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Abstract

Immersed interface method (IIM) is a promising high-accuracy numerical scheme for the Poisson-

Boltzmann model that has been widely used to study electrostatic interactions in biomolecules. 

However, the IIM suffers from instability and slow convergence for typical applications. In this 

study, we introduced both analytical interface and surface regulation into IIM to address these 

issues. The analytical interface setup leads to better accuracy and its convergence closely follows a 

quadratic manner as predicted by theory. The surface regulation further speeds up the convergence 

for nontrivial biomolecules. In addition, uncertainties of the numerical energies for tested systems 

are also reduced by about half. More interestingly, the analytical setup significantly improves the 

linear solver efficiency and stability by generating more precise and better-conditioned linear 

systems. Finally, we implemented the bottleneck linear system solver on GPUs to further improve 

the efficiency of the method, so it can be widely used for practical biomolecular applications.

1. Introduction

Electrostatic interactions play crucial roles in biophysical processes such as protein-protein 

and protein-ligand interactions. Accurate and efficient treatment of electrostatics is thus vital 

in computational analyses of biomolecular structures and dynamics. A closely related issue 

is the modeling of water molecules and their electrostatic interactions with biomolecules that 

must be considered for any realistic representation of biomolecules at physiological 

conditions. Since most particles in explicit molecular model are water molecules that solvate 

the target biomolecules, treating these water molecules implicitly would allow higher 

computational efficiency without losing any atomic-level resolution of the biomolecules. 

The main idea of implicit solvation treatment is to model water molecules as continuous 

medium while still treating the biomolecular solutes in atomic detail. In this model, the 

solute molecule is treated as a low dielectric constant region with a number of point charges 

located at atomic centers, and the solvent is treated as a high dielectric constant region. 

Poisson-Boltzmann equation (PBE)-based implicit solvent model has been one such attempt 

and been widely used in biomolecular applications.

To solve PBE, numerical solutions are almost always needed for biomolecular applications, 

since analytic solution of the PBE can be achieved only in a few specific cases with simple 

solute geometry. Among the numerical solution methods, finite-difference methods (FDM),
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1–16 finite-element methods17–26 and boundary-element methods27–44 are mostly used. Or 

alternatively, semi-analytical generalized Born approaches, particularly in MD, were also 

explored.8, 10, 12, 13, 45–56 Within numerical methods, FDM has the advantage of being 

straightforward and physically transparent in its discretization. However, if a direct 

discretization is used without considering the discontinuity in the dielectric constant, the 

numerical solutions tend to have large errors, and the errors are particularly obvious near the 

solute-solvent interface. To overcome this problem, Davis and McCammon proposed a 

harmonic average (HA) method to approach the approximate dielectric constant near surface 

in 1991.57 Efforts have also been reported recently by Wei and co-workers and Li and co-

workers to develop higher accuracy interface schemes, the immersed interface method (IIM) 

and the matched interface and boundary (MIB) method, to improve numerical accuracy of 

the PBE solution58–66 Additional higher-order schemes are also developed,67, 68 some of 

which are specifically for nonlinear PBE. The idea of IIM is to enforce the interface 

conditions into the finite-difference schemes at grid points near the interface. On the other 

hand, the scheme of MIB is enforcing the lowest-order jump condition repeatedly to achieve 

the high-order jump condition. Alternatively, instead of treating the solute-solvent interface 

explicitly, Alexov and co-workers proposed an approach that uses Gaussian-based smooth 

dielectric functions to model the implicit solvation environment in an interface-free manner.
69, 70 Some other interesting approaches have also been proposed to improve implicit solvent 

models, such as coupling electrostatic and nonelectrostatic interactions within the implicit 

solvation treatment,71–75 explicit simulating implicit solvent as a fluid for the purpose of 

more physical modeling of solvation interactions,76–78 and using the level set function to 

better define the solvent and solute interfaces for dielectric assignment.79, 80 Among those 

methods, IIM has been a promising high-accuracy numerical scheme, and is able to achieve 

energy conservation in PB molecular dynamics (MD).81 This can be attributed, in part, to 

the fact that a uniform higher accuracy of O(h2) can be achieved even near the interface.82

However, the original IIM has also suffered from numerical instability in complex 

biomolecular environments.59 This in part is due to the use of the level set scheme to track 

the molecular interface and compute associated jump conditions. Here the molecular 

interface is defined with an analytical density function recently developed by our group.83 It 

has been shown that the density function method performs better than geometry-based 

methods such as van der Waals surface and solvent exclude surface in terms of errors, 

transferability, conformation dependence, and convergence.83 The extensive use of the level 

set scheme in the original IIM, however, was found to introduce noises in interface 

properties that leads to numerical instability. For example, it uses a least square interpolation 

approach to obtain all interface parameters and jump conditions.82 Though this is a general 

scheme for partial differential equations with interface, it may not always work on the 

molecular interface formed by densely packed atoms. In addition to the instability issue, the 

original IIM is also very slow and does not work well even when coarse grids are used in 

biomolecular applications.59 This can be attributed to the extensive use of finite-difference 

interface approximations that may also fail to capture the interface characteristics at coarse 

grid spacings and lead to inconsistent linear systems that are poorly conditioned and take 

longer time to solve.
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In this study, we present a new implementation of the second-order accuracy IIM to address 

those issues. Specifically, we show how to calculate geometric properties and jump 

conditions analytically at the interface. In addition, the necessity and rationality of surface 

regulation are discussed, along with a simple and efficient regulation scheme. We also 

present a GPU implementation of the linear solver needed in the IIM, a bottom neck of the 

IIM. Our analysis shows that the new strategy improves the convergence and stability of 

IIM, and also improves the efficiency of the method. The GPU implementation further 

removes the bottle neck of numerical procedure. These new developments have been 

implemented into the Amber molecular modeling suite and are freely available for the 

biomedical community.84

2. Methods

2.1 Immersed Interface Method

IIM is a more accurate method for interface treatment than most traditional ones, such as the 

harmonic average method.59 In IIM, the interface can be used to separate the problem 

domain into inside (Ω−), outside (Ω+), and interface (Γ). Next finite-difference grid points 

are classified as regular grid points that are with all their neighboring grid points (connected 

with grid edges) in the same region or as irregular points that are not.

Next the jump conditions can be predefined as follows so the PDE is well-posted,

[Φ]Γ =
w,[ϵΦn]Γ =v

(1)

where w and v are given by users for specific problems at hand. In this study w and v are 

defined for the singularity-free PBE in section 2.2.

For regular points, IIM uses the standard 7-point central finite-difference scheme, since 

those points do not have a neighbor located in a different region. This stencil has an 

accuracy of (O(h2)). For irregular points, IIM proposes a new finite-difference stencil that 

contains at least 10 points instead of 7 (typically 27 points) are used to minimize the 

magnitude of the local truncation error while satisfying the jump conditions (Eqn 1). So the 

finite-difference scheme becomes,

∑m

nsγmϕ(i + im, j + jm, k + km) = f (i, j, k) + C(i, j, k) (2)

where ns is the number of grid points (27 typically), γm are unknown coefficients, C(i,j,k) is 

the unknown correction term, and f(i,j,k) is the discretized right hand term of the PBE. In 

this study, it is always zero because the singularity-free PBE is used as discussed in section 

2.2.
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The basic idea of IIM is to determine γm in Eqn (2) at the irregular points so that the 

second-order global accuracy is obtained as in an interface-free problem with the finite-

difference/finite-volume discretization scheme. Specifically, IIM uses the interface relations 

(see subsection 2.5) to translate all the outside points into inside (or vice versa) and then 

forces the truncation error of the inside (or outside) to O(h3).82

The local truncation error T(i,j,k) at grid point (i,j,k) is,

T(i, j, k) = ∑m

nsγmϕ(i + im, j + jm, k + km) − C(i, j, k) . (3)

after setting f(i,j,k)= 0. In the local coordinate frame, the Taylor expansion can be used to 

expand each ϕ in the neighborhood of the projection point (X*) of the grid point (i,j,k) from 

each side of the interface to the second order. Thus there are 20 terms, corresponding to 

ϕ(X*)±, ϕξ(X*) ±, ϕη(X*) ±, ϕτ(X*) ±, ϕξξ(X*) ±, ϕξη(X*) ±, ϕξτ(X*) ±, ϕηη(X*) ±, ϕητ(X*) 
±, ϕττ(X*) ±. Here ξ, η and τ are local coordinates, and “+”, “−” denote the outside and 

inside region, respectively. By using the interface relations as shown in the subsection 2.5,82 

those 20 terms are reduced to 10, all in the inside (or outside) region as shown below.

T(i, j, k) = a1ϕ− + a2ϕξ
− + a3ϕη

− + a4ϕτ
− + a5ϕξξ

− + a6ϕξη
− + a7ϕξτ

− + a8ϕηη
− + a9ϕητ

− + a10ϕττ
−

+ T′(i, j, k) − C(i, j, k) + O(max{ |γm |h3}),

(4)

where T′(i,j,k) is a constant term from imposing the interface relations.

Finally, the expansion is matched against the differential equation to the leading terms to 

obtain a system of equations for the finite-difference coefficients. For the Poisson equation, 

we have a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 1, a6 = 0, a7 = 0, a8 = 1, a9 = 0, a10 = 1. Then the 

constant term C(i,j,k) can be determined with the accuracy of O(h2). With 10 equations and 

27 unknowns (γm), the problem is in principle solvable.82

Furthermore, it appears that with 17 extra degrees of freedom, special γm can be chosen to 

fulfill some optimization requirement such as the maximum principle preserving scheme, to 

achieve even better performance.82 However, this may not always be the case, which will be 

discussed latter.

2.2 Removal of Charge Singularity

Point charge models are widely used in molecular simulations of biomolecules. However, 

the representation of point charges by delta functions introduces singularity to the PDE. 

Several strategies are available to remove the charge singularity,21, 63, 85, 86 and here we 

adopt the recently developed reaction field potential method.59
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Briefly this method solves the PDE in two different regions with different potentials, i.e. the 

reaction field potential inside and the total field potential outside. Here the reaction field 

potential is the potential caused only by induced charges.87

Thus, the unified equation describing the whole region is

∇·ε∇ϕ = 0 (5)

but with the modified jump conditions as follows,

[Φ] = Σcharges
q
r = w[εΦn] = εinside( Σcharges

q
r )

n
= v (6)

Here, the subscript n means the gradient is along the interface normal direction n.59

2.3 Density Function Strategy

To obtain the interface relations and the jump conditions, it is necessary to know the 

geometry of the interface and the jump condition values on the interface, in addition to the 

tangential derivatives of the jump conditions. These quantities can be obtained analytically if 

the density function strategy is used to define the interface.82

The main idea of the density function method is to use a smooth function to approximate the 

solute exclusive surface (SES) of a molecule, and in the meantime adjust the parameters of 

the density function accordingly so that the reaction field energies obtained from these two 

models agree the best.83 Specifically, given the nth atom centered at rn, its density function 

ρn is defined as,

ρn(x) = ρη(
d − rc

2rp
) . (7)

Here, d=|r−rn| is the distance to the atom center, rc is the VDW radius of the atom, and rp is 

the solvent probe radius.

In addition, the density function satisfies the following constraints to be physical and 

reasonable,83

ρn(x) > 1, when x < 0
ρn(x) = 1, when x = 0 .
ρn(x) < 1, when x > 0

(8)

Here points with x=0 are on the surface of an atom. To guarantee smoothness and good 

numerical behaviors, a cubic-spline interpolation function that fulfills the above constraints 

is used. Next, under the requirement of achieving the best agreement of reaction field 
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energies with the given benchmark for a diversified set of training molecules, all the 

coefficients in the interpolation are optimized and the following formula is obtained.83

ρn(x) =

1.00 − 4.527143x − 3.640532x2 + 32.631235x3 0.0 < x < 0.2
0.21 − 2.067608x + 15.938209x2 − 35.500854x3 0.2 < x < 0.4

0.15 + 0.047573x − 5.362303x2 + 13.12218x3 0.4 < x < 0.6
0.05 − 0.522686x + 2.511005x2 − 4.487867x3 0.6 < x < 0.8
0.01 − 0.056828x − 0.181716x2 + 1.079289x3 0.8 < x < 1.0

(9)

Given the atomic density function, the molecular density function is a summation of all the 

atomic density functions as

ρ(x) = ∑n
atom  ρn(xn) (10)

More details can be found in the literature.83

Note that in the original IIM, all the geometric and physical interface properties are obtained 

via the level-set numerical toolkit.82 However, with the use of the density function, we can 

obtain all these quantities analytically, including the interface normal direction ξ, interface 

curvatures ξηη, ξττ and ξητ, jump condition values w and v, and their tangential derivatives 

on the interface. More importantly, by using this method, the numerical instability arising 

from applying hard spheres in classical molecular surface representation can also be 

minimized due to the use of a smoothly varying function.83

2.4 Analytical Interface Relations and Jump Conditions

A key improvement in the new analytical IIM is the complete elimination of the level set 

functions used to interpolate all interface properties. This is a more natural strategy because 

the underlining density function to represent the interface is a continuous cubic-spline 

function. In addition, the jump conditions, i.e. Coulomb potential and field (Eqn (6)), are 

also analytically available.

There are roughly three steps to determine all the analytical interface conditions on the 

interface.82 The first step is to find the projection point of an irregular grid point. The 

projection point here means a point right on the interface that is close to the irregular point. 

Recall Eqns (3) and (4), this is necessary for the Taylor expansion used to compute the local 

truncation error. The best choice of projection point is the interface point that is closest to 

the irregular point. However, it is almost impossible to locate it, and even if we can, it is 

definitely not worth all the effort.82 Instead, we used its normal projection point on the 

interface. The normal projection point can be easily obtained by finding the intersection 

point of the interface and the steepest descent vector starting from the irregular point (i.e. 

along the gradient of the density function). Because we are looking along the steepest 

descent direction, the projection point may also approximate the closest projection point 
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reasonably well. Specifically the Newton’s method was used to search along the normal 

direction for the projection point. One of the advantages of this method is that we can locate 

the projection point as precise as possible and also relatively efficiently. Specifically, the 

precision was set to 10−6 in our method so that its location would never be an issue in most 

finite-difference setups, which means,

ρ(pro jection point) − 1 ≤ 10−6 . (11)

The second step is to calculate the local coordinate transformation matrix and the interface 

curvature. This is straightforward given the analytical density function. These quantities will 

be used in Eqns (4) and (6). To calculate the transformation matrix, we need the normal 

direction of the interface, which is the gradient direction of the density function of the 

projection point. Next, the other two tangential directions can be determined as follows,82

ξ = (ρx,ρy, ρz)
T

η = (ρy,‐ρx, 0)T

τ =(ρx,ρz, ρyρz,‐ρx
2,ρy

2)T ,  if  ρy
2  ≥ ρz

2

ξ = (ρx,ρy, ρz)
T

η =(ρz,0, − ρx)
T

τ = (‐ρx,ρy, ρx
2+ρy

2, − ρyρz)
T , otherwise

(12)

The three principal curvatures can then be obtained as follows. Under the local coordinates 

of the interface, the following relations hold,

ρη(0, 0, 0) = ρτ(0, 0, 0) = 0 (13)

Based on Eqn (13), the three curvatures are,

ξηη =−
ρηη
ρξ

ξττ =−
ρττ
ρξ

ξητ =−
ρητ
ρξ

(14)

The last step is to calculate all those jump conditions. Given Eqn (14), we obtained the 

following equations of derivatives of Eqn (6).
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wη = Σi
qi

ri
3ηi

wτ = Σi
qi

ri
3τi

wηη = Σi 3
qi

ri
5ηi

2 −
qi

ri
3 +

qi

ri
3ξi ⋅ (ξηη)

i

wττ = Σi 3
qi

ri
5τi

2 −
qi

ri
3 +

qi

ri
3ξi ⋅ (ξττ)i

wητ = Σi 3
qi

ri
5ηiτi +

qi

ri
3ξi ⋅ (ξητ)i

vη = Σi 3
qi

ri
5ξiηi

vτ = Σi 3
qi

ri
5ξiτi

(15)

The summation here is over all the charges or atoms. Now all the quantities needed are 

obtained, the interface relations can be constructed as,

ϕ+ = ϕ− + w

ϕξ
+ = ε−

ε+ϕξ
− + v

ε+

ϕη
+ = ϕη

− + wη

ϕτ
+ = ϕτ

− + wτ

ϕξξ
+ = ε−

ε+ϕξξ
− + ε−

ε+ − 1 ϕηη
− + ε−

ε+ − 1 ϕττ
− + (ϕξ

+ − ϕξ
−)(ξηη + ξττ) − wηη − wττ

ϕξη
+ = ε−

ε+ϕξη
− + ϕη

+ − ε−

ε+ϕη
− ξηη + ϕτ

+ − ε−

ε+ϕτ
− ξητ +

vη

ε+

ϕξτ
+ = ε−

ε+ϕξτ
− + ϕη

+ − ε−

ε+ϕη
− ξητ + ϕτ

+ − ε−

ε+ϕτ
− ξττ +

vτ

ε+

ϕηη
+ = ϕηη

− + (ϕξ
− − ϕξ

+)ξηη + wηη

ϕττ
+ = ϕττ

− + (ϕξ
− − ϕξ

+)ξττ + wττ

ϕητ
+ = ϕητ

− + (ϕξ
− − ϕξ

+)ξητ + wητ

(16)
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2.5 Surface Regulation

Even if the density function surface was designed to handle the deeply buried atoms as the 

standard SES approach, it is still limited in approximating the solvent reentry interface 

formed among solvent accessible atoms.83 For example, the reentry interface is often flatter 

than what the density function predicts, as shown in Figure 1. In addition, it is almost 

impossible to model the reentry surface as being formed by a spherical probe as in SES. We 

thus resort to a surface regulation scheme to adjust the interface geometric parameters to 

partially alleviate the limitations.

Our regulation scheme follows two principles. First, we exploited the original SES idea that 

the molecular interface is simply a surface formed by probing the molecules of hard spheres 

of different radii. Thus, the interface is a union of solvent-exposed spheres of different radii. 

Second, the inward-facing portion (aka solvent reentry portion) of the interface cannot have 

a surface curvature higher than that of solvent probe. Thus, a regulation scheme was 

developed with the following two steps for the solvent reentry portion, i.e. when the surface 

curvature is negative. First, if the curvature of the surface is larger than 1/rp, it is reset to 

1/rp, where rp is the solvent probe radius (Figure 1). Second, the mixing curvature ξητ is set 

to be zero, and the other two curvatures is set to equal to whichever has a smaller absolute 

value. This step implies the use of a sphere to represent the reentry surface. These changes 

were found to improve the numerical stability and convergence of the IIM calculations, 

especially for coarse grid situations, as discussed in Results and Discussion.

2.6 Overview of the Numerical Procedure

Apparently, the whole process of solving PBE with IIM involves many procedures. Here we 

outline the main numerical procedures step by step.

1. Use the molecular density function to classify grid points into regular and 

irregular points;

2. For regular points, set up the discretized equation with the standard seven-point 

stencil;

3. For irregular points, calculate all the needed interface geometry parameters (e.g. 

curvatures) using the density function;

4. Apply the regulation scheme to revise the obtained interface geometry 

parameters;

5. For irregular points, continue calculating the needed jump conditions, i.e. w and 

v, analytically using the density function and the geometry parameters just 

obtained;

6. Set up the discretized equation for irregular points using the obtained geometry 

parameters and jump conditions;

7. Combine the equations of both regular and irregular points and solve the full 

linear system to obtain the potentials;
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In the above procedures, steps 3), 4), and 5) were completely rewritten in our analytical 

implementation of IIM. Step 7 was also rewritten for both CPU and GPU calculations.

3. Analytical Test Cases and Computation Details

To validate the accuracy and precision of the proposed method, we first used a well-studied 

analytical model, i.e. a single dielectric sphere imbedded with point charges. The analytical 

potential in the inside region is,

ϕRF
− (r, θ, φ) = ∑

l = 0

∞
∑

m = − l

l 4π
2l + 1

1
R2l + 1

(l + 1)(ε− − ε+)
ε−(lε− + (l + 1)ε+)

QlmrlY lm(θ, φ)

Qlm = ∑k = 1
Nq qkrk

l Y lm* (θk, φk)

(17)

where R is the radius of the sphere, and the center is set to the origin. Nq is the number of 

charges, Ylm are the spherical harmonics as spherical coordinates are used.

After solving the finite-difference equations, only potentials at grid points are known. To 

obtain potential at any position (x,y,z), we utilized the one-side least-square interpolation 

method.59 Next the reaction field energy is the summation of the products of the reaction 

field potential and the charges.

Δ G = 1
2 Σcharges qiϕRF (18)

For the analytical test, four off-centered charged models were used, which are monopole, 

dipole, quadrupole, and octupole. The radius of sphere was set to 2 Å for convenience, 

which is about the size of a united carbon atom. The Cartesian coordinates of each charges 

are listed in Table S1. The inside dielectric constant was set to 1.0, with that of outside set to 

80.0. The truncation order l in Eqn (18) was chosen to be 120, leading to a precision of 10−6.

A total of 573 biomolecular structures from the Amber PBSA benchmark suite were used to 

study the accuracy and efficiency of the new method.14 We further chose eight small 

proteins about 1000 atoms from the benchmark suite to analyze the convergence of the new 

method, so that the jobs can be handled on our local compute nodes at the finest grid spacing 

tested. These biomolecules were assigned charges of Cornell et al88 and the modified bond 

radii. The probe radius was set to 1.4 Å. All testing runs were performed with the following 

conditions unless specified otherwise. The convergence criterion of 10−4 was used for the 

BiCG linear system solver. The default grid spacing was 0.5 Å for most calculations, except 

that they were set as 1.0 Å, 0.5 Å, 0.33 Å, 0.25 Å, and 0.125 Å in the convergence analysis. 

The ratio of the grid dimension over the solute dimension (the fillratio keyword in Amber) 

was set to 1.5 and 4.0 for biomolecular tests and analytical tests, respectively. No 

electrostatic focusing was applied. The potential values on all grid points were initialized to 

zero. The conductor boundary, i.e. zero potential, was used in all non-periodic PBSA 
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calculations. The dielectric constants were set to 1 and 80 for solute and solvent, 

respectively. All other parameters were set as default in the PBSA module in Amber 18 

package.84

A BiCG linear system solver for GPUs was also implemented using the Nvidia CUDA 

Sparse Matrix (cuSPARSE) library, which provides basic linear algebra procedures for 

sparse matrix operations.89 The CSR matrix format was used for the non-symmetric 

coefficient matrix as in our previous publication.90 All GPU and CPU tests were conducted 

on a dedicated compute node with two NVIDIA TITAN Xp GPU cards, one Intel Xeon E5–

1620 v3 CPU, and 16GB main memory. Our time measurements for both solvers include all 

execution time of the solver routines, i.e. time elapsed on device (GPU) and on host (CPU) 

and also for transferring data between the device and the host.

4. Results and Discussion

4.1 Performance on Analytical Test Cases

Reaction Field Energy—The accuracy and precision of reaction field energies were 

investigated with five different grid spacings, 1 Å, 0.5 Å, 0.33 Å, 0.25 Å and 0.125 Å. The 

detailed results of different programs with and without analytical setup are shown in Figure 

2, Table 1, and Table S2.

Clearly, the analytical setup obtains better accuracy than the numerical setup in all the cases 

regardless of the grid spacing. Interestingly, the analytical setup version can obtain a good 

result even with coarse grid, for example in 1 Å spacing. In Figure 2 (a) and (b), though not 

included in the fitting process, data points at grid spacing of 1 Å are close to the fitting 

curves in the analytical setup, showing that those data have already entered the convergence 

region. However, for numerical setup, there is no sign of entering convergence region for 

data at 1 Å for any test cases. Table 1 further shows that the relative errors are already less 

than 0.1% for all the cases at the grid spacing of 0.5 Å when the analytical setup was used, 

much less than those of the numerical setup with the medium value of about 0.7%, (Table 

S2). This indicates that the analytical setup leads to faster converged results than the 

numerical setup.

Surface Field—Surface properties are often important for calculation of electrostatic 

forces, so we used the electric field at interface to show how well the interface properties can 

be reproduced in both setups. The results from different setups are presented in Figure 3. 

The root mean square deviation (RMSD) values were calculated by comparing values from 

different interpolation schemes and the theoretical values obtained from Eqn (17), where the 

three interpolation methods used are those studied in detail in the literature.91

It is clear that for all the three interpolation schemes, the analytical setup always gives better 

agreement with theory. Of all the interpolation schemes used, the 1-d interpolation shows the 

best performance, which is consistent with the literature observation.91 Interestingly for 

some cases, the worst results for the analytical setup can even beat the best results for the 

numerical setup.

Wei et al. Page 11

J Comput Chem. Author manuscript; available in PMC 2019 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2 Reaction Field Energies of Nontrivial Biomolecules

Convergence Analysis—We conducted convergence analysis of the PB reaction field 

energy versus grid spacing for the IIM with different setups. The results for the eight chosen 

proteins are shown in Figure 4. IIM with both analytical and numerical setups converge at 

very fine grids in a unified quadratic manner, as predicted by the theory. The converged 

values are consistent with our previously implemented solvers, and also consistent with 

other existing solvers as in DelPhi and APBS, and higher order solver such as MIBPB.92 

However, the convergence curves do not show a significant improvement after we 

analytically computed all interface parameters and jump conditions. Indeed, some of the test 

cases were found to lead to even worse results (as in case (b) of Figure 4).

The reason is that we do not have proper interface parameters. When numerically solving 

PDEs for systems with interfaces, interface parameters must converge in a quadratic form, 

so we can guarantee the whole numerical scheme converges in a quadratic manner. However, 

this does not hold for the analytical setup. Even if the analytical setup can obtain extremely 

accurate interface parameters (with relative error of 10−6) on each projection point, the 

projection point may not necessarily be a good representation of its neighborhood on the 

interface. Therefore, when we resort to a finer grid spacing, a new projection point in this 

neighborhood may give a set of totally different interface parameters (even the sign may be 

different for curvatures due to the crowded atomic packing in biomolecules), causing the 

method fail to converge in a quadratic manner. Indeed, if we include the data at the grid 

spacing of 1.0 Å in the fitting curves, the asymptotic energy would converge to a wrong 

value. This phenomenon shows that the data at the space 1.0 Å have not entered the 

convergence region, thus leading to poor performance with the analytical setup. We believe 

this is because the interface parameters do not converge in a quadratic form, which 

motivated us to develop a surface regulation scheme.

That better interface parameters are required to unleash the full potential of the analytical 

setup can also be illustrated in the following rationale. Nontrivial biomolecules in our test 

cases contain atoms with radii as small as 0.6 Å. Thus, a sampling grid spacing of 1.0 Å or 

0.5 Å is inadequate to capture the surface curvatures (ξηη, etc). In the numerical IIM 

scheme, the interface properties (such as curvatures) are not accurate as they would be in the 

analytical IIM, because certain fuzziness from the use of the coarse grid is introduced within 

the neighborhood of the projection point.82 Coincidently, however, these inaccurate 

properties lead to a better representation of the surface for the numerical IIM when the 

coarse grid is used (Figure 4). Therefore, for a coarse grid such as of 1.0 Å, the accuracy of 

the IIM scheme cannot achieve what the theory best predicts and thus the data deviate from 

the fitting curves. Thus, a better way to deal with coarse grids is to adopt some fuzziness for 

the surface description. We implemented the surface regulation to introduce some 

“inaccuracy” but more “representativeness” into the analytical IIM for coarse grid spacings 

such as 1.0 Å.

As shown in Figure 4, the convergence performance of the analytical setup with surface 

regulation is much better than the results without regulation and the data follow the 

quadratic pattern more closely. Worth noting is that the PB energies at the grid spacing of 
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1.0 Å enter the convergence region when the surface regulation is used. In addition, the 

analytical setup makes it converge faster (flatter convergence curve) than the numerical setup 

for every test case. The detailed discussion is shown below.

Accuracy and Uncertainty—For the widely used coarse grid spacing of 1.0 Å, the 

analytical setup without regulation does not show an improvement. The maximum, medium 

and minimum relative errors of reaction field energy at 1.0 Å for the eight tested proteins are 

3.51%, 2.90% and 2.05%, respectively (Table 2). Those for the numerical setup are 2.54%, 

1.79%, and 0.58%, respectively (Table S3). It can be seen that the analytical setup alone 

does not improve the convergence for complex interfaces. The reason is that those projection 

points do not have enough representativeness as we discussed above. However, for analytical 

setup with regulation, those three errors are 1.22%, 1.03%, and 0.49%, respectively (Table 

3), with the accuracy almost doubled for all chosen cases. This shows that by introducing 

surface regulation, we successfully made the interface more representative and thus 

improved the convergence properties. As for the widely used coarse grid spacing of 0.5 Å, 

the convergence improvement is similar to that of 1.0 Å, with the convergence of the 

analytical setup with regulations is also roughly twice better than the other two schemes.

Since our method is developed to balance accuracy and efficiency as it is mostly used to 

process tens of thousands of structures to post-process MD trajectories, such as in 

MMPBSA calculations, it is essential to make sure the PB energy error is negligible 

compared to the intrinsic error of MMPBSA, which is usually about 10% as discussed in 

one of our recent papers.93 For the recommended grid spacing of 0.5 Å, the relative error of 

PB energies with respect to the limiting values at 0 Å is about 0.5% (Table 3), which is 

twenty times smaller than the intrinsic error and clearly negligible. It is also interesting to 

compare with some existing higher-order solvers, such as MIBPB, which showed a relative 

error of about 0.2% at their recommended grid spacing of 1 Å with respect to the finest 

tested grid of 0.2 Å.92 This is basically the same if we also compare the values with those at 

0.2 Å instead of 0 Å for the analytical IIM. In summary the accuracy of both our second-

order solver and higher-order solvers is sufficient for post-processing methods that are based 

on intensive PBSA calculations. While on the other hand, the trade-off in accuracy and 

efficiency implies that our second-order solver shall benefit more in CPU intensive 

applications.

Another point worth addressing is the numerical uncertainty of numerical reaction field 

energies. As stated previously, the final PB energy is an average over PB energies of 30 

different grid orientations/offsets of our test molecule. The standard deviations of collected 

data can be used to show the numerical uncertainty of the algorithm. Table 4 shows the 

standard deviations of the 30 energies computed at grid spacings of 0.5 Å and 1.0 Å. For the 

numerical setup at grid spacing of 1.0 Å, the maximum, medium and minimum fluctuations 

among the 8 tested proteins are 7.70, 3.27, and 1.93 kcal/mol, respectively. Those for the 

analytical setup at the same grid spacing are 5.87, 4.51 and 2.68 kcal/mol, respectively. And 

for the analytical setup with regulation, they are 3.25, 2.62 and 1.86 kcal/mol, respectively. 

In general, the energy of the numerical setup may fluctuate about 2~3 times larger than the 

analytical setup, which clearly shows the analytical setup is much more stable and reliable 

than the numerical setup. Similar behaviors were also observed with the grid spacing of 0.5 
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Å. The regulation scheme almost always shows a smaller fluctuation than the other two, and 

the performance is roughly 2~3 times better as shown in Table 4. Thus it is clear that both 

the convergence accuracy and the numerical fluctuation of our new analytical IIM solver are 

in the order of a few tenths of a percentage point at the recommended grid spacing of 0.5 Å, 

and also with higher efficiency.

4.3 Timing and Robustness

Figure 5 shows the timing comparison between two different setups for IIM. It is clear that 

the analytical setup is faster in all the cases, and the improvement in the solver time is 

significant for grid spacings of widely used 1.0 Å and 0.5 Å, for which the performance of 

analytical setup is five-times/double of that of the numerical setup on average. We believe 

this is because the analytical setup gives much more precise coefficients for the final 

discretized equations, leading to better-conditioned linear systems. Thus, the numerical 

solver takes fewer iterations to reach the convergence. Because the solver phase is the most 

time-consuming part in these programs as shown in Table 5, this leads to a dramatic 

reduction in the overall running time. For finer grid spacing of 0.25 Å, the speedup is not 

that significant any more, which is understandable, as the difference between analytical 

setup and numerical setup becomes negligible.

Figure 5 also shows that the analytical setup can be more stable. For spacing of both 1Å and 

0.5Å cases, the timing data are more concentrated near the fitting curves, which shows a 

more unified scaling behavior. Besides, for the protein test set, 3 (out of 573) cases failed for 

the numerical setup (bad data or NaN for PB energies), but none for the analytical setup, as 

showed in Table 6. We further confirmed this result with the analytical setup tests in which 

no case failed. The reaction field energies of the analytical setup tests are shown in Table S4 

in Supplementary Materials. This is consistent with the observations in other analyses of the 

methods.

4.4 GPU Implementation

Finally, we implemented the BiCG linear system solver for the IIM, which is the most time-

consuming portion of the algorithm as shown in Table 5. The results with the protein test set 

are showed in Figure 6. The PB energies agree excellently between GPU and CPU 

programs, with the medium relative error of 0.07% for the test set. The timing of the GPU 

solver also shows an impressive performance boost here, with the speedup ratio of about 20. 

The implementation on GPU makes the analytical setup IIM program more feasible for 

practical biomolecular applications.

5. Conclusion

In this study, we introduced both analytical setup of interface conditions and surface 

regulation into the IIM to address its instability and slow convergence. The analytical setup 

was found to obtain more accurate solutions than the numerical setup in the analytical test 

cases. The method was found to be able to obtain a good result even with coarse grid 

spacings, like 1 Å. At the widely used grid spacing of 0.5 Å, the analytical setup can also 
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lead to much smaller relative errors (less than 0.1%) than the numerical setup. Overall the 

analytical setup converges in a quadratic manner, as predicted by theory.

The surface regulation scheme further speeds up the convergence for nontrivial 

biomolecules. For the widely used coarse grid spacings of 0.5 and 1.0 Å, the analytical setup 

with the surface regulation was found to roughly halve the relative errors from the numerical 

setup. Specifically, the relative error of PB energies at 0.5 Å is about 0.5% with respect to 

the limiting values at 0 Å or about 0.2% with respect to the values computed at 0.2 Å. These 

are similar to those of the higher-order solvers such as MIBPB at their recommended grid 

spacing. In addition, the numerical uncertainty of the PB energies is reduced to a few tenth 

of a percentage point of the mean. In summary both numerical error and uncertainty of the 

new analytical IIM method are much smaller than the thermal noise of typical room-

temperature MD simulations, for which the PB method is often used as a post-processing 

tool.

More interestingly the analytical setup significantly improves the solver efficiency at the 

tested coarser grid spacings. For grid spacings of 1 Å and 0.5 Å, the solver time was 

decreased by 5x and 2x, respectively. This is because the analytical setup generates more 

precise coefficients for the final discretized equations, leading to better-conditioned linear 

systems. This also leads to a more stable algorithm. In our protein test set over 500 proteins, 

none of them failed with the analytical setup. Finally, we implemented the GPU BiCG solver 

for the IIM. The PB energies agree excellently between GPU and CPU programs, and the 

timing analysis shows that the GPU solver is about 20 faster than the CPU solver, which 

makes the analytical setup IIM program more feasible for practical biophysical studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Treatment of the reentry surface. The solid line represents the solvent excluded surface. The 

dash line represents the solvent accessible surface. The dot circle represents the solvent 

probe. “+” signs represent surface elements with positive curvature and “−” signs represent 

surface elements with negative curvature.
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Figure 2. 
Convergence of reaction field energies (kcal/mol) versus grid spacing (Å) for analytical 

sphere models with both numerical and analytical setups for IIM. The energy results are 

obtained by averaging 30 grid orientations/offsets for each test case. All the curves are 

obtained by fitting data to parabolas. Note that the data points at grid spacing 1 Å are not 

included in the fitting.
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Figure 3. 
RMSDs between computed normal component of the surface electric field with analytical 

values (kcal/mol-e-Å) versus grid spacing (Å) for analytical sphere models with both 

numerical and analytical setups for IIM.
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Figure 4. 
Convergence trends for reaction field energies of nontrivial biomolecules (kcal/mol) versus 

grid spacing (Å). The energy results are obtained by averaging of systematic 30 rotations/

offsets of the tested molecules. All the curves are obtained by fitting data at discrete grid 

point to a parabola (y=a+bx2). (Note that for the analytical setup without surface regulation, 

data at grid spacing equal to 1 Å are not included in the fitting.)
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Figure 5. 
Timing comparison between two different setups (without regulation).
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Figure 6. 
Comparison of PB energies (kcal/mol) and solver timing (seconds) between GPU and CPU 

runs. The energy trend line is 1.001x+1.088, with the medium relative deviation between the 

two sets 0.066%. The timing trend line is 0.045x+0.921, with the GPU program about 20 

times faster than the CPU program.
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Table 1.

Reaction field energies (kcal/mol) for the analytical sphere models with the analytical setup. Each energy is an 

average of 30 random placements of the finite difference grid over a tested model. Analytical reaction field 

energies were calculated using Mathematica 7.0.

Spacing 1.000Å 0.500Å 0.330Å 0.250Å 0.125Å Analytical

Monopole −102.80 −103.22 −103.26 −103.28 −103.29 −103.30

Dipole −24.62 −24.80 −24.81 −24.83 −24.83 −24.83

Quadrupole −8.56 −9.17 −9.17 −9.15 −9.16 −9.17

Octupole −24.70 −25.93 −26.02 −25.98 −25.98 −25.98
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Table 2.

Reaction field energies (kcal/mol) of eight selected proteins with analytical setup.

spacing 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75

1.000Å −1059.46 −1045.14 −772.98 −1083.10 −1130.23 −820.50 −1536.82 −924.65

0.500Å −1032.95 −1019.10 −751.89 −1064.22 −1106.95 −800.71 −1512.05 −904.49

0.333Å −1029.06 −1014.96 −748.88 −1061.70 −1105.35 −797.09 −1507.84 −901.55

0.250Å −1028.47 −1014.02 −748.30 −1061.11 −1105.72 −796.15 −1507.01 −900.93

0.125Å −1029.26 −1013.55 −747.08 −1060.72 −1106.34 −795.56 −1506.63 −900.68

lim values −1028 −1013 −746.8 −1060 −1106 −794.9 −1506 −900.0
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Table 3.

Reaction field energies (kcal/mol) of eight selected proteins with analytical setup and the regulation treatment.

spacing 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75

1.000Å −1035.44 −1023.20 −754.93 −1065.92 −1108.35 −804.33 −1514.27 −908.97

0.500Å −1028.61 −1014.24 −748.51 −1061.08 −1103.45 −797.99 −1507.33 −901.28

0.333Å −1025.94 −1011.44 −746.64 −1059.50 −1102.77 −795.28 −1504.58 −899.36

0.250Å −1026.06 −1011.24 −746.53 −1059.39 −1103.41 −794.77 −1504.37 −899.20

0.125Å −1027.52 −1011.6 −745.98 −1059.60 −1104.72 −794.70 −1504.93 −899.54

lim values −1026 −1011 −745.9 −1059 −1103 −794.6 −1504 −898.7
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Table 4.

Reaction field energies standard deviation (kcal/mol) of eight selected proteins with three setups at grid 

spacing of 0.5 Å and 1.0 Å.

1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75

0.5 Å

numerical 4.529 1.070 1.209 3.214 1.571 0.509 4.015 0.532

analytical 1.017 1.037 0.660 0.721 1.782 0.628 0.944 0.821

regulation 0.838 1.046 0.707 0.570 1.332 0.591 0.971 0.722

1.0 Å

numerical 7.704 3.202 1.934 4.743 7.476 3.332 3.128 2.333

analytical 4.024 5.191 2.938 2.678 4.997 5.154 2.762 5.873

regulation 3.250 2.937 2.752 2.292 2.768 1.885 2.495 1.856

J Comput Chem. Author manuscript; available in PMC 2019 May 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 31

Table 5.

Percentages of the average solver time in IIM runs for the protein test set.

grid spacing 1Å 0.5Å 0.25Å

numerical setup 74% 82% 90%

analytical setup 23% 51% 78%
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Table 6.

Failed test cases for the IIM runs with numerical setup.

grid spacing 1Å 0.5Å 0.25Å

Failures 1lyp 1pih 2jhb

1dip 1mut 1hyk

1e6q 1gnc
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