bound binaries from chance
alignments to larger distances and wider separations than was possible with DR2. Our
approach is a compromise between the strategies adopted by Tian et al. (2020) and ER18.
Like Tian et al. (2020), we search out to wide separations and relatively low astrometric SNR,
so that at wide separations and faint magnitudes, the full catalog is dominated by chance
alignments. However, we also empirically estimate and assign each binary a probability that
it is a chance alignment, making it straightforward to select pure subsets of the catalog.

The remainder of the paper is organized as follows. In Section 10.3, we describe how our
binary candidate sample is selected and cleaned. Section 10.4 describes how we quantify the
contamination rate from chance alignments and estimate the probability that each binary
candidate is bound. Section 10.5 details basic properties of the catalog and a cross-match
with the LAMOST survey. In Section 10.6, we use the binary sample to validate the Gaia
eDR3 parallax uncertainties. We summarize and discuss our results in Section 10.7. The
public catalog is described in Section 10.8. Details about the calculation of chance-alignment
probabilities are provided in the Appendix.

10.3 Sample selection
To reduce contamination from chance alignments, we limit our sample to pairs in which

both components have moderately precise astrometry. We retrieved from the Gaia archive
all sources with parallaxes greater than 1 mas (corresponding to a nominal distance limit of
1 kpc, which in reality is blurred due to parallax errors), fractional parallax uncertainties
less than 20%, absolute parallax uncertainties less than 2 mas, and non-missing G−band
magnitudes. This was achieved with the following ADQL query:

select *
from gaiaedr3.gaia_source
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where parallax > 1
and parallax_over_error > 5
and parallax_error < 2
and phot_g_mean_mag is not null

The query returns a total ofN = 64, 407, 853 sources, corresponding toN(N+1)/2 ≈ 2×1015

possible pairs. Of these, we consider as initial binary candidates all pairs that satisfy the
following:

• Projected separation less than 1 parsec: the angular separation between the two stars,
θ, must satisfy

θ

arcsec
≤ 206.265× $1

mas
, (10.1)

where $1 is the parallax of the star with the brighter G magnitude. The maximum
search radius of 1 pc (corresponding to an orbital period of ∼ 108 years) is chosen be-
cause a vanishingly small number of bound binaries are expected to exist at separations
wider than this, where the Galactic tidal field becomes comparable to the gravitational
attraction of the two stars (e.g. Binney & Tremaine 2008b). The separation beyond
which the Galactic tidal field dominates a binary’s internal acceleration is called the
Jacobi radius. In the Solar neighborhood, it is given by rJ ≈ 1.35 pc × (Mtot/M�),
where Mtot is the total mass of the binary (Jiang & Tremaine 2010). At separations
slightly below rJ , binaries are efficiently disrupted by gravitational perturbations from
objects such as other stars and molecular clouds (e.g. Weinberg et al. 1987).

• Parallaxes consistent within 3 (or 6) sigma: the parallaxes of the two components, $1

and $2, must satisfy
|$1 −$2| < b

√
σ2
$,1 + σ2

$,2, (10.2)

where σ$,i is the parallax uncertainty of the i-th component, and b = 3 for pairs with
θ > 4 arcsec, or b = 6 for pairs with θ < 4 arcsec. The less stringent cut at θ < 4 arcsec
is adopted because the chance alignment rate there is low and parallax uncertainties
are significantly underestimated at close angular separations (Section 10.6).

• Proper motions consistent with a Keplerian orbit: The two stars in a wide binary will
have proper motions that are similar, but, due to orbital motion, not identical. We
require

∆µ ≤ ∆µorbit + 2σ∆µ, (10.3)

where ∆µ is the observed scalar proper motion difference, σ∆µ its uncertainty, and
∆µorbit the maximum proper motion difference expected due to orbital motion. The
first two quantities are calculated as

∆µ =
[
(µ∗α,1 − µ∗α,2)2 + (µδ,1 − µδ,2)2

]1/2
, (10.4)

σ∆µ =
1

∆µ

[(
σ2
µ∗α,1

+ σ2
µ∗α,2

)
∆µ2

α +
(
σ2
µδ,1

+ σ2
µδ,2

)
∆µ2

δ

]1/2

, (10.5)
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where ∆µ2
α = (µ∗α,1 − µ∗α,2)2 and ∆µ2

δ = (µδ,1 − µδ,2)2. Here µ∗α,i ≡ µα,i cos δi, α and δ
denote right ascension and declination, and µα and µδ, the proper motion in the right
ascension and declination directions. Following ER18, we take

∆µorbit = 0.44 mas yr−1 ×
( $

mas

)3/2
(

θ

arcsec

)−1/2

, (10.6)

which is the maximum proper motion difference expected for a circular orbit of total
mass 5M�; it corresponds to a projected physical velocity difference

∆Vorb = 2.1 km s−1 ×
( s

1000 au

)−1/2

, (10.7)

where s = 1000 au × (θ/arcsec) ($/mas)−1 is the projected separation. This quantity is of
course not equal to the full 3D separation, or to the semimajor axis, a. For randomly oriented
orbits with a realistic eccentricity distribution, s and a usually agree within a factor of 2
(see ER18, their Appendix B). For our purposes, it is generally an acceptable approximation
to assume a ∼ s. We note that the cut on proper motion difference removes from the
sample a significant fraction of unresolved hierarchical triples and higher-order multiples
(see Section 10.5.4).

We apply the cuts on projected separation, parallax difference, and proper motion differ-
ence to all possible pairs. The projected separation cut reduces the list of possible binaries
to 1010; additionally requiring consistent parallaxes and proper motions reduces it to 108

initial candidate pairs. A random sample of 1% of these is plotted in the top panel of Fig-
ure 10.1, and their projected separation distribution is shown in gray in Figure 10.2. A
large majority of initial candidate pairs are chance alignments, not genuine binaries. This is
evident both from the fact that many candidate pairs are in the Galactic bulge, LMC, and
SMC, and from the fact that their separation distribution peaks at the widest separations
(Figure 10.2), where true binaries are rare.

Stars in the bulge, LMC, and SMC would ideally be excluded by the requirement of$ > 1
and $/σ$ > 5 in the initial query, but a significant fraction of sources in crowded fields have
spurious parallaxes (e.g. Fabricius et al. 2020). Most of these spurious background pairs can
be excluded by imposing astrometric quality cuts – for example, we find that adding the
requirement of astrometric_sigma5d_max < 1 to our initial query reduces the number of
initial candidates by a factor of 10 while only removing a minority of genuine binaries1. We
opted against applying such cuts because they do remove some real binaries, and we find
that chance alignments with spurious parallaxes can be efficiently filtered out by the cleaning
described in Section 10.3.1.

In addition to chance alignments of background sources with spurious parallaxes, our
initial selection also efficiently selects members of star clusters and moving groups, about

1astrometric_sigma5d_max is the longest principal axis in the 5-dimensional error ellipsoid, in mas. A
large value indicates that at least one of the astrometric parameters is poorly determined in the 5-parameter
solution. More information on this and other Gaia flags can be found in the Gaia eDR3 data model.

https://gea.esac.esa.int/archive/documentation/GEDR3/Gaia_archive/chap_datamodel/sec_dm_main_tables/ssec_dm_gaia_source.html
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100 of which can be seen in the top panel of Figure 10.1. These are not spurious, in the
sense that they really do contain many pairs of stars within our search volume that are close
in phase space and in some cases mutually bound (e.g. Oh et al. 2017b). However, most of
them are not binaries and will become unbound when the clusters dissolve.

10.3.1 Cleaning clusters, background pairs, and triples

We clean the list of initial binary candidates in several passes. First, beginning with
all the sources returned by our initial ADQL query, we count for each source the number
of phase-space neighbors that are brighter than G = 18 and consistent with the size and
velocity dispersion of a typical cluster. We define neighboring sources as those that satisfy
the following:

• Projected separation less than 5 pc; i.e., θ ≤ 17.19 arcmin× ($/mas).

• Proper motions within 5 km s−1; this translates to a proper motion difference ∆µ ≤
1.05 mas yr−1× ($/mas), with a 2σ tolerance.

• Parallaxes consistent within 2 sigma; i.e., ∆$ ≤ 2
√
σ2
$,1 + σ2

$,2.

We remove from our binary candidate list all pairs in which either component has more
than 30 neighbors as defined above. Only 6.5 million of the 64 million sources in the search
sample have more than 30 neighbors, and inspection reveals that a majority of these are
not in the search volume at all, but rather are spurious sources in the Galactic bulge, LMC
and SMC. Removing candidates containing these sources shrinks the candidate list from
112,473,599 pairs to 2,881,543 and removes most of the obvious structure seen in the top
panel of Figure 10.1.

Next, we remove all overlapping pairs. That is, if either component of a binary candidate
is a member of another binary candidate, we remove both pairs. This removes genuine
resolved triples, which are efficiently identified by our initial search (e.g. Perpinyà-Vallès
et al. 2019) and are not rare (Tokovinin 2014b). It also removes some additional chance
alignments. This cut shrinks the candidate sample from 2,881,543 to 1,918,362.

Finally, we search for members of small clusters or moving groups not removed in the
first pass. Adopting the phase-space coordinates of the brighter component of each pair
as representing the pair, we count the number of neighboring pairs for each candidate,
defined using the same three criteria used when counting neighboring sources (without any
magnitude cut). We reject all candidates that have more than 1 neighboring pair, shrinking
the sample from 1,918,362 to 1,817,594.

It is important to note that some real binaries will be removed during the filtering of
resolved triples, clusters, and moving groups. In regions of high stellar density, a distant
tertiary candidate that is really a chance alignment can cause a genuine binary to be rejected
as a triple. Similarly, some bound binaries do exist within clusters, and these will all be
rejected. An upper limit of ∼ 15% can be set on the fraction of true binaries lost during
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N= 112, 473, 599
(1% plotted)

N= 1, 817, 594
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N= 119, 195

Figure 10.1 : Sky distribution of binary candidates in Galactic coordinates. Top panel shows a
random subset of all pairs with consistent parallaxes and proper motions. The vast majority of
these are not genuine binaries. Many clusters are visible, as well as the Magellanic clouds and inner
Galaxy. These are beyond the nominal 1 kpc search limit but enter the dataset due to spurious
parallaxes. 2nd panel shows the sky distribution after clusters, moving groups, and resolved triples
have been filtered (Section 10.3.1). This removes the majority of spurious background pairs. 3rd
panel shows the pairs with R < 0.1 (corresponding approximately to 90% bound probability; see
Section 10.4.2). Some structure remains, primarily tracing dust. Bottom panel shows sources within
200 pc, which are distributed almost uniformly on the sky.
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Figure 10.2 : Separation distribution of binary candidates at three stages of the selection procedure,
corresponding to the top three panels of Figure 10.1. Most initial candidates (gray) are chance
alignments, which dominate at s & 3, 000 au. Cleaning resolved triples, clusters, and moving groups
removes a large fraction of chance alignments (black), but they still dominate at s & 30, 000 au.
The separation distribution of binaries with high bound probability (& 90%; red; see Section 10.4.2)
falls off steeply at wide separations.
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cleaning by comparing the gray and black histograms in Figure 10.2 at close separations;
this is an upper limit because some of the pairs removed at close separations are genuinely
members of resolved triples, moving groups, and clusters.

The binary candidate sample after removal of resolved triples and suspected cluster mem-
bers is shown in the 2nd panel of Figure 10.1 and with the black histogram in Figure 10.2.
This is the catalog published along with this work; it contains both high-confidence bina-
ries and pairs that are very likely chance alignments. The contamination rate from chance
alignments increases rapidly with separation (Section 10.4), while the true binary separation
distribution decreases monotonically over the range of separations to which we are sensitive
(e.g., ER18). The separation at which the number of binary candidates per dex of separation
begins to increase (log(s/au) ≈ 4.5 for the black histogram in Figure 10.2) thus marks the
separation at which chance alignments begin to dominate the full sample. That is, when
considering the full catalog, a majority of binary candidates with s & 30, 000 au are chance
alignments. It is, however, possible to select subsets of the catalog that are free of chance
alignments out to much wider separations; see Section 10.4.

We define the “primary” and “secondary” components, denoted “1” and “2”, as the com-
ponent with the brighter and fainter G magnitude, respectively. Both components are on
the main sequence in a majority of binaries; in these cases, the “primary” is generally also
the more massive component. For binaries containing white dwarfs, the secondary will often
be more massive than the primary.

10.4 Chance alignments
The contamination rate from chance alignments depends on a variety of factors, including

angular separation, parallax and proper motion, their respective uncertainties, and the local
source density. We use two complementary approaches to constrain the chance alignment
rate for different subsets of the catalog.

First, we repeat our binary selection procedure on the GeDR3mock catalog produced by
Rybizki et al. (2020). This catalog is built on a realization of the Besançon model of the
Milky Way (Robin et al. 2003) produced with Galaxia (Sharma et al. 2011). It contains no
binaries, so by construction all binary candidates selected from the mock catalog are chance
alignments. It does, however, contain a realistic population of open clusters, a variety of
stellar populations, an approximation of the Gaia eDR3 selection function, and realistic as-
trometric uncertainties. We repeat the full binary selection process described in Section 10.3
on the mock catalog, including filtering of clusters and resolved triples. We remove pairs
with angular separations θ < 0.5 arcsec by hand, because the Gaia eDR3 sensitivity drops
precipitously at closer separations (Fabricius et al. 2020), and this is not accounted for in
the mock catalog. The separation distribution of candidates selected from the mock catalog
is shown in the left panel of Figure 10.3.

Second, we produce an empirical chance alignment sample based on the actual Gaia eDR3
catalog, following the method introduced by Lépine & Bongiorno (2007b). Prior to selecting
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Figure 10.3 : Two methods for estimating the contamination rate from chance alignments. Left panel
compares the separation distribution of binary candidates (black) to that of candidates selected from
the eDR3 mock catalog (Rybizki et al. 2020; cyan), which contains no true binaries. Right panel
compares the same binary candidates (black) to the separation distribution of candidates when stars
are artificially shifted 0.5 degrees from their true positions when selecting candidate companions
(orange; by construction, these are not true binaries). Both methods show that chance alignments
dominate the full catalog at wide separations (s & 30, 000 au, where the separation distribution
begins to increase), but true binaries dominate at closer separations.
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potential binary companions to each star, we artificially shift it from its true position by
≈ 0.5 degrees, increasing its reported RA by 0.5 sec(δ) degrees. We then repeat the binary
search, treating each star’s shifted coordinates as its true coordinates when searching for
possible companions. This process avoids selecting real binaries, since stars are shifted away
from their true companions, but preserves chance alignment statistics, because the source
density within our 1 kpc search volume does not vary much on 0.5 degree scales. Copying and
shifting the catalog effectively doubles the number of possible chance alignments, increasing
the total number of pairs from N(N +1)/2 to N(N +1), so we retain members of the shifted
chance alignment catalog with 50% probability. We again remove pairs with θ < 0.5 arcsec.
The separation distribution of chance alignments produced in this way is shown in the right
panel of Figure 10.3.

The two methods predict similar chance alignment rates. At wide separations (log(s/au) &
4.5 for the full catalog), the number of chance alignments is similar to the number of pairs
in the binary candidates catalog. In this regime, most candidates are chance alignments.
Not surprisingly, chance alignments begin to dominate at the separation where the binary
candidate separation distribution begins to increase. The number of chance alignments per
logarithmic separation interval increases steeply with separation: there are 100 times more
chance alignments with 5 < log(s/au) < 5.1 than there are with 4 < log(s/au) < 4.1. This is
a consequence of the larger available area for background stars to be found in at wider separa-
tions. At fixed distance, the area in which chance alignments can appear scales as ∼ 2πs ds.
At wide separations, the chance alignment distributions thus scale as dN/d log s ∼ s2. This
scaling does not hold exactly, in part due to small-scale clustering and in part due to the
less stringent parallax consistency required at small angular separations, but it provides a
good approximation to the chance alignment rate at wide separations (log(s/au) & 4).

We use the “shifted” chance alignment catalog in the rest of our analysis, because we find
that it reproduces the separation distribution of binary candidates in the large-separation
limit somewhat more reliably than the mock catalog.

10.4.1 Chance alignment rate for subsets of the catalog

Although chance alignments dominate the full sample at s & 30, 000 au, it is possible
to select subsets of the catalog that are free of chance alignments out to wider separations.
This is illustrated in Figure 10.4, which shows the separation distributions of various subsets
of the binary candidate and the shifted chance alignment catalogs. As expected, the chance
alignment rate at fixed separation is lower for samples with high galactic latitude, bright
component stars, small fractional parallax errors, large space velocities, or large proper
motions. Nevertheless, it is challenging to select any subset that remains pure beyond
s ∼ 105 au (∼ 0.5 pc) without also dramatically reducing the sample size. We make the
catalog of shifted chance alignments publicly available in order to facilitate estimation of the
chance alignment rate in various subsamples of the catalog.
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Figure 10.4 : Contamination rate from chance alignments in various subsets of the catalog. Black
histograms show binary candidates. Orange histograms show a catalog of chance alignments con-
structed by shifting stars 0.5 degrees when selecting candidate binaries. It contains no real binaries,
but it has similar chance alignment statistics to the true binary candidates catalog. For the set of
cuts illustrated in each panel, the vertical dashed line shows the widest separation at which there are
more than 2× the number of binary candidates as chance alignments. Ngood is the number of binary
candidates in that subset closer than this separation. Panels show the full catalog, high galactic
latitudes, binaries with both components brighter than G = 15, precise parallaxes at high Galactic
latitudes, high tangential velocities (e.g. halo-like orbits), WD+MS and WD+WD binaries, and
high-proper motion pairs.
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10.4.2 Estimating chance alignment probabilities

As illustrated in Figure 10.4, chance alignments and true binaries are found in different,
but overlapping, regions of parameter space. We estimate the probability that a particular
binary candidate is bound by comparing, at its location in parameter space, the local density
of binary candidates and that of chance alignments from the shifted catalog. The process is
described in detail in Appendix 10.9. The “densities” are evaluated in a seven-dimensional
space using a Gaussian kernel density estimate (KDE). The dimensions are (1) angular sep-
aration, (2) distance, (3) parallax difference uncertainty, (4) local sky density, (5) tangential
velocity, (6) parallax difference over error, and (7) proper motion difference over error. We
re-scale these quantities to all have similar, order-unity dynamic range before fitting KDEs
to both the binary candidate and the chance alignment distributions.

We denote the KDE-estimated density of chance alignments at a point ~x in the 7-
dimensional parameter space asNchance align (~x), and that of binary candidates asNcandidates (~x).
The latter quantity is expected to be the sum of the chance-alignment and true binary den-
sities. We then calculate the ratio of these two quantities,

R (~x) = Nchance align (~x) /Ncandidates (~x) . (10.8)

This ratio approximately represents the probability that a binary candidate at position ~x
is a chance alignment, so selecting only candidates with small R is an efficient method for
eliminating chance alignments. R is not strictly a probability – for example, it is not strictly
less than one (Figure 10.5) – but it is a serviceable approximation for one. We calculate R
values for all members of the binary candidate and chance alignment catalogs.

Figure 10.5 (left) shows the distribution of R values for both catalogs. There is a nar-
row population of binary candidates with R near zero; these are objects that have a high
probability of being bound. There is a second population of candidates with R ∼ 1; these
objects are likely chance alignments. The separation distributions of binary candidates with
R below several thresholds are shown in the right panel of Figure 10.5. As expected, the
vast majority of binary candidates with close separations (log(s/au) . 4) have low R values,
indicating a high bound probability. At wider separations, the separation distribution of
high-probability binaries falls off precipitously. We emphasize that this drop-off is steeper
than that of the separation distribution of all binaries, because for a low R threshold, more
true binaries will be excluded from the high-confidence sample than chance alignments will
be included in it.

We validate the use of R as a proxy for the chance-alignment probability in Figure 10.6,
which compares the Gaia DR2 radial velocities (Sartoretti et al. 2018; Katz et al. 2018) of
the two components of candidates in which both stars have measured RVs. We only plot
candidates in which both components have σRV < 10 km s−1 and the separation is wider than
50, 000 au, where the full catalog is dominated by chance alignments. One expects the RVs of
the two components to be similar for genuine wide binaries. For chance alignments, the RVs
of the two components should be drawn from a broad distribution with width comparable to
the local velocity dispersion of the Galactic disk, and thus they will generally be inconsistent.
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Figure 10.5 : Left: ratio of the local density of chance alignments to binary candidates (Equa-
tion 10.8), for all pairs in the binary candidate sample (black) and the shifted chance alignment
sample (orange). Likely chance alignments have R ∼ 1; objects with high probability of being
bound have R ∼ 0. Right: separation distribution of binary candidates below different R thresh-
olds. The chance-alignment rate increases at wide separations, so the separation distribution of
low-R candidates falls off more steeply for progressively smaller R thresholds.
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Figure 10.6 : Gaia RVS velocities of the components of binary candidates wider than 50,000 au.
These are not used in constructing the catalog or calculating bound probabilities, but are useful
for validation. Black points show all candidate binaries for which both components have σRV <

10 km s−1; red points show the subset of these with R < 0.1, corresponding approximately to a
90% bound probability. These all fall close to the one-to-one line, suggesting that they are indeed
bound.
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For the full sample, there are indeed plenty of pairs with obviously inconsistent RVs, as chance
alignments dominate at wide separations, even for bright pairs (e.g. Figure 10.4). Red points
in Figure 10.6 show binaries with R < 0.1. As expected, these pairs all have RVs close to
the one-to-one line and are likely all bound. We stress that RVs are not used in creating the
catalog or calculating R values, so this result bolsters our confidence in the chance alignment
ratios calculated from the shifted catalog.

We note that only bright stars (G . 13.5) had RVs published in Gaia DR2 (with no
new RVs added in eDR3), so the fraction of chance alignments among binaries where both
components have RVs is lower than in the full sample at the same separation. RVs for fainter
stars are compared in Section 10.5.5, where we take RVs from the LAMOST survey.

In the rest of the paper, we define the “high bound probability” or “high confidence”
subset of the catalog as the subset with R < 0.1; this corresponds approximately to > 90%
probability of being bound. This does not mean that 10% of the pairs in this subset are
chance alignments: most candidates in it have R � 0.1 (Figure 10.5). Interpreting R as
the probability that a given pair is a chance alignment, we estimate that 4,600 of the 1.26
million candidates with R < 0.1 are chance alignments (0.4%). For R < 0.01, the same
fraction is 870 out of 1.15 million (0.08%). We make the full candidate catalog and R values
available, including pairs that are likely chance alignments.

10.5 Basic properties of the catalog
Basic properties of the binary catalog are shown in Figure 10.7 and listed in Table 10.1.

Only the high-confidence pairs (R < 0.1) are shown. Following ER18, we classify stars
as white dwarfs (WDs) or main-sequence (MS) based on their position in the Gaia color-
absolute magnitude diagram (CMD): defining MG = G+ 5 log ($/100), we classify as WDs
objects with MG > 3.25 (GBP −GRP) + 9.625; all other stars with measured GBP − GRP

colors are classified as MS stars. Under the ansatz that the two components have the same
distance, we use the (usually more precise) parallax of the primary, (the brighter star) for
both components when calculating MG.

The adopted WD/MS boundary in the CMD is shown with a dashed line in Figures 10.7
and 10.8. The boundary is not entirely unambiguous – particularly for the WD+MS binaries,
there are a few objects near the boundary that may be misclassified – but a majority of
objects do fall clearly on the WD or MS sequences. We note that the “MS” classification
serves only to exclude WDs. The CMDs in Figure 10.7 show that while most non-WD
stars are indeed on the main sequence, the “MS” class also includes some giants, subgiants,
pre-main sequence stars, and brown dwarfs. The number of binary candidates and high-
confidence binaries in each class is summarized in Table 10.1.

The data acquisition window for BP/RP spectra is 2.1×3.5 arcsec wide, preventing colors
from being measured for most close pairs (Arenou et al. 2018b). The majority of sources
with a comparably bright companion within 2 arcsec thus do not have measured GBP−GRP

colors and cannot be classified as WD or MS stars based on Gaia data alone. Components
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Figure 10.7 : Basic properties of the high-bound probability binary sample: physical and angular
separation, apparent magnitude of the primary, magnitude difference, distance, galactic latitude,
plane-of-the-sky velocity, and color-magnitude diagrams. We designate stars as white dwarfs (WDs)
or main sequence (MS; including giants) based on whether they fall below or above the dashed line in
the bottom right panels. Black, blue, and yellow histograms show properties of MS+MS, WD+MS,
and WD+WD binaries. We only classify binaries as MS+MS, WD+MS, or WD+WD if both
components have a GBP − GRP color. A majority of binaries with separation θ < 2 arcsec do not
have Gaia colors for a least one component and are therefore not classified; this accounts for most
of the difference between the black and gray histograms (see also Table 10.1).
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Classification Ncandidates NR<0.1 Description
MSMS 1,412,903 877,416 both MS
WDMS 22,563 16,156 one WD, one MS
WDWD 1,565 1,390 both WD
MS?? 378,877 360,180 one MS, one no colors
WD?? 646 547 one WD, one no colors
???? 1,040 711 both no colors
Total 1,817,594 1,256,400

Table 10.1 : Contents of the binary candidate catalog. All stars with measured GBP −GRP colors
are classified as “MS” or “WD” depending whether they fall above or below the dashed lines in
Figure 10.8. Ncandidates is the number of candidate binaries with separations up to 1 pc (black
histogram in Figure 10.2); NR<0.1 is the number with high bound probability (red histogram in
Figure 10.2).

lacking a color measurement are denoted “??” in Table 10.1 and in the catalog. About 30%
of all high-confidence binaries have one component with unknown color; 0.05% lack colors for
both components. In 98% of cases where only one component has a color, it is the brighter
component. In many cases where no Gaia color is available, colors from other surveys (e.g.
Pan-STARRS) should be sufficient to distinguish WD and MS components.

The catalog contains 8.8× 105 high-confidence MS+MS binaries, more than 16,000 high-
confidence WD+MS binaries, and 1,390 high-confidence WD+WD binaries. Angular separa-
tions range from 0.2 arcsec to one degree. The peak of the angular separation distribution is
at 1.2 arcsec. This is simply a result of the Gaia eDR3 angular resolution, since the intrinsic
separation distribution falls off monotonically with increasing separation over all separations
that are well-represented in the catalog (e.g. Duchêne & Kraus 2013). There are 271 pairs
with separations between 0.2 and 0.4 arcsec, including 24 below 0.3 arcsec. Fabricius et al.
(2020, their Figure 7) found some indication that the Gaia eDR3 catalog may contain spu-
rious duplicated sources at separations below 0.4 arcsec (that is, single sources that were
erroneously classified as two sources), so it is possible that a small fraction of the closest
pairs in the catalog are spurious. We do not, however, find any increase in the angular
separation distribution at close separations, as might be expected to arise from a population
of duplicated sources.

The median magnitude of high-confidence primaries is G = 15.2, and that of secondaries
is G = 17.7. Most WDs in the catalog are significantly fainter: the median magnitudes
of primaries and secondaries in the WD+WD sample are 19.1 and 19.8. For WD+MS
binaries, the same values are 15.5 for the primaries (in most cases, the MS star) and 19.4
for the secondaries. The median parallax of the full high-confidence sample is 2.05 mas
(1/$ ≈ 485 pc); the median distances for WD+WD and WD+MS binaries are 148 and
212 parsecs. Because of their closer distances, the WD+WD and WD+MS binaries are
distributed roughly uniformly on the sky. The MS+MS sample, which extends to larger
distances, bears clear imprint of the stratification of the Galactic disk. Most of the binaries
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in the sample are part of the kinematic “disk” population, with a median tangential velocity
v⊥ = 4.74 km s−1 × (µtot/mas yr−1)($/mas)−1 ≈ 35 km s−1. There is also evidence of a
kinematic “halo” population with v⊥ & 200 km s−1 that contains a few thousand binaries.

The WD+MS and WD+WD binaries are shown separately on the CMD in Figure 10.8.
On top of the WD+WD binaries, we plot WD cooling tracks for carbon-oxygen cores with
hydrogen atmospheres (Holberg & Bergeron 2006; Kowalski & Saumon 2006; Tremblay et al.
2011; Bergeron et al. 2011; Bédard et al. 2020). WDs cool as they age, moving from the upper
left to the lower right of the CMD. Cooling ages are indicated with triangular symbols along
the tracks, which mark intervals of 1 Gyr. The faintest WDs in the catalog have implied
cooling ages of about 10 Gyr. 31 WD+WD binaries have one component that falls below the
1.2M� cooling track; i.e., with a photometrically-implied mass M > 1.2M�. For WD+MS
binaries, 75 WDs fall below the 1.2M� cooling track. Hydrogen-atmosphere cooling tracks
are not appropriate for WDs with non-DA spectral types, so spectroscopic classification must
be obtained before masses and ages of individual WDs can be inferred with high fidelity.

The catalog also contains about 10,000 high-confidence binaries in which the primary is a
giant (about half these giants are in the red clump), including about 130 giant-giant binaries.
These are all quite bright (both components have G < 11). They, along with the WD+MS
binaries and the ≈ 13, 000 binaries in which one component is a subgiant, can serve as useful
calibrators for stellar ages.

Massive stars are not well-represented in the catalog; there are 351 high-confidence pri-
maries with GBP−GRP < 1 andMG < 0. This cut corresponds roughly toM & 3M�, though
extinction complicates the mapping between MG and mass. 75% of the high-confidence
MS+MS binaries have primaries withMG between 9.5 and 3.8, corresponding approximately
to 0.4 < M1/M� < 1.3. For secondaries, the 75% range isMG = 11.3−6.4, corresponding to
0.2 < M2/M� < 0.8. The catalog also contains about 80 binaries in which one component
is likely a brown dwarf. We identify these on the CMD as objects with MG > 16.5 and
G − GRP > 1.3; they are all within 80 pc of the Sun and therefore are also found in the
binary catalog produced by Gaia Collaboration et al. (2020b).

A small but noticeable fraction of sources, particularly secondaries, are scattered below
the main sequence in the CMD, between the WDs and MS stars (bottom right panel of
Figure 10.7). The majority of these sources are separated from a brighter companion by
only a few arcsec; the most likely explanation for their anomalous CMD position is thus that
they are MS stars with contaminated BP/RP photometry. The majority of such sources can
be filtered out using cuts on bp_rp_excess_factor and phot_bp/rp_n_blended_transits
(e.g. Riello et al. 2020), but we refrain from employing such cuts since they also remove
a significant fraction of sources with acceptable photometry and astrometry. Some sources
below the main sequence may also be stars with spurious parallaxes or biased colors, and a
few are likely real astrophysical sources, primarily cataclysmic variables and detached but
unresolved WD+MS binaries (e.g. Abrahams et al. 2020; Belokurov et al. 2020).
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Figure 10.8 : Color–absolute magnitude diagrams of high-confidence WD+MS and WD+WD bina-
ries. Left: black points show MS components, which are usually the primaries; WD components are
shown in red. Right: primary and secondary WDs are shown in black and red. We overplot cooling
models for hydrogen-atmosphere WDs with masses between 0.6 and 1.2 M�. Symbols mark 1 Gyr
intervals of cooling age, with the first (leftmost) symbol at 1 Gyr.

10.5.1 Twin binaries and contrast sensitivity

An excess population of equal-brightness (and presumably, equal-mass) “twin” binaries
is also found in the catalog. Its existence is most obvious in the distribution of magnitude
difference, ∆G, as a function of separation, which is shown in Figure 10.9 and compared to
chance alignments. Unlike the chance alignment catalogs constructed from the mock catalog
and shifted catalogs (Section 10.4), these are selected in the same way as true binaries,
but with the requirement that the parallaxes and proper motions of the two components be
inconsistent. For easier visualization of the distribution of magnitude difference near ∆G = 0,
the sign of ∆G is randomized. The top panel illustrates the separation-dependent contrast
sensitivity of the Gaia eDR3 catalog: at close angular separations, sources with significantly
brighter companions are outshone. This leads to a contrast limit of ∆G ≈ 4 mag at θ = 1
arcsec and ∆G ≈ 7 mag at θ = 2 arcsec. The contrast limit at a given separation is not
“sharp”, but is manifest as a smooth drop in sensitivity with increasing ∆G (e.g. Brandeker
& Cataldi 2019b).2 The contrast sensitivity is significantly improved in the binary catalog
produced in this work compared to the one produced by ER18: that work required both
components to have relatively uncontaminated BP/RP colors and thus contained basically
no binaries closer than 2 arcsec.

The bottom panel of Figure 10.9 shows true binary candidates, in which the two compo-
2At very close separations (θ . 0.7 arcsec; not shown in Figure 10.9), the Gaia eDR3 catalog contains

only equal-brightness pairs (Lindegren et al. 2020b, their Figure 6). The contrast sensitivity is relatively
smooth at θ > 1 arcsec.
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Figure 10.9 : Magnitude difference between the two stars in chance alignments (top) and bound
wide binaries (bottom) as a function of angular separation. The sign of ∆G is randomized. Chance
alignments are selected following the same procedure used for real binaries, but with the require-
ment that the two stars’ parallaxes be inconsistent rather than consistent. The chance alignments
illustrate the contrast sensitivity of the Gaia eDR3 catalog: at close separations, pairs with large
magnitude difference are not detected. In the bottom panel, a narrow excess population of binaries
with ∆G ≈ 0 is visible, which is absent in the top panel. This highlights the excess population of
equal-mass “twin” binaries.
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Figure 10.10 : Comparison of the catalog produced in this work (black and red histograms) to the
wide binary catalogs published by ER18, Tian et al. (2020), and Hartman & Lépine (2020), all
of which are based on Gaia DR2 data. This catalog expands the one produced by Tian et al.
(2020) by a factor of ∼ 4. The full catalog (black) has lower purity than the El-Badry & Rix
(2018c) and Hartman & Lépine (2020) catalogs at wide separations. The subset with high bound
probability (red) maintains high purity at wide separations, but does not purport to trace the
intrinsic separation distribution there.

nents do have consistent parallaxes and proper motions. Unlike with the chance alignments,
here there is an narrow excess population with ∆G ≈ 0. The extent and provenance of
this population was studied by El-Badry et al. (2019); here we simply note that it is also
clearly apparent in our catalog. Because the twin excess is most prominent at close physical
separations, it is somewhat more obvious in our catalog, which extends to closer angular and
physical separations.

10.5.2 Comparison to other catalogs

Figure 10.10 compares the distributions of projected physical separation, angular sep-
aration, and distance of the catalog produced here to other wide binary catalogs in the
literature:

• The ER18 catalog (magenta) was produced from Gaia DR2 using a similar strategy
to this work, but it was limited to binaries within 200 pc ($ > 5 mas) and used
more stringent cuts on both photometric and astrometric quality and SNR. In order
to maintain high purity, it only contains binary candidates with s < 50, 000 au.

• Tian et al. (2020) expanded the ER18 search strategy to a larger volume (4 kpc) and
used less stringent quality cuts, while still using Gaia DR2 data. Unlike this work,
which uses a cut of $/σ$ > 5 for both components, they required $/σ$ > 20 for
the primary and $/σ$ > 2 for the secondary. This results in somewhat different
contamination properties and completeness. They also searched out to s = 1 pc. In
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addition to to their full catalog of all candidates, Tian et al. (2020) published 3 smaller
catalogs with high purity, which are not shown in Figure 10.10.

• Hartman & Lépine (2020) did not use a strict distance cut, but limited their search
to high-proper-motion pairs with µ > 40 mas yr−1. This preferentially selects nearby
stars, since proper motion is inversely proportional to distance at fixed transverse ve-
locity. For a “typical” tangential velocity of v⊥ = 35 km s−1, their proper motion cut
corresponds to d < 185 pc. However, stars on halo-like orbits with larger tangential
velocities are included to larger distances; e.g., a binary with v⊥ = 200 km s−1 will
have µ > 40 mas yr−1 out to a distance of 1.05 kpc. Rather than employing strict cuts
on parallax and proper motion consistency, Hartman & Lépine (2020) used empirical
estimates of the chance alignment rate as a function of position and proper motion
difference from a shifted catalog (similar to our approach in Section 10.4) to distin-
guish true binaries from chance alignments. Their approach has the advantage of not
requiring specific cuts in parallax or proper motion difference, which are always some-
what arbitrary. A disadvantage is that it does not account for the heteroskedasticity
of parallax and proper motion uncertainties – i.e., the chance alignment probability is
higher for pairs with large astrometric uncertainties, and this is not accounted for in
their analysis.

One difference between the catalog produced in this work and the other catalogs is obvious
in Figure 10.10: our sample extends to smaller angular separations, and thus also physical
separations. This is partly a result of the improved angular resolution of Gaia eDR3 (e.g.,
Fabricius et al. 2020) but is primarily due to a change in search strategy. ER18 and Tian
et al. (2020) required both components of candidate binaries to have GBP −GRP colors and
to pass photometric quality cuts related to the bp_rp_excess_factor reported in Gaia DR2
(Evans et al. 2018). This set a soft resolution limit of ∼ 2 arcsec, with a wider effective limit
for pairs with large brightness contrast. We do not require colors or employ a photometric
quality cut in this work; this adds an additional ∼400,000 binary candidates to the sample
that would be excluded if we did (Table 10.1).

Both the catalog produced in this work and the one from Tian et al. (2020) become
dominated by chance alignments at s & 30, 000 au. The “high bound probability” subset of
our catalog does not, but its separation distribution falls off steeply at wide separations. This
decline at wide separations is steeper than that of the intrinsic separation distribution, since
a decreasing fraction of binaries at wide separations can be identified as bound with high
confidence. This can be seen in comparing the red separation distribution to the magenta one
from ER18, which tracks the intrinsic separation distribution over 5000 < s/au < 50, 000.
The separation distribution from Hartman & Lépine (2020) has a similar logarithmic slope
to the one from ER18 in this separation range and likely tracks the intrinsic separation
distribution out to wider separations. At the very widest separations represented in that
catalog (5+ pc, exceeding the local Jacobi radius and corresponding to an orbital period of
about a Gyr), it is unlikely that pairs are actually bound. This may reflect the fact that
the search strategy employed by Hartman & Lépine (2020) is sensitive to any pairs that



10.5. BASIC PROPERTIES OF THE CATALOG 285

are closer in phase space than chance alignments from the shifted catalog, without explicit
consideration of the expected orbital velocities. That is, their search does not distinguish
between bound binaries, moving groups, or stellar streams.

In terms of absolute numbers, the catalog represents a factor of∼ 4 increase in the number
of high-confidence binaries over the one from Tian et al. (2020). To our knowledge, it is the
largest published catalog of high-confidence binaries of any type. The sample could likely
be expanded by a further factor of a few by loosening the distance and parallax uncertainty
limits, or dropping the parallax cut entirely, while focusing on close angular separations (e.g.
Dhital et al. 2015). However, the cuts we use in this paper provide a reasonable compromise
between sample size, purity, and data quality.

A wide binary catalog based on Gaia eDR3 was also produced by Gaia Collaboration
et al. (2020b), which contains pairs within 100 pc. It is not shown in Figure 10.10, but we
find that within 100 pc, it is almost identical to ours.

10.5.3 Space density

Figure 10.11 compares the separation distributions of binaries in different (cumulative)
distance bins. We scale these by the effective stellar volume corresponding to the distance
cut, i.e., by a factor proportional to the total number of stars expected in each distance
sample. Were it not for the finite scale height of the Galactic disk, this factor would simply
be the search volume V = 4πd3

max/3, where dmax is the distance limit. We approximate the
total stellar density within our search volume as a plane-parallel exponential distribution
with the Sun at the midplane and a scale height hz = 300 pc (Jurić et al. 2008b). We then
define an effective volume Ṽ , which represents the number of stars in a sphere of radius dmax

divided by the stellar density at the disk midplane:

Ṽ = 2π

∫ dmax

0

e−z/hz
(
d2

max − z2
)
dz (10.9)

= 2π
[
2h3

z

(
e−dmax/hz − 1

)
+ 2h2

zdmaxe
−dmax/hz + hzd

2
max

]
. (10.10)

As expected, this expression asymptotes to 4πd3
max/3 in the limit of dmax � hz. In Fig-

ure 10.11, the separation distributions for each value of dmax are divided by the appropriate
value of Ṽ .

Dashed vertical lines in Figure 10.11 mark a separation of sres limit = (2 arcsec) × dmax.
At separations s < sres limit, incompleteness due to the Gaia eDR3 angular resolution starts
to become severe. The figure shows that for dmax . 200 pc, incompleteness is due primarily
to the angular resolution limit: at s > sres limit, the separation distributions in different
distance bins overlap. However, for dmax = 500 pc or 1000 pc, the catalog contains fewer
binaries per effective volume than at closer distances, even at s > sres limit. This reflects
the fact that at sufficiently large distances, some binaries will have components that are too
faint to pass the parallax_over_error > 5 limit, or to be detected at all. At d = 200 pc,
parallax_over_error > 5 implies σ$ < 1mas. This is satisfied by most sources with
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Figure 10.11 : Midplane number density of binaries in different cumulative distance bins. Vertical
lines mark θ = 2 arcsec at the distance limit of each bin, roughly the angular separation at which
incompleteness due to blending becomes significant. At all distances, the turnover at close separa-
tions is driven primarily by the resolution limit, but the 15 and 25 pc samples show a relatively flat
separation distribution below a few hundred au. Beyond 200 pc, there is significant incompleteness
due to stars being too faint to pass our fractional parallax error threshold – i.e., the calculated
number densities are lower than in the nearby samples even at wide separations, where blending
should not be important.
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G . 20.5 (Lindegren et al. 2020b), corresponding to MG = 14.0, near the bottom of the
main sequence (e.g. Figure 10.8). That is, the sample is expected to be almost complete for
dmax = 200pc, except for crowding/blending effects at close separations. On the other hand,
at d = 1 kpc, parallax_over_error > 5 implies σ$ < 0.2mas, G . 18.8, and MG . 8.8,
meaning that most of the lower main sequence will be excluded.

All of the separation distributions in Figure 10.11 increase toward smaller separations
at s > sres limit, but the distributions for dmax = 15pc and dmax = 25pc are similar and
do appear to flatten above the resolution limit, at s ∼ 30 au. For a typical binary in the
catalog with total mass 1 M�, this corresponds to a period of order 200 years, which is
indeed near the peak of the approximately lognormal separation distribution for solar-type
binaries (Raghavan et al. 2010). We caution that effects of astrometric acceleration also
become important in this regime (Section 10.7.3), potentially leading to spurious parallaxes
and preventing pairs from being recognized as binaries by our search.

Integrating over separation, the distributions in Figure 10.11 imply a total space density
of (0.006 ± 0.001) wide binaries with s > 30 au per cubic parsec in the solar neighborhood.
For context, the space density of all unresolved Gaia eDR3 sources in the solar neighborhood
is 0.07 pc−3 (Gaia Collaboration et al. 2020b), about 10 times higher. When all members
of multiple systems are counted individually, the total stellar space density in the solar
neighborhood is about 0.10 pc−3 (e.g. Winters et al. 2020).

10.5.4 Orbital velocities from proper motion differences

Precise parallaxes and proper motions make it possible to estimate orbital velocities
(projected onto the plane of the sky) from the proper motion difference between the two
stars. The plane-of-the sky velocity difference ∆V can be calculated as

∆V = 4.74 km s−1 ×
(

∆µ

mas yr−1

)( $

mas

)−1

. (10.11)

Here ∆µ is the scalar proper motion difference (Equation 10.4), and $ is the parallax of
the binary, for which we take the parallax of the brighter component. The corresponding
uncertainty is

σ∆V = 4.74 km s−1

√
(∆µ)2

$4
σ2
$ +

σ2
∆µ

$2
, (10.12)

with σ∆µ calculated from Equation 10.5, ∆µ and σ∆µ in mas yr−1, and $ and σ$ in mas.
We implicitly assume here that the two stars have the same parallax. Equation 10.12 is
almost always dominated by the first term under the radical; i.e., parallax errors dominate
over proper motion errors. The median value of σ∆V for all high-confidence binaries in the
catalog is 0.33 km s−1; 195,601 have σ∆V < 0.1 km s−1.
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Figure 10.12 : Upper left: plane-of-the sky velocity difference between the components of wide
binary candidates selected with ∆V < 5 km s−1 and σ∆V < 0.1 km s−1. Dashed red line shows the
maximum expected velocity difference for a binary with total mass 5M� (Equation 10.7). Binary
candidates in our catalog (top center) are required to be consistent, within 2 σ, with falling below
this line, but pairs with large proper motion uncertainties can scatter well above it. The clouds of
points at large separation and ∆V are chance alignments; bottom panels show chance alignments
from the shifted catalogs for the same selection. Points at large separation and ∆V are excluded
by the requirement of high bound probability (R < 0.1; upper right). In the upper left panel, there
is a population of triples and higher-order multiples above the dashed line, with no corresponding
population in the shifted catalog (lower left). These have increased ∆V due to the gravitational
effects of an unresolved close companion. They are generally gravitationally bound, but are excluded
from our primary catalog.
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Figure 10.12 explores the ∆V values of binary candidates in the catalog, and the effects
of the ∆V cuts we employ on its purity and completeness. The upper left panel shows
all pairs from our initial query that have s < 1 pc, consistent parallaxes, ∆V < 5 km s−1,
and σ∆V < 0.1. Note that the cut of ∆V < 5 km s−1 is generally less strict than the
one we adopt in constructing our primary catalog (Equation 10.3), which is equivalent to
∆V < ∆Vorb + 2σ∆V , with ∆Vorb given by Equation 10.7.

In the upper left panel, there is a clear ridgeline of binaries with ∆V ∼ s−1/2, as expected
from Kepler’s laws. This population largely falls below ∆Vorb (dashed red line) because most
of the binaries in the catalog have total masses less than 5M�. There is not, however, a
sharp drop-off at ∆V > ∆Vorb. The population with ∆V > ∆Vorb likely consists primarily of
triples and higher-order multiples, in which the plane-of-the-sky velocity of one component
is affected by a close, unresolved companion (e.g. Clarke 2020; Belokurov et al. 2020). It
is also possible that some of these pairs are moving groups that are not actually bound
but remain close in phase space (e.g. Pittordis & Sutherland 2019; Coronado et al. 2020);
however, we find that the population exists even among binaries on halo-like orbits, favoring
multiplicity as the primary explanation for it. We also find that most pairs with ∆V > ∆Vorb

have unusually large ruwe3 for at least one component (Figure 10.13), suggesting that these
components are unresolved binaries (e.g. Belokurov et al. 2020).

A large fraction of these unresolved triples and higher-order multiples are excluded
from our actual catalog by the requirement of ∆V < ∆Vorb + 2σ∆V rather than e.g.,
∆V < 5 km s−1; this should be kept in mind when using the catalog for applications in-
volving higher-order multiplicity. We do not use a constant ∆V cut (e.g. ∆V < 5 km s−1)
in constructing the full catalog because this would result in a much higher contamination
rate from chance alignments. For 5, 000 < s/au < 10, 000, 22% of pairs with ∆V < 5 km s−1

and σ∆V < 0.1 km s−1 are excluded from the catalog by Equation 10.3. If we assume that
large ∆V values are due mainly to subsystems, this implies that about 12% of wide binary
components in this separation range have an unresolved subsystem that imparts a large
enough photocenter perturbation to significantly increase ∆V . This corresponds to a sub-
system separation range of ∼ 1 − 100 au, since photocenter wobbles will average out over
the 34-month Gaia eDR3 baseline at closer separations, and the subsystem-induced ∆V will
be small at wider separations. About 25% of wide binary components have a subsystem in
this separation range (Tokovinin & Smekhov 2002b; Tokovinin et al. 2010), so it is quite
plausible that the large-∆V pairs are mostly unresolved triples and higher-order multiples.

The clouds of points at large separation and ∆V in Figure 10.12 are chance alignments.
These are primarily pairs with large σ∆V ; otherwise they would be excluded by the re-
quirement of ∆V < ∆Vorb + 2σ∆V . The bottom panels show the distribution of chance
alignments from the shifted catalog (Section 10.4). These are distributed similarly to the
large-separation cloud among binary candidates. No chance-alignment cloud is visible in the
binary candidates with high bound probability (upper right), but a few chance alignments

3ruwe, the re-normalised unit-weight error, is a measure of astrometric goodness-of-fit that corrects for
global trends in the other reported goodness-of-fit indicators with magnitude and color. Values above about
1.4 indicate potential problems.
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do scatter into the bound binary cloud, mostly at ∆V > ∆Vorb (lower right).
We note that the interpretation of ∆V calculated from Equation 10.11 as a physical

velocity difference between the two components of a binary breaks down at large angular
separations, where projection effects become important (e.g. El-Badry 2019). Indeed, two
stars in an ultra-wide binary can have identical space velocities but substantially different
plane-of-the-sky proper motions. The magnitude of the apparent proper motion difference
depends primarily on angular separation and is therefore largest for nearby binaries, which
are also the binaries with the smallest σ∆V . For the sample shown in the upper left panel
of Figure 10.12, projection effects become important beyond about 20,000 au, which is –
perhaps not coincidentally – the separation beyond which the trend of ∆V ∼ s−1/2 appears
to flatten. These projections effects can be corrected if the RVs of at least one component
are known (El-Badry 2019).

10.5.5 Cross-match with LAMOST

We cross-matched the binary catalog with the LAMOST survey (Cui et al. 2012b, DR6
v2), the currently most extensive spectroscopic survey providing stellar parameters and abun-
dances. We began with the LAMOST low-resolution “A, F, G and K Star” catalog, which
contains atmospheric parameters and metallicities for 5,773,552 spectra (including some du-
plicate observations). We cross-matched the catalog with Gaia eDR3 using the CDS Xmatch
service,4 which uses Gaia proper motions to propagate source positions to epoch J2000. We
matched each LAMOST observation to the nearest Gaia source within 1 arcsec. For sources
with more than one LAMOST observation, we retained only the observation with the highest
g−band SNR. This left us with LAMOST data for 4,306,131 sources, which we then matched
to our catalog using Gaia source ids.

This yielded 91,477 binaries in which at least one component has a LAMOST spectrum.
This sample will be useful for a variety of applications, such as studying the dependence of
the binary fraction on metallicity (e.g. El-Badry & Rix 2019a; Hwang et al. 2020). Here,
we focus on a subset of the cross-match: those binaries in which both components have a
LAMOST spectrum, and the angular separation is at least 3 arcseconds. The latter cut is
to avoid cases where both stars fall inside a single fiber, leading to potentially biased stellar
parameters and abundances (e.g. El-Badry et al. 2018f). The RVs of these binaries can be
used to verify whether most binary candidates are bound. This test is similar to that shown
in Figure 10.6 with Gaia RVs, but LAMOST spectra extend to fainter magnitudes than RVs
from Gaia, which are currently only available at G . 13.

Figure 10.14 compares the LAMOSTs RVs and metallicities (i.e., [Fe/H]) of the com-
ponents of these binaries. These are generally expected to be consistent for genuine wide
binaries. The RVs for most binaries do indeed fall close to the one-to-one line, but there
are some outliers: 91 of the 2840 binaries in the sample have RVs that are more than 3-
sigma discrepant. A potential worry is that these pairs are not binaries at all, but chance

4http://cdsxmatch.u-strasbg.fr/
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Figure 10.14 : High-confidence binaries in which both components were observed by the LAMOST
survey. We only include pairs with angular separation θ > 3 arcsec to avoid blending. Top left
and center: comparison of the RVs and metallicities ([Fe/H]) of the primary (x-axis) and secondary
(y-axis). In most binaries, the two components have very similar RV and [Fe/H], as expected. There
is evidence of a systematic bias toward lower [Fe/H] for fainter targets. Upper right: G magnitudes
of both components. This sample includes fainter stars than the Gaia RVS sample. Bottom left and
center: distributions of uncertainty-normalized RV and [Fe/H] difference, compared to Gaussians
with the listed σ. These suggest that the LAMOST RV uncertainties are overestimated by ∼ 30%

on average, while [Fe/H] uncertainties are underestimated and subject to temperature systematics.
Bottom right: separation distributions. Pairs in which RVs are not consistent within 3σ are shown
in red. If these pairs were chance-alignments, one would expect them to be concentrated at the
widest separations. They are not, suggesting that they are either higher-order multiples with the
RV of one component biased by an unresolved close companion, or pairs in which one component
has a catastrophically wrong RV.
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alignments. To assess whether this is likely to be the case, we plot the separation distri-
bution of the discrepant pairs in the bottom right panel of Figure 10.14. This shows that
the separation distribution of pairs with large RV differences is similar to that of all pairs.
Chance alignments are much more common at wide separations (Figure 10.4), so if chance
alignments were the root of the discrepant RVs, one would expect these pairs to be clustered
at large separations. The primary reason for the discrepant RVs is likely again higher-order
multiplicity. This is likely to affect the LAMOST RVs more than it does those from Gaia
(Figure 10.6), because the LAMOST RVs and their uncertainties are based on a single epoch.
Unresolved short-period binaries are usually filtered out of the Gaia RV sample we consider,
because σRV for that sample is calculated from the epoch-to-epoch RV dispersion, and we
required σRV < 10 km s−1 for both components.

The lower left panel of Figure 10.14 shows the distribution of uncertainty-normalized RV
difference between the two components of binaries; i.e., ∆RV/σ∆RV. The median σ∆RV for
this sample is 7 km s−1, which is larger than the typical ∼ 1 km s−1 orbital velocity for these
binaries, so we expect the width of the main distribution to be dominated by measurement
uncertainties, with the tails dominated by higher-order multiples. If the reported σRV values
are accurate, ∆RV/σ∆RV should be distributed as a Gaussian with σ ≈ 1, with some outliers
at higher velocity difference. The distribution is indeed approximately Gaussian, but it is
narrower than σ = 1; the bulk of the distribution is better approximated by σ ≈ 0.7. This
suggests that the LAMOST RV uncertainties are typically overestimated by ∼ 30%.

The distribution of uncertainty-normalized [Fe/H] differences tells a different story. It
is not well-described by a single Gaussian, but has a narrow component with σ . 1, and
broad, asymmetric tails. This suggests that σ[Fe/H] values are considerably underestimated for
a significant fraction of the catalog. We find (not shown in the figure) that the distribution
becomes narrower and more Gaussian when we only consider binaries in which the two
components have similar magnitude and effective temperature. This suggests that the larger-
than-expected metallicity differences are due primarily to temperature systematics in the
abundance pipeline. This is particularly evident in the upper middle panel of Figure 10.14,
which shows that the secondaries (which have lower Teff) systematically have lower reported
[Fe/H]. It is of course possible that some binaries really have inconsistent surface abundances,
but work with higher-quality spectra than those which underlie the LAMOST metallicities
suggests such abundance anomalies are rare (Hawkins et al. 2020).

Many of the binaries in our catalog were also observed by other spectroscopic surveys.
We defer analysis of these data to future work, but comment that the type of analysis shown
in Figure 10.14 will be useful in calibrating the abundances derived by surveys (and their
uncertainties). For example, an earlier version of our binary catalog constructed from Gaia
DR2 was recently fruitfully used by Buder et al. (2020) to assess the reliability of abundances
derived by the GALAH survey.
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Figure 10.15 : Distributions of uncertainty-normalized parallax difference between the two compo-
nents of binaries, ∆$/σ∆$ = ($1−$2)/

√
σ2
$,1 + σ2

$,2. Each panel shows a different bin of angular
separation and magnitude, with both components falling in the quoted magnitude range. Because
the two components of a binary have essentially the same distance, this quantity would be expected
to follow a Gaussian distribution with σ = 1 (dotted lines) if the formal parallax uncertainties were
accurate. σ > 1 points toward underestimated parallax uncertainties. Solid black lines show Gaus-
sian fits, with σ noted in the legends. At all magnitudes, the best-fit σ is larger at close separations,
implying that σ$ is more severely underestimated for sources with nearby companions. At fixed
separations, the fractional underestimate of σ$ is larger for bright stars.
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10.6 Calibrating Gaia DR3 parallax uncertainties
Because the two stars in a wide binary have very nearly the same distance, our cata-

log provides a straightforward method of validating the Gaia eDR3 parallax uncertainties.
We do this by calculating the uncertainty-normalized parallax difference between the two
components of each binary, ∆$/σ∆$ = ($1 −$2) /

√
σ2
$,1 + σ2

$,2, just as we did for the
LAMOST RVs. In the limit of accurate parallax uncertainties (and small differences in the
true distance to the two components), this quantity should be distributed as a Gaussian
with σ = 1. If the reported parallax uncertainties are underestimated, one expects a wider
distribution, and possibly deviations from Gaussianity.

Figure 10.15 shows distributions of ∆$/σ∆$ for binaries at a range of angular separations
and magnitudes. To isolate underestimated random errors (as opposed to systematic shifts
due to e.g. variations in the parallax zeropoint), we only show binaries in which both
components have magnitudes in the quoted range (corresponding to a magnitude difference
of ∆G < 1). This figure only shows high-confidence binaries (R < 0.1) in which both
components have ruwe < 1.4, indicating an apparently well-behaved astrometric solution.
In this and all validation of the parallax errors, we exclude binaries that are wide and nearby
enough that their physical size might measurably contribute to the parallax difference. Under
the ansatz that the projected physical separation s is comparable to the line-of-sight distance
difference and is much smaller than the distance, we expect the true parallax difference
between the two stars to scale as ∆$true ∼ 1/d− 1/ (s+ d) ≈ s/d2, or

∆$true =
1

206265
mas×

(
θ

arcsec

)( $

mas

)
. (10.13)

This quantity is negligible compared to σ∆$ for most binaries in the catalog, but not for the
nearest and widest binaries. We therefore exclude all binaries in which ∆$true/σ∆$ > 0.05.

Blue histograms in Figure 10.15 show the observed distributions. We show 5 bins of G
magnitude, each 1 mag wide, and 3 bins of angular separation. At separations closer than 4
arcsec, the catalog contains binaries with |∆$|/σ∆$ < 6; at wider separations, |∆$|/σ∆$ <
3 (Section 10.3). Also shown in Figure 10.15 are Gaussian fits to the data. Because pairs
with |∆$|/σ∆$ < 3 (or 6) do not enter the catalog, it is necessary to account for this
truncation of the distribution. Particularly when parallax uncertainties are underestimated,
simply calculating the sample standard deviation would underestimate the best-fit σ. We
assume the observed values of ∆$/σ∆$ are drawn from a distribution defined as

p (∆$/σ∆$) =

{
A exp

[
− (∆$/σ∆$)2

2σ2

]
, |∆$/σ∆$| < b

0, |∆$/σ∆$| > b
(10.14)

where A = 1√
2πσ×erf(b/

√
2σ)

, erf is the error function, and b = 3 or 6 is the sigma-threshold

above which binaries are rejected. The log-likelihood for a set of uncertainty-normalized
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Figure 10.16 : Fractional parallax uncertainty underestimate (i.e., the best-fit σ in Figure 10.15) as
a function of magnitude and separation. Black symbols show binaries in which both components
have ruwe < 1.4; red symbols show those in which at least on component has ruwe > 1.4, indicating
a potentially problematic astrometric solution. From left to right, panels show increasing angular
separation. As expected, sources with ruwe > 1.4 have larger σ$ underestimates at all magnitudes
and separations. Sources with ruwe < 1.4 have more severe underestimates of σ$ at close separations
and for bright stars, particularly at 11 < G < 13.
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Figure 10.17 : Fractional parallax uncertainty underestimate (i.e., the best-fit σ reported in Fig-
ure 10.15) as a function of magnitude. All binaries considered have ruwe < 1.4 for both components.
Green points additionally have ipd_gof_harmonic_amplitude < 0.1 and ipd_frac_multi_peak <
10 for both components; blue points have at least one component that does not pass these cuts.
Sources that do not pass the IPD cuts have more strongly underestimated uncertainties at all
separations and magnitudes.
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Figure 10.18 : Fraction of pairs in which at least one component fails the indicated quality cut
(larger values are indicative of a potentially problematic astrometric solution). All three indicators
are significantly enhanced within θ . 2 arcsec.

parallax differences is then

lnL =
∑
i

ln p ((∆$/σ∆$)i) , (10.15)

where the sum is calculated over all binaries in the set. For each panel of Figure 10.15, we
maximize Equation 10.15 to find the value of σ that best describes the truncated Gaussian.
This is plotted with a solid line, and the value of σ is shown in the legend. For compari-
son, we also plot a Gaussian with σ = 1, the distribution expected in the limit of accurate
parallax uncertainties. To avoid having a few outliers with strongly underestimated parallax
uncertainties bias the fits, we exclude binaries with |∆$|/σ∆$ > 3 and set b = 3 in all sep-
aration bins. The figure shows that the distributions of ∆$/σ∆$ are indeed approximately
Gaussian, and the fits are reasonably good representations of the data.

Two trends are clear in Figure 10.15: (a) at fixed apparent magnitude, the width of the
observed distributions increases at closer separations, and (b) at fixed separation, their width
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increases toward brighter magnitudes. That is, parallaxes are more strongly underestimated
for bright sources with close companions. This is illustrated more clearly in Figure 10.16,
in which black points with error bars show the best-fit Gaussian σ values for each bin
of magnitude and angular separation, considering only sources with ruwe < 1.4 for both
components. At all separations, parallaxes are most severely underestimated at G ≈ 13.
This is likely related to the fact that the window class (i.e., the pixel sampling scheme around
detected sources; see Rowell et al. 2020) changes at G ≈ 13. The largest σ$ underestimate
factors are also accompanied by abrupt changes in the zeropoint (Lindegren et al. 2020a).
For sources with G < 13, a 2D window is used and is fitted with a point spread function. For
G > 13, only the collapsed 1D scan, which is fitted with a line spread function, is available.
Sources near G = 13 have a mix of 2D and 1D windows and are likely more affected by any
calibration issues.

Figure 10.16 also shows results for binaries in which at least one component has ruwe >
1.4, indicative of a potentially problematic astrometric solution. As expected, the best-fit σ
values are significantly larger for these binaries, at all separations and magnitudes.

A natural question is whether the broadened distributions of uncertainty-normalized
parallax difference could be a result of contamination from chance alignments that are not
actually bound, rather than underestimated parallax uncertainties. This hypothesis can be
ruled out for two reasons. First, we can empirically estimate the chance-alignment rate for
different subsets of the catalog (e.g. Figures 10.3 and 10.4), and we find it to be extremely low
for the samples we use for parallax error validation. Second, our analysis suggests that σ$
is most severely underestimated for bright binaries at close separations, and this is precisely
the region of parameter space where the chance alignment rate is lowest (e.g. Figure 10.4).

Besides ruwe, Gaia eDR3 contains other diagnostics of potentially problematic astromet-
ric fits. In particular, the parameter ipd_gof_harmonic_amplitude quantifies how much
the image parameter determination goodness-of-fit varies with scan angle; a large value
is likely indicative of a marginally-resolved binary. The related ipd_frac_multi_peak di-
agnostic quantifies in what fraction of scans multiple peaks are detected. Figure 10.17
separately plots the inferred σ$ underestimate for sources in which both components have
ipd_gof_harmonic_amplitude < 0.1 and ipd_frac_multi_peak < 10 (green), and those in
which at least one component fails one of these cuts (blue). These thresholds are motivated
by the experiments performed in Gaia Collaboration et al. (2020b). At all separations, the
implied σ$ underestimate is larger for sources that do not pass one of the IPD cuts; the
difference is largest for bright pairs at close separations.

Figure 10.18 shows how the prevalence of problematic sources according to the ruwe and
IPD diagnostics depends on separation. Considering all binaries in the catalog, we plot the
fraction of pairs at a given separation in which at least one component does not pass the cut
listed in the legend. At separations larger than a few arcseconds, this fraction is ∼ 10% for
the ruwe cut, and ∼ 3% for both the IPD cuts. However, all three diagnostics of problematic
solutions increase steeply at θ . 2 arcsec, with the fraction approaching unity for the ruwe
and ipd_frac_multi_peak cuts, and ∼ 40% for the ipd_gof_harmonic_amplitude cut.
This is not unexpected: for binaries at close separations, there will necessarily be two peaks
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Figure 10.19 : Same as Figures 10.16 and 10.17, but now comparing results obtained with Gaia DR2
vs DR3 parallaxes. All binaries considered have ruwe < 1.4 for both components in both DR2 and
DR3. At G & 14, the uncertainties are underestimated less in DR3 than in DR2. DR3 uncertainties
are overestimated somewhat more severely at 11 < G < 13.

in the image. This will unavoidably lead to biases in the image parameter determination,
particularly for sources with G > 13, where the images are collapsed to 1D. There is also
a danger of misattributing some scans to the wrong component in close pairs, leading to
problems in the astrometric solution. In some cases, poor astrometric fits may also be due to
astrometric acceleration (Section 10.7.3). Figures 10.16 and 10.17 show that the ruwe and
IPD cuts are indeed useful for identifying sources with potentially problematic astrometric
solutions. However, they likely do not catch all problematic sources: parallax uncertainties
are underestimated somewhat even for sources that pass all cuts, and by a larger factor at
close separations.

10.6.1 Comparison to Gaia DR2

Figure 10.19 compares the inferred underestimate factor of σ$ for DR2 and eDR3 as-
trometry. We attempt to match all the binary candidates in the catalog with Gaia DR2
using the dr2_neighbourhood catalog in the Gaia archive. For each component of each bi-
nary, we identify the likely corresponding DR2 source as the source within 100 mas that has
the smallest magnitude difference compared to DR3. There are 1,894 primaries and 15,274
secondaries in the catalog for which no corresponding DR2 source could be identified. There
are also 17,514 primaries and 62,424 secondaries for which there is a corresponding source
in DR2 that only has a 2-parameter solution. Still, 96% of candidates have a corresponding
DR2 source with a 5-parameter solution for both components. Figure 10.19 considers the
subset of these binaries in which both components have ruwe < 1.4 in both DR2 and eDR3.

Overall trends with magnitude and separation are similar in DR2 and DR3. At G >
13, the inferred σ$ underestimates are smaller in DR3 at all separations, though they are
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Figure 10.20 : Median reported (dashed) and corrected (solid) parallax uncertainty as a function ofG
magnitude, for Gaia DR3 (black) and DR2 (red). The corrected values are obtained by multiplying
the reported values by the factors shown in Figure 10.19, which are empirically determined from
the reported parallax differences of the components of wide binaries. Panels show different bins of
angular separation. Only stars with ruwe < 1.4 in both data releases are considered. The rightmost
panel is appropriate for single stars outside of crowded fields.

still modest in DR2. Even at G ∼ 19 and wide separations, where the inferred σ$ in
DR3 are consistent with being accurate or very slightly overestimated, those in DR2 are
underestimated by ∼ 5% on average. However, at 11 < G < 13, the DR3 uncertainties are
overestimated more than those in DR2. Given that the reported values of σ$ decreased by a
factor of two on average between DR2 and DR3 in this magnitude range, the DR3 parallaxes
are still “better” on average than those from DR2, but Figure 10.19 implies that the true
gains are somewhat more modest than those reported.

This is shown explicitly in Figure 10.20, which shows the reported and true (inferred)
median σ$ for DR2 and DR3 as a function of apparent G− magnitude and angular separa-
tion. Dashed lines show the median value of σ$ in the sample, considering both primaries
and secondaries. Solid lines show the result of multiplying these values by the appropriate
factors from Figure 10.19. The corrected median σ$ values are at least 30% smaller in DR3
than in DR2 at all magnitudes and separations. For bright stars (G . 13), the gains are
generally more than a factor of 2.

10.6.2 Parallax zeropoint corrections and 5-parameter vs 6-parameter
solutions

The Gaia eDR3 parallax zeropoint is known to vary with apparent magnitude, color,
and ecliptic latitude. We do not attempt to account for this variation when constructing
the binary catalog. Because all the sources in the catalog have $ > 1 mas, the effects of
zeropoint corrections, which are typically on the order of 0.02 mas, are modest. Lindegren
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et al. (2020a) derived an empirical zeropoint for eDR3 using quasars, stars in the LMC, and
binaries. Here we investigate whether “correcting” the parallaxes using the prescriptions they
provide can reduce the inferred σ$ underestimate factors.

Figure 10.21 shows the inferred σ$ underestimate factors with and without the zeropoint
correction. We also separately plot binaries in which both components have a 5-parameter
astrometric solution and those in which both have a 6-parameter solution. Details about the
differences between 5- and 6-parameters solutions are discussed in Lindegren et al. (2020b);
5-parameter solutions are generally more reliable. Binaries with one 5- and one 6-parameter
solution are excluded. At G . 18, most sources have 5-parameter solutions. The exception
is sources with a close companion (θ . 2 arcsec), which usually lack both reliable colors and
5-parameter solutions.

At fixed separation and magnitude, the effects of applying the zeropoint correction are
encouraging but modest: for widely-separated binaries with G ≈ 13 and 5-parameter solu-
tions, the inferred σ$ underestimate factor decreases from ∼ 1.30 to 1.25. Improvements
are generally smaller at closer separations and for 6-parameter solutions. The small effect is
not unexpected: because the binaries we consider all have small magnitude differences, the
zeropoint corrections are similar for both components, and the parallax difference does not
change much when the correction is applied. At close separations, where most stars have 6-
parameter solutions, the underestimate factors are similar for 5- and 6-parameter solutions.
This suggest that the increased uncertainties at close separations are not primarily due to
the transition from 5- to 6-parameter solutions.

10.6.3 Color dependence

The parallax zeropoint is also known to depend somewhat on color, likely due to the
color-dependence of the PSF (Lindegren et al. 2020a,b). We therefore investigate how the
σ$ underestimate factors depend on color in Figure 10.22, where we separately consider
binaries in which both components are blue and those in which both components are red.
The color boundary we use, νeff = 1.4µm−1, corresponds to GBP − GRP ≈ 1.6, which is
approximately the red limit of the Gaia quasar sample. Figure 10.22 shows that for sources
with G > 16, the inferred σ$ underestimates are somewhat larger for red sources. We verified
that there are not significant angular separation differences between the red and blue pairs
at fixed magnitude, so color is the most likely driving variable.

10.6.4 Fitting function to inflate σ$
We fit a function to our inferred σ$ inflation factors as a function of G magnitude,

which can be used to empirically correct σ$ values reported for isolated sources. To derive a
correction appropriate for single sources with well-behaved astrometry, we consider binaries
with θ > 5 arcsec and ruwe < 1.4 for both components, and we apply the zeropoint correction
from Lindegren et al. (2020a) to both components’ parallaxes. Because we observe a general
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Figure 10.21 : σ$ underestimate factors (similar to Figure 10.16) for binaries in which both com-
ponents have five-parameters solutions (top) or both have six-parameter solutions (bottom). Left
column uses the Gaia eDR3 parallaxes directly; right column applies the magnitude-, color-, and
position-dependent parallax zeropoint correction from Lindegren et al. (2020a). For bright sources,
only binaries with close angular separations have six-parameter solutions. The inferred σ$ underes-
timate factors depend mainly on separation and magnitude; they are similar for 5- vs 6-parameter
solutions. Applying the zeropoint correction reduces the inferred overestimate factor slightly for
bright sources.
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Figure 10.22 : Similar to Figure 10.16, but with binaries divided by color. Only binaries in which
both components have ruwe < 1.4 and the two components fall in the same color bin are included.
νeff refers to the parameters nu_eff_used_in_astrometry and pseudocolour, respectively, for 5-
and 6-parameter solutions. The boundary of νeff = 1.4µm−1 corresponds approximately to GBP −
GRP = 1.6. Most quasars, white dwarfs, and MS stars with M & 0.6M� are bluer than this;
lower-mass MS stars are redder. Left and middle panels show all separations; right panel shows
wide separations. At the faint end, σ$ overestimates are somewhat larger for red sources.

decline in the inflation factor with increasing G and a peak at G ≈ 13 (Figure 10.23), we fit
a polynomial plus a Gaussian bump:

f (G) = A exp

[
−(G−G0)2

b2

]
+ p0 + p1G+ p2G

2 (10.16)

We find A = 0.21, G0 = 12.65, b = 0.90, p0 = 1.141, p1 = 0.0040, and p2 = −0.00062. This
is also plotted in Figure 10.23. Multiplying by f will – on average – correct reported σ$
values for Gaia eDR3 and single-source solutions in DR3. The correction is appropriate for
sources with 7 < G < 21 that have ruwe < 1.4, have no comparably bright sources within a
few arcsec, and have already had their parallaxes corrected by the zeropoint from Lindegren
et al. (2020a). The effects of having a close companion on σ$ likely depend on the brightness
contrast and a variety of other factors; a rough estimate of the magnitude of the inflation
can be obtained from Figure 10.16-10.17. The correction can be reasonably applied to both
5- and 6-parameter astrometric solutions. We do not fit separate corrections for red and
blue sources, but we note that at the faint end, the inflation factors are generally somewhat
smaller for blue sources.

10.6.5 Angular correlations in parallaxes

The σ$ inflation factors inferred in this work and predicted by Equation 10.16 should be
interpreted as lower limits. Gaia eDR3 parallaxes are subject to systematic trends on degree
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scales (and larger) due to the scanning law (e.g. Fabricius et al. 2020; Lindegren et al. 2020b).
The angular separations of most of the binaries in the catalog are significantly smaller than
this (Figure 10.7), so the “local” parallax zeropoint for the two stars is usually very similar.
These local positional variations in the zeropoint are not accounted for in the correction from
Lindegren et al. (2020a) and also inflate the effective parallax uncertainties. With a typical
scale of about 10µas, these may contribute significantly to the uncertainties at G . 13.

A contemporaneous study by Zinn (2021) validated Gaia eDR3 parallaxes and their
uncertainties using bright giants in the Kepler field (9 . G . 13) with independent distance
estimates from asteroseismology. They tested our parallax uncertainty inflation function
(Equation 10.16) and found it to perform well; i.e., no further uncertainty inflation was
required after it was applied. The angular size of the Kepler field (∼10 deg) is larger than the
scale on which the strongest angular correlations in Gaia eDR3 are manifest (e.g. Lindegren
et al. 2020b, their Figure 14). This suggests that any additional uncertainty inflation required
due to angular correlations in the zeropoiont is modest.

10.6.6 Comparison to other work

The reliability of parallax uncertainties reported in Gaia eDR3 has been investigated by
several other works. Fabricius et al. (2020, their Figure 19) used the dispersion in parallaxes
reported for distant objects – quasars, stars in the LMC, and stars in dwarf spheroidal
(dSph) galaxies, which should all have negligible true parallaxes – to estimate σ$ inflation
factors as a function of G magnitude. Their results from quasars and dSph stars, which
are only available at the faint end (G & 16) are broadly consistent with our results. In the
LMC, they infer inflation factors that are larger at fixed magnitude than our results at wide
separations, or their results for quasars and dSph at the same magnitude. This discrepancy
is very likely a result of crowding: the source density in the LMC is large enough that
a significant fraction of sources have another source within a few arcsec, and as we have
shown (e.g. Figure 10.19), sources with companions within a few arcsec have more severely
underestimated parallaxes. This likely also explains why Maíz Apellániz et al. (2021) found
somewhat larger uncertainty inflation factors in globular clusters than we do with widely
separated binaries. In the Kepler field, Zinn (2021) found a mean uncertainty estimate of
(22± 6)% for sources with 9 . G . 13 (with most sources at the faint end of this range);
this is consistent with our results.

10.7 Summary and discussion
We have constructed a catalog of 1.2 million high-confidence, spatially resolved wide bi-

naries using Gaia eDR3 and have used them to empirically validate the reported parallax
uncertainties in Gaia eDR3. Overall, the results are very encouraging: outside of crowded
regions (i.e., for stars with no comparably bright companion within a few arcseconds), par-
allax uncertainties for sources with well-behaved astrometric fits are underestimated by at
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Figure 10.23 : Parallax uncertainty inflation factors inferred from widely-separated pairs with ruwe
< 1.4 and parallaxes corrected by the zeropoint from Lindegren et al. (2020a). This is the σ$
underestimate factor for typical single sources with well-behaved astrometry. A fitting function
(Equation 10.16) is provided.



10.7. SUMMARY AND DISCUSSION 306

most 30% (at G ≈ 13), and by considerably less at fainter magnitudes. Our main results are
as follows:

1. : Catalog description: The full catalog contains 1.2 million high-confidence binaries, in-
cluding 15,982 WD+MS binaries and 1362 WD+WD binaries (Figures 10.7 and 10.8),
and ∼20,000 binaries containing giants and subgiants. The binaries span a projected
separation range of a few au to 1 pc, have heliocentric distance up to 1 kpc, and
include both (kinematic) disk and halo binaries. All binaries have reasonably precise
astrometry, with $/σ$ > 5 for both components. The full catalog of 1.8 million binary
candidates become dominated by chance alignments at s & 30, 000 au, but high-quality
subsets can be selected that are relatively pure out to separations as large as 1 pc (Fig-
ure 10.4). The catalog builds on previous efforts to identify binaries using Gaia DR2,
expanding the sample of known high-confidence binaries by a factor of 4 (Figure 10.10).
This increase in sample size owes partly to the higher astrometric precision provided
by Gaia eDR3, and partly to improvements in the binary identification and vetting
strategy.

2. : Quantifying and controlling chance alignments: We estimate the contamination rate
from chance alignments using two approaches: a mock catalog that does not contain
any true binaries, and a version of the Gaia catalog in which stars have been artifi-
cially shifted from their true positions, removing real binaries but preserving chance-
alignment statistics (Figure 10.3). Both approaches show that the full catalog has high
purity at s < 10, 000 but becomes dominated by chance alignments at s & 30, 000 au.
Using the shifted chance alignment catalog, we show how one can select subsamples
that have lower contamination rates, including some that are pure out to 1 pc (Fig-
ure 10.4). We also include in the catalog an estimate of the probability that each binary
candidate is a chance alignment; this is constructed empirically from the distribution
of known chance alignments in a seven-dimensional space of observables (Figure 10.5
and Appendix 10.9). We use radial velocities from Gaia (Figure 10.6) and LAMOST
(Figure 10.14) to validate these probabilities.

3. Orbital velocities: The high-precision of Gaia astrometry makes obvious the plane-
of-the-sky velocity difference of the components of binaries due to orbital motion
(Figure 10.12). About 200,000 binaries in the catalog have sufficiently accurate as-
trometry that the plane-of-the-sky velocity difference between the components can be
measured with accuracy σ∆V < 100 m s−1. A Keplerian decline in the velocity differ-
ence, ∆V ∝ s−1/2, is visible out to s ∼ 20, 000 au, where projection effects become
important. The requirement of proper motions consistent with Keplerian orbits ex-
cludes a significant fraction of hierarchical triples and higher-order multiples from the
catalog (Figure 10.13).

4. Validation of Gaia DR3 parallax uncertainties: We use the sample of high-confidence
binaries to validate the published parallax uncertainties included in Gaia eDR3. This
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analysis makes use of the fact that the two stars in a binary have essentially the same
distance and thus should generally have reported parallaxes that are consistent within
their uncertainties (Figure 10.15). We find that the published uncertainties are ac-
curate for faint stars (G & 18) that have well-behaved astrometric solutions and do
not have a companion within a few arcseconds (Figure 10.16). They are underesti-
mated somewhat for brighter stars, particularly in the range of 11 < G < 13, where
the published uncertainties should be multiplied by a factor of 1.3 on average. The
degree to which uncertainties are underestimated is larger for sources with large ruwe,
ipd_gof_harmonic_amplitude, and ipd_frac_multi_peak (Figure 10.16 and 10.17),
and is larger for red sources than blue sources (Figure 10.22). The reported parallax
uncertainties are generally more reliable in Gaia eDR3 than they were in DR2, except
at 11 < G < 13 (Figure 10.19). In an absolute sense, the σ$ values improved by at
least 30% from DR2 to eDR3, at all magnitudes and separations (Figure 10.20). We
provide an empirical fitting function to correct reported σ$ values (Figure 10.23).

Parallax uncertainties are underestimated more for binaries with angular separations
less than a few arcsecoonds. Sources with resolved close companions are more likely
to have high ruwe and IPD diagnostics related to binarity (Figure 10.18), but the
underestimates of σ$ is enhanced at close separations even for pairs in which both
components have low ruwe and IPD flags. This is true both for sources with 5- and
6-parameter solutions (Figure 10.21).

10.7.1 Scientific uses for the catalog

This paper was primarily concerned with assembling the wide binary catalog. Here we
note a few possible uses for the sample, which will be pursued in future work.

• Calibrating stellar ages : A useful property of wide binaries is that the two stars have
basically the same total age, but can have different evolutionary states. If the age of
one component can be constrained (e.g., because it is a WD, a subgiant, or a giant
with asteroseismic mass constraints), that age constraint can be transferred to the
companion (e.g. Chanamé & Ramírez 2012; Fouesneau et al. 2019; Qiu et al. 2020).
This in turn can be used to calibrate more poorly-understood age indicators for MS
stars, such as gyrochronology, stellar activity, and X-ray luminosity (e.g. Soderblom
2010).

• The initial-final mass relation: The WD+WD sample will be useful for constraining the
initial-final mass relation (IFMR) for WDs: the masses and cooling ages of both WDs
can (often) be well-constrained from photometry, and the IFMR can be constrained
by the fact that both WDs have the same total age (and presumably, follow the same
IFMR; e.g., Andrews et al. 2015). The subset of the WD+MS sample in which the
age of the non-WD component can be constrained independently will also be useful
for constraining the IFMR (e.g. Catalán et al. 2008).
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• WD masses from gravitational redshift: Because the WD and MS star in a wide binary
have essentially the same RV, the difference in their apparent RVs is due primarily
to the WD’s gravitational redshift (which is typically 20− 100 km s−1). This provides
a useful way of measuring WD mass that are essentially model-independent if the
distance is well-constrained (e.g. Koester 1987). Masses from gravitational redshift will
be particularly useful for measuring the mass distributions of WDs with rare spectral
types and poorly-understood formation histories, such as the “Q-branch" WDs revealed
by the Gaia CMD (Bergeron et al. 2019; Cheng et al. 2020).

• Abundances for WD progenitors: a MS companion provides a window into the chemical
abundances of a WD’s progenitor, which are otherwise inaccessible. Among other
applications, this provides an avenue to compare the primordial and final abundances
of disintegrating planets around polluted WDs, which represent a significant fraction
of the WD population (Koester et al. 2014; Farihi 2016).

• Wide binary spin alignment: An open question in binary star formation is how aligned
the spins vectors of binaries are, and how this varies with separation (e.g. Justesen &
Albrecht 2020). Of particular interest is whether the spins of excess “twin” binaries,
which may have formed in circumbinary disks, are more aligned than those of non-twins
at the same separation (El-Badry et al. 2019). Spin inclinations can be measured by
combining a spectroscopic measurement of v sin i with a rotation period measured from
spots (which requires a light curve) and a radius from parallax and temperature. About
6,000 of the high-confidence binaries in the catalog have both components with G < 14
and angular separations θ > 30 arcseconds. These are ideal for follow-up study with
TESS, because they are separated widely enough that high-quality light curves are
available for both components separately. About 39,000 binaries in the catalog are in
the K2 fields, and 5,000 are in the Kepler field.

• Calibration of spectroscopic surveys: The surface abundances of stars in wide binaries
are generally very similar (e.g. Hawkins et al. 2020). This enables diagnosis of system-
atics in the abundances reported by surveys (e.g. Figure 10.14). Similar analyses can
be done with stars in clusters, but binaries are more abundant and populate abundance
space more densely than clusters.

• Dynamical probes: At separations wider than about 10,000 au, wide binaries are sus-
ceptible to dynamical disruption through gravitational encounters with other stars,
compact objects, or molecular clouds (e.g. Weinberg et al. 1987). This makes the wide
binary separation distribution a sensitive probe of the population of possible perturbers
(e.g. Yoo et al. 2004; Tian et al. 2020).

10.7.2 Constraining the parallax zeropoint with binaries

A further application of the Gaia binary sample, which we have not explored in this
work, is calibration of the parallax zeropoint. We have intentionally limited our analysis
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to binaries in which both stars have almost the same magnitude, (and, because almost all
the stars are on the main sequence, the same color). This avoids complication arising from
the magnitude- and color-dependence of the parallax zeropoint, which should be nearly the
same for both stars. If we were to consider binaries with substantially different primary and
secondary magnitudes, magnitude-dependence of the zeropoint would be manifest as a shift
in the mean signed parallax difference: that is, the distributions in Figure 10.15 would no
longer be centered on zero. If the absolute zeropoint at a particular magnitude and color
can be pinned down from external data (e.g. quasars at the faint/blue end), binaries then
allow for determination of the zeropoint at all other magnitudes and colors. Some analysis
along these lines was carried out by Lindegren et al. (2020a) and Fabricius et al. (2020).

A challenge to carrying out this type of calibration with our current catalog is Lutz-Kelker
bias (Lutz & Kelker 1973): because the fainter secondaries have larger parallax errors, their
parallaxes in our sample will on average be overestimated more than those of the primaries.
That is, in the absence of any magnitude-dependence of the zeropoint, the mean value of
$1−$2 would be negative. This bias must be eliminated or accounted for in order for reliable
determination of the zeropoint from binaries to be feasible. The most straightforward path
forward is likely to select binaries without explicit cuts on parallax.

10.7.3 Astrometric acceleration

We have shown that parallax uncertainties are more severely underestimated at close
angular separations (e.g. Figure 10.16), and that a larger fraction of close binaries have
ruwe > 1.4 for at least one component (Figure 10.18). Here we consider whether this is
likely due to actual astrometric acceleration, or other issues.

Whether orbital acceleration of a binary is detectable depends on a variety of factors, in-
cluding the eccentricity, orientation, and phase of the orbit. Here we derive a crude estimate.
We consider a face-on circular orbit with M1 + M2 = 1M� and M1 � M2, with an angular
separation θ viewed at a distance d. The semi-major axis is a = 1 au × (d/pc) (θ/arcsec),
and the orbital period is P = 1 yr × (d/pc)3/2 (θ/arcsec)3/2. During the 34-month baseline
of Gaia DR3, the azimuthal angle swept out by the secondary is

φ = 2π × ((34 months) /P ) (10.17)

= 0.018 radians× (d/(100 pc))−3/2 (θ/arcsec)−3/2 , (10.18)

where φ = 2π would signify a full orbit.
In the limit of small φ, the total orbital motion that is perpendicular to the instantaneous

proper motion vector at the first observation is ϑ⊥ ≈ 1
2
θφ2, from Taylor expanding x =

θ cosφ. The total perpendicular deviation from linear motion is thus

ϑ⊥ ≈ 0.16 mas×
(

d

100 pc

)−3(
θ

arcsec

)−2

(10.19)

≈ 0.16 mas×
(

d

100 pc

)( s

100 au

)−2

. (10.20)
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The deviation from the best-fit single-star orbit will likely be a factor of a few smaller than
this.

To determine whether orbital acceleration is plausibly detectable, this quantity can be
compared to the typical astrometric precision (e.g. Figure 10.20). At the typical distance of
binaries in the catalog, d ≈ 500pc, the predicted deviation for θ = 1 arcsec is on the order of
0.001 mas, well below the sensitivity of Gaia eDR3. Astrometric acceleration due to orbital
motion is thus not expected to be detectable for the large majority of binaries in our catalog,
and it is therefore likely that the more strongly underestimated σ$ at close separations is
primarily due to other issues, such as centroiding errors or some scans being attributed to
the wrong component.

Astrometric acceleration should, in principle, be non-negligible for the nearest and closest
binaries in the catalog. Considering only binaries with s < 100 au, the median deviation
predicted by Equation 10.20 is 0.3 mas, which is larger than σ$ for the majority of that
sample. To investigate whether there is evidence of acceleration in our sample at close
separations, we compared the DR2 and eDR3 proper motions of both components, under
the assumption that acceleration should manifest as a change in mean proper motion from
epoch 2015.5 to 2016.0 (e.g. Kervella et al. 2019). It is important to note that the coordinate
systems of DR2 and eDR3 are not identical. An ad-hoc correction was applied to the eDR3
coordinate frame to remove a ∼0.1mas yr−1 rotation that was present in the coordinate
system for bright stars in DR2 (Lindegren et al. 2020b). Properly aligning the coordinate
systems between the two releases is nontrivial (e.g. Brandt 2018). For this reason, and
because proper motion uncertainties, like parallax uncertainties, are likely underestimated
somewhat, it is beyond the scope of our investigation to determine which proper motion
differences are significant. Instead, we simply consider how the fraction of sources with
proper motion differences above an particular threshold depends on separation. We find
that the fraction of binaries with inconsistent proper motions for one or both components
is strongly enhanced at close angular separations, as would be expected in the presence
of accelerations. For the full binary catalog, the fraction of pairs that have at least one
component with DR2 and eDR3 proper motions inconsistent within 3σ is 18% at θ > 4
arcsec, but 50% at θ < 1 arcsec, and 85% at θ < 0.5 arcsec.

However, the fraction of sources with inconsistent proper motions is significantly enhanced
even at d > 500pc, where Equation 10.20 suggests that any perpendicular acceleration should
be negligible. Indeed, at fixed magnitude, the fraction of sources with inconsistent proper
motions depends primarily on angular, not physical, separation. This suggests spurious
astrometry (due to bias in the image parameter determination or source misidentification) for
sources with close companions is the primary cause for the apparent acceleration. Although
Equation 10.20 suggests that acceleration should often be detectable in our sample at s <
50 au, the expected sensitivity is not yet realized there due to problematic astrometry for
barely-resolved sources. The detectability of accelerations with Gaia was also investigated
by Belokurov et al. (2020). They found that while ruwe is often enhanced in close binaries,
the enhancement can be reliably tied to orbital motion only in the regime where a significant
(order unity) fraction of the orbit is covered by the Gaia time baseline.
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10.8 Catalog description
The full binary catalog will be hosted at CDS. It can also be accessed online. All

columns in the gaiaedr3.gaia_source catalog are copied over for both components. We
also include the columns source_id, parallax, parallax_error, pmra, pmdec, pmra_error,
pmdec_error, and ruwe from Gaia DR2 for both components; these have the prefix dr2_.

Columns ending in “1” and “2” refer to the primary and secondary component, respec-
tively. The primary is always the component with the brighter Gmagnitude. We also include
columns pairdistance (angular separation θ, in degrees), sep_AU (projected separation s,
in au), R_chance_align (R; Equation 10.8), and binary_type (e.g. MSMS, WDMS, etc.;
see Table 10.1). The ordering in binary_type does not account for primary/secondary desig-
nations; i.e., all binaries containing a WD and a MS star are designated WDMS, irrespective
of whether it is the WD or MS component that is brighter.

The shifted chance alignment catalog is also available. It contains the same columns as
the binary candidate catalog, except the Gaia DR2 columns. Because one component of
each pair has been shifted from its true position in the gaia_source catalog, the ra and dec
columns in it do not match those reported in the gaia_source catalog.
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Data Availability
All the data used in this paper is publicly available. The Gaia data can be retrieved

through the Gaia archive (https://gea.esac.esa.int/archive), and the LAMOST data are
available at http://dr6.lamost.org. The binary catalog and code to produce it can be found
at https://zenodo.org/record/4435257.

10.9 Chance alignment probabilities
We estimate the local density in parameter space of binary candidates and known chance

alignments from the shifted catalog using a Gaussian kernel density estimate (KDE). The
parameters (“features”) we use are listed in Table 10.2. Most of them are described in
Section 10.3.

We also add a measure of the local sky density, Σ18. This represents the number of
sources per square degree that (a) pass the cuts of our initial query (Section 10.3) and (b)
are brighter than G = 18. We calculate the value of Σ18 around every binary candidate,
counting the number of sources within 1 degree of the primary and dividing by π. Values
of Σ18 range from 280 toward the Galactic poles to 8700 toward the Galactic center. A
significant fraction of the sources toward the Galactic center are likely background stars that
are not actually within the 1 kpc search volume.

We rescale the features so that they have similar dynamic range. This is accomplished
by applying a few simple functions, which are listed in the “scaled parameter” column of
Table 10.2. The rescaled parameters all have a dynamic range of about 4. We then calculate
a 7-dimensional Gaussian KDE using a bandwidth σ = 0.2.

The distance metric in this parameter space is somewhat ill-defined due to the different
units and distributions of the features. We nevertheless proceed boldly, making no claim that
the set of features, rescalings, or the choice of kernel are optimal. Our choices are designed
to make the kernel (a) narrow enough that it does not smooth over the sharpest features in
the data, and (b) wide enough to prevent density peaks around individual, discrete binaries
(overfitting).

When calculating the KDE for the binary candidates, we use a leave-10% out method
wherein the density at the positions of 10% of the binary candidates is evaluated using a KDE
constructed from the other 90%. To minimize discreteness noise in the chance-alignment
KDE, we produce 30 different realizations of the shifted chance alignment catalog, shifting
the declination of each star by a random variable U(−0.5, 0.5) degrees for each realization.
We combine the realizations when calculating the KDE, and then divide the calculated
density by 30 to reflect the number of pairs in a single realization.

Figure 10.24 compares the distributions of shifted chance alignments, all binary candi-
dates, and candidates with R < 0.1, in the space of features used for the KDE. It is clear
that there are two modes in the binary candidate distribution, only one of which has a
corresponding population in the chance alignment catalog. The clearest divisions between

https://zenodo.org/record/4435257
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Parameter units scaled parameter (1,99)% range scaled range Description
θ arcsec log θ (0.7, 607) (-0.16, 2.78) angular separation
$1 mas 4/$1 (1.02, 10.7) (0.37, 3.93) parallax (primary)
σ∆$ mas 4σ∆$ (0.02, 0.74) (0.08, 2.96) parallax difference error
Σ18 deg−2 4 log (Σ18) (345, 2790) (10.15, 13.78) G < 18 local source density
v⊥,1 km s−1 v⊥,1/50 (3.4, 121) (0.07, 2.43) tangential velocity (primary)
∆$/σ∆$ – |∆$|/σ∆$ (-3.24, 3.30) (0.02, 3.95) normalized parallax difference
(∆µ−∆µorbit) /σ∆µ – 2erf

[
(∆µ−∆µorbit) /σ∆µ

]
(-88, 1.97) (-2, 1.99) scaled proper motion difference

Table 10.2 : Features used by our Gaussian KDE in computing the local density of binaries and
chance alignments. The feature vector is the “scaled parameter” column, in which all variables have
been rescaled to have comparable dynamic range. We list the middle-98% ranges of both the raw
and scaled parameters.

chance-alignments and binaries are in the dimensions of angular separation and proper mo-
tion difference (see also Figure 10.12), but their distributions also differ in other features.
For example, a binary candidate is more likely to be genuine if the parallax errors are small
(low σ∆$), or if it is found in a region of low stellar density (low Σ18).

Figure 10.25 shows the ratio of the number of chance alignments (from the shifted catalog)
that have a given R value to the number of binary candidates with similar R. If R is
interpreted as the probability that a candidate is a chance alignment, one would expect this
ratio to follow the one-to-one line. It does indeed fall close to the one-to-one line (dashed)
but with some deviations, likely due to over-smoothing of the KDE. This figure suggests,
for example, that about 6% of binary candidates with R ∼ 0.1 are chance alignments,
implying that chance alignment probabilities inferred when R is interpreted as a probability
are conservative.

A small fraction of binary candidates in the catalog have extremely small R values; i.e.,
0.5% have log(R) < −10, and 0.09% have log(R) < −20. These are primarily at close
separations, where the chance alignment probability is indeed very low, but in this regime
the R values should not be interpreted as probabilities due to the finite size of the shifted
chance alignment catalog.

10.9.1 Sources with spurious astrometry

A non-negligible fraction of sources in Gaia eDR3 have spurious astrometric solutions,
meaning that they have large reported parallaxes and small reported uncertainties, but the
parallaxes are significantly in error. The types of problems that can cause spurious solutions
– typically crowding and marginally resolved sources – are generally equally likely to produce
positive and negative parallaxes. The impact of spurious sources on our sample can thus be
assessed by considering sources with significant negative parallaxes.

To this end, we repeat our initial ADQL query (Section 10.3) but require parallax < -1
and parallax_over_error < -5. This yields 2,877,625 sources, implying that about 4.5%
of the sources returned by the initial query have spurious solutions. We add the sources
to our initial sample, treating their parallaxes as if they were positive. We then repeat the
neighbor-counting procedure described in Section 10.3.1 for these sources, again removing
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Figure 10.24 : Parameter distribution of chance alignments from the shifted catalog (black), binary
candidates (red), and high-confidence binary candidates with R < 0.1 (section 10.4.2; cyan). Com-
pared to chance alignments, the high-probability binaries have smaller angular separations, closer
distances, larger parallax uncertainties, higher local source densities, larger tangential velocities,
and more consistent parallaxes and proper motions.
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Figure 10.25 : R is the ratio of the local “density” of chance-alignments from the shifted catalog to
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in the chance alignment catalog that have a given R value to pairs in the binary candidate catalog
with the same R value. Dashed line shows a one-to-one relation for comparison.
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objects with more than 30 neighbors. Of the 2,877,625 known spurious sources, only 380,379
(13%) survive this cut. That is, spurious sources are overwhelmingly found in regions of high
source density, and a majority of them are removed by the first pass of cleaning.

We then carried out the full catalog construction procedure, now operating on an input
sample that includes the initially selected sources as well as the known spurious sources with
negative parallaxes, where the sign of the parallax is inverted for the known spurious sources.
This yielded 15,852 candidate pairs in which one component is from the spurious sample. As
expected, these pairs are concentrated at large separations; only 187 (593) have projected
separations s < 10, 000 au (s < 30, 000 au). Finally, we repeat the calculation of R on the
candidates in which at least on component is known to be spurious, yielding 133 pairs with
R < 0.1. This implies that about 1 in 10,000 binary candidates with R < 0.1 contains a
source with a spurious parallax as defined here.
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Chapter 11

LAMOST J0140355+392651: An evolved
cataclysmic variable donor transitioning
to become an extremely low mass white
dwarf

An earlier version of this article has been submitted for publication as El-Badry, K.,
Quataert, E., Rix, H.-W., Weisz, D. R., Kupfer, T., Shen, K., Xiang M., Yang Y., Liu, X.,
2021, MNRAS, submitted.

11.1 Abstract
We present LAMOST J0140355+392651 (hereafter J0140), a close (Porb = 3.81 hours)

binary containing a bloated, low-mass (M ≈ 0.15M�) proto-white dwarf (WD) and a mas-
sive (M ≈ 0.95M�) WD companion. The system’s optical light curve is dominated by
large-amplitude ellipsoidal variability but also exhibits additional scatter, likely driven by
pulsations. The proto-WD is cooler (Teff = 6800±100 K) and more puffy (log [g/ (cm s−2)] =
4.74 ± 0.07) than any known extremely low mass (ELM) WD, but hotter than any known
cataclysmic variable (CV) donor. It either completely or very nearly fills its Roche lobe
(R/RRoche lobe = 0.99 ± 0.01), suggesting ongoing or recently terminated mass transfer. No
dwarf nova-like outbursts have been observed. The spectrum is dominated by the proto-WD
but shows tentative hints of Hα emission, perhaps due to accretion onto the massive WD.
The properties of the system are well-matched by MESA binary evolution models of CVs
with donors that underwent significant nuclear evolution before the onset of mass transfer. In
these models, the bloated proto-WD is either still losing mass via stable Roche lobe overflow
or was doing so until very recently. In either case, it is evolving toward higher temperatures
at near-constant luminosity to become an ELM WD. If the system is detached, mass transfer
likely ended when the donor became too hot for magnetic braking to remain efficient. Evo-
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lutionary models predict that the binary will shrink to Porb . 10 minutes within a few Gyr,
when it will either merge or become an AM CVn binary. J0140 provides an observational link
between the formation channels of CVs, ELM WDs, detached ultracompact WD binaries,
and AM CVn systems.

11.2 Introduction
Extremely low mass white dwarfs (ELM WDs, with massesM . 0.25M�) are degenerate

and semi-degenerate helium stars that never ignited core helium burning. The Universe is
too young to produce ELM WDs by single-star evolution. It is thus thought that all ELM
WDs are products of binary evolution: they are the stripped cores of stars that were initially
more massive (Minit & 1M�) but lost most of their envelope to a companion (e.g. Iben
& Tutukov 1986). This envelope stripping can occur through common envelope evolution
or through stable mass transfer (e.g. Li et al. 2019). In the stable mass transfer channel,
short-period ELM WDs are descendants of cataclysmic variables (CVs) with evolved donor
stars (e.g. Kalomeni et al. 2016). When mass transfer ceases, the donor shrinks inside its
Roche lobe and appears as a detached ELM WD. When and why mass transfer ceases is not
fully understood, but is presumably linked to the end of efficient angular momentum loss
via magnetic braking (e.g. Sun & Arras 2018).

Consistent with predictions of the mass transfer scenario, essentially all known ELMWDs
are in binaries. Their companions are normal WDs and neutron stars (Brown et al. 2020).
ELM WDs are rare: their local space density is about 5×10−5 that of ordinary WDs (Brown
et al. 2016). Most of the ∼100 spectroscopically confirmed ELM WDs were discovered
in the last decade by the dedicated ELM survey (Brown et al. 2010), which performed a
comprehensive magnitude-limited search beginning with SDSS color cuts. Known ELMWDs
are relatively hot (Teff & 8, 000K) and compact (log g & 5.5). This is largely a consequence
of the color cuts adopted by the ELM survey: cooler and more bloated proto-ELM WDs are
expected to exist but are not easily distinguishable from main-sequence A and F stars based
on their colors alone (e.g. Pelisoli et al. 2018a,b, 2019).

The mass-transferring progenitors of short-period ELM WDs differ from ordinary CVs
in that the donor stars underwent significant nuclear evolution before the onset of mass
transfer. In most short-period (Porb . 6 hours) CVs, the mass-losing stars fall on a tight
“donor sequence” of mass, radius, spectral type, and luminosity as a function of period
(Patterson 1984; Beuermann et al. 1998; Smith & Dhillon 1998; Knigge 2006; Knigge et al.
2011). The regularity of the CV donor population is a consequence of the fact the donor
stars fill their Roche lobes (so that their mean density is a nearly deterministic function of
orbital period) and are only mildly out of thermal equilibrium. They thus have radii and
effective temperatures similar to main-sequence stars of the same mass.

CVs donors that were significantly evolved at the onset of Roche lobe overflow (RLOF)
are predicted to deviate from the donor sequence (e.g. Tutukov et al. 1985; Podsiadlowski
et al. 2003; van der Sluys et al. 2005; Kalomeni et al. 2016) because they have already
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formed a helium core when mass transfer commences. By the time the orbital period reaches
Porb . 6 hours, such donors will consist of a low-mass (M . 0.2M�) helium core with a thin
hydrogen-burning envelope. The structure of such a donor is quite different from that of a
main-sequence star of the same mean density. The most obvious observable difference is that
the donor stars in CVs formed from evolved donors are expected to be hotter and smaller
than normal CV donors with the same period. Several CVs with potentially evolved donors
have been identified (e.g. Augusteijn et al. 1996; Thorstensen et al. 2002b,a; Littlefair et al.
2006; Thorstensen 2013; Kato & Osaki 2014; Rebassa-Mansergas et al. 2014; Ashley et al.
2020). Most of these systems have K-type donor stars, sometimes with abundances bearing
imprints of CNO burning, at periods where normal CVs have M-type donors. If the donors
are sufficiently evolved, they can become detached ELM WDs.

CVs with evolved donors are of interest for several reasons. Shortly after initial RLOF,
their mass transfer rate is often high enough to allow for steady hydrogen burning on the
surface of the accreting WD. This can form a bright supersoft X-ray source (e.g. van den
Heuvel et al. 1992) and, if a high mass transfer rate is sustained long enough, trigger a
type Ia supernova (e.g. Han & Podsiadlowski 2004). If magnetic braking remains efficient,
evolved CVs can become mass-transferring ultra short-period (5 . Porb/minute . 30) “AM-
CVn” binaries containing a helium WD donor (e.g. Podsiadlowski et al. 2003). If magnetic
braking becomes inefficient (e.g., because the donor loses its convective envelope), evolved
CVs become ELM WDs, which can eventually become ultracompact via gravitational wave
radiation (e.g. Kilic et al. 2014; Burdge et al. 2020).

This paper presents a newly discovered close binary containing a normal white dwarf
and a low-mass companion that is nearly or completely Roche lobe filling. The lower-mass
component appears to be in a rarely observed transitional state between evolved CV donors
and ELM WDs. It is hotter than any known CV donors, but cooler than any known ELM
WDs. The optical spectrum is dominated by the low-mass component, which has an early
F spectral type, and contains only hints of emission lines. No dwarf novae outbursts are
detected; if they occur, their recurrence timescale would be unusually long. Because there
is no strong evidence of ongoing mass transfer, the system either is detached or has an
unusually low mass transfer rate. These unusual properties warrant detailed study, as the
binary serves as a unique observational link between populations of CVs, ELM WDs, and
ultracompact binaries.

The remainder of this paper is organized as follows. Section 11.3 summarizes the observed
data, including archival spectra, light curves from several time-domain photometric surveys,
astrometry from Gaia, the UV-to-near infrared spectral energy distribution (SED), and
follow-up radial velocity observations. We constrain the physical parameters of the binary
using these data in Section 11.4 and derive an upper limit on the outburst frequency in
Section 11.5. In Section 11.6, we present binary evolution models for J0140 and discuss the
future evolution of the system. We summarize our results and discuss future observations in
Section 11.7. Supporting data is provided in the appendices.
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11.3 Data

11.3.1 LAMOST discovery spectra

J0140 first came to our attention because LAMOST observations (Cui et al. 2012a) of
the object suggested large epoch-to-epoch radial velocity (RV) variability. The object was
visited by LAMOST three times, yielding two usable spectra (see Table 11.4). Between these
two visits, the reported RV varied by ≈ 400 km s−1.

Most LAMOST “visits” consist of 2-4 consecutive “subexposures”, with individual expo-
sure times of 10-45 minutes. In the default LAMOST data reduction pipeline, these subex-
posures are coadded to improve SNR, without any velocity shift. The stellar parameters and
RVs reported in most LAMOST catalogs are inferred from the coadded spectra. For close
binaries, RVs may change significantly between subexposures, and the coadded spectra may
have artificially broadened lines due to orbital smearing. We therefore investigated the RVs
for J0140 across subexposures of each visit (Appendix 11.8 and Figure 11.15), finding RV
variations of up to 600 km s−1 within a single visit. This prompted us to obtain additional
follow-up spectra, as described in Section 11.3.5.

11.3.2 ZTF light curve

J0140 was observed regularly by the public survey of the Zwicky Transient Facility (ZTF;
Bellm et al. 2019; Graham et al. 2019; Masci et al. 2019). We queried the public DR5 light
curves for all clean photometry (catflags = 0). This yielded 524 g-band exposures, 576 r-
band exposures, and 42 i-band exposures. The exposure time is 30 seconds in all bands. The
ZTF data span 964 days between 2018 and 2021, sometimes including several observations
on a single night.

To estimate the orbital period of J0140, we calculated g− and r− band periodograms from
the ZTF light curves. Both were dominated by a peak at 1.904 hours. In binaries whose light
curves are dominated by ellipsoidal variation, the dominant light curve period is typically
half the orbital period, so we folded the light curves on twice this period (Figure 11.1).
This revealed a light curve shape characteristic of ellipsoidal modulation: quasi-sinusoidal
variability with alternation in the depth of adjacent minima. This alternation stems from
the fact that a tidally distorted star is fainter when its cooler end faces the observer (phase
0 or 1.0) than when its hotter end does (phase 0.5).

11.3.3 Other photometry

J0140 was also observed by several other time-domain photometric surveys. Figure 11.2
shows all the photometric data we analyze, including both detections and upper limits be-
tween 2005 and 2021. The highest-quality photometry is from ZTF, but ZTF photometry
only covers a small fraction of the total time baseline. Phased light curves from three surveys
are shown in Figure 11.1.
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Figure 11.1 : ZTF, PTF, and CSS light curves of J0140, phased to a period of 3.81 hours. Each
datapoint appears twice. The y-axis spans 0.55 mag in all panels. Variability is dominated by
ellipsoidal modulation. Constraints on the peak-to-peak flux variability amplitude are listed in the
upper left of each panel.
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Figure 11.2 : Light curve of J0140, showing data from several time-domain surveys. Points with
errorbars are detections; inverted triangles are upper limits. CSS magnitudes are unfiltered but are
scaled to roughly approximate the V band. The two apparent outbursts in the CSS light curve (in
2007 and 2011) are spurious; no reliable dwarf-novae like outbursts were detected between 2005 and
2021.

CSS

The Catalina Sky Survey (CSS; Drake et al. 2009) observed J0140 regularly between 2005
and 2013. CSS magnitudes are unfiltered but are transformed to V using an empirically
calibrated, color-dependent relation. We queried all clean CSS photometry for J0140 with
photometric uncertainty σV < 0.12 mag. This yielded 330 photometric points with a typical
uncertainty of 0.09 mag.

The phased CSS light curve exhibits similar ellipsoidal modulation to the ZTF light curves
(Figure 11.1). The full light curve (Figure 11.2) also contains two episodes, in 2007 and 2011,
in which the object appears to brighten by 2-3 mag. These episodes at first appear similar
to outbursts found in dwarf novae due to the disk instability (e.g. Osaki 1996). However,
closer inspection revealed that within each episode, the unusually bright light curve points
(with magnitude 15-16) were flanked on either side by observations with normal brightness
(magnitude 17-18), with temporal separations of only a few minutes. Since dwarf novae
outbursts typically last several days, this aroused suspicion that the apparent brightening
might instead be due to problems with the photometry. We retrieved the raw CSS images
for the 2011 episode from the CRTS web portal1 and found that the brightening is indeed
spurious. Images for the 2007 brightening episode are not available via the CRTS portal,
but given their erratic time-evolution, we suspect this episode is also due to data problems
and is not a dwarf nova outburst.

1https://crts.iucaa.in/CRTS/

https://crts.iucaa.in/CRTS/
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PTF

J0140 was also observed by the Palomar Transient Factor (PTF; Law et al. 2009). The
light curve contains 86 good datapoints with a typical uncertainty of 0.04 mag, including 71
measurements in the g band and and 15 in the R band. The exposure time is 60 seconds.
The phased PTF light curve exhibits similar ellipsoidal modulation to the ZTF and CSS
light curves (Figure 11.1). We limit our analysis to the g band data.

ASAS-SN

J0140 is regularly observed by the The All-Sky Automated Survey for Supernovae (ASAS-
SN; Kochanek et al. 2017), but the object is generally too faint to be detected. We retrieved
V− and g−band light curves from the sky-patrol web portal2 on MJD 59232. The light
curve contains 992 V band datapoints and 1030 g band datapoints, but the majority are
upper limits (Figure 11.2). There are 12 V band detections and 43 g band detections, both
with a median magnitude of 17.1. The brightest nominal detection has a g band magnitude
of 16.41± 0.18.

Most ASAS-SN exposures are collected in sets of three consecutive exposures, each with
an exposure time of 90 seconds. In all the ASAS-SN detections, there was a detection in
only one of the three exposures in the set, usually with a magnitude similar to the upper
limits reported for the other two exposures. It is thus unlikely that any of the anomalously
bright ASAS-SN detections are dwarf novae outbursts.

11.3.4 Light curve analysis

Variability amplitude

To constrain the photometric variability amplitude, we fit the photometry from each
survey shown in Figure 11.1 with a 3-term Fourier model; i.e., modeling the light curve in
normalized flux space as a sum of sines and cosines with periods P , P/2, and P/3, and
the phases held fixed. In fitting these amplitudes, we also model a photometric scatter
term that accounts for intrinsic scatter and/or underestimated photometric uncertainties.
The resulting constraints on the peak-to-peak variability amplitude are shown in the upper
left of each panel of Figure 11.1. Differences between the filters are subtle, but there is
a slight trend of larger variability amplitude at shorter wavelengths. This could be due
either to wavelength-dependence in the intrinsic variability amplitude of the star (i.e. due to
wavelength-dependent gravity darkening), or to a wavelength-dependent flux ratio between
the star and a non-variable component.
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Figure 11.3 : Difference between observed ZTF magnitudes and the mean magnitude at the corre-
sponding orbital phase, normalized by the reported magnitude uncertainties. We compare distri-
butions for J0140 (left) to those for a nearby comparison star with similar magnitude that is not
significantly variable (right). For J0140, the distribution is broader than a Gaussian with σ = 1.
This suggests that either (a) there is additional intrinsic scatter in the light curve, or (b) the magni-
tude uncertainties are underestimated. The well-behaved Gaussian distribution with σ ≈ 1 for the
neighbor star suggests that additional intrinsic scatter is the more likely explanation. This scatter
is most likely due to pulsations of the proto-WD.
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Photometric scatter

The ZTF g- and r-band light curves in Figure 11.1 appear to show somewhat more
scatter than expected from the reported observational uncertainties. This is illustrated in
Figure 11.3, which shows the uncertainty-normalized residuals between the observed magni-
tudes and the mean magnitude at their phase, which is calculated by binning the observed
light curves in phase. If the magnitude were only a function of orbital phase, with no intrinsic
scatter or dependence on other parameters, and the reported magnitude uncertainties were
reliable, these residuals would be expected to follow a Gaussian distribution with σ = 1.
The fact that the observed distribution is wider than this implies that either the magnitude
uncertainties are underestimated, or there is additional variability.

The distribution of photometric residuals for a non-variable neighbor star with similar
magnitude to J0140 is indeed well described by a Gaussian with σ = 1, suggesting that
the reported uncertainties are reliable. We do not find strong evidence of any additional
periodicity in the residuals; it appears to be stochastic. The origin of this additional vari-
ability is unknown. One possibility is that the proto-WD pulsates, as several ELM WDs
are observed to (e.g. Hermes et al. 2012; Maxted et al. 2014). Indeed, the temperature and
surface gravity of proto-WD (Section 11.3.5) place it within the pre-ELM WD instability
strip (e.g. Córsico et al. 2016). It is also possible that the variability is due to “flickering” of
an accretion disk around the massive WD, which is observed in almost all CVs (e.g. Bruch
1992) and is thought to be a result of turbulence in the disk.

To quantify the amplitude of the additional scatter, we fit the g− and r−band light
curves with a Fourier series (see Section 11.3.4). Along with the Fourier amplitudes, we fit a
scatter term, σscatter, which is added in quadrature to the observational uncertainties in the
likelihood function. We find σscatter = 2.4±0.1% in the r band and 2.4±0.1% in the g band.
Higher-cadence photometry of the binary is required to better characterize this variability
and verify whether it is due to pulsations.

Orbital ephemeris

We determined the orbital ephemeris by simultaneously fitting the normalized CSS, PTF,
and ZTF light curves with a harmonic series. The long temporal baseline covers more than
35,000 orbits and thus allows for a high-precision determination of the orbital period (Ta-
ble 11.1). The quoted conjunction time “T0” is the time corresponding to phase 0, when the
companion (almost certainly a WD) passes in front of the proto-WD. When we analyze the
radial velocities in Section 11.3.5, we find good agreement with the photometric ephemeris.
This unambiguously establishes the photometric variability as tracing the orbital period of
the binary.

We do not find evidence of orbital decay: fitting the full light curve and allowing for a
time-dependent phase shift, we find Ṗorb = −4+5

−3 × 10−11 s s−1, consistent with 0. This non-
detection is consistent with the theoretically expected value from gravitational waves for the

2https://asas-sn.osu.edu/
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parameters derived in Section 11.4, which is Ṗorb,GW = −7.7+3.4
−6.4 × 10−14 s s−1. If magnetic

braking remains efficient (see Section 11.6.1), the orbital decay due to it is expected to be
significantly faster than this, Ṗorb,MB ≈ −2.5 × 10−12 s s−1, still consistent with the non-
detection.

11.3.5 KAST Spectra

We observed J0140 using the KAST double spectrograph on the 3m Shane telescope
at Lick observatory in July and August 2020. Most of our observations used the 600/7500
grating on the red side and the 600/4310 grism on the blue side, with the D55 dichroic
and a 2 arcsec slit. This setup results in a wavelength range of 3300–8400 Å with typical
resolution (FWHM) of 4 Å on the blue side and 5 Å on the red side. Some additional spectra
were obtained with a separate setup (“B”). For these observations, we used the 1200/5000
grating on the red side, the 830/3460 grism on the blue side, the D46 dichroic, and a 1 arcsec
slit. This setup results in a wavelength range of 3300–7200 Å, with a gap in coverage at
4600–5400 Å. The typical resolution for this setup is 3 Å on the blue side and 2 Å on the
red side.

To minimize effects of flexure on the wavelength solution, a new set of arcs was taken
on-sky while tracking the target every ∼30 minutes. The spectra were reduced using pypeit
(Prochaska et al. 2020), which performs bias and flat field correction, cosmic ray removal,
wavelength calibration, flexure correction using sky lines, sky subtraction, extraction of 1d
spectra, and heliocentric RV corrections.

To balance the need to minimize orbital smearing with the need to reach high enough
SNR to measure RVs at each epoch, we used 600 second exposures. This resulted in a typical
per-pixel SNR of 10-15 on the red side and 5-10 on the blue side. The spectra are summarized
in Table 11.5. The quoted SNR is the median per pixel on the red side; the typical SNR on
the blue side is a factor of ∼2 lower. Variations in SNR between visits are due primarily to
variations in sky brightness and airmass.

Radial velocities

Comparison of the single-epoch spectra with a grid of ATLAS/SYNTHE spectral models
(Kurucz 1970, 1979, 1993) suggested an effective temperature of Teff ≈ 6500 K and a surface
gravity log(g/cm s−1) ≈ 4.5. We used a model spectrum with these parameters and [Fe/H] =
0 as a template to estimate the RVs of each single-epoch spectrum via cross-correlation.3 RVs
were measured from the red-side spectra, which have a more stable wavelength solution due
to a larger number of sky emission lines. The most prominent spectral feature on the red
side is the Hα absorption line.

We fit an orbital solution to the RVs (which presumably trace the proto-WD) while
holding the period fixed to the value measured from the light curve. Along with the 6

3Once we derived more accurate atmospheric parameters for the donor from the co-added spectrum
(Section 11.3.5), we updated the template and re-measured RVs.
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Figure 11.4 : Radial velocity of the proto-WD, phased to a period of 3.81 hours. RVs are measured
from Kast spectra (Table 11.5), primarily from the Hα absorption line. Horizontal error bars show
the extent of each 10 minute exposure; vertical error bars are 1σ measurement uncertainties. Red
line shows the best-fit Keplerian orbit (Table 11.1).
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Table 11.1 : Basic observables of J0140. Uncertainties are 1σ (middle 68%). Additional constraints
are in Table 11.3.

System parameters
Right ascension (J2000) α [deg] 14.065468
Declination (J2000) δ [deg] 39.447740
Apparent magnitude G 17.35
Color GBP −GRP 0.63
Gaia eDR3 parallax $ [mas] 0.65± 0.10
Zeropoint-corrected parallax $ [mas] 0.68± 0.10
Reddening (SFD; to infinity) E(B − V ) 0.056
Reddening (Bayestar2019) E(g − r) 0.04± 0.02
Parameters of the proto-WD
Effective temperature (spectrum) Teff [K] 6800± 100
Surface gravity log(g/(cm s−2)) 4.7± 0.3
Metallicity [Fe/H] −0.1± 0.1
Projected rotation velocity v sin i [km s−1] 105± 20
Angular diameter Θ [µas] 2.05± 0.05
Effective temperature (SED) Teff [K] 6820± 110
Parameters of the WD
Angular Diameter Θ [µas] 0.055± 0.013
Effective temperature Teff [K] 19700± 1500
Orbital parameters
Period Porb [days] 0.1586339(2)
Conjunction time T0 [HMJD UTC] 59060.490(1)
RV semi-amplitude K [km s−1] 330± 5
Center-of-mass RV γ [km s−1] −53± 4 ±30 (sys)
eccentricity e < 0.017
RV scatter s [km s−1] 18± 5
Mass function fm [M�] 0.591± 0.027
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standard Keplerian orbital parameters, we fit for an intrinsic RV scatter or “jitter” term (see
El-Badry et al. 2018g, their Equation 9), which can represent either intrinsic RV variability
not captured in the model or underestimated uncertainties. We first search for the best-
fit orbital solution using simulated annealing, and then sample from the posterior in the
vicinity of this solution using a Markov chain Monte Carlo method, as described in El-Badry
et al. (2018g). Our best-fit orbital parameters are listed in Table 11.1. The eccentricity is
consistent with 0. The mass function, fm = PK3

proto WD(1 − e2)3/2/(2πG), which represents
the minimum possible mass of the companion, i.e., the mass it would have if the proto-WD
were a test particle and the system were viewed edge on, is consistent with a white dwarf
companion. This is illustrated in Figure 11.5, which shows the dynamically implied masses
of the companion for a range of proto-WD masses and inclinations.

The best-fit jitter term is ≈ 18 km s−1. Nonzero jitter is evident in Figure 11.4, where
the scatter in RV measurements is somewhat larger than the 1σ RV uncertainties suggest it
should be. This jitter is most likely due to instability in the wavelength solution; it could also
originate in part from the ambiguity in the definition of RVs for an ellipsoidally distorted star
(e.g. Masuda & Hirano 2021), from irradiation effects (e.g. Warner 2003), or from pulsations.

Proto-WD spectrum

We reconstructed a higher-SNR spectrum of the proto-WD by coadding spectra from all
epochs, shifted to the star’s rest frame. This yielded a combined spectrum with maximum
SNR ≈ 60 per pixel and mean spectral resolution R ≈ 1, 200 (FWHM). We fit for the atmo-
spheric parameters, projected rotation velocity, and metallicity of the donor using standard
full spectral fitting based on a forward-model of ab-initio spectra. Rotational broadening
was accounted for using the kernel from Gray (1992b).

We implemented The Payne (Rix et al. 2016; El-Badry et al. 2018g; Ting et al. 2019),
a framework for interpolating model spectra, to predict the pseudo-continuum normalized
spectra of the proto-WD. We use a 2nd order polynomial spectral model with three labels,4
~̀= (Teff , log g, [Fe/H]), which we trained on the BOSZ grid of Kurucz model spectra (Bohlin
et al. 2017). In the relevant part of parameter space, the grid spacing is ∆Teff = 250 K,
∆ log g = 0.5 dex, ∆[Fe/H] = 0.25 dex. For both the models and the observed spectrum,
we define the pseudo-continuum as a running median with width 150Å. Low-resolution
spectra are subject to severe line blending, so this pseudo-continuum has little to do with
the true continuum. The purpose of pseudo-continuum normalization is simply to bring
the observed and model spectra to the same scale, minimizing uncertainty due to unknown
detector efficiency and distance. This fitting yields an effective temperature for the proto-
WD of Teff ≈ 6800 K, surface gravity log (g/[cm s−2]) ≈ 4.7, and metallicity [Fe/H] ≈ −0.1
(see Table 11.1).

The formal fitting uncertainties on spectroscopic labels are very small: 25 K in Teff ,
4We also explored the possibility of determining the proto-WD’s detailed abundance pattern, since con-

straining the abundance of C, N, and O would provide a useful test of the evolutionary scenario proposed in
Section 11.6. We found lines from these elements to be too blended for reliable abundance measurements.
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Figure 11.5 : Dynamically implied mass of the companion as a function of the proto WD’s mass
and orbital inclination, given the observed mass function, fm ≈ 0.59M�. Red contours show 1
and 2 sigma constraints from joint fitting of the light curve, spectra, orbit, SED, and parallax
(Section 11.4). Given the observed UV excess (Figure 11.7), the ≈ 0.9M� companion is very likely
a white dwarf.
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0.06 dex in log g, and 0.03 dex in [Fe/H]. Except at very low-SNR, formal uncertainties
derived from full-spectrum fitting underestimate the true parameter uncertainties (e.g. Ness
et al. 2015b; Xiang et al. 2019). This owes to errors in pseudo-continuum normalization,
simplifications in the spectral model (e.g., fitting only 3 labels) and systematics in the model
spectra on which the models are trained. We therefore inflate the uncertainties (Table 11.1)
to realistic values for the resolutions and SNR of the spectrum (e.g. Xiang et al. 2019).

The strongest features in the proto-WD spectrum are the Balmer and calcium H and
K lines. Other metal lines are also present, but they are subject to significant blending
at low resolution. The agreement between the observed and model spectra is satisfactory
for most lines. Some low-frequency undulations are evident in the residual spectrum; these
likely are due to imperfect normalization. The most significant feature in the residuals is in
the Hα absorption line, which is weaker in the observed spectrum than in the model. This
may be the result of contamination from weak Hα emission originating in accretion onto the
more massive WD: as we show in Section 11.4, the proto-WD is extremely close to Roche
lobe-filling, so ongoing mass transfer is not unlikely. The hints of emission are, however,
much weaker than found in typical CVs (e.g. Warner 2003), and there is no evidence that a
disk contributes significantly to the optical SED (Section 11.3.7). If there is ongoing mass
transfer, the accretion rate is likely much lower than in typical CVs at similar periods.

The observed spectrum also has significantly stronger sodium “D” absorption lines (at
5890 and 5896 Å) than the model. We observe these lines to shift coherently with the
orbit of the proto-WD and can thus rule out interstellar absorption as their source. Sodium
enhancement is frequently observed in evolved CV donors (e.g. Thorstensen et al. 2002b)
and is thought to originate from CNO-processing in the core of the secondary near the end
of its main-sequence evolution. In this scenario, sodium-enhanced material only reaches
the surface of the secondary after most of the envelope has been stripped off. A similar
evolutionary history can likely explain the formation of J0140 (Section 11.6).

Variability with orbital phase

We also investigated whether the spectra vary with orbital phase (Appendix 11.10). This
reveals weak evidence of increased Hα absorption at φ = 0.5, as might be expected if a
Hα-emitting component were partially or fully eclipsed, or if the WD-facing side of the
proto-WD were irradiated by the more massive WD. However, the apparent increase in the
line’s depth is only ≈10%. Further spectroscopic follow-up with higher SNR is required to
confirm whether it is real.

11.3.6 Distance

The Gaia eDR3 parallax (Gaia Collaboration et al. 2020a) of J0140 (Gaia DR3 source
id 373857386785825408) is relatively significant, $ = 0.65± 0.10. Interpreted as an inverse
distance, this places J0140 at a distance of d ≈ 1.54 kpc (1-sigma range of 1.33 to 1.84 kpc).
The parallax zeropoint predicted by the fitting function from Lindegren et al. (2020a) for
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Figure 11.6 : Rest-frame normalized spectrum of the proto-WD (black) and best-fit Kurucz model
spectrum (red). The strongest absorption features are the Balmer lines and Ca H&K lines. Bottom
panel shows residuals. A satisfactory fit is achieved with Teff = 6800 K, log = 4.7, and [Fe/H] =

−0.1. Most of the structure in the residuals is broad and due to imperfect normalization. The most
significant narrow feature in the residuals is in the Hα line. This could arise from emission from a
faint accretion disk around the WD, but may also be the result of systematics in the spectral model.

J0140 is -0.03 mas. At G > 17, Gaia eDR3 parallax uncertainties for blue sources are
not overestimated on average (El-Badry et al. 2021). We thus adopt $ = (0.68 ± 0.1) in
modeling the SED. The geometric distance from Bailer-Jones et al. (2020), which is based
on the zeropoint-corrected parallax and a Milky Way model prior, is d = 1.51+0.25

−0.18 kpc.
The Gaia eDR3 astrometric solution does not account for photocenter wobble induced

by orbital motion, but this is expected to be negligible: the ratio of the projected semimajor
axis to the parallax, θ/$ = a/(1au), is only about 0.005. The renormalized unit weight error
(RUWE) is 0.97, indicating an unproblematic astrometric solution.

11.3.7 Spectral energy distribution

The spectral energy distribution (SED) of J0140 provides a constraint on the temperature
and angular diameter of both components. Table 11.2 summarizes the available broadband
fluxes, which are taken from the GALEX (Morrissey et al. 2007), SDSS (York et al. 2000),
2MASS (Skrutskie et al. 2006), and WISE (Wright et al. 2010) surveys. Because J0140
exhibits ellipsoidal variability with amplitude of ≈ 0.3 mag in the optical, we “correct” the
reported magnitudes to better approximate their phase-averaged mean values. We use a
Fourier model of the ZTF r−band light curve (Figure 11.1) to calculate a “optical ellipsoidal
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Table 11.2 : Spectral energy distribution. Magnitude lower limits are 2σ. mjd values are mid-
exposure. The WISE magnitudes represent a mean from 33 exposures spread roughly uniformly
in phase. The “corrected magnitude” column corrects the observed magnitudes, which occur at
different orbital phases, to represent the phase-averaged mean magnitude. This column also corrects
for discrepancies between the SDSS and AB magnitude systems (Section 11.3.7).

filter λeff [µm] mag mjd phase optical ellipsoidal correction [mag] corrected mag
FUV 0.154 21.90± 0.13 53682.4345 0.70± 0.04 0.11± 0.01 21.90± 0.13
NUV 0.227 20.55± 0.04 53682.4345 0.70± 0.04 0.11± 0.01 20.63± 0.08
u 0.359 18.72± 0.02 54010.4614 0.52± 0.04 −0.09± 0.03 18.59± 0.05
g 0.464 17.64± 0.02 54010.4630 0.53± 0.04 −0.08± 0.03 17.56± 0.04
r 0.612 17.40± 0.01 54010.4597 0.51± 0.04 −0.09± 0.02 17.31± 0.03
i 0.744 17.34± 0.01 54010.4605 0.52± 0.04 −0.09± 0.02 17.27± 0.03
z 0.890 17.34± 0.02 54010.4622 0.53± 0.04 −0.08± 0.03 17.29± 0.04
J 1.228 16.47± 0.13 51455.2390 0.86± 0.06 0.02± 0.09 16.49± 0.16
H 1.639 16.10± 0.22 51455.2390 0.86± 0.06 0.02± 0.09 16.12± 0.24
Ks 2.152 > 15.63 51455.2390 0.86± 0.06 0.02± 0.09 > 15.65
W1 3.292 16.25± 0.06 ∼55400 – – 16.25± 0.06
W2 4.542 16.71± 0.25 ∼55400 – – 16.71± 0.25
W3 10.302 > 12.50 ∼55400 – – > 12.50
W4 21.810 > 9.15 ∼55400 – – > 9.15

correction” (Table 11.2) that converts the magnitude observed at a given phase to the mean
magnitude in that band.

This correction is complicated somewhat by the fact that the variability amplitude is
likely wavelength dependent. Based on our fit to the spectrum, the phased light curves in
Figure 11.1, and an initial fit to the SED without phase corrections, we estimate that the
r-band variability amplitude is an adequate approximation of the variability in the optical
and near-infrared bands. However, the more massive WD likely dominates the light in the
UV, so we estimate that the variability amplitude is reduced by 30% in the NUV and is
negligible in the FUV. The “corrected mag” column of Table 11.2 lists the magnitudes we
assume in modeling the SED. In addition to corrections due to phase-variability, we also
apply the empirical corrections from Eisenstein et al. (2006) to bring SDSS magnitudes to
the AB magnitude system: uAB = uSDSS− 0.04, iAB = iSDSS + 0.015, and zAB = zSDSS + 0.03.

X-ray upper limit

No X-ray source has been detected at the location of J0140, but the ROSAT survey
(Voges et al. 1999) obtained a 493 second exposure covering the object’s coordinates. Using
the ESA upper limit server,5 we obtain a 3-sigma upper limit of 2.5×10−13erg s−1 cm−2 in the
0.2-2 keV range. At a distance d = 1.5 kpc (Section 11.4), this corresponds to a luminosity
LX ≤ 0.018L� in the 0.2-2 keV range.

5See http://xmmuls.esac.esa.int/upperlimitserver/. We model the spectrum as a power law with slope 2
and assume an absorption column density NH = 3× 1020cm−2.
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Figure 11.7 : Spectral energy distribution of J0140. Red points with error bars show observed
broadband fluxes from GALEX, SDSS, 2MASS, and WISE. Cyan shows a model spectrum for the
proto-WD with Teff = 6825 K, log(g/cm s−2) = 4.7, and angular diameter Θ = 2.05µas. Blue line
shows a model for the more massive WD. Gray and black lines show the total model spectrum with
and without extinction. Most of the SED is dominated by the proto-WD. However, it contributes
negligibly in the FUV, where the SED is likely dominated by the more massive WD. Bottom panel
shows the difference between the observed bandpass-integrated magnitudes and those predicted by
the total SED model.
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Angular diameter and radius of the donor

We fit the SED for the effective temperatures and angular diameters, Θ = 2R/d, of
both components, as well as the reddening, E(B − V ). We predict the bandpass-averaged
magnitudes of the proto-WD using synthetic photometry from MIST models (Choi et al.
2016). We fix log g = 4.7 (similar to the value implied by our fit in Section 11.4) since varying
log g at fixed angular diameter has minimal effects on the SED. We calculate synthetic
photometry for the proto-WD using atmospheric models from Koester (2010) with log g =
8.5. We assume a Cardelli et al. (1989) extinction law with total-to-selective extinction ratio
RV = 3.1.

The temperature and angular diameter of the proto-WD are independently well-constrained
by the SED: the wavelength at which the SED peaks constrains Teff , and the normalization in
the Rayleigh–Jeans tail then constrains Θ. For the more massive WD, Teff and Θ are highly
covariant, because the peak of its SED is likely blueward of the bluest bandpass observed.
To break this degeneracy and constrain the more massive WD’s temperature, we adopt a
prior on its angular diameter, ΘWD/µas ∼ N (0.055, 0.013). This is obtained from the Gaia
distance and our dynamical constraint on the WD’s mass (Section 11.4), assuming the mass-
radius relation from Bédard et al. (2020). We adopt a prior of E(B − V ) ∼ N (0.04, 0.02)
based on the Green et al. (2019) 3D dust map, and flat priors on Teff, proto WD, Θproto WD, and
Teff,WD.

We sample from the posterior using emcee (Foreman-Mackey et al. 2013c), monitoring
chains for convergence. The resulting constraints on the effective temperatures and angu-
lar diameters of both components are listed in Table 11.1, and the best-fit SED model is
compared to the data in Figure 11.7. When combined with the Gaia parallax, the con-
straint on the angular diameter of the proto-WD translates to a constraint on its radius,
Rproto WD = (0.33± 0.09)R�.

If the proto-WD is assumed to fill its Roche lobe, as the light curve suggests it very
nearly does (Section 11.4), then its mean density ρ = 3M/ (4πR3) is given by

ρ ≈ 107 g cm−3 (Porb/hr)−2 , (11.1)

where M and R represent the mass and equivalent radius of the Roche-filling star (Eggleton
1983). The radius constraint from the SED then implies a proto-WD mass of Mproto WD =
0.18+0.21

−0.11M�.
The observed UV-to-IR SED is reproduced reasonably well. The SED of the proto-

WD dominates in the optical and IR but drops off precipitously in the FUV. Under the
assumption that the FUV emission is dominated by the more massive WD (without, for
example, a significant contribution from accretion), we find a WD effective temperature
Teff,WD = 19700± 1500K.

Under the assumption that the WD is accreting and has reached an equilibrium temper-
ature for its accretion rate, its effective temperature can be related to the mass transfer rate
(e.g. Townsley & Gänsicke 2009, their Equation 2). Taking MWD = 0.95M� (Section 11.4),
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the implied mass transfer rate is

Ṁ . 1.5× 10−10M� yr−1. (11.2)

This is significantly lower than is found and predicted for most CVs at P ≈ 4 hours, where
most non-magnetic systems have 8 . − log(Ṁ/(M� yr−1)) . 9. (e.g. Townsley & Gänsicke
2009; Kalomeni et al. 2016). Equation 11.2 is an upper limit, since the WD could remain
hot from earlier accretion after a drop in the mass transfer rate.

11.4 Parameter constraints
To constrain the physical parameters of the binary, we combine constraints from the

ZTF light curves (Figure 11.1), Kast spectrum (Figure 11.6), multi-epoch RVs (Figure 11.4),
photometric SED (Figure 11.7), and the Gaia parallax.

11.4.1 Light curve model

We model the ZTF g− and r−band light curves simultaneously, using the binary light
curve modeling software Phoebe (Prša & Zwitter 2005; Prša et al. 2016; Horvat et al. 2018),
which builds on the Wilson & Devinney (1971) code. Phoebe models the surfaces of both
components using a deformable mesh, self-consistently accounting for ellipsoidal variation,
reflection, and eclipses. The atmosphere of the donor is modeled using Phoenix model
atmospheres (Husser et al. 2013) with Teff = 6800K, and its limb darkening coefficients are
calculated self-consistently from the atmosphere models. The WD, which contributes about
1% of the light in the optical, is modeled with a blackbody atmosphere. We assume it follows
the mass-radius relation from Bédard et al. (2020) and has an effective temperature of 20,000
K. We fix the eccentricity to 0.

We leave the gravity darkening exponent β1, where T 4
eff ∝ gβ1 (von Zeipel 1924), as a

free parameter. It is common to assume β1 = 0.32 for stars with significant convective
envelopes (Teff . 6300 K), and β1 = 1 for stars with radiative envelopes (Teff & 8000 K;
e.g., Lucy 1967). J0140 is likely between these two regimes, with a thin convective envelope.
Observational determinations of β1 in this temperature range are typically 0.2 . β1 . 0.6
(e.g. Claret 2015). We adopt a prior β1 ∼ N (0.32, 0.1).

The light curve provides a joint constraint on the inclination and Roche lobe filling factor,
Rproto WD/RL. We simultaneously fit the g− and r−band light curves for these parameters,6
as well as the intrinsic scatter in the light curves. Like the “jitter” term used in fitting the RVs,
the intrinsic scatter term is added in quadrature to the reported photometric uncertainties;

6In practice, this is accomplished by fixing the masses of the two components and leaving the radius of
the proto-WD free. This is a sensible choice because, in the absence of detectable eclipses, the light curve
shape depends just on the Roche lobe filling factor (which depends on the star’s mean density) and on the
limb darkening and gravity darkening coefficients, not on the absolute masses and radii.
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it essentially forces the reduced χ2 of the light curve fit to be 1. We sample the posterior
with emcee; our priors and constraints are listed in the first section of Table 11.3.

Figure 11.8 compares our best-fit Phoebe models to the observed light curves. For illus-
trative purposes, we show the best-fit models when the inclination is fixed at three different
values. For all inclinations i & 70 degrees, equally good fits to the light curve can be obtained
by decreasing the Roche lobe filling factor while increasing the inclination. For models with
i ≥ 75 degrees, the eclipse of the massive WD is visible at φ = 0.5. However, the depth of
the predicted eclipse is less than 1% in both bands, and the observed light curves cannot
confidently distinguish between models that do and do not include eclipses. For inclina-
tions i < 70 degrees, the predicted amplitude of ellipsoidal variability is weaker than what
is observed, even when the proto-WD completely fills its Roche lobe. The blue curve in
Figure 11.8 shows the best-fit model with i = 65 deg, which is confidently ruled out by the
data.

The Phoebe models provide reasonable but not perfect fits to the light curve. Particularly
in the r− band, there are coherent residuals of ≈ 0.02 mag at phases φ = 0.75 − 1.25.
This could be the result of systematics in the model light curves (e.g., an inaccurate limb
darkening law) or additional components not included in the model (e.g. an accretion disk or
hot spot around the more massive WD, or spots on the surface of the proto-WD). Because
the model does not perfectly describe the data, the formal uncertainties on light curve
fitting parameters may be underestimated. We therefore do not fit the light curve and other
observables simultaneously. Instead, we adopt priors on the inclination and Roche lobe filling
factor of the proto-WD that are based on the light curve in our combined model, as described
below.

11.4.2 Combined model

We now combine constraints on the angular diameter, parallax, orbital velocity, inclina-
tion, and Roche lobe filling factor. The free parameters of the fit are the mass and radius
of the proto-WD, orbital inclination, distance, and the mass of the more massive WD. The
full likelihood function is:

lnL =− 1

2

[
(Rproto WD/RL)model − (Rproto WD/RL)obs

]2
σ2
Rproto WD/RL

− 1

2

(Kmodel −Kobs)
2

σ2
K,obs

− 1

2

(Θmodel −Θobs)
2

σ2
Θ, obs

− 1

2

($model −$obs)
2

σ2
$, obs

The four terms compare the proto-WD’s predicted Roche lobe filling factor, RV semi-
amplitude, and angular diameter, and the system parallax, to the observed constraints.
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Figure 11.8 : Best-fit Phoebe g (top) and r (bottom) light curves when the inclination is fixed to
60, 75, and 85 degrees. Models are compared to the phase-averaged ZTF data, with error bars
including only random photometric uncertainties. Models are labeled by the ratio of the proto-WD
equivalent radius to the equivalent Roche lobe radius. The best-fit models with i = 75 and i = 85

deg are nearly indistinguishable. Models with i & 75 deg include a shallow eclipse at phase 0.5,
when the massive WD is eclipsed, but the observed light curve is as yet too noisy to confirm or
rule out this feature. The model with i = 65 deg produces too-low ellipsoidal variability amplitude,
even when the proto-WD fully fills its Roche lobe. Our fit to the light curve yields i > 70 deg and
Rproto WD/RL > 0.98.
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The proto-WD’s predicted Roche lobe equivalent radius is

RL ≈
0.49q2/3

0.6q2/3 + ln (1 + q1/3)

(
P 2

orbG (Mproto WD +MWD)

4π2

)1/3

, (11.3)

where q = Mproto WD/MWD, and we use the fitting function from Eggleton (1983). From the
light curve fit, we take (Rproto WD/RL)obs = 0.99 and σ2

Rproto WD/RL
= 0.01.

The predicted RV semi-amplitude of the proto-WD is

Kmodel =
[2πG (Mproto WD +MWD) /Porb]1/3

(1 +Mproto WD/MWD)
sin i, (11.4)

the model parallax is $model = 1/d, and the angular diameter is Θmodel = 2R/d. The
observational constraints on these parameters are taken from Table 11.1.

Our adopted priors are listed in Table 11.3. We use flat priors on all parameters except
distance. We take the distance prior from Bailer-Jones et al. (2020):

P (d) =

{
1

Γ(β+1
α )

α
Lβ+1d

βe−(d/L)α , if d ≥ 0

0, otherwise
(11.5)

Here L, α, and β are free parameters that depend on sky position and are provided by Bailer-
Jones et al. (2020). They were calculated by fitting the distance distribution of sources in a
mock Gaia eDR3 catalog (Rybizki et al. 2020). For the location of J0140, L = 4.2×10−4 pc,
α = 0.24, and β = 7.2. The effects of the prior on our final constraints are weak; adopting
a flat prior instead changes the best-fit distance and donor radius by only a few percent.

We sample the posterior distribution using emcee (Foreman-Mackey et al. 2013c). We
draw 4 × 105 samples using 64 walkers, after a burn-in period of 2000 steps per walker.
We inspect the chains to verify convergence. The resulting constraints are listed in the
lower section of Table 11.3 and shown in Figure 11.9. The proto-WD luminosity implied
by our constraints on its radius and effective temperature is Lproto WD = 0.23+0.09

−0.06 L�. The
surface gravity implied by the mass and radius constraints is log [g/ (cm s−2)] = 4.74± 0.07,
consistent with the spectroscopic fit. We compare these parameter constraints to models in
Section 11.6.

11.5 Outburst frequency limits
If J0140 is still undergoing mass transfer, one might expect it to periodically exhibit

dwarf nova-like outbursts, which usually occur in CVs due to disk instability (e.g. Hameury
2020). The light curve of J0140 does not show any convincing evidence of such outbursts
(Figure 11.2). Here we use this fact to constrain an upper limit on the outburst frequency.

To determine whether an outburst would have been detected, we require an estimate of
the outburst duration and amplitude. For normal CVs, the duration of typical outbursts
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11.5. OUTBURST FREQUENCY LIMITS 341

Table 11.3 : Constraints from the combined fit. Uncertainties are 1σ. We first fit the light curve,
adopting minimally informative priors on the inclination and Roche lobe filling factor. We then
use the constraints from the light curve (namely, i > 70 deg and Rproto WD/RL = 0.99 ± 0.01) as
priors during the combined fit. Finally (bottom two rows), we report constraints obtained when
we require the proto-WD’s period and effective temperature to match the binary evolution models
introduced in Section 11.6.

Parameter description units prior constraints
Light curve fit
Rproto WD/RL Roche lobe filling factor – U(0, 1) 0.99± 0.01
i inclination [deg] sin(i) 83+5

−8

β1,proto WD gravity darkening exponent – N (0.32, 0.1) 0.29+0.03
−0.05

σintr Light curve intrinsic scatter [mag] U(0, 1) 0.025± 0.002
Combined fit
Rproto WD Proto-WD radius [R�] U(0.01, 1) 0.33+0.07

−0.04

Mproto WD Proto-WD mass [M�] U(0.01, 1) 0.19+0.13
−0.07

MWD White dwarf mass [M�] U(0.5, 1.36) 0.95+0.14
−0.13

i inclination [deg] U(70, 90) 80+7
−7

d distance [kpc] Equation 11.5 1.54+0.24
−0.23

Combined fit including evolutionary models
Rproto WD Proto-WD radius [R�] U(0.01, 1) 0.29± 0.01
Mproto WD Proto-WD mass [M�] U(0.01, 1) 0.15± 0.01
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is correlated with orbital period (e.g. Szkody & Mattei 1984; Warner 2003); for a period of
3.81 hours, the typical width at half-maximum, ∆T0.5, is ≈ 2.5 days. Similarly, the absolute
magnitude of dwarf nova disks during outburst is correlated with orbital period; for a period
of 3.81 hours, MV,max ≈ 4.75 (Warner 2003). For J0141, this would correspond to a ≈ 2.5
mag brightening during outburst. It is of course not obvious that the outburst duration and
amplitude of typical CVs will be a good proxy for an unusual system like J0140.

To estimate the probability that outbursts with interval Tn would have been detected by
now, we perform Monte Carlo simulations in which we inject outbursts into the observed
light curve (Figure 11.2). For simplicity, we model each outburst as a tophat increase in
brightness of 2.5 mag that lasts 2.5 days. If the magnitude during outburst exceeds an
observed magnitude or upper limit, we conclude that it would have been detected. We
model the bursts as strictly periodic, with uniformly distributed orbital phase. For each Tn,
we perform 1000 trials and record the fraction of trials that result in at least one burst being
detected. This fraction is plotted in Figure 11.10.

For all Tn . 1 year, the detection efficiency is 100%. There are dips in the detection
efficiency for Tn values that are integer multiples of 1 year. This is because J0140 is not
observable for a few months each year, so if bursts were phased such that they occur only
during these gaps, they would not be detected. Real dwarf nova outbursts are generally
not completely periodic, so the detection efficiency is likely smoother than modeled in this
experiment. Figure 11.10 shows that the probability of detecting at least one burst is greater
than 90% for Tn . 103 days. The detection efficiency falls below 50% for Tn & 2500 days.

11.6 Evolutionary history and comparison to known CVs
and ELM WDs

If there is still ongoing mass transfer in J0140, then the proto-WD is an unusually evolved
CV donor. If mass transfer was recently terminated, it is a just-detached ELM WD. We thus
compare the system to known evolved CV secondaries and ELM WDs.

In Figure 11.11, we compare the proto-WD to CV donors from the literature that have
been proposed to be evolved. These are QZ Ser (Thorstensen et al. 2002a), EI Psc (also called
1RXS J232953.9+062814; Thorstensen et al. 2002b), SDSS J170213.26 + 322954.1 (Littlefair
et al. 2006), BF Eridani (Neustroev & Zharikov 2008), CSS J134052.0 + 151341 (Thorstensen
2013), HS 0218+3229 (Rodríguez-Gil et al. 2009), SDSS J001153.08-064739.2 (Rebassa-
Mansergas et al. 2014), ASAS-SN 13cl (Thorstensen 2015), ASAS-SN 15cm (Thorstensen
et al. 2016), ASAS-SN 14ho (Gasque et al. 2019), V1460 Her (Ashley et al. 2020), and
ASAS-SN 18aan (Wakamatsu et al. 2021).

Most of these systems contain K star donors (Teff = 4500 − 5000 K), which are warmer
than is predicted for unevolved CV donors (dashed line; Knigge 2006). We note that evolved
donors are common at long periods (Porb & 6 hours), because only evolved or unusually
massive donors are large enough to already be Roche-filling at these periods. There are
plenty of evolved donors with longer periods that are not shown in Figure 11.11; some of
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Figure 11.10 : Probability that at least one outburst would have been detected by now if the true
outburst interval were a given value, based on the light curve in Figure 11.2. Sharp dips occur at
multiples of 1 year, since J0140 is not observable for a few months each year; they would not be
present if outbursts were not modeled as strictly periodic. The data rule out an outburst interval
Tn < 103 days with 90% probability.
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line), which we take from Knigge (2006). A majority of known CVs have temperatures close to
this sequence. J0140 is considerably hotter than any previously characterized system at comparable
period.



11.6. EVOLUTIONARY HISTORY AND COMPARISON TO KNOWN CVS AND
ELM WDS 345

these are shown in Figure 11.12. However, evolved systems are rare at Porb . 6 hours,
and the CVs shown in Figure 11.11 represent a near-complete inventory of currently known
systems with anomalously hot donors. J0140 is significantly hotter than other known CVs
at comparable periods. If it is still mass-tranferring, it is the most extreme evolved CV
discovered to date.

11.6.1 MESA models

To understand the evolutionary history of J0140 and similar systems, we calculated a
grid of binary evolution models using Modules for Experimentation in Stellar Astrophysics
(MESA, version 12778; Paxton et al. 2011, 2013, 2015, 2018, 2019). The binary capabilities
of MESA are described in detail by Paxton et al. (2015). We follow the mass-losing star with
detailed calculations and model the more massive WD as a point mass. Roche lobe radii are
computed using the fit of Eggleton (1983). Mass transfer rates during Roche lobe overflow
are determined following the prescription of Kolb & Ritter (1990). The orbital separation
evolves such that the total angular momentum is conserved when mass is transferred to the
companion or lost, as described in Paxton et al. (2015). We model mass transfer as being
fully non-conservative, with the mass that is transferred from the donor to the WD eventually
being lost from the vicinity of the WD, as described by Tauris & van den Heuvel (2006, their
“β” parameter). Although mass transfer in real CVs is not instantaneously non-conservative,
the mass accreted by the WD is expected to be ejected from the system by classical novae
explosions, which recur on a timescale that is short compared to the timescale on which the
orbit evolves.

We initialize our calculations with a zero-age main sequence (ZAMS) star in a detached
orbit with a point mass representing the WD. The orbit shrinks through gravitational wave
radiation and magnetic braking. Magnetic braking is implemented following the prescription
of Rappaport et al. (1983), which applies a torque,

τmb = −6.8× 10−34

(
Mdonor

M�

)(
Rdonor

R�

)γmb
(
P

1 d

)−3

dyn cm, (11.6)

removing angular momentum from the binary. This expression is derived under the assump-
tion that the binary is tidally locked and the angular momentum loss from the donor through
winds is the same as that from an isolated single star with the same rotation velocity (e.g.
Skumanich 1972; Verbunt & Zwaan 1981). Comparison to the observed age-rotation period
relation for solar-type stars suggests γmb = 4; Rappaport et al. (1983) found 2 . γmb . 4
when matching their evolutionary models to the period distribution of observed CVs. We
adopt γmb = 3, but our results are only weakly sensitive to this choice.

Magnetic braking is turned off when the donor becomes fully convective, because at that
time the magnetic field is expected to weaken, or at least significantly change its structure
(Spruit & Ritter 1983b; Donati & Landstreet 2009). We also expect magnetic braking to
become inefficient when the donor loses its convective envelope (e.g. Kraft 1967). This is
not implemented in the default distribution of MESA. Following Podsiadlowski et al. (2002),
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we assume that the magnetic braking torque follows Equation 11.6 as long as qconv, the
mass fraction of the donor’s convective envelope, exceeds 0.02. For donors with qconv <
0.02, we suppress the magnetic braking torque by multiplying Equation 11.6 by a factor
exp(1− 0.02/qconv). This effectively makes magnetic braking inefficient at Teff & 6000 K.

The “initial” separations in our calculations represent the separation after the more mas-
sive WD has formed, presumably through an episode of common envelope evolution (CEE).
The separation distribution at this stage is not well-constrained observationally or theoret-
ically, and we do not attempt to predict exactly what initial binary configurations would
produce a given separation after CEE. We instead simply model a grid of separations to see
which post-CEE separations could produce the observed properties of J0140.

Initializing the secondary on the ZAMS neglects its aging during the main-sequence
lifetime of the massive WD’s progenitor. This is a reasonable approximation for our purposes,
because, in order for the system to have gone through CEE and emerged as a WD+MS
binary with a short period, the initial mass ratio of the binary must have been relatively
unequal (e.g. Soberman et al. 1997). If the massive WD’s mass has not changed significantly
from accretion or novae, then its current mass of ≈ 0.95M� implies an initial progenitor mass
between 3.5 and 5.5M�, depending on the adopted initial-final mass relation (e.g. Cummings
et al. 2018; El-Badry et al. 2018e). This corresponds to a pre-WD lifetime of at most 300
Myr.

We ran MESA tracks with initial periods ranging from 0.5 to 3 days, WD masses ranging
from 0.8 to 1.2 M�, and initial donor masses ranging from 1 to 2.5 M�. The qualitative
behavior of the models depends little on the assumed WDmass, so here we only analyze those
with MWD = 0.9M�. Figure 11.12 shows the evolution of several tracks that all have initial
donor masses of 1.1M� and a range of initial orbital periods; we discuss other donor masses in
Section 11.6.3. As a function of orbital period, we plot the donor mass, radius, and effective
temperature, the mass of its helium core7, time since the beginning of the calculation, the
mass transfer rate, the surface gravity of the donor, and the binary’s angular momentum loss
due to magnetic braking and gravitational wave radiation. We also plot the mass, radius,
and temperature of donors in known CVs with well-characterized donor parameters.8

The set of initial periods shown in Figure 11.12 are chosen to highlight the behavior of
“normal” CVs as well as evolved systems like J0140. The track with Pinit = 1 day displays
behavior characteristic of “normal” CVs: the donor overflows its Roche lobe while still on
the main sequence, before a helium core has formed. It grows smaller and cooler as the
period shrinks, passing near most of the observed systems.9 At a period of about 3 hours,

7Defined as the region in which the helium mass fraction is >99%.
8Effective temperatures for 91 CVs are taken from Knigge (2006, their Table 2). Only CVs with reliable

spectroscopically determined spectral types are included. Knigge (2006) report spectral types, not effective
temperatures; we convert them to Teff using the conversion from de Jager & Nieuwenhuijzen (1987). We
also plot masses and radii of donors in 19 eclipsing CVs from Patterson et al. (2005, their Table 8). We
plot these, rather than larger compilations from elsewhere in the literature, because they contain masses and
radii measured independently, without the assumption that the CVs follow a particular donor sequence.

9Even this model is somewhat warmer that the bulk of the observed population at short periods. This
likely reflects the fact that the atmospheres of cool dwarfs are influenced by molecules, which are not included
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Figure 11.12 : MESA binary models for CVs with evolved donors. We show 6 models, labeled by
Pinit (the initial period at which we initialize a detached WD+MS binary) and by the fraction of the
donor’s normal MS lifetime that has passed at the onset of RLOF. Gray points with error bars show
other CVs from the literature with well-measured masses, radii, and effective temperatures. The
cyan point shows J0140. The yellow track with Pinit = 1 day is representative of CVs in which the
donor overflows its Roche lobe before undergoing significant nuclear evolution; it passes through the
majority of the observed CV population. Darker tracks shows systems (with finely spaced periods)
in which the donor overflows its Roche lobe increasingly near the end of the main sequence. By the
time these systems reach Porb ∼ 4 hours, they have significant helium cores with thin H-burning
envelopes. At fixed period, they have higher Teff , lower masses and radii, and much lower mass
transfer rates than ordinary CVs. J0140 is well described by such tracks. The most extreme evolved
tracks become detached once they lose their convective envelopes and magnetic braking becomes
inefficient (lower right); these become ELM WDs.
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the donors become fully convective and magnetic braking ceases, slowing the orbital decay.
At this point, the donor temporarily detaches from its Roche lobe and returns to thermal
equilibrium as it passes through the period gap, before reestablishing Roche contact at
Porb ∼ 2 hours. The donor continues to shrink until the period minimum, where it becomes
degenerate. The same qualitative evolutionary scenario applies to all models that overflow
their Roche lobes while on the main sequence, including models with higher- and lower-mass
secondaries. For the choice of MWD and Mdonor, init shown in Figure 11.12, all systems with
initial periods between about 0.4 and 2 days follow similar evolution to this track.

Along with their initial periods, we label the tracks in Figure 11.12 by the fraction of
the donor’s main-sequence lifetime (if it were isolated; this is tMS = 7.54Gyr for the 1.1
M� donor shown in the figure) that has passed at the time of first Roche lobe overflow.
We define the main-sequence lifetime as the time until the helium core mass reaches the
Schönberg–Chandrasekhar limit, which we take to be 0.08 times the total mass of the star.
Models with tRLOF/tMS . 0.8 all behave similarly to the track shown with tRLOF/tMS = 0.08.

Models with longer initial periods and tRLOF/tMS & 0.8 behave qualitatively differently.
These donors overflow their Roche lobes as a helium core is already forming. Initial RLOF
occurs at a significantly longer period than in CVs with unevolved donors, because the
donor’s radius has increased by ∼60% during its main-sequence evolution. Once most of the
envelope has been lost – over a period of several hundred Myr – the effective temperature of
the donor begins to increase. The most evolved models, which have the thinnest hydrogen
envelopes, reach the highest temperatures. By the time they reach Porb ∼ 4 hours, the
evolved donors have low mass loss rates, Ṁ . 10−10M� yr−1.

The mass transfer rate for the evolved models in Figure 11.12 is never particularly high,
reaching at most 10−8M� yr−1. It can, however, be significantly higher for higher initial
donor masses (Section 11.6.3). In the most evolved models shown, the orbital period does
not decrease monotically with time, but increases slightly while the donor’s mass is between
≈ 0.6 and ≈ 0.3M�. The orbital separation does decrease monotonically; the period increase
reflects a rapid decrease in total mass.

The lower mass transfer rate near Porb = 4 hours in models with evolved donors is a
consequence of (a) these donors’ smaller masses and radii, which lead to weaker magnetic
braking torques (Equation 11.6), and (b) the fact that the mass in evolved donors is more
centrally concentrated, so a fixed decrease in radius corresponds to a smaller decrease in
mass.

Once the donor reaches Teff & 6000K and loses its convective envelope, magnetic braking
ceases. This can be seen in the bottom panel of Figure 11.12, which shows a sharp fall-off
in J̇MB for the evolved models that reach Teff & 6000K. The binary’s orbital decay is then
driven only by gravitational radiation. This leads to an immediate decrease in the mass
transfer rate. In the two most evolved models, this causes the donor to detach from its

in the MESA calculations. More reliable effective temperatures for cool dwarfs can be obtained by changing
the boundary condition where model atmospheres are stitched to interior models (see Choi et al. 2016, their
Figure 14). We refrain from doing so here, using the photosphere_tables atmosphere boundary in all
calculations.
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Roche lobe and reestablish thermal equilibrium at a smaller radius. During this period, the
donor would appear as a detached ELM WD. For the model that most closely matches the
effective temperature of J0140, detachment occurs just at Porb = 3.8 hours. Slightly less
extreme models remain in Roche contact, either because magnetic braking never fully shuts
off, or because the binary has reached short enough periods that angular momentum loss
through gravitational waves is efficient by the time magnetic braking becomes inefficient.

It is important to note that there are few observational constraints on the efficiency of
magnetic braking in stars like the proto-WD in J0140. The details of which models remain
in Roche contact, which become detached, and when detachment occurs, depend sensitively
on the adopted magnetic braking law. Characterization of similar CVs with hot and warm
donors, particularly at 1 . Porb/hour . 3, will allow the efficiency of magnetic braking in
hot stars to be better constrained.

The evolutionary models also allow us to refine our estimate of the mass and radius
of the proto WD: plausible models with evolved donors in Figure 11.12 have Mproto WD =
0.15 ± 0.01M� and Rproto WD = 0.29 ± 0.01R�. Other published evolutionary tracks for
ELM WDs imply consistent values (e.g. Sun & Arras 2018; Li et al. 2019). Given the
measured angular diameter, this would imply a distance d = 1.30 ± 0.05 kpc. These values
are consistent with, but tighter than, our constraints that are independent of evolutionary
models (Section 11.4).

Figure 11.13 shows the evolution of the same MESA models on the HR diagram. The
unevolved CV track with tRLOF/tMS = 0.08 closely follows the single-star main sequence
(dashed black line). Most of the CVs in the sample to which we compare fall near this track,
though they are on average offset slightly to lower Teff . A few literature systems (gray points)
are significantly hotter than the single-star main sequence at their luminosity; these are CVs
thought to host evolved donors. J0140 is significantly offset from these systems. The MESA
tracks that pass near it suggest it will continue evolving toward higher Teff at nearly fixed
luminosity before it eventually cools.

Figure 11.13 also shows a sample of spectroscopically confirmed ELM WDs assembled
by Pelisoli & Vos (2019). A majority of these objects were discovered by the ELM survey
(Brown et al. 2010). We estimate the luminosity of these objects from their reported Teff ,
log g, and mass.10 We note that selection effects for these objects and for CVs are very
different, and we make no attempt to interpret the relative numbers of objects in the two
populations. ELM WDs are found at even higher Teff than J0140, and they are all detached.
The two most extreme MESA tracks run through this population in temperature–luminosity
space after detachment. This suggests that, whether or not it is currently mass transferring,
J0140 will evolve to become a detached ELM WD. We note that a majority of the ELM
WDs plotted have somewhat longer orbital periods than J0140. Such systems are thought
to form if tRLOF/tMS > 1; i.e., if the donor’s core has reached the Schönberg–Chandrasekhar
limit before first RLOF. In this case, the donor radius and separation expand in response

10That is, we calculate L = L� (R/R�)
2

(Teff/Teff,�)
4, with (R/R�)

2
= G (M/M�) (g/g�)

−1. Since no
mass uncertainty is reported for most of these objects, we assume an uncertainty of 0.03M� when calculating
the uncertainty in L.



11.6. EVOLUTIONARY HISTORY AND COMPARISON TO KNOWN CVS AND
ELM WDS 350

3.43.53.63.73.83.94.04.14.2

log(Teff/K)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

lo
g(
L
/L

¯
)

tRLOF/tMS = 0.08

tRLOF/tMS = 0.89

tRLOF/tMS = 0.95

tRLOF/tMS = 0.97

tRLOF/tMS = 0.98

tRLOF/tMS = 0.99

single star ZAMS

J0140

literature CVs

ELM WDs

Figure 11.13 : HR diagram. The same MESA tracks from Figure 11.12 are compared to other CV
donors (gray points) and to extremely low mass (ELM) WDs. Most normal CV donors fall near the
single-star main sequence, which also overlaps the yellow model with early RLOF. Tracks in which
the donor overflows its Roche lobe near the end of its main-sequence evolution (orange and red)
diverge from the main sequence toward higher Teff , approaching the ELM white dwarfs. The most
extreme models become detached in this phase (Figure 11.12). J0140 is likely transitioning between
the two populations, evolving to higher temperature at near-constant luminosity.
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Figure 11.14 : Future evolution of J0140. Colored tracks show the same MESA models from Fig-
ures 11.12 and 11.13. Normal CVs reach a period minimum at about 80 minutes, when they become
degenerate. Systems with evolved donors are smaller when they become degenerate (due to higher
mass and lower Ye), allowing them to reach much shorter minimum periods. These models suggest
that J0140 will reach a minimum period Porb . 15 minutes, when (if it avoids a merger) it will be
classified as an AM CVn binary.

to mass loss, and the system never reaches short periods (e.g. Kalomeni et al. 2016; Sun &
Arras 2018).

11.6.2 Future evolution

Irrespective of whether angular momentum loss is driven by magnetic braking or gravi-
tational waves, the orbit of J0140 will continue to decay. Figure 11.14 shows the evolution
of the MESA models from Figures 11.12 and 11.13 at short periods. We run the calculations
until the donor mass falls below 0.03M�, noting that in the most evolved model, this takes
longer than the age of the Universe.

All models eventually reach a period minimum and then begin to widen again. The mass
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ratio is low enough that a merger is unlikely, at least under the simplified treatment of mass
transfer and accretion onto the WD assumed here (e.g. Marsh et al. 2004). The minimum
period is much shorter for the evolved tracks, which reach minimum periods between 5 and
30 minutes, compared to ≈ 80 minutes for the unevolved CV track. Mass transfer rates
at the period minimum are high but not catastrophic, reaching 1.5 × 10−7M� yr in the
most evolved model. Models that reach short periods evolve through the period minimum
relatively quickly; for example, the most evolved model spends only 20 Myr with Porb < 20
minutes. The period minimum of evolved CVs was explored extensively by Podsiadlowski
et al. (2003), and the behavior of our models is qualitatively similar to their predictions.

The shorter period minimum for evolved donors can be understood as follows. The
period minimum is set by the radius of the donor at the time when it becomes degenerate.
Unevolved donors become degenerate at the hydrogen burning limit, Mdonor ≈ 0.08M�. Due
to modest departures from thermal equilibrium, their radius at this time is Rdonor ≈ 0.12R�,
about 20% larger than the radius of a main-sequence star of the same mass. Equation 11.1
then predicts a period minimum of 77 minutes, close to what is found in the MESA models.
Evolved donors have smaller radii. The radius of cold, non-relativistic degenerate objects
scales as R ∼ M−1/3Y

5/3
e , where Ye is the mean number of electrons per nucleon. Taking

Ye ≈ 0.5 for evolved donors that are mostly helium and Ye ≈ 0.87 for normal donors with
Solar composition, the radius of a 0.16M� evolved donor (corresponding to the most evolved
model in Figure 11.14) at the period minimum is predicted to be ≈ 3.2 times smaller than
that of a 0.08M� hydrogen donor. This corresponds to a 64 times higher mean density and
an 8 times shorter minimum period (Equation 11.1). The actual minimum period is ≈ 13
times shorter, likely a result of the fact that near the period minimum, the unevolved model
is inflated by mass loss-driven departures from thermal equilibrium, while the evolved model
(being detached just prior to the onset of mass transfer and the minimum orbital period) is
not.

Near its period minimum, J0140 may appear as an “AM-CVn” binary, (e.g. Solheim 2010).
An “evolved CV” channel for producing AM-CVn binaries is discussed in Podsiadlowski et al.
(2003). Because a relatively fine-tuned scenario is required to produce an ultra-compact
binary from a CV, most studies have concluded that the evolved CV channel likely only forms
a small fraction of ultracompact binaries (van der Sluys et al. 2005; Solheim 2010; Goliasch
& Nelson 2015). Nevertheless, all plausible models we construct for J0140 eventually reach
short periods and either remain mass-transferring or resume mass transfer after the period
minimum.

Other possible formation channels for AM-CVn binaries include a WD+WD channel
(Tutukov & Yungelson 1979) and a He-star-WD channel (Iben & Tutukov 1991; Brooks
et al. 2015); which channel dominates is not known. If J0140 becomes detached before the
period minimum, it might be counted instead as contributing to the WD+WD channel, for
which a few detached progenitor systems have been identified (Kilic et al. 2014). If J0140
becomes detached, it will evolve to become very similar to these systems. Near the period
minimum, the system would then resemble some of the ultracompact WD binaries recently
discovered by ZTF (e.g. Burdge et al. 2019, 2020).
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The fate of the system after the period minimum is unclear. If a merger is avoided, accre-
tion of helium onto the surface of the more massive WD will lead to unstable thermonuclear
flashes, analogous to classical novae on normal CVs. These flashes are predicted to become
less frequent and more energetic as the accretion rate decreases, eventually culminating in a
“final flash” that may fuse radioactive elements and could be observed as a rapidly-evolving
transient (a “.Ia” supernova; Bildsten et al. 2007). Whether a detonation occurs in this
scenario depends on the time-dependence of the accretion (Piersanti et al. 2015).

An alternative possibility is that, following classical nova-like flashes on the surface of
the accreting WD, dynamical friction will shrink the orbit and cause the binary to merge
(Shen 2015). The outcome of such a merger would depend on the masses of the components.
If the accreting WD has a carbon-oxygen core and the total mass exceeds ≈ 1.2M�, then a
SNe Ia may be triggered through surface He detonation and subsequent C detonation in the
core by a converging shock (e.g. Livne 1990; Pakmor et al. 2013; Shen & Bildsten 2014). For
lower total masses (which are more likely, given our constraints), the merger might form an
R Coronae Borealis star (e.g. Clayton 2012).

11.6.3 Varying model parameters

Here we briefly summarize how the evolution of the MESA models changes when the
problem setup is varied.

• Shorter or longer initial periods: Shorter initial periods behave basically identically
to the track with Pinit = 1 day. In binaries with longer initial periods, the donor
overflows its Roche lobe after the core has reached the Schönberg–Chandrasekhar limit
(tRLOF/tMS > 1). These systems never reach short periods, because mass loss causes
the donor’s radius to increase rather than decrease. The orbit widens in response to
mass loss, leading to further expansion and mass loss. Such systems eventually form
helium white dwarfs, with a well-characterized relation between final orbital period
and mass (e.g. Rappaport et al. 1995). The division between such “divergent” systems
and converging systems that become CVs is called the “bifurcation limit” and has been
studied elsewhere (Pylyser & Savonije 1988; Podsiadlowski et al. 2003).

• Higher or lower initial donor masses: For significantly lower initial donor masses, the
donor cannot terminate its main-sequence evolution within a Hubble time, excluding
the formation of a CV with an evolved donor. For higher initial masses, the donor
has a radiative envelope on the main sequence, making magnetic braking inefficient.
This does not qualitatively change the system’s evolution once mass transfer begins,
because mass loss leads to a drop in Teff and efficient magnetic braking. However,
due to inefficient magnetic braking and a shorter main-sequence lifetime, donors with
higher initial masses are able to reach short periods and become CVs only if the initial
period is short (e.g., Pinit . 1 day for an initial donor mass of 2M�). In addition, the
mass transfer rates shortly after RLOF are much higher (up to 10−6M� yr−1) in models
with more massive donors. This allows for stable hydrogen burning on the surface of
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the massive WD, potentially producing a supersoft X ray source or SNe Ia (van den
Heuvel et al. 1992; Han & Podsiadlowski 2004).

• Different magnetic braking law: We also experimented with models in which magnetic
braking is not turned off when the donor’s envelope becomes radiative, as is currently
the default behavior in MESA. The most significant difference between these models
and those presented in Figures 11.12-11.14 is that their orbital decay does not slow
down when the donor heats up. As a result, even the most evolved models that reach
short periods remain mass transferring (though at low rates; Ṁ < 10−10M� yr−1).

11.7 Summary and Discussion
We have presented discovery data for LAMOST J0140355+392651 (J0140), an unusual

binary with period Porb = 3.81 hours containing a white dwarf and a hot, low-mass secondary.
Our main conclusions are as follows:

1. Basic properties: The system’s optical light curve is dominated by ellipsoidal variability
(Figure 11.1). The optical spectrum and SED of J0140 are dominated by the low-mass
star, which appears to be a proto-WD (Figures 11.6 and 11.7). The massive WD
dominates in the UV. Fitting the SED, Gaia parallax, optical spectrum, and radial
velocities allows us to constrain physical properties of the system, including the proto-
WD’s mass, radius, and temperature, the WD mass, the orbital inclination, and the
distance (Figure 11.9 and Table 11.3).

2. Comparison to CVs and ELM WDs: The properties of J0140 are transitional between
known populations of CVs and ELM WDs. The effective temperature of the secondary,
Teff = 6800±100, is much higher than in any known CVs at similar periods: most CVs
near Porb = 4 hours have Teff ∼ 3500K, and the hottest donors discovered previously
had Teff ∼ 5000K (Figure 11.11). The secondary’s mass and radius are also smaller
than those of normal CV donors at comparable period (Figure 11.12). The system has
not been observed in outburst; if it does experience outbursts, their recurrence time
is likely at least a few years (Figures 11.2 and 11.10), implying that the mass transfer
rate is very low. On the other hand, the secondary is cooler and more bloated than
known ELM WDs (Figure 11.13).

3. Evolutionary history: We calculated a set of MESA binary evolution models to investi-
gate the formation and future evolution of J0140 (Figures 11.12-11.14). These models
reproduce the secondary’s high temperature, small mass and radius, and low mass
transfer rate if the secondary overflowed its Roche lobe just at the end of its main-
sequence lifetime (within a few percent). In this case, all that is left of the secondary
at Porb ∼ 4 hours is a helium core with a thin hydrogen-burning envelope. Some of
these models remain as mass-transferring CVs for the rest of their evolution, while
others become detached as they grow hotter and temporarily appear as detached ELM
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WDs (Figure 11.13). Unlike normal CVs, which reach a minimum period of ≈ 80 min-
utes, models with evolved donors reach much shorter minimum periods (5-30 minutes),
where they will appear as AM CVn binaries (Figure 11.14).

Further observations are necessary to better understand the nature of the system. In
particular, higher-resolution and higher-SNR spectra will allow a deeper search for emission
features associated with accretion, which will enable a more conclusive determination of
whether there is ongoing mass transfer. UV observations with the Hubble Space Telescope
will provide direct constraints on the temperature of the WD. Such observations will also
constrain the nitrogen and carbon abundance of the secondary (e.g. Gänsicke et al. 2003;
Ashley et al. 2020). This will test the evolutionary scenario proposed in Section 11.6, which
predicts that both the donor and WD should bear evidence of CNO processing: nitrogen
and helium enhancement, and carbon depletion. Finally, higher-cadence photometry will
characterize the short-timescale variability that is thus far manifest only as additional scatter
in the light curve (Figure 11.3). If this variability is due to pulsations, it will be useful for
probing the internal structure of the WD (e.g. Hermes et al. 2012).

J0140 is clearly a rare system, containing the hottest secondary among of order 1000
spectroscopically confirmed CVs with Porb . 6 hours. We expect, however, that there are
numerous similar systems with comparable or brighter magnitude yet to be discovered. J0140
exhibits neither outbursts nor strong emission lines, the two observables through which CVs
are most commonly identified. Existing samples of CVs are thus likely biased against objects
like J0140. We suspect that similar objects can be efficiently identified by searching the light
curves of sources that fall blueward of the main sequence in the color-magnitude diagram
(e.g. Figure 11.17) for large-amplitude ellipsoidal variation. Light curves will be dominated
by ellipsoidal variation only if the donor dominates the optical light, which at short periods
will only occur if the donor is unusually hot. We have initiated such a search and will present
its yields in future work.

Connection to EL CVn binaries and sdA stars

We note that the proto-WD in J0140 is in a similar evolutionary state to the bloated
stripped stars found in EL CVn-type binaries (e.g. Maxted et al. 2014). In EL CVn binaries,
the companions are main-sequence stars rather than WDs. Like the ELM WDs discovered
by the ELM survey, the stripped stars in known EL CVn binaries are somewhat hotter and
more compact than the proto-WD in J0140, likely because they are further evolved.

Another population to which J0140 is closely related is the “sdA” stars, a heterogeneous
collection of stars discovered by Kepler et al. (2016) with A-type spectra that appeared to
have higher surface gravities than main-sequence stars of similar temperature. A majority
of the sdA stars turned out to be main–sequence stars with overestimated log g (e.g. Hermes
et al. 2017). However, a small fraction appear to be genuine pre-ELM WDs, and some of
these have temperatures and surface gravities similar to the proto-WD in J0140 (Pelisoli
et al. 2019). This raises the question whether their evolutionary status is similar to that of
J0140.
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To investigate this possibility, we analyzed the ZTF light curves of the 50 “high proba-
bility” pre-ELM WDs identified by Pelisoli et al. (2019) within the SDSS sdA sample. 42
of these 50 sources have high-quality ZTF light curves. Only one of them shows clear high-
amplitude variability,11 and while likely somewhat tidally distorted, it is not close to filling
its Roche lobe. We therefore conclude that the sdA pre-ELM WD candidates identified by
Pelisoli et al. (2019) have longer orbital periods than J0140, have already shrunk well within
their Roche lobes, and likely formed from donors that initiated mass transfer after the end
of their main-sequence evolution.

11.7.1 Is J0140 detached or mass-transferring?

The lack of outbursts and strong emission lines in J0140 raises the question whether the
system is a detached binary or a CV. Some of the MESA models we calculate (Figure 11.12)
do indeed become detached at Porb . 4 hours, because magnetic braking becomes inefficient
after the donor loses its convective envelope.

The relatively high temperature of the more massive WD inferred from the FUV emission
(Teff ≈ 20, 000K) suggests that if the binary it detached, it must have ceased mass transfer
recently.12 Similarly, the large observed amplitude of ellipsoidal variation implies that the
proto-WD is very close to Roche lobe overflow: our light curve fit (Section 11.4.1) yields
a Roche lobe filling factor Rproto WD/RL > 0.98. It is possible that detachment occurred
recently and the donor is still almost Roche lobe filling, but this would require some fine
tuning.

Long outburst recurrence timescales are expected at low accretion rate, because a longer
period of sustained accretion is required to build up enough mass in the disk for it to become
unstable (e.g. Warner 2003; Hameury 2020). The intrinsic distribution of CV outburst
timescales is difficult to constrain observationally, because there is a strong detection bias
toward systems with frequent outbursts (e.g. Breedt et al. 2014). Recently, Yu et al. (2019)
discovered a long-period CV (Porb ∼ 9 hours) with only one outburst in 4 years of nearly
continuous Kepler data. The expected future evolution of that system is similar to what we
infer for J0140. V1460 Her, another CV proposed to contain an evolved donor, experienced
only two confirmed outbursts in 14 years (Ashley et al. 2020). Since J0140 appears to be
the most extreme member of the evolved CV population discovered so far, we cannot rule
out that outbursts occur on a long recurrence timescale.

Given the unusual nature of the system, it is also worth considering whether accretion
could be occurring without any outbursts. At sufficiently low accretion rates, cooling is
inefficient and a thin disk is not expected to form. For J0140, the minimum accretion
rate below which even the outer disk is in the radiatively inefficient regime is Ṁ . few ×

11SDSS J 132713.01+382514.0, with reported Teff = 7967 ± 18K, shows what appears to be ellipsoidal
variability with Porb = 2.00 hours and peak-to-peak variability amplitude ≈ 8% (compared to ≈ 25% in
J0140). The variability is also consistent with a reflection effect binary with Porb = 1.00 hours.

12This Teff is really an upper limit, since some of the FUV emission could come from a disk. But a disk
could not be invoked if the binary were detached.
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Table 11.4 : LAMOST DR5 parameters for J0140, estimated from spectra obtained in two separate
visits. A third visit (obsid 1012095) had too-low SNR to yield useful RVs or stellar parameters.

parameter units visit 1 visit 2
obsid – 184214089 353912095
mjd d 56621 57278

g-band SNR – 14.9 19.7
RV km s−1 −5± 51 −377± 62
Teff K 6586± 246 6394± 829

log(g/(cm s−2)) – 4.37± 0.39 4.22± 1.19
[Fe/H] dex −0.17± 0.23 −0.16± 0.77

spectral type – F0 F3

10−11M� yr (e.g. Menou et al. 1999), which is plausible for the accretion rates predicted by
the MESA models in Section 11.6.1.

We conclude that J0140 is either currently undergoing mass transfer at an unusually
low rate, or recently became detached, but further observations are needed to confidently
distinguish between these possibilities.
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11.8 Summary of LAMOST data
Table 11.4 lists the parameters of J0140 as reported in LAMOST DR5 and measured from

combined spectra. These spectra are expected to be subject to significant orbital smearing,
so parameters derived from them should be interpreted with caution.
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The first visit (obsid 184214089) was split between two 2700 second subexposures, while
the second (obsid 353912095) was split between three 1800 second subexposures. RVs
measured from the subexposures are shown in Figure 11.15. There is clearly significant RV
variation (up to 600 km s−1) between subexposures of a single visit, implying that the spectra
produced by coadding these sub-exposures will be smeared out. Indeed, the sub-exposure
spectra are also subject to significant smearing, as the RV varies by more than 300 km s−1

between adjacent sub-exposures.
Figure 11.15 also shows the RVs predicted for the orbital ephemeris derived in Sec-

tion 11.3.4 from the light curve and our follow-up spectroscopy. The LAMOST RVs are not
used in deriving the ephemeris, but they are in reasonably good agreement with it. All 5
subexposure RVs are offset above our orbital solution, by ≈ 40 km s−1 on average. This may
indicate a zeropoint offset in our orbital solution compared to the LAMOST RV scale, since
our follow-up RVs are not absolutely calibrated. This would have no effect on the inferred
physical parameters of the binary.

11.9 Summary of Kast spectra
Table 11.5 summarizes the multi-epoch spectra of J0140 we obtained with the Kast

spectrograph at Lick observatory.

11.10 Phase-dependent spectra
To investigate the possibility of variability in the spectra with orbital phase, we binned the

single-epoch spectra in phase before coadding. Figure 11.16 compares the coadded spectra
at φ ≈ 0 (when the WD passes in front of the donor), φ ≈ 0.5 (when the donor passes in
front of the WD), and φ ≈ 0.25 or φ ≈ 0.75 (when both components are viewed side-on). In
all cases, we include spectra within 0.1 of the indicated phase. Most lines have consistent
strengths across phase bins. The Hα line, however, appears somewhat stronger at φ ≈ 0.5
than at other phases. This is the phase at which the WD and disk (if it exists) are behind
the donor, so the increased Hα absorption at φ ≈ 0.5 is consistent with a scenario in which
the disk contributes weak Hα emission that is fully or partially eclipsed at φ ≈ 0.5. An
alternative explanation is that irradiation by the hot WD gives rise to emission on one side
of the donor, which would be hidden from view at φ ≈ 0.5. Higher-SNR spectra are required
to confirm the phase-dependence of the Hα line, and, if it is confirmed, to further elucidate
its origin.

11.11 CMD position
Figure 11.17 shows J0140 on the Gaia eDR3 color-magnitude diagram. We compare it to

other stars with good astrometry within 2 degrees (which are subject to a similar extinction)
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Figure 11.15 : Radial velocities measured from individual LAMOST sub-exposures for two sepa-
rate visits. Horizontal errorbars show exposure time. Sub-exposure spectra are normally coadded
(without any RV shifts) to produce the visit spectra from which stellar parameters are derived.
For J0140, there are large RV shifts between visits, so the combined spectrum is subject to orbital
smearing. Red line shows the radial velocity predicted by the orbital solution obtained from the
light curve.
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Table 11.5 : Summary of Kast spectra. HMJD is mid-exposure time. Setup is described in Sec-
tion 11.3.5.

HMJD UTC phase exptime [s] setup SNR RV [km s−1]
59060.3371 0.04 600 B 5.6 −118± 21
59060.3444 0.08 600 B 7.9 −176± 19
59060.3518 0.13 600 B 8.8 −296± 13
59060.3643 0.21 600 B 10.3 −378± 12
59060.3717 0.25 600 B 11.7 −378± 10
59060.3790 0.30 600 B 11.3 −386± 12
59060.3940 0.39 600 B 10.8 −243± 12
59060.4015 0.44 600 B 10.1 −137± 12
59061.4040 0.76 600 A 11.5 311± 19
59061.4113 0.81 600 A 10.4 232± 30
59061.4186 0.85 600 A 10.9 246± 20
59061.4305 0.93 600 A 9.3 105± 21
59061.4378 0.97 600 A 8.8 32± 24
59062.3340 0.62 600 A 10.4 188± 16
59062.3414 0.67 600 A 10.5 274± 33
59062.3487 0.72 600 A 9.3 260± 19
59062.3601 0.79 600 A 10.5 239± 42
59062.3674 0.83 600 A 9.6 189± 55
59062.3747 0.88 600 A 8.5 −15± 54
59064.3512 0.34 600 A 5.4 −287± 56
59064.3585 0.39 600 A 6.0 −301± 54
59064.3658 0.43 600 A 6.4 −132± 38
59064.4701 0.09 600 A 13.6 −215± 32
59064.4774 0.14 600 A 13.9 −276± 24
59069.3438 0.81 600 A 17.6 240± 12
59069.3511 0.86 600 A 16.9 194± 13
59069.3584 0.90 600 A 15.2 70± 13
59069.3708 0.98 600 A 10.5 −32± 21
59069.3781 0.03 600 A 13.5 −155± 16
59069.3854 0.07 600 A 13.6 −232± 12
59069.3927 0.12 600 A 14.5 −315± 18
59069.4047 0.20 600 A 16.0 −355± 15
59069.4120 0.24 600 A 16.3 −391± 15
59069.4193 0.29 600 A 16.4 −361± 13
59069.4266 0.33 600 A 15.8 −348± 20
59069.4385 0.41 600 A 14.9 −208± 19
59069.4458 0.45 600 A 14.7 −146± 7
59069.4531 0.50 600 A 14.6 −58± 10
59069.4604 0.55 600 A 14.3 57± 10
59069.4715 0.62 600 A 14.8 179± 10
59069.4788 0.66 600 A 14.3 257± 20
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Figure 11.16 : Coadded spectra of J0140, produced by stacking single-epoch spectra with phases
within 0.1 of the values specified in the legend. The strongest lines are labeled. No strong phase
dependence is obvious, but there are hints of increased Hα absorption near φ = 0.5. This may be
due to the full or partial eclipse of a Hα emitting component at φ = 0.5.
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Figure 11.17 : J0140 on the Gaia color-magnitude diagram (CMD). In the left panel, black points
show sources within 2 degrees of J0140 with clean and precise photometry and astrometry; in the
right panel, they show sources over the whole sky but with d < 100 pc. J0140 is significantly bluer
than normal main-sequence stars of the same absolute magnitude. Right panel shows the predicted
individual CMD positions of the proto-WD and WD from the SED models in Figure 11.7, including
effects of extinction. Even without the light contributions of the WD, the donor is off the main
sequence.
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and to the Gaia 100 pc sample.13 J0140 falls below the main sequence; that is, it is bluer
than a main-sequence star of the same absolute magnitude. In the right panel, we show
the predicted individual CMD positions of the donor, disk, and WD. As in Figure 11.7, we
caution that the SED of the disk and WD are poorly constrained.

Curiously, the CMD position of J0140 is quite similar to that of “normal” CVs with the
same period (e.g. Abril et al. 2020; Abrahams et al. 2020). Most CVs with Porb ∼ 4 hours,
however, are completely dominated by the accretion disk in the optical, even in quiescence.
At Porb ∼ 4 hours, the total luminosity of donors on the CV donor sequence is only 0.015L�
(Knigge 2006), about 10% of the luminosity of the donor in J0140. In J0140, the donor
dominates. The system has a lower accretion rate – and correspondingly, a fainter disk –
than ordinary CVs of its period. This compensates for its unusually high donor luminosity,
leading to an unremarkable total absolute magnitude.

13For the 100 pc sample, we adopt the photometric and astrometric cuts suggested by Lindegren et al.
(2018). For the stars within 2 degrees, we use the same quality cuts but only require parallax_over_error
> 5 and parallax > 0.5.
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