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ABSTRACT: Traumatic brain injury (TBI) is a major public health concern that can result in long-term
neurological impairments. Calpain is a calcium-dependent cysteine protease that is activated within minutes after
TBI, and sustained calpain activation is known to contribute to neurodegeneration and blood−brain barrier
dysregulation. Based on its role in disease progression, calpain inhibition has been identified as a promising
therapeutic target. Efforts to develop therapeutics for calpain inhibition would benefit from the ability to measure
calpain activity with spatial precision within the injured tissue. In this work, we designed an activity-based
nanotheranostic (ABNT) that can both sense and inhibit calpain activity in TBI. To sense calpain activity, we
incorporated a peptide substrate of calpain flanked by a fluorophore/quencher pair. To inhibit calpain activity, we
incorporated calpastatin peptide, an endogenous inhibitor of calpain. Both sensor and inhibitor peptides were
scaffolded onto a polymeric nanoscaffold to create our ABNT. We show that in the presence of recombinant calpain,
our ABNT construct is able to sense and inhibit calpain activity. In a mouse model of TBI, systemically administered
ABNT can access perilesional brain tissue through passive accumulation and inhibit calpain activity in the cortex and
hippocampus. In an analysis of cellular calpain activity, we observe the ABNT-mediated inhibition of calpain activity
in neurons, endothelial cells, and microglia of the cortex. In a comparison of neuronal calpain activity by brain
structure, we observe greater ABNT-mediated inhibition of calpain activity in cortical neurons compared to that in
hippocampal neurons. Furthermore, we found that apoptosis was dependent on both calpain inhibition and brain
structure. We present a theranostic platform that can be used to understand the regional and cell-specific therapeutic
inhibition of calpain activity to help inform drug design for TBI.
KEYWORDS: calpastatin, activity-based nanosensor, polyethylene glycol, controlled cortical impact, TUNEL

Over 2.8 million Americans suffer from traumatic brain injury
(TBI) every year, and over 5 million people live with a TBI-
related disability in the United States.1,2 However, there are no
available therapeutics to treat the long-term brain health in
TBI, despite numerous clinical trials.3 Notably, large multi-
center clinical trials for progesterone in TBI failed to establish
efficacy as an acute stage neuroprotective treatment.4,5 A
retrospective analysis identified that there is a need for tools to
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measure target engagement during treatment in order to
monitor therapeutic efficacy.6−8 Moreover, the brain regions
that TBI affects can vary due to the location and severity of
injury and the underlying susceptibility of each region to
injury; therefore, the spatial resolution of injury signals and
therapeutic responses may inform the development of
therapeutics for TBI.
TBI initiates a secondary injury that unfolds over minutes to

days after the primary injury and involves a cascade of events
such as protease activation, oxidative stress, immune cell
activation, and upregulation of inflammatory cytokines.9,10

Activated proteases contribute to the degradation of matrix
proteins, neurodegeneration, and blood−brain barrier break-
down.11 Of ectopically activated proteases in TBI, calpains 1
and 2 are calcium-dependent cysteine proteases that are
typically intracellular and expressed in neurons, glia, and
endothelial cells of the brain. Calpain is activated within
minutes after TBI by dysregulated intracellular calcium, and its
sustained activity is correlated with worsened outcomes.12−15

Based on the important role of calpain in disease progression,
calpain inhibitors have been developed as promising
therapeutics in the form of small molecules and peptides. In
neuronal and hippocampal culture models of injury, calpain
inhibitors I, II, and III have been used to reduce cell apoptosis,
suppress actin and spectrin proteolysis, and inhibit DNA
fragmentation.16−19 In animal models of TBI, these agents can
reduce calpain-specific spectrin proteolysis, neuronal cell death,
and motor and behavioral deficits; however, their utilization is
limited by poor pharmacokinetics and off-target activ-
ity.11,20−27 For example, calpain inhibitor II required
continuous intra-arterial infusion after TBI to significantly
reduce neurofilament and spectrin proteolysis in the cortex and
was not specific to calpains over cathepsins (Ki for calpain-1 =
120 nM, Ki for calpain-2 = 230 nM, Ki for cathepsin B = 100
nM, and Ki for cathepsin L = 600 pM).13,24 Treatment with
multiple doses of the calpain inhibitor III, MDL-28170, both
intravenously and intraperitoneally after controlled cortical
impact (CCI) in mice was able to reduce spectrin proteolysis
by 40% in the ipsilateral hippocampus and 44% in the
ipsilateral cortex 24 h post injury (Ki for calpain = 10 nM and
Ki for cathepsin B = 25 nM).20,28 More recently, calpain-2-
specific inhibitors have been developed; NA101 (Ki for
calpain-1 = 1.3 μM and Ki for calpain-2 = 25 nM) has been
shown to reduce cell death, inflammation, and lesion volume
when delivered 1 h after CCI and improve cognitive and motor
function after continuous subcutaneous delivery of NA101
over 15 days during repeated mild TBI.22,29−31 Calpastatin
peptide (CAST) is based on the sequence of human
calpastatin, an endogenous protein that inhibits calpain (Ki
for calpain = 42.6 nM and Ki for cathepsin L = 6 μM).32−35

In studying calpain inhibition and activity, studies typically
rely on measuring the bulk concentrations of proteolytic
byproducts in brain tissue homogenates. However, the brain is
a heterogeneous tissue, and injury pathophysiology with
respect to calpain activity and inhibition can vary by brain
region.36−40 For example, calpain activity as measured by
spectrin breakdown products (SBDP) has been detected
primarily in the cortical and hippocampal regions early after
injury, with delayed activation in the thalamus.41,42 Further,
these differences in calpain activity affect regional levels of
neurodegeneration and cell death. Neurodegeneration and
apoptosis are present acutely after injury in the cortex and
hippocampus, appearing later in the thalamus and corpus

callosum.36,43,44 There is evidence that calpain inhibition can
also vary by region, although it has not been studied
extensively due to a lack of tools. Delivery of a calpain-2
inhibitor in a mouse model of TBI reduced SBDP levels when
measured in bulk homogenized cortical tissue, whereas a
regional tissue analysis in sectioned brains showed that SBDP
was still elevated in the 170 μm margin from the injury
lesion.22 This elevation of SBDP in the margin corresponded
with an elevation in cell death that could not be rescued by a
calpain inhibitor. Therefore, understanding calpain inhibition
in region- and cell-specific contexts in the brain may inform the
design and translation of calpain inhibitors for the therapeutic
treatment of TBI.
While calpain mRNA or protein levels can be measured

through conventional means, calpain activity is modulated by a
variety of factors in its microenvironment, such as cofactors,
inhibitors, and spatial localization.45 Therefore, measurements
of calpain activity in bulk assays may not reflect calpain activity
in native tissue. The current gold standard for measuring
protease activity is gel zymography.46,47 Quantitative gel
zymography can be performed by comparing samples to
known standards of the recombinant protease. However, as a
bulk technique, spatial information is lost in gel zymography.
In a variation of the technique, in situ gel zymography can be
used to resolve spatial protease activity by overlaying
fluorescently labeled protease substrate on tissue sections.
However, this method is applied on ex vivo samples and
therefore may not be able to fully recapitulate the biology of an
intact whole organism.48,49 Activity-based probes have
emerged as a small molecule tool for the analysis of protease
activity as opposed to protein abundance.50 These consist of a
reactive group that covalently binds to the catalytic residue of
the protease active site linked to a tag that enables a
downstream assay of tagged proteases. However, the develop-
ment of sensitive and specific probes can be laborious. To
facilitate in vivo protease activity measurements for diagnostic
use, activity-based nanosensors (ABNs) have been devel-
oped.51−53 In the context of TBI, we have developed an ABN
that measures calpain activity after systemic administra-
tion.12,54,55 This technology consists of a peptide substrate
for calpain flanked by a fluorophore/quencher pair attached to
a 40 kDa 8-arm polyethylene glycol (PEG) scaffold. The
nanoscale PEG scaffold allows for passive accumulation in the
injured brain due to its extended blood circulation time and
nanometer size.12,55 We have shown that this nanosensor is
able to measure calpain activity with spatial precision in brain
slices and whole brains,12,54 is compatible with cell type-
specific staining,12,54 and its activation correlates with TBI
severity.55

In this work, our goal was to create an activity-based
nanotheranostic for TBI (TBI−ABNT) that can both sense
and inhibit calpain activity. We attached CAST, a peptide
inhibitor to calpain, and calpain sensor (CS) peptide to a PEG
scaffold. CAST is taken from a domain of calpastatin, an
endogenous inhibitor of calpain, and has been investigated as a
therapeutic to reduce calpain-mediated proteolysis and
behavioral deficits after TBI.11,20,21,56−58 Physically tethering
CAST and CS peptides to the same scaffold allows us to
elucidate interactions between calpain and CAST in the
microenvironment that would not be possible with the
codelivery of each individual peptide due to their disparate
biodistribution. We establish that the addition of CAST onto
the construct can inhibit activation of the CS peptide in the
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presence of recombinant calpain, whereas the addition of a
CAST scrambled peptide does not. When dosed intravenously
in a mouse model of TBI, we found that our TBI−ABNT
material has access to ectopic calpain activity in the injured
perilesional tissue. Analysis of CS peptide activation in brain
slices showed that our nanotheranostic reduced calpain
activation in neurons, endothelial cells, and microglia of the
cortex and, to a lesser degree, neurons in the hippocampus.
When we measured apoptosis, we saw reduced cell death in the
cortex, consistent with the regional activation measurements

from our nanotheranostic. While we did see inhibition of
calpain activity in the hippocampus, we did not see reductions
in apoptosis. Therefore, our ABNT tool elucidates regional
differences of how calpain activity and its inhibition impact
apoptosis acutely after injury. In summary, we have engineered
a theranostic technology that can be used for regional- and cell-
specific measurement and inhibition of calpain activity in TBI.
Furthermore, a calpain activity biomarker tool has the potential
to be used to understand the regional- and cell-specific

Figure 1. Synthesis and characterization of calpain nanotheranostic. (A) Titration of CAST for calpain-1 inhibition. (B) Schematic of
nanotheranostic composed of a PEG nanomaterial scaffold, CAST, and CS peptide. (C) Gel comparing free CS peptide, CAST, and ScrCAST
peptide to PEG−CS, CAST−PEG−CS, and ScrCAST−PEG−CS conjugates before and after purification by dialysis. (D) Relative amounts of
CAST/ScrCAST peptide to CS peptide on nanotheranostic conjugates and purity of conjugates by CS and CAST/ScrCAST. (E) Schematic
of substrate peptide activation by calpain. CS activation of nanotheranostic materials was performed by recombinant human calpain-1. (F)
Measurements of CS activation at various concentrations of calpain-1 over 1 h.
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therapeutic efficacy of drugs and to help inform the clinical
development of drugs for TBI.

RESULTS AND DISCUSSION
Calpain Nanotheranostic Is Able to Sense and Inhibit

Calpain Activity. Our goal was to create a theranostic
nanomaterial that could both inhibit and measure calpain
activity. We first validated the activity of a peptide inhibitor of
calpain using the inhibitory domain of the endogenous calpain
inhibitor, calpastatin.59,60 This calpastatin peptide (CAST;
sequence: DPMSSTYIEELGKREVTIPPKYRELLA) was syn-
thesized with a fluorescein (FAM) label for quantification and
an N-terminal cysteine for conjugation to the 8-arm PEG
scaffold via maleimide chemistry. In order to create a control
material that does not inhibit calpain, we synthesized in parallel
a material modified with a scrambled CAST peptide
(ScrCAST). We titrated CAST and ScrCAST peptide
concentrations and measured the cleavage of a calpain-specific

FRET sensor peptide (CS) in the presence of recombinant
human calpain-1 enzyme (Figure 1A). The CS peptide
substrate sequence was taken from α-spectrin, an endogenous
substrate of both calpain-1 and -261,62 that we have previously
validated for calpain-specific cleavage.12 We demonstrate that
the CAST peptide is able to inhibit calpain-1 activity with a
50% inhibitory concentration (IC50) of ∼100 nM, and
ScrCAST does not have any detectable inhibitory activity up
to 1 μM (Figure 1A). This is comparable to other calpain
inhibitors such as calpain inhibitor I (IC50 = 90 μM),63 MDL-
28170 (IC50 = 11 nM),64 and NA101 (IC50 = 1130 nM).31

After validating the inhibitory activity of CAST peptide, we
synthesized a calpain activity inhibitor/sensor nanotheranostic
by modifying a 40 kDa 8-arm PEG scaffold with CAST and CS
peptide (Figure 1B). In previous work, we have demonstrated
that systemically administered 40 kDa 8-arm PEG has access to
the injured brain.12 PEG−CS, CAST−PEG−CS, and
ScrCAST−PEG−CS conjugates were synthesized by batch

Figure 2. ScrCAST−PEG−CS has widespread distribution in the injured brain where there is dysregulated vasculature and calpain activity.
(A) Overview of the experimental timeline. (B) Coronal brain sections of mice administered ScrCAST−PEG−CS and stained for
endogenous IgG, FAM, and cleaved spectrin (red, IgG; green, FAM-labeled nanomaterial; cyan, SNTF; magenta, activated CS peptide; scale
bar = 500 μm). (C) Scatterplot showing colocalization of pixels positive for FAM on the ScrCAST peptide and cleaved spectrin (SNTF).
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reacting 40 kDa 8-arm PEG with CS peptide, splitting the
reaction into three portions, and adding L-cysteine, CAST, or
ScrCAST peptide. Therefore, the amount of CS peptide per
PEG was the same for each material. The resulting conjugates
were purified by dialysis to remove the unconjugated peptide.
After dialysis, conjugates had little to no detected unreacted
CS or CAST/ScrCAST peptide (Figure 1C,D). We quantified
the relative amount of CAST/ScrCAST to the CS peptide by
the absorbance of FAM and Cy5 fluorophores, respectively.
We measured ∼1.5 CAST/ScrCAST peptide to CS peptide,
indicating a similar level of CAST/ScrCAST substitution since
PEG was batch reached with CS peptide prior to CAST/
ScrCAST reaction (Figure 1D).
To measure the activity of the synthesized conjugates in

vitro, PEG−CS, CAST−PEG−CS, and ScrCAST−PEG−CS
were incubated with recombinant human calpain-1. Calpain
cleavage activity was detected by measuring the dequenched
Cy5 fluorescence signal over time (Figure 1E). As expected,
both PEG−CS and ScrCAST−PEG−CS are cleaved by active
calpain, resulting in increasing Cy5 fluorescence over time.
ScrCAST−PEG−CS has a similar activation profile to PEG-
CS, demonstrating that ScrCAST peptide does not inhibit
calpain activity. There was no measured activation of CS
peptide from the CAST−PEG−CS conjugate, demonstrating
the inhibition of calpain activity with the CAST peptide.

Calpain-1 concentrations up to 6U (equivalent to ∼380 nM,
>10-fold higher than physiologic calpain concentrations65)
were used to test CAST−PEG−CS inhibition (Figure 1F).
Even at high levels of calpain-1, CAST−PEG−CS was able to
inhibit activity and cleavage of the CS substrate compared to
ScrCAST−PEG−CS. These results establish that CAST−
PEG−CS can inhibit calpain, and ScrCAST−PEG−CS is an
effective control material with no inhibitory activity. Together,
these constructs can be used to measure calpain activity and
inhibition.

Calpain Nanotheranostic Accumulates within Injured
Brain Tissue in Areas with Calpain Activity. We first
validated that our conjugate can access relevant perilesional
brain tissue in vivo after a CCI, a mouse model of TBI. CCI is a
well-controlled and reproducible model of TBI injury, and
calpain activity elevates within minutes after CCI.13,66 We
performed CCI injuries with preoperative analgesia by
exposing dura through a 5 mm diameter craniotomy and
impacting with a 2 mm diameter probe at a speed of 3 m/s and
a depth of 2 mm. We delivered 5 nmoles of ScrCAST−PEG−
CS and CAST−PEG−CS matched by CS concentration via
retro-orbital injection 5 min post-CCI to capture acute calpain
activity since it is known that calpain is detected as early as 30
min after injury.12,13 1 h after conjugate administration, mice
were perfused with fixative and brains were collected (Figure

Figure 3. CAST−PEG−CS has widespread distribution in the injured brain and inhibits CS sensor signal in a mouse model of TBI. (A)
Coronal brain sections collected from mice 1 h after CAST−PEG−CS or ScrCAST−PEG−CS administration and imaged for FAM on the
CAST/ScrCAST peptide (green) and activated CS peptide (magenta; scale bar = 500 μm). (B) Quantification of mean FAM signal on the
ScrCAST/CAST peptide in the brain ipsilateral to injury after ScrCAST−PEG−CS or CAST−PEG−CS delivery (n = 4, mean ± SEM,
unpaired t-test). Quantification of mean activated CS signal in the injured (C) cortex or (D) hippocampus after ScrCAST−PEG−CS or
CAST−PEG−CS delivery (n = 4, mean ± SEM, unpaired t-test).
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2A). Coronal sections from the center of the injury were
stained with an anti-FAM antibody for the CAST/ScrCAST
peptides to evaluate the spatial distribution of conjugates in the
brain (Figure 2B). Sections were stained for anti-IgG antibody
to visualize IgG extravasation in injured tissue; IgG
extravasation has been used to identify BBB damage in the
perilesional tissue.67,68 The regional distribution of FAM-
labeled nanomaterials corresponded well with extravasated
IgG. Sections were also stained with an antibody specific for
the N-terminal proteolytic fragment of spectrin (SNTF),
known to be generated by calpain-specific cleavage and,
therefore, a marker of calpain activity. A scatter plot of
colocalized pixels indicates that all pixels positive for SNTF are
also positive for our nanomaterial (Figure 2C), which supports

that our construct can adequately sample ectopic calpain
activity in the injured brain. These results demonstrate that our
nanomaterial can access relevant injured perilesional tissue
after systemic administration.

Calpain Nanotheranostic Inhibits Calpain Activity in
a Mouse Model of TBI. We next asked whether our
nanotheranostic was capable of inhibiting and measuring
calpain activity in vivo after CCI. We first verified that our
ABNT can passively accumulate in the injured hemisphere of
the brain to a similar extent as our control material after 1 h of
circulation (Figure 3A). We observed that both CAST−PEG−
CS and ScrCAST−PEG−CS conjugates have similar distribu-
tions in the injured cortex and hippocampus, and therefore
differences in the activated CS signal are not due to differences

Figure 4. CAST delivery inhibits the activation of CS in neurons, vasculature, and microglia in the injured cortex. ScrCAST−PEG−CS and
CAST−PEG−CS conjugates (green) and activated CS peptide (magenta) in the injured cortex assessed 1 h after delivery stained for (A)
neurons (red, NeuN), (B) endothelial cells (red, CD31), and (C) microglia (red, Iba1) (scale bars = 50 μm). Arrows denote activated sensor
(magenta) in each cell type. Quantification of percent (B) neurons, (D) endothelial cells, and (F) microglia positive for activated CS peptide
in the injured cortex (n = 4 mice, mean ± SEM, unpaired t-test).
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in conjugate distribution but to differences in calpain activity.
Quantification of the FAM signal in the brain ipsilateral to
injury shows nonsignificant differences in accumulated material
between ScrCAST−PEG−CS and CAST−PEG−CS (Figure
3B). The activated CS sensor was visualized by the
fluorescence signal from the dequenched Cy5 fluorophore in
tissue sections. ScrCAST−PEG−CS showed distinct activation
of the CS peptide in the injured cortex and hippocampus,
consistent with our previous work.12,54 By contrast, CAST−
PEG−CS showed markedly less CS peptide activation in the
injured brain compared with ScrCAST−PEG−CS, indicating
an inhibition of calpain activity. Furthermore, quantification of
CS peptide activation signal by region shows a ∼33-fold
increase in the cortex and only a ∼4-fold increase in the
hippocampus when comparing between constructs with
ScrCAST vs CAST (Figure 3C,D), indicating a differential
inhibition of calpain activity across these two brain regions.
Our results are consistent with reports of differential inhibition
of calpain activity in the cortex and hippocampus post-CCI in a
transgenic mouse model overexpressing calpastatin.21

Calpain Nanotheranostic Inhibits Calpain Activity
within Cortical Cells. To further investigate ABNT-mediated
cell-specific calpain inhibition in the cortex, we measured CS
activation in neurons, endothelial cells, and microglia 1 h after
injury. Neurons and endothelial cells are a major source of
calpain and activated neuronal and endothelial calpain can lead
to neurodegeneration and blood−brain barrier breakdown
after injury.11,12,17,54,69−71 We analyzed neurons, endothelial
cells, and microglia in the perilesional cortex, a region with
major tissue loss acutely after injury and therefore an
important region for therapeutic delivery.20,72 CAST/ScrCAST
colocalized with NeuN and CD31 positive cells, supporting
that the conjugate is localized to neurons and endothelial cells
and therefore can be used to detect intracellular calpain activity
(Figure 4A−D). Quantification revealed that the number of
cortical neurons with activated CS decreased more than 50%
after CAST−PEG−CS treatment compared with ScrCAST−
PEG−CS treatment (Figure 4B). Quantification of the percent
area of endothelial cells colocalized with activated CS shows
that CAST−PEG−CS treatment reduces the area of activated
CS in the vasculature by over 4-fold (Figure 4D). This suggests
that the CAST peptide significantly inhibits calpain activity in
cortical neurons and endothelial cells after injury. These results
correlate with previous work that showed delivery of a calpain
inhibitor in rats post-CCI led to reduced neurofilament
staining in cortical neurons.24 In a mouse model, treatment
with a calpain inhibitor led to reduced Evans blue dye leakage
1 h post-CCI, demonstrating a protective effect of calpain
inhibition on endothelial hyperpermeability following injury.11

Although there is colocalization of ABNT with Iba1-labeled
microglia, there is little ABNT activation (Figure 4E,F). This is
unsurprising as there is very little literature on calpain activity
in microglia after TBI.65,73 Our data support the use of our
nanotheranostic to monitor inhibition of calpain activity in
neurons and endothelial cells, two major cell types implicated
in the secondary injury of TBI. An advantage of our ABNT
technology over the measurement of endogenous SBDP is that
the time period of calpain activity measurements can be
controlled through the administration and measurement times,
whereas the measurement of SBDP is cumulative from the
initiation of injury.

Calpain Nanotheranostic Inhibits Calpain Activity in
the Hippocampus. We next analyzed our nanotheranostic in

the hippocampus. The hippocampus is the major structure for
learning and memory and hippocampal neurons are partic-
ularly susceptible after TBI.16,21,41,42,69,72,74−76 Therefore, the
hippocampus is an important structure to target for therapeutic
delivery. While cell counting is challenging to accomplish in
the hippocampus due to the high density of neuronal bodies,
different regions of the hippocampus are responsible for
functional deficits after TBI, and therefore we performed
regional analysis in the dentate gyrus, CA1, CA2, and CA3.
FAM-labeled CAST/ScrCAST nanomaterial was found
throughout the hippocampus 1 h after injury (Figure 5A).
Activated CS peptide was observed throughout all regions of
the hippocampus after ScrCAST−PEG−CS delivery, indicat-
ing calpain activity in the perilesional hippocampus. By
contrast, after the delivery of CAST−PEG−CS, there is
significantly less activation of the sensor in the CA1, CA2, and
CA3 regions of the hippocampus at 1 h after injury (Figure
5B). Notably, sensor activation was high in the dentate gyrus
compared to the other regions in the hippocampus, and ABNT
delivery had less of an impact on reducing calpain activity than
in the other hippocampal regions. Our results correlate with
previous work showing a high number of degenerating neurons
and breakdown products in neurons of the dentate gyrus
compared to CA3 and CA1 after CCI.21,37,75,76 Fluoro-jade B
staining for degenerating neurons in the hippocampus after
injury shows that degenerating neurons are primarily localized
in the dentate gyrus and are not rescued by calpastatin
overexpression in a severe CCI model.21 Our study supports
that there is robust calpain activity in the dentate gyrus after
TBI, and therefore higher therapeutic concentrations of the
calpain inhibitor may be needed for effective inhibition of
calpain in this region.

Calpain Nanotheranostic Reduces the Number of
Apoptotic Cells in Injured Cortex. After determining that
CAST delivery reduces calpain activity post-CCI in the injured
cortex and hippocampus with our nanotheranostic technology,
we next investigated whether calpain inhibition could prevent
cell death. After TBI, there is an increase in the number of
apoptotic cells stained by TUNEL at acute time points in the
cortex and after 24 h in the hippocampus and thala-
mus.22,43,44,77 Studies in vitro have shown that calpain
inhibitors rescue neuronal cultures from apoptosis and delivery
of a calpain-2 inhibitor in mice after TBI reduced the number
of both TUNEL-positive and Fluoro-Jade C-positive neurons
around the lesion after injury.16,17,19,22 Therefore, we
hypothesized that a reduction of calpain activity in neurons
in the cortex could partially prevent these cells from apoptosis
at acute time points after TBI. Apoptosis was measured by
TUNEL on brain sections 1 h after delivery of CAST−PEG−
CS or ScrCAST−PEG−CS (Figure 6A). Quantification of the
amount of TUNEL positive area showed that CAST
significantly reduced the number of apoptotic cells in the
injured cortex by ∼50% (Figure 6B). By contrast, no
differences were observed in the TUNEL positive area in the
hippocampus (Figure 6C). The overall amount of TUNEL
positive area in the hippocampus was relatively low, consistent
with studies showing that calpain breakdown products and
apoptotic cells in the hippocampus do not increase until 24 h
after injury.36,42,44 Interestingly, our ABNT technology
demonstrated that while calpain activity and TUNEL were
correlated and could be modulated by calpain inhibition in the
cortex, these measurements were decoupled in the hippo-
campus. The dentate gyrus in the hippocampus is a center of
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neurogenesis, and newborn neurons have been shown to be
more resistant to cell death than mature neurons,78−80 which
may explain in part why CAST does not reduce TUNEL
staining in the hippocampus even though it does decrease
calpain activity at acute time points (Figure 5). In summary,
our ABNT technology enabled observations of region-specific
differences in calpain activation, calpain inhibition, and calpain-
mediated neurodegeneration in TBI. Such tools that can

spatially probe calpain activity and inhibition may be useful in
elucidating the role of calpain in secondary injury after TBI.

CONCLUSIONS
We engineered a calpain nanotheranostic that could both
measure and inhibit calpain activity with spatial specificity at
the cellular and regional levels in the brain. Furthermore, we
observed that calpain inhibition can reduce the number of
apoptotic cells in a region-specific manner; in the cortex,
inhibition of calpain activity correlated with a decrease in
apoptosis, whereas in the hippocampus, cells appeared to be
more resistant to apoptosis, independent of calpain activity.
We believe our technology could be used as a tool to further
develop calpain inhibitors as a class of therapeutics for TBI.
Due to the central role of calpain activity in multiple disease
pathways active during secondary injury, spatial measurements
of calpain activity could also be used as a biomarker for
therapeutics beyond calpain inhibitors. While calpain activity
as a single measurement does not capture the full picture of
disease in the brain after TBI, we believe our technology is an
example of how precise spatial coupling of therapeutic
molecules and their target engagement can contribute to the
understanding of their function. In future work, we could
couple measurements from our ABNT with spatial tran-
scriptomics to further understand the contribution of calpain
activity and inhibition to gene expression.

METHODS
Synthesis of PEG Conjugates. The calpain-specific substrate

FRET CS peptide (QSY21-QEVYGAMP-K(Cy5)-PEG2-GC-NH2)
was synthesized by CPC Scientific Inc. (Sunnyvale, CA). PEG2 stands
for PEG. The calpastatin (DPMSSTYIEELGKREVTIPPKYRELLA-
K(5FAM)-C-NH2) and scrambled calpastatin (APRLEIVPT-
MYIYKLSPTGSEKLEDER-K(5FAM)-C-NH2) peptides were syn-
thesized by LifeTein (Somerset, NJ). The 40 kDa 8-arm PEG
maleimide (tripentaerythritol core) was purchased from JenKem
Technology (Beijing, China). The 8-arm PEG maleimide was reacted
with 1 mol equivalent of calpain substrate FRET peptide in the
presence of 50 mM triethylamine, split into 3 batches, and reacted
with 0 mol equivalent of CAST, 3 mol equivalent of CAST, or 3 mol
equivalent of scramble CAST. Batches were reacted for 3 h and
quenched with an excess of L-cysteine. All conjugates were dialyzed in
PBS, and final concentrations were determined by the absorbance of
FAM or Cy5 using a Genesys 150 spectrophotometer (Thermo
Scientific).

SDS−PAGE was performed with a 12% polyacrylamide gel loaded
with CS peptide, CAST peptide, ScrCAST peptide, postreaction
PEG−CS, postreaction CAST−PEG−CS, postreaction ScrCAST−
PEG−CS, purified PEG−CS, purified CAST−PEG−CS, and purified
ScrCAST−PEG−CS. Electrophoresis was performed at room temper-
ature for approximately 45 min using a constant voltage (120 V) in
Tris-glycine SDS running buffer. Cy5 fluorescence from the CS
peptide was imaged on an Odyssey Scanner (Li-Cor Biosciences), and
FAM fluorescence from the CAST/ScrCAST peptide was imaged on
a Biorad scanner.

In Vitro Reaction Kinetics Assay. Titrated CAST and
conjugates matched to 8 μM CS substrate were incubated with
26.6 nM recombinant human calpain-1 (Sigma-Aldrich, C6108) in 50
mM N-(2-hydroxyethyl)piperazine-N-ethanesulfonic acid, 50 mM
NaCl, 2 mM ethylenediaminetetraacetic acid, 5 mM CaCl2, and 5 mM
β-mercaptoethanol. For the study with increased calpain-1 concen-
tration, 6U of calpain-1 (∼380 nM) was used. For the study
comparing CAST−PEG−CS inhibition to MDL-28170 (Sigma
M6690), 12 μM of MDL-28170 was used. Fluorescence readings
were taken every 120 s at 37C for 1 h or 30 h for long-term study
using a Spark multimode microplate reader (Tecan Trading AG,

Figure 5. CAST inhibits activation of CS in the injured
hippocampus. (A) Microscopy images of ScrCAST−PEG−CS
and CAST−PEG−CS conjugates (FAM, green) and activated
sensor (Cy5, magenta) in the hippocampus ipsilateral to injury 1 h
after injury (scale bar = 500 μm.) (B) Quantification of activated
CS peptide in the dentate gyrus, CA1, CA2, and CA3 regions
denoted by the dotted red boxes in the schematic (n = 10 mice,
mean ± SEM, unpaired t-test).
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Switzerland). Reaction curves were normalized to controls, and Vmax
values were calculated between 10 and 20 min to fit to a dose−
response inhibition curve in GraphPad Prism (10.1.2).

CCI TBI Mouse Model. All mouse protocols were approved by the
University of California San Diego’s Institutional Animal Care and
Use Committee. Female C57BL/6J mice (8−12 weeks old, Jackson
Laboratories) weighing between 18 and 22 g were used for all in vivo
studies. Following anesthetization with 2.5% isoflurane, buprenor-
phine analgesia was administered. A 5 mm craniotomy was performed
over the right hemisphere between the bregma and lambda, and a
CCI was performed using the ImpactOne (Leica Biosystems) with a 2
mm diameter stainless steel probe at a velocity of 3 m/s, a depth of 2
mm, and a dwell time of 300 ms. The probe was centered around
−2.0 mm (±0.5 mm) lateral from the midline and −2.0 mm (±0.5
mm) caudal from bregma.

In Vivo Studies. Five min after CCI, 5 nmol (concentration based
on calpain substrate FRET peptide) of ScrCAST−PEG−CS and
CAST−PEG−CS in PBS was injected retro-orbitally. Nanomaterial
doses were administered to mice in a weight range of 18−22 g,
corresponding to a dosage range of 227−278 nmol/kg. Following a 1
h circulation time, mice were sacrificed by transcardial perfusion of
USP saline, followed by 10% formalin.

Immunostaining of Brain Tissue Slices. Following transcardial
perfusion with 10% formalin, necropsied brains were further fixed in
10% formalin at 4C overnight. Brains were washed in PBS, transferred
to 30% w/v sucrose in PBS to equilibrate overnight, then frozen in
OCT (Tissue-Tek). Coronal tissue slices 10 μm thick were obtained
in the 2 mm diameter injury region and then stained using
conventional protocols. Briefly, tissues were blocked for 1 h in 3%
bovine serum albumin, 5% serum of secondary antibody, and 0.1%
Triton X-100. For NeuN staining, blocking buffer is included 2 μg/
mL of donkey antimouse Fab. The following primary antibodies were
used: 1:1000 SNTF (Millipore ABN2264), 1:800 NeuN (Millipore
MAB377), 1:200 CD31 (BD 553370), 1:500 Iba1 (Wako 019-
19741), and 1:200 FAM (Invitrogen, A889). Primary antibody
incubations were done in blocking buffer overnight at 4C. For IgG
staining, donkey anti mouse IgG 594 was added during secondary
staining. Secondary antibodies were applied for 1 h at room
temperature, and the samples were washed in PBS and mounted
with a Fluoromount-G instrument (Southern Biotech). Images were
collected on a Nikon Eclipse Ti2 microscope fitted with a Hamamatsu
Orca-Flash 4.0 digital camera. Sensor distribution was visualized in
the FITC channel, and the activated sensor was visualized in the Cy5
channel. Images for direct comparison were collected by using the
same exposure and LED intensity settings.

TUNEL Staining of Brain Tissue Slices. Tissues were stained
with an in situ Cell Death Detection Kit, TMR red (Roche,
12156792910) using conventional protocols. Briefly, tissues were
permeabilized in 0.1% Triton X-100 for 30 min and washed in PBS.
1:10 TUNEL enzyme and 1:1000 Hoescht in labeling solution were
incubated with tissues at 37C for 1 h. Samples were washed in PBS
and mounted with Fluoromount-G (Southern Biotech). Images were

collected on a Nikon Eclipse Ti2 microscope fitted with a Hamamatsu
Orca-Flash 4.0 digital camera. TUNEL positive staining was visualized
in the TXR channel. Images for direct comparison were collected
using the same exposure and LED intensity settings.

Software and Statistics. GraphPad Prism (10.1.2) was used to
perform statistics and QuPath (0.5.0) was used to perform analysis of
the percent area of activated CS in endothelial cells and microglia.
ImageJ was used to analyze the number of neurons with activated CS.
All t tests were conducted with an alpha of 0.05 to identify statistical
significance between samples. In the results for the normalized
TUNEL area in the cortex, an outlier was removed from the
ScrCAST−PEG−CS group using the ROUT method with a
maximum false discovery rate of 0.1%. The colocalization threshold
plugin on ImageJ was used to generate the scatter plot of the pixel
intensity.
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